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Abstract
Eucalyptus globulus is one of the most planted species in the Inter-Andean Valleys of Bolivia, where growing conditions 

are different from most places where eucalypts have been studied. This prevents a straightforward utilization of models 
fitted elsewhere. In this study a distance-independent individual-tree growth model for E. globulus plantations in Bolivia 
was developed based on data from 67 permanent sample plots. The model consists of sub-models for dominant height, tree 
diameter increment, height-diameter relationship and survival. According to model-based simulations, the mean annual 
increment with the optimal rotation length is about 13 m3 ha–1 yr–1 on medium-quality sites and 18 m3 ha–1 yr–1on the best 
sites. A suitable rotation length for maximizing wood production is approximately 30 years on medium sites and 20 years 
on the most productive sites. The developed models provide valuable information for further studies on optimizing the 
management and evaluating alternative management regimes for the species.
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Resumen
Un modelo para predecir el crecimiento de Eucalyptus globulus procedente de semilla en Bolivia

Eucalyptus globulus es una de la especies más plantadas en los Valles Inter-Andinos de Bolivia, donde las condicio-
nes ecológicas difieren de la mayor parte de zonas en que esta especie ha sido objeto de estudio. Por este motivo, no es 
aconsejable la aplicación directa de los modelos desarrollados para otras zonas. En este estudio se desarrolló un mode-
lo de crecimiento de árbol individual independiente de la distancia para E. globulus en Bolivia a partir de los datos 
medidos en 67 parcelas permanentes. El modelo está formado por los siguientes submodelos: altura dominante, incre-
mento en diámetro, relación altura-diámetro y supervivencia. Las simulaciones basadas en las ecuaciones del modelo 
arrojaron crecimientos medios anuales de 13 m3 ha–1 año–1 en sitios de calidad media y de 18 m3 ha–1 año–1 en los sitios 
de mayor calidad. La máxima renta en especie se alcanza a los 30 años en sitios de calidad media y a los 20 años en los 
mejores sitios. Los modelos desarrollados aportan información valiosa para futuros estudios de optimización de la ges-
tión y de evaluación de alternativas de manejo para esta especie.
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Introduction

Most of the growth and yield models that can be 
found in the literature for Eucalyptus globulus are for 
stand-level calculations (e.g. Tomé et al., 1995; Garcia 
and Ruiz, 2003; Wang and Baker, 2007). Goodwin and 
Candy (1986) and Soares and Tomé (2003) developed 
individual-tree growth models for E. globulus. Com-

pared to stand level models, individual-tree models 
have higher resolution (Pretzsch et al., 2002) and allow 
detailed stand description and flexible simulations. 
They predict how competition affects individual trees 
allowing a logical simulation of tree size differentiation 
within a stand. An individual-tree model can produce 
a similar output as lower resolution models (e.g. stand-
level models) since stand characteristics can be calcu-
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dominant height development using a dataset of 272 pairs 
of dominant height-age observations. Dominant height 
was defined as the average height of the 100 thickest trees 
at breast height per hectare. Choice of the best model was 
based on statistical and biological criteria. The index age 
was taken as 20 years, since this is a reasonable rotation 
length for this species in the study area.

Diameter increment modelling

The model was fitted to the data (9,041 observations) 
using linear mixed-effects analysis. The purpose was 
to model the influence of tree size, site quality and 
competition on diameter increment. Each type of pre-
dictors (tree size, site, competition) was described by 
several variables that were tested during the model fit-
ting. Transformations of predictors were also tested.

Height-diameter modelling

The fitting of the height-diameter model used 6,171 
observations and was based on the Stoffels and Van 
Soest (1953) power equation modified by Tomé (1989), 
which constrains the model so that it passes through 
the point determined by dominant diameter and domi-
nant height. The model was fitted using non-linear 
mixed-effects analysis.

Survival modelling

Since dead and cut trees could not be distinguished 
in the data, it was not possible to fit an individual-tree 

lated from the tree variables. In Bolivia, E. globulus 
plantations have been promoted since the 1960s. The 
singular Bolivian conditions (high altitudes, dry climate 
and small influence of the ocean) are different from 
most places where eucalypts have been studied, which 
prevents a straightforward utilization of models fitted 
elsewhere. Therefore, there is a need for Bolivia-spe-
cific equations that would enable reliable growth and 
yield prediction of E. globulus to support plantation 
management and planning. The aim of the research 
work summarized in this article was to develop a sys-
tem of models that enables the simulation of E. globu-
lus stand dynamics on an individual-tree basis.

