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ABSTRACT 

 

PALKO, JOSEPH   Developing Prediction Models for Kidney Stone Disease 

Department of Mathematics, March 2021. 

 

ADVISOR: [Professor Jue Wang] 

 

 

Kidney stone disease has become more prevalent through the years, leading to high treatment 

cost and associated health risks. In this study, we explore a large medical database and 

machine learning methods to extract features and construct models for diagnosing kidney stone 

disease. 

 Data of 46,250 patients and 58,976 hospital admissions were extracted and analyzed, 

including patients’ demographic information, diagnoses, vital signs, and laboratory 

measurements of the blood and urine. We compared the kidney stone (KDS) patients to 

patients with abdominal and back pain (ABP), patients diagnosed with nephritis, nephrosis, 

renal sclerosis, chronic kidney disease, or acute and unspecified renal failure (NCA), patients 

diagnosed with urinary tract infections and other diseases of the kidneys and the uterus (OKU), 

and patients with other conditions (OTH).  We built logistic regression models and random forest 

models to determine the best prediction outcome. 

 For the KDS vs. ABP group, a logistic regression model using the five variables including 

age, mean respiratory rate, blood chloride, blood creatinine, and blood CO2 levels from the 

patients’ first lab results gave the best prediction accuracy of 0.699. This model maximized 

sensitivity with a value of 0.726. For KDS vs. NCA we found that a logistic regression using the 

Elixhauser score and blood urea nitrogen (BUN) values from the first lab results for patients with 

first admittance produced the best outcome, with an accuracy of 0.883 and maximized 

specificity of 0.898. For KDS vs. OKU a logistic regression using the estimated glomerular 

filtration rate (EGFR) calculated from the average lab values gave the best outcome, with an 

accuracy of 0.852 and maximized specificity of 0.922. Finally, a logistic regression using age, 

EGFR, BUN, blood creatinine, and blood CO2 gave the best outcome for KDS vs. OTH, with an 

accuracy of 0.894 and maximized specificity of 0.903. This research gives the medical field 

models to potentially use on kidney stone patients. It also provides a steppingstone for 

researchers to build off if they want to build kidney stone models for a different population of 

patients.   
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1. Background 

1.1 Kidney Stone Information 

Kidney stones are hard deposits of salts and minerals that form in the kidney [Kidney 

Stones, 2020]. These stones vary greatly in size ranging usually from about 1mm to 10mm 

[IQWiG]. Most stones that are less than 5 millimeters in diameter travel through the bladder 

without any problems. Only about 50% of the stones that are between 5mm and 10mm leave 

the body without assistance. Stones that have a diameter greater than 10 millimeters usually 

need to be treated [IQWiG]. Kidney stones have a lot of different symptoms with intense pain 

being the most common. Other common symptoms include nausea and vomiting [Chen, et.al., 

2018]. Kidney stone presence has increased slightly from a 5.2% prevalence to an 8.8% 

prevalence over an 18 year period from 1994 to 2012 [Chen, et.al., 2018]. The cost of treating 

kidney stones is extremely high, with it costing an estimated total of 4 billion dollars in 2012 

[Chen, et.al., 2018]. People who have experienced a kidney stone are at greater risk of 

developing chronic kidney disease [Chen, et.al., 2018]. 

 There are many different things that can increase a person’s chances of developing 

kidney stones. These things include diet, liquid intake, and even the medicines that someone is 

taking. People who are obese, have diabetes, have higher BMI, have cholelithiasis, or have 

gout, are at a greater risk of developing kidney stones [Chen, et.al., 2018]. Other health factors 

that increase one's risk include hypercalciuria, high blood pressure, osteoporosis, kidney cysts, 

cystic fibrosis, parathyroid disease, inflammatory bowel disease, chronic diarrhea, and surgeries 

that affect the stomach or the intestine [Kidney Stones, (c) ]. Males and whites are also more 

likely to develop kidney stones [Kidney Stones, (c)]. People who have a family history of kidney 

stones are at a greater risk of developing kidney stones [Kidney Stones, (b)]. Older patients are 

also more at risk of developing kidney stones, as kidney stones are more likely to develop 

during the ages of 40-60 [Kidney Stones, (b)]. People who have diets that consist of high protein 

and low carbs or diets with high sodium, have increased chances of developing a kidney stone 

[Kidney Stones, (c)]. People who do not drink very much liquid are more prone to kidney stones 

[Kidney Stones, (c)]. Some medications that make people more prone to getting kidney stones 

include diuretics, calcium based antacids, crixivan, topamax, dilantin, cipro, and ceftriaxonie 

[Kidney Stones, (c)].  

 

1.2 Types and Formation of Kidney Stones 

Kidney stone formation involves crystal nucleation, specifically heterogeneous nucleation. 

Nucleation is when ions, which are usually dissolved in a solvent, come together and form 

clusters [Khan, 2016]. Having low amounts of fluid intake decreases the necessary solvent, 

making it easier for ions to combine. Heterogeneous nucleation is the type of nucleation that 

requires a lower supersaturation [Khan, 2016]. In other words, a lower level of solute needs to 

be present for ions to start combining. There are four different types of kidney stones that can 

form. These types are calcium stones, struvite stones, uric acid stones, and cystine stones. 

Calcium stones are formed from calcium oxalate and calcium phosphate crystals [Kidney 

Stones, (a)]. These stones are also the most common type of kidney stone. Struvite stones form 

from increased production of ammonia and are called infectious stones [Khan, 2016]. Struvite 

stones usually grow very quickly and can get very large [Kidney Stones, (a)]. They are only 
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seen in patients who frequently have urinary tract infections [Khan, 2016]. Uric acid stones 

consist of only about 10% of all kidney stone diseases and are found most in obese or insulin 

resistant people [Khan, 2016]. These stones are formed due to overly acidic urine and are also 

more common in people who have high protein diets [Kidney Stones, (a)]. Cystine stones are 

usually only found in people who have a family history of the disease called cystinuria [Kidney 

Stones, (a)]. This disease causes the kidneys to excrete too much of an amino acid, which then 

allows the amino acid to come together and form a kidney stone [Kidney Stones, (a)]. 

 

2. Kidney Stone Metrics 

2.1 Estimated Glomerular Filtration Rate 

The Estimated Glomerular Filtration Rate or EGFR refers to the filtration rate of the kidney and it 

gives an idea of how well one’s kidney is functioning [Gilbert & Weiner, 2014]. A higher GFR 

value means a well-functioning kidney. Normal average GFR values are approximately 130 and 

120 mL/min/1.73m² for young men and women, respectively [Gilbert & Weiner, 2014]. There are 

many EGFR formulas, but all of them use the following variables: a patient’s serum creatinine 

level, age, sex, and ethnicity [eGFR, 2020]. One complication with these formulas is that they 

were created based on data from people who were white or black [eGFR, 2020]. This means 

that people of different ethnicities may not get good results from any of the formulas. Another 

issue with having so many different formulas is that two hospitals could get different GFR values 

[eGFR, 2020]. This could cause confusion for the patients. Table 1 shows some EGFR formulas 

and how they are calculated. 

 

Table 1 Various formulas for calculating glomerular filtration rate (GFR) 

Cockcroft-Gault Formula Ccr (mL/min) = (140-age) × weight/72 × Scr × 0.85 [if female]  

MDRD Study Equation for Use with 

Standardized Serum Creatinine 

(Four-Variable Equation) 

GFR (mL/min/1.73m²) = 175 × SCr^(−1.154) × age^(−0.203) × 

0.742 [if female] × 1.210 [if black]  

CKD-EPI Equation for Use with 

Standardized Serum Creatinine 

 GFR (mL/min/1.73m²) = 141 × min(Scr/κ, 1)^α × max(Scr/κ, 

1)^(1.209) × 0.993Age × 1.018 [if female] × 1.157 [if black] 

Schwartz Formula (Younger than 18 

Years of Age):  

eGFR = 40.7 × [HT/Scr]^(0.640) × [30/BUN]^(0.202)  

 

2.2 Elixhauser Comorbidity Index (ECI) 

The Elixhauser Comorbidity Index was first created in 1998 and its goal is to summarize the 

overall disease burden that a patient has [ECI, 2021]. This index looks at 30 individual diseases 

and gives a point value based on a yes or no answer to the question of whether they have the 

disease. The scores for each individual question range from -7 to 12 points [ECI, 2021]. Some 

of the diseases that this index looks at are congestive heart failure, hypertension, paralysis, 

chronic pulmonary disease, renal failure, and liver disease [ECI, 2021]. The total scores for this 

index range from -19 to 89. The higher the score the greater the disease burden is for that 

individual [ECI, 2021]. In addition, a person who has a greater disease burden is also more 

likely to die in the hospital than a person with a low disease burden [ECI, 2021]. Other important 
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indexes like the Charlson Comorbidity Index, Stone Score, and the research tool JESS, which 

stands for Joint Expert Speciation System are great tools when looking into kidney stones. We 

do not delve much into these topics, but additional information on these tools can be found in 

appendix 1. 

 

3. Data Description 

We want to investigate what factors seem to have the greatest influence in categorizing patients 

with kidney stones when compared to patients with kidney related diseases, urinary diseases, or 

other diseases in general. The data that we will be using in this project comes from the MIMIC-

III Critical Care Database [MIMIC-III], free for approved researchers to use. This database 

contains 58,976 hospital admissions for the 46,520 patients who stayed in critical care units of 

the Beth Israel Deaconess Medical Center between 2001 and 2012 [MIMIC-III]. Medical 

information includes patient demographics, diagnoses, vital signs, laboratory measurements, 

admittance time, procedures done on the patient, medications that the patient is on, notes for 

patients, and so on.   

We extracted adult (18 years and older) patients’ information and divided them into five 

groups based on the ICD-9 diagnoses during hospitalization. The study groups are patients 

diagnosed with kidney stone (KDS), patients with abdominal and back pain (ABP), patients 

diagnosed with nephritis, nephrosis, renal sclerosis, chronic kidney disease, or acute and 

unspecified renal failure (NCA), patients diagnosed with urinary tract infections and other 

diseases of the kidneys and the uterus (OKU), and patients with other conditions (OTH). The 

extracted features are listed in table 2 below. In addition, we extracted all diagnoses for the 

patient and computed the EGFR and ECI for each patient.  

The extracted data contained 534 KDS, 451 ABP, 16,701 NCA, 4,620 OKU, and 24,295 

OTH patients. A subset of this larger data set was used to learn R programming as well as to 

get an understanding of some potential risk factors for kidney stones. This subset contained 534 

KS patients and 445 ABP patients with only demographic information. 
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Table 2 Extracted features and ICD-9 codes 

Demographics Gender, ethnicity, age, height, weight, BMI 

8 vital signs Heart rate, systolic blood pressure, diastolic blood pressure, mean arterial 
blood pressure, respiratory rate, temperature Celsius, peripheral SpO2, 
glucose 

52 lab blood 
measurements 

Anion gap, albumin, bands, base excess, carbonate, total bilirubin, total 
calcium, chloride, calculated total co2, creatinine, creatine kinase, 
glucose, hematocrit, hemoglobin, lactate, lactate dehydrogenase (ld), 
lipase, magnesium, oxygen saturation, ph, phosphate, platelet count, po2, 
potassium, ptt, inr(pt), pt, red blood cells, red cell distribution width (rdw), 
sodium,urea nitrogen (BUN), uric acid, white blood cells, alkaline 
phosphatase, alanine aminotransferase (alt), asparate aminotransferase 
(ast), ammonia, anti-nuclear antibody, cholesterol ratio (total/hdl), hdl 
cholesterol, ldl cholesterol, total cholesterol, cortisol, d-dimer, folate, 
globulin, mch, mchc, mcv, thyroid stimulating hormone, triglycerides, 
vitamin B12 

21 lab urine 
measurements 

Ammonium, amylase, bilirubin, calcium oxalate crystals, creatinine, urine  
cysteine crystals, epithelial cells, glucose, ketone, leukocytes, 
magnesium, nitrite, ph, phosphate, protein, RBC, sodium, uric acid, urine 
volume, wbc, yeast 

KDS ICD-9 
codes 

5920, 5921, 5929, 5940, 5941, 5942, 5948, 5949, 7880, V1301 

APB ICD-9 
codes 

7890, 78900, 78901, 78902, 78903, 78904, 78905, 78906, 78907, 78909, 
78960, 78961, 78962, 78963, 78964, 78965, 78966, 78967, 78969, 7242 

NCA ICD-9 
codes 

5800, 5804, 58081, 58089, 5809, 5810, 5811, 5812, 5813, 58181, 8189, 
5819, 5820, 5821, 5822, 5824, 58281, 58289, 5829, 5830, 5831, 5832, 
5834, 5836, 5837, 58381, 58389, 5839, 587, 585, 5851, 5852, 5853, 
5854, 5855, 5856, 5859, 7925, V420, V451, V4511, V4512, V560, V561, 
V562, V5631, V5632, V568, 5845, 5846, 5847, 5848, 5849, 586 

OKU ICD-9 
codes 

5880, 5881, 5888, 58881, 58889, 5889, 5890, 5891, 5899, 591, 5930, 
5931, 5932, 5933, 5934, 5935, 5936, 5937, 59370, 59371, 59372, 59373, 
59381, 59382, 59389, 5939, 03284, 59000, 59001, 59010, 59011, 5902, 
5903, 59080, 59081, 5909, 5950, 5951, 5952, 5953, 5954, 59581, 59582, 
59589, 5959, 5970, 59780, 59781, 59789, 59800, 59801, 5990 

OTH ICD-9 
codes 

All other ICD-9 codes that are not listed above 

 

4. Methods 

We first introduce some important models and quantifications used in data analysis and 

machine learning, including correlation, decision tree, random forest, logistic regression, odds 

ratio, confidence interval, and confusion matrix. 
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4.1 Correlations 

Correlations are very important when trying to determine if two variables are dependent or 

independent. There are three types of tests that will tell us how much two variables are related 

to each other. These three tests are the Pearson correlation test, the chi square test, and 

Matthew’s correlation coefficient (MCC). The Pearson correlation is used to measure the 

strength and direction of the relationship between two variables [Bradburn, 2020]. A key 

distinction for this test is that it can only be used with numerical variables. The values range 

from -1 to 1, with -1 meaning a strong negative correlation and 1 representing a strong positive 

correlation [Bradburn, 2020]. A value of 0 means that there is no relationship between the two 

variables. A strong negative correlation means as one variable increases in value the other 

variable will decrease in value. A strong positive correlation means as one variable increases in 

value, the other variable will also increase in value. Along with a correlation coefficient, this test 

gives a p-value. This determines the significance of the result. If the p-value is less than 0.05 

then the correlation between the two variables is most likely not zero. If the p-value is greater 

than 0.05 then there is a possibility that the correlation could be zero. The chi square test sees 

how well the observed values for a given distribution fits with the distribution when the variables 

are independent [Agrawal, 2020]. This test can only be used with variables that are categorical 

[Agrawal, 2020]. This test will also give you a p-value. With a p-value of less than 0.05 we would 

conclude that the two variables are dependent. Otherwise, we would say they are independent. 

