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INIRODUCTION 

The phytoplankton monitoring program in the Virginia portion of the Chesapeake Bay 
was initiated in July 1985. A total of 13 stations (7 in the lower Chesapeake Bay and 6 in 

the major trtbutaries) are sampled on a regular basis to quantify phytoplankton (Birdsong 
et al., 1987; 1988). A primary objective of the monitoring program is to document long­
term trends in phytoplankton abundance and species composition and use this informa­
tion as one means of evaluating the effectiveness of pollution abatement strategies, 
particularly related to the reduction of nutrients to the Chesapeake Bay. 

The philosophy of monitoring programs is to consistently apply widely accepted quan­
tification techniques over long periods of time as the best means of determ1ning long-term 
trends in ecosystem states. At the inception of Virginia phytoplankton monitoring program,. 
a modified Oterriiohl inverted microscope technique (Marshall, 1984) was the method 
chosen for phytoplankton identification and enumeration. However, que$tlons have been . . 
raised ab~ut the effectiveness of this technique ·to adequately qu3*~ the smaller-sized 
phytopl~on cells, and it has b~n suggested that epffluore~ence nucroscopy is more. ef-. 
fective in this regard. As new and possibly improved techniqu~ are developed for quantify­
ing ecosystem state variables, it is a difficult decision if and how to accommodate these 
techniques into a well-established monitoring program, either by substituting new techni­
ques for old or adding the new techniques to the program. The advantages of gathering 
more and/or better information must be weighed against the added cost and established 
consistency of the historical data base. The present study compares two microscope tech­
niques, the Otermohl technique and epifluorescence microscopy, for their effectiveness in 
quantifying picophytoplankton in the ChesapeaI.ce Bay. 
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BACKGROUND· 

The food chain of the Chesapeake Bay is a phytoplankton based system. Directly or 
indirectly the living resources of the Bay are primarily dependent on the prima.Iy produc­
tion of phytoplankton. Although a sufilcient level of phytoplankton production is neces­
smy to sustain a productive Chesapeake Bay ecosystem, an overabundance of 
phytoplankton resulting from nutrient enrichment. a process lmown as eutrophication, 
may contribute to decreased water quality. In tidal freshwater portions of estuaries, 
eutrophication may be manifested in surface scums or mats of algae which may alter the 
taste of the water, clog water intakes and generally make the water unsuitable for many 
human uses (Paerl and Ustach, 1982; Expert Panel, 1985). An example in the Chesapeake 
Bay region is the tidal freshwater portion of the upper Potomac River where noxious algal 
blooms during the summer were a common occurrence (Expert Panel, 1985). In the saline 
portions of estuaries the manifestations of eutrophication are neither as dramatic nor as 
well documented (Neilson and Cronin, 1981 and references therein). In the Chesapeake 
Bay it is generally accepted that excess algal growth, stemming from nutrlent enrichment, 
contributes significantly to hypoxia, or lack of oxygen. especially in waters below the pyc-

. n_ocline. It is proposed that the excess algae sink through ·the water column and their sub­
sequent decomposition is instrumental in initiating the depletion of oxygen (Malone et al., 
1986, 1988). Eutrophication may also change the species composition of phytoplankton 
and in so doing alter the abundance of species higher up the food chain, some of commer­
cial importance. For example it has been proposed that nutrient enrichment leads to the 
dominance of small phytoplankton such as cyanobacterla and phytoflagellates compared 
to larger phytoplankton such as diatoms under unenrlched conditions. The former are 
thought to support a food chain terminating in jelly plankters flellyfish and ctenophores) 
while the latter support a food chain more likely to support finfish as the top trophic level. 

