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EXECUTIVE SUMMARY

This research presents an adaptive and personalized routing model that enables individuals with

disabilities to save their route preferences to a mobility assistant platform. The proactive approach

based on anticipated user need accommodates vulnerable road users’ personalized optimum dy-

namic routing rather than a reactive approach passively awaiting input. Most of the currently

available trip planners target the general public’s use of simpler route options prioritized based on

static road characteristics. These static normative approaches are only satisfactory when conditions

of intermediate intersections in the network are consistent, a constant rate of change occurs per each

change of the segment condition, and the same fixed routes are valid every day regardless of the user

preference. In this study, we model the vulnerable road user mobility problem by accommodating

personalized preferences changing by time, sidewalk segment traversability, and the interaction

between sidewalk factors and weather conditions for each segment contributing to a path choice.

The developed reinforcement learning solution presents a lower average cost of personalized, ac-

cessible, and optimal path choices in various trip scenarios and superior to traditional shortest path

algorithms (e.g., Dijkstra) with static and dynamic extensions.
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1 INTRODUCTION

Mobility is an essential component of quality of life. Vulnerable Road Users (VRUs), here defined

as individuals with mobility issues such as elderly persons or wheelchair users, recognize mobility

is demanding and may be discouraged from participating in social activities. In novel environments,

and even familiar ones, VRUs encounter a range of obstacles impeding easy navigation and access

to locations (Ding et al., 2007). Existing designs of built environments and public transportation

systems do not entirely fulfill the needs of people with disabilities in terms of mobility and

accessibility (Poldma et al., 2014). According to a survey among wheelchair users, a narrow

sidewalk, steep slope, bad weather, and sidewalk surface traversability are examples of outdoor

obstructions for their navigation (Meyers et al., 2002). Specific standards are presented by the

Americans with Disability Act (ADA) and Architecture Barriers Act, to increase the accessibility

to urban structure facilities of VRUs. However environmental barriers still limit the accessibility

of the urban areas and public transportation systems for VRUs, which affects the quality of their

life. Identifying and avoiding inaccessible places in the current pavement network as a short-term

solution instead of redesigning urban transportation and sidewalk networks as a long-term solution

can accelerate helping VRUs (Ferrari et al., 2014).

In recent years, the usage of online navigation systems has increased (Ding et al., 2007). Online

responses based on user preferences can contribute to finding the best routes (Safi et al., 2015).

Although current navigation systems find the shortest path, pedestrians are interested in having

a more accessible path than the shortest distance from origin to destination (Alfonzo, 2005).

For example, a very narrow sidewalk in a recommended shortest path from routing services is

inaccessible for people with mobility impairments. People with disabilities have different physical

conditions and demands, which must be considered in route navigation. The preferences and needs

of individuals with disabilities may differ from other pedestrians; a designed routing system should

facilitate users to have a customized route. A system with greater accessibility for VRUs might

increase their participation in social and outdoor activities. A range of sidewalk network factors

can affect the preferences of users with disabilities. The related works of literature agreed on four

factors that significantly influenced users’ path choice, especially those in wheelchairs: width of
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sidewalk segments, distance to the destination, slope, and surface type (Kasemsuppakorn et al.,

2015; Inada et al., 2014; Izumi et al., 2007). These studies assumed a static individual’s preference

framework in calculating an optimal path to the destination, with no provision for en-route changes

to preference. To summarize, this paper develops a new framework to fill the above gaps with

the following contributions. First, the new trip planner accommodates the various road and trip

characteristics to improve the safety and efficiency of mobility for people with disabilities who

walk and use transit in urban and suburban environments. Second, a hybrid adaptive routing

system uses real-time route information and copes with unexpected sidewalk conditions en-route.

Third, dynamic trip planning incorporates changing preferences and the interaction effect between

sidewalk variables and weather conditions contributing to a path choice. The structure of the

remainder of this paper is as follows: the literature review section provides a review of some

related work for navigation and routing services, including VRU’s preferences. The method section

outlines the adaptive, personalized routing systems for mobility-impaired users. The evaluation

section includes the implementations results and analysis of the complexity of the developed model

in various real-world scenarios.

2 LITERATURE REVIEW

Significant efforts have been applied to studies for route planning and wayfinding for people with

disabilities. A few studies attempted techniques that integrated personalized routing with static

en-route user preferences, environmental barriers, and other factors such as sidewalk slope.

2.1 Wayfinding based on network information and personal preferences

Pedestrian navigation systems have considered users’ physical and mental conditions influencing

the choice of sidewalk path. Typically, Dijkstra’s algorithm was used on pedestrian networks

with identified non-traversable routes (Izumi et al., 2007). A pedestrian navigation system that

incorporates experience-centric and computer-centric approaches provides a more robust solution;

meeting individuals’ impairment demands (Karimi et al., 2014). Considering several sidewalk

accessibility factors, a weighted approach was developed for scores of factors and impedance levels

of different sidewalk segments to find the optimal path choice (Inada et al., 2014). This is similar

to the wheelchair routing technique called Absolute Restriction Method based on users’ prefer-
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ences(Kasemsuppakorn et al., 2015). Although this approach suggests the optimal path close to

the user’s preferred route compared to the shortest path, it does not accommodate the importance

of sidewalk variables changing by time and the interaction effect between the factors contribut-

ing to a path choice. The OpenStreetMap sidewalk database has been investigated considering

mobility-impaired users to assess its suitability for navigating wheelchair users (Mobasheri et al.,

2017). While the study suggested the static sidewalk condition information from OpenStreetMap

is acceptable, it does not consider how real-time information of sidewalk conditions can improve

navigation for wheelchair users.

