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ABSTRACT 

GEHRING, JACLYN.  Groundwater isotopes across scales: continent-wide modeling and local 

field characterization.  Department of Geology, June 2020. 

THESIS ADVISOR: Mason Stahl 

Groundwater is one of the world’s most important natural resources.  The use of stable 

water isotopes (𝛿2H and 𝛿18O) as natural tracers through the water cycle has provided a unique 

observational technique for characterizing hydrological processes and establishing connections 

between water distribution systems and their respective environmental sources.  Groundwater 

contains information about the timing and efficiency of recharge, allowing for the use of isotopes 

to understand the physical hydrology and climatic influences on such processes in places with 

groundwater isotope measurements.  We estimate the seasonal recharge proportion and 

efficiency at thousands of locations across the U.S., and interpret the climatic and environmental 

influences responsible for our findings.  Results along coastal California suggest fog drip 

contributes to groundwater recharge and necessitates additional research in areas where this 

process may be an important source of recharge to aquifers.  To combat pre-existing limitations 

of the lack of groundwater data across all locations in the United States, a predictive model for 

groundwater isotopes was developed across the contiguous U.S. using a random forest model 

based on environmental parameters.  We find evident spatial coherence in the model predictions, 

generally mirroring the signal of isotopes of precipitation, and highlight the potential for its 

application across hydrology and ecology. 

In addition, to demonstrate the applicability and versatility of groundwater isotopes, we 

investigated the local municipal water supply in Schenectady, New York, to understand the 

source and timing of aquifer recharge.  The Schenectady municipal well-field is sited less than a 
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kilometer from the Mohawk River, making the interaction between surface water and 

groundwater highly complex and seasonally dependent.  Schenectady tap water, which is drawn 

from local groundwater, and Mohawk River were collected at regular intervals and analyzed in 

the Union College Stable Isotope Laboratory for stable isotopes of hydrogen and oxygen.  The 

seasonal signal of isotopes can be approximated by sine waves, and the phase and amplitude of 

these signals can be used to calculate the average linear velocity (3.53 m/day) of the water 

moving into the aquifer and fraction of young water (57% < 2.7 months) in the local 

groundwater.  Our results highlight the connection between the Mohawk River and the aquifer in 

the vicinity of the Schenectady well-field, and motivates further research to characterize the 

potential for vulnerabilities.  Thus, this study not only provides an isoscape to detail the spatial 

distribution of isotopes regionally, but also demonstrates how we can leverage our understanding 

of isotopes for insight into the chemical and physical hydrology in a local water system. 
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1 Introduction 
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1.2 STABLE ISOTOPE THEORY 
 

Advances in technology have promoted the expansion of isotope analyses and 

applications throughout the past century (Bowen et al., 2019).  Stable isotopes of oxygen and 

hydrogen are widely used throughout the sciences for understanding biogeochemical cycles, 

contaminant cycling, and the reconstruction of paleoclimates.  The existence of stable isotopes 

was discovered in 1913, when J.J. Thomson realized some atoms of neon gas consisted of higher 

mass than the others.  Isotopes exist as a result of the neutron variation of an element; thus, for a 

given element, isotopes have the same number of protons but varying numbers of neutrons 

(Clark, 2015; Sharp, 2017).  Stable isotopes describe atoms of an element which do not decay 

over time (or do not decay quickly through time; Clark and Fritz, 1997).  Despite this difference 

in isotopes, the nature of chemical reactions does not change; however, during physical and 

geochemical reactions, the slight difference in mass causes isotopes to behave differently, as the 

variation in energy partitions isotopes—heavy and light—on opposite sides of the reaction 

(Daansgard, 1964; Clark, 2015).  Stable isotopes are expressed by their abundance ratio, 

reflecting a given concentration relative to the most abundant isotope at a given time (Clark and 

Frtiz, 2013). 

Water cycle research has depended on stable isotope ratios of hydrogen and oxygen, as 

they allow for the tracking of water sources and hydrological processes that influence these 

sources (Bowen et al., 2019).  The two naturally occurring and stable isotopes of hydrogen are 

1H and 2H.  The most common isotope of hydrogen is protium (1H), with an abundance of more 

than 99.98%.  Deuterium (2H or D) consists of one proton and one neutron, and has an 

abundance of approximately 0.00156%; the atomic mass of deuterium is 2.014, which causes it 

to react more slowly than hydrogen (1H) as it enters into chemical reactions.  Oxygen-18 (18O) is 
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an isotope of the common oxygen-16 (16O); rarer is the presence of the isotope 17O, although it 

records similar information to that of 18O (Bowen et al., 2019).  The abundance of 16O is 

99.762%, while 18O exists with an abundance of 0.20%.   

Ratios of hydrogen isotopes and oxygen isotopes are widely used in water cycle studies.  

δ2H describes the ratio of 2H to 1H, and is typically used in hydrologic and ecologic applications 

(Coplen, 1995; Sharp, 2017; Vander Zanden et al., 2016).  δ18O describes the ratio of 18O to 16O, 

and is typically used in studies of paleoclimatology and hydrology (Sharp, 2017; Vander Zanden 

et al., 2019; Bowen et al., 2019).  The relative abundance of water isotopes—including 1H, 2H, 

16O, and 18O—vary throughout the hydrologic cycle (Bowen et al., 2019). 

Water molecules are formed by the combination of hydrogen atoms (1H and 2H) and 

oxygen atoms (16O, 17O, or 18O); thus, there are nine isotopologues of water (Clark, 2015).  The 

most abundant isotopologues of water in nature include H216O, H218O, H217O, and HD16O, with 

measurable abundances of 99.731%, 0.199978%, 0.037888%, and 0.03146%, respectively 

(Galewsky et al., 2016).  As water molecules travel through the hydrological cycle, the various 

isotopic compositions of these isotopologues cause differentiation in the partitioning between 

their vapor, liquid, and solid phases.  This distinguishing isotopic signature is the basis for stable 

isotope analysis in hydrology (Clark and Fritz, 1997; Kirshan, 2015). 

Measurements of isotopic values are expressed as a ratio of the concentrations of the 

heavy isotope compared to the light isotope.  This ratio is expressed relative to the international 

standard (as defined by the International Atomic Energy Agency, or IAEA) for the isotopic 

composition of water; the Vienna Standard Mean Ocean Water (VSMOW) standard for D/H is 

155.95 x 10-6, and the standard for 18O/16O is 2005.2 x 10-6 (Galewsky et al., 2016).  The δ 
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notation (expressed in units of per mil) describes the isotopic composition of a given ratio of a 

sample (RSample): 

δ = $%&'()*+	$%-&./&0/
$%-&./&0/

	× 	1000,        

where RStandard, for a water sample, is the respective value for a standard of VSMOW.  Samples 

with more negative values have fewer heavy isotopes, and are thus described as being “more 

depleted” in heavy isotopes.  Samples with higher, more positive values are typically described 

as being “heavier,” or “enriched” in the heavy isotope. 

 

1.3 STABLE ISOTOPES IN HYDROLOGY 
 

There are naturally occurring isotopes of major elements which exist at the earth’s 

surface.  The foundation of isotope hydrology, perhaps one of the earliest applications of stable 

isotope chemistry, was established by Harmon Craig in 1961, when he published early global 

measurements of δ18O and δ2H for freshwater (Bowen et al., 2019).  Climatic influences on 

isotopes were first established in 1964 Willi Dansgaar, when he correlated values of δ18O and 

δ2H with air temperature for given regions (Dansgaard, 1964; Clark, 2015).  Because stable 

isotopes of water are naturally occurring, conservative within a water body, and do not decay 

overtime, isotopes in water are useful for understanding the global water cycle, which is essential 

for addressing environmental issues regarding water quality, availability, and transport (Bowen 

and Good, 2015; Sharp, 2017). 

The thermodynamics of equilibrium and kinetic reactions facilitates the partitioning of 

isotopes in the environment and dictates their physio-chemical behavior.  Although there is no 

chemical difference in isotope substitution, there are changes in vibrational frequency (Clark, 

2015).  Equilibrium fractionation is mass-dependent and reversible (Sharp, 2017).  Equilibrium 
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isotope effects distribute isotopes in a system such that the total energy of the system is 

minimized.  The source of fractionation is caused by differences in vibrational energy between 

heavier and lighter isotopes; slightly differing free energies for atoms of different atomic weight 

dictates such behavior.  The equilibrium fractionation between two phases is determined by the 

bond strength, such that heavier isotopes are concentrated where the bonds are strongest (Sharp, 

2017).  Thus, a heavier isotope would equilibrate into the phase in which it is most stable—

where the bonds are strongest.  For example, heavier water isotopes are preferentially 

incorporated into the liquid phase, while lighter isotopes preferentially remain in the vapor 

phase.  Additionally, equilibrium isotope effects are temperature-dependent, indicating 

fractionation is larger at lower temperatures (Sharp, 2017).  Equilibrium processes are 

responsible for much of the natural variation in isotopes (Bowen et al., 2019). 

Kinetic isotope effects describe the change in reaction rate of a chemical reaction due to 

the isotopic replacement of a reactant.  Differences in velocities occurring because of slight 

differences in mass leads to variety in isotope fractionation (Clark, 2015).  These effects are 

often associated with processes such as evaporation and diffusion, as they are fast and 

irreversible (Sharp, 2017; Bowen et al., 2019).  Isotopically light molecules preferentially diffuse 

out of a system, leaving the reservoir enriched in the heavier isotope (Clark, 2015).  An example 

of such an effect is the diffusion-based fractionation between water and vapor, as lighter isotopes 

typically react more quickly than heavier isotopes.  As a result, the vapor phase preferentially 

incorporates the lighter isotopes (Bowen et al., 2019).  Thus, kinetic isotope effects describe the 

reaction mechanisms. 

The distribution of isotopes in water is controlled by the fractionation and distillation of 

isotopes (Figure 1). 
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Figure 1. Schematic of isotopes of water as they move through the hydrologic cycle (Bowen et 
al., 2019). 
 

Fractionation and distillation are used to describe partitioning, relative to processes which affect 

the relative abundance of isotopes.  Oxygen and hydrogen isotopes are strongly fractionated as 

they move through the hydrological cycle (Sharp, 2017; Bowen et al., 2019).  The fractionation 

of isotopes in water are predictable and well-understood, allowing for the interpretation of 

hydrologic processes (Clark, 2015).  The large fractionation, associated with evaporation and 

condensation, is temperature dependent and originates from kinetic and equilibrium effects 

(Sharp, 2017).  Processes which affect the distribution of isotopes through the hydrologic cycle 

include evaporation, condensation, recharge mixing, and gas-water exchanges. 

 The Global Meteoric Water Line (GMWL) describes the relationship between average 

hydrogen and oxygen isotopes in precipitation, and is useful for understanding the hydrologic 
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cycle.  The GMWL is defined by the following equation because of the nearly linear relationship 

between oxygen and hydrogen isotopes of precipitation: 

δ2H = 8*δ18O + 10,    

where the intercept reflects kinetic effects if the evaporation is not at 100% humidity (Craig, 

1961).  Deuterium excess (d-excess) is defined as d = δ2H-8* δ18O.  The d-excess parameter 

results from different evaporation rates for the various isotopologues of water, as the kinetic 

isotope effect has a larger influence on deuterium isotopes compared to oxygen isotopes 

(Dansgaard, 1964).  In precipitation, the average value for d-excess globally is 10‰.  The Local 

Meteoric Water Line (LMWL) reflects the isotopes of precipitation at a single location, and 

differences can reveal the influences of hydrologic processes that drive fractionation (Dansgaard, 

1964).  Because of the complex exchange between the surface and the atmosphere, deviations 

from the GMWL (differences between the slope of 8 and the d-excess of 10‰) provide insight 

into nonequilibrium processes, including evapotranspiration and moisture source (Dansgaard, 

1964).  Moisture sources generated from vapor at less than 100% humidity will subsequently 

rain out with a d-excess greater than the original source; thus, deuterium excess is generally 

interpreted as a proxy for the source of moisture.  An important reference line and tool in isotope 

hydrology, the GMWL helps to provide insight into the evolution process of surface water and 

groundwater. 

