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Abstract
Efficient management of timber resources and wood utilization practices require accurate and versatile information 

about important characteristics of forest resources for evaluating the numerous management and utilization alternatives 
for timber resources. Tree height is considered one of the most useful variables along with stocking and diameter at 
breast height, in estimating forest stand wood volumes and productivity. Six nonlinear growth functions were fitted to 
tree height-diameter data of three major tree species in Western Mediterranean Region’s forests of Turkey. The general-
ized regression neural network (GRNN) technique has been applied for tree height prediction, as well, due to its ability 
to fit complex nonlinear models. The performance of the models was compared and evaluated. Further, equivalence tests 
of the selected models were conducted. Validation showed the appropriatness of all models to predict tree height. According 
to the model performance criteria, the six nonlinear growth functions were able to capture the height-diameter relation-
ships and fitted the data almost equally well, while the constructed generalized regression neural network (GRNN) mod-
els were found to be superior to all nonlinear regression models, in terms of their predictive ability. 
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Resumen
Evaluación de diferentes métodos de modelización para la estimación de la altura total del árbol de la Región 
Mediterránea de Turquía

La gestión eficiente de los recursos forestales y la de utilización de la madera requieren de información precisa y ver-
sátil acerca de las características importantes de los recursos forestales para la evaluación de la gestión y de las alterna-
tivas de utilización de los recursos forestales. La altura del árbol es considerada como una de las variables más útiles, 
junto con la densidad, y el diámetro a la altura del pecho, en la estimación de volúmenes de madera y la productividad de 
masas forestales. Se ajustaron seis modelos de altura total-diámetro y se compararon con el fin de estimar con precisión 
la altura total del árbol de las tres principales especies de árboles en los bosques de la Región Occidental Mediterráneo 
de Turquía. La regresión generalizada de redes neuronales (GRNN) se presenta como una técnica alternativa de red neu-
ronal a la técnica de regresión no lineal para estimar la altura total de los árboles debido a su capacidad para adaptarse a 
modelos complejos no lineales. Se compararon y evaluaron los modelos. Se llevaron a cabo otras pruebas, como la equi-
valencia de los modelos seleccionados. De acuerdo con los criterios del rendimiento de los modelos, las seis funciones 
no lineales de crecimiento fueron capaces de capturar las relaciones altura-diámetro y ajustaron los datos casi igual de 
bien, mientras que las construidas mediante modelos de regresión generalizados de redes neuronales (GRNN) resultaron 
ser superiores a todos los modelos de regresión no lineal, en términos de su capacidad predictiva.

Palabras clave: funciones de crecimiento; modelos de regresión generalizada de redes neuronales; pruebas de 
equivalencia.
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Introduction

Brutian pine (Pinus brutia Ten.), Cedar of Lebanon 
(Cedrus libani A. Rich.), and Cilicica fir (Abies cili-

cica Carr.) are major coniferous tree species in Turkey. 
There are nearly 6.2 million hectare of Brutian pine (about 
5.4 million ha), Cedar of Lebanon (about 0.5 million ha), 
and Cilicica fir (about 0.3 million ha) forest almost 
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ma and Parton, 2007). Among a variety of mathemati-
cal equations, sigmoid or non-linear growth functions 
are widely used in developing tree height-diameter 
equations. Although most of these functions can ade-
quately fit tree height-diameter curves, they may pro-
duce large extrapolation errors when applied beyond 
the range of model development data (Zhang, 1997). 
Therefore, the models predictive capabilities (accuracy, 
precision, time dependence, biological realism, and 
flexibility) should be carefully evaluated and validated 
before they are used (Zhang, 1997, Yuancai and Par-
resol, 2001). As an alternative approach to fitting non-
linear data, neural network models have gained popu-
larity for their effective manner to manage complex, 
non-linear systems a feature, which is not the case of 
statistical regression models where an appropriate non-
linear function must first be found. Traditional comput-
ing solutions such as regression analysis are based on 
rules or equations, which define a system and must be 
explicitly programmed. While this is perfect in situa-
tions where the rules are known, many systems exist 
for which the rules are either not known or difficult to 
discover and it is these systems to which neural com-
puting techniques can be applied (Swingler, 2001). 
Regression (Bayesian) networks (often called general-
ized regression neural networks in the literature) were 
devised by Specht (Specht, 1991), casting a statistical 
method of function approximation into a neural net-
work form. It is used for estimation of continuous 
variables, as in standard regression techniques. GRNN 
falls into the category of probabilistic neural networks, 
which means that it is especially advantageous in order 
to perform predictions and comparisons of system 
performance in practice. Artificial neural network mod-
els (ANNs) have been used widely in environmental 
sciences including the field of forest modeling. Maier 
and Dandy (2000) stated a review of neural network 
(NN) modeling issues and applications for the predic-
tion and forecasting of water resources variables; Liu 
et al. (2003) used neural network models (NNs) in clas-
sification of ecological habitats, Corne et al. (2004) 
predicted forest attributes using NNs, Özçelik et al. 
(2008) conducted a comparative study of NNs and 
standard methods for estimating tree bole volume, 
Fernández et al. (2008) handled ANNs for the predic-
tion of standard particleboard mechanical properties, 
Esteban et al. (2009) utilized ANNs in wood identifica-
tion, while Esteban et al. (2011) employed ANNs for 
the prediction of plywood bonding quality. It is worth 
noting that the back-propagation algorithms are the 