2.2 Collaborative wayfinding approach

Studies considering collaborative wayfinding for persons with disabilities are limited. A wayfinding

client/server system called RouteChecker was designed to provide a personalized, collaborative

route for VRUs (Völkel and Weber, 2008). Sidewalk network information was considered for a

personalized route with a weighting approach to enable users with disabilities to set the importance

of sidewalk factors (Hashemi and Karimi, 2017). The above studies on wayfinding for VRUs lack

adaptiveness and often fail to address the personalized preferences of VRUs changing over time in

estimating the users’ utilities. This research presents an adaptive and personalized routing model as a

part of a mobility assistant program called Vulnerable Road Users’ Personalized Optimum Dynamic

routing (VRUPOD). Table 1 highlights our developed VRU Mobility Framework compared to

previous studies.

Table 1: Model Category in VRU Mobility Framework

Author (Year) Model Category
Static Linear Interaction Effect Dynamic Adaptive

Izumi et al. (2007)
Völkel and Weber (2008)
Karimi et al. (2014)
Inada et al. (2014)
Kasemsuppakorn et al. (2015)
Mobasheri et al. (2017)
Hashemi and Karimi (2017)
This research

The static normative approach developed in the previous studies is only satisfactory when conditions
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of intermediate nodes in the network are consistent, a constant rate of change occurs per each change

of the link condition, and the same fixed routes are valid every day regardless of the user preference.

Recalculating the static path without modeling other essential characteristics (discussed below) does

not appropriately reflect vulnerable road users’ personal preferences and value of time. There is a

significant limitation for routing models with static parameters: First, the changes in preferences

by time en-route must be considered. Second, the optimal sidewalk path’s determination should

accommodate information of unexpected sidewalk conditions (e.g., non-traversable segments). The

stochasticity and time of available information regarding the non-traversable segment’s location

(crowd-sourced) must be considered at the current stage before the next decision is made. Such

environments are different from deterministic and static environments where sidewalk segment

costs are fixed. In such cases, the standard shortest path algorithms such as Dijkstra and A* search

are myopic and will fail to find the minimum cost path (Hall, 1986). Also, there is an inefficiency

to take a detour because it can not adapt to the environment’s changes. Third, the interaction

effect between sidewalk variables such as the slope, surface type, and the weather condition can

limit the accessibility of sidewalk segments and must be considered. A formulation of the joint

utility function addresses the dynamic user preference-based metric and the interaction effect of

the sidewalk segment factors. A reinforcement learning framework (Sutton and Barto, 1998; Mao

and Shen, 2018) is adopted to compute the optimal policy accounting for the learning process

of adaptively accommodating unexpected sidewalk conditions based on real-time crowd-sourced

information.

3 APPROACH AND METHOD

The adaptive personalized routing considers the sidewalk network as a graph in which nodes

represent sidewalk intersection and edges represent sidewalk segments. In the VRU mobility

problem, we develop the cost function to address the preferences of the user changing by time and

the interaction effect between sidewalk factors contributing to a path choice.

3.1 Vulnerable Road User Mobility Assistance Platform

The ongoing Vulnerable Road User Mobility Assistance Platform (VRUMAP) by (Owens and

Miller, 2018) enables users to save personal information relevant to transportation needs (e.g.,

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 6



stamina and ability to traverse uneven terrain). Figure 1 shows VRUMAP combining personal

Weather

Traffic

Capabilities

Transit Info

Accessibility

Road Slope

VRUPODInput Destinations: 

• Broken sidewalks

• Curbs without cuts

• Busy roads no sidewalks

• High elevation

• Construction closures

Figure 1: Vulnerable Road User Mobility Assistance Platform (VRUMAP) and the Role of
VRUPOD

information with publicly-available information about route nodes, elevation changes, weather,

traffic, multimodal transit, etc., along with crowd-sourced information about route impediments

(e.g., construction), facilities, and rest opportunities to provide personalized route guidance for

users. Currently, the app is being developed for both Android and iOS smartphone platforms

using Android Studio and Swift, respectively, with supplemental coding using, Java, and database

management software including local SQL databases and Firebase’s Cloud Firestore for crowd-

sourcing capabilities (Owens and Miller, 2018). Maps are sourced from the open-source platform

Mapbox, with routing being implemented using custom code.

