
Union College Union College

Union | Digital Works Union | Digital Works

Honors Theses Student Work

6-2021

IoT Garden Frost Alarm IoT Garden Frost Alarm

Andrew James
Union College - Schenectady, NY

Follow this and additional works at: https://digitalworks.union.edu/theses

 Part of the Digital Communications and Networking Commons, Software Engineering Commons, and

the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
James, Andrew, "IoT Garden Frost Alarm" (2021). Honors Theses. 2443.
https://digitalworks.union.edu/theses/2443

This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has
been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more
information, please contact digitalworks@union.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Union College: Union | Digital Works

https://core.ac.uk/display/479046389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalworks.union.edu/
https://digitalworks.union.edu/theses
https://digitalworks.union.edu/studentwork
https://digitalworks.union.edu/theses?utm_source=digitalworks.union.edu%2Ftheses%2F2443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalworks.union.edu%2Ftheses%2F2443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalworks.union.edu%2Ftheses%2F2443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalworks.union.edu%2Ftheses%2F2443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalworks.union.edu/theses/2443?utm_source=digitalworks.union.edu%2Ftheses%2F2443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalworks@union.edu

IoT Garden Frost Alarm

Andrew James

ECE 499

Engineering Capstone

Advised by Prof. Cherrice Traver

June 8, 2021

 Home gardeners are faced with yearly challenges due to spring frosts harming young

plants. This is frequently mitigated by covering crops with frost blankets, but only on nights when

a frost is predicted. In areas with less predictable climate, an unexpected frost can kill vulnerable

plants, reducing the amount of food produced. A system is proposed and designed here to use

internet of things (IoT) technology to enable a small weather station in the home garden to report

current climate data and predict frosts, then alert the gardener in time for them to cover their plants.

 The system as designed consists of an IoT endpoint, powered by a microcontroller in a

watertight housing and connected to a weatherproof temperature and humidity sensor, as well as

cloud services configured to collect and analyze weather data, and finally an iOS app for gardeners

to monitor the conditions in their gardens and receive push notifications about incoming frosts.

To make the system accessible to home gardeners, the design was required to cost under $200 to

construct and be as inexpensive as possible in operating costs, measure temperature to within half

a degree centigrade, be capable of operating at temperatures down to -20ºC, support ethernet

connections for gardens far from the house, and must allow the gardener to configure a temperature

threshold below which they will always be notified, whether or not the dew point indicates an

incoming frost.

 An ESP32 microcontroller, coded in C++ in the Arduino environment, was used for the

final endpoint design, along with an ethernet shield and the SHT31 temperature and humidity

sensor. Google Cloud services were used for the cloud data pipeline, and Google Firebase was

used for a database and for communication with the iOS app. The iOS app was developed in Swift

using the SwiftUI framework, with significant support from Firebase libraries for communication

with the cloud.

 All design goals were met by the final design except for the low yearly operating cost. This

was due to the unexpected requirement of having an Apple Developer account, which costs $99

per year, in order to send push notifications to iOS apps. Due to this unexpectedly high cost, several

alternative notification solutions, including an Android app and a secondary physical endpoint

with alarm functionality, are proposed at the end of this report, as well as suggestions for potential

commercialization.

1

Table of Contents

Introduction .. 4

Background .. 4

Market Solutions ... 5

Meteorology ... 5

Security in Internet of Things Applications .. 6

Standards Utilized ... 6

Design Requirements ... 7

Economic Limitations ... 7

Endpoint Requirements .. 7

Cloud Service Requirements .. 8

Mobile App Requirements .. 9

Design Alternatives .. 9

Temperature and Humidity Sensor ... 9

Microcontroller .. 10

Power Supply ... 12

Housing ... 13

Cloud Service Provider ... 13

App Development Platform .. 15

Preliminary Proposed Design .. 16

Endpoint ... 17

Cloud Functionality ... 20

iOS App .. 22

Final Design and Implementation .. 23

Endpoint ... 24

Cloud Functionality ... 24
Cloud IoT Core ... 24
Cloud Pub/Sub .. 25
Cloud Functions.. 25
Cloud Firestore ... 28
Firebase... 28

iOS App .. 29
Firebase Integration .. 30
Internal Data Model .. 30
SwiftUI Views .. 31

2

Performance Estimates and Testing Results... 32

SHT31 Temperature and Humidity Sensor .. 32

Adafruit FeatherWing Ethernet Shield ... 32

MQTT Connection with Google Cloud IoT Core... 33

Weeklong endpoint test ... 33

iOS App .. 33

Production Schedule .. 34

Cost Analysis .. 37

User Manual ... 38

Discussion, Conclusions, and Recommendations .. 39

References .. 40

Appendices .. 45

ESP32 Endpoint - Ethernet .. 45
FrostAlertEndpointEthernet.ino ... 45
certificates.h .. 49
secrets.h .. 51

Google Cloud Functions .. 52
tempAlert .. 52
newUser .. 53

3

List of Figures and Tables

Figure 1: Plant damage caused by frost. Image: Phil Romans, 2009 ... 5
Figure 2: Relationship between temperature, dew point, and humidity. Image: Easchif,

Wikimedia, 2008 ... 5
Figure 3: High-level Block Diagram .. 9
Table 1: Temperature and Humidity Sensor Decision Matrix .. 10
Table 2: Microcontroller Decision Matrix .. 11
Table 3: Power Supply Decision Matrix ... 12
Table 4: Project Housing Decision Matrix ... 13
Table 5: Cloud MQTT Broker Decision Matrix ... 14
Table 6: Serverless Cloud Application Decision Matrix .. 14
Table 7: Push Notification Service Decision Matrix .. 14
Table 8: Cloud Database Decision Matrix .. 15
Figure 4: High-level Block Diagram .. 16
Figure 5: Endpoint Circuit Schematic... 17
Figure 6: Endpoint Logic State Diagram .. 18
Figure 7: Cloud Logic Diagram .. 20
Figure 8: Firebase-App Communication Logic Diagram ... 22
Figure 9: iOS App Design Mockups ... 23
Figure 10: Constructed Endpoint .. 24
Figure 11: IoT Core Registry Setup .. 24
Figure 12: Cloud Pub/Sub Service Roles.. 25
Figure 13: tempAlert Cloud Function Pseudocode ... 26
Figure 14: newUser Cloud Function ... 27
Figure 15: Cloud Firestore Security Rules.. 28
Figure 16: Screenshots from final iOS app design ... 29
Figure 17: App in Dark Mode ... 34
Table 9: Winter Term Implementation Schedule.. 35
Table 10: Spring Term Implementation Schedule .. 36
Table 11: Final Cost Breakdown .. 37

file://///Users/andrewjames/Downloads/499%20Design%20Report.docx%23_Toc74228271
file://///Users/andrewjames/Downloads/499%20Design%20Report.docx%23_Toc74228272
file://///Users/andrewjames/Downloads/499%20Design%20Report.docx%23_Toc74228272
file://///Users/andrewjames/Downloads/499%20Design%20Report.docx%23_Toc74228273
file://///Users/andrewjames/Downloads/499%20Design%20Report.docx%23_Toc74228290
file://///Users/andrewjames/Downloads/499%20Design%20Report.docx%23_Toc74228292

4

Introduction
 Home gardeners cultivating crops in cold climates, particularly those with short growing

seasons and microclimates that make weather unpredictable, face yearly issues of frost damaged

crops. Young crops in the spring are especially vulnerable to frost damage, potentially stunting

their growth and limiting the produce a gardener can harvest at the end of the season. This

reduces the economic efficiency of home gardening as an alternative to commercial agriculture,

posing a problem not just for the gardener but also for society (since home gardens produce

positive health and environmental externalities) [1],[2]. Gardeners in these environments have

developed techniques, such as frost blankets that cover crops at night [3], to mitigate these

losses, but these techniques are generally only employed when a frost is predicted by the

National Weather Service (a division of NOAA) or other government agencies for non-US

gardeners. Thus, frosts not predicted in advance have the most potential to cause crop loss.

 The goal of this project is to create and implement an open-source system that predicts

imminent frosts in the garden in a way that is inexpensive for gardeners to build and use at home.

This is accomplished using a microcontroller-based Internet of Things (IoT) endpoint connected

to a temperature and humidity sensor, all located in the home garden, that sends collected

hyperlocal weather conditions to a cloud service. This cloud service processes and stores current

weather conditions, analyzing them for the likelihood of imminent frost, and alerts the gardener

via a mobile application on their phone when a frost is predicted. It also allows the gardener to

view up-to-the-minute data, provided by the sensors, on the mobile app.

 Throughout the rest of this report, the necessary technical background for development of

this system is laid out, along with the design requirements of the system and the methodology by

which components of it were chosen. The initial and final design details are then explained,

along with the performance results obtained from tests of the system. The production schedule is

outlined, then a short analysis of the cost of building and operating the system, a user's manual,

and finally a discussion of conclusions and recommendations is presented to enable future work

on this issue.

Background
 Preventing frost damage to plants is an important undertaking for farmers and home

gardeners in both the spring and fall seasons when frosts are difficult to predict [3]. This is

particularly true in northern regions, where the growing season is generally shorter and must be

extended by frost mitigation techniques for some crops to reach maturity. Mountainous regions

and other microclimate areas further complicate these efforts, as temperatures predicted and

measured at a weather station may differ significantly from the actual temperature in nearby

fields. Farmers often deal with this issue by using automated watering, heating, and fan systems

to keep the temperature around plants above freezing throughout the night and early morning.

For home gardeners, however, simply covering their plants with fabric or plastic sheets is more

economically feasible [3]. The issue for gardeners is that these coverings must be removed

promptly in the morning when the temperature rises. This covering and uncovering of crops is an

unproductive use of time when frost does not occur, making it difficult to judge when it is worth

doing so and imperiling crops when a mistake is made. Increasing crop yield for home gardeners

produces positive environmental and health benefits [1],[2] and makes the gardening experience

more economical and rewarding, so systems that reduce frost damage are valuable to both the

gardener and society at large.

5

Market Solutions
 Systems solving the problem of frost warnings are

available on the market, but are priced for agricultural use,

making them unreasonably expensive for gardeners and

family farmers. The cheapest and most widely available of

these systems are made by a company called Onset and

start at $315 for a USB-only data logger with a

temperature sensor; their cheapest model with internet

communication, the HOBO MicroRX Station, starts at

$560 and requires an expensive yearly data plan [4]. These

devices offer significant benefits to farmers due to their

many sensor input options, but for gardeners these extra

options drive up the cost and complexity to install.

Moderately cheaper smart home temperature sensors also

exist, but generally are designed for indoor use and are not

suitable for gardens.

Meteorology
 The relationship between freezing, frost, and dew

point is also relevant to this project. The dew point is the

temperature at and below which relative humidity will be

100% for the current amount of moisture in the air. When the air temperature reaches the dew

point, the air cannot hold any more moisture, causing dew to form on nearby surfaces. Thus, the

dew point has a direct relationship with the total level of moisture in the air; the lower the dew

point temperature is, the lower the absolute humidity [5]. If the dew point is below the freezing

point of water, the air temperature is more likely to drop

below freezing because the dry air has less water vapor

to absorb and retain heat. Thus, higher dew points

indicate the air temperature is less likely to fall below

freezing [5].

 If a dew point below freezing is reached by the

air temperature, the dew will generally condense as

frost, causing crop damage. Even without frost,

however, temperatures more than a few degrees

Fahrenheit below 32º can cause significant crop damage,

sometimes even more than if frost had formed, since a

mild frost can insulate plants from further freezing

damage [6]. The primary type of freeze condition that

causes problems for gardens and farms, radiation

freezes, generally occur when the air is dry, causing

the ground to rapidly lose heat into the air and creating

a temperature inversion [5]. This means that the air

right above the ground is several degrees cooler than

the air only a few feet above, necessitating that

temperature is measured as low to the ground as possible to determine when a freeze is likely to

occur.

Figure 1: Plant damage caused by frost.

Image: Phil Romans, 2009

Figure 2: Relationship between temperature,

dew point, and humidity. Image: Easchif,

Wikimedia, 2008

6

Security in Internet of Things Applications
 The security of Internet of Things (IoT) applications is a recurring ethical and privacy

issue for IoT devices and systems [7]. Since most IoT applications collect large amounts of data,

which may be private in nature, and many allow for interfacing with the outside world via the

internet, it is vital that data is secured throughout its entire pipeline, from endpoint devices to

cloud services and on to the end user [8]. In transit, data can be secured via encryption, and data

inputs and outputs at the cloud/storage level can be secured by confirming that devices and users

attempting to send or receive data have been properly authenticated, either with a token

generated by a sign-in service or through private/public key signatures to confirm the originator

of a given packet [8],[9]. When security roles are configured at these inputs and outputs, the

established best practice is the "principle of least privilege," wherein each (human or device) user

of a system is assigned the minimum access and modification privileges needed to complete its

task, and not given any other rights until they are absolutely necessary [8]. Cloud services built

for IoT applications generally have these security features and practices included in their

architecture, but it is necessary to configure them correctly to ensure that data security is upheld.

Standards Utilized
IP Code

 The ingress protection code (IP code), developed by the International Electrotechnical

Commission (IEC), specifies the ability of device housing to prevent the intrusion of both solid

particles and water. The code's different protection standards are written as IPXX. The first X is

a number from 0 to 6 indicating the size of solid particles prevented from ingress (0 indicating no

protection and 6 indicating full resistance against dust). The second X is a number from 0 to 8

indicating the resistance of the device enclosure to various degrees of water ingress (0 indicating

no protection and 8 indicating total protection to immersion in water at depths below 1 meter,

along with an uncommon 9K rating to indicate resistance to high-temperature, high-pressure

water) [10]. Most consumer electronics that are certified are rated for either IP67 or IP68,

indicating complete resistance to dust and water resistance either to an immersion depth of 1

meter or greater than 1 meter, respectively [11].

MQTT

 MQTT is a low-data IoT message transport protocol, built on top of the standard TCP/IP

stack, that utilizes a client-server architecture with connect, publish, subscribe, unsubscribe, and

disconnect packets to control information flow. All control packets have an optional

acknowledgement packet associated with them that, depending on the quality-of-service level set

during the initial connection, affirms when each packet is received, and optionally specifies the

specific packet payload received (increasing overhead along with reliability). The server in this

model, referred to as a broker, receives published packets on a particular topic and forwards

these on to subscribers to that topic, with varying checks in place to ensure receipt depending on

the connection settings of each subscriber [12].