one-quarter of total forest land in these country (Anon-
ymous, 2006). Turkey has adopted the principles of 
multipurpose and ecologically based forest management. 
Therefore, General Directorate of Forests needs to de-
velop and evaluate tree height-diameter equations and 
growth and yield prediction models for management of 
these forest resources. Individual tree height and diam-
eter at breast height (dbh) are essential forest inventory 
measures for estimating timber volume, site index, stand 
description, damage appraisals, and other important 
variables in forest growth and yield, succession, and 
carbon budget models (Parresol, 1992; Peng et al., 2001; 
Yuancai and Parresol, 2001; Sharma and Zhang, 2004; 
Castedo-Dorado et al., 2005). Estimating individual tree 
volume and site index, and describing stand growth 
dynamics and succession over time, require accurate 
height-diameter models (Curtis, 1967; Zhang, 1997; 
Colbert et al., 2002; Peng et al., 2004; Castedo-Dorado 
et al., 2005). However, the available information about 
height-diameter relationships concerning the above spe-
cies is not considered sufficient.

Dbh of a tree can be measured quickly, easily, and 
accurately, but the measurement of total tree height is 
relatively complex, time consuming, expensive, and 
difficult to accurately obtain (Arabatzis and Burkhart, 
1992; Zhang, 1997; Fang and Bailey, 1998; Lootens 
et al., 2007; Sharma and Parton, 2007; Meng et al., 
2008). Therefore, the standard sampling procedure for 
forest inventory is to measure heights of only a few 
trees and estimate the unmeasured heights from math-
ematical relationships between height and diameter or 
between height and diameter and other stand charac-
teristics (Larsen and Hann, 1987; Dolph, 1989). 

Development of simple and efficient models that allow 
forest managers to determine with reliability the height 
of the trees in a stand from diameter data is a prime objec-
tive in forest management. Knowledge of the relation 
between these variables permits managers to obtain, 
without investing large amounts of money in height meas-
urement, the input values needed to estimate single tree 
volume, dominant height of the stands, competition indi-
ces for individual tree growth, height/diameter ratio, and 
structural diversity indexes (Calama and Montero, 2004).

A number of tree height-diameter equations have 
been developed for various tree species in different 
countries (Curtis, 1967; Larsen and Hann, 1987; Dolph, 
1989; Zhang, 1997; Fang and Bailey, 1998; Huang 
et al., 2000; Colbert et al., 2002; Soares and Tome, 
2002; Zhang et al., 2002; Eerikainen, 2003; Temesgen 
and Gadow, 2004; Castedo-Durado et al., 2005; Shar-
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most popular for training feed forward neural networks 
and are used in most of the published papers about 
ANNs. However, they have some known disadvantages, 
such as slow convergence and sensitivity to noise in the 
training data sets (Diamantopoulou, 2010). The purpose 
of this study is to step further by introducing the gener-
alized regression neural network (GRNN) modeling 
architecture as an alternative neural network technique 
for estimating total tree-height. Additionally, GRNN 
models performance are tested and finally a comparative 
analysis is conducted between six standard and widely 
used nonlinear growth functions and the GRNN models, 
using sample trees of three major tree species in Western 
Mediterranean Region’s forests of Turkey. 

Materials and methods 

Data

The data used in this study were obtained for three 
tree species from even-aged managed stands in Bucak 
Forest Enterprise-Mediterranean Region of Turkey. All 
sampled trees were measured for diameter at breast 
height (dbh) outside bark and total height (h). These 
trees were felled throughout the clear-cutting areas of 
Bucak Forest Enterprise, and were subjectively se-
lected to provide representative information for a va-
riety of throughout clear-cutting areas density, height, 
stand structure, age, and site condition. Namely, the 
trees were subjectively selected to ensure a repre-
sentative distribution by diameter and height classes. 
In each tree, two perpendicular diameters outside-bark 
(1.3 m above ground level) were measured to 0.1 cm 

and were then arithmetically averaged. The trees were 
later felled, leaving stump with an average height of 
0.30 m, and total bole length was measured to the near-
est 0.05 cm. Summary statistics for the two variables 
by species are provided in Table 1. 

The available tree height-diameter data were split 
using the three-way data splits method (Fig. 1). The 
majority (70%) of the data in each diameter class was 
used for model development while the remaining data 
(30%) in each diameter class for each species were 
randomly selected and reserved for model validation 
(Fig. 1). In order to construct a neural network model, 
it is very important to have both training and testing 
data sets as insurance against overfitting (Leahy, 1994). 
Due to the nature of the GRNN modeling, it is neces-
sary to use both training and test data sets within the 
development data set, in order to construct the most 
suitable model for the examined species. For this rea-
son we have used the k-fold cross validation method 
with k = 10. The k taking the value 10 has been the 
most common practice (Olson and Delen, 2008). Using 
this method of data division, all data of the develop-
ment data set have eventually been used for the con-
struction of the GRNN model. In regression model 
building, there is little to be gained by separating de-
velopment data into parts for fitting and testing (Hirsch, 
1991). For this reason, in regression model building 
we used the development data set without any further 
division. Finally, for both non-linear and generalized 
neural regression models building, all data of the de-
velopment data set have eventually been used.

Both model development and validation data sets 
covered the same ranges of diameter and height 
(Table 1). 