· :Phytoplankton may be classified on the basis of size as follows: picoplankton, 0.2-2.0 
J.UD effective diameter; nanopl~on, 2.0- 20 J.UD: mtcroplankton, 20-200 µm (Sieburth, 
1978). Since the 1930's the Utermohl technique (Utermohl, 1931) has been the method of 
choice for counting and identifying phytoplankton. Over the past three decades there have 
been numerous modifications to this methodology to improve its effectiveness (Utermohl, 
1958; Lund et al., 1958; Willen, 1976; Hasle, 1978; Hewes et al., 1984; Reid, 1983; Mar­
shall, 1984). Since this technique relies on phytoplalµtton cells in a water sample to settle 
into a counting chamber and uses a relatively low magnification for obseivation, its use 
has tended to emphasize the importance of the larger phytoplankton (microplankton and 
larger nanoplankton). However in the last decade, additional techniques for phytoplankton 
enumeration and identification have been developed such as electron microscopy, 
epifluorescence microscopy and flow cytometiy. A significant conclusion of the application 
of these techniques is the growing appreciation of the important role of smaller 
phytoplankton (pico and smaller nanoplankton) in the world's oceans (Platt and Li, 1986 
and references therein: Stoclmer and Antia, 1986) It is .now commonly accepted that in 
most of the world's oceans, the phytoplankton prima.Iy production and standing stock ts 
dominated by phytoplankton less than 3-5 J.UD in effective diameter. 
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Despite advances tn our understanding of phytoplankton size distribution and 
species composition ~ oceanic and coastal waters, comparatively little research of this 
type·has been performed in temperate estuaries. Studies in Narragansett Bay indicate 
that picoplankton (in this case cells less than 5 µm diameter) accounted for 29% of the 
total summer chlorophyll (Furnas, 1983). In both Long Island Sound and the lower York 
River, observations during the summer period of high production indicate that 
picoplankton account for about 10% of the total primary production (Carpenter and 
Campbell, 1988; Ray et al., 1989). However, obsetvations in the main stem of the 
Chesapeake Bay during the summer of 1989 indicate that phytoplankton less than 3 µm 
accounted for >800'6 of the phytoplankton standing stock based on chlorophyll (Haas et al .• 
1989). Clearly, considerable research remains to adequately define the role of small 
phytoplankton in the ecosystem dynamics of estuaries. 

In most instances in which the species composition of the picophytoplankton has 
been characterized, two basic types of cells tend to predominate - eukaryotes and coccoid 
cyanobacteria (prokaryotes) (Thomsen, 1986; Stockner and Antla, 1986). The former is 
comp~sed mostly of single celled, flagellated and ·non-flag~llated cells generally in the size 
range or. i-10 µm, and typically belonging to the algal classes cxyi>tophyceae, 
Chrysophyceae, Prymnesiopliyceae and Chlorophyceae (Thomsen, 1986). The latter are 
single celled, roughly spherical non-tiagellated cells ranging in size from 0.5-1.0 µm in 
diameter belonging to the genus Synechococcus (Stoclmer and Antia, 1986). These latter 
cells were first obsetved in the marine plankton in the late 1970's (Johnson and Sieburth. 
1979; Waterbury et al., 1979) and considerable research on their physiology and ecology 

;: . has ensued (Platt and Li, 1986). In many oceanic and coastal systems coccoid cyanobac­
f::' terta of the genus Synechococcus dominate both the picophytoplankton and total 
ri·· phytoplankton biomass and production (Fogg, 1987). Here again comparatively little work 
'; 

has been done ~n th~ role of coccoid cyanobacteria. in estuarine pl~on dynamics. How-
. ev.e!, recent ~bsetvations in the mafnstem Chesapeake Bay indicate ex:tremeiy high con- · 
centnitions of cyanobacteria during the summer months (ca.3-5 x 106 m1-11 (Haas et al., 
1989) compared to typical values of 105 m1-1 for co2.stal waters and 104 m1-1 for open 
ocean systems (Fogg, 1987, Stockner andAntla, 1986). Coccoid cyanobacteria are also 
commonly obseived in the tidal freshwater regions of coastal plain estuaries where, under 
certain conditions of water flow, temperature and nutrient loadings, they are the principal 
contributors to nuisance blooms in the summer months (Paerl, 1982; 1983; Expert Panel, 
1985). 
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MEIHODS AND MATERIALS 

Sampling 

For the purposes of this study, four stations were selected from the water quality sta­
tions to provide as large a range of salinity as possible (Fig 1). Station CB 7 .4 was on the 
bayside of the Chesapeake Bay Bridge Tunnel, Station TF 5.5 was Just downriver of the 
Hampton Roads Bridge Tunnel, Station RET 5.2 was in the vicinity of Jamestown Island 
and Station LE 5.5 was downriver from Hopewell, Virginia. Samples from each station 
were collected once a month during the regular water quality cruises from October 1987 
through December 1988. At each station a 15 liter composite water sample was obtained 
from 5 depths above the pycnocline (3 liters per depth) using a submersible pump. 

irtermohl Procedure 

1\vo sets of subsamples of 125 and 50:0 ml were taken and preserved with Lugols 
solution. The 500 ml sample was left to settle for 48 hqurs and a two step sipl\oning 
process started on the· second day to bring the· sample "to 250 ml .. After anoth~ 48 hour 
settling period the second siphoning resulted in a concentrate of less than 40 ml. This con­
centrate was thoroughly mixed and depending on the concentration of cells, ~ lmown 
volume of a sub-sample was transferred to a settling chamber used with the inverted 
plankton microscope. It was allowed to settle for another 24 hours before being placed on 
the microscope stage to be analyzed for cell counts. The sample was examined at 500.X 

' magnification for all cells in the size range between 1.5 and 3.0 µm. A counting procedure 
· · was followed using a minimum combmation of random fields (10) and cell counts (200). 