Material and methods

Data

The modelling data consisted of 67 permanent plots 
(400 m2 each) measured in 16 sites (Table 1). All trees 
were measured for diameter and a variable number of 
trees also for height. There were 1-7 measurement 
intervals per plot, and the length of measurement in-
terval was 1–7 years. The stand age ranged from 1 to 
29 years. Elevation ranged from 2,180 to 3,590 m.

Dominant height modelling

Several algebraic difference models derived from 
Hossfeld (cited by Peschel, 1938), Korf (1939), Schu-
macher (1939), Chapman-Richards (Richards, 1959), 
Sloboda (1971) and McDill-Amateis (1992), fitted using 
non-linear mixed-effects analysis, were tested to describe 

Table 1. Summary of the data used in modelling

Minimum Maximum Mean Std. Deviation

Stand age, years 1.0 29.0 10.1 6.6
Site index, m 7.9 26.9 18.4 3.1
Dominant height, m 0.7 26.2 11.9 6.7
Dominant Diameter, cm 0.5 37.2 8.5 6.1
Stand basal area, m2/ha < 0.05 49.3 9.2 8.6
Number of trees per hectare 50 2250 1137 450
Tree height, m 1.3 29.0 8.8 5.5
Diameter increment, cm –1.3 6.5 0.7 0.5
Diameter at breast height, cm 0.5 37.2 9.2 5.8
BAL, m2/ha 0.0 46.5 5.7 6.2
Time interval between measurements, years 1.0 7.0 1.6 1.1
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mortality model. Therefore, a model was fitted for the 
maximum number of trees per hectare (self-thinning 
limit), using the densest plots.

Results

Dominant height and site index model

The model termed Schumacher 1 (Eq. 1) was judged 
the best dominant height equation. This model was 
visually compared with the measured dominant height 
developments in the permanent sample plots (Fig. 1) 
and was regarded suitable. The dominant height model 
is therefore
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where H1 and Ĥ2 are dominant height in measurement 
occasions j and j + 1 (m), T1 and T2 are stand age in 
measurement occasions j and j + 1 (years), a1k is ran-
dom site effect, b1jk and b2jk are random measurement 
effects (measurement j of site k). All predictors were 
significant (p < 0.05). The variances of the random 
effects were a1k = 0.204, b1jk = 1.200, b2jk = 0.002. The 
residual variance was 0.219.

Diameter increment model

The final model for diameter increment was as fol-
lows:

	 id̂ijk = 1.206exp(yijk)	 (2)
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where id̂ is diameter increment (cm), P is the length of 
the prediction period (years), d is dbh (cm), Hdom is 
dominant height (m), BAL is basal area in larger trees 
(m2/ha) and SI is site index (m). All predictors were 
significant (p < 0.05). The variance of the site effect 
(ak) was 0.051 and that of the measurement effect (bjk) 
was 0.089. The variance of the residual was 0.245. Plot 
effect was not significant. Multiplier 1.206 is the Snow-
don (1991) correction factor for removing the bias 
caused by the logarithmic transformation of the pre-
dicted variable.

Height-diameter model

The model was as follows:
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where ĥ is predicted tree height (m), Hdom is dominant 
height (m), Ddom is dominant diameter, defined as the 
average diameter of the 100 thickest trees per hectare 
(cm), and T is stand age (years), a1l is random site effect, 
b1kl and b2kl are random plot effects (plot k of stand l), 
c1jkl and c2jkl are random tree effects (tree j of plot k 
of stand l). All predictors were significant (p < 0.05). 
The variances of the random effects were a1l = 0.008, 
b1kl = 0.012, b2kl = 0.013, c1jkl = 0.105, c2jkl = 0.098. The 
residual variance was 0.172.