Table 1. Tree summary statistics for model development and validation data sets

Model Development Data

1  Species Number 
of trees

dbh (cm) h (m)

Mean Minimum Maximum Standard 
deviation Mean Minimum Maximum Standard 

deviation

CL 251 35.46 11.0 75.0 14.38 16.80 5.2 27.2 5.09
CF 264 37.21 16.5 73.0 12.97 17.05 9.0 28.0 4.38
BP 354 38.79 11.0 76.0 15.13 17.92 6.8 26.4 4.73

Model Validation Data

CL   71 35.31 15.0 66.5 13.15 17.17 9.3 25.2 4.47
CF   65 40.05 16.0 73.0 13.87 18.25 9.0 27.8 4.56
BP 132 42.07 12.0 75.0 16.54 18.64 7.4 25.7 4.72

1 CL: Cedar of Lebanon (Cedrus libani A. Rich.); CF: Cilicica fir (Abies cilicica Carr.); BP: Brutian pine (Pinus brutia Ten.).
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Non-linear regression modeling

Six non-linear growth functions (Table 2) were se-
lected as candidate height-diameter equations. These 
models based on their appropriate mathematical prop-
erties (typical sigmoid shape, number of parameters, 
flexibility), possible biological interpretation of param-
eters (upper asymptote, maximum or minimum growth 
rate), and satisfactory prediction for tree height-diam-
eter relationship in the literature (Arabatzis and Bur-
khart, 1992; Huang and Titus, 1992; Zeide, 1993; 
Zhang, 1997; Fang and Bailey, 1998). As indicated by 
Peng et al. (2001); these six nonlinear growth functions 
have been widely used for two major reasons. First they 
define sigmoid curves, in which the growth rate in-
creases from minimum value to a maximum at a point 
of inflection, and then declines towards zero at an upper 
asymptote. Secondly; they have three parameters (an 
upper asymptote, a rate parameter, and a shape param-
eter) that describe various biological processes and 
behaviors. For example, the Chapman-Richards and 
Weibull models are well known flexible growth func-
tions with biologically interpretable coefficients (Pien-

aar and Turnbull, 1973; Fang and Bailey, 1998; Yuan-
cai and Parresol, 2001). 

These growth functions of Table 2 were fitted to 
model development data of height-diameter for each 
tree species, respectively. Parameter estimations were 
accomplished using the PROC NLIN procedure in SAS 
(SAS Institute, 2002). As stated in Fang and Bailey 
(1998) and Peng et al. (2001), we selected to use the 
Levenberg -Marquardt algorithm because it is consid-
ered to be most useful when parameter estimates are 
highly correlated and represents a combination of the 
best features of linearization method and the steepest 
descent method (Fekedulegn et al., 1999). The tree total 
height versus diameter at breast height scatter plots 
present typical sigmoidal-concave curves for all tree 
species (Fig. 2). In order to examine the existence of 
heteroscedasticity in our data, the White’s general test 
(White, 1980) has been used under the null hypothesis 
of homoskedasticity. The null hypothesis was rejected 
for the significance level of α = 0.05, concluding that 
the problem of heteroscedasticity is apparent.

Parresol (1993) indicated that forest modelers often 
face the problem of heteroscedasticity in their data, 

Total data set

Cedar of Lebanon (CL)  
n = 322 trees

Models’ development data Validation data set

(CL)
n = 251 trees

(CF)
n = 264 trees

(BP)
n = 354 trees (CL)  

n = 71 trees

Training 
sample 
(90%:  

226 trees)

Training 
sample 
(90%:  

238 trees)

Training 
sample 
(90%:  

319 trees)

Test  
sample 
(10%:  

25 trees)

Test  
sample 
(10%:  

26 trees)

Test  
sample 
(10%:  

35 trees)

(CF)
n = 65 trees

Access the performance  
of the models

K-fold cross-validation (k = 10)

(CL)
n = 132 trees

Cilicica fir (CF)  
n = 329 trees

Brutian pine (BP)  
n = 486 trees

Figure 1. Data division according to the three-way data splits method.

10%
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Table 2. Nonlinear height-diameter models selected for comparison using data from 
Mediterranean Region Forests of Turkey

Model References

Chapman-Richards h 1.3 a 1 exp b dbh
c

= + ⋅ ⋅( ) – – Huang and Titus, 1992

Weibull h 1.3 a 1 exp b dbhc= + ⋅ ⋅( ) – – Huang and Titus, 1992

Exponential h 1.3 a exp
b

dbh c
= + ⋅

+( )












Ratkowsky, 1990

Modified Logistic h 1.3
a

1 b dbh1 c
= +

+ ⋅( )– –
Huang et al., 2000

Korf/Lundgvist h 1.3 a exp b dbh c= + ⋅ ⋅ – – Zeide, 1989

Gompertz h 1.3 a exp b exp c dbh= + ⋅ ⋅ ⋅( ) – – Huang and Titus, 1992
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Figure 2. Scatter plot of total height (h) against diameter at breast height (dbh) for a: Cedar of Lebanon trees and for the model de-
velopment data (a-1), model validation data (a-2) and combined data (a-3), b: Cilicica fir for the (b-1), (b-2) and (b-3) data sets and 
c: Brutian Pine for the (c-1), (c-2) and (c-3) data sets.
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which would lead to non-minimum variance parameter 
estimates and unreliable prediction intervals. Therefore, 
weighted least-squares estimation that corrects the esti-
mated standard errors of the least-squares coefficients 
for heteroscedasticity was used. This offers the possibi-
lity of more efficient estimation (Fox, 1991). Explora-
tory graphing of diameter at breast height against total 
tree-height showed that there was a strong relationship 
between the variance of the (h) and the values of (dbh). 
Using the SPSS program (Norusis, 2000), a wide range 
(from –4 to 4 by 0.1) of possible power values were exa-
mined and this variance was found to be proportional to 
the (1.1) power of (dbh) for all species. 