As shown in Figure 2, routes are developed using a series of location nodes, with weights for seg-

ments between nodes being associated with positive or negative valences depending on information

present in the public and crowd-sourced datasets combined with individual needs and capabili-

ties. For example, a segment with a steep elevation change or stairs would have a strong negative

weighting for a person who uses a wheelchair, while crowd reported accessible restroom facilities

may have a positive weighting if the user prefers more frequent restroom access. In this paper,

we focus on the demonstration of the VRUPOD method, tested in various simulated environments,

while VRUMAP is still under development phase. Currently, ongoing visual recognition work in

VRUMAP automatically recognizes traffic warning signs and tracks the edges of the sidewalks

through a machine-learning algorithm. These images show the recognized signboards such as the

yield sign, construction sign, detour sign, and traffic cone, which are possible obstacles for wheel-
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Figure 2: Prototype Crowd-Source Interface of VRU

chair users detected in real-time. While this paper focuses on presenting the VRUPOD method, the

full wayfinding capability will be possible by incorporating visual recognition works.

3.2 Sidewalk accessibility factor selection

In this paper, some common factors used for individuals with disabilities routing are described in

Table 2. The accessibility of each pedestrian segment for users with disabilities in this paper is

defined by five parameters: width, length, slope, sidewalk surface type, and weather condition. The

width, length, slope, and surface type factors come from (201) and have been used in (Hashemi

and Karimi, 2017), (Kasemsuppakorn et al., 2015), and (Sobek and Miller, 2006). Additionally,

inclement weather conditions may affect the traversability of sidewalk segment when applied to the

slope and surface parameters of a sidewalk (Cooper et al., 2012). The ADA standard determines

acceptable sidewalk parameters as follows: the width of the sidewalk should have minimum

clearance at 3 feet. Any sidewalk width less than 3 feet does not meet the minimum requirement for

the mobility of users with disabilities. However, sidewalks can be constructed wider than this. The

length of a sidewalk section is the distance between the start node and end node. Sidewalk surfaces

must be stable, solid, and resistant to slide. Materials that are often used in sidewalk surfaces are

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 8



concrete, asphalt, stone, brick, and gravel. The most common form of sidewalk material in the

United States is concrete, the second material is asphalt (Huber et al., 2013).

Table 2: Sidewalk Parameter Selection Criteria for VRU

Sobek
and Miller
(2006)

Kasemsuppakorn
and Karimi (2009)

Kasemsuppakorn
et al. (2015)

Hashemi
and Karimi
(2017)

This
research

Width

Length

Slopes

Steps

Surface
Type

Surface
Condition

Sidewalk
Traffic

Curb Cut
Feature

Ramps
Feature

Uneven
Surface

Weather
condition

Each sidewalk parameter (x) is normalized (bx), and the weight of each factor (x) is calculated

regarding wheelchair user choices and preferences by using the Analytic Hierarchy Process (AHP)

method (Hashemi and Karimi, 2017). An overview of the VRUPOD system is described in Figure

3.

In this paper, we model the VRU mobility problem as the adaptive routing problem with real-

time information of the network and present the formulation as a Markov decision process (MDP)

(Rambha et al., 2016). A Q-learning framework (Sutton and Barto, 1998) is provided to solve

the optimal routing strategy. A MDP models a sequential decision-making problem with five

elements: decision epochs, a set of possible world states s 2 S, a set of possible actions a 2 A,

reward function, and state transition probability. A policy is a function π(s) : S �! A that maps

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 9
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Figure 3: A VRUPOD Model for Vulnerable Road Users

the current state to an action, and optimal policy is the best possible action. The MDP can be solved

using a Dynamic Programming method for problems where it is possible to develop the environment

with the exact state transition probability and rewards. However, in most real-world problems, such

as integrating real-time crowd-sourced information on sidewalk segments’ traversability status, we

cannot precisely develop the environment. In such cases, the Q-Learning algorithm can solve

the MDP, where the rewards and transition functions are unknown. The Q-learning algorithm

investigates all likelihoods of state-action pairs and estimates the long-term reward received by

applying an action in a state.

Consider the sidewalk network as a graph G=(N,E) where n 2 N is the set of nodes and e 2 E is

the set of edges. A VRU can move from n to n0 if an edge connects the two nodes. The objective

of this work is to find the path or strategy that minimizes the total cost in a given origin-destination

pair (no,nd). Equation 1 is used to calculate the dynamic and personalized cost C(e)(t) of each

sidewalk segment based on parameters that define sidewalk segment accessibility for VRU.

C(e)(t) = Ww(t)Sw(e) +Wl(t)Sl(e) +Ws(t)Ss(e)Swc(e) +Wsf (t)Ssf(e)Swc(e), (1)

where Sw(e), Sl(e), Ss(e), Swc(e), Ssf(e) are scores for width, length, slope, weather condition, and

surface type of each segment used instead of actual values which are different in range. In order

to obtain the score of each factor the actual values are normalized using Equation 2. Let x be the

actual value of each parameter, S (normalized) or the score of the factors we calculate as:

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 10



S =
x�min(x)

max(x)�min(x)
(2)

Ww, Wl, Ws, Wsf are weights for width, length, slope and surface type. The values of weights

for each parameter are calculated using the AHP method. In the AHP method the summation of

weights is equal to one (Equation 3).