 The main factors affecting isotopes of precipitation—and, subsequently, natural waters 

from which these isotopic variations are derived—include temperature, continentality, and 

latitude.  Isotopes of precipitation, of which the ocean is understood to be the dominant moisture 

source, follow a natural sequence of fractionation (Clark, 2015).  Variations in isotopic 

compositions occur through time, seasonally, or between storm events (Sharp, 2017). 
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 The evolution of a system with multiple phases is captured by Rayleigh fractionation or 

distillation, which describes the isotopic enrichment or depletion of water molecules as they 

move between reservoirs through equilibrium processes (Clark, 2015; Sharp, 2017).  This type of 

evolution occurs for environmental processes, including the depletion of isotopes in a vapor mass 

as a cause of rainout (Figure 2). 

 

Figure 2. A schematic of the physical fractionation of isotopes by evaporation, precipitation, and 
precipitation amount (Sharp, 2017).  Evaporation favors the light isotope of oxygen, resulting in 
a lighter isotopic value in the vapor.  As vapor condenses into rain, the heavier isotope is 
preferentially rained out, such that precipitation is enriched in the heavier isotope.  Moving away 
from the vapor source, values become depleted as each evolution is lighter due to heavier 
isotopes being removed by precipitation. 
 

As a reactant is removed from the system, the product is limited because there is no exchange 

after the separation; each phase of the evolution of vapor occurs in equilibrium with the previous 

phase, but is removed from the system as precipitation (Sharp, 2017).  Rayleigh distillation 

describes how the isotopic composition of a system evolves as one phase is removed under 

equilibrium conditions, controlled by the fractionation factor, which is temperature dependent 

(Clark and Fritz, 1997).  Much of the natural variation in precipitation isotopes globally is 

thought to be governed by the Rayleigh distillation model (Bowen et al., 2019). 
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The relationship between stable isotopes and temperature is perhaps the foundation 

underlying isotope hydrology and its applications to paleoclimatology (Bowen et al., 2019).  

Temperature, varying temporally and spatially, controls the fractionation of isotopes in 

precipitation, as temperature-based mechanisms drive changes in isotopes (Clark and Fritz, 

1997).  The positive correlation between temperature and isotopes of oxygen and hydrogen in 

precipitation suggests an increase in temperature causes intense evaporation, resulting in the 

rainout of heavier isotopes (Dansgaard, 1964; Clark, 2015).  As temperature changes with 

seasons, seasonal effects become apparent in isotopic compositions; isotopes are typically 

depleted (become more negative) as seasonality increases (Dansgaard, 1964).  Seasonal 

differences in isotopes are strongest when there are large seasonal differences in temperature, 

while areas experiencing minimal variation in seasonal temperatures typically experience 

minimal differences in seasonality. 

Isotopic composition of vapor is also controlled by the proximity to marine waters; as a 

result, the insulation of oceanic influences from the interiors of a continent leads to a depletion in 

precipitation isotopes.  The degree of continentality is a function of temperature ranging between 

seasons, increasing with distance from the coast and latitude.  Land masses force precipitation 

from vapor masses, causing the evolving vapor to move across the continent (away from the 

source).  Seasonality is an observed effect of continentality particularly in the winter, as there is a 

steep temperature gradient between the ocean and interior continent (Clark, 2015).  As a result, 

coastal regions experience isotopically enriched values of precipitation; isotopically depleted 

precipitation is observed near inner, colder continental regions (Clark and Fritz, 1997). 

The latitude effect (linked to the relationship between isotopes and temperature) exhibits 

a depletion in heavier isotopes with increasing latitude, as the degree of rainout increases (Clark, 
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2015; Sharp, 2017).  As temperature determines how much precipitation air can hold, 

precipitation amounts typically decrease toward the poles (high latitudes).  For mid-latitude 

regions, this effect is observed in -0.5‰ changes per degree change of latitude; in colder regions, 

changes are nearly -2‰ per degree of latitude.  Isotopic values from the South Pole can be used 

as an extreme example of the coupled effects of latitude and temperature, with values of δ2H and 

δ18O as low as -495‰ and -62.8‰, respectively (Sharp, 2017).  This example illustrates how 

colder, polar regions are depleted in 18O and 2H, as lighter isotopes are precipitated at lower 

latitudes.  Temporal variations occur in concert with the latitude effect, based on such 

temperature-dependence (Clark and Fritz, 1997). 

Local geographic and climatic factors also influence precipitation amount and isotopic 

composition.  The amount or rainout effect describes the significantly depleted isotopic ratios 

following large amounts of precipitation.  Depleted values in intense precipitation events are 

caused by low equilibration and high humidity, or the recycling of precipitation between 

successive rain events (Dansgaard, 1964).  Intense rainfall events are consistent with larger 

raindrops and higher humidity, reducing the effects of enrichment.  Best observed in arid 

regions, the amount effect typically does not influence areas outside of the tropics, as most of the 

rain has already been recycled (Clark and Fritz, 1997).  As a result, higher latitude regions 

display a weaker, negative correlation to such an effect (Kendall and Coplen, 2001).  Recent 

studies have suggested patterns thought to be related to the rainfall-isotope variation may reflect 

rainfall amount and convective activity (Bowen et al., 2019).  Thus, variation in rainfall and 

climatic activity may help to govern isotopic composition. 

Topography forces a thermodynamically controlled change in isotopic ratios.  With 

increasing altitude (and lower temperatures), isotope ratios of precipitation typically decrease.  
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Multiple factors contribute to this effect, including the temperature dependence of fractionation 

and the equilibration length of precipitation at different altitudes.  The vapor pressure deficit 

increases with altitude, causing a decrease in saturation; rainout is driven by vapor rising (above 

the landscape) and cooling (Sharp, 2017).  For 18O, a 100-meter difference in altitude is 

consistent with depletion of approximately -0.15‰ to -0.5‰ (Clark and Fritz, 1997).  An 

important effect for hydrogeological studies, the altitude effect is useful to distinguishing 

groundwater recharge at high altitudes from recharge at low altitudes. 

Mechanistic processes and local effects are useful for understanding the isotopic 

compositions relative to the source (Clark, 2015).  The water cycle can be better understood 

through the use of stable isotopes, which provide insight into hydrologic processes and pathways 

(Sharp, 2017).  Continental and local scale variation in isotopes of precipitation must be 

considered for insight into recharge characteristics preserved in surface water and groundwater 

(Clark and Fritz, 1997).  As meteoric water mixes with surface water or percolates into the 

ground to form groundwater, the isotopic variation is recorded, providing the basis for the 

detection of groundwater sources. 

 

1.4 THESIS OVERVIEW 
 
 This thesis consists of three projects I conducted related to groundwater isotopes.  In 

Chapter 2, I will characterize hydrologic processes using groundwater isotopes for thousands of 

sites across the United States.  In Chapter 3, I will discuss the development of a groundwater 

isoscape.  In Chapter 4, I will analyze local groundwater and river water samples to understand 

the surface water and groundwater interaction in Schenectady, New York.  Chapter 5 

summarizes the results of these projects and highlights the significance of using stable water 
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isotopes in order to improve our understanding of the physical hydrology of broad-scale and 

local-scale water systems. 

 

1.4.1 Characterizing Hydrologic Processes using Groundwater Isotopes 
 

The hydrosphere describes water on the surface of earth, governed by the hydrologic 

cycle—the transfer of water from land, oceans, and the atmosphere.  Groundwater, stored in 

aquifers below the surface, is one of the world’s most important natural resources.  Groundwater 

studies have increased in number over the past century.  Technological advancements and 

analytical and quantitative methods have allowed for additional monitoring and measurement of 

groundwater resources (Bowen et al., 2019).  Current environmental research has focused on the 

protection of groundwater resources, as groundwater represents most of the available freshwater 

on Earth (Knoll et al., 2019).  Groundwater, in many areas of the world, provides the safest 

source of drinking water.  In the United States, groundwater accounts for nearly 70% of water 

resources (Doveri et al., 2015).  A consequence of economic expansion and population growth, 

climate change and increasing global water demands implies increasing exploitation of 

groundwater bodies (Doveri et al., 2015; Knoll et al., 2019).  The potential for pollution, as well 

as overexploitation, threatens the qualitative and quantitative storages of groundwater (Doveri et 

al., 2015).  In this way, the understanding of groundwater—including groundwater sources, 

recharge and recharge timing—is critical for the protection and management of water resources. 

A steady increase in the number of groundwater samples containing isotopic data is 

observed in the United States (Figure 3). 
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Figure 3. The steady increase in the cumulative number of groundwater samples collected by the 
USGS for stable water isotopes throughout the last several decades demonstrates the dramatic 
shift toward a greater attention to water quality information.  Isotopes in water provide an 
effective tool for water resource management and assessment. 
 

Understanding the movement of groundwater is important for water quality and resource 

management, as water sources and recharge areas can be distinguished using isotopes (Clark, 

2015).  Factors which impact groundwater movement include depth, sedimentology (porosity 

and permeability), and climatic processes.  Studies of isotopes in groundwater are limited to 

small-scale isoscapes for small areas in the United States.  The majority of relationships derived 

from isotopic studies originate from stream, river, and precipitation samples, as surface waters 

provide relatively sensitive information for movement on short-time scales (Dutton et al., 2005).  

In North America, the most detailed maps for isotopic composition of natural waters include 

those compiled by Kendall and Coplen (2001), which determine spatial coherence of isotopes in 

river samples and precipitation, and how these values vary geographically.  Kendall and Coplen 

(2001) demonstrate the advantages of mapping river water for insight into regional hydrology 
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and climatology, as isotopic compositions of these water sources represent the dual nature of 

rivers in the hydrologic cycle.  Applied at the same scale, groundwater data could be correlated 

with the average stream and river compositions to deduce recharge characteristics (Jasechko et 

al., 2014).  The proportion and relative efficiency of groundwater recharge between seasons can 

be determined using groundwater data compared to isotopes of precipitation (Jasechko et al., 

2014).  Characterizing the importance of each season to recharge is significant, as changes to 

climate and subsequent environmental conditions may impact recharge timing and threaten the 

sustainability of our water resources. 

 

1.4.2 Development of a National Groundwater Isoscape 
 

Isoscapes model the spatiotemporal distribution of isotopes and provide the basis for 

geographic analysis (Wassenaar et al., 2009).  Groundwater isoscapes have been mapped for 

other regions, creating a platform for additional efforts to be implemented in North America. 

High-resolution isoscapes for Costa Rica have been constructed using stable isotopes in 

groundwater, surface water, and precipitation, in order to determine dominant recharge processes 

in shallow aquifers (Sánchez-Murillo and Birkel, 2016).  Similarly, spatial hydrogen and oxygen 

isotope datasets were compiled using shallow phreatic groundwaters in Mexico to understand 

seasonal precipitation inputs into the system (Wassenaar et al., 2009).  This approach, which 

computes seasonally weighted precipitation values for the landscape, is applicable for countries 

where isotopes of precipitation and groundwater are not recorded.  In such areas, information on 

the long-term climatic record and hydrologic processes were limited prior to using isoscapes as a 

water resource management tool (Sánchez-Murillo and Birkel, 2016). 
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 Regional hydrology can be characterized by understanding spatial patterns in 

groundwater isotopes; despite groundwater data being readily available and applicable across a 

wide range of disciplines, a detailed isoscape has not been modeled for the conterminous United 

States.  Thus, information regarding the spatial distribution of isotopes in the United States is 

limited to locations where samples have been collected; therefore, the lack of information on 

isotopic patterns in groundwater limits many studies on the modern hydrologic cycle (Bowen 

and Good, 2015).  Understanding the degree of interaction between reservoirs in the water cycle 

and identifying hydrologic processes and effects responsible for isotopic signatures are useful 

approaches for establishing connectivity within the water cycle (Bowen and Good, 2015).  

Similarly, the assessment of differences in groundwater recharge between seasons aids in the 

understanding of groundwater sourcing (Jasechko et al., 2014).  This study utilizes water quality 

information mainly from the USGS National Water Quality Information System (NWIS) queried 

using the R programming language to gather data from sites matching specific selection criteria 

(Cicco and Hirsch, 2014).  The approaches used to estimate groundwater isotope ratios (δ2H and 

δ18O) include a kriging method, which interpolates values using existing observations, and a 

random forest model, which uses environmental variables as predictors.  Both approaches result 

in modeled isoscapes which can be used to describe patterns in groundwater isotopes across the 

United States.  The potential for this isoscape to be used across hydrologic, ecologic, and 

forensic applications demonstrates the significance of groundwater isotopes for insight into 

hydrologic processes. 
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1.4.3 Surface Water and Groundwater Interaction Along the Mohawk River 
 

Groundwater is an important freshwater resource, and thus it is important to understand 

the fate of groundwater; to understand the dynamic movement of water through natural systems, 

the geochemical properties of groundwater must be analyzed (Clark, 2015).  The presence of 

groundwater within water-bearing rocks is called an aquifer, as this water can be readily 

transmitted into wells and springs (Clark, 2015).  Typically, aquifers are recharged by 

precipitation or, to a lesser extent, surface water infiltrating underground (Clark and Fritz, 1997).  