The MCC is a correlation coefficient that represents the correlation between the observed and 

predicted binary classifications [Fortney, 2018]. This test gives values that range from -1 to 1, 

like the Pearson correlation. Ideally, we would like to see a value of 1, as this means the model 

predicted perfectly. A value of -1 means the model did not predict correctly and predicts the 

opposite of what it should be. A value of 0 essentially means that the model is just as good as 

random assignment [Fortney, 2018].  

 

4.2 Decision Trees and Random Forests 

A decision tree is essentially a flow chart in the shape of a tree, where every node or "branch" of 

the tree answers a question that allows you to get closer and closer to a prediction [Decision 

Tree]. These decision trees aid in categorizing things like if someone is sick or not sick. The 

random combination of a bunch of decision trees is called a random forest. Random forests add 

more criteria and questions to the model, and it makes the predicted outcome more accurate 

than an individual decision tree [Donges, 2019]. An additional benefit of using random forests is 

that they usually don’t over fit the data, unlike decision trees, which are more likely to over fit the 

data [Donges, 2019]. However, if a random forest gets too big and has too many branches, the 

time to conclusion could be very long, and thus not useful for real time decisions [Donges, 

2019]. A random forest calculation is done using a term called bagging. This is basically taking a 

random sample of individual decision trees, to form a random forest, and training each of them 

with a data set [Krishni, 2019]. This process is repeated as many times as one requests, and a 

summarizing confusion matrix is presented. A data point is categorized by the amount of times it 

was predicted in a certain category. If it was predicted in the positive category more times than 

the negative category, then it will be assigned to the positive category in the summary matrix 

[Starmer]. We talk more about decision matrices and related terms in section 4.5. In addition, an 

OOB or out of the bag error rate is calculated based on these random forests. This error rate 
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tells us which out of bag samples were incorrectly identified by the random forests. So, (1 −

𝑂𝑂𝐵) ∗ 100 tells us the amount of out of bag samples that were correctly identified by the 

random forests [Starmer]. All the random forests in this paper use the Breiman’s Random Forest 

Machine Learning Algorithm. This algorithm uses in-bag and out-of-bag samples. These 

samples are created by the bootstrapping technique [Livingston, 2005]. Each time this is done 

⅓ of the data is part of the out-of-bag sample. The other 2/3s of the data is used as the in-bag 

sample. This is repeated many times and the overall results are averaged [Livingston, 2005]. 

Using this method nullifies the need for cross validation. 

 

4.3 Logistic Regression 

An additional way to categorize things is to use logistic regression. This is different from linear 

regression as it predicts whether something is true or false instead of predicting a value 

[Starmer]. This type of regression fits an s-shaped curve that ranges from a value of 0 to a value 

of 1 [Starmer]. Linear regression uses numerical variables, but logistic regression uses 

continuous or categorical variables. One key aspect of logistic regression is that it assumes all 

variables are independent of each other, even though it may not be true [Logistic Regression]. 

Some outputs that come from the logistic regression include a coefficient for the variable, a p-

value for this coefficient, and an intercept value. These values can then be used to make an 

equation that can be used to determine the log odds, which we discuss further in section 4.4. 

The intercept value indicates the initial log odds value, without other variables. The coefficient 

refers to the weight or the impact of a variable on the log odds. A logistic regression has the 

standard equation: 

 

 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) = 𝑏₀ + 𝑏₁𝑥₁ + 𝑏₂𝑥₂+. . . +𝑏ₖ𝑥ₖ       (1) 

 

The p-value that corresponds to this coefficient tells whether the variable is significant to the 

model. If the p-value is less than 0.05 the variable is significant to the calculation of the odds 

ratio. If the p-value is greater than 0.05 the variable is not significant, which basically means that 

there is a possibility that the value of the coefficient could be zero. If this is the case the variable 

has no effect on the log odds and thus is deemed not significant.      

 Having these different types of models is good, but we need a way to test and see how 

good they are. A way to see how accurate a logistic regression model is, is to use AUROC, or 

area under the receiver operator characteristic (ROC). A ROC graph plots the sensitivity on the 

y-axis and 1-specificity on the x-axis [Grace-Martin, 2018]. Sensitivity tells us what percentage 

of patients who have a disease were correctly identified [Starmer]. Specificity tells us what 

percent of patients who don’t have a disease were correctly identified [Starmer]. We talk more in 

depth about sensitivity and specificity in section 4.5. It is up to the scientist which one they think 

is more important to maximize for their data. In our case, since we are dealing with data from 

the medical field, we feel it is more important to maximize our sensitivity. The AUC (area under 

the curve) ranges from a value of 0 to a value of 1. Ideally, we would want an AUC with a value 

of 1 as this tells us the model is perfect in categorizing patients. An AUC value of 0 is bad 

because it means the model is flipping the categorization [Narkhede, 2019]. That is, things that 

should be zeros are classified as 1’s by the model and vice versa. A benefit of using AUC is that 

it can be used to compare multiple ROC graphs [Starmer].  
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4.4 Odds Ratio and Confidence Intervals 

The odds ratio and the log of odds ratio illustrate a relationship between two variables [Starmer]. 

To understand the odds ratio, we need to understand what is needed to calculate it. The odds 

ratio (or) is given by or=(a*d)/(b*c). Assuming A represents one condition and B represents 

another condition, a represents the number of times both A and B are present. b represents the 

number of times A is present, but B is absent. c represents when A is absent, but B is present. 

Finally, d represents when both A and B are absent [Odds Ratio]. The log odds ratio is given by 

 ln(or) = ln(a*d/b*c) [Odds Ratio].  

To find the confidence interval for the odds ratio, the standard error of the log of odds ratio is 

used. The standard error of the log of odds ratio is given by 

𝑆𝐸(𝑙𝑛(𝑜𝑟)) = √
1

𝑎
+

1

𝑏
+

1

𝑐
+

1

𝑑
 [Comparing Frequencies]      (2)  

Then to finally calculate the confidence interval for the odds ratio we use the equation  

𝑒(𝑙𝑛(𝑜𝑟)±[1.96∗𝑆𝐸(𝑙𝑛(𝑜𝑟))])[Comparing Frequencies].  

A confidence interval gives us a range of plausible values of the true odds ratio. In other words, 

a 95% confidence interval means we are 95% sure that the true odds ratio lies between these 

two values. This becomes important when the confidence interval is close to 0. If 0 is not in the 

range, then we are 95% sure that the two variables are dependent on each other. Also, if 0 is 

not in the confidence interval then we would get a p-value that is less than 0.05. Similarly, if 0 is 

in the 95% confidence interval then we are 95% sure that the two variables have no relationship 

with each other. This would correspond to a non-significant p-value, which has a value greater 

than 0.05. To understand how we interpret the odds ratio we will consider an odds ratio of 1.75 

for a male. This indicates that a male is 1.75 times more likely to have a disease than a female 

[Zach, 2020].  

 

4.5 Confusion Matrices and Related Terms 

A confusion matrix is a table that summaries the actual categories and the predicted categories 

of a model [Rouse, 2018]. The columns represent the actual value, while the rows represent the 

predicted result. A true positive is when someone has a disease and is predicted to have a 

disease. A false positive is when someone does not have the disease, but they are predicted to 

have the disease. A true negative is when someone does not have a disease and they are 

predicted to not have it. Finally, a false negative is when someone does have the disease, but 

they are predicted to not have it [Mokobi, 2020]. Table 3 shows these and related terms such as 

sensitivity, specificity, accuracy, negative predictive value, and precision. It also shows the 

equations to calculate these. Sensitivity, also known as recall or true positive rate, is calculated 

using true positives and false negatives and tells us what percentage of patients with a disease 

were correctly identified [Starmer]. Ideally, we want the value of this to be 1. Specificity, also 

called true negative rate, is calculated using true negatives and false positives and tells us what 

percentage of patients without a disease were correctly identified [Starmer]. Like sensitivity, we 

want a value of 1. Accuracy uses all the rates and a value of 1 represents perfect accuracy. The 

negative predicted value is calculated using true negatives and false negatives. Finally, 

precision uses true positives and false positives, and like the others, a value of 1 is the best. If 

we want to correctly identify positive patients, we want our model to have a higher sensitivity, 
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while if we want to correctly identify negatives, we should make sure our model has a higher 

specificity [Starmer].  

 

Table 3 Confusion matrix with related terminology and calculations 

 
 

Another thing that uses true positive, false positive, false negative, and true negative 

values is the MCC equation that was discussed earlier. To calculate the MCC the following 

equation is used: 

 

MCC=  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

 √(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
      (3) 

 

5. Data Subset Results 

5.1. Correlations and Graphs 

When using the subset of the kidney stone data, a lot of different correlations were looked at. 

These correlations were either the Pearson correlation or chi square test depending on the type 

of variable that the data was. Numerical variables had correlations done by the Pearson 

correlation. The chi square test was used on nominal variables. To be consistent, a p-value of 

less than 0.05 is significant. A correlation that has an absolute value less than 0.3 is considered 

a weak correlation. A correlation coefficient that has an absolute value between 0.3 and 0.5 is 

considered a moderate correlation. Any correlation coefficient whose absolute value is greater 

than 0.5 is said to represent a strong correlation [SPSS, 2020]. Switching the patient’s diagnosis 

(icdtype) to a numerical value, 1 representing kidney stones (KS) and 0 representing abdominal 

and back pain (APB), it was possible to use the Pearson correlation test. After doing so, the 
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correlation coefficient between icdtype and age was 0.108. This indicated that age and icdtype 

had a weak correlation with each other. However, the p-value that we got was 0.00075. This 

indicates that the correlation is significant. We conclude that age and icdtype have a significant, 

but weak correlation. Figure 1 shows a bar graph with a relation between age and icdtype. 

Looking at the blue bars, which indicate kidney stone patients, we see that people between 50 

and 80 years old are more likely to have kidney stones than people who are younger. This 

supports the small positive correlation we found and suggests that age should be a factor that 

we consider when looking at the larger data set.  

 
Figure 1 Bar graph showing icdtype based on patients age ranges 

 

Figure 2 Bar graphs showing icdtype based on ethnicity. Left: black vs. non-black. Right: white 

vs. non-white. 

 

Next, we looked to see if icdtype and gender were correlated. As both variables have nominal 

entries, the chi square test was used. The chi square test gave us a p-value of 0.1596. This 

means that our result was not significant, so we concluded that gender and icdtype were 

independent of each other. Similarly, we looked at icdtype and ethnicity. The chi square test for 

this resulted in a p-value of 0.0018, which is significant. So, from this we concluded that 

ethnicity and icdtype were dependent on each other. As there were multiple categories of 

ethnicities, we looked at two of the most populated ethnicities again with icdtype. This consisted 

of white and non-white, and black and non-black. Each done separately, we got corresponding 
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chi square p-values of 0.002 and 0.0068, respectively. As both p-values were significant for 

each test, we can conclude that icdtype depends on white and non-white ethnicity, and icdtype 

depends on black and non-black ethnicity.  The left graph of figure 2 shows the grouping of 

black and non-black, with black being represented by 1 and non-black being represented by 0. 

This graph shows that people who are black have a lower chance of getting a kidney stone than 

people who are non-black. The right graph of figure 2 shows the count of people with KS and 

ABP icdtypes, grouped by white and non-white. White is indicated by 1 and non-white is 

indicated by 0. From this graph we see that people who are white are more likely to have a 

kidney stone than people who are non-white. However, in both cases this data is very heavily 

populated by white patients and so the results we got are most likely biased. Doing these tests 

on a smaller set of data not only allowed for the learning of R, but it also gave us some key 

insight on factors to investigate when we look at the large data set. Based on the results from 

this subset of data, we see that age and ethnicity, specifically white and non-white and black 

and non-black could be important factors in determining a person’s likelihood of forming kidney 

stones. The logistic regression results for this data subset can be found in appendix 2. 

 

6. Kidney Stone Data Extracted From the MIMIC-III Critical Care Database  

6.1 Data Cleaning/Introduction 

After getting rid of all the duplicates we were able to get the number of data points down 

to 985, when looking at just KDS and ABP patients. Unfortunately, the urine results came with 

almost no information as all the slots were filled with NA. So, we could not utilize the urine 

information. However, with the other information we could calculate the estimated glomerular 

filtration rate or EGFR. To do this we used two different equations. We first used the MDRD 

Study Equation for Use with Standardized Serum Creatinine (Four-Variable Equation). We then 

calculated EGFR using the CKD-EPI Equation for Use with Standardized Serum Creatinine.  

Both equations are given in table 1. The reason why we calculated the EGFR using the CKD-

EPI equation is because we had read a 2018 paper that had also used this equation. We 

wanted to compare our results to the results that they got [Chen, et.al., 2018]. 