Ww(t) +Wl(t) +Ws(t) +Wsf (t) = 1 (3)

Traversability status of each sidewalk segment at time t, given by the traversable segment status

vector is H(t)=
�
h1(t), h2(t), h3(t), . . . ., h|E|(t)

 
, based on real-time crowd-sourced information

from VRUMAP.

Binary classification is used to determine the traversability of the sidewalk segments. We impose a

threshold κ(e) for each sidewalk segment to determine whether the segment is traversable or not. If

κ(e), updated real-time by crowd-sourced information (e.g., information from VRUMAP) is greater

than or equal to the threshold value, then the sidewalk segment is considered non-traversable (1),

otherwise the sidewalk segment is considered traversable (0). Other studies have successfully

followed a similar approach(Chavez-Garcia et al., 2018; Wang et al., 2009; Hewitt et al., 2017;

Papadakis, 2013). A considerable reduction in computational complexity is observed when using

binary classification, allowing for a more detailed analysis of terrain portions of more interest

(Papadakis, 2013).

h(e) =

8
<
:

1 non � traversable if κ(e) � 4

0 traversable if κ(e) < 4

In this sequential decision-making framework, the states s 2 S of the VRU at each decision stage

k are defined as s = (nk, tk, H(tk)). At the current location nk 6= nd (nd is the destination node),

the pedestrian must decide on which adjacent node to travel. The information available at this

stage includes the current time tk and the traversable segment vector H(tk). There is a tradeoff

between the number of segments to monitor and resulting projection accuracy by monitoring two

segments ahead of the VRU’s current location. If E1 and E2 are the set of first and second

successor segments respectively from the VRU’s current location, then a state sk is defined as

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 11



sk =
⇣
nk, tk, H

E1
[E2

(tk)
⌘

where HE1
[E2

represent the traversability statuses of the set of first

and second successor segments from the VRU’s current location. The goal is to determine the

optimal policy, π⇤ (sk), showing which segment the pedestrian must select. In this paper, the

expected return starting at s, taking action a and following π is Qπ(s, a). The optimal policy π
⇤(s)

for s 2 S is thus given by:

π
⇤(s) = argmax

a

Q⇤(s, a) (4)

3.3 Reinforcement learning

We adopt Q-learning to obtain the optimal policy. At the current stage of the decision process, the

agent will receive a reward; the sidewalk segment’s estimated cost C (n, n0) comprising of the sum

of C(e)(t) and a fixed penalty (0 if traversable and very large number if non-traversable) defined

by the traversability status of the segment. As discussed, the cost function C(e)(t) accommodates

the time-varying preferences of the VRU and the interaction effects between the sidewalk factors

contributing to a path choice. Utilizing its current knowledge of the environment (the estimated

Q-function so far), the agent will choose the state’s best action while accommodating exploration

through the Boltzmann exploration strategy. Using the Boltzmann exploration strategy, the relative

Q-values weigh the probabilities of taking different actions. We highlight that the system’s state

at this stage includes the traversability status of the first and second successor sidewalk segments

from the agent’s current location. This component of the state model allows us to integrate the

crowd-sourced information for sidewalk segment conditions, as shown in Figure 2. The new action

will allow the environment to change into a new state, with the agent receiving a new reward. The

state-action pair value is then revised to consider the response. The revision rule in each state is:

Q(s, a) = (1� α)Q(s, a) + α

h
r0 + γmax

a
Q (s0, a)

i
(5)

where (s, a) is state-action pair, α the learning rate, r0 is the reward that agent will receive and turn

into new state s0, and γ is a discount factor. The adaptive personalized routing for the VRU mobility

problem can then be determined by using the final Q-table after a sufficient number of iterations

and convergence, providing the optimal action to take at each possible state. The VRUPOD model

is shown in Algorithm 1, with additional details provided in the evaluation section.
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Algorithm 1 Q-learning for VRUPOD method

Let Θ = α [�C (n, n0) + maxa0 Q (s0, a0)]
1: Input: G = (N,E), destination nd, learning rate α
2: Output Q-function for VRUPOD to nd

3: Initialize: Q(s, a) 0, 8s 2 S, 8a 2 A(s)
4: for each way finding do

5: s initial state
6: while s[0] 6= nd do

7: Select node a 2 A(s)
8: Travel to node n0 = a
9: Perceive new state s0 = (n0, t0, H (t0))

10: Accept cost of segment C (n, n0)
11: Q(s, a) (1� α)Q(s, a) +Θ

12: s s0

13: end while

14: end for

15: Return Q

3.4 Analytic Hierarchical Process (AHP)

We use the AHP to decide with multiple objectives and criteria by determining how important a

parameter or object is than another. In the developed method, weights are obtained for each factor

of sidewalk using a 4 ⇥ 4 matrix A which is the pairwise comparison matrix. Each cell of matrix

(aij) in row i and column j denote how much more important factor i is than factor j.

A =

0
BBBBBB@

1 a01 a02 a03

1/a10 1 a12 a13

1/a20 1/a21 1 a23

1/a30 1/a31 1/a32 1

1
CCCCCCA

(6)

The importance of factors is assessed on a range from 1-9 where 1 means parameter i and j are of

equal importance, and 9 means factor i is far more important than factor j. If factor 1 is five times

more important than factor 2, then factor 2 is one fifth as important as factor 1.