 MQTT is the preferred IoT standard for messaging between servers/cloud services and

microcontroller-based endpoints, utilized as the primary communication method for the IoT

components of Google Cloud [13], Amazon AWS [14], and Microsoft Azure [15] due to its

security, low data overhead, and robust feature set.

7

I2C

 I2C is a standardized bidirectional two-wire data bus for communication over short

distances between integrated circuits [16]. It supports a wide feature set, including data collision

detection, a master/slave relationship between various ICs, and unique addresses for each IC so

that one I2C bus can connect many ICs without introducing errors where one IC inadvertently

makes use of data intended for another. I2C is the communication standard of choice for most

integrated circuit-based digital temperature and humidity sensors for interfacing with a

microcontroller. Most microcontrollers support it natively and have first party libraries for the

standard that simplify interfacing with I2C devices in code.

Design Requirements
Economic Limitations
 As this project is intended to be used by home gardeners, it should be as inexpensive as

possible to construct and operate. Since existing market solutions are on the order of $500+, the

maximum price for all components needed to assemble and run this system should be under

$200. The prices for each component should be minimized as much as possible, even below the

overall $200 threshold. Additionally, the ongoing cost of operation should be as low as possible,

ideally less than $5 a year.

Endpoint Requirements
Sensor Accuracy

 To ensure accurate prediction of frost, temperatures between -5 and 5ºC must be

readable within an accuracy of ±0.5ºC (equivalent to about 1ºF in this range), and relative

humidity must be readable within ±5%, as this is sufficient to predict dew point within 5ºF for

RH≥20% at 32ºF. When selecting a temperature and humidity sensor (almost all digital humidity

sensor ICs also contain onboard temperature sensors, so using the same sensor for both is more

economically and programmatically feasible), preference should be given to more accurate

temperature readings than humidity readings, as temperature is the more significant component

in determining when frost is likely to occur.

Communications & Reliability

 For purposes of reliable communication and ease of accessing the internet in outlying

gardens that may be beyond the range of home wireless routers, the chosen microcontroller

should support internet communication over Ethernet. Optionally, it may also support WiFi

communications to provide gardeners with a secondary communication option if this does not

significantly increase cost.

 Communication between the temperature sensor and microcontroller should be easy to

parse and in a standardized format with library support; thus, both the temperature sensor and

microcontroller should support either I2C, SPI, or 1-Wire communications.

 For ease of development and reliable operation, libraries should be available for the

chosen microcontroller to communicate with cloud services using MQTT. Preference should be

given to microcontroller platforms actively supported by the major cloud service providers.

8

Component Temperature Ratings

 All outdoor components must be capable of operating in temperatures from -20ºC to at

least 30ºC to withstand the most extreme conditions they are likely to experience in use.

Power

 The system must be powered via line power for regular operation to ensure reliability;

the system may optionally have a backup battery and/or solar power option if cost allows.

Waterproofing

 For the purposes of this project, it is not realistic to achieve a true IP rating due to the

high cost of testing, as well as a lack of access to proper manufacturing technology to reach one

of the standard consumer electronics ratings. Although housings are available with these ratings,

the necessity of drilling holes in the case for this project, as explained later, effectively

compromises them, limiting the realistic possible resistance to both dust and water. However, a

lower-than-standard rating of IP43, indicating protection from solid objects as small as most

insects and water sprayed up to 60º from the vertical axis, should be possible if an IP66/67

housing is utilized and cable-routing holes are only drilled in the bottom side of the case that

faces downwards when mounted. Thus, it is required that the project housing be IP66 or IP67

rated (or equivalent).

 Additionally, since the temperature and humidity sensor must be placed slightly outside

the housing to ensure proper humidity readings, the sensor must be waterproofed or capable of

being waterproofed.

Enclosure Size

 The project housing (enclosure) should be as small as is feasible, ideally under 6"x6"x6",

to enable easier mounting in gardens without taking up too much space.

Cloud Service Requirements
IoT Communication

 The selected cloud service must be capable of communicating with the microcontroller

endpoint by acting as both an MQTT broker and subscriber.

Serverless Applications

 The selected cloud service must have the ability to run serverless functions to calculate

frost likeliness based on sensor data and use this to determine whether to send a warning push

notification to the user.

Databases

 The selected cloud service should ideally have a hosted database application to allow for

the storage of historical temperature and humidity data for later reference.

App Communication & Push Notifications

 The selected cloud service must have a way to send push notifications to a mobile app on

the user's phone, and must allow for communication of current sensor data when requested by

the mobile app.

9

Mobile App Requirements
Notifications

 The mobile app must be able to receive and display push notifications from the cloud

platform about likely imminent frosts.

Sensor Data

 The mobile app must be able to pull current sensor readings from the cloud service when

open and must display these readings as they are updated in a human readable form.

User Configurability

 The mobile application must allow the user to set a temperature threshold for sensor

readings at which they will always receive a push notification warning of frost, and this

threshold must be synced with the cloud service. Additionally, the application should allow the

user to view temperatures and set temperature thresholds in both Fahrenheit and Celsius,

depending on their choosing.

Design Alternatives
 The following design alternatives

represent the choices made for each major

component of the system, as represented

by the block diagram in Figure 3 to the

right, as well as discrete sub-components

like the power supply and housing that are

not included in the block diagram due to

their lack of logical relevance. The

temperature and humidity sensor were

chosen as a single unit for reasons

described previously, as was the cloud

service provider after determining that it

would allow for easier development and

reproduction to make use of only one cloud

ecosystem. Components of the system

were chosen in the order they are listed in

below; some component choices, such as

the sensor, determined additional requirements for other components, like the microcontroller, as

they imposed limitations on what communication standards, power usages, etc. must be

supported.

Temperature and Humidity Sensor
 The specifications used to select a temperature and humidity sensor include the design

requirements specified previously, as well as the following list, all of which are compiled in the

decision matrix in Table 1 below:

Figure 3: High-level Block Diagram

10

● The sensor should have an operating voltage between 3.3 and 5V and an operating

current ≤10mA so it can be powered easily by a microcontroller.

● The sensor should have a response time of 10 seconds or less.
Table 1: Temperature and Humidity Sensor Decision Matrix

Brand Item Waterproofing Operating

Temperature

Operating

Voltage

Max

Operating

Current

Max.

error in

temp.

from -5

to 5ºC

Max.

error

in RH

Data

comm.

standard

Response

Time

Price

for 1

DFRobot SEN0385 Built-in -40 to 125ºC 3.3 to 5V <1.5mA ±0.25ºC ±2%

RH

I2C 8 sec $19.90

[17]

Seeed

Technology

Co.

101990561 Addon -40 to 80ºC 3.3 to

5.5V

≤0.22mA ±1.0ºC ±6%

RH

One-

wire bus

10 sec $4.99

[18]

Adafruit

Industries

393 Addon -40 to 80ºC 3.3 to 6V ≤1.5mA ±0.5ºC ±5%

RH

One-

wire bus

2 sec $15.00

[19]

DFRobot SEN0227 Built-in -40 to 125ºC 3.3 to 5V ≤0.2mA ±0.5ºC ±7.5

% RH

I2C 8 sec $22.50

[20]

Adafruit

Industries

1293 Addon -40 to 125ºC 3.3 to

5.5V

≤0.5mA ±0.15ºC ±3%

RH

I2C 5 sec $29.95

[21]

Amphenol

Advanced

Sensors

T9602-3-A-

1

Built-in (IP67) -20ºC to

70ºC

3.3 to 5V ≤0.75mA ±1.0ºC ±3.5

% RH

I2C 29 sec $51.42

[22]

 Based on the information in the table, the DFRobot SEN0385 [17] was chosen because

its operating voltage, current, and temperature ranges all fit the desired criteria, and it had the

second-best temperature error (behind the Adafruit 1293) and the best relative humidity error. It

also uses I2C for communication, meaning it will be simple to interface with a microcontroller,

has an acceptable temperature change response time, a reasonable price, and built-in

waterproofing, all also making it a good candidate. The Amphenol Advanced Sensors T9602-3-

A-1 was the only sensor researched that had a proper IP67 rating, but it was also significantly

more expensive at over $50 and had worse temperature error, relative humidity error, and

response times than most of the other sensors. For a commercial product with a warranty,

requiring an IPxx water/dustproof rating would make more sense, but given the constraints of

this project, the SEN0385, which is designed for outdoor use but not officially certified, is an

acceptable compromise.

Microcontroller
 The microcontroller was selected based on the design requirements specified previously,

as well as the following criteria, both of which are compiled in the decision matrix in Table 2

below:

11

● Must operate on either 3.3 or 5V

● Should be programmable with common languages (like C, C++, Arduino C++, Python)

● Should not have an operating system, or only have a barebones RTOS if necessary, to

minimize development time and points of failure

● Should be well documented with an active development community
Table 2: Microcontroller Decision Matrix

Brand Item Operat-

ing

Voltage

Operating

Tempera-

ture

I/O Options Network

Standards

Cloud

Services/

Protocols

Programming

Language

OS? Price

Rasp-

berry Pi

Pi 4

Model B

5V 0 to 50ºC I2C, SPI, 1-wire,

(with extra

configuration),

UART

Gigabit

Ethernet

MQTT;

SDKs for

AWS, Azure,

Google Cloud

Python,

C/C++

Raspbian

(Default),

other Linux

distros

$35.00

[23]

Adafruit HUZZAH

32

3.3V -40 to

125ºC

I2C (2 channels);

SPI (2 channels);

UART (2 usable

channels); ADC

(12 inputs); DAC

(2 outputs); I2S

(1 channel)

802.11

b/g/n

WiFi,

Bluetooth,

10/100

Ethernet

(w/ shield)

MQTT;

SDKs for

AWS, Azure,

Google Cloud

C++ None

(Arduino),

FreeRTOS

(ESP-IDF)

$19.95

[24]

(extra

$19.95

for Eth.

[25])

Adafruit HUZZAH

with

ESP8266

3.3V -40 to

125ºC

9 GPIO pins

usable as up to 4

I2C channels or

up to 2 SPI

channels; ADC

(1 input)

802.11

b/g/n

WiFi,

10/100

Ethernet

(w/ shield)

MQTT;

SDKs for

AWS, Azure,

Google Cloud

C++, Lua None $16.95

[26]

(extra

$19.95

for Eth.

[25])

Arduino MKR

WiFi 1010

3.3V -40 to

125ºC

SPI (1 channel),

I2C (1 channel),

UART (1

channel), ADC

(7 inputs), DAC

(13 outputs)

802.11b/g/

n WiFi,

Bluetooth,

10/100

Ethernet

(w/ shield)

MQTT;

SDKs for

AWS, Azure,

Arduino IoT

Cloud,

Google Cloud

C++ None $32.10

[27]

(extra

$26.40

for Eth.

[28])

DF-

Robot

XBoard

V2

3.3 or

5V

-40 to

125ºC

SPI (1 channel),

I2C (1 channel),

UART (1 usable

channel), ADC

(8 inputs), DAC

(4 outputs)

10/100

Ethernet

MQTT C++ None $19.90

[29]

(extra

$12.90

for

program

mer [30])

 The Adafruit HUZZAH32 [24] was selected, along with the corresponding Adafruit

Ethernet FeatherWing [25], from the microcontroller options above because of its comparatively

low price and high feature set. The cheapest option, the DFRobot XBoard V2, was eliminated

largely due to it lacking sufficient documentation, cloud service SDK support, and an onboard

WiFi chip, along with the hassle involved in programming it with an outboard programmer. The

Raspberry Pi was eliminated because it is designed to run a full operating system (usually

12

various Linux on ARM distros), making it overcomplex for the needs of this project and

therefore more likely to be error-prone; it also does not have an onboard WiFi chip and has a

much more limited suggested temperature range that does not cover the low end of the intended

operating range of this project. The Arduino MKR board considered (the MKR WiFi 1010, the

lowest cost MKR board available) was ruled out due to its high expense, especially when paired

with the corresponding ethernet shield, and lack of substantially different features from the

HUZZAH32 and HUZZAH ESP8266. Finally, when deciding between the HUZZAH32 and

HUZZAH ESP8266, the HUZZAH32 was selected because it has substantially more I/O options,

Bluetooth support, more advanced SDKs available, more processing power, and because the

ESP32 chip it is based on is replacing the ESP8266 as a new industry standard for low-cost IoT

devices, all of which contribute only $3 more to the overall cost of the project and increase the

reusability and long-term support of the dev board.

Power Supply
 The two power options suggested for the HUZZAH32 by the manufacturer Adafruit are:

a) via the onboard Micro-USB port and b) connecting to a 3.7/4.2V LiPo battery (also sold by

Adafruit) via the onboard JST port. They recommend against using an external power supply due

to potential logic issues it could introduce, despite being technically possible. Given the nature of

this project, a battery that requires recharging on a semi-frequent basis and is sensitive to cold (as

LiPo batteries are) is not appropriate as a primary power source. The battery circuitry on the

board is hot-swappable between charging and discharging when USB power is connected and

disconnected, and the battery port is plug-and-play, so it could be easily added as a backup if

desired. Due to the ease of accomplishing this, no design is necessary; a user that wants a backup

battery can simply plug one in [31].

 Power-over-ethernet is also a potential option, providing both power and internet access

with one cable, but requires a special routing switch to inject power, as well as a PoE splitter and

a voltage regulator to bring the voltage down to the 5V needed for the HUZZAH32's USB input,

making the project significantly more expensive to implement. Given the difficulties, this option

has been ruled out.

 For the USB power, the simple and modular solution is to connect the HUZZAH32 to a

USB wall wart whose prongs can protrude from the bottom of the project housing to plug into an

outdoor extension cord. This wall wart:

● Must output 5V and be rated for at least 1A of current

● Should be as physically small as possible
Table 3: Power Supply Decision Matrix

Brand Item Rated output

current at 5V

Rated operating

temperature

Dimensions Price

Phihong USA PSAA05A-050QL6-R 1.0A -10 to 40ºC 2.19x1.32x0.82in $4.45

[32]

Qualtek QFAW-05-05 1.0A -20 to 40ºC 1.52x1.18x1.18in $6.15

[33]

13

Mean Well

USA

GS05U-USB 1.0A -20 to 50ºC 1.65x1.29x0.94in $11.58

[34]

 The Qualtek model [33] listed above was selected because of its adherence to the output

and operating temperature requirements, and because it was nearly half the cost of the Mean

Well USA model.