In areas where groundwater is used as groundwater resources (e.g., drinking water or irrigation), 

aquifers can be depleted should combined groundwater withdrawals and natural discharge 

exceed the rate of recharge (Clark, 2015).  The response of aquifers to pumping or changes in 

flow are can vary depending on differences in recharge for aquifers.  Geologic and hydrologic 

conditions of the aquifer determine the level of impact (short-term or long-term) of infiltration on 

the aquifer (Barlow and Leake, 2012); the evaluation of groundwater resources is significant for 

understanding water quality and availability.  

The importance of groundwater resources necessitates an investigation of groundwater 

recharge and recharge timing (Clark and Fritz, 1997; Bowen et al., 2019).  In particular, the 

residence time or age of groundwater can provide insight into the vulnerability for contamination 

(Clark, 2015).  Traditional hydrogeological methods to estimate recharge include water balance 

models and lysimeters, and are rooted in methodological and modelling difficulties (Clark and 

Fritz, 1997).  Modern techniques include those that employ environmental isotopic tracer 

measurements to understand the response of groundwater resources; thus, environmental tracers 

have been used to understand groundwater flow processes, local water budgets, origin, recharge 

sources, and retention timing for young and old waters (McGuire et al., 2006; Kirchner, 2016).  
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Hydrograph separation using isotopes has allowed for the quantification of streamflow 

components within a watershed (Clark and Fritz, 1997).  δ2H and δ18O are often used as ideal 

tracers for water dynamics, as isotopic compositions reflect the origin and history of groundwater 

prior to infiltration—whether from direct seepage from precipitation or from river or stream 

contribution (Bowen et al., 2019). 

The exchange between surface water and groundwater can lead to changes in water 

quality.  In areas where heavy extraction occurs, infiltration from surface water bodies is a 

critical component of recharge to groundwater (Maloszewski et al., 1984).  Several of the 

world’s greatest alluvial aquifers, including those along the Nile, the Tigris and Euphrates, and 

the Indus Rivers, are recharged by infiltration from rivers (Clark and Fritz, 1997).  This 

connection between rivers and aquifers is often used by water resource engineers for 

understanding or predicting contamination potential and sustainable supply of water (Clark and 

Frtiz, 1997).  Precipitation generally exhibits distinct seasonal patterns in δ18O and δ2H, which 

can allow for the signal to be approximated by sine waves to evaluate mean transit timing of 

flow from water bodies (Maloszewski et al., 1984; DeWalle et al., 1997).  Similarly, seasonal 

cycles in 18O are used to measure the fraction of young water in a given system (Kirchner, 2016; 

Jasechko et al., 2016).  Understanding the interactions between these systems is important for the 

effective management of these systems, particularly if the effects of human-activities has the 

potential to introduce contaminants (McGuire et al., 2006). 

Catchment hydrology describes the quantification of hydrological processes and fluxes 

for a given watershed; often, the attempts to quantify the numerous parameters that are necessary 

to characterize the dynamic responses of watersheds are simplistic (Troch et al., 2013; Jasechko 

et al., 2016).  The relationship between river water and groundwater is defined by the recharge, 
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storage, and discharge characteristics of the watershed; these characteristics are often reflected 

by the behavior of a system as it responds to precipitation events (Clark and Fritz, 1997).  Water 

isotope studies are thus critical for providing an observational technique for establishing 

connections between water distribution systems and their respective environmental sources—

useful for understanding hydrologic processes influencing the water supply system (McGuire et 

al., 2006). 

The Great Flats Aquifer is a coarse sand and gravel aquifer, deposited approximately 

10,000 years ago from the retreat of continental glaciers (Simpson, 1952; Barlow and Leake, 

2012).  Five communities obtain municipal water from the Great Flats Aquifer, which lies 

beneath the Mohawk drainage basin in Schenectady (Figure 4). 

 

Figure 4. The hydraulic connection existing between surface water and groundwater has been 
demonstrated by fluctuations in temperature (Barlow and Leake, 2012). 
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Recharge in the aquifer is controlled mainly by precipitation (directly on land) and seepage from 

streams; the aquifer principally discharges to the Mohawk River and wells in the adjacent well-

field (Waller and Finch, 1982).  Schenectady well-fields are sited less than a kilometer from the 

Mohawk River, making the interaction between surface water and groundwater highly complex 

and seasonally dependent.  This study aims to unravel the surface water and groundwater 

interactions in the Schenectady region.  The collection of groundwater and river water at regular 

intervals provides the opportunity to understand the transport of water through this system using 

isotopic compositions (DeWalle et al., 1997).  This research is motivated by the need to 

understand water supply vulnerabilities and to disentangle complex interactions regionally. 
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2 Characterizing Hydrologic Processes using Groundwater 
Isotopes 
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2.1 BACKGROUND 
 
 Groundwater recharge occurs as precipitation infiltrates the subsurface and crosses the 

water table, entering the underlying aquifer.  Several factors control the process of groundwater 

recharge, including the amount of precipitation, evapotranspiration, soil type, vegetation, and 

climate (Jasechko et al., 2014; Stahl et al., 2020).  Precipitation fluxes and vegetation 

characteristics have been demonstrated as being the most important factors contributing to 

groundwater recharge (Kim and Jackson, 2012).  Because isotopes contain information about the 

source of water and processes affecting the isotopic composition, stable isotopes can be 

leveraged to understand the source(s), timing, and efficiency of groundwater recharge.  

Groundwater is a mixture of its recharge sources; thus, the isotopic signature of groundwater is a 

weighted average of these sources.  Knowledge of the isotopic signatures of the recharge sources 

provides insight into the relative contributions of these sources.  When groundwater is 

dominantly recharged by precipitation, we can use the seasonal differences in precipitation 

isotopes to identify the seasonal recharge timing and efficiency. 

We examine the seasonality of groundwater recharge using groundwater and precipitation 

isotopes to determine the importance of each season to recharge.  Similarly, we constrain the 

controls (precipitation amount and/or recharge efficiency) on groundwater recharge.  The 

proportion of recharge describes the contributions from winter and summer precipitation.  

Recharge efficiency describes the likelihood of the success of recharge, and is independent of the 

amount of recharge occurring.  Determining the seasonal timing of groundwater recharge and 

environmental factors that influence it is significant, as regional climate and environmental 

features influence recharge—and changes to climate and subsequent conditions will impact the 

sustainability of our water resources (Jasechko et al., 2014; Bowen et al., 2019). 
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2.2 METHODOLOGY 
2.2.1 Data Acquisition 
 
 Groundwater isotope data was obtained from the USGS NWIS and other studies in the 

scientific literature.  The NWIS provides chemical and physical data for wells across the nation, 

compiled over the past hundred years and over thousands of projects and studies.  Data from the 

NWIS was queried using the dataRetrieval package in the R programming language to gather 

data (Cicco and Hirsch, 2014).  The query, which searched the NWIS database for water quality 

information (isotopes of δ2H and δ18O) for wells shallower than 45 meters in depth, resulted in 

nearly 11,000 data points and 7,400 site locations.  Only shallow (< 45 m depth) groundwater 

samples were considered to ensure modern precipitation would reflect groundwater recharge 

reasonably well (Lindsey et al., 2019).  Studies suggest groundwater of depths less than 45 

meters are typically aged Holocene or younger, and thus reflect water that has been recently 

recharged (McMahon et al., 2011; Lindsey et al., 2019).  Smaller datasets for areas in the United 

States with limited water quality information (including Kansas, Colorado, West Virginia, and 

South Dakota) were gathering by exploring studies in the scientific literature (Clark et al., 1998; 

Chambers et al., 2015; Iles and Rich, 2017). 

Groundwater sites and data acquired from these studies were reviewed using the 

Environmental Protection Agency (EPA) water quality database1 to determine the source of 

water (ensuring groundwater), depth of the well, and precise location (latitude and longitude).  

Sample dates range from 1976 to 2019.  Given the relative scarcity of the data, we determined it 

is not reasonable to exclude points based on the timing of sampling, as the isotopic variability of 

groundwater over several decades is minimal.  Samples containing isotope values (both δ2H and 

                                                
1 https://www.epa.gov/waterdata/water-quality-data-wqx 
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δ18O), well depth, and spatial coordinates were retained in the dataset, which contained 10,467 

samples at 7,266 unique locations (Figure 5) after data cleaning and handling. 

 

Figure 5. Map showing the locations of the sample sites for the United States (n = 7,267). 

 

In addition to the isotope data, supplementary environmental data, including air 

temperature, annual and monthly precipitation amounts (PRISM Climate Group, 2012), and 

isotopes of precipitation (Bowen et al., 2005; 2019), were appended to the dataset to understand 

other factors affecting isotope variability.  Mean annual temperature and precipitation data were 

acquired from the PRISM 30-year normal dataset (PRISM Climate Group, 2012). 
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2.2.2 Calculating Recharge Proportions and Efficiency 
 
 This approach follows the methodology of Jasechko et al. (2014) for calculating the 

recharge proportions and efficiencies.  The year is divided into two seasons, winter and summer, 

where winter is considered to be October to March and summer is considered to be April to 

September.  We determine the proportion of seasonal contributions from winter and summer 

precipitation by comparing the isotopic composition of groundwater samples to their respective 

winter and summer precipitation end-members (Figure 6). 

 

Figure 6. Derivation of the seasonality of groundwater recharge ratio by comparing groundwater 
isotope values to seasonal precipitation end-members and annual precipitation (modified 
Jasechko et al., 2014).  A) shows the comparison of groundwater isotopes to the precipitation 
end-members, which determines the proportion of recharge occurring in the summer and winter.  
B) shows the comparison of groundwater isotopes and precipitation isotope end-members to the 
weighted annual precipitation isotope value, which determines which season is more efficient at 
generating recharge.  In this hypothetical scenario, mean annual precipitation falls closer to 
summer precipitation, indicating there is more precipitation in the summer.  The groundwater 
value is closer to winter precipitation, indicating although the major of precipitation falls in the 
summer, the majority of recharge occurs in the winter. 
 

Seasonal end-members were calculated using the PRISM climate datasets for monthly 

precipitation and the isotopes of precipitation from Bowen et al. (2005). 

δ4(67889:) = 	<
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δ4(F>C?9:) = 	<
P>

P?@?AB	(F>C?9:)
×	δ>

C

>DE

 

where δP(Summer) and δP(Winter) are the isotopic end-members for winter and summer precipitation, 

Pi is the precipitation amount (PRISM Climate Group, 2012), Ptotal is the total amount of 

precipitation in the respective season, and δi is the isotopic composition (Bowen et al., 2005). 

The seasonal recharge proportions describe the proportion of recharge occurring in the 

winter and summer.  Recharge contributions for winter and summer seasons were calculated 

using the following linear mixing model: 

RF>C?9:

RHCC7AB
= 	
δI:@7CJKA?9: −	δ4	(67889:)
δ4	(F>C?9:) − 	δ4	(67889:)

 

R67889:
RHCC7AB

= 	1 −
RF>C?9:

RHCC7AB
 

where RWinter, RSummer, RAnnual represent the recharge fluxes for the winter season, summer 

season, and annually, δGroundwater represents the isotopic composition of groundwater, and 

δP(Summer) and δP(Winter) are the isotopic compositions of summer and winter precipitation (amount-

weighted).  The resulting ratios allow for the comparison of the proportion of recharge occurring 

during winter and summer seasons.  We categorize the recharge dominance based on where the 

groundwater samples fall on the mixing line compared to seasonal precipitation end-members.  

Samples are characterized as follows: winter dominant if ≥80% of annual recharge occurred in 

the winter season, slightly winter dominant if between 60-80% of annual recharge occurred in 

the winter, summer dominant if ≥80% of annual recharge occurred in the summer season, or 

slightly summer dominant if between 60-80% of annual recharge occurred in the summer season.  