 

6.2. Feature Selection 

With so many different variables to choose from it was necessary for us to sift through them and 

find which ones are going to be most useful for our purposes. In our case we wanted to find the 

variables that would help us best sort people with certain symptoms into the groups of kidney 

stones and ABP, NCA, OKU, or OTH. Our initial step was to look at the correlation that each 

variable had with the icdtype. After running all the correlations, we found that none of them had 

very high correlations. EGFR, using the CKD-EPI equation, had the highest correlation with 

icdtype. This correlation had a value of -0.4103. The next highest correlations had absolute 

values that were just a little above |0.2|. More variables had absolute values in between |0.10| 

and |0.20|. Most of the variables had correlation values that landed below |0.10|. The first cut 

that we did was to not consider any of the variables that had a correlation value of less than 

|0.10|. We then ran logistic regressions using the variables that had correlation values higher 

than |0.10|. From these logistic regressions we were able to determine some of the most 

important variables for categorizing patients by icdtype. The variables that we ended up with 

were age, creatinine average, respiratory rate (resprate) mean, anion gap average, chloride 
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average, hematocrit average, hemoglobin average, pH average, phosphate average, platelet 

average, blood urea nitrogen content (BUN) average, CO2 average, and red blood cell count 

(RBC) average. After narrowing it down to these variables we decided to run a regression with 

all these variables to see if they would all still be significant when categorizing icdtype. It turned 

out that age, creatinine average, respiratory rate (resprate) mean, chloride average, BUN 

average, and CO2 average were the only significant variables in this regression with p-values 

less than 0.05. We then took these variables and ran individual regressions. Also, since EGFR 

had the highest correlation value out of all the variables, we incorporated it into these 

regressions. A feature importance bar graph is shown in figure 3.  

 

 
Figure 3 Feature importance plot 

 

With a higher imp value representing a higher importance, we see that chloride seems to be the 

most important variable followed closely by EGFR. Creatinine, age, and BUN all have similar 

imp values at about 4. CO2 and mean respiratory rate (resprate_mean) are the two lowest 

variables in terms of their importance. 

 

6.3 Logistic Regression Using Average Values 

6.3.1 KDS VS ABP 

We will go into depth for some of the regressions we did in this section, and then will only 

discuss the regression using the most correlated variables for each of the following sections. 

Summaries of all the regressions that we did will be discussed later. The first logistic regression 

that we will look at is the one that uses just age. Equation 4 gives the logistic regression 

equation using age. This set had 534 KDS patients and 451 ABP patients. 

 

log(odds)= -1.758 +0.0312*age        (4) 
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Figure 4 shows the logistic regression model and the corresponding probability-curve for 

equation 4. The index represents the patient's age. The value 1 indicates people who had 

kidney stones and the value 0 indicates people who had abdominal or back pain.  

 

Figure 4 Logistic regression model (left) with corresponding probability-curve (right) for equation 

4 

 

Looking at the left graph of figure 4, we can see that there is a decent split at 50% predicted 

probability. Above 50% there are a lot of points that represent people with kidney stones and 

below that line most of the patients are diagnosed with abdominal or back pain. However, with 

the probability-curve we see that people of all ages are diagnosed with KDS or ABP. This 

indicates that this model may not be the best when categorizing patients. We also notice from 

both graphs in figure 4, that people from this data set seem to be starting with at least a 25% 

chance of developing a kidney stone. Even though this does not seem to be the best way to 

categorize, we wanted to know if there was a problem with this model. So, we created a binned 

residual plot, which is shown in figure 5. The grey lines represent the 95% confidence interval.  
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Figure 5 Binned residual plot using equation 4 

 

Looking at the residual plot we do not see any major issues. It looks like we have an outlier in 

the data, but almost all the data points fall within the 95% confidence interval. 

 Because this model seems to be a reasonable model, we decided to look at the ROC 

curve and see what the AUC was for the curve. The ROC graph is shown in figure 6. 

 
Figure 6 ROC graph using equation 4 

 

This ROC graph had an area under the curve of 0.648, which is not a very good number. The 

closer to one the better. The sensitivity, specificity, and accuracy of this logistic regression is 

given in table 14. This AUC agrees with what we saw with the logistic model that age alone is 

not a very good way to categorize kidney stone patients or abdominal or back pain patients. 

 The next variable that we decided to look at was blood creatinine average. This variable 

was also significant in the heart disease data that can be found in appendix 3. It is interesting 

that this variable is important in both data sets. Although it makes sense it is used in both 
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scenarios because ions present in the urine come from the blood plasma. Thus, the blood is an 

important factor in both heart disease and kidney stones. Equation 5 shows the logistic 

regression model that uses creatinine.  

 

log(odds)= -1.426+1.540*creatinine_avg       (5) 

 

Similarly, for this model we made a logistic regression curve and a corresponding probability-

curve. These two graphs are shown in figure 7. This logistic regression looks alright. One issue 

that we noticed immediately was that most of the points fall below an average creatinine level of 

5. This consolidated all our data to the left side making it difficult to separate. However, looking 

at the s-curve, we can conclude that patients with the lowest creatinine levels seem more likely 

to not be diagnosed with kidney stones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Logistic regression curve (left) and its corresponding probability-curve (right) for 

equation 5 

 

While this variable seems to be a better categorizer on its own than age is, it doesn’t seem that 

this is the best way to do it. Either way we wanted to check and see if this model was a 

reasonable one to use, so we created a binned residual plot. This plot is shown in figure 8. 
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Figure 8 Residual plot for model using equation 5 

 

Right away we notice some issues with the residual plot. Firstly, there are a good amount of 

points that lie outside of the 95% confidence interval. This tells us that there are more outliers in 

this data then we would normally expect. In addition, we notice at the beginning of the plot all 

the points fall below the 0 line and at the end of the plot they pretty much all fall above the 0 

line. Points that fall below the line represent overpredicting and the points above the line would 

represent underpredicting. So, we can see that this model tends to overpredict at lower values 

of creatinine levels and underpredict at higher creatinine levels.  

 We decided to look at the ROC curve for this model and see what the area under the 

curve would be. Figure 9 shows the ROC curve. 

 

 
Figure 9 ROC curve for the model using equation 5 
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Despite having issues with overprediction and underprediction this ROC curve has a pretty good 

AUC. The AUC for this curve is 0.723. This is good and much higher than the one for equation 

4. Based on the ROC curve it looks like we could do a decent job of maximizing the specificity 

for this data, but it would cost us the sensitivity. 

The next variable that we looked at was the average blood urea nitrogen (BUN). In this 

case it is the average value. Equation 6 represents the logistic model using BUN. 

 

log(odds)=-1.164 +0.068*bun_avg        (6) 

 

Figure 10 shows the logistic regression curve and the corresponding probability-curve for 

equation 6. 

 

 

Figure 10 Logistic regression curve (left) and corresponding probability-curve (right) for 

equation 6 

 

We see that most of the points fall below a BUN average of 100. This compiles most of the data 

points to a very small portion of our graph. In fact, nearly all the points that were not kidney 

stones fell below a BUN average of 50. In addition, we see that a lower BUN average has the 

lowest chance of being diagnosed with kidney stones. This variable seems to be just as good as 

creatinine and better than just using age in terms of categorizing patients. 

 We again wanted to look at the validity of this model, so we made a binned residual plot 

for equation 6. This binned residual plot is shown in figure 11. 
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Figure 11 Binned residual plot for equation 6 

 

Looking at the plot, these residuals look good. The points seem to be evenly distributed above 

and below the 0 line. In addition, there are only a couple of points that lie outside of the 

confidence interval. This indicates that there are not too many outliers. To compare just how 

similar bun average and creatine average were to each other, we looked at the ROC curve for 

equation 6. This plot is shown in figure 12. 

 
Figure 12 ROC curve for model using equation 6 

 

This ROC curve had an area under the curve of 0.700. This value is slightly lower than the one 

we got using equation 6. This indicated to us that our suspicions about creatinine average and 

BUN average being similar in predicting kidney stones was correct.  
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 The last individual regressions we looked at used EGFR. We did have two different 

equations that we used and wanted to compare them to each other. For simplicity we will call 

the EGFR calculated using the MDRD Study Equation, EGFR.1, and the EGFR calculated with 

the CKD-EPI equation, EGFR.2. Equation 7 shows the logistic regression equation using 

EGFR.1 and equation 8 shows the logistic regression equation using EGFR.2. 

 

log(odds)=1.590+ -0.017*EGFR.1        (7) 

 

log(odds)=4.202+ -0.0447*EGFR.2        (8) 

 

Figure 13 shows the s-curves for equations 7 and 8. In both cases the index represents the 

EGFR values. 

 

Figure 13 S-curve for equation 7 (left) and equation 8 (right) 

 

These two s-curves look very similar to each other. Both seem to indicate that a higher EGFR 

results in a lower probability for kidney stones. The data seem to be more spread out in the one 

using equation 8 than the one using equation 7. As we mentioned earlier a higher EGFR is good 

in terms of kidney function. We see this idea a bit better in the s-curve given for equation 8, 

indicating that this might be the better EGFR calculation to use.  
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To look at the validity of these models we looked at the binned residual plots. Figure 14 

shows these plots. 

 

Figure 14 Binned residual plot for equation 7 (left) and equation 8 (right) 

 

Overall, both plots indicate that the models we used were reasonable models. In both 

cases there seems to be a decent number of outliers in the data. This is indicated by the many 

points that fall outside the 95% confidence intervals. 

To compare the logistic regressions of these two equations to each other, we looked at 

the ROC curve. Figure 15 shows these graphs. 

 

 
Figure 15 ROC curves for equation 7 (black line) and equation 8 (blue line) 
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The area under the curve for the ROC using equation 7, labeled by the black line, was 

0.730. This had an optimum cut off point at (0.25, 0.61). The area under the curve for the ROC 

using equation 8, labeled by the blue line, was 0.748. This had an optimum cut off point at (0.26, 

0.65). Both are good values for an AUC. We can see that EGFR.2 is slightly better at predicting 

than EGFR.1, but both are better at predicting than creatinine average, BUN average, and age. 

The reason why we have equation 8 is so that we can compare the results to the ones 

that the 2018 paper got. It's hard to truly compare these values because we are looking at 

kidney stones vs abdominal and back pain, while the paper looked at patients diagnosed with 

genitourinary diseases, other conditions, and acute localized pain [Chen, et.al., 2018]. The 

diagnoses that we looked at would fall under other diseases. The 2018 paper had an AUC for 

their EGFR curve of .71 [Chen, et.al., 2018]. This is very close to what we got. Our value was 

slightly higher than theirs, but they had other diseases in that category that we did not look at. 

This was a very encouraging result as it looks like our results are what we should be getting 

from the data that we are using. 

Finally, we looked at logistic regressions that used five different variables. The first one 

used chloride average, resprate mean, CO2 average, creatine average, and age. The second 

one used creatinine average, age, BUN average, CO2 average, and EGFR. For this EGFR we 

used the one calculated by the CKD-EPI equation. In both cases the s-curves did not show us 

much of anything as points were spread across both the top and the bottom. Because of this we 

did not include these graphs. The equation for the logistic regression using chloride average, 

resprate mean, CO2 average, creatine average, and age is given by equation 9. 

 

log(odds)= -11.258 + 0.0864*chloride_avg+ 0.02871*age+ 0.852*creatinine_avg+ 

0.0392*resprate_mean+ -0.0342*CO2_avg       (9) 

 

The logistic model using creatinine average, age, BUN average, CO2 average, and EGFR is 

given by equation 10. 

 

log(odds)= 3.194 + 0.0211*bun_avg+ 0.0093*age+ 0.081*creatinine_avg+ -0.0225*EGFR.2+ -

0.0748*CO2_avg          (10) 

 

Equation 10 is the regression model that used the most correlated variables for KDS VS ABP. 

To compare these two models, we looked at the ROC curves and the area under the curve. 

Figure 16 shows these ROC curves. 
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Figure 16 ROC curves for equation 9 (black line) and 10 (blue line) 

 

The AUC for the ROC of equation 9, labeled by the black line, was 0.764. This had an optimum 

cut off point at (0.27, 0.67). The AUC for the ROC of equation 10, labeled by the blue line, was 

0.753. This had an optimum cut off point at (0.24, 0.61). These are extremely close and indicate 

that we can predict just as well with each of these models. These AUC values are very close to 

the one we got just using the CKD-EPI equation for EGFR. From all this information it seems 

that the CKD-EPI EGFR predicts just as well as five variables do when categorizing KDS and 

ABP patients.  

 

6.3.2 Random Forests for KDS VS ABP 

We decided to look at the random forests produced for every equation that we just looked at. 

Some various decision trees can be found in appendix 4. We will first look at the random forest 

using equation 4. Table 4 shows the results of this random forest. 

 

Table 4 Confusion matrix for random forest using equation 4 

 KDS ABP 

KDS 370 147 

ABP 233 202 

 

From this random forest we got an OOB estimate of error rate of 39.92%. This tells us that 

60.08% of the data was correctly identified by the random forest. This is not a great number as 

we want it to be as close to 100% as possible. The sensitivity for this random forest is 0.614 and 
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the specificity is 0.579. Both values are not very good as we want these values as close to 1 as 

possible. It seems that using age alone for a random forest is not a very good categorizer, which 

agrees with our results from the logistic model. 

Table 5 shows the results of the random forest that uses equation 5. 

 

Table 5 Confusion matrix for random forest using equation 5 

 KDS ABP 

KDS 271 244 

ABP 105 328 

 

From this random forest we got an OOB estimate of error rate of 36.81%. This tells us that 

63.19% of the data was correctly identified by the random forest. This is slightly better than the 

random forest using equation 4, but not much better. The sensitivity for this random forest was 

0.721 and the specificity was 0.573. The sensitivity for this random forest was much higher than 

the one we got when using just age, which means creatinine is better at predicting true positives 

than the model using just age. The specificities, however, are the same when using either age 

or creatinine. This random forest agrees with our initial conclusion that creatinine would be 

better used individually than age when categorizing kidney stone and abdominal and back pain 

patients. 

 Our next random forest was done using equation 6. Table 6 shows the results of this 

random forest.  

 

Table 6 Confusion matrix for random forest using equation 6 

 KDS ABP 

KDS 274 240 

ABP 163 270 

 

From this random forest we got an OOB estimate of error of 42.56%, which tells us 57.44% of 

the data was correctly categorized. This value is worse than both the one using age and 

creatinine. The sensitivity for this random forest was 0.627 and the specificity was 0.529. Both 

values are lower than the ones we got when just using creatinine. This result was a little 

surprising as the logistic regression indicated that BUN average and creatinine predict better 

than age. The result from this random forest suggests that BUN average should not be used 

individually to categorize patients when using a random forest. 

Next, we will look at the two random forests done for the two EGFR formulas we used 

before. Table 7 will correspond to equation 7 which uses EGFR.1 or the MDRD Study Equation. 