Housing
 The choice of housing for this project was determined by the waterproofing and size

requirements laid out previously, along with the goals of minimizing price and using materials

that are easy to drill holes into but provide sufficient protection from the sun by not exposing the

electronics through a transparent cover. Two primary companies were identified, Bud Industries

and Boxco, that manufacture suitable enclosures for this project, each company offering a wide

variety of sizes for each of their product lines. The different product lines from each brand are

specified in the decision matrix in Table 4 below, along with their physical properties, the most

applicable size for this project, and its price. Only product lines made from plastic and utilizing a

hinged closure mechanism were considered for ease of use reasons, and product lines that did not

come in an appropriate size were also eliminated before consideration.

Table 4: Project Housing Decision Matrix

Brand
Product

Line

Waterproofing

Standard

Enclosure

Material

Cover

Transparent

or Opaque?

Applicable Size
Price (from

DigiKey)

Boxco

Q Series IP66 ABS Plastic Either 5.91×5.91×3.54 Not listed

[35]

P Series IP66 ABS or

Polycarbonate

Either 4.33×8.27×2.95 $18.30 [36]

R Series Not certified ABS Plastic Either 5.91×5.91×3.74 Not listed

[37]

Bud

Industries

NBB Series IP66 ABS/Poly

Blend

Either 5.91" x 5.91" x

3.57"

$29.00 [38]

NBF Series IP66 ABS/Poly

Blend

Opaque 5.91" x 5.91" x

3.54"

$20.60 [39]

 The Bud Industries NBF Series enclosure was chosen in the applicable size specified in

Table 4, with product number NBF-32110 [39], due to its significantly lower price than the

flame retardant NBB series version and its more convenient size and shape than the closest

Boxco P series equivalent. Two of the Boxco options, the Q and R series, are not carried by

DigiKey, requiring that they be custom ordered from the manufacturer at greater expense, so

they were ruled out. The chosen enclosure is fully opaque, made of off-white plastic that should

effectively reflect the sun, comes with mounting brackets for easy installation outdoors, and

remains fairly inexpensive.

Cloud Service Provider
 A cloud service, or combination of cloud services, is needed to receive temperature data

from the IoT endpoint (HUZZAH32), process this data to detect when a frost is imminent, and

send a push notification to the end user when an oncoming frost is detected. It should also be

able to send the end user data about the current temperature and humidity in their garden on

14

request (when they open the app or refresh while in the app). Ideally, it would also be able to

store temperature and humidity data over time as well so that trends could be identified.

 Most cloud services relevant to this project are parts of larger cloud platforms offered by

large vendors. The specific relevant components of these platforms are identified in the tables

below and evaluated based on the previously specified design requirements, along with the use

allotments in the service's free tier:

Table 5: Cloud MQTT Broker Decision Matrix

Cloud

Platform

MQTT

Service Free tier allotment

Microsoft

Azure

IoT Hub 4MB per day for 12 months [40]

Amazon

AWS

IoT Core 2.25 million connection minutes and 250MB of messages per month for 12

months [41]

Google

Cloud

IoT Core 250MB of messages per month; no charge for connection but PINGREQs

count as messages [42]

Table 6: Serverless Cloud Application Decision Matrix

Cloud

Platform

Serverless Applications

Service Free tier allotment

Microsoft

Azure

Functions 1 million invocations and 400,000 GB-seconds compute per month [43]

Amazon

AWS

Lambda 1 million invocations and 400,000 GB-seconds compute per month [44]

Google

Cloud

Cloud Function 2 million invocations and 400,000 GB-seconds compute per month [45]

Table 7: Push Notification Service Decision Matrix

Cloud

Platform

Push notification Platform

Service Free tier allotment

Microsoft

Azure

Notification

Hubs

1 million publishes per month [46]

15

Amazon

AWS

Simple

Notification

System

1 million publishes per month [47]

Google

Cloud

Firebase Cloud

Messaging

Unlimited [48]

Table 8: Cloud Database Decision Matrix

Cloud

Platform
Database

Service Free tier allotment

Microsoft

Azure

Cosmos DB
5GB storage and 400 request units per second for 12 months [49]

Amazon

AWS

DynamoDB/

DocumentDB

25GB data storage, 2.5 million read requests, unlimited data transfer in, and

1GB data transfer out per month (both) [50]

Google

Cloud

Cloud Firestore 1GB data storage, 10GB network data per month, 20k writes per day, 50k

reads per day [51]

Realtime

Database
1GB data storage, 10GB network data per month, 100 simultaneous

connections [52]

 All three cloud platforms considered provide all of the necessary components required for

this system with free tiers generous enough to support at least one instance of the IoT endpoint

for an individual user. However, Google Cloud was selected due to its perpetual free tier;

Amazon AWS and Microsoft Azure both have a 12-month free limit for their MQTT service,

which is essential for communicating with the IoT endpoint, whereas Google Cloud is not

limited, and Azure has an additional 12-month limit for their Cosmos DB cloud database that the

other two do not. Google Cloud also offers an unlimited number of push notifications

(theoretically, although they reserve the right to cut off abusive behavior that would not be

necessary to any reasonable product) through Firebase Cloud Messaging. Although the costs

associated with the MQTT and database services from Azure and AWS would be very low after

the end of the free trial period, it is preferable for this project as an open source and low-cost

endeavor to not require any charge at all. Additionally, using Google Cloud allows for easier and

lower-maintenance app development using the Google Firebase SDK [53] to configure push

notifications and data downloads to client devices, as well as simplified and secure connections

between the MQTT IoT core and the document databases used.

App Development Platform
 For the mobile application, iOS was chosen as the target development platform because

of the availability of devices to test the app with. Due to this decision, only two software

development packages, Apple's XCode (with the Swift programming language) [54] and

Facebook's React Native (a fork of the React package for JavaScript) [55], were considered, as

16

only these two had any kind of support for Google Firebase SDKs. Both development packages

support all of the features required for this project and React Native has the added benefit of

easier porting of the app to other platforms (i.e., Android or the web). However, React Native

does not have an official, Google-supported SDK for Firebase, and instead relies on a

community-developed package, with far less documentation and bug-checking than the official

SDKs. For this reason, Apple XCode with Swift was selected as the development package and

language for the mobile app.

Preliminary Proposed Design

 At a high level, the design of this project involves three primary subsystems: the

microcontroller based IoT endpoint located in the user’s garden, the cloud services used to

receive and work with sensor data, and the mobile application on the user's phone. These systems

are depicted in block diagram form in Figure 4 below, with the cloud services component broken

further down into sensor communications and application logic functions. As conceptualized in

this diagram, temperature and humidity data is produced by sensors in the garden connected to a

microcontroller, which collects the data from the sensors and pushes it on to the cloud via MQTT

publishes over the internet. That data is taken in by the sensor communication portion of the

cloud and pushed on to the application logic component, which processes and stores the data,

using a serverless function to determine whether an imminent frost is likely. If a frost is

predicted, it also sends a warning push notification to the mobile app. The mobile app receives

these notifications and displays them to the user through the standard notification paradigm of

the host operating system. When the app is open, it can also read current sensor data from this

portion of the cloud services and display it to the user in a human-readable format.

Figure 4: High-level Block Diagram

17

Endpoint
 The microcontroller endpoint, whose logic is depicted in a state diagram in Figure 6

below, is controlled by an ESP32 chip embedded in the Adafruit HUZZAH32 development

board.

Hardware

 The board receives power via its Micro-USB port over a cable connected to the Qualtek

USB power adapter. It connects to the internet via Ethernet using a WIZ5500 chip in the

Adafruit Ethernet FeatherWing shield that sits atop the HUZZAH32 on stackable headers; the

electrical connections between the ESP32 and the WIZ5500 are shown in the schematic in Figure

5 below. The DFRobot SEN0385 (with SHT31 chip) temperature and humidity sensor is

connected to the microcontroller via four separate wires. The sensor's VCC input is connected to

the 3.3V output pin (labeled 3V) of the HUZZAH32 and the sensor's GND input is connected to

the microcontroller GND output pin. Similarly, the sensor's SCL (clock) and SDA (data) inputs

are connected to the corresponding SCL and SDA outputs of the microcontroller, but with 4.7kΩ

pullup resistors connected between each to the 3.3V input as well, as is required by the I2C

specification.

 All of the components described are housed inside the Bud Industries NBF-32110 case,

mounted with the ethernet port oriented towards the bottom of the case. Three holes are drilled in

the bottom of the case (which can be any of the narrow sides), through which an ethernet cable

and an extension cord are routed for internet connection and power supply. The third hole is used

to mount the external, waterproofed tip of the temperature and humidity sensor, held in place by

the included washer on the sensor. The former holes are provided an extra degree of insulation

from the elements by grommets through which the cables run, while the latter is already

insulated by the tight washer seal created by the sensor.

Figure 5: Endpoint Circuit Schematic

18

Software

 The logic of the software running on the microcontroller, as depicted in Figure 6 below,

involves a setup/power-on portion and a looping measurement and publication portion. When the

device is powered on, it first attempts to connect to the SHT31 sensor over I2C. If the connection

is unsuccessful, it will retry making the connection every second until it is successful. Once the

sensor is successfully connected, it will attempt to connect to the internet over the ethernet

shield, retrying every 10 milliseconds until it succeeds. Finally, MQTT CONNECT packets are

sent over the internet to the Google Cloud IoT Core broker at a regular interval (every second)

until the connection is acknowledged with a CONNACK packet from IoT Core.

Figure 6: Endpoint Logic State Diagram

 The looping portion of the code begins by reading temperature and humidity data from

the sensor, waiting for the data to be received, and then publishing this data to IoT Core via a

PUBLISH packet. The system then waits until the publication is acknowledged with a PUBACK

or resends the packet if this is not received within 5 seconds. Once the publication is

acknowledged, the system waits 1 minute, then returns to reading the sensor data.

 The connection to and reading from the sensor is implemented using the

DFRobot_SHT3X Arduino library [56]. A sensor object of the sht3x class is created in the

variable setup that occurs prior to compilation, setting the correct pins to use for I2C

communication as well as the address of the sensor (0x44) and specifying a pin to use for

19

resetting the sensor chip (not usable with the given package but required by the library for

compilation). Communication with the sensor is then initiated in the setup code using the sensor

object's begin function inherited from the library. When reading the temperature and relative

humidity from the sensor, an SRHAndTemp_t object (an alias for a C++ structure defined by

the library) is created that holds the returned results (temperature in both Celsius and Fahrenheit,

as well relative humidity and error codes) from the sensor object's

readTemperatureAndHumidity function. This function is given as input an

eRepeatability_High object, again defined in the library, that specifies that the sensor should

measure as accurately (repeatably) as possible. This mode draws slightly more current while

reading, but due to the use of line power, this is not a significant concern for this project.

 The Ethernet internet connection is established utilizing functions from the standard

Arduino Ethernet library [57]; the MAC address of the Ethernet shield is established in the pre-

compilation section of the code as a byte array, along with a default IP address and DNS address

to use for connection if DHCP fails. An EthernetClient object is then established, along with an

SSLClient object on top of it (utilizing the SSLClient library created by the OPEnSLab at

Oregon State University [58]), and the Ethernet.init(pin) command is called in the startup

portion of the code with pin 33 specified (the SPI pin of the HUZZAH32O). The

Ethernet.begin(mac) function is then called with the MAC address specified prior, and the

program loops until Ethernet connection is successfully established with the router.

 The Google Cloud IoT JWT library [59] is used for the generation of MQTT packets

along with the arduino-mqtt library maintained by Joël Gähwiler [60] which the former

references. An MQTTClient object from the latter class is created in the pre-compilation section

of the code. A CloudIoTCoreDevice object from the former class is then created in the setup

portion with references to the specific project, device ID, and other identifying data in the

project's Cloud IoT Core instance, along with the private key used to sign messages sent to the

cloud. The MQTTClient object is initialized with a 180ms keep-alive time and 1 second

timeout, and a CloudIoTCoreMqtt object is then created that references the SSLClient along

with the MQTTClient and CloudIoTCoreDevice. The startMQTT function inherited by this

new object is then called, and once an MQTT connection is successfully established the

temperature and humidity data read from the sensor are published using its publishTelemetry

command. All encryption, packet formulation, signing of packets, and communication with

Cloud IoT Core are handled by these libraries, obviating the need for further development in this

area.

20

Cloud Functionality
 At a high level, the Google Cloud functionality, as shown in Figure 7 below, operates as

a pipeline for data starting with MQTT packet ingestion by Cloud IoT Core, which passes on

published sensor data to a Cloud Pub/Sub topic. This topic triggers a Cloud Function instance

when data is received that takes in the data and uses it to populate records in a Cloud Firestore

database. The Cloud Function also calculates the likelihood of frost and sends a push notification

via Firebase Cloud Messaging to the user's mobile app if the current temperature is below the

user defined threshold, as captured in Figure 8 in the Firebase section below.

Figure 7: Cloud Logic Diagram

Cloud IoT Core

 The Cloud IoT Core instance used for this project is configured with a device registry for

endpoints (potentially allowing for many endpoint instances linked to one project) that is set up

as an MQTT broker with a subscribed Cloud Pub/Sub topic for telemetry data. No Pub/Sub topic

is configured for device state data, as this functionality is not used for this project. The endpoint

is configured as a device in the IoT Core registry with communication allowed and a ES256

public key (paired with private key stored on the device itself), which is used to sign the JSON

Web Token (JWT) password when it authenticates over MQTT to IoT Core. No registry-level

CA certificate is used for authentication because this would create further overhead on the

microcontroller publish functionality and is an unnecessary security step for a project that is very

unlikely to be compromised due to its low-value functionality. At worst, if a hacker obtained a

private key associated with an endpoint, they would be able to push bad temperature and

humidity data; Cloud IoT Core has no other access that could compromise the system.

21

Cloud Pub/Sub

 A Cloud Pub/Sub topic tied to the IoT Core registry is configured with an automatically-

generated subscription that pulls incoming sensor data and stores it for up to 7 days or until it is

acknowledged. The topic uses an AVRO (JSON) schema that ensures that input data is in the

correct form (with key names "temp" and "hum" for temperature and humidity, and floating-

point values for each) to ensure that data integrity is maintained when it is used in the Cloud

Function and forwarded to the Firestore database. A Cloud Function is also set to trigger when

new data is received, which also acknowledges the data in the process so that it is no longer

stored by Pun/Sub.