A sample was determined to have no dominant recharge season if between 40-60% of annual 

recharge occurred in either season. 
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 The seasonal recharge efficiency ratio describes which season is most effective at 

generating recharge by comparing the relative proportion of recharge to the precipitation ratio 

between seasons.  Recharge efficiency is calculated by comparing the isotopic compositions of 

seasonal end members, weighted average precipitation, and groundwater: 

(R/P)F>C?9:

(R/P)67889:
=
(δI:@7CJKA?9: − δ4(67889:))/(δ4(HCC7AB) − δ4(67889:))
(δI:@7CJKA?9: − δ4(F>C?9:))/(δ4(HCC7AB) − δ4(F>C?9:))

 

 

where (R/P)Winter/(R/P)Summer represents the proportion of precipitation generating winter 

recharge relative to the proportion of precipitation generating summer recharge, δGroundwater 

represents the isotopic composition of groundwater, and δP(Summer), δP(Winter), δP(Annual) are the 

isotopic compositions of precipitation in the summer, winter, and annually. 

Seasonal recharge proportions and efficiency were calculated for sites that (1) fell within 

the seasonal precipitation isotope end-members, (2) were not impacted by evaporation, and (3) 

exhibited a clear seasonal signal in precipitation isotopes.  To account for samples impacted by 

evaporation, we set a d-excess threshold such that samples with d-excesses < 0 were excluded 

from these calculations (Jasechko et al., 2014).  Samples that did not exhibit significant seasonal 

variation (difference between amount-weighted summer and winter precipitation δ2H < 7.5‰) 

were also excluded.  We calculated the seasonal recharge proportions and efficiencies for nearly 

half (5,147 of 10,467) of our samples.  For sites demonstrating a dominant season responsible for 

generating recharge, we identified the factor responsible for the result (Figure 5).  Precipitation 

amount was considered the factor controlling seasonal dominance if precipitation in the 

dominant recharge season accounted for > 60% of annual precipitation.  Efficiency was 

considered the factor controlling seasonal dominance if the dominant season was at least 1.5 

times more efficient than the other season. 
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2.3 RESULTS AND DISCUSSION 
2.3.1 Regional Patterns in Groundwater Isotopes 
 

The range of stable isotope ratios for groundwater δ2H values is -162.0‰ to 20.51‰, 

while the range of stable isotope ratios for δ18O is -20.84‰ to 10.00‰.  The average values of 

δ2H and δ18O are -65.20‰ and -8.96‰, respectively.  Most of the groundwater data across the 

U.S. fall near the Global Meteoric Water Line (δ2H = 8*δ18O + 10; Figure 7). 

 

Figure 7. Plot of all groundwater samples and isotopic values (n = 10,470), with the global 
meteoric water line for reference.  Distributions of δ2H and δ18O values are shown in the 
marginal histograms. 
 

Some samples fall below the GMWL, indicating evaporative effects.  Deuterium excess values 

were calculated and range from -147.20‰ to 45.67‰., with a median (average) value of 7.58‰ 

(6.46‰).  Groundwater isotope ratios generally follow a spatial pattern, with the lowest δ2H and 

δ18O values observed along the Rocky Mountains (<150‰ and <20‰) and the highest values 

observed in states along the Gulf Coast (approximately 0‰).  Groundwater isotope values 

generally follow the signals of isotopes of precipitation, consistent with decreasing values 
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moving from low-latitude, low-elevation coastal regions into high-latitude, high-elevation, and 

inland regions. 

 Environmental parameters have been demonstrated to control groundwater isotopic 

values.  Following the methodology of Kendall and Coplen (2001), we grouped groundwater 

samples by eastern sites (longitude < 97°W; n = 2,989) and western sites (longitude > 97°W; n = 

4,436) to understand the relationship between δ18O and environmental parameters, including 

elevation, temperature, latitude, and precipitation (Figure 8). 

 

Figure 8. Sites are divided by longitude, where eastern sites are < 97°W and western sites are > 
97°W.  Relationship between groundwater δ18O and (a) elevation (eastern sites r2 = 0.43, western 
sites r2 = 0.38), (b) temperature (eastern sites r2 = 0.76, western sites r2 = 0.56), (c) latitude 
(eastern sites r2 = 0.74, western sites r2 = 0.40), and (d) mean annual precipitation amount 
(eastern sites r2 = 0.56, western sites r2 = 0.008).  Eastern sites are determined by longitude < 
97°W and western sites are > 97°W. 
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There is a relatively weak correlation between eastern (r2 = 0.43) and western (r2 = 0.38) sites 

and elevation (Figure 8a).  Elevation ranges are more clustered in eastern sites, but scattered 

across the western sites.  It is possible the weak correlation is associated with seasonal 

differences in topographical effects.  For eastern sites, there is a strong correlation between δ18O 

and temperature (r2 = 0.76; (Figure 8b).  This result is similar to what is typically observed for 

precipitation and river water samples (Kendall and Coplen, 2001).  Western sites display a 

greater scatter between δ18O and temperature (r2 = 0.56), perhaps due to the larger seasonal 

ranges in temperature due to more irregular topography compared to eastern sites.  A strong 

correlation between δ18O and latitude in the east (r2 = 0.56; Figure 8c).  This relationship is likely 

a result of the strong correlation between δ18O and temperature in this region.  Western sites are 

consistent with a weaker correlation related to latitude (r2 = 0.40), which could also be attributed 

to the moderate correlation between this region and temperature (given the greater seasonal 

variability).  Precipitation amount is moderately correlated with isotopic values in the east (r2 = 

0.56), and has no linear correlation with isotopic values in the west (r2 = 0.008; Figure 8d).  The 

scatter in the west could be due to various climatic effects in the west, such as greater seasonality 

with respect to the amount or source of precipitation.  Because the climatic data used were the 

average values recorded at each location, the correlation between isotopic values and these 

parameters are quite good despite the heterogeneity among locations. 

 Groundwater data was grouped by state to calculate the slopes and intercepts of the 

groundwater lines (GWLs) using the Theil-Sen fit and least squares fit (Table 1). 
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Table 1. Slopes and intercepts of the GWLs for each state. 

  Theil-Sen Least Squares   
State Slope Intercept Slope Intercept Samples 
AK 6.76 -17.47 6.78 -17.85 41 
AL 6.2 3.57 6.73 6.48 26 
AR 6.12 3.01 4.68 -5.39 78 
AZ 7.6 0.89 6.7 -6.11 130 
CA 7.73 3.42 6.88 -5.32 1724 
CO 6.87 -9.51 6.93 -8.92 374 
CT 6.23 0.65 6.66 3.84 43 
DE 5.33 -3.31 4.56 -8.58 35 
FL 5.6 2.26 5.57 2 536 
GA 6.24 4.56 6.1 4.25 83 
HI 5.37 3.88 7.48 9.41 15 
IA 7.91 11.28 7.79 10.31 126 
ID 6.84 -14.3 7.22 -7.9 150 
IL 7.66 10.66 7.89 11.94 64 
IN 7.5 9.66 8.18 14.22 34 
KS 6.89 2.21 6.8 0.89 40 
KY 1 -34.47 1 -34.47 2 
LA 6.22 5.12 5.6 2.37 57 
MA 5.25 -7.05 5.48 -6.16 235 
MD 7.21 8.95 7.19 8.75 63 
ME 7.61 9.96 6.71 0.72 15 
MI 7.23 5.35 7.45 7.49 138 
MN 7.25 2.44 5.76 -14.58 256 
MO 9.54 21.16 9.69 22.12 36 
MS 5 -2.43 0.72 -23.8 30 
MT 5.2 -43.52 5.63 -38.19 127 
NC 6.2 4.53 5.97 3.56 127 
ND 8.62 14.45 8.42 13.2 42 
NE 8.64 13.17 8.75 13.54 252 
NH 8.72 20.34 8.81 21.33 11 
NJ 6.55 3.92 5.85 -1.86 175 

NM 6.7 -9.53 6.42 -12.58 187 
NV 6.19 -21.7 4.82 -41.53 533 
NY 7.49 8.46 7.77 11.03 43 
OH 7.7 10.36 7.66 10.74 91 
OK 7.31 8.71 6.66 4.44 55 
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OR 7.51 -1.01 8.12 6.34 97 
PA 9.03 23.56 1.17 -48.2 79 
RI NA NA NA NA NA 
SC 6.64 5.63 6.1 3.39 62 
SD 7.92 9.27 7.82 7.96 65 
TN 6.38 4.26 6.19 3.34 27 
TX 9.63 17.5 8.68 11.52 65 
UT 5.88 -27.65 5.42 -34.2 196 
VA 7.6 11.57 7.63 11.78 142 
VT 7.87 12.76 8.04 14.33 4 
WA 8.48 13.84 8.54 14.03 135 
WI 7.98 12.14 6.96 1.93 180 
WV 7.08 7.74 7.22 7.4 31 
WY 6.43 -21.74 6.36 -23.23 265 

*Note that RI slopes and intercepts could not be calculated due to lack of data in this state. 

 

Linear regression models are typically used for determining the slopes and intercepts for 

compared δ2H and δ18O values (e.g. LMWL).  We additionally calculate the slopes and 

intercepts using the Theil-Sen method, as this method follows simple linear regression but can be 

more robust against outliers.  By state, the slopes ranged from 1.00 to 9.63, with an average slope 

of 6.98.  The lowest slope was observed in Kentucky, although the lack of sufficient data in this 

state may contribute to likely error in this estimate.  The highest slope (9.63) was observed in 

Texas, a much higher value than the river water line (RWL) slope of 7.5 reported by Kendall and 

Coplen (2001). 

 Groundwater data is grouped by the regional USGS hydrologic unit code to calculate the 

slopes and intercepts of the GWLs for each watershed (Figure 9). 
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Figure 9. Plot of δ2H and δ18O values by HUC code, with the GMWL (dashed blue) and the 
LMWL (red line) determined by the Theil-Sen fit. 
 

Results for the Theil-Sen fits and the least square fits for groundwater data by HUC are displayed 

in Table 2. 

 

Table 2. Slope and intercepts of the GWLs for each HUC code. 

  Theil-Sen Least Squares   
HUC-02 Slope Intercept Slope Intercept Samples 

1 5.4 -5.94 5.84 -4.01 309 
2 7.66 11.96 5.42 -5.4 509 
3 5.74 2.61 5.67 2.15 846 
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4 7.53 8.19 6.98 2.08 319 
5 7.77 11.55 7.49 9.37 133 
6 6.2 4.17 7.52 10.84 23 
7 8.29 14.34 6.17 -5.58 384 
8 6.67 5.6 3.71 -8.48 144 
9 7.67 5.19 7.46 1.74 84 

10 8.09 5.73 8.33 9.37 826 
11 9.1 19.14 9.12 18.3 179 
12 9.5 17.35 8.49 10.77 71 
13 6.26 -15.29 6.37 -13.79 229 
14 6.6 -14.97 6.49 -17.36 193 
15 8.1 6.73 7.09 -4.24 216 
16 6.07 -23.5 4.97 -39.9 678 
17 8.22 8.96 8.14 7.79 407 
18 7.76 3.87 6.91 -5.16 1716 

 

There is not a strong spatial correlation observed for calculated GWLs of the HUCs.  Slopes 

ranged in values from 5.4 to 9.5, with an average slope of 7.37.  The lowest slope was observed 

in HUC-01 (basins of New England), while the highest slope was observed in HUC-12 (basins of 

Southeastern Texas).  Slopes between 7 and 8, which are consistent with the GMWL, are 

observed for California, the Great Lakes region, and the central eastern basins (HUCs 02, 04, 05, 

09, 10, 17, and 18).  We compare the low slope calculated in HUC-01 to the slope of the RWL 

reported by Kendall and Coplen (2001).  Kendall and Coplen (2001) report a slope of 7.1 for 

HUC-01, despite slope estimates between 5 and 6 for Connecticut and Massachusetts.  We 

attribute our slope value to the vast amount of groundwater samples for HUC-01 located in these 

states.  Additionally, it is possible this low slope suggests HUC-01 is influenced by effects of 

evaporation in groundwater samples—particularly in Cape Cod, Massachusetts, where 

significant proportions of groundwater are recharged by ponds (Masterson, 2004; Walter et al., 

2004).  Thus, climate and coastal processes may influence regional groundwater lines in 

watersheds. 
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2.3.2 Seasonal Recharge Efficiencies 
 
 Seasonal recharge efficiencies were calculated for 5,147 samples and demonstrate 

coherent spatial patterns (Figure 10). 

 

Figure 10.  Calculated recharge proportions for all of the sampling locations that allowed for 
calculations.  Samples are colored by the seasonal dominance.  The shape denotes the control on 
seasonal dominance; an upward pointing triangle indicates precipitation amount controls the 
seasonal dominance, while a downward pointing triangle indicates the seasonal dominance is 
efficiency controlled; a square indicates both contribute to the dominant season. 
 