Survival model

A self-thinning limit was fitted to the data but, due 
to the lack of dense plots, the fitted self-thinning limit 
was unrealistically low. Therefore, the slope parameter 
of the model was adjusted so that the maximum basal 
areas agree with observed maximum basal areas of tree 
plantations in the same area (Fig. 2). The adjusted 
model was:

	 Nmax = exp(12.389 – 1.75 ln(Dmean)) 	 (4)

where Nmax is the self-thinning limit and Dmean is the 
quadratic mean diameter of the stand.
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Figure 1. Comparison between some measured dominant height 
series and the predictions produced by Equation 1 for site indi-
ces 12, 17, 22 and 27 m at 20 years.
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Discussion

This study presents a site index model, a height-
diameter model, an individual-tree diameter increment 
model and a self-thinning model for E. globulus stands 
in Bolivia. The main equations provided in this article 
are mixed-effects models. This approach was applied 
in order to take into account the hierarchical structure 
of the data. All those hierarchical levels which explain 
a significant part of the variance as well as all the sig-
nificant random parameters were included in the mod-
els. With this type of approach the site, plot and meas-
urement effects can be included in prediction if 
additional measurements are available for the stands 
of interest. If random parameters are not used in predic-
tion, mixed effect models result in higher residual 
variation than fixed-effect models. This is because 
fixed-effect models are fitted to minimize the residual 
variance around the prediction provided by the fixed 
parameters. In the current study, the increase in RSME, 
due to the use of mixed-effect modelling, was 0.3% for 
the dominant height model, 1.6% for the diameter in-
crement model, and 1.9% for the height model.

The oldest plot in the modelling data was 29 years 
old and, hence, extrapolations beyond that age should 
be simulated with caution. Furthermore, an individual-
tree mortality model would also be needed in order to 
increase the accuracy and soundness of the model-based 
projections. Simulations were run to show the way the 
models perform together and to provide additional in-
formation regarding the productivity and suitable rota-

tion lengths for this species in Bolivia (Fig. 3). The 
volume equations fitted by Pohjonen and Pukkala 
(1990) for E. globulus in Ethiopia for similar ecologi-
cal conditions (altitude, stand density and growth rate) 
as in Bolivia were used to calculate stem volumes. Ac-
cording to simulation results for the mean and current 
annual increments (MAI and CAI), an appropriate 
rotation length for low- and medium-quality sites when 
aiming at maximum wood production would be 50 and 
30 years, respectively. In very good sites the rotation 
length could be shortened to 20 years. Mean annual 
increments up to about 18 m3 ha–1 yr–1 can be achieved 
in the best sites whereas, in medium and poor sites, the 
maximum mean annual increment is 13 m3ha–1yr–1 and 
5 m3ha–1yr–1, respectively. The results derived from this 
study regarding the yield of E. globulus are in line with 
the annual increments reported elsewhere (10-15 m3 ha–1 

yr–1) (Jacobs, 1981; Eldridge et al., 1993). However, the 
rotation lengths obtained for Bolivia are longer and the 
maximum mean annual increments are lower than those 
reported by Ugalde and Pérez (2001) for Latin American 
countries; 30 m3 ha–1 yr–1 in Argentina (Mangieri and 
Dimitri, 1961) or 44 m3 ha–1 yr–1 in Chile (INFOR, 
1986). When comparing the productivity of E. globulus 
and P. radiata (the most planted exotic species in the 
study area) in Bolivia, eucalypts seem to be less produc-
tive since MAIs up to 25 m3 ha–1 yr–1 have been observed 
in the most productive pine stands. The optimal rotation 
lengths for maximum wood production would be 5-10 
years longer for the pines (Guzmán et al., 2012) on the 
best sites. To our knowledge, this is the first study in 
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Figure 2. Simulation of the self-thinning limit according to the fitted (solid line) and adjusted (dotted line) self-thinning models. 
The relationship between stand mean diameter and maximum basal areas predicted by the adjusted model are biologically more 
consistent than those obtained directly from the fitted model, the latter overestimating tree mortality and, therefore, underestimating 
maximum stand basal area.
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Bolivia, and probably also in Latin America, providing 
tree-level growth models for E. globulus that enable 
simulations of stand dynamics on an individual-tree 
basis. The set of equations presented in this article pro-
vide valuable information for further studies on optimis-
ing the management and evaluating alternative manage-
ment regimes for the species.
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