Cloud Functions

 The Cloud Function used in this project, triggered by Pub/Sub, takes as input the JSON-

formatted sensor data and stores it as a timestamped entry in the Cloud Firestore database. After

it has been stored, the likelihood of frost is calculated by determining the dew point. If the dew

point is at or below 0ºC and the temperature is at or below 3ºC, a frost warning notification is

triggered through the Firebase Cloud Messaging API and sent to the phone of the user. A

warning notification is also sent regardless of the dew point if the temperature is below the user's

threshold set in the user document in Cloud Firestore.

Cloud Firestore

 The Cloud Firestore database, associated with the Firebase project, stores information

about application users, endpoint sensor devices, and temperature data. As a document database,

the information is stored in collections of documents, where each document can contain sub-

collections of associated documents [61]. This structure allows for easy and low-bandwidth data

retrieval and storage. At the root level, there are collections of users and collections of endpoint

devices. The user documents contain each user's associated sign-in information, desired

temperature notification threshold, and associated endpoint devices. The endpoint device

documents contain the registry and device IDs of the endpoint from Cloud IoT Core along with

the current temperature and humidity received from them. The device documents also contain a

sub-collection of days, each of which is populated with the timestamped temperature and

humidity values received each minute they are in operation. This data can be easily exported to a

BigQuery database in the future to implement machine-learning frost prediction, time allowing.

Firebase

 The Firebase project associated with this design contains the Firestore database, along

with user and authentication data received from the mobile app. As displayed in Figure 8 below,

the Firebase project communicates with the app in several different ways. When the app is

launched and a login is initiated, Firebase's authentication SDK is used to either register the user

or sign them back in, associating their account on the backend with their user document in

Firestore. When the app is open, it requests temperature and humidity every minute using the

Firestore API, which sends the current temperature and humidity data associated with the user's

device to the app for display. The app also uses this API to set the alert notification temperature

threshold in the database. Finally, the Cloud Function uses the Firebase API to trigger frost alert

notifications, which are sent on to the mobile app.

22

Figure 8: Firebase-App Communication Logic Diagram

iOS App
 The iOS app, for which mockups are shown in Figure 9 below, utilizes the Firebase SDK

with Apple's Swift language to control authentication and data flow. As pictured in the leftmost

mockup, the initial page shown when the app is first launched is a sign-in sheet, allowing the

user to authenticate with Firebase using either Google or Apple authentication tokens. The flow

from here is not mocked up, but if the user chooses Google authentication, a Safari popup card is

shown that allows the user to choose the Google account to sign in with and asks them to

confirm whether to share their account information with the app. If the user chooses Apple

authentication, a popover card (handled by an Apple API) is shown that confirms whether to

share the email associated with their Apple ID or to use an anonymous email alias provided by

Apple. Once the user is logged in, the second screen from the left in Figure 9 is shown, allowing

the user to input the device ID of their sensor endpoint, along with its physical location. Once the

user has entered a legitimate device ID that is registered in Firestore, the main screen (third from

the left) is displayed. This screen displays the device's name and the most recent sensor data

received from it, along with the weather data reported by NOAA for the address they have set for

it, allowing easy comparison. This screen becomes the default app screen shown when the app is

opened once the user has signed in. It also provides a button to open the app settings at the

bottom. When this is pressed, the settings popover card (shown in Figure 9 on the far right) is

opened, allowing the user to change their temperature display between Fahrenheit and Celsius

and to set the notification temperature threshold, or to change the endpoint device (returning

them to the second screen) or log out of their account (returning them to the first screen).

Changes to the former two settings are saved to Firestore when the user presses "Done," or

cancelled if they press "Cancel." Changes to the latter two are automatically saved.

23

Figure 9: iOS App Design Mockups

Final Design and Implementation

 The final design largely follows the specifications and processes as proposed in the

preliminary design. The code for the endpoint was unmodified except for some minor

performance improvements by reducing the number of libraries and extraneous variables used

for testing but not necessary for the final design. Implementation details were finalized for the

cloud components, code for the cloud functions was written and tested, and the iOS application

was written and integrated with Firebase, all described in further detail here. At the high level, a

Google Cloud project was initialized, and the region of operation chosen was us-central since it

operates across multiple Google Cloud server farms and thus has higher uptime. This comes at a

higher cost for certain operations, but this system largely operates within the free tier of Google

Cloud, so this was not a concern.

24

Endpoint
 The endpoint was built largely as described in the preliminary design. Pictures of the

semi-constructed endpoint are shown in Figure 10 below. The final hole for an extension cable

has not been drilled due to time constraints and a lack of access to an extension cable suitable for

outdoor use, but the endpoint is otherwise finished.

Figure 10: Constructed Endpoint

Cloud Functionality

Cloud IoT Core

 The Cloud IoT Core setup largely followed the preliminary design closely. A single

device registry, endpoints, shown below in Figure 11, was configured with support for MQTT

communications and telemetry data sent to the weather2 Pub/Sub topic (detailed below). A

single endpoint, garden32, was registered and authenticated as described in the preliminary

design.

Figure 11: IoT Core Registry Setup

25

Cloud Pub/Sub

 The weather2 Pub/Sub topic was generated with the service roles shown in Figure 12

below, giving it permissions to call and send data to cloud functions (the cloud build and cloud

functions service agents) as well as to receive data from the IoT Core registry. A cloud function,

tempAlert, was created to trigger on the receipt of new messages by

the weather2 topic, and the forwarding of message data to tempAlert

was achieved by creating a push subscription to forward new

messages and start running the cloud function automatically. The

AVRO message schema planned in the preliminary design was

scrapped because it would require bloating the program size at the

endpoint, as it requires the use of serialized JSON objects for

message bodies. If this system were to be commercialized, an

enforced message schema would be advisable to prevent potential

nuisances caused by hackers inserting bad data into the database

through modified endpoints or driving up costs by overloading the

message size and rate, but, given that a private key is already

required to connect to IoT Core, an enforced schema is unnecessary

overhead for a system configured and operated by an individual.

Cloud Functions

 The primary cloud function, tempAlert (simplified pseudocode for

which is shown below in Figure 13, and full code for which is in the appendix), is written in the

Python 3.7 runtime of Cloud Functions and triggered by new message events on the weather2

topic. It is allocated to use the minimum amount of memory available in Cloud Functions, 128

Mebibytes (about 134 Megabytes), to minimize potential expenses related to running the

function. Similarly, the timeout is set to the recommended minimum of 60 seconds to prevent

potential errors causing the function to run overtime and add expenses. The number of maximum

instances is set to 2 for the same reason. This configuration limits the system to a maximum of

only two endpoint devices operating at a time, but this could be easily changed as needed for a

system with more endpoints or a commercialized version of the system. The tempAlert function

is executed using the firebase-admin service account tied to the Firebase portion of the project to

allow it to send notifications and read to and write from the Cloud Firestore database.

Figure 12: Cloud Pub/Sub

Service Roles

26

Figure 13: tempAlert Cloud Function Pseudocode

 The simplified code in Figure 13 captures the function's logic. The function is triggered

by a new message event from Pub/Sub, and that trigger passes in event data. The body of the

event is decoded to get the proxied message from the endpoint, which contains the data about

temperature and humidity. The device ID of the endpoint is also stripped from the event's header.

This is then used to get a reference to the endpoint's document in the Firestore database, from

which the owner of the endpoint's user ID (uid) is extracted. A reference to the user's document

is also created, and from that their Firebase Cloud Messaging token (fcm_token) is extracted

along with their notification temperature threshold (threshold_temp). The function then checks if

the message body starts with an open brace, indicating whether it contains data or is just a

connection start message. If it does not start with a brace, it is the latter, and the function ends

with no further actions taken. If it does start with a brace, then the message body is stripped of its

starting and ending braces and split into the string_array. The temperature and humidity values

are obtained by stripping their definitions from the array and converting them back to floating

points. The current dew point (Dp) is then approximated using a formula from the humidity

sensor's datasheet: [64]

𝐻 =
log10(𝑅𝐻) − 2

0.4343
 +

17.62 ∗ 𝑇

243.12 + 𝑇

27

𝐷𝑝 =
243.12 ∗ 𝐻

17.62 − 𝐻

where RH is the percentage relative humidity percent and T is the temperature in degrees Celsius.

 If the dew point is calculated to be below freezing (0º Celsius), or if the measured

temperature is below the user's threshold_temp, a Firebase Cloud Message is prepared. A

notification for the message is configured within the Message instantiation method that alerts the

user of the likelihood of an imminent frost. No action is associated with the message, so the

notification simply opens the app if tapped. The user's fcm_token, obtained earlier, is used in the

Message instantiation to indicate the user that should receive a push notification. After the

message is instantiated, it is sent using the Firebase Cloud Messaging (FCM) library. Finally,

whether or not the message send was triggered, the new temperature and humidity values are

wrapped back into a dictionary, along with the owner's user id (necessary because it was part of

the original document and it needs to be preserved). This dictionary is set as the new endpoint

document so that the user can get the latest temperature and humidity data on their mobile

device.

 One other cloud function, newUser, is configured for the project. It uses the Node.js 12

runtime and is triggered by the user.create trigger in Firebase. When a new user signs up for the

app using their Google account, a new Firebase Auth user profile is created for them. The profile

can include several fields, but as configured it only identifies them using a unique ID (uid).

When a new profile is created, it sends the uid as part of the trigger, which is then handled by the

cloud function. The code for newUser, which is quite short, is presented in Figure 14 below:

 After importing some

Firebase and Firestore libraries, an

environment Firestore admin client

is created on line 4, then the

Firebase admin account is

initialized on line 5. The newUser

function is defined between lines 7

and 19, and is tied to the new user

account created, whose ID is

obtained for use on line 9. A

reference to the Firestore user

collection is created on line 10, and

a new user document is added to

that collection on line 11 with a

document ID matching their user

ID. On lines 13 to 18, this

document is modified to contain the

user's ID, a blank entry for their

endpoint device that they can register later in the app, a default notification threshold of 2

degrees, and another blank entry for their FCM token, which again can be registered later in the

app. At the end of the newUser function, the database has been updated to allow for

communication and synchronization with the mobile app.

Figure 14: newUser Cloud Function

28

Cloud Firestore

 The Cloud Firestore database is configured largely as described in the proposed design.

At the root level, it contains two collections: one for users and one for endpoints. The user

documents contain the unique user ID (uid), cloud messaging token, and device ID of the

endpoint registered to that user, along with their notification threshold temperature. The endpoint

documents contain the current humidity and temperature values reported by their sensors, as well

as the uid of the user to whom the endpoint is registered. Historical temperature and humidity

data storage was not implemented because it could start to drive up the cost of cloud hosting over

time; if it were to be implemented, a cheaper database like Cloud Datastore could easily be

configured to receive and this data for future reference.

 Firestore databases use a set of security rules defined in a simple JavaScript-like schema

to allow or deny incoming read and write requests [65]. The security rules for this design, shown

below in Figure 15, are configured to allow users to only read and write to the user and endpoint

documents registered to their accounts. If an endpoint has not yet been registered, any authorized

user can claim it, but after it has been registered only the user who it is registered to can access it.

Figure 15: Cloud Firestore Security Rules

Firebase

 The other Firebase services used in this design are Firebase Auth (an end-user

authentication system that supports most federated identity platforms) [66] and Firebase Cloud

Messaging (FCM), a cross-platform notification service. Both of these services interact with the

iOS app, whose bundle ID and Apple Developer credentials are registered with Firebase.

Firebase Auth is set up to allow registration and sign-in only through the Sign in with Google

API, and the only data it collects about the user is their email address.

 Firebase Cloud Messaging is configured to send push notifications to the iOS app

through the Apple Push Notification Service (APNS). This service, run by Apple, receives

authenticated message bundles from Firebase and proxies them to the iOS app, where they

appear as push notifications. To authenticate the Firebase project with APNS, an APNS

developer certificate was created on the Apple Developer console, and an APNS authentication

key linked to that certificate was set up. The authentication key was uploaded to the FCM

backend, enabling Firebase to send notifications using cloud functions to any iOS client with the

FrostAlert app installed.

29

iOS App
 The final iOS app design was programmed in Swift, with a graphical user interface (GUI)

written in Apple's new SwiftUI toolkit. SwiftUI utilizes a modern declarative UI paradigm,

wherein all UI elements are declared within structures called views that also contain or reference

all associated state data directly, allowing for simplified UI construction and interaction [67]. At

the top level, an app structure contains the ContentView, an overarching view structure that

contains all other views and the programmatic logic that controls switching between them. The

app structure also contains an adaptor to interface with an AppDelegate class, which enables

some extra, non-declarative behaviors that are still necessary to use since the new GUI paradigm

is still under development. It also contains global variables and objects that need to be passed to

all views underneath it in the structure. The breakdown of the iOS app design in this section will

only cover a high-level explanation of the app's structure and internal functionality because many

of the finer details require more conceptual knowledge of SwiftUI than can reasonably be

explained here.

 Several functional changes were made to the app compared to the proposed design due to

time constraints and to better fit with the SwiftUI data model. The sign-in screen was simplified

to only allow Sign-in with Google, removing the planned Sign-in with Apple option because

enabling Sign-in with Apple requires additional developer agreements with Apple. The device

registration screen was not implemented because it added unnecessary complexity; instead, the

device ID was added as a setting on the settings pane, as shown below in the fourth screenshot in

Figure 16. The device location and current NOAA-reported weather information were also

scrapped due to the difficulty of integrating the public NOAA API and the added expense

required to implement an easier to use commercial weather API. The last major functional

change was the addition of a "Get Notifications" button to the settings, which synchronizes the

device's FCM token with their user document in Firestore. This is necessary for the tempAlert

cloud function to send frost warning notifications to the user.

Figure 16: Screenshots from final iOS app design

30

Firebase Integration

 Integration with Firebase in the FrostAlert app is achieved primarily through the use of

Google-maintained libraries. The installation and updating of these libraries use a Swift

dependency manager called CocoaPods [68]. Information about the specific Firebase project that

the app is tied to comes from a file called GoogleService-Info.plist, downloaded from the

Firebase console, which is then initialized using the configure function from the primary

Firebase library in the AppDelegate class. The AppDelegate class also contains the code to

initialize the Sign-in with Google library, handle the callback URLs from the Google sign-in

page, and handle incoming notifications from FCM. The callback URLs for the app, an iOS

feature that enables the passing of authentication tokens and other data between different apps

and services, are also registered in the app's build settings so that devices with the app installed

automatically forward all calls to those URLs to the app for handling. Thus, when a WebKit

(Safari instance) pane is called for the user to sign in with Google, they are automatically

redirected back to the app after authentication is confirmed.