With some notable exceptions, the majority of groundwater samples have calculated seasonal 

efficiency ratios greater than 1, suggesting a winter bias in recharge.  This winter bias is likely 

the result of lower potential for ET during the winter due to colder temperatures and less 

vegetation.  Along the eastern U.S., winter and summer contribute similar amounts of recharge 

(no dominant season).  On the east coast, a slight summer bias is observed.  This bias in recharge 

is perhaps a result of the shallow water tables along the coast (Fan et al., 2013), which prevents 

further recharge during the winter.  Winter recharge becomes more efficient relative to summer 
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recharge (by a magnitude of 1.5-3 times more efficient) moving 50 km from the eastern coast.  

This winter bias in recharge is consistent with decreasing potential for ET during the winter due 

to cooler temperatures and dormant vegetation. 

 Summer recharge is more efficient relative to winter recharge in the central U.S., notably 

Texas, Oklahoma, Eastern Kansas, and Eastern Nebraska (Figure 11). 

 

Figure 11. Map of calculated recharge efficiency ratios (winter/summer) at groundwater sample 
locations. 
 

Unique meteorological conditions in this region potentially result in the summer bias in recharge 

efficiency, as this area coincides with convective storms during the summer that occur at night.  

The majority of summer precipitation occurs nocturnally, when ET and temperatures are lower 

and likely allows for more groundwater recharge (Balling, 1985).  In the western interior (WY, 

CO, NM, ID, UT, AZ, and NV), winter recharge is more efficient than summer recharge (by a 

magnitude of at least 5; Figure 6).  This result indicates per unit of precipitation, winter generates 

more recharge than the summer.  We attribute the strong bias towards winter recharge to be a 
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result of lower ET in winter relative to summer, as the vapor pressure deficit is high in the 

summer—driving high rates of ET (PRISM, 2012). 

 

2.3.3 Seasonal Recharge Proportions 
 
 Seasonal recharge proportions were calculated for 5,147 samples and demonstrate similar 

coherent spatial patterns (Figure 10).  The efficiency of recharge for a given season (e.g., the 

proportion of precipitation that actually recharges) and the amount of precipitation (e.g., the 

supply of water) determine the resulting seasonal contributions to annual recharge (Figure 11).  

Groundwater recharge does not display a seasonal dominance for much of the U.S. east of the 

Mississippi River.  A slight summer dominance in recharge proportion is observed along the east 

coast, which we attribute to the summer bias in efficiency identified in these sites.  The slight 

winter dominance in the Appalachian Mountain area (VA, WV, and PA) and northern section of 

Mississippi is also attributed to a bias in efficiency; here, winter dominance is a result of the 

greater efficiency of winter recharge relative to summer. 

 In the central U.S. (immediately west of Mississippi), groundwater recharge is slightly 

summer to summer dominant, perhaps due to the seasonal differences in the amount of 

precipitation as the majority of precipitation (>60%) falls during the summer.  A strong summer 

dominance is observed in Oklahoma, Eastern Kansas, and Eastern Nebraska; these sites are 

consistent with the majority of precipitation falling in the summer and more efficient summer 

recharge.  Throughout the Northern Great Plains (ND, SD, MT) and Western interior (WY, CO, 

NM, ID, UT, AZ, NV), a consistent slightly winter to winter dominance is observed.  This 

observation is the result of the strong winter bias in recharge efficiency—despite lower amounts 

of precipitation in some of the areas, winter is disproportionally effective at generating recharge. 
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2.3.4 West Coast Processes 
 
 Groundwater isotopes in Coastal California are closer to isotope values consistent with 

summer precipitation, and in some cases heavier than summer precipitation values (Figure 10).  

Groundwater isotopes that are heavier than mean annual precipitation isotopes, and in many 

cases heavier than summer precipitation.  This observation is suggestive of summer dominant 

recharge.  However, little precipitation (< 10% of the annual precipitation amount) occurs in the 

summer in California, suggesting the result of summer recharge is consistent with very efficient 

summer recharge or very inefficient winter recharge—contradicting the common understanding 

of the process of groundwater recharge.  We identified sites consistent with summer recharge are 

areas frequently inundated with fog in the summer months (Figure 12). 

 

Figure 12. Dominant recharge season for coastal California groundwater samples compared to 
daily hours of summer (June to September) fog cover.  The dominant recharge season for 
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groundwater samples are colored by dominant recharge season (summer = red; winter = blue).  
The boxplot shows the distribution of fog cover for samples based on dominant recharge season. 
 

Fog, which occurs in the summer from June to September in California, is isotopically the 

heaviest atmospheric water, with isotope values enriched relative to annual and summer 

precipitation values (Ingraham and Matthews, 1990; 1995).  Our results indicate areas 

demonstrating a summer dominance in recharge—driven by fog as opposed to summer 

precipitation in other sites—had significantly higher hours of daily fog cover than other samples.  

Thus, fog can contribute to groundwater recharge in coastal areas.  Infiltration and ultimately 

recharge from fog can occur as a result of fog moving in from the coast, coalescing on 

vegetation, and dripping into the ground.  This process has been minimally studied relative to its 

importance to groundwater, while several studies have demonstrated the importance of fog drip 

to plants on a more local scale (Dawson, 1998; Corbin et al., 2005). 

Although fog contribution to groundwater along coastal California has been only 

minimally studied, evidence for fog contributions to groundwater in other regions has been 

demonstrated.  Fog drop in excess of rainfall has been reported near Cape Town, South Africa—

an environment similar to that of coastal California (Nagel, 1956).  The potential for recharge 

from fog water is further demonstrated by the observation reported by Marloth (1905), in which 

fog events were determined to increase river stages and cause pools of water on the upper plateau 

of Table Mountain.  Other areas in which fog has been demonstrated to be a contributor to 

groundwater include Maui, Hawaii (Scholl et al., 2002), and aquifer systems in the coastal 

forests of Oman (Clark et al., 1987; Strauch et al., 2014).  Because these areas are consistent with 

coastal and forested areas consistent with fog cover, there is the potential for fog contributions to 
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groundwater in other areas in the U.S.  Our results suggest further study on the role of fog 

inducing groundwater recharge is necessitated. 

 

2.4 CONCLUSIONS 
 
 Groundwater contains information about the timing and efficiency of recharge.  We have 

applied an isotopic analysis of groundwater and precipitation data to understand the physical 

hydrology and seasonal controls on recharge for thousands of sites across the United States.  We 

identify coherent spatial patterns in groundwater isotopes and recharge timing, and correlate 

isotopic values to environmental parameters.  Additionally, we observe notable features in 

coastal California (e.g. fog contributing to groundwater recharge) and the central U.S. (e.g. 

intense nocturnal precipitation events).  Characterizing groundwater recharge across the United 

States is critical for ensuring the sustainability of future water resources, particularly as changes 

to climate may result in differences in seasonal effects on groundwater recharge.  Thus, it is 

essential to understand recharge processes across the United States. 
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3 Development of a National Isoscape 
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3.1 BACKGROUND 
 
 Isoscape, which map the distribution of a given parameter, are not only useful for 

understanding hydrologic processes—having applications across a wide variety of disciplines, 

including ecology, environmental forensics, and climatology (Bowen and Good, 2015; West et 

al., 2009).  In addition, isotopes in groundwater contain information about when the water 

recharges, which is useful for understanding potential perturbations; however, such processes are 

difficult to understand given the lack of measurements across all locations.  Models or 

interpolations (isoscapes) have been used to understand the spatial distribution of environmental 

parameters (Kendall and Coplen, 2001; Bowen and Good, 2015).  While these types of maps 

exist for isotopes in natural waters (e.g. precipitation and rivers), there was not a previously 

developed cohesive map of groundwater isotopes for the United States (Kendall and Coplen, 

2001; Dutton et al., 2005).  Thus, many studies in hydrology are limited by the lack of compiled 

information for groundwater (Bowen and Good, 2015). 

There are many geostatistical and mathematical approaches for generating spatial 

predictions for environmental variables such as isotopes, although most methods are dependent 

upon the spatial resolution of available data and variables which are dependent on one another.  

Here, we utilize two different approaches to transform measurements of isotopes in groundwater 

into predictive surfaces: kriging and random forest modeling.  These models provide powerful 

tools for estimating isotopes of groundwater when there is no such data available, as well as the 

basis for further hydrologic analysis (Stahl et al., 2020). 

The kriging method is a widely used technique in environmental science and monitoring 

(Zirschky, 1985).  Kriging has been used in groundwater quality assessment for understanding 

the distribution of concentrations of parameters in groundwater, as well as in soil science, 
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agronomy, and environmental monitoring (Zhang et al., 1996; Al-Mashagbah et al., 2012).  

Ordinary kriging is a purely spatial correction, based on the assumptions of stationarity and 

isotropy across the study space (Gimond, 2017).  Predictions are developed by modeling spatial 

dependence between neighboring points, with the spatial weights estimated by a statistical model 

(the sample variogram) as opposed to a mathematical function used in other interpolation 

methods (Zirschky, 1985; Gimond, 2017).  This method does not take contextual evidence (e.g. 

environmental parameters) into account, simply interpolating the value based on two points.  A 

sample variogram, which displays the covariance between pairs of points in the sample set, is 

used to calculate the weights for each point based on the spatial structure of the dataset.  The 

value of the predicted points and the weight of the value is applied to generate the interpolated 

surface (Zirschky, 1985; Gimond, 2017).  The importance of developing a good sample 

variogram is highlighted by the dependence of the kriging variance (Zirschky, 1985).  Using 

solely the spatial correlation or spatial trends between points is a major limitation compared to 

other models, including random forest models. 

 Random forest (RF) models have been increasingly implemented in studies involving 

complex ecologic and environmental datasets, demonstrating high predictive capacities across 

marine and terrestrial sciences (Knoll et al., 2019; Ouedraogo et al., 2019).  Beisner et al. (2012) 

used RF modeling to interpolate nitrate and arsenic concentrations in the southwestern United 

States for assessing areas with the potential to exceed concentrations above the drinking water 

quality standard.  Knoll et al. (2019) demonstrated the use of RF models to map the 

concentrations of nitrate in groundwater and compared its performance to other approaches.  

Similarly, the predictive performance of RF models has been analyzed using complex 

environmental datasets (Fox et al., 2020). 
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Random forest models, essentially a collection decision trees, create a “forest” with the 

best prediction based on predictor variables; the method follows the idea that the overall result is 

improved with an increasing combination of learning models (Knoll et al., 2019; Fox et al., 

2020).  Predictor variable selection is critical for optimal RF performance, as the model depends 

on strong features.  The model prediction is based on the predictions of all trees in the forest.  RF 

models are composed of a forest built from training data points, and the generalization of new 

data based on learning from the forest—the testing data set (Ouedraogo et al., 2019).  Compared 

to other methods, such as logistic models and GLMs, RF models are often more robust and 

accurate as they utilize variance reduction (Knoll et al., 2019).  An advantage of RF models is its 

ability to compute variable importance, which allows for a greater understanding of influential 

variables—particularly useful for understanding isotopic concentrations (Beisner et al., 2012; 

Ouedraogo et al., 2019).  A significant limitation of decision trees is the problem of overfitting, 

which can occur if there are not enough trees generated in the forest; the tendency to overfit is 

reduced by adding trees to the forest (Fox et al., 2020).  Our RF models allow for the prediction 

of isotope composition for δ2H and δ18O using important environmental parameters as predictors. 

 

3.2 METHODOLOGY 
3.2.1 Kriging Approach 
 

All of the data preparation was performed in R (R Core Team, 2018).  The average 

isotope values of δ2H and δ18O were calculated for each unique site (n = 6,418) in the 

groundwater isotope dataset, such that each point represented the average value.  The gstat 

package in R was used to generate a sample variogram using an exponential model on the data 

points for δ2H and δ18O (Pebesma, 2004).  We estimated the sill and range of the variogram to be 
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700 (distance) and 850 (variance), respectively.  The fit of the variogram determined how values 

of nearby points were weighted by relating latitude and longitude coordinates (Figure 13). 

 

Figure 13. Sample variogram used to calculate how the values of nearby points are weighted for 
the model fit for the kriging approach; the range and sill are manually calculated. 
 

The raster package in R was then used to create the interpolated surface given by the variogram 

fit (Hijmans, 2019).  The isoscape reflects the interpolated surface created using the kriging 

method (Figure 14 and 15).  Uncertainties in this projection follow the predictions being based 

on localized factors (Gimond, 2017). 
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Figure 14. Interpolated isotopic values for δ18O using the kriging approach (n = 6,418); sample 
sites are shown as points on the surface. 
 