Generalized regression neural network 
modeling 

A generalized regression neural network (GRNN) is 
often used for function approximation (Specht, 1991; 
Bishop, 1995; Patterson, 1996). It does not require an 
iterative training procedure, and it approximates any 
arbitrary function between input and output vectors, 
drawing the function estimate directly from the training 
data. The regression network uses Bayesian techniques 
to estimate the expected mean value of the output, 
given an input case as follows:

	
E y x = yf x,y dy f x,y dy

–

+

–

+

  ( ) ( )∫ ∫
�

�

�

�

	
[1]

where, y is the output value, which is being estimated; 
x is the input case; f is the joint probability density 
function of the inputs and outputs. As the joint prob-
ability density function is not known, it must be esti-
mated from a sample of observations x and y. Defining 
the distance di

2  between the training sample (xi) and 
the point of prediction (x) as:

	 d = (x x ) (x x )i
2

i
t

i– – 	 [2]

we obtain the resulting equation [Eq.3] which is di-
rectly applicable to problems involving numerical data:
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where y(x) is the output value, which is being esti-
mated for the input case x, n is the number of the ob-

servations and σ is the smoothness parameter and its 
optimal value is subject to a research.

This type of network is kernel-based approximation 
method cast in the form of neural networks (see ap-
pendix). Gaussian Kernel functions are located at each 
training case. The GRNN copies the training cases in-
troduced to the first layer (input layer) into the network 
to be used to estimate the response on new points. The 
output is estimated using a weighted average of the 
outputs of the training cases, where the weighting is 
related to the distance of the point from the point being 
estimated (so that points nearby contribute most heav-
ily to the estimate). The first hidden layer in the GRNN 
contains the pattern units. A second hidden layer contains 
units, which help to estimate the weighted average. Each 
output has a special unit assigned in this layer, which 
forms the weighted sum for the corresponding output. 
Therefore, the second hidden layer is considered as the 
summation layer. To get the weighted average from the 
weighted sum, the weighted sum must be divided by the 
sum of the weighting factors. A single special unit in the 
second layer calculates the latter value. The output layer 
then performs the actual divisions (using special division 
units). Hence, the second hidden layer always has ex-
actly one more unit than the output layer. In regression 
problems, typically, only a single output is estimated, 
and so the second hidden layer usually has two units.

In order to select an optimal value of σ Specht sug-
gested (Specht, 1991) the holdout method. As a step 
further, in this paper the k-fold cross-validation method 
was used (Fig. 1). Following this method, the 10% of 
the development data set is used as test data set and the 
remaining 90% of the development data set as the train-
ing sample. After the selection of a fixed value of σ, the 
model was trained using the training data set. Then the 
model was evaluated using the test data set. This process 
was repeated for each k = 10 folds (90% for training and 
10% for testing) and then many times using different 
values of the smoothing coefficient. Finally, the best 
value of σ that should be used was selected as the value 
that minimized the error that was estimated as the aver-
age error rate on these cross-validation examples. 

Models performance criteria

Each model was evaluated using the model’s cor-
relation coefficient, bias, mean absolute deviation, 
mean square error and % root mean square error of the 
dependent variable mean for the regression models 
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which has been used as the output node for the GRNN 
models. These measures have been computed by the 
following equations:

Correlation coefficient (r): 

	

r =

(y – y) (y – y )

(y – y)

i iest est

i = 1

n

i
2

i = 1

n
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[4]

Bias:
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[5]
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Mean square error (MSE):
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where yi are the observed values, yiest are the estimated 
by the model values, y– is the mean of the observed 
values, y–est is the mean of the estimated values; n is the 
total number of data used for fitting the model, and p 
is the number of parameters to be estimated.

The correlation coefficient (r) was selected to meas-
ure the linear correlation between the observed and 
the estimated by the model values. Bias indicates on 
average under-prediction or over-prediction by the 
model. The mean absolute deviation was selected for 
an overall indication of the error variance, while the 
mean square error and the root mean squared error 
expressed as percentage of the mean of the observed 
values (RMSE%), were calculated as the common 
performance measure as they show the global good-
ness of fit.