Table 8 will correspond to equation 8 which uses EGFR.2 or the CKD-EPI equation. 
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Table 7 Confusion matrix for random forest using equation 7 

 KDS ABP 

KDS 317 198 

ABP 189 244 

 

 

Table 8 Confusion matrix for random forest using equation 8 

 KDS ABP 

KDS 326 189 

ABP 188 245 

 

The random forest from table 7 had an OOB estimate of error of 40.82%. This means 59.18% of 

the data was correctly identified. The sensitivity for table 7 was 0.626 and the specificity was 

0.552. The random forest from table 8 had an OOB estimate of error of 39.77%, which means 

only 60.23% of the data was correctly identified. The sensitivity for table 8 was 0.634 and the 

specificity is 0.565. Both sensitivity and specificity were not good for each of these random 

forests.  Neither one of these random forests performed better than the one that just used 

creatinine. When looking at individual variables for random forests it looks like it is best to use 

creatinine average.  

We will now look at the results for the two random forests that each used five variables. 

Table 9 will correspond to the random forest using equation 9 and table 10 will correspond to 

the random forest using equation 10. 

 

Table 9 Confusion matrix for random forest using equation 9 

 KDS ABP 

KDS 233 81 

ABP 97 127 
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Table 10 Confusion matrix for random forest using equation 10 

 KDS ABP 

KDS 229 87 

ABP 91 133 

 

The random forest from table 9 had an OOB estimate of error of 33.09%. This means 66.91% of 

the data was correctly identified. The sensitivity for this random forest was 0.706 and the 

specificity was 0.611. The random forest from table 10 had an OOB estimate of error of 32.96%, 

which means only 67.04% of the data was correctly identified. The sensitivity for table 9 is 0.716 

and the specificity is 0.605. These are the highest values that we have gotten for the random 

forests in accuracy, sensitivity, and specificity. This suggests that using more variables seems 

to categorize better than just 1 variable when using random forests. Overall, the logistic 

regressions seemed to predict better than the random forests. 

 

6.3.3 KDS VS NCA 

In this section and the following sections, we will discuss the logistic regression model that uses 

the most correlated variables. We will add summary tables at the end to look at all the 

regressions we did and compare them to each other. Running a correlation when looking at 

KDS and NCA we found that the most correlated variables were the Elixhauser comorbidity 

score, the 29th comorbidity group, which corresponds to drug abuse, the 30th comorbidity 

group, which corresponds to psychosis, and BUN. However, the 29th and 30th comorbidity 

groups were highly correlated with the Elixhauser score, so we decided to just use the 

Elixhauser score. Equation 11 shows the logistic equation for the most correlated variables. 

 

log(odds)=-1.605+ (-0.0812) *elixhauser_vanwalraven+ (-0.0300) *bun  (11) 

 

We then ran the regression and calculated an AUC, specificity, sensitivity, and accuracy for the 

ROC curve corresponding to this equation. The ROC curve is given in figure 17. 
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Figure 17 ROC curve for equation 11 

 

The cutoff for the best values was at 0.17 on the x axis and 0.56 on the y-axis. The AUC for this 

regression had a value of 0.744, which is not fantastic, but it is not bad either. This graph had a 

specificity of 0.829 and a sensitivity of 0.557. This is a pretty good specificity value, but the 

sensitivity value is not very good. Finally, we got an accuracy of 0.821, which is a pretty good 

value. Overall, this regression does a pretty good job distinguishing between groups as it has an 

accuracy of 82%. In addition to the most correlated variables we looked at regressions using 

age, BUN, creatinine, EGFR, Elixhauser score, and two regressions using five variables. These 

regressions will be discussed in section 6.6.  

 

6.3.4 KDS VS OKU 

In this section we will look at the regression of the most correlated variables for KDS VS OKU. 

Running a correlation for all the variables we found that the most correlated variables were 

BUN, bands, and creatinine. Equation 12 shows the logistic regression for the most correlated 

variables. 

 

log(odds)= -2.443+(-0.000097) *bun +0.0348*bands+0.470*creatinine   (12) 

 

We looked at the ROC curve for this regression model and calculated the AUC, specificity, 

sensitivity, and accuracy. The ROC curve is shown in figure 18. 
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Figure 18 The ROC curve for equation 12 

 

The cutoff value for the best numbers was 0.17 on the x-axis and 0.49 on the y-axis. This curve 

had an AUC of 0.713, which is pretty good, but not great. The specificity for this graph was 

0.826 and had a sensitivity of 0.486. The accuracy of this ROC curve had a value of 0.763. 

Comparing this to the regression for KDS VS NCA we see that the most correlated variables did 

a better job categorizing for KDS VS NCA than the most correlated variables did for KDS VS 

OKU. Regressions were done for age, BUN, creatinine, EGFR, Elixhauser score, and two 

regressions using five variables which are summarized in section 6.6. 

 

6.3.5 KDS VS OTH 

In this section we look at KDS VS OTH. Again, we ran a correlation for all the variables, and we 

found that BUN and creatinine were the most correlated variables for KDS VS OTH. Equation 

13 shows the logistic regression equation for the most correlated variables. 

 

log(odds)=-4.684+ 0.0318*BUN+ 0.1838*creatinine      (13) 

 

We looked at the ROC curve for this equation and calculated the AUC, specificity, sensitivity, 

and accuracy. Figure 19 shows the ROC graph for this equation. 
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Figure 19 The ROC curve for equation 13 

 

The cutoff for this ROC curve that gave the best values was 0.21 on the x-axis and 0.49 on the 

y-axis. The AUC of this graph had a value of 0.671. The specificity was 0.794 and the sensitivity 

was .487. The accuracy for this regression was 0.787. Looking at all four of the regressions we 

see that the most correlated variables best categorized KDS and NCA. 

 

6.4 Logistic Regression for First Lab Results 

6.4.1 KDS VS ABP 

We wanted to compare the logistic regressions that were created when we used the average 

lab results and the first lab result values. This set had 534 KDS patients and 451 ABP patients. 

We are looking at the most correlated variables, which were creatinine, age, bun, CO2, and 

EGFR. The values were slightly changed for the logistic regression. Equation 14 shows the 

logistic regression created with the most correlated variables.  

 

log(odds)= 2.0366+ 0.0160*age+ 0.0196*bun+ 0.1067*creatinine+ (-0.0166) *EGFR.2+ (-

0.0664)*CO2           (14) 

 

The AUC for this regression had a value of 0.744. The specificity was 0.670 and the sensitivity 

was 0.713. The accuracy was 0.695. Comparing this to the average lab result values we see 

that we get slightly lower values for both AUC and specificity, while the sensitivity and accuracy 

slightly increase. Based on the accuracy that we get it seems that the first lab results do slightly 

better at categorizing when using the same variables than the average lab values do. 

 

6.4.2 KDS VS NCA 
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Looking at the first lab results for KDS VS NCA we again looked at the most correlated 

variables, which are the same as before, and compared the two logistic regressions that we got. 

This data had 534 KDS patients and 16,701 NCA patients. Equation 15 shows the logistic 

equation that we get using the first lab results. 

 

log(odds)=-1.639+ (-0.0835) *elixhauser_vanwalraven+ (-0.0275) *bun   (15) 

 

The AUC for the corresponding ROC curve had a value of 0.742. The specificity was 0.835 and 

the sensitivity was 0.540. The accuracy of this regression was 0.825. Comparing this to the 

values we got when we used the average lab results, we see that the AUC’s were about the 

same, while specificity and accuracy slightly increased, and sensitivity slightly declined. Looking 

at the overall accuracy of both models we conclude that the average lab results were best in 

categorizing KDS and NCA patients. 

 

6.4.3 KDS VS OKU 

We also looked at the first lab results for KDS VS OKU. Using the same most correlated 

variables as before, we did a logistic regression and formed equation 16. This data had 534 

KDS patients and 4,620 OKU patients.  

 

log(odds)=2.4381+0.0007*bun +0.0375*bands+0.4378*creatinine     (16) 

 

The AUC for the ROC curve was 0.700. The specificity was 0.507 and the sensitivity was 0.789. 

The accuracy for this logistic regression was 0.560. Comparing this to the average lab values 

we see that the AUC slightly decreased. The specificity decreased significantly, and the 

sensitivity increased significantly. The accuracy took a big hit, decreasing by a lot. We conclude, 

based on the accuracy, that the average lab results do a better job at categorizing these two 

groups. 

 

6.4.4 KDS VS OTH 

Again, we looked at the first lab result values for KDS VS OTH. Using the same variables as 

before, we got the logistic regression equation, given by equation 17. This data had 534 KDS 

patients and 24,295 OTH patients. 

 

log(odds)= -4.638+ 0.0283*bun+ 0.1836*creatinine      (17) 

 

The AUC value for the corresponding ROC graph was 0.669. The specificity was 0.782 and the 

sensitivity was 0.483. The overall accuracy of this regression equation was 0.775. Comparing 

these values to the regression using the average lab results, we see that all the values were 

very similar but had slightly smaller numbers when using the first lab results. This suggests that 

the average lab results, result in a slightly better prediction. 

 

6.5 First Admittance and First Lab Result Logistic Regression 

6.5.1 KDS VS ABP 
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Finally, we decided to compare the previous regressions to the regression created using the first 

lab values that were obtained on the patients' very first admittance to the hospital. We again 

looked at the most correlated variables which in this case were EGFR, CO2, BUN, age, and 

creatinine. This set of data included 332 ABP patients and 389 KDS patients. Equation 18 gives 

the logistic regression equation. 

 

 log(odds)= 2.646+ 0.0137*age+ 0.0096*bun+ 0.0541*creatinine+ (-0.0127) *EGFR.2+ (-0.0558) 

*CO2            (18) 

 

This logistic regression had an AUC of 0.718 for the ROC graph. The specificity had a value of 

0.591 and sensitivity of 0.746. The overall accuracy of this regression was 0.683. Looking at the 

overall accuracy of the three different regressions, we see that using the first lab results 

produced the highest accuracy. The next highest accuracy came when using the first lab results 

and the patients’ first admittance. The worst performing regression came when using the 

average values.  

 

6.5.2 KDS VS NCA 

Similarly, we looked at the first lab results and the first admission to compare its regression to 

the other two regressions we have looked at for KDS VS NCA. This data had 389 KDS patients 

and 9,845 NCA patients. Again, we used the most correlated variables, which were the 

Elixhauser comorbidity score and BUN. Equation 19 gives the logistic regression equation. 

 

log(odds)=-1.417+ (-0.0924) *elixhauser_vanwalraven+ (-0.0033) *bun (19) 

 

The AUC for the corresponding ROC graph had a value of 0.754. The specificity was 0.898 and 

the sensitivity was 0.508. The overall accuracy of this regression was 0.883. Comparing the 

accuracies to the other two regressions, we see that this model does better than the one using 

average values and the one using just the first lab results. It has a larger accuracy by about 

0.06. The second highest result came when using the first lab result values, while the lowest 

result occurred when using the average values. 

 

6.5.3 KDS VS OKU 

The most correlated variables when looking at KDS VS OKU were BUN, bands, and creatinine. 

We again got the first lab results from the first admittance and ran a regression. This data had 

389 KDS patients and 3,249 OKU patients. Equation 20 shows the logistic regression equation.  

 

log(odds)=-2.704+(-0.0004) *bun +0.0307*bands+0.7815*creatinine    (20) 

 

The AUC for the corresponding ROC graph had a value of 0.722. The specificity was 0.793 and 

the sensitivity was 0.588. The overall accuracy for this model was 0.751. Comparing this result 

to the other two results that we got, we see that this regression had the highest accuracy. The 

second highest result came when we used the average lab results. A significantly lower 

accuracy occurred when we used only the first lab results. 
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6.5.4 KDS VS OTH 

Just like we have done previously we looked at the first lab results and the first admittance for 

KDS VS OTH. This data had 389 KDS patients and 24,292 OTH patients. The most correlated 

variables were still BUN and creatinine. Equation 21 represents the logistic regression equation.  

 

 log(odds)= -4.667+ 0.0266*bun+ 0.1509*creatinine  (21) 

 

The AUC for the corresponding ROC graph was 0.637. The specificity was 0.782 and the 

sensitivity was 0.443. The overall accuracy of this regression was 0.776. Now, let's compare this 

result to the other two results we got. The accuracy we got for this result was nearly identical to 

the accuracy we got when using just the first lab result. However, both results are slightly lower 

than the results that we got when we used the average values. We will compare other 

regression results using the three different data values in the next section. 

 

6.6 Logistic Regression and Statistical Summaries 

To make comparisons between the different values of data that we looked at, we made tables 

for each individual regression we did. Table 11 shows the logistic regressions using the most 

correlated variables, which have been discussed in detail in sections 6.3, 6.4, and 6.5. 

 

Table 11 Logistic regression using most correlated variables summary 

 
The next regression that we looked at used just age. Table 12 shows the results of all 

the logistic regressions that we ran using just age.  

 

Table 12 Logistic regression using age summary 

 
Looking at table 11 we see that we got the exact same results when we used the average lab 

values and the first lab values for each category. We also notice that the accuracy was the 

highest for KDS VS ABP and KDS VS NCA when using the first lab results from the first 
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admission, while it was highest for KDS VS OKU and KDS VS OTH, when using the average 

lab values. Regardless of what category of patients we were looking at, we see that none of the 

accuracies were very good, which indicates that age alone is not the best categorizer.   

 Next, we decided to look at creatinine as the only variable and run logistic regressions 

for each scenario. Table 13 shows the summary results of the regressions when just using 

creatinine. 

 

Table 13 Logistic regression using just creatinine summary 

 
Looking at table 13, we see that the highest accuracy results for KDS VS ABP and KDS VS 

NCA came when we used the average lab values. For KDS VS OKU the highest accuracy came 

when using the first lab results from the first admission. For KDS VS OTH the highest result 

came when looking at just the first lab results. These accuracy values are much higher than the 

ones we got when we were just looking at age alone. This indicated to us that using creatinine is 

better than using age if we wanted to categorize using only one variable. 

 Our next regression that we looked at was one that used only the BUN values. Table 14 

shows the summary of these logistic regressions. 

 

Table 14 Logistic regression using only BUN values summary 

 
We again see a split between which values produce the best results. KDS VS ABP and KDS VS 

OTH get the best results when the average lab values are used. The other two groups get their 

best results when looking at the first lab values from the first admission. Comparing this to the 

creatinine regressions we see that we found slightly higher values of accuracy when using just 

creatinine than we did in their corresponding categories using just BUN values. 