The 125 ml. sample was re~med to the laboratory, thoroughly mixecl and 2 ml were 
transferred from this sample to a settling chapiber, and allowed to settle for 48 hours. The 
cells were counted in a similar fashion as mentioned above with the inverted plankton 
microscope. Replicate samples for both the 125 and 500 ml samples were analyzed. Mean 
values were then used in plotting the cell concentrations. References to these two 
methodologies in the figures will be to the Otermohl for the 500 ml samples and modified 
Otermohl for the 125 ml set. 

Emphasis was placed on discernible cyanobacterla to be counted, with identification 
based on characteristics (cell size, cell shape, co~ony formation, etc.) as presented in Geit­
ler (1932), Desikachary (1959) and Prescott (1951). However, cells from other taxonomic 
categories could have been included in these counts, especially small spherical shaped 
cells. The size ranges of cells counted was mainly between 1.5 and 2.0 µm. Isolated cells 
less than 1.5 µm could not be counted with confidence as cyanobacteria. However, there 
were cells less than 1.5 µm in size associated in characteristic colonial formations, that 
were identified as cyanobacteria (e.g. Merismopedia). 

4 



Epifluorescence Procedure· 

A 40 ml aliquot was taken from the composite sample and either used fmmedfately for 
slide preparation or preserved with 2 ml of 6% glutaraldehyde (0.03% final concentration) 
for slide preparation within two days. This difference in procedure has no effect on 
cyanobacterial cell counts. The procedure for preparing slides for cell counts followed that 
of Haas (1982). A 2 ml sample is placed in a filter apparatus containing a prestained (Jr­

galan black 0.2% in 2% acetic acid) Nuclepore filter (0.2 µm pore size, 25 mm diameter). 
Proflavin (0.033% in distilled water) is added to the sample (20 µI/ml) followed by glutaral­
dehyde (6%, 50 µl/ml) ff the sample has not been previously preseived. D.API (4',6-
diamidino-2-phenyl-indole, 1 µg/ml in distilled water) is then added to the sample (100 
µI/ml) which is allowed to sit for several minutes. A vacuum is then applied to the sample 
( <15cm mercury) and after the meniscus disappears, the filter is placed sample side up on 
a standard microscope slide spread with ·a thin layer of low fluorescence immersion .oil 
(Resolve, Stephens Scientific). A small drop of oil is then placed on the filter and a cover 
slip gently pressed onto the filter. 

. . . . .. 
Gell counts·were made using a 2eiss standard microSC?ope equipped with a 50 W high 

-pressure mercuiy lamp, 12.5X calibrated ocular and either a 63X Plan Neofluar or a lOOX 
Neofluar objective. Three epifluorescence filter sets are used for identification. and 
enumeration of the plankton. Blue excitation (450-490 nm: Zeiss #487709) is used to ob­
seive the green fluorescence of cytoplasm and flagella resulting from the proflavin 
fluorochrome and the crlmson red autofluorescence of chlorophyll. Intra-violet excitation 
(365 nm: Zeiss #487702) is used to obseive the blue-white fluorescence of cell nuclei 
resulting from the DAPI fluorochrome. Neither of these excitation filters is the most effec­
tive for enum~rating cy~obacteria in estuarine waters. Cyapobacteria typically contain 

.. two a~ photosynthetic pigments, phycoerythrin (PE) and phyc~ (PC). Under 
b~ue light excitation PE-dominant cyanobacteria typically atitofluoresce gold-orange .while 
PC-dominant cyanobacteria are not readily visible. tinder green light excitation (910-560 
nm; Zeiss #487714) PE cyanobacteria autofluoresce a bright orange red, and PC cyanobac­
teria autofluoresce a bright climson red (Ray et al., 1989; Wood et al. 1985; Waterbury et 
al. 1986). Typically high salinity oceanic and coastal systems contain only PE cyanobac­
teria (Murphy and Haugen, 1985; Waterbury et al. 1986; Campbell and Carpenter, 1987: 
Booth, 1988) and previous observations in the James River indicated that the PE type are 
not observed below 10 ° /oo salinity (Haas and Paerl, 1988). PC/PE ratios in the lower 
Chesapeake Bay and lower York River have b~en reported to be ca. 3 and 8 respectively 
(Falkenhayn, 1990; Ray et al. 1989). Cyanobacterial counts reported for the epifluores­
cence technique in this report are total cyanobacteria counted under green light excitation . 
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RESULTS 