 The notification handlers in the AppDelegate class are mostly configured with the default

settings suggested by Google, but modifications were made to support updates to SwiftUI

notifications in iOS 14. The notifications as configured display a banner on screen that must be

manually dismissed, play a sound (or vibrate the phone if it is in do not disturb mode), and show

a red badge on the app icon on the homescreen. This is the most intrusive notification style

currently possible on iOS aside from a true alarm, which must be pre-programmed for a specific

time and cannot be delivered on the fly, making it a non-starter for this app.

Internal Data Model

 Beyond the SwiftUI views, which are discussed in the following section, the internal data

model of the FrostAlert app is based on several other classes and structures (which behave like

simplified classes in Swift [69]) that are used to contain state data and communicate with the

Firestore database. At the top level, information about user authentication and the user's FCM

token is stored in a class called SessionStore, which contains a static instance of its own type that

is used to allow access to the class from the AppDelegate portion of the code. The FCM token

associated with the static SessionStore instance is assigned to it by the AppDelegate class when

the user first starts the app and is automatically updated if the token changes. SessionStore also

contains methods to quickly check if the user is logged in and to listen for changes to the login

state and automatically execute code based on those changes. When the user logs in, the latter

function sets its published User document (a public variable that automatically updates all

functions that use it when it changes) to contain the user's sign-in details. When they log out, the

User document is destroyed, and its pointer is reset to a nil value.

 Data from communication with the Firestore database is stored in a top-level class called

DBDocuments, which conforms to the ObservableObject protocol in SwiftUI. This protocol

makes the class a publisher, meaning that every time one of its instance's published properties

(like the User property from SessionStore described previously) change, those changes are

published to all other functions and views that make use of the DBDocuments instance itself. The

class contains three properties: the device ID, stored as a String, and codable objects (of custom

types DBUser and Endpoint) for the user and endpoint documents associated with the app's user

when signed in. Since the DBuser and Endpoint objects are codable, they are easily mapped to

31

exactly replicate the documents they are associated with in Firestore when both reading from and

writing to the database.

 To this end, the DBDocuments class also contains all methods for communicating with

the database: loadDBUser, which takes the user's uid string from Firebase Auth and uses it to

load their preferences from Firestore with a listener that automatically keeps them in sync;

loadEndpoint, which uses the endpoint's deviceID to do the same; changeTempThreshold and

setDevice, which update the user's temperature notification threshold and registered endpoint in

the database, respectively; and setFCMToken, which takes the FCM token from SessionStore and

adds it to their database entry. All of these functions and their inputs are called from views,

following the standard SwiftUI model, and the instance of DBDocuments is stored in the top

SwiftUI view (ContentView) so that state and UI are kept automatically synchronized.

SwiftUI Views

 The top-level view, ContentView, is declared in the app structure, and supplied on

creation with a binding link to the static SessionStore instance. It initializes with state variables

for the user's notification threshold, their preference for displaying degrees in Celsius or

Fahrenheit, their endpoint's device ID, the instance of DBDocuments used for cloud

synchronization, and a toggle to show the settings screen, which starts out off. When the view

first loads, it triggers the SessionStore.listen function, which detects whether the user is logged

in. If the user is not logged in, another view called SignInView is initialized and displayed; once

they are logged in, the app's main screen (the third screenshot in Figure 16 above) is displayed.

The main screen sub-view has a trigger when it loads to call the DBDocuments.loadDBUser

function, since the uid is now available. This function also calls the loadEndpoint function when

it finishes, so that by the time the main view is displayed the DBUser and Endpoint documents

tied to the DBDocuments instance (if the endpoint is registered) are fully populated.

 Once the documents tied to Firestore are loaded, the data associated with them is

displayed on the main screen sub-view using standard iOS text elements. Since these documents

are published, every time the Firestore server pushes updates to them the text displays are

updated immediately by SwiftUI. The "Settings" button at the bottom of the main screen is tied

to the state settingsIsShowing Boolean variable, and when tapped sets it to true. This variable is

tied to a .sheet popover display controller, which passes state variables to and shows the

SettingsView (shown in the last screenshot in Figure 16 above) when it is set to true. All of the

elements in the SettingsView are standard SwiftUI elements whose inputs are bound to the state

variables associated with them. Thus, when the user sets the unit to display temperature in, all

temperature displays throughout the app, including the display of the notification threshold, are

set to that unit. Similarly, when they update the notification threshold temperature or the device

ID to register, these changes are automatically propagated into the associated data models and

synchronized with Cloud Firestore. The "Get notifications" button calls the

DBDocuments.setFCMToken method so that the FCM token for their device is registered, and

the "Log Out" button calls the Firebase Auth API to log out of their account. Since the sign in

status is also a state variable, this automatically brings the user back to the top level of

ContentView, where they are forwarded to SignInView since SessionStore no longer has a

reference to an authenticated user account

 The SignInView, shown in the first screenshot in Figure 16, is a very simple structure,

whose only elements are the title text, a snowflake symbol, and the Sign in with Google button.

This button is a standardized element from the GoogleSignIn library for Swift, but was written

32

for the old UIKit GUI model, so it is wrapped in a UIViewRepresentable structure that converts

these old UI elements to work with SwiftUI. When the button is tapped, it opens a WebKit

popover (shown in the second screenshot in Figure 16) prompting the user to choose one of their

Google accounts to sign in with. When they tap an account, the Google sign in page calls the

internal URL discussed before with details about their authentication information, triggering the

authentication code in the AppDelegate to run and thus updating SessionStore. This causes

ContentView to update, switching the user to the main screen, completing the login cycle.

 As discussed previously, this is only a high-level explanation of the FrostAlert app's

functionality. Understanding the final implementation details requires a significant degree of

knowledge about Swift programming that is beyond the scope of this paper. However, interested

readers are encouraged to review the full Swift code, linked to at the top of the appendix, to gain

a fuller understanding of the app's structure and design.

Performance Estimates and Testing Results
SHT31 Temperature and Humidity Sensor
 I2C communication with the SHT31 and reading of temperature and humidity values was

tested using the default examples that come with the DFRobot_SHT3x Arduino library [56]. I2C

communication worked after changing the address of the sensor to 0x44 from the default 0x45

for the master/slave configuration. Readings came through as expected, but the library does not

convert correctly from Fahrenheit to Celsius due to a C++ syntax issue. I forked the repo on

GitHub [62] to correct the issue, which resulted from an improper mixing of floating point and

integer values in C++, and filed a pull request for the company to correct the issue. After fixing

this issue, the temperature read accurately in both Fahrenheit and Celsius, with minimal

difference in value (≤0.5C) compared to a reference HTC-1 temperature sensor. The humidity

sensor in the SHT31 also read accurately when compared to the HTC-1's onboard humidity

sensor, with ≤5% difference, and generally even closer. Given that the HTC-1 has higher error

tolerances for both temperature and humidity than the SHT31, it is likely that the latter's values

are actually closer to the real ambient temperature and humidity, but without access to a high-

grade thermometer and hygrometer to compare with it is difficult to prove this.

Adafruit FeatherWing Ethernet Shield
 Ethernet connectivity through the Adafruit Ethernet FeatherWing was tested using the

Arduino WebClient example [63], which is automatically configured for the WIZ5500 ethernet

chip onboard the FeatherWing. Several changes had to be made before connection could be

established; first, the MAC address variable had to be changed to match the MAC listed on the

chip itself; second, the Ethernet object had to be initiated on the correct pin (33 for the

HUZZAH32); finally, the web address requested by an HTTP GET was changed from the

default www.google.com/search?q=arduino to wifitest.adafruit.com/testwifi/index.html to

simplify the data returned, as the Adafruit server simply informs that the connection was

successful without returning a full HTML page (the full HTML page was returned by Google,

but was not parsed further by the HUZZAH32, making it difficult to read). No further issues

were experienced with the ethernet setup.

33

MQTT Connection with Google Cloud IoT Core
 After researching different potential MQTT libraries for the ESP32 on the Arduino

platform, the arduino-mqtt library published by Joël Gähwiler [60] was chosen for interfacing

with the cloud due to its high level of documentation and interoperability with the Google Cloud

IoT JWT library [59] for generating JSON web tokens to authenticate with Cloud IoT Core.

Before MQTT testing could begin, the Google Cloud components (IoT Core and Pub/Sub) had to

be configured to allow for proper communication. First, a weather topic was created in Pub/Sub

with a corresponding AVRO schema specifying temperature and humidity as floating-point

values to ensure received messages were of the correct types. A private/public RS256 keypair

was generated and the public key registered to a device in IoT Core representing the ESP32

endpoint. For MQTT testing, a QoS level of 1 (requiring acknowledgement of published

messages via PUBACK) was set to avoid any ambiguity as to whether the Google Cloud server

was receiving messages. Testing was initially conducted using the HUZZAH32's onboard WiFi

with an example test program provided in the Google Cloud IoT JWT library, but this exposed

an issue with the current release of the ESP32 WiFiClientSecure library not verifying SSL

certificates correctly. After some research, an earlier version of this library that was identified to

be functional was found, provided by GitHub user debsahu in a demo project for the ESP32

using MQTT. This earlier library revision was substituted into the IoT Core test code, and an

MQTT connection was established successfully with Google Cloud IoT Core.

Weeklong endpoint test
 The last major test of the endpoint software and hardware was to leave it running for a

little over a week and use the Google Cloud console to look for any errors. As expected, the

JSON web token refreshed every 20 minutes, causing a reconnection to the MQTT server each

time. It still succeeded in delivering a temperature and humidity update in the same minute

despite needing to reconnect. However, there was one minute every day, immediately after local

midnight, that messages were not delivered. Upon investigation, this was being caused by the

internet router used refreshing its DHCP leases at that time, and the endpoint was successful in

getting reconnected after these brief outages.

iOS App
 The iOS app was continuously tested throughout its development using the iOS simulator

built into XCode and the LLDB debugging tool. By running the project in the descriptive debug

mode, all potential issues caused by bad state storage were identified early on. Since SwiftUI is

declarative, all possible state outcomes are easily checked by modifying variables in the debug

mode, and this was used to ensure that all data calls with uncertain outcome (especially to

Firestore) were guarded with error catching code. Final testing of the iOS app was performed on

an actual iPhone, which was required in order to test push notifications (as the simulator cannot

receive push notifications from an external server). The app performed essentially as expected,

with the unpredicted but useful bonus that it automatically switched color scheme, as shown in

Figure 17 below, from white background and dark gray text to a black background and light gray

text when the phone switched into dark mode.

34

Figure 17: App in Dark Mode

Production Schedule

 The production schedule for this project can largely be broken down into three phases:

research and initial design, development and implementation, and refinement. These phases

overlapped because different parts of the project were completed at different times. The final

schedule that was actually followed is shown below in Tables 9 and 10. The first four weeks of

winter term were focused entirely on researching the design alternatives presented previously

and deciding on components and services to use. Starting in week 5, development and initial

testing of the endpoint microcontroller and sensors began, and this transitioned into connecting

the microcontroller to the cloud in week 7. Co-development and refinement of both the endpoint

code and cloud service configuration continued through the first two weeks of spring term, after

which all focus shifted to development of the iOS app and integration of it with the cloud. The

refinement phase for the app began in week 7 and continued throughout the rest of the term, with

small tweaks improving performance made in week 10.

 The order the project was developed in largely tracks with the flow of data through the

system, from the endpoint through the cloud and finally to the iOS app. This proved to be a

reasonable way to develop the system, as each service and step in the data pipeline could be

tested using real data from the last step rather than having to develop separate tests. If this project

had been undertaken by a group, it would likely have made more sense to develop both the

endpoint code and iOS app at the same time and using test inputs in the cloud until the endpoint

was connected.

 The main time sinks that caused delays in the planned production schedule had to do with

library incompatibilities that had to be worked around and poor documentation. For the endpoint

in particular, implementing ethernet connectivity through the Ethernet FeatherWing with the

35

ESP32 proved challenging, as the default SSL library for the ESP32 was incompatible with the

WIZ5500 chip in the FeatherWing. This was resolved by using a third-party library called

OpenSSL, but the documentation for it was inscrutable and the developer had to be contacted for

clarification on its use. Similar issues occurred when trying to use some of the older Firebase

Swift library features with SwiftUI; these were resolved by using the AppDelegate class, which

was an inelegant, poorly documented, and non-obvious solution that caused additional

production delays. Despite these delays, however the project was completed (aside from the

stretch goal of adding ML frost prediction) by the end of week 10 of spring term.

Table 9: Winter Term Implementation Schedule

Task
Week

1 2 3 4 5 6 7 8 9 10

Research and decide whether

to use an app or a text alert

Research cloud hosting vs

direct communication

Write student research grant

proposal

Research and decide on a

communication standard

Research and select a

microcontroller

Research and select sensors

and other parts

Research and select outdoor

case

Decide on power supply

Test microcontroller ethernet

functionality

Research and select a cloud

service

Test sensor functionality

Design IoT endpoint software

flow

Test MQTT Functionality

Connect sensor data to cloud

Design app UI and

functionality

Create and present final

presentation

Work on design report

36

Table 10: Spring Term Implementation Schedule

Task
Week

1 2 3 4 5 6 7 8 9 10

Connect endpoint ethernet to

MQTT/Cloud IoT Core

Set up Firebase project

Connect Pub/Sub to Firestore

Configure security and login

parameters in Firebase

Set up iOS app with Firebase

SDK

Develop iOS app logic and

cloud messaging

Refine iOS app & finish cloud

messaging infrastructure

Create and present final

presentation

Write design report

Stretch goal: setup BigQuery

for ML frost prediction

37

Cost Analysis

 The overall cost of building and operating this design is broken down in Table 11 below.

The total cost to construct the IoT endpoint is $86.55, well under the $200 goal, but the yearly

operating cost turned out to be $99.60 because of the expensive Apple Developer account that is

necessary in order to send notifications to iOS apps. If the app were reimplemented on Android

or Firebase was reconfigured to send emails rather than push notifications to iOS devices this

cost would be eliminated, driving the yearly cost down to just $0.60, but the existing model is the

only way to send reliable notifications to iOS users. This cost would be negligible if the app were

commercialized, however.