 Our next individual regression that we looked at was the EGFR values. We calculated 

these EGFR values using the CKD-EPI Equation for Use with Standardized Serum Creatinine. 

Table 15 gives the summaries of these logistic regressions. 
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Table 15 Logistic regression using just EGFR values summary 

 
The best accuracy for KDS VS ABP, KDS VS OKU, and KDS VS OTH all came when using the 

average lab results. We do note that the accuracy for KDS VS OKU was the same for both the 

average lab results and the first lab results from the 1st admission. KDS VS NCA got its best 

result when using the first lab values from the first admission. In all categories except KDS VS 

OTH the highest accuracies from just using EGFR were higher than the highest accuracies 

when just using creatinine. The accuracy using creatinine was .021 higher than that using just 

EGFR for KDS VS OTH. From this we concluded that using EGFR was the better variable to 

use if we were just looking at a single variable to categorize patients. 

 Our final individual variable that we looked at was the Elixhauser score. Because this 

score looks at one's likelihood of dying in a hospital, we thought it would be interesting to see 

how well its logistic regression would do when categorizing patients. Table 16 shows the 

summaries for these logistic regressions.    

 

Table 16 Logistic regression summaries when using only Elixhauser score 

 
We notice that the average lab results and the first lab results produced the same values for 

each of the four groupings. We see that other than KDS VS ABP, which got its best accuracy 

when looking at the first lab results from the first admission, the best accuracies came when 

using the average lab results or the 1st lab results, since they produced the same results. It is 

also clear that these regressions had very low accuracies except for KDS VS NCA, which had a 

decent accuracy. We assume that Elixhauser scores perform better for KDS VS NCA patients 

because the diseases that are categorized as NCA are more likely to cause patient death, while 

in the hospital. Since the models did poorly overall, we concluded that using the Elixhauser 

score was not a very good way to categorize these patients. So, we can conclude that, when 

used individually, the EGFR values gave us the best results. 

 Now we will investigate two regressions that each used 5 variables. Our first regression 

is one that does not use the EGFR values. The five variables that it uses are resprate mean, 

creatinine, CO2, age, and chloride. Table 17 shows the summaries of these regressions. 
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Table 17  

Regression summaries when using resprate mean, creatinine, age, chloride, and CO2 

 
Looking at table 17 we see that the accuracy is very similar for KDS VS ABP no matter what 

data you use. Its highest value does come when the 1st lab results are used. KDS VS OKU also 

has its highest accuracy value when the first lab results were used. Both KDS VS NCA and KDS 

VS OTH have their highest accuracy values when the first lab results from the first admission 

are used. Overall, this regression seems to do well when looking at OTH and NCA patients and 

does more poorly when looking at ABP and OKU patients. 

 Finally, we looked at a regression that used five variables and included EGFR. The other 

four variables that were used were age, creatinine, BUN, and CO2. Table 18 summarizes the 

results that we got from these regressions. 

 

Table 18 Regression summaries when using EGFR, age, creatinine, CO2, and BUN 

 
KDS VS ABP gets its best results when the first lab results are used. KDS VS NCA on the other 

hand gets its best results when the average results are used. Both KDS VS OKU and KDS VS 

OTH get their best results when the first lab results from the first admission are used. 

Immediately we noticed improvement in the KDS VS OKU results when compared to the other 

five variable regression. The other three groups stayed relatively the same. Because of these 

more consistent values, with them all being over 0.600, we believe that it is better to use this 

last regression when categorizing these patients. 

Overall, we seem to get a split decision on which set of data produces the best results. 

In some cases, we found that the average lab results produced better numbers and in other 

cases found that the first lab results from the first admission produced better numbers. 

Depending on what variables one would want to use and what group one is looking at, it is 

possible to find the best data to use. However, there is not a data set that we can definitively 

say will always give the best outcomes or results. 

In addition to these logistic summaries we did some quick statistical summaries of the 

variables we used the most. We also looked at how the ethnicities and genders fanned out over 
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the different groups of patients. Table 19 shows the statistical summaries of some of the 

variables we used, while table 20 shows the groupings of gender and ethnicity by their icdtype. 

 

Table 19 Statistical summaries of commonly used variables 

 

Table 20 Groupings of ethnicity and gender by icdtype 

 
 

The p-values compare the average values in that group to the average values that we got for 

the KDS group. In table 19 we see that the BMI values were not statistically different from one 

another. In table 20 the ethnicity was grouped by white and non-white and in all cases the 

ethnicity groupings were all significantly different from one another. Similarly, we grouped the 

ethnicity by black and non-black. We found that all the groups were significantly different except 

for the KDS group and the OKU group when using this ethnicity grouping. Looking at the 

summaries we see that there are many more patients in the NCA group and OTH group 

compared to the KDS, ABP, and OKU groups. There is also a higher presence of males in this 

data, with more than 50% of the patients being males in each of the categories except for the 

OKU group. Finally, we notice that there are a lot of white patients represented in this data, 

which means our data may not fit well in populations with low amounts of white patients. 

 

6.7 Healthy VS Unhealthy Ranges 
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Another thing that we looked at was how our patient’s lab values compared to the normal 

ranges for these lab values. Because we had people who were admitted to the hospital, we 

figured that our population would be much different than the normal population. For this we 

looked at many different variables including pH, bicarbonate, calcium, chloride, hemoglobin, and 

lipase. Out of the many variables we found a few where most of the patients had unhealthy 

ranges. These variables include creatine kinase, glucose, lactate, and PO2. For creatine kinase 

we used the range of 38-174 units per liter for males and 96-140 units per liter for females. We 

got this information from the blood book webpage [Bloodbook, 2013]. For creatine kinase we 

found that most patients in each of the five groups had lab values that were lower than the 

normal or healthy ranges. For glucose we used the range 70-100 mg/dL. We found that most 

patients in each of the groups had values that were higher than the healthy values. Next, for 

lactate, we used the range 4.5-19.8 mg/dL. We found that most of our patients in each of the 

groups had values that were lower than the healthy range. Finally, for PO2, we used 83-100mm 

Hg as the healthy range. While the numbers we got split between higher values and lower 

values, an overwhelming number of patients had unhealthy levels. Since these variables 

seemed to do well categorizing patients between healthy and unhealthy values, we decided to 

see if any of their regressions would produce better numbers than the regressions we looked at 

thus far. It turns out that none of these regressions gave us better results than the ones we 

already used. These regressions produced accuracy values that landed between 0.5 and 0.6, 

which are much lower than the 0.7 and 0.8 accuracy values we saw when using other variables. 

 

6.8 Distribution Bar Graphs 

In addition to logistic regressions, we examined age distributions based on gender, BMI 

distribution, and EGFR ranges, where the EGFR is calculated using the CKD-EPI equation. The 

CCI was used in [Chen, et.al., 2018]. The first graphs we will look at are the ones looking at age 

ranges for each gender. Figure 20 shows the two different bar graphs. In both graphs we can 

see an increase in the diagnosis of a kidney stone as the age increases. In males however, 

after about 80 years of age, the rates of kidney stones decrease. In females, the rate of kidney 

stones stays high as the age continues to increase. Males hit the highest kidney stone rates at 

the age range of 71-80, while females hit their peak at 71-80, but stay at about the same rate as 

they get older than 80. For abdominal and back pain, the males follow a similar pattern where it 

increases, peaks at the range of 61-70, and then starts to decrease. The pattern for females is 

different from their kidney stone pattern as the rates for abdominal and back pain increase, peak 

at the range of 51-60 and then decrease. For the NCA, OKU, and OTH groups the male rates 

increase as they get older until a point where they start to decline. Females, however, have 

rates that continue to increase as they grow older. 
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Figure 20 Age distribution of icdtypes based on gender 

 

 

 
Figure 21 Icdtypes grouped by BMI 

 

 

In addition to grouping by gender, we grouped the patients in each category by their recorded 

BMI values. Figure 21 shows the corresponding bar graph. To determine these categories, we 

looked up the government standards. A BMI less than 18.5 is in the underweight category. A 
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BMI between 18.5 and 24.9 is considered a healthy weight. A BMI between 25 and 30 is 

overweight. A BMI between 30 and 35 is obese. A BMI between 35 and 40 is severely obese. A 

BMI greater than 40 is morbidly obese [BMI]. From this graph we see that the highest 

prevalence of kidney stones occurs in people who are considered overweight. The category with 

the next highest prevalence of kidney stones was the healthy weight category. We also notice 

that the abdominal and back pain group follows the same pattern being most prevalent in 

overweight patients and then healthy weight patients. We notice that the majority of the NCA 

and OTH patients have BMI’s that are higher than the healthy range. The OKU group has most 

of its patients in the healthy weight category or the overweight category. 

 We then looked at the ethnicity distribution in each of the five groups. Figure 22 shows 

the corresponding bar graph. 

 

 
Figure 22 Icdtypes grouped by ethnicity 

 

As we can see in figure 22 there is a huge Caucasian ethnicity majority in all our groups. The 

next two groups with the most patients are of black ethnicity and unknown ethnicity. Having so 

many white patients indicates that the results we have found may not apply very well to other 

ethnicities.  

 Finally, we grouped the icd types based on EGFR ranges. We used healthline to give us 

values which indicate how well one's kidney is functioning. There are five different kidney 

function stages. Stage 1 indicates minimal or no loss of kidney function and is expressed by a 
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GFR of 90 or above. Stage 2 indicates mild loss of kidney function and is expressed by a GFR 

of 60 to 89. Stage 3 indicates moderate loss of kidney function and is expressed by a GFR of 30 

to 59. Stage 4 indicates severe loss of kidney function and is expressed by a GFR of 15 to 29. 

Finally, stage 5 indicates kidney failure and is expressed by a GFR of 15 or below [Nall, 2021]. 

Figure 23 shows this bar graph. 

 

 
Figure 23 Prevalence of icdtypes grouped by EGFR ranges 

 

From this graph we see that the KDS patients have the highest prevalence in the moderately 

impacted kidney category. The KDS patients have their second highest prevalence in the 

healthy kidney category. We see this same pattern with the OKU patients. The OTH and ABP 

groups have the highest prevalence in the healthy kidney category followed by the moderately 

impacted category. The NCA patients are different from all the other groups as nearly all their 

patients have a moderately impacted kidney or a severely impacted kidney. Overall, most of the 

patients have either a healthy kidney or a moderately impacted kidney. 

 

7. Discussion 

Our results gave us some interesting perspectives when it comes to kidney stones and diseases 

related to the kidneys or the urinary tract. We were encouraged that our results, although not 

the best, were very similar to the results of the diagnostic acute care algorithm for kidney stone 

disease [Chen, et.al., 2018]. We found through our analysis that when comparing the KDS 

group VS the ABP group a logistic regression using the five variables age, chloride, creatinine, 

resprate mean, and CO2 levels from the data set that contained the patients first lab results 

gave us the best accuracy in distinguishing these two groups. The accuracy for this regression 

was 0.699. This also had a specificity of 0.661 and a sensitivity of 0.726. For the KDS group VS 

the NCA group we found that a logistic regression using the Elixhauser score and the BUN 
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values with the data that contained the first lab results from the first admittance produced the 

best outcome. This outcome had an accuracy of 0.883. The specificity for this had a value of 

0.898 and a sensitivity of 0.508. For the KDS group VS the OKU group we found that a logistic 

regression using the EGFR calculated from the CKD equation with the average lab values gave 

us the best outcome. This outcome had an accuracy of 0.852. It also had a specificity of 0.922 

and a sensitivity of 0.247. Finally, for the KDS group VS the OTH group, we found that a logistic 

regression using age, BUN, creatinine, EGFR, and CO2 gave us the best outcome. This 

outcome had an accuracy of 0.894, a specificity of 0.903, and a sensitivity of 0.323. In the case 

of KDS VS ABP we were able to maximize the sensitivity, meaning that this model is best used 

when trying to identify patients with kidney stones. In all the other cases we were able to 

maximize the specificity, which means that these models do best when trying to identify patients 

without kidney stones. Some possible problems with our results come from the data we used. 

First, we notice that there is a relatively small amount of data from patients with kidney stones 

as most of the patients in this data were not diagnosed with kidney stones. Also, we had a high 

presence of males in our overall population. This indicates that our results could have a bias 

towards a high male population and may not do well in populations high in females. We also see 

that most of the patients had either a black or Caucasian ethnicity. This indicates that our results 

may not work very well in populations that are not dominantly black and Caucasian. Sample R 

codes that we used for this research can be found in appendix 5. 
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Appendix 

 

Appendix 1: Learning R and Key Tools for Kidney Stone Research 

1.1 Learning Coding Through R 

Initially, it was necessary to download R before it could be used. To do this we went to the R 

project website [R project]. After installing and downloading this program we installed Rstudio, 

which makes R more user friendly. After installation of R and R studio we needed to learn how 

to use it because R is the program that we used to create models and evaluate their accuracy. 

Doing a little bit of research, we were able to find a website that provided lots of information on 

what the system R is and how to do basic codes like means, averages, and graphs [R Tutorial, 

2020]. After learning some of the basic codes in R, Statquest videos provided extra information 

about what the numbers received in R meant. Topics like logistic regression, correlation, and 

random forests were discussed to provide a better understanding of what the R output truly 

meant. Reading and watching these things were helpful, but to truly understand these things 

they must be performed. Using a subset of the data, we put into action what we had learned 

from the readings and videos. This data included variables, like the patient’s age, gender, 

ethnicity, and their icdtype which was either kidney stones (KS) or abdominal and back pain 

(ABP). This subset of data was very useful for learning the ropes of R as well as determining 

some factors that may be important. This subset of data gave us a strong foundation to build on 

when we started to work with the entire data set. Additional learning work was done using heart 

disease data. This information and some of the results can be found in appendix 2. 

 

1.2 Charlson Comorbidity Index (CCI) 

The Charlson Comorbidity Index is a prediction metric that predicts the ten year mortality rate of 

someone presenting one or more conditions in the model [Ciorniciuc, 2015]. The index includes 

the patient's age and 16 other possible conditions. Some of these other conditions include 

myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular 

disease, and dementia [Ciorniciuc, 2015]. A patient with one or more of these diseases is given 

a score of 1, 2, 3, or 6. The score is based on which category the disease is in. A disease 

scored with a value of 1 has a lower likelihood of leading to death, while a disease scored with a 

value of 6 has a high likelihood of death. Some of the diseases scored as 1 include connective 

tissue disease, ulcer, and chronic liver disease. Some diseases that are scored as a 2 are solid 

tumor, leukemia, and lymphoma. The only three point disease is moderate to severe liver 

disease. Finally, the three diseases that are scored a 6 are malignant tumor, metastasis, and 

AIDS. Adding up all the values gives the CCI score. To calculate the survival rate of the patient 

we use the formula 0.938(𝑒(𝐶∗0.9)) where C is the CCI score [Ciorniciuc, 2015].  