Generally, n(n � 1)/2 comparisons are required in which diagonal elements are equal to 1, and

the other elements will simply be the reciprocals of the earlier comparisons. The AHP method

uses a comparison matrix, assigns a weight to each pedestrian parameter, and computes the weight

of each factor based on the preferences of users. To calculate the weight of each parameter for

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 13



individual VRUs in this paper a survey dataset based on the ADA standard is used Kasemsuppakorn

et al. (2015). Each survey question includes a comparison of the importance of two parameters.

The importance of each parameter is defined using five levels: extremely, very strongly, strongly,

moderately and no difference. According to the user’s survey responses, a binary comparison

matrix can be built. The weights that are obtained from the AHP method are used in the developed

cost function to determine the weight of each segment of the sidewalk. In the developed VRUPOD

method a sidewalk width that is less than ADA standards is considered as level 0 and is pruned

from the network. The five surface types are ranked based on field surveys where level 1 indicates

the best and most accessible, and level 5 indicates the worst condition.

Surface Type =

8
>>>>>>>>><
>>>>>>>>>:

Concrete 1

Asphalt 2

Brick 3

Cobblestone 4

Gravel 5

Weather condition ranges from level 1 to 5, where level 1 (sunny) indicates the best weather condition

and level 5 (Extreme snow) the worst weather condition to accurately reflect the interaction effects

between the surface type and slope with the different severity of the weather.

Weather Condition =

8
>>>>>>>>><
>>>>>>>>>:

Sunny 1

Moderate Rain 2

Moderate Snow 3

Extreme Rain 4

Extreme Snow 5

This paper presents a numerical example for sunny, rainy, and snowy in the moderate cases of the

weather condition for illustrative purposes.

4

To evaluate the usefulness of the developed method and calculate a cost for each sidewalk segment,

the Boston sidewalk inventory is used, which includes width, length, slope, and sidewalk surface

VRU-POD: Vulnerable Road Users-Personalized, Optimum, and Dynamic Routing 14
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type. Table 3 shows a sample database characteristic of the Boston sidewalk inventory. SWD_ID

indicates a unique ID associated with each sidewalk segment, Width indicates the average width of

the sidewalk, Length shows the length of the sidewalk, Slope shows average cross slope (perpendic-

ular to the path of travel) in degrees, Mat shows primary sidewalk material (CC- Cement Concrete,

BC - Bituminous Concrete). The weather condition information is assumed to be provided through

online web-based data set such as Open Weather Map. We assume that VRUs experience the same

and consistent weather condition throughout his/her short trip. For instance, if the weather is sunny

at the origin, it will be sunny during the trip and at the destination.

Table 3: Sample Boston Sidewalk Inventory Database

SWD_ID Width Length Slope Mat

15739 4 931.9775324 3.9 BC

5439 8 282.649369 3.8 BC

4777 17.5 1662.671837 0.8 BC

4778 17 1561.205981 1.8 BC

4779 18.5 1791.473169 0.7 BC

4949 15.2 1416.268866 2 CC

4948 15.5 1226.37165 1.5 CC

5476 12 312.5817051 3.9 CC

5475 14 306.143638 3.9 CC

4.1 Simulated Participants

The VRU database that is simulated in this paper includes five participants who are new in the

environment of study (Kasemsuppakorn et al., 2015). This includes the dataset collected through

a field survey for five participants with one female and four males between 20 to 40 years old. The

demographics of the participants in this dataset are age, gender, disability type, wheelchair make

and model, most concern parameter, and their fitness level. The level of fitness scales from one

to ten and determines the VRUs’ degree of tiredness and endurance in different sidewalks slopes.

The four male participants have a perceived fitness level greater than 5 while the female has a low

perceived fitness level (level 2). Based on the sidewalk inventory information and preferences of

the user, the VRUPOD path planning model finds the optimal policy and chooses the best route for

each user.
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5 RESULTS AND DISCUSSIONS

The performance of the VRUPOD method is highlighted by comparing against the following

traditional models and their objectives.

Static Minimum Cost (SMC): By appropriately adjusting the VRU mobility problem, we use the

Dijkstra algorithm to minimize the path cost while the user’s preferences are set at the beginning

of the trip.

Dynamic Minimum Cost (DMC): By appropriately adjusting the VRU mobility problem, we use

the Dijkstra algorithm to minimize the time-dependent path cost by varying user preference at

predefined trip duration or time steps. The DMC model will recalculate the current network’s

shortest path and recommend the new path to the user when there is a non-traversable segment

en-route from the origin to the destination.

Shortest Path (SP): Use the Dijkstra algorithm to find the minimum distance from the origin to the

destination.