Table 11: Final Cost Breakdown

Item Supplier Price (USD)

Endpoint (Fixed Costs)

DFRobot SEN0385 - SHT31 Temp/Humidity Sensor DigiKey 19.90 [17]

Adafruit HUZZAH32 w/ Loose Headers DigiKey 19.95 [24]

Adafruit Ethernet FeatherWing DigiKey 19.95 [25]

Qualtek QFAW-05-05 DigiKey 6.15 [33]

Bud Industries NBF-32110 DigiKey 20.60 [39]

Subtotal 86.55

Subscriptions (Recurring Costs)

Google Cloud - Estimated usage for one user 0.05/month

Apple Developer Account - Billed yearly 99.00/year

[70]

Subtotal (monthly) 8.30/month

Subtotal (yearly) 99.60/year

Total cost of endpoint and 1 year of operation 186.15

38

User Manual

 Starting with a constructed endpoint that has been registered with Firebase, attach the

endpoint to a wooden post at the lowest point in the garden using the mounting screws and

brackets that come with the housing, with the temperature sensor and openings for ethernet and

power facing down to prevent rain damage.

 Open the endpoint cover and connect an ethernet cable of appropriate length between

your router or access point and the endpoint, being sure to route the ethernet cable through the

appropriate hole on the bottom. Next, connect the internal power brick to an extension cable

through the appropriate hole in the bottom, then close the endpoint cover, latch it, and connect

the other end of the extension cable to power. The device will connect to the network

automatically when used with ethernet, so no further steps are necessary to get it working.

 Once the endpoint is plugged in, download the FrostAlert mobile app to your iPhone and

open it. On your first run, the app will ask to send notifications; tap "Allow" to be alerted when a

frost is incoming. Next, sign in with your Google account to get started. Once logged in, tap the

blue "Settings" button at the bottom of the screen. On the settings page, tap in the text box

labeled "Device ID" and type in the ID your endpoint is registered under, then press "Return" to

register the device to your account. Choose whether you would like to view the temperature in

Celsius or Fahrenheit with the appropriately labeled buttons, then set the slider beneath to the

temperature that you want to receive frost alert notifications at. Finally, tap "Get Notifications"

to register your device for frost warning notifications, then tap "Done."

 At this point your setup is complete. When a frost is detected as likely to occur, your

phone will be notified. You can also view the temperature and humidity in your garden at any

time by opening the FrostAlert app, which will update automatically. If at the end of the season

you wish to decommission your endpoint, simply unplug it from power and ethernet, unscrew it

from the mounting brackets, and store it indoors until you are ready to use it again. It will remain

registered with the cloud, so you can simply put it back up and plug it in when it is needed again.

39

Discussion, Conclusions, and Recommendations

 The initial goal of this project was to alert home gardeners about unexpected frosts to

give them time to cover their crops and reduce potential frost damage. To this end, an internet-

of-things system was devised, with an endpoint located in the garden to measure and report the

hyperlocal temperature and humidity conditions. Based on meteorological science, these two

variables are used to predict the dew point, which indicates the likelihood of frost as well as

further dips in temperature if it is below freezing. This data is reported to an MQTT broker,

Google Cloud IoT Core, which passes the data to a universal cloud messaging system, Google

Cloud Pub/Sub. Pub/Sub triggers a Cloud Function on the receipt of new messages, which

calculates the dew point and updates a Cloud Firestore database, sending a frost warning

notification to an iOS app. Using information about the owner of the endpoint stored in Cloud

Firestore, it targets these notifications to the specific user that has requested to receive them.

 The iOS app, FrostAlert, allows the user to sign into the system with their Google

account, and then to register an endpoint to their account to receive notifications about. They can

also view the current temperature and humidity in their garden, as reported by the endpoint, any

time they open the app, and the data is synchronized with Cloud Firestore in real time. The app

also allows them to set a custom frost alert temperature notification threshold, which is also

synched with the server, and to display temperature units in either Fahrenheit or Celsius.

 Based on the goal of creating a system for home gardeners to be alerted when a frost is

approaching in their garden, this project has been a reasonable success. It has high uptime, little

required maintenance, and a reasonably low cost to build. The main concern is the high cost of

the yearly Apple Developer account, which is required to enable push notifications on iOS. This

cost would be much more reasonable if the project were commercialized; with as few as 100

users paying a dollar or two per year in subscription fees, the cost of the Apple Developer

account, as well as the Firebase and Google Cloud fees for usage, could easily be covered. The

endpoint design would need to be significantly overhauled to make it manufacturable as a

consumer product, however, and manufacturing costs would need many more sales to offset.

 As an open-source project, the system provides an easy platform for an enterprising

gardener with a software development background to customize the system for their own use.

Future developments that would increase the flexibility of the system could include an Android

app, which would open up the system to many more potential users (and be much cheaper for

hobbyists to implement for themselves), or the construction and development of a secondary

endpoint that could be placed in a convenient location in the home and set up with an alarm to

notify users who may not always have their phones to hand. A Raspberry Pi would be a good

contender in that context, as it could run a simple server that could receive Firebase Cloud

Messages and play an alarm sound when received. Both of these options would cut down

significantly on yearly operating costs, but the latter will likely be the next stage of official

development of the project.

40

References
[1] M. Herrmann, "The Modern Day Victory Garden," Procedia Engineering, vol. 118,

 2015. [Online Serial]. Available: https://doi.org/10.1016/j.proeng.2015.08.498.

[2] D. Galhena, R. Freed, and K. Maredia, "Home gardens: a promising approach to enhance

 household food security and wellbeing," Agriculture & Food Security, vol. 2, no. 1, 2013.

 [Online Serial]. Available: https://doi.org/10.1186/2048-7010-2-8.

[3] F. Brown, "How to protect plants from frost," Marin Master Gardeners.

 http://marinmg.ucanr.edu/Our_Projects/Leaflet/How_to_protect_plants_from_frost.

[4] "HOBO Family of Weather Monitoring Solutions," Onset.

 https://www.onsetcomp.com/products/data-loggers/weather-stations/.

[5] M. Longstroth, "What is the difference between a frost and a freeze?" Michigan State

 University Extension.

 https://www.canr.msu.edu/news/what_is_the_difference_between_a_frost_and_a_freeze

[6] L. Slattery, "Frost vs Freeze," Iowa State University Extension and Outreach.

 https://www.extension.iastate.edu/linn/news/frost-vs-freeze.

[7] F. Allhoff and A. Henschke, "The Internet of Things: Foundational ethical issues,"

 Internet of Things, vol. 1-2, August 18, 2018. [Online Serial]. Available:

 https://doi.org/10.1016/j.iot.2018.08.005.

[8] "The ultimate IoT security best practices guide," Amazon AWS. [Online]. Available:

 https://pages.awscloud.com/rs/112-TZM-

 766/images/IoT_Security_Best_Practices_Guide_design_v3.1.pdf.

[9] "Device Security," Google Cloud IoT Core. [Online]. Available:

 https://cloud.google.com/iot/docs/concepts/device-security.

[10] A. Awalt, "IP Code," Digi-Key, Sep. 10, 2018. [Online]. Available:

 https://www.digikey.com/en/blog/ip-code.

[11] J. Jacobi, "IP ratings explained: What those codes tell you about how well a device is

 protected from water and dust," TechHive, Feb. 11, 2020. [Online]. Available:

 https://www.techhive.com/article/3518536/ip-ratings-explained.html.

[12] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, "MQTT Version 5.0," Oasis, March

 7, 2019. [Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

https://doi.org/10.1016/j.proeng.2015.08.498
https://doi.org/10.1186/2048-7010-2-8
http://marinmg.ucanr.edu/Our_Projects/Leaflet/How_to_protect_plants_from_frost
https://www.onsetcomp.com/products/data-loggers/weather-stations/
https://www.canr.msu.edu/news/what_is_the_difference_between_a_frost_and_a_freeze
https://www.extension.iastate.edu/linn/news/frost-vs-freeze
https://doi.org/10.1016/j.iot.2018.08.005
https://pages.awscloud.com/rs/112-TZM-766/images/IoT_Security_Best_Practices_Guide_design_v3.1.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/IoT_Security_Best_Practices_Guide_design_v3.1.pdf
https://cloud.google.com/iot/docs/concepts/device-security
https://www.digikey.com/en/blog/ip-code
https://www.techhive.com/article/3518536/ip-ratings-explained.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

41

[13] "Publishing over the MQTT bridge," Google Cloud IoT Core. [Online]. Available:

 https://cloud.google.com/iot/docs/how-tos/mqtt-bridge.

[14] "Device communication protocols," AWS IoT Core Developer Guide. [Online].

 Available: https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html.

[15] "Communicate with your IoT hub using the MQTT protocol," Azure IoT Hub

 Documentation, Oct. 12, 2018. [Online]. Available:

 https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support.

[16] "I2C-bus specification and user manual," NXP, rev. 6, Apr. 4, 2014. [Online]. Available:

 https://www.nxp.com/docs/en/user-guide/UM10204.pdf.

[17] "DFRobot SEN0385," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/dfrobot/SEN0385/13590873.

[18] "Seeed 101990561," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/seeed-technology-co-

 ltd/101990561/10451874.

[19] "Adafruit 393," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/adafruit-industries-llc/393/5356714.

[20] "DFRobot SEN0227," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/dfrobot/SEN0227/7897986.

[21] "Adafruit 1293," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/adafruit-industries-llc/1293/5356796.

[22] "Amphenol T9602-3-A-1," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/amphenol-advanced-sensors/T9602-3-A-

 1/5027897

[23] "Raspberry Pi 4," Raspberry Pi. [Online]. Available:

 https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

[24] "Adafruit 3405," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/adafruit-industries-llc/3405/7244967

[25] "Adafruit 3201," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/adafruit-industries-llc/3201/6165788

[26] "Adafruit 2821," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/adafruit-industries-llc/2821/5775536

https://cloud.google.com/iot/docs/how-tos/mqtt-bridge
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.digikey.com/en/products/detail/dfrobot/SEN0385/13590873
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/101990561/10451874
https://www.digikey.com/en/products/detail/seeed-technology-co-ltd/101990561/10451874
https://www.digikey.com/en/products/detail/adafruit-industries-llc/393/5356714
https://www.digikey.com/en/products/detail/dfrobot/SEN0227/7897986
https://www.digikey.com/en/products/detail/adafruit-industries-llc/1293/5356796
https://www.digikey.com/en/products/detail/amphenol-advanced-sensors/T9602-3-A-1/5027897
https://www.digikey.com/en/products/detail/amphenol-advanced-sensors/T9602-3-A-1/5027897
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/https:/www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.digikey.com/en/products/detail/adafruit-industries-llc/3405/7244967
https://www.digikey.com/en/products/detail/adafruit-industries-llc/3201/6165788
https://www.digikey.com/en/products/detail/adafruit-industries-llc/2821/5775536

42

[27] "Arduino MKR WIFI 1010," Arduino Store. [Online]. Available:

 https://store.arduino.cc/usa/mkr-wifi-1010

[28] "Arduino MKR ETH Shield," Arduino Store. [Online]. Available:

 https://store.arduino.cc/usa/mkr-eth-shield

[29] "DFRobot DFR0162," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/dfrobot/DFR0162/6588568

[30] "DFRobot DFR0164," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/dfrobot/DFR0164/7597132

[31] "Overview," Adafruit HUZZAH32 Guide. [Online]. Available:

 https://learn.adafruit.com/adafruit-huzzah32-esp32-feather

[32] "Phihong PSAA05A-050QL6-R," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/phihong-usa/PSAA05A-050QL6-R/6560437

[33] "Qualtek QFAW-05-05," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/qualtek/QFAW-05-05/6412289

[34] "Mean Well USA GS05U-USB," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/mean-well-usa-inc/GS05U-USB/7703346

[35] "Q Series," Boxco. [Online]. Available:

 http://www.boxco.eu/productView.do?page=en/products&CATE_CD=300001&P_CAT

 E_CD=100001&MENU_CD=200124&PROD_NM=Q%20Series

[36] "Boxco BC-AGP-112110," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/boxco/BC-AGP-112110/13419847

[37] "R Series," Boxco. [Online]. Available:

 http://www.boxco.eu/productView.do?page=en/products&CATE_CD=300002&P_CAT

 E_CD=100001&MENU_CD=200124&PROD_NM=R%20Series

[38] "Bud Industries NBB-15240," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/bud-industries/NBB-15240/428995

[39] "Bud Industries NBF-32110," Digi-Key. [Online]. Available:

 https://www.digikey.com/en/products/detail/bud-industries/NBF-32110/2328548

[40] "Azure IoT Hub pricing," Microsoft Azure. [Online]. Available:

 https://azure.microsoft.com/en-us/pricing/details/iot-hub/

https://store.arduino.cc/usa/mkr-wifi-1010
https://store.arduino.cc/usa/mkr-eth-shield
https://www.digikey.com/en/products/detail/dfrobot/DFR0162/6588568
https://www.digikey.com/en/products/detail/dfrobot/DFR0164/7597132
https://learn.adafruit.com/adafruit-huzzah32-esp32-feather
https://www.digikey.com/en/products/detail/phihong-usa/PSAA05A-050QL6-R/6560437
https://www.digikey.com/en/products/detail/qualtek/QFAW-05-05/6412289
https://www.digikey.com/en/products/detail/mean-well-usa-inc/GS05U-USB/7703346
http://www.boxco.eu/productView.do?page=en/products&CATE_CD=300001&P_CATE_CD=100001&MENU_CD=200124&PROD_NM=Q%20Series
http://www.boxco.eu/productView.do?page=en/products&CATE_CD=300001&P_CATE_CD=100001&MENU_CD=200124&PROD_NM=Q%20Series
https://www.digikey.com/en/products/detail/boxco/BC-AGP-112110/13419847
http://www.boxco.eu/productView.do?page=en/products&CATE_CD=300002&P_CATE_CD=100001&MENU_CD=200124&PROD_NM=R%20Series
http://www.boxco.eu/productView.do?page=en/products&CATE_CD=300002&P_CATE_CD=100001&MENU_CD=200124&PROD_NM=R%20Series
https://www.digikey.com/en/products/detail/bud-industries/NBB-15240/428995
https://www.digikey.com/en/products/detail/bud-industries/NBF-32110/2328548
https://azure.microsoft.com/en-us/pricing/details/iot-hub/

43

[41] "AWS IoT Core Pricing," Amazon AWS. [Online]. Available:

 https://aws.amazon.com/iot-core/pricing/

[42] "Pricing," Google Cloud IoT Core. [Online]. Available:

 https://cloud.google.com/iot/pricing

[43] "Azure Functions pricing," Microsoft Azure. [Online]. Available:

 https://azure.microsoft.com/en-us/pricing/details/functions/

[44] "AWS Lambda Pricing," Amazon AWS. [Online]. Available:

 https://aws.amazon.com/lambda/pricing/

[45] "Pricing," Google Cloud Functions. [Online]. Available:

 https://cloud.google.com/functions/pricing

[46] "Notification Hubs pricing," Microsoft Azure. [Online]. Available:

 https://azure.microsoft.com/en-us/pricing/details/notification-hubs/

[47] "Amazon SNS Pricing, Amazon AWS. [Online]. Available:

 https://aws.amazon.com/sns/pricing/

[48] "Firebase Cloud Messaging," Google Firebase. [Online]. Available:

 https://firebase.google.com/products/cloud-messaging

[49] "Azure CosmosDB Pricing," Microsoft Azure. [Online]. Available:

 https://azure.microsoft.com/en-us/pricing/details/cosmos-db/

[50] "Amazon DynamoDB Pricing," Amazon AWS. [Online]. Available:

 https://aws.amazon.com/dynamodb/pricing/

[51] "Understanding Cloud Firestore Billing," Google Firebase Documentation. [Online].