 

1.3 Stone Score and Stone Plus 

The stone score is used as a predictor of a patient being stone free and complication free after 

percutaneous nephrolithotomy (PCNL), which is a kidney stone removal surgery [Jiang, et. al., 

2019]. Stone stands for stone size, tract length, obstruction, number of involved calices, and 

essence [Jiang, et. al., 2019]. Obstruction refers to hydronephrosis, which is when the kidney 

swells due to improper drainage of urine [Stephens, 2020]. Essence defines the stone density in 

Hounsflied units [Nedea, 2017]. To calculate the stone score, certain conditions are given a 
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certain amount of points. For stone size, a size of 0-399𝑚𝑚2 is given one point, a stone of size 

400-799𝑚𝑚2 is given two points, a stone of size 800-1599𝑚𝑚2 is given three points, and a 

stone >1600 𝑚𝑚2 is given four points [Nedea, 2017]. A tract length less than or equal to 100mm 

is given one point and anything above 100mm is given two points. For obstruction, no/mild 

hydronephrosis is given one point and moderate/severe hydronephrosis is given two points. If 

the number of involved calices is 1 or 2 then one point is given. If there are 3 calices, then two 

points are given. A full staghorn stone is given three points. Finally, an essence less than or 

equal to a value of 950 is given one point and an essence greater than 950 is given two points 

[Nedea, 2017]. Table 1 shows the probability of someone being stone free based off their stone 

score. 

 

Table 1 Stone free percentages based on stone score [Nedea, 2017] 

STONE result Probability of stone free outcome after first 

procedure 

5 94% 

6 92% 

7 88% 

8 83% 

9 64% 

10 42% 

≥11 27% 

 

Another way to calculate a STONE score is by using sex, duration of pain, race, nausea 

and vomiting, and hematuria. This method is used more to determine whether someone has a 

kidney stone. Similarly, like the other method, points are assigned for certain categories. For 

sex, males receive two points and females receive no points. A duration of pain greater than 24 

hours receives no points, 6-24 hours receives one point, and less than 6 hours receives three 

points. An ethnicity of black receives no points and non-black receives three points. For nausea 

and vomiting, not present receives no points, only one present receives one point, and when 

both are present two points are given. Finally, if hematuria is present three points are given and 

if it is absent no points are given [Safaie, et. al., 2019]. To interpret the numbers, a point total of 

5 or less means a low risk of having kidney stones, 6-9 means a moderate risk of having a 

kidney stone, and a score of 10 or greater means a high risk of having a kidney stone [Moore, 

2020]. Stone plus is an addition to this second method of calculating a stone score. Plus refers 

to point of care limited ultrasonography, which is an ultrasound done at the patient's bedside 

[Daniels, et. al., 2016]. Stone plus combines the stone score mentioned above and the bedside 

ultrasound to predict someone’s chances of having a kidney stone more accurately. This 

ultrasound can be used to determine if a patient has hydronephrosis [Daniels, et. al., 2016]. The 

presence or not of hydronephrosis is then factored into the stone score and could possibly 

change one’s likelihood of having a kidney stone [Daniels, et. al., 2016]. The whole idea behind 
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the stone plus is to improve accuracy of diagnosing someone with or without a kidney stone 

without having to cause unnecessary imaging radiation exposure. 

 

1.4 JESS and Supersaturation 

JESS stands for Joint Expert Speciation System. JESS is a research tool that is used to model 

chemical speciation in aqueous environments [May, et.al., 2019]. Chemical speciation is the 

process of identifying and quantifying the abundance of a chemical or ion in a certain aqueous 

solution [May, et.al., 2019]. The JESS interface contains over 12,000 thermodynamic reactions, 

which includes chemical reactions and their parameters such as equilibrium constants and 

reaction enthalpies [May, et.al., 2019]. Other factors that are considered are amounts of 

components, ionic strength, temperature, and solution ph. To model a certain reaction the 

information about the chemical reaction is taken from the JESS database and “is then 

transformed into a thermodynamically consistent set of equations and solved” [May, et.al., 

2019]. JESS models are much more useful to predict chemical behavior or abundance then they 

are for providing an analytical point of view [May, et.al., 2019]. This can be applied to all 

chemical species present in urine, but calcium oxalate and calcium phosphate are of increased 

importance because they lead to kidney stones [Rodgers, et. al., 2014]. Therefore, JESS can be 

used to predict the supersaturation of key compounds related to kidney stone formation, like 

calcium oxalate, calcium phosphate, and uric acid, which are found in urine. Supersaturation of 

a liquid refers to when a solution has more dissolved solute than it should at that volume or 

temperature [Supersaturated, 2020]. Supersaturation is important because supersaturation is 

key to crystal nucleation, which is the first step in the formation and growth of kidney stones. 

Being able to predict the supersaturation of compounds in urine can help predict the likelihood 

of a kidney stone forming in a patient. In addition, it can help determine which type of stone will 

form, allowing doctors to prescribe certain remedies that can help prevent the patient from 

getting a kidney stone of that type. A couple limitations of JESS are that it does not consider 

kinetic phenomena and its accuracy is limited to that of its database of thermodynamic 

constants [May, et.al., 2019]. Fortunately, the JESS database has over 12,000 thermodynamic 

constants. While the thermodynamic constants limit the accuracy, they also make the results 

reliable [May, et.al., 2019]. JESS is commonly used on astronauts when they return from space 

because the pressure and diet change, while in space, changes the urine chemistry of the 

human body [Myers, et. al., 2018]. 

 

Appendix 2: Logistic Regression from Data Subset 

With the kidney stone data subset, we wanted to get some practice doing regressions and 

random forests, so we looked at the variables that seemed to be correlated with icdtype. Initially, 

a logistic regression was done just using age. In other words, age was used as the only 

predictor for determining if someone is likely to have kidney stones. Figure 1 shows the logistic 

regression curve and the corresponding probability-curve using equation 1, given below. 

log(odds)= (-0.1903) +0.0055(age)        (1) 
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Figure 1 Logistic regression(left) and corresponding probability-curve (right) for equation 1 

 

The index is simply just the age of the patients. We note that any patient who has an age 

greater than 89 corresponds to the value 300 and have been omitted from both graphs of figure 

1. Looking at the left graph of the figure we can see that all the patients in this set of data have 

at least a 20% chance of developing a kidney stone. There is somewhat of a divide between 

patients with kidney stones and those without. We can see that at about .5 on the y-axis most of 

the points above that line have kidney stones while the majority below that do not. However, we 

do see a good amount of overlap with patients who don’t have kidney stones above that line 

and vice versa. The very low coefficient for age tells us that age does not have much of an 

impact on determining kidney stones as its coefficient is very close to 0. As the p-value for age 

is significant at a value of .0014, age does however help predict kidney stones, but helps at a 

very minimal level.  

We wanted to look at the validity of this logistic model by looking at the binned residual 

plot. Figure 2 shows this residual plot. The grey lines represent the 95% confidence interval. 

The residual plot looks very good. All the points except for one lie within the 95% confidence 

interval. This tells us that this model is very reasonable to use. There do seem to be more points 

that have a negative value, which would indicate that the model is more likely to over predict. 

Overall, the residual plot does not raise any concerns about the validity of the logistic model. 
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Figure 2 Binned residual plot using equation 1 

 
Figure 3 ROC curve for logistic regression using just age 

 

Figure 3 shows the ROC curve for the logistic regression that just uses age. In the data that we 

have, there are 445 patients in the ABP group and 534 patients In the KS group. The area 

under this curve is 0.6536. Ideally, we want this number to be 1. Instead we get a number that is 

close to 0.5. This indicates that this regression model is a bit better than randomly assigning a 

patient to a category.  

We ran a random forest, which had 500 trees, using just age to predict kidney stones 

and got the results shown in table 2. 
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Table 2 Confusion matrix for random forest using equation 1 

 KS ABP 

KS 372 162 

ABP 223 222 

 

For this random forest we got an OOB (out of bag) estimate of error of 39.33%. This tells us that 

61.67% of the out of bag samples were correctly classified by the random forest. The value of 

the class error for the second row was .501, which tells us about 50% of patients predicted to 

have abdominal or back pain (ABP) were incorrectly identified. The first row had a class error of 

.303, which tells us about 30% of people with kidney stones (KS) were incorrectly identified. 

These large error rates indicate that age alone isn’t very good at predicting KS and ABP. 

We then did a similar thing looking at both age and gender as predictors for kidney 

stones. To do this we needed to make all males have a value of 1 and all females have a value 

of 0. This logistic regression gave us equation 2. 

 

log(odds)= -0.2697+ 0.0050*age + 0.2083 (if male)     (2) 

 

Again, age had a significant p-value of 0.002, but gender did not have a significant p-value, 

which had a value of 0.11. This tells us that age has a very small effect on predicting kidney 

stones, while gender possibly has no effect on predicting kidney stones. For both variables, the 

coefficients are small and so neither one of them has a large impact on the prediction of having 

kidney stones. Figure 4 shows the graph for the logistic regression and the corresponding 

probability-curve for equation 2. The index is represented by the rank, which is ordered by the 

probability of kidney stones from lowest to highest. So, 1 corresponds to the data point with the 

lowest probability of getting a kidney stone and 2 is the data point that has the second lowest 

kidney stone probability, and so on.  

 

Figure 4 Logistic regression (left) and corresponding probability-curve (right) for equation 2 
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Similarly, in this graph, we see that all patients have about a 0.5 probability of having kidney 

stones, with only about 125 of the patients having less than a probability of 0.5. Also, in this 

graph more than the other, there is not a clear separation between kidney stone patients and 

abdominal and back pain patients, further showing how this is not the best model for predicting 

kidney stones.  

We decided to also look at the binned residual plot for this logistic regression model. The 

binned residual plot is shown in figure 5. The grey lines represent the 95% confidence interval. 

This plot again looks very good. There is only one point that lies outside of the 95% confidence 

interval. This plot indicates that the logistic model using equation 2 is reasonable. In addition, 

we see that the points seem to be closer to the zero line as the expected values increase. This 

indicates that this model does better predicting at higher expected values than the lower values.  

 

 
Figure 5 Binned residual plot using equation 2 

 

Figure 6 shows the ROC for the logistic regression that uses both age and gender as predictors. 

The AUC for this graph was 0.613. This is not great as it is close to 0.5. This means that this 

regression is just a bit better at categorizing patients than just random selection. Comparing the 

two ROC graphs and AUC values we see that the model that just uses age is slightly better 

when it comes to predicting patients with kidney stones than the model that uses both age and 

gender. 
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Figure 6 ROC graph for logistic regression using equation 2 

 

We again did a random forest using these two variables. The results are shown in Table 3. 

 

Table 3 Confusion matrix for random forest using equation 2 

 KS ABP 

KS 405 129 

ABP 247 198 

 

For this random forest we got an OOB (out of bag) estimate of error of 38.41%. This tells us that 

62.59% of the out of bag samples were correctly classified by the random forest. The value of 

the class error for the second row was 0.555, which tells us about 56% of patients predicted to 

have ABP were incorrectly identified. The first row had a class error of 0.242, which tells us 

about 24% of people with KS were incorrectly identified. These again aren't great numbers 

indicating that these two variables may not be the best when it comes to predicting kidney 

stones. 

 

Appendix 3: Other Experiments: Classification and Prediction Practice 

3.1 Data Set Description 

The heart disease data includes information from 299 patients with heart failure that was 

collected at the Faisalabad Institute of Cardiology and at the Allied Hospital in Faisalabad in 

2015 [Chicco and Jurman, 2020]. Machine learning was applied to predict a patient’s survival 

rate after heart failure, using many variables like age, sex, ejection fraction, serum creatinine, 

and anemia. The patients included 105 women and 194 men that were between the ages of 40 

and 95 [Chicco and Jurman, 2020]. In total there were 13 variables in this data set that were 



48 
 

binary or numerical variables. Some definitions are needed for serum creatinine, ejection 

fraction, and death event. Serum creatinine is a byproduct of a biological function that breaks 

down muscle tissue [Chicco and Jurman, 2020]. Ejection fraction is an indication of how well 

your left ventricle pumps blood throughout your body. It looks at the total percentage of the 

blood that leaves the left ventricle [Mankad, 2019]. Finally, the death event refers to the patient's 

state, whether dead or alive, before the end of the follow-up period which was an average of 

130 days [Chicco and Jurman, 2020]. 

 

3.2 Methods 

Davide Chicco and Giuseppe Jurman made all their codes available for public use. To get 

access to these codes we downloaded the data set and the software code that was provided by 

them under the availability of data and materials section of the paper [Chicco and Jurman, 

2020]. Then we were able to load this information into R and use the code that was provided. 

Changing minor things like the location of the materials in the folder or plotting the graphs, we 

could simply run the code and produce the exact same graphs that they did. 

 

3.3 Results  

The most important variables for determining heart failure are serum creatinine and ejection 

fraction when considering one’s survival rate from heart failure. Figure 7 shows the aggregated 

results of the feature rankings. This is a summary of many different feature rankings that were 

done with the data. Some of the feature rankings that were done were chi-square feature 

rankings, and the Gini index. 

 

 
Figure 7 Summary of feature rankings [Chicco and Jurman, 2020] 

 

In this case a lower number means a higher importance for the feature. As serum creatinine and  

ejection fraction has the lowest numbers; they are the most important features followed by age 

and serum sodium. Figure 8 shows the final scatterplot of serum creatinine and ejection fraction.   
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Figure 8 Scatterplot for ejection fraction and serum creatinine [Chicco and Jurman, 2020] 

 

Based on this plot and since we are talking about the death or survival of the patient, we feel as 

though this does not do a very good job discriminating between alive and dead patients. This is 

because there is a lot of overlap especially with the dead patients. A lot of patients that were 

predicted to be alive, had died. Our viewpoint does not agree with the authors of the paper, who 

say this graph “shows a clear distinction between patients who are dead and patients who are 

alive” [Chicco and Jurman, 2020]. While this scatterplot uses the best predictors, we feel as 

though they don’t do an exceptional job in predicting.  