Equivalence testing 

Model validation is a central aspect to the responsible 
application of models and is often realized as tests of how 
well model predictions match a set of independent ob-
servations. Traditional tools are optimized to detect dif-
ferences rather than similarities. This is because the usual 
null hypothesis is that there is no difference between 
means of the populations. Equivalence test looks for 
similarities while the usual hypothesis test looks for dif-
ferences. The conclusion of no statistically significant 
difference of the usual statistical test means that the cur-
rent evidence is not strong enough to support that the 
examined treatments lead to different outcomes (Robin-
son et al., 2005; Özçelik et al., 2010). That is different 
from saying that the two outcomes are the same. There-
fore, in model validation, the null hypothesis should be 
that the model is not valid (Loehle, 1997; Robinson and 
Froese, 2004). For this reason, the height-diameter mod-
els considered as the best fitted to the observed data, were 
further validated using the equivalence testing strategy, 
which is a regression-based methodology validation that 
it has been described extensively by Robinson et al. 
(2005). In this procedure, the null hypothesis is H0: a 
difference, e.g. μ ≠ μo and the alternative hypothesis is 
H1: not a difference, e.g. μ = μo. The shifted intercept (b0) 
was tested for equality to the mean observation ( y– ), 
which is identical to testing that the mean of the observa-
tions is equivalent to the mean of the predictions. The 
slope (b1) was tested for equality to one. For both tests 
the desired experimental probability level was α = 0.05. 
The regions of equivalence have been established as: 
Eq = y ±2%0  for the shifted intercept and Eq =1.0±2%1  
for the slope. In order to construct confidence intervals 
that do not depend on the assumptions such as the model 
form is correct, the residuals are independent, normally 
distributed and have constant variance, a non-parametric 
bootstrap methodology has been applied (Efron, 1979; 
Efron and Tibshirani, 1993, Davison and Hinkley, 1997). 
The number of bootstrap replicates was 1000. 

Results

It is apparent from the model performance criteria that 
each growth function was equally well fitted to the tree 
height-diameter data of the three species. The r values 
for all models and species of Table 3 shows strong posi-
tive correlation (greater than 0.9929) between the ob-
served and the estimated values for all models (Table 3). 
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According to the non-linear regression models, the 
highest r-value of 0.9950 was reached for Brutian pine 
trees (Table 3). The bias ranged between –0.0059 to 
0.0104, and MAD values from 0.3128 to 0.3771, for all 
species. Differences in bias among the six non-linear 
models for each species were not significant. All model 
coefficients were significant at the significance level of 
0.05. Comparing the mean square errors of the models, 
the Korf/Lundqvist, the Gompertz and the modified 
logistic models had the smallest MSE values for the 
Cedar of Lebanon, Cilicica fir and Brutian pine trees, 
respectively. The values of the RMSE% ranged from 
7.908% to 7.975% for the Cedar of Lebanon trees, from 
6.838% to 6.954% for the Cilicica fir trees and from 
6.171% to 6.209% for the Brutian pine trees. Residual 
analyses showed that there were no detectable trends in 
the plots of residuals against the predicted tree heights. 
Although the six growth functions were fitted to the 
same data sets, they resulted in different asymptote co-

efficients (coefficient a in Table 3). In general, Gom-
pertz’s function yielded the smallest asymptote coeffi-
cients for all tree species, and the Chapman-Richards 
and Weibull models had similar asymptotes (Table 3).

According to the GRNN models of Table 3, the K = 10 
folds cross-validation method resulted to smoothing co-
efficient values equal to 0.0101, 0.0079 and 0.0100 for 
the Cedar of Lebanon, Cilicica fir and Brutian pine trees, 
respectively. Examination of the final GRNN models 
performance criteria suggested that the selected models 
were successful in describing the relationship between 
height and diameter at breast height, as indicated by the 
low values of Bias, MAD, MSE and RMSE% and the 
high values of r. The results of Table 3 for the develop-
ment data set, indicate that the GRNN models gave the 
most accurate estimations for all species. The GRNN 
model gave 0.78% more accurate estimations than the 
Korf/Lundqvist non-linear model, 0.85% more accura-
te estimations than the Gompertz non-linear model and 

Table 3. Parameter estimates and performance criteria of the six weighted nonlinear height-diameter models and performance 
criteria of the generalized regression neural network models that showed the best quality of fit for the three tree species and for 
the development data sets

1  Model
Cedar of Lebanon (CL), n = 251

a b c r Bias 
(m)

MAD 
(m) MSE RMSE 

%

Chapman-Richards 31.331 2.354 1.145 0.9929 –0.0024 0.3731 0.2359 7.921
Weibull 30.964 2.318 1.090 0.9929 –0.0022 0.3732 0.2361 7.923
Exponential 42.088 –0.434 0.105 0.9930 –0.0029 0.3730 0.2353 7.909
Modified logistic 39.249 2.607 1.249 0.9930 –0.0002 0.3729 0.2354 7.911
Korf/Lundqvist 61.963 0.762 0.537 0.9930 –0.0021 0.3734 0.2352 7.908
Gompertz 28.016 2.214 3.955 0.9929 –0.0059 0.3771 0.2392 7.975
GRNN – – – 0.9942 –0.0002 0.3229 0.1915 7.130

Cilicica fir (CF), n = 264

Chapman-Richards 29.400 3.078 1.530 0.9941 0.0015 0.3184 0.1896 6.883
Weibull 28.019 3.238 1.323 0.9940 0.0052 0.3166 0.1887 6.868
Exponential 42.006 –0.416 0.069 0.9939 0.0050 0.3229 0.1921 6.930
Modified logistic 34.884 4.007 1.529 0.9940 0.0057 0.3205 0.1907 6.904
Korf/Lundqvist 48.753 0.533 0.725 0.9939 0.0104 0.3254 0.1935 6.954
Gompertz 27.664 2.586 4.266 0.9941 0.0029 0.3128 0.1871 6.838
GRNN – – – 0.9965 0.0180 0.2795 0.1437 5.990