 Available: https://firebase.google.com/docs/firestore/pricing

[52] "Understanding Realtime Database Billing," Google Firebase Documentation. [Online].

 Available: https://firebase.google.com/docs/database/usage/billing

[53] "Firebase API Reference," Google Firebase Documentation. [Online]. Available:

 https://firebase.google.com/docs/reference

[54] "Swift," Apple Developer. [Online]. Available: https://developer.apple.com/swift/

[55] "React Native," Facebook Open Source. [Online]. Available: https://reactnative.dev/

[56] DFRobot, "DFRobot_SHT3x," GitHub. [Online]. Available:

 https://github.com/DFRobot/DFRobot_SHT3x

https://aws.amazon.com/iot-core/pricing/
https://cloud.google.com/iot/pricing
https://azure.microsoft.com/en-us/pricing/details/functions/
https://aws.amazon.com/lambda/pricing/
https://cloud.google.com/functions/pricing
https://azure.microsoft.com/en-us/pricing/details/notification-hubs/
https://aws.amazon.com/sns/pricing/
https://firebase.google.com/products/cloud-messaging
https://azure.microsoft.com/en-us/pricing/details/cosmos-db/
https://aws.amazon.com/dynamodb/pricing/
https://firebase.google.com/docs/firestore/pricing
https://firebase.google.com/docs/database/usage/billing
https://firebase.google.com/docs/reference
https://developer.apple.com/swift/
https://reactnative.dev/
https://github.com/DFRobot/DFRobot_SHT3x

44

[57] "Ethernet library," Arduino Reference. [Online]. Available:

 https://www.arduino.cc/en/Reference/Ethernet

[58] OSU OPEnS, "SSLClient," GitHub. [Online]. Available: https://github.com/OPEnSLab-

 OSU/SSLClient

[59] G. Class, "Google Cloud IoT JWT," GitHub. [Online]. Available:

 https://github.com/GoogleCloudPlatform/google-cloud-iot-arduino

[60] J. Gähwiler, "arduino-mqtt," GitHub. [Online]. Available:

 https://github.com/256dpi/arduino-mqtt

[61] "Cloud Firestore Data model," Google Firebase Documentation. [Online]. Available:

 https://firebase.google.com/docs/firestore/data-model

[62] A. James, "Closes #1 Pull Request," GitHub. [Online]. Available:

 https://github.com/DFRobot/DFRobot_SHT3x/pull/2

[63] "Web Client," Arduino Tutorials, Feb. 5, 2018. [Online]. Available:

 https://www.arduino.cc/en/Tutorial/LibraryExamples/WebClient

[64] "Application Note: Dew Point Calculation," Sensirion, Oct. 3, 2006. [Online]. Available:

 http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/Misc/Dewpoint_Calculation_Humidity_Sensor_E

 .pdf

[65] "Writing Conditions for Cloud Firestore Security Rules," Google Firebase

 Documentation, Jun. 10, 2021. [Online]. Available:

 https://firebase.google.com/docs/firestore/security/rules-conditions

[66] "Firebase Authentication," Google Firebase Documentation, Jun. 10, 2021. [Online].

 Available: https://firebase.google.com/docs/auth

[67] P. Hudson, "What is SwiftUI?" Hacking With Swift, Feb. 9, 2021. [Online]. Available:

 https://www.hackingwithswift.com/quick-start/swiftui/what-is-swiftui

[68] "Add Firebase to your iOS project," Google Firebase Documentation, Jun. 10, 2021.

 [Online]. Available: https://firebase.google.com/docs/ios/setup

[69] "Structures and Classes," The Swift Programming Language, 2021. [Online]. Available:

 https://docs.swift.org/swift-book/LanguageGuide/ClassesAndStructures.html

[70] "How the Program Works," Apple Developer Program, 2021. [Online]. Available:

 https://developer.apple.com/programs/how-it-works/

https://www.arduino.cc/en/Reference/Ethernet
https://github.com/OPEnSLab-OSU/SSLClient
https://github.com/OPEnSLab-OSU/SSLClient
https://github.com/GoogleCloudPlatform/google-cloud-iot-arduino
https://github.com/256dpi/arduino-mqtt
https://firebase.google.com/docs/firestore/data-model
https://github.com/DFRobot/DFRobot_SHT3x/pull/2
https://www.arduino.cc/en/Tutorial/LibraryExamples/WebClient
http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/Misc/Dewpoint_Calculation_Humidity_Sensor_E.pdf
http://irtfweb.ifa.hawaii.edu/~tcs3/tcs3/Misc/Dewpoint_Calculation_Humidity_Sensor_E.pdf
https://firebase.google.com/docs/firestore/security/rules-conditions
https://firebase.google.com/docs/auth
https://www.hackingwithswift.com/quick-start/swiftui/what-is-swiftui
https://firebase.google.com/docs/ios/setup
https://docs.swift.org/swift-book/LanguageGuide/ClassesAndStructures.html
https://developer.apple.com/programs/how-it-works/

45

Appendices

 Full code for the ESP32 endpoint configured for ethernet is presented here, along with

code for both cloud functions. The Swift code for the iOS app is too long to present here, but is

available at the GitHub link for this project, along with a version of the ESP32 code written to

support use with WiFi: https://github.com/andrewmartinjames/FrostAlert

ESP32 Endpoint - Ethernet

FrostAlertEndpointEthernet.ino

/* Endpoint code for FrostAlert system using WIZ5500 ethernet chip

 * Written by Andrew James

 * Functions for libraries are derived from example programs for those

libraries

 */

#include <Wire.h> // used for SHT3x library

#include <DFRobot_SHT3x.h> // communicates with SHT31 (modified library used,

but default works fine)

#include <SPI.h> // used for ethernet

#include <EthernetLarge.h> // modified ethernet library to allow for larger

SSLClient buffer size

#include <Client.h> // generic client class used for mqtt connection

#include <MQTT.h> // lwmqtt library

#include <jwt.h> // google cloud iot core library, for generating JWTs

#include <SSLClient.h> // used for SSL over ethernet

#include <CloudIoTCore.h> // main google cloud iot core library

#include <CloudIoTCoreMqtt.h> // google cloud iot core library, for managing

mqtt connection

#include "secrets.h"; // MUST BE UPDATED with individual project details to

connect to IoT core

#include "certificates.h" // contains SSL certificates for

mqtt.2030.ltsapis.goog:8883 for SSLClient

#include <EthernetUdp.h> // used for time server sync

// SHT31 config

DFRobot_SHT3x sht3x(&Wire,/*address=*/0x44,/*RST=*/4); //address may be 44 or

45

// MAC address of ethernet shield; MUST BE UPDATED for your WIZ5500 chip

byte mac[] = { 0xXX, 0xXX, 0xXX, 0xXX, 0xXX, 0xXX };

// IP if DHCP connection fails

IPAddress ip(192, 168, 0, 177);

IPAddress myDns(192, 168, 0, 1);

// declare clients and iot core objects

Client *sslClient; // instantiated as client class for compatibility with iot

core library

CloudIoTCoreDevice *device; // iot core device object

CloudIoTCoreMqtt *mqtt; // iot core mqtt object

MQTTClient *mqttClient; // lwmqtt client used with iot core

unsigned long iat = 0; // stores epoch time

https://github.com/andrewmartinjames/FrostAlert

46

String jwt; // stores JSON web token for authentication over MQTT with iot

core

EthernetClient ethClient; // declare Ethernet client object

EthernetUDP Udp; // UDP Instance for communication with NTP server

// initialize variables & constants for NTP

unsigned int localPort = 8888; // local port to listen for UDP packets

const char timeServer[] = "time.nist.gov"; // government NTP server

const int NTP_PACKET_SIZE = 48; // NTP time stamp is in the first 48 bytes of

the message

byte packetBuffer[NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing

UDP packets

/* Function to get current JWT for authentication with Cloud IoT Core

 * JWT returned will not authenticate if time is not returned by NTP server

 * NTP functionality based on

https://www.arduino.cc/en/Reference/EthernetUDPBegin

 * JWT functionality based on CloudIoTCore library examples

 */

String getJwt(){

 sendNTPpacket(timeServer); // send an NTP packet to a time server

 // wait 5 seconds to ensure reply is received

 delay(5000);

 if (Udp.parsePacket()) {

 // We've received a packet, read the data from it

 Udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet into the

buffer

 // the timestamp starts at byte 40 of the received packet and is four

bytes,

 // or two words, long. First, extract the two words:

 unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);

 unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);

 // combine the four bytes (two words) into a long integer

 // this is NTP time (seconds since Jan 1 1900):

 unsigned long secsSince1900 = highWord << 16 | lowWord;

 Serial.print("Seconds since Jan 1 1900 = ");

 Serial.println(secsSince1900);

 // now convert NTP time into everyday time:

 Serial.print("Unix time = ");

 // Unix time starts on Jan 1 1970. In seconds, that's 2208988800:

 const unsigned long seventyYears = 2208988800UL;

 // subtract seventy years:

 iat = secsSince1900 - seventyYears;

 // print Unix time:

 Serial.println(iat);

 }

 Serial.println("Refreshing JWT");

 Serial.println(iat);

 jwt = device->createJWT(iat, jwt_exp_secs);

 return jwt;

}

47

// send an NTP request to the time server at the given address

// based on https://www.arduino.cc/en/Reference/EthernetUDPBegin

void sendNTPpacket(const char * address) {

 // set all bytes in the buffer to 0

 memset(packetBuffer, 0, NTP_PACKET_SIZE);

 // Initialize values needed to form NTP request

 // (see URL above for details on the packets)

 packetBuffer[0] = 0b11100011; // LI, Version, Mode

 packetBuffer[1] = 0; // Stratum, or type of clock

 packetBuffer[2] = 6; // Polling Interval

 packetBuffer[3] = 0xEC; // Peer Clock Precision

 // 8 bytes of zero for Root Delay & Root Dispersion

 packetBuffer[12] = 49;

 packetBuffer[13] = 0x4E;

 packetBuffer[14] = 49;

 packetBuffer[15] = 52;

 // all NTP fields have been given values, now

 // you can send a packet requesting a timestamp:

 Udp.beginPacket(address, 123); // NTP requests are to port 123

 Udp.write(packetBuffer, NTP_PACKET_SIZE);

 Udp.endPacket();

}

// Starts ethernet and runs checks for connection, the opens UDP port

void setupEth(){

 Serial.println("Starting ethernet");

 if (Ethernet.begin(mac) == 0) {

 Serial.println("Failed to configure Ethernet using DHCP");

 // Check for Ethernet hardware present

 if (Ethernet.hardwareStatus() == EthernetNoHardware) {

 Serial.println("Ethernet shield was not found. Sorry, can't run

without hardware. :(");

 while (true) {

 delay(1); // do nothing, no point running without Ethernet hardware

 }

 }

 if (Ethernet.linkStatus() == LinkOFF) {

 Serial.println("Ethernet cable is not connected.");

 }

 // try to congifure using IP address instead of DHCP:

 Ethernet.begin(mac, ip, myDns);

 } else {

 Serial.print(" DHCP assigned IP ");

 Serial.println(Ethernet.localIP());

 }

 // give the Ethernet shield a second to initialize:

 delay(2000);

 Udp.begin(localPort);

}

// connect to Google IoT Core over mqtt

void connect(){

 mqtt->mqttConnect();

}

48

//// set up objects and clients for Cloud IoT core, then start the mqtt

connection

void setupCloudIoT(){

 device = new CloudIoTCoreDevice(

 project_id, location, registry_id, device_id,

 private_key_str);

 setupEth();

 sslClient = new SSLClient(ethClient, TAs, (size_t)TAs_NUM, A0);

 mqttClient = new MQTTClient(512);

 mqttClient->setOptions(180, true, 1000); // keepAlive, cleanSession,

timeout

 mqtt = new CloudIoTCoreMqtt(mqttClient, sslClient, device);

 mqtt->setUseLts(true);

 mqtt->startMQTT();

}

// MQTT publish function for strings

bool publishTelemetry(String data){

 return mqtt->publishTelemetry(data);

}

// MQTT publish function for character arrays

bool publishTelemetry(const char *data, int length){

 return mqtt->publishTelemetry(data, length);

}

// MQTT callback function, currently unused

void messageReceived(String &topic, String &payload){

 Serial.println("incoming: " + topic + " - " + payload);

}

// get temperature and humidity data from SHT31

String getTRH() {

 DFRobot_SHT3x::eRepeatability_t repeatability =

DFRobot_SHT3x::eRepeatability_High;

 DFRobot_SHT3x::sRHAndTemp_t curHT =

sht3x.readTemperatureAndHumidity(repeatability);

 String temp = String(curHT.TemperatureC);

 String hum = String(curHT.Humidity);

 Serial.println("{\"temperatureC\": " + temp + ", \"humidity\":" + hum +

"}");

 return "{temp:" + temp + "; hum:" + hum + "}";

}

void setup() {

 Ethernet.init(33); // set ethernet pin for ESP32 with Adafruit Featherwing

Ethernet

 Serial.begin(115200);

 pinMode(13, OUTPUT);

 while (sht3x.begin() != 0) {

 Serial.println("Failed to Initialize the chip, please confirm the wire

connection");

 Serial.println(sht3x.begin());

 delay(1000);

 }

 if(!sht3x.softReset()){

49

 Serial.println("Failed to Initialize the chip....");

 }

 setupCloudIoT();

 Serial.println("mqtt established");

}

unsigned long lastMillis = 0;

void loop() {

 mqtt->loop();

 delay(10); // <- fixes some issues with connection stability

 if (!mqttClient->connected()) { // maintain active mqtt connection

 connect();

 Serial.println("connection attempted");

 }

 if (millis() - lastMillis > 60000) { // publish every 1 minute

 lastMillis = millis();

 publishTelemetry(getTRH());

 }

}

certificates.h

#ifndef _CERTIFICATES_H_

#define _CERTIFICATES_H_

#ifdef __cplusplus

extern "C"

{

#endif

/* This file is auto-generated by the pycert_bearssl tool. Do not change it

manually.