Another graph used by Chicco and Jurman was the survival percentage after a certain 

number of months after heart failure. Figure 9 shows the bar graph of the survival rates. We 

notice that there is a massive jump in survival chances if a patient survived past 1 month after 

heart failure. The survival rate goes from a less than 25% chance to almost a 75% chance of 

survival. We also see that five months seems to be an outlier in this data as the survival rate 

after 2 or more months is about 75% or greater except for five months after heart failure, which 

only has about a 45% survival rate. 
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Figure 9 Survival percentage after x-months [Chicco and Jurman, 2020] 

 

3.3.1 Logistic Regression and Random Forests 

The first thing that we did was look at the logistic regression that was formed from just using 

ejection fraction. The equation that was formed is given in equation 3. 

 

log(odds)=1.31+(-0.056) (ejection fraction)       (3) 

 

 

Figure 10 Logistic regression (left) and corresponding probability-curve (right) for equation 3 

 

For this logistic regression, ejection fraction had a coefficient of -0.056 and a very significant p-

value of 7.88 ∗ 10−6. This indicates that ejection fraction influences one's survival rate after heart 
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failure even though it is a very small effect. The logistic regression and corresponding 

probability-curve that was produced by equation 3 is shown in figure 10. The index represents 

the value for ejection fraction. There is a clear trend that shows the chances of dying from heart 

failure decreases as the ejection fraction increases. However, this probability-curve isn’t super 

helpful since we have data points for each category scattered along the x-axis. We don’t have a 

pattern where all who survived have low index values and all who died had high index values. 

This makes it very difficult to classify who will die from just ejection fraction alone. After creating 

a ROC curve, we got an AUC value of 0.6761, which isn’t bad as we want the number to be as 

close to 1 as possible. Using 100 executions for training data and testing data, where a random 

20% of the data is used as testing data for each execution, we were able to calculate the mean 

MCC, true positive rate, true negative rate, accuracy, and the AUC. For the average MCC we 

got a value of 0.324, which is closer to 0 than we would like, as 0 represents the graph being 

just as good as random assignment. For the true positive rate, we got a value of 0.835, which 

indicates that on average 83.5% of the true cases were correctly identified. Our true negative 

rate was 0.724, which is a good value, but not great in a medical situation, like heart disease. 

The accuracy value was 0.726, which means this model has a mean accuracy of about 72%. 

Finally, we got a mean AUC value of 0.781. 

 As we did not get the best results from the logistic regression model, we wanted to see if 

this model was a reasonable model to use. To do this we looked at the residuals versus 

predicted and made a binned model, which averages the residual values. Figure 11 shows the 

binned model for the residuals vs predicted using equation 3.  

 

 
Figure 11 Binned residual plot using equation 3 

 

The grey lines in figure 11 represent the 95% confidence interval for the average residuals. 

Looking at this figure we see that the model is not great as four of the points lie outside of the 

95% confidence interval. Since there are not that many points overall, having four points outside 

of the interval indicates that there are more outliers in this data than we would normally expect. 

It looks like this model does a good job predicting from 0.1-0.25 and 0.4-0.5 but does not do a 



52 
 

good job at the other intervals. Overall, this plot would indicate that this logistic model is 

reasonable to use for this data. 

We also did a random forest that uses equation 3. The results of this are shown in table 

4. 

 

Table 4 Confusion matrix for logistic regression using equation 3 

 1 (patient died) 0 (patient survived) 

1 (patient died) 20 76 

0 (patient survived) 16 187 

 

For this we got an OOB (out of bag) error rate of 30.77%. This means 69.23% of the out of bag 

samples were correctly identified by the random forest.  

We wanted to compare ejection fraction to creatinine and did this by doing a logistic 

regression just using creatinine. This logistic regression was done by using equation 4.  

 

log(odds)= -1.89+0.8242(creatinine)           (4) 

 

The coefficient for creatinine from the logistic regression was 0.8242 with a very significant p-

value. This indicates that creatinine has a significant effect when predicting death from heart 

failure. Figure 12 shows the logistic regression and corresponding probability-curve using 

equation 4. The index on the graphs shown in figure 12 represents the creatinine levels. 

 

Figure 12 Logistic regression (left) and corresponding probability-curve (right) for equation 4 

 

This graph shows a direct relationship. As the creatinine level increases the probability of dying 

from heart failure also increases. There does not seem to be a clear separation, which indicates 

that the level of creatinine alone is not a very good separator when predicting death from heart 
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failure.  We created a ROC graph for this regression, and we got an AUC of 0.7281, which is a 

pretty good value. Similarly, we again did 100 repetitions of testing sets and training sets just 

using equation 4. For the average MCC value, we got a value of 0.215. This is not a good value 

to have for MCC and is closer to 0 than the one with just ejection fraction was. This indicated 

that this regression is even closer to just random assignment. The true positive rate had a value 

of 0.652, which again is lower than just ejection fraction. The true negative value was 0.709. 

The accuracy had a mean value of 0.702. Finally, the mean AUC value was 0.681. All the mean 

values that we got using just creatinine were lower than the ones we got with ejection fraction. 

This would indicate that ejection fraction is a better predictor than creatinine when looked at 

individually. This differs from the ranking features in figure 8, which says creatinine is the more 

important variable, over ejection fraction. We likely see this because both the feature rankings 

and the training data used 100 executions, which chooses randomly. So, every time this is 

done, different results would be obtained. That is, if we were to redo the training data for both 

variables, we could get an outcome that agrees with the feature rankings shown in figure 8.   

 Similarly, as before, we decided to look at the residuals for the model that uses equation 

4. The binned residual plot for equation 4 is shown in figure 13. Again, the grey lines represent 

the 95% confidence interval for the residual values. 

 

 
Figure 13 Binned residual plot using equation 4 

 

This residual plot does not look as good as the one for ejection fraction. This plot seems to 

indicate that the logistic model that uses equation 4 is good at predicting when the level of 

creatinine is between the expected values of .25 and .35. Any other time it seems that this 

model does not do a very good job at predicting. This indicated that it probably is not a good 

idea to use just creatinine when predicting someone's chances of death from heart failure. 

We again created a random forest. The results are shown in table 5. 
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Table 5 Confusion matrix from random forest using equation 4 

 1 (patient died) 0 (patient survived) 

1 (patient died) 24 72 

0 (patient survived) 19 184 

 

This gave us an OOB estimate of error rate of 30.43%, which means 69.57% of the OOB 

samples were correctly identified by the random forest. These two values are very close to what 

we got using just ejection fraction, which means the two random forests perform similarly. 

 Because age was the third highest variable, in terms of importance, we decided to look 

at its s-curve, do training and testing data, and make random forests. This allowed us to 

compare it to creatinine and ejection fraction which were the top two variables. Figure 14 shows 

the s-curve that corresponds to the logistic regression given by equation 5. 

 

log(odds)= -3.654+0.047(age)        (5) 

 

 
Figure 14 S-curve for equation 5 

 

In this figure the two different s-curves represent the two genders. The purple line and points 

represent males and the green line and points represent females. As we see in figure 14 both 

genders are at increased risks of dying from heart disease as they get older. However, based 

on this data it seems that men have a quicker growth rate in death from heart disease as they 

get older, while the women’s growth rate increases at a slower, steadier rate. We also notice 

that men start at a lower risk of dying from heart disease than women do, but this changes 

around the age of 65. Running training data, we found that the average MCC value for this 

regression is 0.218. The true positive rate was 0.655, while the average true negative rate was 



55 
 

0.718. The average accuracy was 0.709 and the average AUC was 0.686. This regression 

came out with very similar numbers as the regression that just uses creatinine.  

 Just like earlier, we again looked at the binned residual plot for the model that uses 

equation 5. The grey lines again represent the 95% confidence interval for the residual values. 

Figure 15 shows the binned residual plot. This residual plot looks pretty good. There are, 

however, some places in which this model seems to do poorly. These places occur at the 

expected values lower than 0.2 and between 0.3 and 0.4. In these cases, the points lie 

significantly below the 0 line and outside of the 95% confidence interval. Since residuals are 

observed minus fitted values, residuals that have a negative value indicates that the model is 

over predicting at those points [Webb, 2017]. Thus, the model that just uses age seems to 

overpredict at those expected values.  

 

 
Figure 15 Binned residual plot using equation 5. 

 

 

 We also tried random forests using just age and table 6 shows the results. 

 

Table 6 Confusion matrix from random forest using equation 5 

 1 (patient died) 0 (patient survived) 

1 (patient died) 27 69 

0 (patient survived) 20 183 

 

This gave us an OOB estimate of error rate of 29.77%, which means 70.23% of the OOB 

samples were correctly identified by the random forest. 

 Next, we decided to see how the two best factors would do together. Doing a logistic 

regression, we found that again both creatinine and ejection fraction were important factors in 

determining death from heart failure. Figure 16 shows the logistic regression curve and 

corresponding probability-curve for equation 6. 
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log(odds)=0.378+0.749(creatinine)+(-0.598) (ejection fraction)    (6) 

 

     

 Figure 16 Logistic regression (left) and corresponding probability-curve (right) for 

equation 6 

 

The index for this graph is based on the rankings of all 299 samples. We do not see a very good 

result from either one of these graphs. The logistic regression curve has dead patients and 

survivors mixed throughout and does not separate the patients very well. We see a similar thing 

in the probability-curve graph. Doing a ROC and finding the AUC for this logistic regression we 

found the AUC to have a value of 0.7614. We again did 100 executions using randomized 

training and testing sets. For the model using equation 6 we got a MCC of 0.357, which is the 

best that we have seen so far. We got a true positive rate of 0.707 and a true negative rate of 

0.757. The mean accuracy was 0.749 and the AUC value was 0.732. While the AUC and true 

positive rate are slightly lower than the ones using just ejection fraction, all the other values 

were higher. From this information it is safe to conclude this is the best of the 4 models we have 

looked at so far.  

 Like before, we again looked at the binned residual plot using equation 6. Figure 17 

shows the binned residual plot and the grey lines again represent the 95% confidence interval. 
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Figure 17 Binned residual plot using equation 6 

 

This residual plot looks good and indicates a reasonable model. There are more outliers than 

what we would normally expect for this amount of data. In addition, we notice that there is an 

issue between the expected values of .2 and .3. This area of the residual plot has 3 points that 

are negative and lie outside of the 95% confidence interval. We decided to look deeper and see 

if we could find which one of the variables may have been causing this issue. Looking at the 

binned residual plot using the individual variable values instead of the expected values on the x-

axis, we saw a similar pattern in the binned residual plot using ejection fraction. This plot is 

shown in figure 18. We see in figure 18 that in the middle of the data there are two points that 

have a negative value and lie outside the 95% confidence interval. This is like the pattern that 

we see in figure 17. Thus, we can conclude from these residual plots, that ejection fraction does 

not do a very good job predicting death from heart failure at middle range values.  

 

  
Figure 18 Binned residual plot for equation 6 residuals and ejection fraction 
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In addition, we made a random forest using these two variables. Table 7 shows the 

confusion matrix for the random forest created using equation 6. 

 

Table 7 Confusion matrix for random forest using equation 6 

 1 (patient died) 0 (patient survived) 

1 (patient died) 49 47 

0 (patient survived) 27 176 

 

This random forest gave us an OOB value of 24.75%, which tells us that 75.25% of the OOB 

samples were correctly identified. This is better than all the previous random forests we have 

looked at.  

We decided to also look at how all the variables affected the prediction of death from 

heart failure. Figure 19 shows the logistic regression curve and its corresponding probability-

curve when using equation 7.  

 

log(odds)=10.18+(-0.0021)(TIME)+(-0.534)(gender)+(-0.0135)(smoking)+.0145(diabetes)+           

(-0.0103)(BP)+(-0.0075)(anemia)+0.0474(age)+(-0.0767)(ejection fraction)+              

(-0.067)(sodium)+(0.666)(creatinine)+(-0.0000012)(platelets)+(0.000222)(CPK)         (7) 

 

The index in these graphs represent the ranking of the individual samples. They are ranked 

from lowest to highest in terms of probability of dying from heart failure. 

 

Figure 19 Logistic regression (left) and corresponding probability-curve (right) for equation 7 

 

From this model the only variables that seemed to have a significant effect on categorizing 

patients were, TIME, age, ejection fraction, and creatinine, as each of these variables had a p-

value that was less than 0.05. Creating a ROC graph, so that we can compare this to the other 

graphs we have produced, we found that this one had an AUC of 0.8972. This is close to 1, 

which means this is a pretty good model. As before, we used training data to look at other 
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factors using equation 7. We got a MCC value of 0.617, which is the highest we have seen out 

of the four previous models. The true positive rate was 0.782, while the true negative rate was 

0.862. The average accuracy was 0.839 and the average AUC was 0.822. We notice that these 

numbers are the highest we have seen for any of the four models thus far. However, we need to 

consider how much of a difference the other variables are truly making. The model that just 

used ejection fraction and creatinine had an accuracy of 0.749 and the AUC was 0.732. In both 

cases these values were increased by 0.09 when using all variables. However, the logistic 

regression that uses all the variables has 10 more variables than the logistic regression with just 

ejection fraction and creatinine. We also note that only four of the twelve variables had a 

significant p-value. Thus, each additional variable adds less than 0.01 to the accuracy and the 

AUC. This indicates that these variables are not very important and agrees with the fact that 

creatinine and ejection fraction predict about as good as all the variables together, as suggested 

in the paper [Chicco and Jurman, 2020]. We also notice that the logistic curves are similar in 

figures 16 and 19. The probability-curves in figure 16 and 19 are also similar. This supports the 

idea that the combination of creatinine and ejection fraction predicts just as well as all the 

variables. 

 Again, we looked at the binned residual plot using equation 7. This plot is given in figure 

20. The grey line represents the 95% confidence interval for this data.  

 

 
Figure 20 Binned residual plot using equation 7 

 

This plot looks pretty good as nearly all the points lie within the 95% confidence interval. Based 

on this plot there does not seem to be very many outliers in this model. Out of the residual plots 

that we have looked at so far, this one seems to be the best. It indicates that there is not much 

that should be added to better predict death from heart failure. It does however ask the question 

if there are less variables that could be used to do just as good a job of predicting. 