Brutian pine (BP), n = 354

Chapman-Richards 29.128 2.591 1.128 0.9950 0.00007 0.3429 0.1891 6.173
Weibull 28.829 2.575 1.079 0.9950 –0.0012 0.3431 0.1892 6.174
Exponential 38.320 –0.373 0.086 0.9950 0.0037 0.3428 0.1890 6.172
Modified logistic 35.447 3.235 1.273 0.9950 0.0006 0.3428 0.1890 6.171
Korf/Lundqvist 48.349 0.566 0.621 0.9950 0.0061 0.3436 0.1893 6.176
Gompertz 27.051 2.062 3.966 0.9950 –0.0056 0.3486 0.1913 6.209
GRNN – – – 0.9956 0.0026 0.3243 0.1648 5.760
1  Weighted models.
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0.41% more accurate estimations than the modified lo-
gistic non-linear model for the Cedar of Lebanon, Cili-
cica fir and Brutian pine trees, respectively.

In order to perform equivalence testing for the mo-
dels of Table 3, the coverage probabilities of the equi-
valence regions for the intercepts and the slopes were 
calculated. The two one-sided confidence intervals for 
the intercept and the slope of each model were calcula-
ted using a non-parametric bootstrap analysis so as the 
intervals not depend on assumptions such as the correct-
ness of the model form, the independence of the residu-
als, etc. The proportion of times that the bootstrap samp-
le intercepts were contained within the region of equi-
valence Eq0 was 1.000 for all models and species. The 
proportion of times that the bootstrap sample slopes were 
contained within the region of equivalence Eq1 were 
more than the desirable level of 0.949 (desired experi-

ment level α = 0.05) for all models and species. There-
fore, it is concluded that the null hypothesis of dissimi-
larity is rejected, for all models and species, providing 
a quantitative confirmation of the models utility in esti-
mating the total tree-height of the three species.

Table 4 presents the empirical two one-sided 97.468% 
intervals CI0 and CI1 corresponding to the joint 95% in-
tervals for the intercept and the slope, respectively and 
the regions of equivalence Eq0 and Eq1 for the intercept 
and the slope, respectively, for all models and species. 

The CI0 and CI1 intervals are contained within the Eq0 
and Eq1 regions of equivalence, for all models and spe-
cies, strengthening the aspect of suitability of the models 
(Table 4). Additionally, a graphical examination of the 
intercepts and slopes distributions of the 1000 bootstrap 
samples was conducted and gave acceptable shapes for 
both the intercepts and slopes for all species, while the 

Table 4. Empirical two one-sided 97.468% intervals CI0 and CI1 corresponding to the joint 95% intervals for the intercept and 
the slope, respectively and regions of equivalence Eq0 and Eq1 for the intercept and the slope, respectively, for the development 
data sets of all species

Model 

1 Cedar of Lebanon (CL)

CI0 limits Eq0 limits CI1 limits Eq1 limits

lower upper lower upper lower upper lower upper

Chapman-Richards 6.074 6.189 6.010 6.225 0.986 1.015 0.98 1.02
Weibull 6.067 6.191 6.010 6.225 0.985 1.017 0.98 1.02
Exponential 6.069 6.191 6.010 6.225 0.984 1.015 0.98 1.02
Modified logistic 6.073 6.193 6.010 6.225 0.985 1.015 0.98 1.02
Korf/Lundqvist 6.071 6.191 6.010 6.225 0.984 1.014 0.98 1.02
Gompertz 6.078 6.187 6.010 6.225 0.992 1.019 0.98 1.02
GRNN 6.079 6.184 6.010 6.225 0.992 1.019 0.98 1.02

2 Cilicica fir (CF)

Chapman-Richards 6.271 6.379 6.199 6.452 0.981 1.017 0.98 1.02
Weibull 6.277 6.384 6.199 6.452 0.982 1.016 0.98 1.02
Exponential 6.277 6.383 6.199 6.452 0.986 1.013 0.98 1.02
Modified logistic 6.277 6.387 6.199 6.452 0.982 1.017 0.98 1.02
Korf/Lundqvist 6.281 6.391 6.199 6.452 0.981 1.018 0.98 1.02
Gompertz 6.299 6.391 6.199 6.452 0.989 1.020 0.98 1.02
GRNN 6.299 6.391 6.199 6.452 0.989 1.019 0.98 1.02

3 Brutian pine (BP)

Chapman-Richards 7.001 7.091 6.904 7.186 0.992 1.009 0.98 1.02
Weibull 6.998 7.092 6.904 7.186 0.992 1.010 0.98 1.02
Exponential 7.007 7.094 6.904 7.186 0.992 1.008 0.98 1.02
Modified logistic 7.002 7.089 6.904 7.186 0.992 1.009 0.98 1.02
Korf/Lundqvist 7.004 7.097 6.904 7.186 0.991 1.009 0.98 1.02
Gompertz 6.993 7.084 6.904 7.186 0.993 1.010 0.98 1.02
GRNN 7.007 7.088 6.904 7.186 0.994 1.009 0.98 1.02
1 Regions of equivalence: Eq0  [6.010, 6.225], Eq1  [0.980, 1.020]. 2 Regions of equivalence: Eq0  [6.199, 6.452], Eq1  [0.980, 1.020]. 
3 Regions of equivalence: Eq0  [6.904, 7.186], Eq1  [0.980, 1.020].
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bootstrap sample intercepts were contained within the 
region of equivalence for all models, and the proportion 
of times that the bootstrap slopes were contained within 
the region of equivalence was acceptable for all models.