Cyanobacterial cell counts for each of the three countlng methods and the four sta­
tions are shown in Table 1. The data for each station are graphed in Figures 2a-d and for 
each counting method in Figures 3a-c. In general all three counting methods show a sum­
mer (June-August) peak in cyanobactelial abundance at each of the four stations. However 
the magnitude of the summer peak and temporal characteristics of the annual cycle differ. 
depending on the counting method used. The modified Otermohl method indicates con­
stant and relatively similar cyanobacterial concentrations from February - May at all four 
stations and relatively moderate increases into the summer (Ffg. 3a), resulting in a dam­
pened annual cycle, especially at the two estuarine stations. At LE 5.5 eleven of the fifteen 
values are between 15K and 30K (i.e. one doubling) and at station CB 7.4 fourteen of the 
fifteen values are between 15K and 60K (two doublings). 

The Otermohl method indicates a greater annual range in picoplankton abundance 
thal:1- the modified Otermohl method at all four stations; that is higher maxima and lower 
miruma. (Fig. 3b). At three stations the annual maxima occurs in July and the magnitude 
of each maxima substantially exceeds the ~espective abundances indicated by the modified 
Qtermohl method. At the fourtli station (LE 5.5): the annual maxima occurs in March and 
again the magnitude greatly exceeds that indicated by the modified technique. Three of the 
four stations (RET 5.2, CB 7.4 and LE 5.5) indicate an annual minimum during November, 
1987 and a winter-spring (February-April) peak in picoplankton abundance, a 
phenomenon that is not evident in the modified Otermohl data. At station RET 5.2 the 
winter-spring maxima exceeds the summer abundances. 

In general the epifluorescent counting technique shows the most pronounced annual 
range in cyanobacterial abundance of the three counting methods; and similar to the 
modified Otermohl method, indicates only.one annual maxhna (Fig. 3c). At all four sta­
tions cyanobacterial abundance decreased from the fall of 1987 to an annual minima 
during F~bruary-April. Concentrations increased rapidly during April-June and generally 
peaked during June-August. The most consistent difference between both Otermohl 
methods and the epifluorescent method occurred during the winter-spring. The distinct 
winter minimum in the epifluorescence counts is not reflected in the modified Otermohl 
counts which indicates relatively constant picoplankton abundances at all four stations 
during the first five months of the year. In addition, duting the period December 1987-
January 1988 the epifluorescence counts indicated decreasing cyanobacterial numbers at 
all four stations progressing to a February-April minima, while the Otennohl method indi­
cated increasing cyanobacterial abundance progressing to a February-April maxima at 
three stations. 

In order to more directly compare counting methods over the course of the study, 
counts for each of the three counting techniques were averaged for each station over the 
period March-November, 1988, a tlme for which data were available for each method (Fig. 
4). All three methods indicate the greatest number of picoplankton at the most upriver sta­
tion (TF 5.5). and the lowest abundances at the Bay mouth station (CB 7 .4). It is $0 ap­
parent that the epifluorescent method indicates approximately 2-3 times more 
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cyanobacteria at each station than either of the Otermohl methods.· averaged over :this 
time perloo. . 

The dominant cyanobacterial morphology obseived in this study was a coccold cell ap­
proximately one µmin diameter. At stations LE 5.5 and CB 7.4. this was virtually the only 
cyanobacterlal cell type obseived. occurring predominantly as a Single isolated cell. oc­
casionally as a doublet (i.e. recently divided) and less often as aggregations_ (clumps and 
chains) of 3-5 cells. Coccoid cyanobacteria were also the dominant morphological type ob­
seived at the two freshwater stations. However. in addition to the single and doublet cells. 
both stations exhibited colonial cyanobacterial strains consisting of large numbers of coc­
coid cells. The two most common colony forms were cells arranged in rows and columns 
much like a page of stamps (Mertsrrwpedta spp) or as dense aggregations containing 
hundreds of individual cells (Mtcrocystts spp.). Because ~fthe three-dimensional nature of 
the latter form. an accurate (?Ount of the total number of cells in a colony is problematical. 
Thus. during those times of year when this species ls common it may be expected that con­
fidence inteIVals for counts will be increased. 
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QISCUSSION 