 

Figure 15. Interpolated isotopic values for δ2H using the kriging approach (n = 6,418); sample 
sites are plotted on the surface. 
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3.2.2 Random Forest Model 
 
 We compiled relevant environmental and geographic data for each unique location in our 

groundwater isotope dataset; a dataset of approximately 8 key attributes was created.  The list of 

predictive variables, extracted from available raster datasets or included in the NWIS sample 

metadata, are given in Table 3. 

Table 3. List of the environmental parameters evaluated in the random forest model. 

Predictor Variable Data Source 
Included in final 
RF model? (Y/N) 

Precipitation isotopes Bowen 2019 and Bowen et al., 2005 Y 

Summer precipitation isotopes Bowen 2019 and Bowen et al., 2005 Y 

Winter precipitation isotopes Bowen 2019 and Bowen et al., 2005 Y 

Precipitation amount (monthly) PRISM 30-year normals Y 

Elevation PRISM elevation dataset Y 

Mean annual air temperature PRISM 30-year normals Y 

Distance to coast Computed Y 

Latitude Grid location Y 

Longitude Grid location Y 

Topsoil (0-30 cm) clay content Unified North American Soil Map N 

Median topographic slope 
International Satellite Land-Surface 
Climatology Project, Initiative II 

N 

Annual potential evapotranspiration 

Global Reference Evapotranspiration 
(ET0) Climate Database v2. CGIAR-
CSI 

N 

Seasonal precipitation proportions PRISM 30-year normals N 
Depth to water table Fan et al., 2013 N 

 

The environmental parameters considered in the random forest model are related to the isotopic 

ratios and likely account for much of the variability in the groundwater isotope dataset (Figure 

16).  Data preparation and spatial transformations were performed in R (R Core Team, 2018). 
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Figure 16. Schematic of the random forest modeling approach.  The approach uses 
environmental parameters along with a training and test set to generate the predicted surface 
(Stahl et al., 2020). 
 

The samples (n = 9,880) were divided into a training (70%) and test set (30%) for the 

model to understand the relationship between processes influencing isotopic compositions and to 

avoid overfitting.  Using the randomForest package in R to implement the random forest 

algorithm, we generated approximately 500 trees with each split testing three variables (Liaw 

and Wiener, 2002).  Other environmental parameters (e.g. soil texture, evapotranspiration, and 

depth to water table) were tested during the model development, but did not improve the model 

performance and thus were not included in the final model.  The parameters with the most 

predictive power are determined by the importance in the model.  The developed model was used 

to predict groundwater δ2H and δ18O values for the United States by applying the RF model to 

the predictor variables to create a gridded (4 km x 4 km) raster map of the groundwater.  The 

interpolation allows for predicted concentrations where data were previously unavailable.  We 
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estimate the uncertainty of the predicted groundwater isotopes in each grid cell by incorporating 

the reported uncertainty from isotopes of precipitation (the strongest predictive variable) to 

compute standard deviations (Stahl et al., 2020). 

 

3.3 RESULTS 
3.3.1 Kriging Approach 
 
 We used a kriging approach to generate an interpolated surface of δ2H and δ18O values 

for groundwater.  General patterns of isotopes across the United States are observed using the 

preliminary isoscape (Figure 14 and 15).  A clear spatial trend is recognized by comparing 

isotopes in the western United States to the eastern United States.  Western sites have a greater 

abundance of lighter isotopes (more negative values), while isotopes of eastern sites have a 

greater abundance of heavier isotopes (more positive values).  Coastal sites follow a similar 

trend, as these areas are enriched in the heavy isotopes.  The similarity of river water isotopes 

modeled using the same kriging method provides confidence in the resulting isoscape (Kendall 

and Coplen, 2001).  Additionally, we compute a confidence interval map for the kriged surface 

(Figure 17). 
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Figure 17. Confidence interval map (95%) for the interpolated δ2H values. 

 

3.3.2 Random Forest Model 
 
 The random forest (RF) predicts isotopes of δ2H and δ18O in groundwater for the 

conterminous United States using predictor variables.  The predictor variables, which were 

selected based on environmental parameters which are likely to affect the isotopic composition 

of groundwater, are ranked according to their importance in the model (Wassenaar et al., 2009; 

West et al., 2014).  The most important covariates in our model are amount weighted annual 

precipitation isotope values, winter and summer amount weighted precipitation isotopes, 

elevation, and annual precipitation amount (Table 3).  Our RF model explains 99% and 98% of 

the variance for δ2H and δ18O, respectively, in the training data set, and 97% and 94% of the 

variance in δ2H and δ18O for the test data set; thus, we determine our model performed well, as 

the predictors accounted for the observed spatial patterns in isotopes of groundwater. 

 A coherent spatial pattern is observed in isotopes of groundwater across the United States 

(Figures 18 and 19).  The most depleted isotope values for δ18O are consistent within the 
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country’s interior and the Rocky Mountains.  The Gulf Coast exhibits the highest values of 

groundwater isotopes and decrease moving north. 

 

Figure 18. The interpolated surface generated for δ18O in groundwater using the Random Forest 
model (Stahl et al., 2020).  Observed values for isotopes are displayed as points.  The important 
predictor variables in this model are annual amount weighted precipitation isotopes, elevation, 
annual precipitation amount, longitude, and mean annual air temperature. 
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Figure 19.  The interpolated surface generated for δ2H in groundwater using the Random Forest 
model (Stahl et al., 2020).  Observed values for isotopes are displayed as points.  The important 
predictor variables in this model are annual weighted precipitation isotopes, elevation, annual 
precipitation amount, longitude, and latitude. 
 

A steep gradient in isotope ratios is observed in California, with isotope values decreasing from -

40‰ to -100‰ and 6‰ to -14‰, for δ2H and δ18O, respectively, moving from the coast into the 

Sierra Nevada.  In the eastern United States, the groundwater generally reflects isotopes of mean 

annual precipitation (Stahl et al., 2020). 
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3.4 DISCUSSION 
 

We use the kriging approach on our groundwater data to apply a traditional method of 

predicting spatial values.  While the kriging approach is widely used because of its simple 

application, this method has many limitations.  The model is entirely dependent on the distance 

between two points, and does not take any other environmental parameters into account.  The 

kriging approach is thus implicated in that it takes no additional information to predict any given 

point, providing a purely spatial correlation.  Although this method provides a preliminary 

isoscape, we determine this method to be less defensible than the random forest model based on 

these limitations. 

We favor the random forest model compared to the kriging approach.  The random forest 

model is based on predictor variables which influence groundwater isotopes.  We computed a 

measure of spatial correlation on our RF model residuals and found minimal spatial correlation 

(Moran’s I for model residuals for δ2H and δ18O were 1.01*10-2 and 2.69*10-3, and p-values 

were 1.19*10-12 and 0.027, respectively).  Further, this model is advantageous as it ranks these 

variables in order of importance.  Because of the significance of seasonal precipitation isotopes 

in the RF model, recharge seasonality can be interpreted as a dominant influence on groundwater 

isotopic values for δ2H and δ18O.  We observe a pattern which generally follows the precipitation 

isotope signals, as groundwater isotope values decrease moving from low-latitude and low-

elevation regions to more continental, high-latitude, and mountainous areas.  We compare our 

modeled groundwater δ2H using the random forest model to annual amount weighted 

precipitation δ2H values (Figure 20). 
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Figure 20. Difference between modeled groundwater and annual amount weighted precipitation 
for δ2H (Stahl et al., 2020).  HUC02 regions are outlined in black. 
 

We observe similar (within 10‰) groundwater and mean annual precipitation isotopes for 

regions east and around the Mississippi River, suggesting groundwater could be a proxy for 

precipitation in this region.  Groundwater is depleted relative to mean annual precipitation 

isotopes (less than -10‰) west of the Mississippi River through the mountainous regions in the 

west, perhaps due to larger seasonal differences in precipitation isotopes compared to the Eastern 

United States.  Larger deviations indicate groundwater isotopes are not a viable proxy for 

precipitation isotopes in the Western United States. 
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3.5 CONCLUSIONS 
 
 We provide the first comprehensive groundwater isoscapes for the United States using 

two modeling approaches.  The kriging method provides a traditional approach to predicting 

groundwater isotopes, as the interpolated surface is generated using the average isotopic 

composition of groundwater sites to extrapolate between spatial points.  The random forest 

model provides a predictive model for groundwater isotopes by using environmental parameters 

to determine isotopic compositions.  We observe similar trends for both of the isoscapes, 

including more negative values inland and more positive values along coastal regions.  We favor 

the random forest model approach over the kriging method, as the RF model allows for 

predictions based on important environmental factors.  In addition, this method is useful for 

quantifying the relationships between these variables to track the most important factors 

influencing stable isotopes of groundwater.  The overall performance of the predictive model 

provides further confidence for use of this isoscape. 

 Groundwater isotopes provide insight into hydrological processes affecting groundwater 

systems and thus are important to understand for sustainably managing water resources.  A 

continuous predictive surface for shallow groundwater isotopes can be used for a variety of 

hydrologic, ecologic, and forensic applications.  We utilize our isoscape to observe spatial 

patterns in groundwater isotopes and compare the relationship of these values to precipitation 

isotopes, thus indicating areas for which groundwater isotopes may serve as a proxy of 

precipitation isotopes.  Other applications for the groundwater isoscape in hydrology includes 

estimates of baseflow, as baseflow in rivers and streams is often fed by shallow groundwater 

systems; isotopes can be used to quantify baseflow inputs to streams once isotopic hydrograph 

separations are determined.  Because biological features (including hair, feathers, leaf water, and 



 55 

animal tissue) are influenced by groundwater isotopes, this isoscape could serve as an input for 

ecological models.  Forensic applications include the identification of the sourcing of water, 

including tap or bottled water (Bowen et al., 2005; Jameel et al., 2016), and the sourcing of plant 

and animal tissues (West et al., 2010).  Thus, in addition to providing estimates for groundwater 

isotopic measurements across the United States, we demonstrate the versatility and applicability 

of this isoscape across a variety of disciplines. 
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4 Surface Water and Groundwater Interaction Along the Mohawk 
River 
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4.1 BACKGROUND 
 

A major focus of hydrologic and water resource research is the interaction between 

surface water and groundwater.  Streamflow infiltration, where water is captured from streams or 

rivers and flows into an aquifer, is a function of water levels, hydraulic gradients of the 

subsurface, and streamflow rates.  Pumping water from an aquifer reduces the water level in the 

aquifer and around the well-field, in a difference in the water level in the aquifer and surface 

water in the surrounding area.  The head of water necessary to infiltrate the aquifer (and become 

extracted from the well-field) is represented by the difference between the river and aquifer 

levels.  For wells adjacent to lakes or rivers, such as the Mohawk River, the water pumped from 

the aquifer can be infiltrated from the river.  The transmissibility of the river and aquifer, as well 

as the hydraulic gradient between the adjacent well and river, determines the amount of water 

infiltrated (Winslow et al., 1965).  While streamflow infiltration could be advantageous 

particularly in arid or semiarid environments where a continuous source of recharge may be 

lacking, there is a risk of contaminated river water being captured and transported into the well-

field.  The risk for contamination is related to how long it takes for water to move from the 

surface water body into the adjacent well-field (Winslow et al., 1965). 

Schenectady County, included in the Capital District, is located in the Mohawk Valley in 

east-central New York (Simpson, 1952).  The importance of groundwater in the area is 

demonstrated by the dependence of the majority of the county on the aquifer as the primary 

water supply.  Extensive shallow sand and gravel deposits occupying buried Mohawk channels 

have provided millions of gallons of groundwater daily to Schenectady County since 1945 

(Simpson, 1952; Waller and Finch, 1982).  Increasing development in the area has provided the 

basis for the efficient utilization of groundwater resources. 
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The timescales of storage in catchments can be estimated using stable isotopes as tracers 

of seasonal cycles.  The mean transit time describes the average time it takes for water to travel 

through a system and emerge.  Kirchner (2016) applied sine-wave fitting to seasonal signals 

from precipitation and stream isotopes to determine the timing of precipitation travelling through 

the catchment system and emerging as streamflow.  The fraction of young water describes the 

proportion of water that is sourced from that which has been recently recharged (DeWalle et al., 

1997; Kirchner, 2016).  This study applies these concepts—extending the application by moving 

from a source into the reservoir.  Because contaminant behavior (retention and release) is 

dependent on catchment system timing, this application highlights the connection between the 

Mohawk River and the aquifer in the vicinity of the Schenectady well-field. 