We again created a random forest that used all the variables. Table 8 shows the 

confusion matrix for this random forest. 
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Table 8 Confusion matrix for the random forest using equation 7  

 1 (patient died) 0 (patient survived) 

1 (patient died) 69 27 

0 (patient survived) 17 186 

 

This confusion matrix had an OOB value of 14.72%. This tells us that 85.28% of the OOB 

samples were identified correctly by this random forest. That is much higher than the other four 

random forests we looked at indicating that using all the variables, results in better predictions of 

survival. 

 After looking at all the information that we got from using random forests, logistic 

regression, and training and testing data, we determined that the random forests had the best 

accuracy when classifying the patients for heart disease. The highest accuracy was 85.27%, 

which came from the random forest created using all the possible variables. The second best 

accuracy came from the random forest that was created by using just ejection fraction and 

creatinine, with a value of 75.25%. While this accuracy is 10% less than using all the variables, 

we need to consider the fact that it uses 10 less variables and mathematically the accuracy 

must go up when more variables are added to the regression. This supports the idea that two 

variables do about as good as all twelve. From the residual plots that we created for the logistic 

regression models, we learned that all the models seem to be reliable as there were not that 

many major issues with any of the models. Thus, using all the variables to predict death from 

heart failure seems to be an inefficient way of prediction. 

 

Appendix 4: Various Decision Trees 

In each tree the number on the right represents the number of patients that are diagnosed with 

KDS for that split and the number on the left represents the number of patients that are 

diagnosed with ABP for that split. From this decision tree we see that more people are 

diagnosed with a kidney stone when they are older than 61.  

 

 
Figure 21 Decision tree using age 
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Figure 22 Decision tree using BUN  

 

While this decision tree does not do a very good job separating the kidney stone patients, it 

does a pretty good job separating the patients with abdominal and back pain. We see that most 

of the patients that were diagnosed with abdominal and back pain had BUN levels that were 

lower than 23.   

 

 
Figure 23 Decision tree using CKD-EGFR 

 

This decision tree does a decent job of separating the two groups. Most of the patients with 

EGFR values less than 89 are diagnosed with kidney stones, while most of the patients with 

EGFR values greater than 89 are diagnosed with abdominal and back pain. 
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Figure 24 Decision tree using Elixhauser score 

 

From this decision tree we see that the Elixhauser score does not do a very good job separating 

these two groups as nearly all the patients in the two groups have an Elixhauser score greater 

than -2.  

 

 

  
Figure 25 Decision tree using creatinine 

 

We see that creatinine does not do a great job separating kidney stone patients as half the 

patients have creatinine levels less than 1.2, while the other half has creatinine values greater 

than 1.2. However, this seems to separate patients with abdominal and back pain well, as most 

of these patients have creatinine levels that are lower than 1.2. 
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Figure 26 Decision tree using age, creatinine, BUN, CO2, and EGFR 

 

In this decision tree, BUN was excluded from the model because it did not make any significant 

divisions between the two groups. 

 

 
Figure 27 Decision tree using age, creatinine, chloride, CO2, and resprate mean 

 

 

Appendix 5: Example Codes 
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# Remove Duplicates in Ethnicity with "other"  

duplicated_id <- kds_1stlab_results[duplicated(kds_1stlab_results$hadm_id),]$subject_id  

kds_1stlab_results[kds_1stlab_results$subject_id %in% duplicated_id & 

kds_1stlab_results$ethnicity_grouped == "other",]  

kds_1stlab_results <- kds_1stlab_results[!(kds_1stlab_results$subject_id %in% duplicated_id & 

kds_1stlab_results$ethnicity_grouped == "other"),]  

  

  

#Remove All Non-first Stays  

kds_1stlab_results<- kds_1stlab_results[kds_1stlab_results$stay_num == "1",]  

  

#Subset the Data to Look At Just KDS and ABP Icdtypes   

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" )  

count(kds_1stlab_results$icdtype)   

  

#Adding EGFR Calculated Using MDRD Study Equation for Use with Standardized Serum 

Creatinine (Four-Variable Equation)  

kds_1stlab_results<- transform(kds_1stlab_results, 

EGFR=175*(kds_1stlab_results$creatinine^(-1.154))*(kds_1stlab_results$age^(-

.203))*(.742*ifelse(kds_1stlab_results$gender=="F",1,1/(.742)))*(1.210*ifelse(kds_1stlab_result

s$ethnicity_grouped=="black",1,1/(1.210))))    

  

#Adding EGFR Using the CKD-EPI Equation for Use with Standardized Serum Creatinine  

kds_1stlab_results<- transform(kds_1stlab_results, 

EGFR.2=(141)*(ifelse(kds_1stlab_results$gender=="F",(kds_1stlab_results$creatinine/.7)^(-

.329),(kds_1stlab_results$creatinine/.9)^(-

.411)))*(.993^(kds_1stlab_results$age))*(1.157*(ifelse(kds_1stlab_results$ethnicity_grouped=="

black",1,1/(1.157))))*(1.018*ifelse(kds_1stlab_results$gender=="F",1,1/(1.018))))   

  

#Logistic Regression and ROC Info Using Age  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~age,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

library(reportROC)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  

  

#Logistic Regression and ROC Info Using Creatinine  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" & 

creatinine !="NA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~creatinine,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  
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#Logistic Regression and ROC Info Using Bun  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" & bun 

!="NA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~bun,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  

  

#Logistic Regression and ROC Info Using CDK EGFR  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" & EGFR.2 

!="NA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~EGFR.2,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  

  

#Logistic Regression and ROC Info Using Age, Resprate Mean, Creatinine, Chloride, and 

CO2  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" & chloride 

!="NA" & creatinine !="NA" & resprate_mean !="NA" & co2 !="NA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~ 

age+chloride+creatinine+resprate_mean+co2,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  

  

#Logistic Regression and ROC Info Using Age, Creatinine, Bun, CKD-EGFR and CO2  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" & bun 

!="NA" & creatinine !="NA" & EGFR.2 !="NA" & co2 !="NA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~ 

age+bun+creatinine+EGFR.2+co2,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  

  

#Logistic Regression and ROC Info Using Elixhauser Score  

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="OKU" & icdtype !="NCA" &  

elixhauser_vanwalraven !="NA" )  

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)  

logistic <-glm(icdtype~elixhauser_vanwalraven,data=kds_1stlab_results.2,family="binomial")  

summary(logistic)  

reportROC(kds_1stlab_results.2$icdtype, logistic$fitted.values)  

  



66 
 

#Statistical Summaries  

Library(plyr)  

summary(kds_1stlab_results.2$age)  

summary(kds_1stlab_results.2$EGFR.2)  

count(kds_1stlab_results.2$ethnicity_grouped)  

count(kds_1stlab_results.2$gender)  

summary(kds_1stlab_results.2$creatinine)  

summary(kds_1stlab_results.2$bmi)  

summary(kds_1stlab_results.2$elixhauser_vanwalraven)  

  

#A few Correlations  

cor(kds_1stlab_results.2$heartrate_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$sysbp_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$diasbp_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$meanbp_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$resprate_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$tempc_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$spo2_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$glucose_mean,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$anion_gap,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$albumin,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$bands,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$base_excess,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$bicarbonate,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$bilirubin,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$calcium,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$creatine_kinase,kds_1stlab_results.2$icdtype,use = "complete.obs")   

cor(kds_1stlab_results.2$creatinine,kds_1stlab_results.2$icdtype,use = "complete.obs")   

  

#Categorizing Healthy vs Not Healthy (just a few we did)  

#Cleaning and Combining Data  

kds_oth<- transform(kds_oth, 

EGFR.2=(141)*(ifelse(kds_oth$gender=="F",(kds_oth$creatinine/.7)^(-

.329),(kds_oth$creatinine/.9)^(-

.411)))*(.993^(kds_oth$age))*(1.157*(ifelse(kds_oth$ethnicity_grouped=="black",1,1/(1.157))))*(

1.018*ifelse(kds_oth$gender=="F",1,1/(1.018))))   

  

 kds_4<-rbind(kds_oth,kds_1stlab_results)  

  

duplicated_id <- kds_4[duplicated(kds_4$hadm_id),]$subject_id   

kds_4[kds_4$subject_id %in% duplicated_id & kds_4$ethnicity_grouped == "other",]   

kds_4 <- kds_4[!(kds_4$subject_id %in% duplicated_id & kds_4$ethnicity_grouped == "other"),]  
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#Creatinine  

kds_4.2<-subset(kds_4, creatinine !="NA" )     

kds_4.2$creatininerange <- findInterval(kds_4.2$creatinine, c(.6,1.2))    

kds_4.2$creatininerange <- as.factor(kds_4.2$creatininerange)    

levels(kds_4.2$creatininerange) <- c("not healthy -","healthy","not healthy +")   

library(dplyr)  

kds_4.2 %>% group_by(kds_4.2$icdtype,kds_4.2$creatininerange) %>% 

summarise(count_sales = n())  

  

# pH  

kds_4.2<-subset(kds_4, ph !="NA" )      

kds_4.2$phrange <- findInterval(kds_4.2$ph, c(7.35,7.45))     

kds_4.2$phrange <- as.factor(kds_4.2$phrange)     

levels(kds_4.2$phrange) <- c("not healthy -","healthy","not healthy +")    

kds_4.2 %>% group_by(kds_4.2$icdtype,kds_4.2$phrange) %>% summarise(count_sales = 

n())    

  

#Chloride   

kds_4.2<-subset(kds_4, chloride !="NA" )         

kds_4.2$chloriderange <- findInterval(kds_4.2$chloride, c(98,106))        

kds_4.2$chloriderange <- as.factor(kds_4.2$chloriderange)        

levels(kds_4.2$chloriderange) <- c("not healthy -","healthy","not healthy +")       

kds_4.2 %>% group_by(kds_4.2$icdtype,kds_4.2$chloriderange) %>% summarise(count_sales 

= n())   

  

#Average Data Random Forests, Regression Curves, and Residual Plots. (KDS VS NCA)  

#Cleaning the Data  

duplicated_id <- kds_data2[duplicated(kds_data2$hadm_id),]$subject_id  

kds_data2[kds_data2$subject_id %in% duplicated_id & kds_data2$ethnicity_grouped == 

"other",]  

kds_data2 <- kds_data2[!(kds_data2$subject_id %in% duplicated_id & 

kds_data2$ethnicity_grouped == "other"),]  

  

#Subset the Data  

kds_data2.2<-subset(kds_data2, icdtype !="OKU" & icdtype !="NCA" )  

  

#Logistic Regression Using Age   

kds_data2.2$icdtype<- ifelse(kds_data2.2$icdtype== "KDS",1,0)  

logistic <- glm(icdtype~age,data=kds_data2.2,family="binomial")  

summary(logistic)  

  

#Logistic Regression Curve  

kds_data2.2$icdtype<- as.factor(kds_data2.2$icdtype)    
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predicted.data <- data.frame(probability.of.KDS=logistic$fitted.values, 

KDS=kds_data2.2$icdtype)  

ggplot(data=predicted.data, aes(x=kds_data2.2$age, y=ifelse(kds_data2.2$icdtype == "1", 1, 

0))) +   

geom_point(aes(color=kds_data2.2$icdtype), alpha=1, stroke=1) +   

geom_smooth(method = "glm", method.args = list(family = "binomial")) +   

xlab("Index") +   

ylab("Predicted probability of getting Kidney Stones")+scale_color_manual(values = colors)   

  

#Residual Plot  

Library("arm")  

binnedplot(fitted(logistic),   

residuals(logistic, type = "response"),   

nclass = NULL,   

xlab = "Expected Values",   

ylab = "Average residual",   

main = "Binned residual plot",   

cex.pts = 0.8,   

col.pts = 1,   

col.int = "gray")   

  

#ROC Curve  

library(pROC)  

par(pty="s")   

roc(kds_data2.2$icdtype, logistic$fitted.values, plot=TRUE, legacy.axes=TRUE)  

  

#Random Forests  

Library(randomForest)  

kds_data2.2<-subset(kds_data2, icdtype !="OKU" & icdtype !="NCA" )   

kds_data2.2$icdtype<- ifelse(kds_data2.2$icdtype== "KDS",1,0)   

logistic <- glm(icdtype~age,data=kds_data2.2,family="binomial")   

summary(logistic)   

kds_data2.2$age<-as.numeric(kds_data2.2$age)  

kds_data2.2$icdtype<-as.factor(kds_data2.2$icdtype)  

model <- randomForest(icdtype~age, data=kds_data2.2, proximity=TRUE)  

Model 

 

#Feature Importance Plot 

kds_1stlab_results.2<-subset(kds_1stlab_results, icdtype !="NCA" & icdtype != "OKU" & bun 

!="NA" & elixhauser_vanwalraven !="NA"& EGFR.2 !="NA" & bands !="NA" & chloride !="NA" & 

creatinine !="NA" & resprate_mean !="NA" & co2 !="NA" )    

kds_1stlab_results.2$icdtype<- ifelse(kds_1stlab_results.2$icdtype== "KDS",1,0)   
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model_rf <- ranger(icdtype ~ 

age+bun+elixhauser_vanwalraven+EGFR.2+creatinine+resprate_mean+co2+chloride+bands,d

ata = kds_1stlab_results.2 ,importance = "impurity")  

argIDCART = rpart(icdtype ~ 

age+bun+elixhauser_vanwalraven+EGFR.2+creatinine+resprate_mean+co2+chloride+bands,  

data = kds_1stlab_results.2,   method = "class")  

argPlot <- as.data.frame(argIDCART$variable.importance)  

argPlot  

library(rpart)  

library(tidyverse)  

fit <- rpart(icdtype ~ 

age+bun+elixhauser_vanwalraven+EGFR.2+creatinine+resprate_mean+co2+chloride+bands, 

data = kds_1stlab_results.2)  

df <- data.frame(imp = argIDCART$variable.importance)  

df2 <- df %>%   

tibble::rownames_to_column() %>%   

dplyr::rename("variable" = rowname) %>%   

dplyr::arrange(imp) %>%  

dplyr::mutate(variable = forcats::fct_inorder(variable))  

ggplot2::ggplot(df2) +  

geom_col(aes(x = variable, y = imp),  

col = "black", show.legend = F) +  

coord_flip() +  

scale_fill_grey() +  

theme_bw()  
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