In order to validate all models predictive ability to a 
new set of data, the performance criteria of all weighted 
models were calculated for the validation data sets 
(Table 5). It can be seen that GRNN model produced the 
lowest values of Bias, MAD, MSE and RMSE%, for all 
species, while the Korf/Lundqvist non-linear model gave 
the highest values of MAD, MSE and RMSE% for the 
Cedar of Lebanon and the Cilicica fir trees. The Gom-
pertz non-linear model gave the highest values of MSE 
and RMSE% for the Brutian pine trees.

Further examining the predictive ability of the models, 
the 45-degree line plots were produced for all models 
and species (Fig. 3). As can be seen (Fig. 3), all models 
tended to make an angle of 45 degrees with the axes, 
meaning there was no significant difference between the 
measured and the predicted values. Since the construct-

ed models never saw the data in the validation set, the 
good predictions on these data demonstrated the ade-
quacy and the potential of all models to estimate the total 
tree-height values. All the non-linear growth functions 
produced similar proximity of points with slopes very 
close to 45 degrees. It is worth noting that the GRNN 
models provided the most accurate predictions with the 
closest to 45 degrees values, for all species. 

Discussion

Knowledge of tree heights such as total height is fun-
damental for developing growth and yield models in 
forest stands. Based on their appropriate mathematical 
properties, six non-linear growth functions were evalu-
ated for estimating total tree-height and found to perform 
equally well, resulting to RMSE% values from 6.17 to 
7.98 for all different species. GRNN modeling was used 
as an alternative approach to fitting non-linear data. Dur-
ing the last ten years or so GRNN modeling approach 

Table 5. Performance criteria of all height-diameter models for the three tree species and for the 
validation data set

1 Model
Cedar of Lebanon (CL), n = 71

r Bias MAD MSE RMSE (%)

Chapman-Richards 0.997945 0.06794 0.20999 0.07298 4.2498
Weibull 0.997942 0.06851 0.21048 0.07331 4.2594
Exponential 0.997944 0.06681 0.20924 0.07299 4.2501
Modified logistic 0.997942 0.06949 0.21009 0.07359 4.2676
Korf/Lundqvist 0.997915 0.06488 0.21070 0.07425 4.2866
Gompertz 0.997960 0.06936 0.21068 0.07148 4.2060
GRNN 0.997880 0.05236 0.19491 0.06869 4.1231

Cilicica fir (CF), n = 65

Chapman-Richards 0.996379 0.11028 0.26871 0.15873 5.4462
Weibull 0.996366 0.11309 0.26871 0.15978 5.4642
Exponential 0.996398 0.11945 0.27248 0.15976 5.4638
Modified logistic 0.996382 0.11673 0.27146 0.15972 5.4632
Korf/Lundqvist 0.996371 0.12254 0.27615 0.16226 5.5064
Gompertz 0.996373 0.11003 0.26552 0.15936 5.4569
GRNN 0.997451 0.09450 0.24222 0.10566 4.4434

Brutian pine (BP), n = 132

Chapman-Richards 0.998701 –0.04829 0.19697 0.06613 3.2115
Weibull 0.998698 –0.04979 0.19719 0.06638 3.2176
Exponential 0.998704 –0.04294 0.19730 0.06547 3.1954
Modified logistic 0.998705 –0.04652 0.19751 0.06577 3.2028
Korf/Lundqvist 0.998684 –0.04079 0.20015 0.06620 3.2134
Gompertz 0.998682 –0.05529 0.19923 0.06765 3.2484
CRNN 0.998885 –0.03496 0.17884 0.05578 2.9495
1 Weighted models. 
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Figure 3. 45-degree line plots for the validation data set for all weighted models and tree species.
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has been gained the interest along with an ever increasing 
array of practical applications in the field of environmen-
tal and forest modeling. Specifically, GRNN models have 
been successfully used for estimating leaf wetness predic-
tion to forecast plant disease (Chtioui et al., 1999), for 
mapping the biomass of tropical rain forest (Foody et al., 
2001), in daily-suspended sediment estimation (Cigizo-
glou and Apl, 2006), for estimating the transpiration of 
cherry trees (Li et al., 2009), etc. However, the imple-
mentation of the GRNN modeling approach in tree height 
prediction is limited. According to the authors’ knowledge 
no work has been reported that address the above issue. 
As a challenge for further research in the topic of GRNN 
modeling implementation to real data, in this work three 
different GRNN models were constructed and were found 
superior to non-linear growth functions, providing the 
highest estimation ability with RMSE% values from 5.69 
to 7.13, for all different species. Although the results 
referred to the specific three tree species in Bucak Forest 
Enterprise, this research could be a basis for further re-
search by highlighting the applicability of GRNN’s in 
tree height predictions. In general, GRNN modeling of-
fers significant advantages over the non-linear regression 
modeling. One of the most useful is their ability to learn 
from data including an effective manner to manage com-
plex, non-linear systems a feature, which is not the case 
of statistical regression models where an appropriate non-
linear function must first be found, meaning that they do 
not require assumptions about the form of a fitting func-
tion. The estimation of the joint probability density 
function is derived from the training data set with no 
preconceptions about its form. This characteristic makes 
the system perfectly general. Furthermore, GRNN is 
consistent (Cigizoglu and Alp, 2006). GRNNs are simple 
in their application, since the smoothness parameter is 
the only parameter of the procedure of which the optimal 
value is subject to a research. However, the σ parameter 
can influence considerably the performance of the GRNN 
model. Therefore, considerable effort has to be spent for 
the proper selection of its value.