Non-traversable link

Figure 4: A Real-World Depiction of the Sidewalk Network used for Evaluating the Developed
Model (Source: Google Maps)
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A case study is carried out on a simulated mid-size network (⇡ 1000ft⇥ 600ft) represented as an

8⇥ 8 grid (see Figure 4) and in a time frame [0-30 minutes] of user’s trip and five time steps. The

preferences of users may change in each time step in the DMC and VRUPOD method. There are 81

nodes and 144 segments in the case study network, and we assume that we have complete real-time

information on all the segments. In the case study, the sidewalk network is considered as a graph

in which nodes represent sidewalk connections and edges represent sidewalk segments, the cost

of each segment calculated according to the function C(e)(t). The location of the non-traversable

segment is randomly changed for all the scenarios between the runs in the simulation. If there is

a time window [0-30 minutes] and a stage represented by a unit of time, then the decisions of a

traveler who is in the first stage and encounters an unexpected construction can be different from

another traveler who is in the fifth stage and encounters an unexpected construction. As the user

approaches the destination, the decisions of the user can be varied to reflect the traveler’s preference

change and a desire to arrive at the destination more quickly instead of taking detours based on

their initial preferences. For instance, a traveler who has covered about 70 percent of a trip may,

because of tiredness and other considerations want to reach the destination with minimal detours

as possible. This can be accomplished by varying the weights assigned to the parameters such as

length.

Figure 5 shows an illustrative example of a route suggestion that is not accessible for people with

disabilities. The line (blue) shows the original static route that is the shortest path from A to the

transit stop, the line (red) shows the detour option 1 with a high slope when there is a non-traversable

segment in the VRU’s route in rainy weather. The line (green) shows detour option 2 that takes

a long detour with a walking shelter to avoid the rain. VRUPOD will guide VRUs toward option

2, by finding the tradeoff between taking a long detour (exploration) and taking the originally

known route (exploitation). While the advantage of VRUPOD will depend on the quality and when

the information concerning unexpected events are known (crowd-sourced), this paper focuses on

demonstrating a new VRU mobility framework by formulating the VRUPOD.
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1. High slope

1. Rainy

2. Walkable
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A

Figure 5: An Illustrative Example of the Advantage of the VRUPOD Considering Accessibility

The results of three scenarios are presented for sunny, rainy, and snowy weather conditions. For

each scenario, a path cost comparison is made for SMC, DMC, and VRUPOD method to assess the

performance. In our developed framework for sidewalk segment cost, the weather score influences

the segment’s cost through interaction with the surface type parameter. In effect, slick sidewalk

surfaces (due to rain and snow) will significantly increase the segment’s overall cost, thus impacting

VRUs optimal route choice.

Figure 6 , 7 and 8 show a comparison of four models for the same origin-destination (OD) and

obstacle location in sunny, rainy and snowy weather conditions. A path cost comparison is done for

SMC, DMC and VRUPOD to assess the performance. As mentioned earlier, weather conditions

can affect the accessibility of the sidewalk. Slick sidewalk surfaces due to rain and snow greatly

impact wheelchair users. The preference for the sidewalk slope parameter is different for sunny,

rainy and snowy weather.
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(a) Path graph for four models (b) Cost graph for three models

Figure 6: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three
Models by Time Step in a Sunny Weather

(a) Path graph for four models (b) Cost graph for three models

Figure 7: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three
Models by Time Step in a Rainy Weather
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(a) Path graph for four models (b) Cost graph for three models

Figure 8: Comparison of Four Models for Same OD and Obstacle Location and Cost of Three
Models by Time Step in a Snowy Weather

In sunny weather, the sidewalk is not slick so VRUs can traverse a higher slope while a normal

or average slope will be preferred for rainy and snowy conditions. Path cost for the SP is the

same in sunny, rainy and snowy weather. Looking at each time step, VRUPOD has less steep

increase in the cost, most of them occurred during time step 1-2, where the location corresponding

to the non-traversable link resulting in increasing the cost of the path. Cost evaluation reveals the

superiority of the VRUPOD to the other models. VRUPOD has a lower total cost when compared

with the SMC and the DMC. This can be attributed to the fact that the VRUPOD policy is based on

comparing Q values of the nearby segments to decide which way to go. Ultimately, integrating the

two successor segments from the VRU’s current location into the state model definition allows the

Q-function to perceive the effect of their decision much early to decide the best segment to select at

the current stage of the trip. Cost evaluation reveals the superiority of the VRUPOD over the other

models. VRUPOD has a lower total cost averaging 12% and 5% less compared with the SMC and

the DMC.

To further investigate the VRUPOD path selection we change the location of the origin and des-

tination, while keeping the obstacle location and network size the same as Figure 6 and compare
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(a) Path graph for four models (b) Cost graph for three models

Figure 9: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of
Three Models by Time Step in a Sunny Weather

(a) Path graph for four models (b) Cost graph for three models

Figure 10: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of
Three Models by Time Step in a Rainy Weather
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(a) Path graph for four models (b) Cost graph for three models

Figure 11: Comparison of Four Models for OD Change and Same Obstacle Location and Cost of
Three Models by Time Step in a Snowy Weather

with the three different methods (see Figures 9, 10 and 11). The results for sunny, rainy, and snowy

weather show that VRUPOD finds the most optimal routes with minimum cost, averaging 15% and

7% less total cost compared to SMC and DMC. Looking at each time step, VRUPOD has a less

steep increase in the cost, mostly occurring during time steps 1-2, where the location corresponding

to the non-traversable segment results in increasing the cost of the path. The Q function is directly

updated based on the information gathered by exploring all possible scenarios in the pedestrian

network. The best routing policy can then be determined from the Q function.