 

4.1.1 Geologic Setting 
 
 There are six primary geologic units identified in Schenectady County: bedrock, glacial 

till, outwash sand and gravel, glacially-deposited sand, silt and clay, and alluvial sand, 

respectively (Johnson, 2009).  Underlying rocks in Schenectady County were deposited in early 

Paleozoic time and late in the Cenozoic.  Paleozoic rocks, deposited in shallow Ordovician seas, 

consist of alternating beds of shale and sandstone.  In the eastern part of the county, crustal 

deformation caused rocks to be folded and faulted (Simpson, 1952); limestone beds in the 

southwestern part of the county make up the Schenectady Formation, resulting in the simple 

structure of consolidated rocks (Winslow, 1962; Halberg et al., 1964).  The overflow of the 

glacial Great Lakes discharging through the Mohawk and Hudson Valleys deposited outwash 

sand, gravel, and clay, which mantles the bedrock.  Unconsolidated glacial drift, deposited 

during the Pleistocene, is the result of the advance and retreat of the continental ice sheet 



 59 

(Simpson, 1952; Figure 21).  The Mohawk River, which flows eastward from Schenectady, 

accounts for most of the drainage in Schenectady Country to the Hudson River (Halberg et al., 

1964). 

 

Figure 21. Map of surficial geology in Schenectady County, New York, highlighting the 
principal unconsolidated deposits (NYS Education Department).  The location of the 
Schenectady well-field is depicted (star).  The inset figure shows the position of the Schenectady 
well-field adjacent to the river at Lock 8 (modified from Barlow and Leake, 2012). 
 

 The Great Flats aquifer consists of highly permeable sand and gravel deposits overlain by 

silt deposits (Waller and Finch, 1982; Barlow and Leake, 2012).  Recharge in the aquifer is 

controlled mainly by precipitation (directly on land) and seepage from streams.  In addition, 

recharge from the Mohawk River is attributed to limiting the susceptibility of the Schenectady, 

Rotterdam, and Glenville well fields to potential drought conditions (Johnson, 2009).  The 

aquifer principally discharges to the Mohawk River and wells in the adjacent well-field (Waller 

and Finch, 1982).  The Schenectady well-fields are sited nearly one kilometer from the Mohawk 
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River, making the interaction between surface water and groundwater highly complex and 

seasonally dependent.  Aquifer pumping induces fluctuations of surface water and groundwater 

temperatures in this system due to infiltration from the river (Barlow and Leake, 2012).  Where 

flow is induced from the river into the aquifer from pumping (in the adjacent Schenectady, 

Glenville, and Rotterdam well fields), the aquifer is recharged—classified as a reversal of the 

typical relationship between the river and the aquifer systems (Johnson, 2009). 

 

4.1.2 Water Supply 
 

Approximately 4,000 feet from lock 8, a dam and navigation lock along the canal, the 

Schenectady and Rotterdam well fields are sited along the flood plain of the Mohawk River.  At 

lock 8, the most productive water-bearing area along the Mohawk River flood plain, gravel beds 

are nearly 100 feet thick (Winslow, 1962).  At the Schenectady well-field, the thickness of the 

sand and gravel aquifer is about 30 feet.  Sand and gravel transition to fine-grained sand beyond 

the well-fields (Winslow, 1962; Halberg et al., 1964). 

Utilization of the Great Flats Aquifer began in 1897 in the city of Schenectady, with three 

wells at approximately 50-foot depths.  The Great Flats aquifer is the primary source of water for 

Schenectady County, pumping water through a system of approximately 12 wells.  The public 

water supply in Schenectady currently serves approximately 62,000 people in the county and a 

small portion of the neighboring towns of Niskayuna and Rotterdam.  In 2018, the aquifer 

produced 4,490,070,480 gallons of water, with a daily average of 12,298,330 gallons 

(Department of Water, 2018). 

Artesian conditions exist locally in Schenectady County in the gravel deposits along the 

Mohawk River flood plain; downstream of Schenectady, widespread confiding beds exist as a 
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result of irregularly spaced layers of silt and clay.  The water table, or the upper surface in the 

zone of saturation, in Schenectady generally conforms to the land surface (Simpson, 1952).  

Responses of the water level in the aquifer to changes in the stage of the Mohawk River—instead 

of seasonal fluctuations—has been demonstrated since 1946 (Simpson, 1952; Barlow and Leake, 

2012).  Because of the control of canal locks on the water level in the Mohawk River, the water 

level in the aquifer fluctuates between navigational and non-navigational seasons (Johnson, 

2009).  Thus, well fields proximal to the Mohawk River are not as susceptible to drought 

conditions in the summer. 

 Clear, clean water is produced by the Great Flats Aquifer; besides the relative hardness of 

the water (which has decreased since wells have first been tapped), there are no contaminants 

reported (Allen and Waller, 1981).  The pH of water from sand and gravel localities ranges from 

6.6 to 8.3.  Temperatures of the water from the Schenectady supply wells range from 40°F to 

65°F (Simpson, 1952).  Well water is disinfected with a chlorine residual (0.2 mg/L) prior to 

distribution, following standard procedures.  There are no current restrictions on this water 

source (Department of Water, 2018).  Streams draining into the Mohawk River have been 

established as potential sources of contamination to the aquifer (Allen and Waller, 1981). 

Given the importance of the Great Flats Aquifer to the Capital region, groundwater 

availability and quality are monitored (Simpson, 1952; Allen and Waller, 1981).  In a broad 

sense, river monitoring systems along the Mohawk River are useful indicators for aquifer 

protection (Allen and Waller, 1981).  The potential effects of increased groundwater withdrawal 

have been proposed for this well field, as increasing population and development has highlighted 

the dependence of the County for clean, readily available water (Johnson, 2009).  The lack of a 

complete analysis on groundwater and surface water conditions in the vicinity of Schenectady 
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necessitates a greater understanding of the hydraulic connection between the Mohawk River and 

the well field. 

 

4.2 METHODOLOGY 
4.2.1 Field Methodology 
 

Schenectady tap water, supplied by the Schenectady well-field, and Mohawk River water 

were collected at regular intervals to understand seasonality and municipal water sourcing.  Tap 

water samples, which reflect regional groundwater, are collected in duplicate in 15 mL Falcon 

tubes at Union College (Olin 015).  Mohawk River water samples are collected using an extender 

pole and tubing at Freeman’s Bridge in Schenectady, New York.  Tubing is flushed with river 

water prior to sample collection; samples are taken 6 feet from the dock at a depth of 

approximately 2 feet below the surface.  All tap water and river water samples are parafilmed 

and refrigerated immediately after sampling. 

 

4.2.2 Laboratory Methodology 
 

The tap water samples were analyzed for δ18O values using a Thermo Gas Bench II 

connected to a Thermo Delta Advantage mass spectrometer in continuous flow mode, and δ2H 

values using a Thermo TC/EA at 1425°C connected via a ConFlo IV to a Thermo Delta 

Advantage mass spectrometer in continuous flow mode.  Both analyses were conducted at Union 

College in the Stable Isotope Lab.  Three inhouse laboratory standards were used for isotopic 

corrections for measurements of δ18O, and to assign the data to the appropriate isotopic scale 

using linear regression. These standards were calibrated directly to VSMOW (0.0‰) and SLAP 

(-55.50‰). The inhouse standards have δ18O values that range from -0.6‰ to -16.52‰.  The 

combined uncertainty (analytical uncertainty) for δ18O is ± 0.01‰ (SMOW), based on 3 internal 
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tap water standards over one analytical session.  For δ2H measurements, each sample was 

analyzed six times by injecting 100 nL into the TC/EA using a CombiPAL autosampler.  To 

remove the memory effect, only the last four analyses of each sample were averaged.  Three in-

house standards were used for isotopic corrections, and to assign the data to the appropriate 

isotopic scale using linear regression. These standards were calibrated directly to VSMOW 

(0.0‰) and SLAP (-427.5‰).  The inhouse standards have δ2H values that range from -4.5‰ to 

-121.4‰.  The combined uncertainty (analytical uncertainty) for δ2H is ± 0.67‰ (VSMOW), 

based on 7 tap water standards over 2 analytical sessions. 

 

4.2.3 Hydrologic Analysis 
 

The majority of relationships derived from isotopic studies originate from stream, river, 

and precipitation samples, as surface waters provide relatively sensitive information for 

movement on short-time scales (Dutton et al., 2005).  Locally, the Schenectady well-field 

induces recharge from the river to the aquifer; to characterize the surface water and groundwater 

interaction within the vicinity of the Schenectady well-field, we compare time-series data of tap 

water isotopes to that of the Mohawk River.  The Mohawk River exhibits strong seasonal 

patterns in 𝛿2H and 𝛿18O and this isotopic signal can be compared against the signal of the 

Schenectady tap water (groundwater). 

 As water is transmitted through catchments, the seasonal cycles in precipitation are 

damped and phase-shifted (Figure 22). 
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Figure 22. Model of the input and output signals from isotopes, modified as water traverses 
through the catchment system (modified from Kirchner, 2016).  Here, the input signal is 
precipitation and the output signal is surface waters. 
 

Kirchner (2016) demonstrates the use and limitations of environmental tracers to understand how 

watersheds modify the input signal of precipitation and generate the output signal in streamflow.  

The basis of sine-wave fitting is validated by the amplitude (A) of groundwater being damped 

and phase-shifted (φ) relative to river water.  The transit timing of water and the proportion of 
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young water are based on such differences between the input and output signals.  Dampening 

explains the proportion of mixing, or the fraction of water less than 2.7 months old.  The fraction 

of young water is determined by the ratio of amplitudes: 

FY = 	
A?AQ
A:>R9:

 

where FY is the fraction young water and A is the amplitude of the tap water and river water 

peaks.  The phase shift calculates how long on average it takes for the seasonal signal in the river 

to make its way to the groundwater.  The mean transit time is calculated by the differences in the 

phase: 

MTT =	φ?AQ −	φ:>R9: 

where MTT is the mean transit time and φ is the phase of the tap water and river water.  For 

heterogenous catchments, calculating the dampening of the amplitude and the phase lag on the 

input signal can lead to over-estimates for mean residence times (Farlin and Małoszewski, 2016; 

Kirchner, 2016).  Because subsurface systems react slowly to precipitation events, the seasonal 

cycle of isotopes can be used for dating purposes without such implications (Farlin and 

Małoszewski, 2016). 

We use a similar approach to Kirchner (2016), utilizing the seasonal signals of tap water 

(groundwater) and river water to track water through the reservoirs—as opposed to the source 

(precipitation).  We assume water in the system is less than 1 year, based on the idea that the 

sine-wave signal is a convolution of many signals.  Because the super position of the signals 

generates the output, amplitude dampening sets the age thresholds (Kirchner, 2016).  By 

comparing the amplitudes of the isotopes signals in the river and tap water, we determine the 

proportion of tap water sourced from recently (< 2.7 months) recharged river water 

(Maloszewski et al., 1984; DeWalle et al., 1997; Kirchner, 2016).  We also examined the shift in 
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phase of the isotopic signal in the tap water to that of the river water to determine the average 

linear velocity of the groundwater on its path from the river bank to the municipal wells.  These 

calculations provide the basis for understanding the timing and the relative age of the flow of 

water from the river to the aquifer (Figure 23). 

 

Figure 24. Demonstrates the use of time-series data for insight into hydrologic processes; 
amplitude (A) and phi (phase shift) values are shown.  The blue line represents the hypothetical 
“input” signal (river water) and the red line indicates the hypothetical “output” signal 
(groundwater). 
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4.3 RESULTS 
 
 The 𝛿2H and 𝛿18O of local river and groundwater generally fall along the LMWL, and 

above the GMWL (Figure 24). 

 

Figure 24. Results of isotopic analyses show that 𝛿2H and 𝛿18O values of local river and 
groundwater generally fall along the LMWL (grey line; the black line represents the GMWL). 
 

Fitting a sine wave through time series data of 𝛿18O values (Figure 25) yields amplitudes of 

0.732‰ and 1.274‰, for tap water and river water, respectively. 
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Figure 25. Time-series data for isotopic compositions of river (blue) and tap (red) water.  Fitting 
a sine wave yields amplitude and phase values for river and tap water. 
 

The ratio of the amplitudes is 0.574.  The sine wave yields phase (φ) values of -30.375 and -

28.671 for tap water and river water, respectively (Table 4).  The difference in phase between 

river water and tap water is approximately 3.2 months (99 days). 