The basic premise of the Ftermohl cell counting method fs that in processing the 
algal flora a representative subset will be concentrated on the bottom plate of a settling 
chamber. This chamber fs placed on the stage of an inverted light microscope to allow the 
bottom plate to be examined. The major criticism of this technique fs that the smaller 
plankton (picoplankters and smaller nanoplankton) due to their size. their _low specific 
gravity and large surface area to volume ratio. will not completely settle to the bottom plate 
and therefore will not be adequately enumerated. Those smaller forms that do settle out 
may be obscured by the settled detrital material present in the chamber. It fs also pos­
sible that the fixatives typically employed in the Ftennohl method may destroy the more 
fragile. smaller algae (van der Veer. 1982). 

Another problem in the use of the Otermohl method fs the inability to distinguish be­
tween pico- and nanoplankton heterotrophs ·and autotrophs. Small flagellates may be 
autotrophic (contain photosynthetic pigments) or heterotrophtc (contain no photosynthetic 
pigments). and in sQme instances the latter may equal or exc~d the former in ~bundance. 
Small cyanobacteria (autotrophs) ·are roughly the· same size .. ~ bacteria ·(lieterotrophs), and 
in this case a speciflc colonial formation, shape and s~ ts necessary for identification and 
enumeration .of cyanobacteria as autotrophs. In order to recognize the presence of cells 
that cannot be categorized with assurance as either heterotrophs or autotrophs with the 
Otermohl method. many investigators have chosen to place such cells in general size 
categories. Marshall (1984) has used general categories for cells where identification of 
species or trophic mode was not possible and therefore were not included in other counts. 
He placed these cells in size groups as: less than 3 µm. 3-5 µm and 5 to 10 µm. The lower 
s~ range for cells ~ounted was 1.5 µm'(Marshall. 1988; Marshall and ~slnghe. 1989) 
so. unles~ cells o~ smaller ~erisions were recognfze.d by their colonial. traits, they were not 
counted .... Th1:1s there was a ~onsidemble under estimation of cell munbers for the 
picoplankton component of the phytoplankton (Birdsong et al., 1988). Despite the poten­
tial for underestimating these cells. in most instances the unidentified. 1.5-10 µm size 
component constituted 50-7QOA, of the total phytoplankton counts (Birdsong et al .• 1987; 
1988; Marshall and Alden. 1990). 

A variety of studies over the past decade and more have demonstrated the cUminished . 
efficacy of the Otermohl method to enumerate small phytoplankton In natural samples 
(Ballantine. 1953; Bernhard et al., 1967; Booth et al., 1982; Davis and Sieburth, 1982; 
Hewes et al., 1984; Paerl. 1977; 1978; Reid, 1983). Davis and Sieburth (1982) determined 
that the Otermohl technique will severely underestimate counts of heterotrophic organisms 
at the lower end of the nanoplankter size range. Paerl (1978) using fresh water samples 
compared various counting methods and found the Otermohl procedure and membrane fil­
ter methods as underestimating counts of cells less than 5 microns In size. He recom­
mends an autoradiographic method to improve objectivity and be more accurate. Reid 
(1983) used the Otermohl method for estlmatlng pico and nanoplankton biomass and also 
found this method underestimated the picoplankton and noted the problem was associated 

·. with the non-settling cells. She suggested the Otennohl method should be supplemented 
with either a membrane filter protocol; or epffiuorescence procedure. for analyzing the 
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picoplankton to more fully cover the phytoplankton. In contrast. Dayis and Sieburth 
(1982) indicate that epifluorescence microscopy has insufficient resolution to be of value in. 
the species identification of even the dominant nanoplanktors. a task they suggest requires 
the use of electron microscopy. 

Epifluorescence microscopy overcomes many of the deficiencies of the Ftermohl 
method for counting picophytoplankton. Since all of the particles in a water sample. ex­
cept perhaps for viruses. are retained on the membrane filters, the entire picoplankton as­
semblage is available for enumeration. At the magnifications typically used, cells as small 
as heterotrophic bacteria (ca. 0.5 µm effective diameter) may be accurately counted. With 
the use of appropriate fluorochrome stains, small flagellates are easily partitioned between 
heterotrophic and autotrophic forms (Haas, 1982). For both groups the capability for 
species identification using epifluoresence microscopy is as good or better than with the 
Ftermohl method. Electron microscopy remains as the necessary procedure for many 
species identifications at this level. ·eoccoid cyaDobacterla are readily distinguished from 
het~rotrophic bacteria and other algae on the bases of a distinct autofluoresc~nce and size 
respectively. 