Lastly, in Figure 14 (scenario 3), we change the obstacle location later in VRU’s trip in sunny,

rainy, and snowy weather conditions and compare the path and cost of the VRUPOD method with

the other three methods (plots for sunny and rainy omitted). The developed VRUPOD method

directs the user to a route with a lower total cost, averaging 10% and 5% less total cost compared to

SMC and DMC. Looking at each time step, VRUPOD has a less steep increase in the cost, mostly

occurring during time steps 3-4, where the location corresponding to the non-traversable segment

increases the cost of the path.

As discussed above, this can be attributed to the fact that the VRUPOD policy is based on comparing
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(a) Path graph for four models (b) Cost graph for three models

Figure 12: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of
Three Models by Time Step in a Sunny Weather

(a) Path graph for four models (b) Cost graph for three models

Figure 13: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of
Three Models by Time Step in a Rainy Weather
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(a) Path graph for four models (b) Cost graph for three models

Figure 14: Comparison of Four Models for Same OD and Change Obstacle Location and Cost of
Three Models by Time Step in a Snowy Weather

Q values of the nearby segments to decide which way to go. The Q-values are obtained at

convergence, having accommodated all possible scenarios of obstacle locations. In all three

scenarios, the VRUPOD solution for sunny weather consistently reported a lower total cost than

VRUPOD solutions for rainy and snowy weather conditions. This is expected since the increase in

the cost of sidewalk segments during sunny weather conditions is lower compared to the sidewalk

segment cost during rainy and snowy conditions. In general, this affects the accessibility of the

sidewalk, impacting the optimal route choice and the total cost to get to the destination.

Table 4 shows the summary of results estimated for the different weather conditions, origin-

destination location, and obstacle location (including the results from the omitted plots). The

percentage improvement is estimated for VRUPOD compared to SMC (A%) and DMC (B%),

respectively, and shown in the table as A–B. Some possible design considerations and architecture

have been proposed to help the final development of a personalized navigation system for wheelchair

users (Ding et al., 2007). While the work (Ding et al., 2007) proposed using the standard shortest

path algorithms such as Dijkstra, equivalent to the SMC and DMC models, this approach will not

adequately accommodate the stochastic nature of unexpected non-traversable segments. Our results
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Table 4: Summary of results for different scenarios

OBSTACLE METHOD

COND. O �! D LOCATION SMC DMC VRUPOD % AVG IMP.

Sunny (0, 0) �! (8, 8) (2, 2) ! (3, 2) 78.7 71.5 66.0 16–7

(0, 1) �! (7, 8) (2, 2) ! (3, 2) 73.6 66.0 60.0 18–9

(0, 0) �! (8, 8) (4, 6) ! (4, 7) 75.2 70.5 67.4 10–4

Rainy (0, 0) �! (8, 8) (2, 2) ! (3, 2) 79.6 75.4 71.3 10–5

(0, 1) �! (7, 8) (2, 2) ! (3, 2) 74.8 69.0 64.0 14–7

(0, 0) �! (8, 8) (4, 6) ! (4, 7) 78.2 72.5 69.1 12–5

Snowy (0, 0) �! (8, 8) (2, 2) ! (3, 2) 82.6 77.8 73.4 11–5

(0, 1) �! (7, 8) (2, 2) ! (3, 2) 81.4 74.4 69.3 15–7

(0, 0) �! (8, 8) (4, 6) ! (4, 7) 80.1 77.8 71.5 11–8

in Table 4 show that VRUPOD, which integrates unexpected non-traversable segments location

information, provides considerable improvement in performance than the SMC and DMC models.

A number of trips are conducted with the starting node (0,0) as the origin to the ending node (8,8)

as the destination to show how adaptive routing path suggestions are affected by different scenarios

of user preferences. We use survey records (Kasemsuppakorn et al., 2015) of the preferences of

four distinctive users and estimate each sidewalk parameter’s weight using the AHP approach.

As the trip progresses, we gradually increase the weight for sidewalk length while proportionally

decreasing the weight for the other sidewalk parameters (e.g., slope and surface type). We use

this approach to simulate a realistic time-varying preference. To summarize, the ratings (0-10

scale) of the four user’s preference data are described as follows; User1: High rating for slope and

surface type compared to width and distance; User2: High rating for width and distance of sidewalk

compared to slope and surface type; User3: High rating for surface type and width compared to

distance and slope. User4: High rating for sidewalk distance compared to width, slope, and surface

type.

In Figure 15, the results show the different path options that are suggested by the VRUPOD method.

In general, the total score for any given parameter (e.g., sidewalk width, slope, etc.) for the optimal
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Figure 15: Shows How the Preference of Users Affects the Path Suggestion from the VRUPOD
Method

path directly correlates with the user’s preference ratings. For instance, the sidewalk segments

forming the path recommended for User1 will have more segments with a lower elevation than for

User2.

We conduct a Monte Carlo simulation with 100 scenarios of origin-destination and obstacles

randomly placed at various locations in the grid to evaluate the robustness of the developed model.