 

Table 4. Values for amplitudes and phase given by the fitted sine wave for measurements of δ18O 

in the Mohawk River water and Schenectady tap water. 

Water Source A (‰) φ (‰) 

Tap 0.732 -30.375 

River 1.274 -28.671 

 

We evaluate the sine-wave fit for tap water and river water by comparing the values of 

measured 𝛿18O to those of the modeled 𝛿18O (Figures 26 and 27). 
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Figure 26. Displays how well the sine-wave fit describes the observed measures for tap water (r2 
= 0.88). 
 

 

Figure 27. Displays how well the sine-wave fit describes the observed measures for river water 
(r2 = 0.59). 
 

The r2 values for the uncertainty estimates for tap water and river water are 0.88 and 0.59, 

respectively.  We attribute the greater uncertainty in the river water to the relative scarcity of 

samples compared to tap water.  We are confident the error associated with values for amplitude 
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demonstrate less uncertainty than those associated with phase.  These ratios represent the fraction 

of young water in the system and the average time it takes for water to traverse from the 

Mohawk River into the aquifer, allowing for the interpretation of isotopic tracer signals 

(DeWalle et al., 1997; McGuire and McDonnell, 2006).  A range of values was calculated for the 

fraction of young water and the mean transit times using standard deviations and upper and 

lower bounds for the hydraulic conductivity of the aquifer and distances from the river to the 

well-field (Figures 28 and 29). 

 

 

Figure 28. Range of fraction young calculations for the amplitudes of river and tap water for 𝛿2H 
and 𝛿18O.  The range is calculated by using the upper and lower bounds for standard deviations. 
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Figure 29. Range of mean transit times calculated for the phase of river and tap water for 𝛿2H 
and 𝛿18O.  The range is calculated using the upper and lower bounds for standard deviations. 
 

4.4 DISCUSSION 
4.4.1 Fraction Young and Mean Transit Timing 
 

Time-series data for the isotopic compositions of river and tap water reveal a phase lag and 

dampening effects, as the values for tap water are shifted from river water values and the peaks 

are dampened (Kirchner, 2016).  The fraction of young water, determined by the ratio of the 

amplitude of tap water to the amplitude of the river water signal, is 0.57—indicating 57% of the 

water transported from the river to the aquifer is young water, or water that is less than 2.7 

months old.  Thus, nearly 60% of the water supply for Schenectady is recently (less than 2.7 

months prior) supplied by the Mohawk River.  We calculate the average time it takes for water 

from the river to reach the aquifer to be 3.2 months, giving an average linear velocity of 

approximately 3.53 m/day.  Understanding water transport and flow conditions provides insight 

into the vulnerability of water sources and water quality, as the rate of transport may be used to 
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predict the movement of contaminants introduced to the Mohawk River—and thus traversing 

into the aquifer (or vice versa). 

The movement of contaminants near the aquifer is greatly influenced by the extent and 

distribution of groundwater pumping.  The Mohawk River has the highest potential for 

introducing contamination into the well-field.  Potential areas which could induce contamination 

into the river in Schenectady County include chloride leachate from road salts and polluted 

runoff from industrial complexes along the adjacent highway (Allen and Waller, 1981).  Because 

water flowing down the Mohawk River has the potential to leave and re-enter the aquifer, the 

complexity of contaminant transport is perhaps oversimplified (Allen and Waller, 1981).  

Regardless, isotopic measurements suggest a contaminant transported by water from the river 

would take 3.2 months on average to reach the well-field—not considering the amount, type, or 

solubility of the theoretical contaminant. 

Winslow et al. (1965) calculated the travel times from the Mohawk River into the 

Schenectady well-field based on temperature gradients of approximately 41 to 43 days—a 

difference from our calculations by at least a factor of 2.  We attribute this more rapid travel time 

to higher pumping rates and a higher water demand in Schenectady during the 1960s.  From 

1960 to 1961, Winslow et al. (1965) reported pumping rates between 16 and 25 million gallons 

of water per day, indicating an approximate 25-52% decrease in pumping rates from the 1960s to 

today.  Higher pumping rates would have induced a greater change in the water levels of the 

aquifer, increasing the rate of infiltration from the river to the adjacent well-field and thus result 

in a more rapid travel time than calculated today.  Despite the variation in travel times reported 

here and in 1965, the resulting travel times still indicate the flow path from the river into the 

aquifer could permit polluted water to enter the well-field. 
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4.4.2 Physical Hydrology 
 

We evaluate the calculated values for average linear velocity using Darcy’s Law to 

determine if such values given by the isotopic measurements imply reasonable physical 

hydrology.  Darcy’s Law is given by the following equation: 

Q = 	KA JX
JB

 , 

where Q is the volumetric flow rate [L3/T], K is the hydraulic conductivity, A is the cross-

sectional area [L2], and dh/dl is the hydraulic gradient [L/L] (Freeze and Cherry, 1979).  Simpson 

(1952) reports the hydraulic conductivity of the Schenectady aquifer to be “tens of thousands of 

gallons per day per square foot of aquifer at unit hydraulic gradient.”  Thus, we constrain the 

hydraulic conductivity in the Schenectady aquifer to be between 400 m/day (lower limit) and 

4,000 m/day (upper limit).  The hydraulic gradient that would result using our estimation of the 

average velocity of water flowing from the river to the well-field is calculated as follows: 

JX
JB
= Y

Z
 , 

where dh/dl is the hydraulic gradient, q is the average linear velocity, and k is the hydraulic 

conductivity.  The results of this calculation, using lower and upper bounds for hydraulic 

conductivity and linear velocity (determined by minimum and maximum distances from the 

well-field to the river), are displayed in Table 5. 

 

Table 5. Calculated head gradients using upper and lower bounds for average linear velocities 

and hydraulic conductivity. 

  KL (400 m/day) KU (4,000 m/day) 

qL (3.53 m/day) 8.83 × 10-3 8.83 × 10-4 

qU (10.09 m/day) 2.52 × 10-2 2.52 × 10-3 
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The resulting head gradients varied from [
E\\\

 to ]
E\\

; that is, for the lower bound estimations, 

there is 8 meters of vertical displacement for every 100 meters of length.  Upper bound 

estimations result in 2 meters of vertical displacement for every 100 meters of distance (Table 5).  

Although lower constraints result in steep head gradients, all of the estimated values are 

physically feasible for rivers adjacent to pumping wells (Freeze and Cherry, 1979).  Simpson 

(1952) demonstrates the relation between water levels in the Mohawk River and the 

groundwater.  During the non-navigational season (April to Mid-December), the average river 

level is 214 feet, while the average groundwater level at a Schenectady supply well is 208 feet.  

The average difference between the two levels is approximately 6 feet.  Given the hydraulic 

gradient represents the change in the head gradient over length, the hydraulic gradient for the 

river stage and groundwater stage is ^
E\\\

, and becomes shallower moving further down the river 

(Simpson, 1952).  In comparison, our calculations for the hydraulic gradient agree with 

Simpson’s (1952) findings. 

 The validation of transit timing estimations further proves the significance of such a 

method.  In other hydrologic studies, calculating groundwater velocities requires many 

measurements—several of which are difficult to acquire over time.  Measurements for hydraulic 

conductivity in a given aquifer require pumping tests for water systems, and accurate water level 

data requires years of acquired field measurements (Simpson, 1952; Allen and Waller, 1981).  

Estimating how long on average it takes water to move from one reservoir to another using 

isotopic values provides less opportunity for error than other methods, as the only error 

associated is analytical.  This method provides the means for understanding where water 
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originates, the risk of groundwater contamination from induced recharge from surface water 

sources, and the potential for groundwater pumping to impact adjacent surface water bodies. 

 

4.5 CONCLUSIONS 
 

Groundwater and surface water are a conjunctive resource.  We have demonstrated the 

use of stable isotopes to characterize the mean transit time and fraction young water by fitting 

sine-waves to the seasonal isotopic signal (Kirchner, 2016).  Our results highlight the connection 

between the Mohawk Rivera and the aquifer near the Schenectady well-field.  Pumping from the 

Schenectady well-field induces recharge from the Mohawk River; this water ultimately reaches 

the well-field, where it is extracted for municipal water use.  Given river water “has easy access 

to the aquifer through the river bed near lock 8,” there are implications for water quality should a 

contaminant be introduced and traverse into the aquifer (Simpson, 1952).  Groundwater pulled 

into the well-field from the river can be used to determine how fast water is moving in the 

system, and can thus indicate how long it would take for a contaminant to break down before it 

gets to the well-field.  We calculate an average linear velocity of 3.53 m/day, which describes 

how long on average it takes for water to traverse through the system.  Additionally, we 

constrain the fraction of young water, and find that nearly 60% of the municipal water supplied 

by Schenectady is from river water that entered the aquifer less than 2.7 months earlier.  This 

method is further validated by estimating plausible hydraulic gradients using our values for the 

average linear velocity, proving this technique can be used to understand water supply 

vulnerabilities and the complex interaction between groundwater and surface water in this 

region. 
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Regionally a significant proportion of municipal well-fields are sited less than a kilometer 

from rivers (Hettiarachchi et al., 2016).  We demonstrate the opportunity for this method to be 

applied to similar systems to understand how long it takes water to get into the aquifer, and thus 

deduce infiltration rates in these areas (Hettiarachchi et al., 2016; Kirchner, 2016).  Should 

seasonal changes result in changes in viscosity, it is possible lag timing could change depending 

on seasonality; thus, more subtle variations in stable isotopes should be considered throughout 

water systems (McGuire and McDonnell, 2006).  Future research on the interactions between 

groundwater and surface water will be particularly significant, as future challenges in water 

resources (e.g. climate, extreme weather, and energy for food and industry) intensify pressure on 

freshwater availability and quality. 
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5 Conclusions 
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5.1 SUMMARY 
 

Characterizing hydrological processes and establishing connections between water 

distribution systems and their respective environmental sources is possible through the use of 

stable water isotopes (𝛿2H and 𝛿18O).  Characterizing recharge processes across the United States 

provides insight into the seasonal timing of recharge and the environmental or climatic factors 

which influence these processes, and what this implies for the sustainability of groundwater 

resources.  For most sites across the U.S., we observe winter recharge (October-March) is more 

efficient than summer recharge (April-September).  Along the coast of California, our results 

suggest fog drip contributes to groundwater recharge, necessitating further research in areas 

where fog may be an importance source of recharge to aquifers. 

In addition, we develop groundwater isoscapes for the contiguous U.S. using two different 

approaches: kriging and random forest modeling.  The random forest model is more robust than 

the kriging approach based on its prediction for groundwater isotope values using environmental 

parameters which influence isotopic values.  The development of this isoscape can be used to 

combat the pre-existing limitations where there is no such groundwater data, and will have 

applications across environmental sciences and disciplines. 

To further demonstrate the versatility of groundwater isotopes, we collected river water 

and tap water in Schenectady, New York, to disentangle the interaction between surface water 

and groundwater.  We approximate the seasonal signal of isotopes using sine-waves, and 

calculate the mean transit time (3.2 months) for water traveling from the river into the aquifer 

and fraction of young water (57% < 2.7 months).  Our results highlight the possibility for 

streamflow infiltration to permit polluted water to enter the well-field through the aquifer 
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adjacent to the Mohawk River.  Together, these projects highlight the use of stable water 

isotopes across continent-wide and local scales. 

 

5.2 FUTURE RESEARCH 
 

Groundwater is an essential resource for both drinking water and the industrial food supply 

and serves a critical ecological and hydrological role in the environment.  Here, we have 

demonstrated the applicability of stable water isotopes to understand the seasonal timing of 

groundwater recharge, the spatial distribution of isotopes and influential environmental factors 

on such isotopic compositions, and the complex interactions and vulnerabilities that exist 

between groundwater and surface water.  These projects have been motivated by threats to 

groundwater resources, as future challenges in groundwater quality and management, including 

climate change, more frequent and intense weather events, and groundwater depletion, require a 

deeper understanding of water systems.  Future research to constrain the potential effects of 

climate and increased water use on groundwater is necessitated, as these effects will induce 

changes to groundwater availability and quality.  We have demonstrated the potential for similar 

studies to implement isotopic research for the characterization of vulnerabilities in water supply 

systems where pumping has induced river flow into aquifers.  This thesis provides insight into 

the use of chemical information as a low-cost and effective approach to characterize 

vulnerabilities and to improve our understanding of physical hydrologic processes that are 

impossible to characterize at broader scales from physical measurements alone. 
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