During the period of peak summer cyanobacterlal abundance, the epifluorescence 
and Otennohl methods appeared to compare best at the most upriver station and least well 
at the lower Bay station. In general the Otermohl method indicated lower numbers of 
picoplankton (which included cyanobacterla) and a shorter duration of the summer maxi-

. ma than did the epifluorescence method at the two estuarine stations. This is most likely 
, a reflection of the presence or absence of colonial cyanobacterlal taxa at these stations. At 

: ·_-_ the two estuarine stations the predominant cyanobacterial cell type is the s4Jgle, isolated 
·, - cell. Measurem~nts of cyanobacterlal cell size during the summer of 1989 from the 

· nµunstem of the lower Bay"using image analysis indicated mean cell diameters·in the . 
range of0.7-0.9 µm.(Falkenhayn, 1990)." Since.the lower size limit for the Otermohl techni­
que· is ca. 1.5 µm for non~coionial forms the ·effectiveness of this method is likely com­
promised for this type of cell. On the other hand, the presence of colonial cyanobacteria at 
the two upriver stations and especially at the most upriver station, is likely to enhance the 
capability of the Otennohl method to adequately assess cyanobacterlal numbers. Since 
the colonies constitute a larger mass, they are more likely to settle out into the counting 
chambers than are individual cells or doublets. Also, because of their larger size the 
colonies are more likely to be noticed among the detrltal materlal and the indi\1dual cells 
enumerated. Thus, one might expect a better agreement between the epifluorescent and 
Ftermohl methods at these stations. 

A distinct characteristic of the cell count data is the large annual range in the number 
of cyanobacterla, spanning four orders of magnitude (i.e. 102 - 106 m1·11. Counts of 
eukaryotic algae at these stations typically range between 102 - 103 and only rarely exceed 
104 mr1 (Birdsong et al., 1987; 1988; Marshall and Alden, 1990). Thus, during the sum­
mer period of peak cyanobacterlal abundance (105-106 mr 1), the Inclusion of eukaryotic 
picophytoplankton (ca. 103 mr 1) tn the Ftermohl cell counts would Increase the cyanobac­
terlal numbers only minfmally, and their influence would be greater dunng other seasons . 

.. Because of the small size of the cyanobacterial cells, their contribution to total algal .. 

·9 



-~ 

biomass or production ts likely to be small at cell concentrations similar .to those for 
eukaiyotic algae. However at peak abundances. cyanobacterta may constitute an impor­
tant if not dominant component of the total phytoplankton assemblage. In the mafnstem 
of the lower Chesapeake Bay during summer 1989, cyanobacterial abundances on the 
order of 3-5xl06 mr 1 were estimated to constitute 40-9QOA, of the total phytoplankton 
biomass (Falkenhayn and Haas. 1990). 

Discerning annual cycles in abundance in dynamic aquatic environments from 
monthly samples is problematical at best. A variety of shorter term physical and biological 
processes can influence cell abundance and obscure any seasonal cycle. For example ad­
vectlve processes may transport an adjacent water mass with a different algal composition 
and abundance into the sampling site for a short period of time Just when a sample is col­
lected. Growth and mortality may also obscure seasonal trends. During the summer 
months cyanobacterial growth rate$ range between 1 and 2 doublings per day (Falken­
hayn. 1990).·· Thus four doublings (i.e. about two days), in the absence of mortality or . 
other losses such as sinking or advection. will increase cell numbers from ·1x 105 mr 1 t9 
1.5 X 106 m1-1

• Gr.azipg mortality is ~o lJkely to be enhanced sin~ the probaJ.?le ~~ 
of the cyanobacteria are protozoans with higher growth rate$. and hence·shorter ~sponse 
times; than larger zooplankton. 

Despite these concerns, the most consistent feature of all three countfug techni­
ques is the presence of a summer picoplankton peak in cyanobacterial abundance at all 
four stations. The summer dominance of cyanobacteria in tidal freshwater systems is well 
established (Paerl, 1982; Paerl and Ustach. 1982) A distinct summer maximum and winter 
minimum in cyanobactertal abundance also appears to be a consistent feature of 
temperate estuarine and coastal waters, occurring fn most all instances ~ which such 
count$ have been µiade (Ray et al., 1989). What is unusual about the Chesapeake Bay is 
the ·high numbers ·of cyanobacterla obsetved. In most temperate estuarine and coastal sys­
tems seasonal maxima are 0~ the order of 104-105 mr1 and cyanobacterlal densities ex-· . 
ceeding 106 mr 1 are rarely reported in the literature. In addition to the present study, 
obsetvations in the mainstem of the mesohaline portion of the Chesapeake Bay during the 
summer of 1989 indicated cyanobacterial numbers in excess of 4 x 106 m1-1• It appears 
that the Chesapeake Bay contains extraordinarily high numbers of cyanobacteria during 
the summer months. 