We summarize the results for estimated path cost for VRUPOD and DMC through a boxplot. Figure

16 shows a lower mean cost for VRUPOD than DMC. We observe a similar interquartile range for

VRUPOD and DMC with a slightly narrow range for VRUPOD than DMC. The policies generated

by VRUPOD (q-learning model) inherently accommodates the effect of random obstacle location

and thus improves its performance compared to the DMC.

Furthermore, we assess the total average score for parameters such as sidewalk surface type and

average slope for the optimal path from the VRUPOD method. The calculated quantities from the

VRUPOD method are compared with the shortest path in two tests. In the first test, sidewalk surface
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Figure 16: Boxplot of Monte Carlo Simulation Results for Path Cost Based on Routing Policies
from the VRUPOD Method and DMC Method

type is the most critical parameter; the lower the sidewalk surface type score, the better the sidewalk

path. In the second test, the sidewalk slope is the most important factor; the lower the sidewalk

slope score, the better the sidewalk path. Figures 17 and 18 represent the comparison graphs:

average surface type and average slope, respectively. As shown in Figure 17, 85.71% of routes

recommended by the VRUPOD method have the lowest average sidewalk surface type score. In the

second test, as shown in Figure 18, 71.42% of routes recommended by VRUPOD have the lowest

average sidewalk slope score. The observed improvement is expected since VRUPOD considers

the parameters’ weight and finds the path with a minimum expected cost, reflecting those weights

(preferences) rather than the shortest path. This observation supports the results from Figure 15,

suggesting that the optimal path directly correlates with the user’s preference ratings.
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Figure 17: The Average Sidewalk Surface Type Score Comparison Between VRUPOD and Shortest
Path

Figure 18: The Average Sidewalk Slope Score Comparison Between VRUPOD and Shortest Path

Finally, a quantitative assessment of the computational complexity of Algorithm 1 is provided for

pedestrian networks of various sizes. The mean and standard deviation of the CPU time for 5

experiments is reported. The processor specification used for implementation is 2.9 GHz 6-Core

Intel Core i9, 32 GB RAM.
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Table 5: Quantitative assessment of the computational complexity of VRUPOD

Pedestrian network size
(nodes, edges).

CPU time (s)
(mean, std)

(25 , 41) (9005.3, 502.7)

(81, 144) (10980.9, 1770.1)

(121, 220) (13007.1, 1997.5)

(24725, 20881) (–, –)

The computational time for VRUPOD increases with the increase in size of the pedestrian network.

The system state space is a subset of the Cartesian product of the number of nodes, the time

periods of interest, and the number of segments being monitored from the VRU’s location. Thus,

the network size is one of the essential considerations that affect the size of state space. For

cases with large state spaces, this leads to a high computational time since the state space must be

explored to determine the optimal action at each state. This will make VRUPOD unattractive for

real-world adoption. However, we make a case for the applicability and scalability of VRUPOD.

Most pedestrians and VRU are limited by an acceptable total walking distance/time Atash (1994).

Therefore, we can restrict the pedestrian network size utilized in VRUPOD for each routing decision.

One approach to restricting the pedestrian network size will be to utilize the shortest distance from

the VRU’s origin to destination as a radius for generating a circular spatial region. The center for

the circular spatial region will be the VRU’s origin. The pedestrian network in this region can

then be generated and utilized in Algorithm 1. By restricting the pedestrian network size, we can

overcome the performance constraints resulting from large pedestrian networks.

6 CONCLUSIONS AND RECOMMENDATIONS

Prior work has focused on wayfinding with static parameters related to the sidewalk for people with

disabilities, however, wayfinding with static parameters might be impractical in real world situations.

Routing with static parameters is only applicable when the same fixed route and the same conditions

of the route are valid every day. This paper provides a VRUPOD model incorporating dynamic

parameters in wayfinding for VRUs. The method developed in this paper uses the information that
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is collected from traveling on the sidewalk network and updates the best decision values. Thus if

an unexpected event happens on the sidewalk the VRU can reroute. Individuals with disabilities

also can explore unfamiliar places through the VRUPOD method. The optimal policies based on

VRUPOD find the most accessible route adaptively. The technique is a personalized wayfinding

since users with disabilities choose the importance of parameters affecting the sidewalk by the AHP

method. A case study is carried out on a mid-size network to show the performance of different

methods in recommending the path to individuals with disabilities. VRUPOD outperforms the

shortest path, static minimum cost and dynamic minimum cost methods in terms of suggested path

cost. VRUPOD recommends an accessible path incorporating unexpected events. The average

sidewalk surface type score and average slope score for routes recommended by VRUPOD are the

lowest as well. For future work, we will investigate a scalable heuristic approach to overcome

the limitation of reinforcement learning regarding the size of the sidewalk network to provide

computationally efficient solutions. Also the extension of this research is looking at integrating

data from machine vision with mounted cameras on wheelchairs, which will clearly identify the

surface condition.
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Sidewalk inventory data
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Figure 19: (Boston sidewalk inventory data. (Source: https://data.boston.gov/dataset/
sidewalk-inventory)
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