 * Certificates are BearSSL br_x509_trust_anchor format. Included certs:

 *

 * Index: 0

 * Label: GlobalSign

 * Subject: CN=GlobalSign,O=GlobalSign,OU=GlobalSign ECC Root CA - R4

 *

 * Index: 1

 * Label: GTS LTSR

 * Subject: CN=GTS LTSR,O=Google Trust Services LLC,C=US

 */

#define TAs_NUM 2

static const unsigned char TA_DN0[] = {

 0x30, 0x50, 0x31, 0x24, 0x30, 0x22, 0x06, 0x03, 0x55, 0x04, 0x0b, 0x13,

 0x1b, 0x47, 0x6c, 0x6f, 0x62, 0x61, 0x6c, 0x53, 0x69, 0x67, 0x6e, 0x20,

 0x45, 0x43, 0x43, 0x20, 0x52, 0x6f, 0x6f, 0x74, 0x20, 0x43, 0x41, 0x20,

 0x2d, 0x20, 0x52, 0x34, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04,

 0x0a, 0x13, 0x0a, 0x47, 0x6c, 0x6f, 0x62, 0x61, 0x6c, 0x53, 0x69, 0x67,

 0x6e, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x0a,

 0x47, 0x6c, 0x6f, 0x62, 0x61, 0x6c, 0x53, 0x69, 0x67, 0x6e,

50

};

static const unsigned char TA_EC_CURVE0[] = {

 0x04, 0xb8, 0xc6, 0x79, 0xd3, 0x8f, 0x6c, 0x25, 0x0e, 0x9f, 0x2e, 0x39,

 0x19, 0x1c, 0x03, 0xa4, 0xae, 0x9a, 0xe5, 0x39, 0x07, 0x09, 0x16, 0xca,

 0x63, 0xb1, 0xb9, 0x86, 0xf8, 0x8a, 0x57, 0xc1, 0x57, 0xce, 0x42, 0xfa,

 0x73, 0xa1, 0xf7, 0x65, 0x42, 0xff, 0x1e, 0xc1, 0x00, 0xb2, 0x6e, 0x73,

 0x0e, 0xff, 0xc7, 0x21, 0xe5, 0x18, 0xa4, 0xaa, 0xd9, 0x71, 0x3f, 0xa8,

 0xd4, 0xb9, 0xce, 0x8c, 0x1d,

};

static const unsigned char TA_DN1[] = {

 0x30, 0x44, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,

 0x02, 0x55, 0x53, 0x31, 0x22, 0x30, 0x20, 0x06, 0x03, 0x55, 0x04, 0x0a,

 0x13, 0x19, 0x47, 0x6f, 0x6f, 0x67, 0x6c, 0x65, 0x20, 0x54, 0x72, 0x75,

 0x73, 0x74, 0x20, 0x53, 0x65, 0x72, 0x76, 0x69, 0x63, 0x65, 0x73, 0x20,

 0x4c, 0x4c, 0x43, 0x31, 0x11, 0x30, 0x0f, 0x06, 0x03, 0x55, 0x04, 0x03,

 0x13, 0x08, 0x47, 0x54, 0x53, 0x20, 0x4c, 0x54, 0x53, 0x52,

};

static const unsigned char TA_EC_CURVE1[] = {

 0x04, 0xcd, 0xf1, 0x8c, 0x8e, 0xda, 0xef, 0xb2, 0x09, 0x0a, 0x19, 0x77,

 0x00, 0x24, 0x50, 0xdb, 0xf9, 0x73, 0x77, 0x68, 0x91, 0xf5, 0x0b, 0x7e,

 0xb0, 0x3a, 0x40, 0x98, 0x05, 0x57, 0x65, 0xcc, 0xb8, 0x43, 0x6d, 0x41,

 0x92, 0x06, 0xe4, 0x75, 0x0e, 0x4b, 0xa8, 0xc5, 0x9f, 0xc7, 0xf4, 0xc9,

 0x29, 0x55, 0x78, 0xe4, 0x42, 0xc6, 0xa1, 0x72, 0x8c, 0x32, 0x72, 0x46,

 0x7f, 0x3a, 0x77, 0xe2, 0x24,

};

static const br_x509_trust_anchor TAs[] = {

 {

 { (unsigned char *)TA_DN0, sizeof TA_DN0 },

 BR_X509_TA_CA,

 {

 BR_KEYTYPE_EC,

 { .ec = {BR_EC_secp256r1, (unsigned char *)TA_EC_CURVE0, sizeof

TA_EC_CURVE0}

 }

 }

 },

 {

 { (unsigned char *)TA_DN1, sizeof TA_DN1 },

 BR_X509_TA_CA,

 {

 BR_KEYTYPE_EC,

 { .ec = {BR_EC_secp256r1, (unsigned char *)TA_EC_CURVE1, sizeof

TA_EC_CURVE1}

 }

 }

 },

};

#ifdef __cplusplus

} /* extern "C" */

#endif

#endif /* ifndef _CERTIFICATES_H_ */

51

secrets.h
 // Configuration secrets for Cloud IoT Core,

 // based on Google Cloud IoT Core JWT Library ciotc_config.h

// Wifi network details.

const char *ssid = "xxxxxxxx";

const char *password = "xxxxxxxx";

 // Cloud iot details, may need to be updated for your project.

const char *project_id = "frost-alert-21";

const char *location = "us-central1";

const char *registry_id = "endpoints";

const char *device_id = "garden32";

// Configuration for NTP

const char* ntp_primary = "pool.ntp.org";

const char* ntp_secondary = "time.nist.gov";

// private key from keypair used for IoT registry device ID

const char *private_key_str =

 "xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:"

 "xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:xx:"

 "xx:xx";

// jwt token expiration time (max 24 hours, 3600*24)

const int jwt_exp_secs = 60*20;

// ssl CA certificate for mqtt.2030.ltsapis.goog:8883

// to refresh, run openssl s_client -showcerts -connect

mqtt.2030.ltsapis.goog:8883

// and copy all lines here with appropriate formatting

const char *root_cert = \

 "-----BEGIN CERTIFICATE-----\n" \

 "MIIESjCCAzKgAwIBAgINAeO0mqGNiqmBJWlQuDANBgkqhkiG9w0BAQsFADBMMSAw\n" \

 "HgYDVQQLExdHbG9iYWxTaWduIFJvb3QgQ0EgLSBSMjETMBEGA1UEChMKR2xvYmFs\n" \

 "U2lnbjETMBEGA1UEAxMKR2xvYmFsU2lnbjAeFw0xNzA2MTUwMDAwNDJaFw0yMTEy\n" \

 "MTUwMDAwNDJaMEIxCzAJBgNVBAYTAlVTMR4wHAYDVQQKExVHb29nbGUgVHJ1c3Qg\n" \

 "U2VydmljZXMxEzARBgNVBAMTCkdUUyBDQSAxTzEwggEiMA0GCSqGSIb3DQEBAQUA\n" \

 "A4IBDwAwggEKAoIBAQDQGM9F1IvN05zkQO9+tN1pIRvJzzyOTHW5DzEZhD2ePCnv\n" \

 "UA0Qk28FgICfKqC9EksC4T2fWBYk/jCfC3R3VZMdS/dN4ZKCEPZRrAzDsiKUDzRr\n" \

 "mBBJ5wudgzndIMYcLe/RGGFl5yODIKgjEv/SJH/UL+dEaltN11BmsK+eQmMF++Ac\n" \

 "xGNhr59qM/9il71I2dN8FGfcddwuaej4bXhp0LcQBbjxMcI7JP0aM3T4I+DsaxmK\n" \

 "FsbjzaTNC9uzpFlgOIg7rR25xoynUxv8vNmkq7zdPGHXkxWY7oG9j+JkRyBABk7X\n" \

 "rJfoucBZEqFJJSPk7XA0LKW0Y3z5oz2D0c1tJKwHAgMBAAGjggEzMIIBLzAOBgNV\n" \

 "HQ8BAf8EBAMCAYYwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsGAQUFBwMCMBIGA1Ud\n" \

 "EwEB/wQIMAYBAf8CAQAwHQYDVR0OBBYEFJjR+G4Q68+b7GCfGJAboOt9Cf0rMB8G\n" \

 "A1UdIwQYMBaAFJviB1dnHB7AagbeWbSaLd/cGYYuMDUGCCsGAQUFBwEBBCkwJzAl\n" \

 "BggrBgEFBQcwAYYZaHR0cDovL29jc3AucGtpLmdvb2cvZ3NyMjAyBgNVHR8EKzAp\n" \

 "MCegJaAjhiFodHRwOi8vY3JsLnBraS5nb29nL2dzcjIvZ3NyMi5jcmwwPwYDVR0g\n" \

 "BDgwNjA0BgZngQwBAgIwKjAoBggrBgEFBQcCARYcaHR0cHM6Ly9wa2kuZ29vZy9y\n" \

 "ZXBvc2l0b3J5LzANBgkqhkiG9w0BAQsFAAOCAQEAGoA+Nnn78y6pRjd9XlQWNa7H\n" \

 "TgiZ/r3RNGkmUmYHPQq6Scti9PEajvwRT2iWTHQr02fesqOqBY2ETUwgZQ+lltoN\n" \

 "FvhsO9tvBCOIazpswWC9aJ9xju4tWDQH8NVU6YZZ/XteDSGU9YzJqPjY8q3MDxrz\n" \

52

 "mqepBCf5o8mw/wJ4a2G6xzUr6Fb6T8McDO22PLRL6u3M4Tzs3A2M1j6bykJYi8wW\n" \

 "IRdAvKLWZu/axBVbzYmqmwkm5zLSDW5nIAJbELCQCZwMH56t2Dvqofxs6BBcCFIZ\n" \

 "USpxu6x6td0V7SvJCCosirSmIatj/9dSSVDQibet8q/7UK4v4ZUN80atnZz1yg==\n" \

 "-----END CERTIFICATE-----\n";

Google Cloud Functions

tempAlert

import base64

import math

import firebase_admin

from firebase_admin import db, firestore

from firebase_admin import messaging

fb = firebase_admin.initialize_app()

fst = firestore.client()

def hello_pubsub(event, context):

 """Triggered from a message on a Cloud Pub/Sub topic.

 Args:

 event (dict): Event payload.

 context (google.cloud.functions.Context): Metadata for the event.

 """

 pubsub_message = base64.b64decode(event['data']).decode('utf-8')

 attributes = event['attributes']

 deviceID = attributes['deviceId']

 endpointDocument = fst.document('endpoints/%s' % deviceID)

 endpoint = endpointDocument.get().to_dict()

 uid = endpoint["user"]

 userDocument = fst.document('users/%s' % uid)

 user = userDocument.get().to_dict()

 fcmToken = user["fcm_token"]

 threshTemp = user["threshold_temp"]

 if pubsub_message[0] == "{":

 strArr = pubsub_message.strip("{").strip("}").split("; ")

 temp = strArr[0].strip("temp:")

 tempf = float(temp)

 hum = strArr[1].strip("hum:")

 humf = float(hum)

 H = (math.log10(humf)-2)/0.4343 + (17.62*tempf)/(243.12+tempf)

 Dp = 243.12*H/(17.62-H)

 if ((Dp < 0) or (tempf < threshTemp)):

 message = messaging.Message(

 notification=messaging.Notification(

 title='Incoming Frost Detected!',

 body='Prepare your garden for an incoming frost!',

),

 token=fcmToken,

)

 response = messaging.send(message)

 values = {

 "current_hum": humf,

 "current_temp": tempf,

 "user" : uid

 }

 endpointDocument.set(values)

53

 print("Firestore updated")

 else:

 print("Not a temperature message")

newUser

const functions = require("firebase-functions");

const {Firestore} = require("@google-cloud/firestore");

const firestore = new Firestore();

const admin = require("firebase-admin");

admin.initializeApp();

exports.newUser = functions.auth.user().onCreate((user) => {

 // ...

 const uid = user.uid;

 const docRef = firestore.collection("users");

 const document = docRef.doc(uid);

 console.log(uid);

 document.set({

 uid: uid,

 endpoint: "/endpoints/",

 threshold_temp: 2.0,

 fcm_token: "",

 });

});

	IoT Garden Frost Alarm
	Recommended Citation

	Introduction
	Background
	Market Solutions
	Meteorology
	Security in Internet of Things Applications
	Standards Utilized

	Design Requirements
	Economic Limitations
	Endpoint Requirements
	Cloud Service Requirements
	Mobile App Requirements

	Design Alternatives
	Temperature and Humidity Sensor
	Microcontroller
	Power Supply
	Housing
	Cloud Service Provider
	App Development Platform

	Preliminary Proposed Design
	Endpoint
	Cloud Functionality
	iOS App

	Final Design and Implementation
	Endpoint
	Cloud Functionality
	Cloud IoT Core
	Cloud Pub/Sub
	Cloud Functions
	Cloud Firestore
	Firebase

	iOS App
	Firebase Integration
	Internal Data Model
	SwiftUI Views

	Performance Estimates and Testing Results
	SHT31 Temperature and Humidity Sensor
	Adafruit FeatherWing Ethernet Shield
	MQTT Connection with Google Cloud IoT Core
	Weeklong endpoint test
	iOS App

	Production Schedule
	Cost Analysis
	User Manual
	Discussion, Conclusions, and Recommendations
	References
	Appendices
	ESP32 Endpoint - Ethernet
	FrostAlertEndpointEthernet.ino
	certificates.h
	secrets.h

	Google Cloud Functions
	tempAlert
	newUser