Although each of the counting methods indicate a summer peak of cyanobacterlal 
abundance, there are differences, often substantial, with regard to other aspects of the an­
nual cycle among the various techniques. The modification of the Otermohl technique in 

the present study was for the purpose of enhancing the capability for this technique to 
count picoplankton. In most instances (40 of 60 samples) the modified Otermohl method 
indicated greater numbers of these cells than did the Otermohl method. However on at 
least one occasion at each station when the Otermohl technique indicated a distinct peak 
fn abundance, the modified method substantlally (x = 17%) under-counted these cells. 
These large differences between the two methods coincided with the high seasonal con­
centrations of diatoms from the spring and summer populations.- and we~e associated with 

. periods of growth maxima for other phytoplankters and the plcoplankton. However, it is 
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not inimediately apparent why ~e modilleq Otermohl method indicates substantially fewer 
cells than the Otermohl technique for these samples. 

The greatest discrepancy among the three counting techniques occurred in the late 
winter-early spring period. At all four stations the epilluorescent method indicated the 
lowest yearly counts during this period, while the Otermohl technique indicated a seasonal 
peak in abundance at three out of four stations, the most uprtver station being the excep­
tion. The modified Otermohl method indicated largely constant numbers throughout this 
period and at station RET 5.2 did not reflect the seasonal peak in picoplankton indicated 
by the Otermohl method. In all cases, the Otermohl methods indicated much greater con­
centrations of cells during this tlme period than did epJfluorescence microscopy. Although 
the emphasis in these counts was directed to the cyanobacteria, there may have been cells 
included in this series from other taxonomic groups. For instance, small, non-flagellated 
chlorophyceans. less than 3 mm in size are present in ~ese waters. Chlorophyceans in 
general will have major spring development (Birdsong et al., 1987) that begins in late 
winter and their cells may have been included in these samples. Since the Otermohl proce­
dure itself does nC?t distinguish ~obacteria from ot;her cells, other cells may be .a part of. · · 
tbe total counts~ The lack of a -s~ar pulse at this time in the modffled Otemiohl ·method 
may be a procedural phenomenon and needs further investigation. As discussed above, a 
variety of observations in temperate coastal and estuarine systems indicate a seasonal min­

imum for cyanobacteria during this time of year. However, Shapiro and Haugen (1988) in 

Boothbay Harbor, Maine report a winter peak in cyanobacterial abundance in that estuary. 
Marshall (1988). Marshall and Alden (1990) and Birdsong et al. (1987: 1988) report a 

, variety of fall, winter and spring cyanobacterial maxima (including filamentous and 
_ . colonial forms) in Back Bay, Virginia the lower Chesapeake Bay and tributaries with peak 

abund3:11ces on the order of 1-5 x 104 m1-1
• If such a winter-spring cyanobacterial bloom 

is occurring in the Chesapeake Bay ~d its .tributaries, then ~e pigment o~ fluorescence ·. 
charac~enstics of the cyanobacteria are such that they are apparently not· being 
enume~ted by the epifluoresct::nt technique. 

At present, it is not clear to what extent the high concentrations of coccoid cyanobac­
teria in the saline portions of the lower Chesapeake Bay represent a normal condition for 
temperate estuaries or a response to n~trient enrichment. Cyanobacteria, both filamen­
tous and coccoid. are well lmown as indicators of nutrient overenrichment in tidal fresh­
water portions of es0:1aries and in lakes. It is also likely that ~e general decline in 
cyanobacterial abundance from Hopewell to the Chesapeake Bay mouth reflects the 
decreased nutrient availability which typically occur along such estuarine salinity 
gradients (Fisher et al., 1988). 