The adjustment of the equivalence tests indicated that 
all models were sufficient for describing the total height-
diameter relationship for the species analyzed, providing 
a quantitative confirmation of the models utility in esti-
mating the total tree-height of the three species. 

Finally, the validation of the models predictive ability 
to a new set of data provided the lowest values of Bias, 
MAD, MSE and RMSE%, for all species, for the GRNN 
models, showing the indication that GRNN models are the 
most reliable height-diameter models for all three species. 

Rational directions and indications on a more general ap-
plicability of the proposed GRNN models could be con-
sider the very good performance of the models and their 
high accuracy of the tree height predictions using a totally 
different data set from the same forest (validation data set).

Conclusions

Nonlinear growth functions have been commonly used 
for modeling tree height-diameter relationship. Develop-
ment and analysis of six nonlinear height-diameter models 
fitted to three tree species in Western Mediterranean Region 
Forests of Turkey show that most concave and sigmoidal 
functions are able to accurately describe tree height-diam-
eter relationship. Generalized regression neural network 
models were used as an alternative approach to fitting non-
linear data, due its ability to fit complex nonlinear models 
while these models do not have to be specified in advance, 
like other nonlinear modeling techniques such as regression 
analysis. GRNN model provide the highest estimation 
ability, in terms of MSE and RMSE%. The equivalence 
testing which was used in order to further validate the se-
lected models, showed that all models could be used for 
accurate total height estimation. Validation of all con-
structed models using independent data sets indicated that 
non-linear models gave satisfactory results for all species, 
while GRNN models were found to be superior to all mo-
dels, in terms of their predictive ability. Furthermore, a 
GRNN model, based on artificial networks associative abi-
lity, is generally well fitted to missing or inaccurate data, 
once it has been developed. It is worth noting that these 
types of data are frequently faced in forest-data measure-
ments. Finally, all proposed models could also be utilized 
to predict total tree-heights, missing tree heights from field 
diameter measurements, and could significantly help for 
estimating individual tree total volume. 
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Appendix. Generalized Regression Neural Network Implementation  
for total tree height estimation

Input layer: is used to distribute the input diam-
eter values to each node of the pattern layer.

Pattern layer: consists of n nodes, where n is the 
number of samples within the training set. In this layer 
the distances (di2) are calculated (Eq. 2).

Summation layer: consists of two nodes. The 
input to the first node is the nominator of the Eq. 3, 
while the input of the second node is the denominator 
of the Eq. 3.

Output layer: receives two summations from the 
previous layer and divides them according to Eq. 3, 
in order to get an estimation of the total tree height.   

Numerical example: Considering the above GRNN 
architecture, suppose we have the data:

          (dbhi, hi)
Tree no 1: (0.20,   9.1)
Tree no 2: (0.40, 18.0)
Tree no 3: (0.60, 24.2)

Input
layer

Output
layer

1st hidden layer
(Pattern layer)

2st hidden layer
(Summation layer)

HestDBH
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The algorithm that handles the above data was written by the authors in C++:

#include<iostream.h>
#include<math.h>
#define N 3

main(){
	 double X[N],U[N],k[N],d[N][N],Y[N],yekt[N],sigma=0.01,t,t1;
	 double temp1=0,temp2=0;
	 int i,j;
	 double z;
	
	 for(i=0;i<N;i++){
		  cout<<”Insert tree num”<<i+1<<” diameter”<<”\n”;
		  cin>>X[i];
		  cout<<”Insert tree num”<<i+1<<” total height”<<”\n”;
		  cin>>Y[i];
		  Y[i]/=(pow(X[i],-1.1));
	 }
	 for(i=0;i<N;i++){
		  for(j=0;j<N;j++){
			   temp1+=X[j];
		  }
		  U[i]=temp1/N;
		  temp1=0;
		  k[i]=U[i]-X[i];
	 }
	 for(i=0;i<N;i++){
		  for(j=0;j<N;j++){
			   d[i][j]=k[i]*k[j];
		  }
	 }
	 for(i=0;i<N;i++){
		  for(j=0;j<N;j++){
			   t=d[i][j];
			   t1=2*sigma*sigma;
			   z=(double)t/t1;
			   d[i][j]=exp(z);
		  }
	 }
	 temp1=0;
	 for(i=0;i<N;i++){
		  for(j=0;j<N;j++){
			   temp1+=d[i][j]*Y[j];
			   temp2+=d[i][j];
		  }
		  yekt[i]=temp1/temp2;
		  yekt[i]*=pow(X[i],-1.1);
		  temp1=0;
		  temp2=0;
	 }
	
	 cout<<”y-est is:\n”;
	 cout<<yekt[0]<<»\n»<<yekt[1]<<»\n

Results: 
h1est =   9.099773 m
h2est = 20.01658 m
h3est = 24.20174 m