On the other hand, coccoid cyanobacteria in oceanic areas are typically most abun­
dant in stable, oligotrophic areas where nutrients are below conventional detection limits. 
It is proposed that under these circumstances, cyanobacteria are sustained primarily by 
nutrients which are recycled by an active microbial plankton component. In a like fashion, 
the primary seasonal peak of cyanobacteria in the lower Chesapeake Bay occurs during 
the period of maximal annual vertical stability of the water column when nutrient input via 
runoff and standing stock -of nutljents are both at their annual m.tnmia. Thus~. cyailobac-
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teria app~ to dominate when the estuary is in its most "oligotrophic" state. In this cir­
cumstance as well. cyanobacterta would appear to .be prfmarily dependent on recycled 
nutrlents. If this is the case. then the peak summer abundance of cyanobacte:rJa is probab­
ly not a direct respo;nse to the advectlon of nutrients into the Chesapeake Bay but is com­
plicated by the role of the estuarine food web in conseIVing and recycling essential 
nutrlents. 
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SUMMARY 

1. A comparison of three methods for counting picophytoplankton in the lower 
Chesapeake Bay estumy (Otermohl, modified Otermohl and eplfluorescence micros­
copy) indicates significant dffferences in algal abundances and temporal cycles among 
the methods. 

2. A modified Otermohl me~od quantified a greater number of picophytoplankton than 
did the Otermohl method in 66% of paired samples, but on four occasions when the 
latter method indicated a substantial temporal peak in abundance, the modified 
Otermohl method undercounted by an average 83%. The Modifled Otermohl method 
would appear to provide no advantage in counting picoplankton. 

3. At three out of the four stations sampled the Otermohl ~ethod indicated summer 
.. maxima and a smaller late winter-early spring peak in abundance; During summer 
periods of maximal abundance the Otermohl counts most closely matched the 
ep~uorescence counts at those stations (freshwater) where colonial cyanobacteria 

."we~e most abundant ~d-IIJ.OSt under counted compareg.to the epifluorescence· · · 
method at those statiOllS.(estuartne) where single cyailobacterial cells 1~ than 1.5 
mm were the predominant form. 

4. At all four stations sampled, the epifluorescence method indicated a winter mJnJma 
and summer maxima in cyanobacterial abundance. At the estuarine stations the 
epffluorescence method indicated a longer duration for the peak abundance than did 
the Otermohl method. If a late winter-early spring peak in picophytoplankton oc­
curred, !hen the fl:uorescent characteristics of the cells were such _that they were ~ot 
befug··detected by epffluoresc~~e microscopy. 

. . . . . 
. . 

5. The epifluorescent procedure is recommended for the enumeration of autotrophic 
picoplankton cells, and specifically for the cyanobacteria in this size range. 

6. The Chesapeake Bay exhibits extremely high concentrations of cyanobacteria which 
may be related to water quality considerations, particularly aspects of nutrient enrtch­
~ent. A successful phytoplankton monitoring program should effectively enumerate 
picophytoplankton in genei:-al and coccoid cyanobacteria in particular. 
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~ Ta~le and Figure Legends 

Table I. Cyanobacterial cell counts. 

Figure 1. Station locations in the James River and lower Chesapeake Bay. 

Figure 2. Cyanobacterial abundance at stations TF 5.5 (A). RET 5.2 (BJ. LE 5.5 (CJ and CB 
7.4 (DJ using three different counting techniques. 

Figure 3. Cyanobacterial abundance at four sampling sites using the modified Otermohl 
(A). Otermohl (BJ and epilluorescence (CJ microscope methods. 

Figure 4. Cyanobacterial abundance averaged over the period March thr~ugh November. ·· 
1988 for each of the three microscope methods at the four sampling sites . 

. :• 

18: 



) ) )· 

TABLE I 

I2at.e. Staticn '.IE 5.5 Station BE'.I 5.2 Station LE !L 5 StatiQn ca 2.~ 
.month\year UM MUM EPI UM MUM EPI UM MUM EPI UM MUM EPI 

10/87 6·.51 2.55 5.80 0.52 1.49 7.00 0. 55. •. 2. 29 nd 0.22 4.61 2.10 
~1/87 6.41 1.65 2.90 0.28 0.88 nd 0 .12 · 2.11 4.05 0.19 1. 03 5. 60· · · 
12/87 7.32 5.27 0. 77 6.31 nd 0.15 2.30 nd nd 0.20 3.13 nd 

1/88 9.33 5.18 nd 3.65 .5.~ 1~. nd 2.76 ·. 2. 96 nd 0.55 3.68 nd 
2/88 3.27 4.67 nd 7.03 4~05· 0.22 4.66 2.18 0.10 3.84 2.31 0.17 
3/88 1. 65 4.41 0.54 17.00 .5.00 0.44 2. 79' 2.69 0.32 0.89 2.28 0.13 
4/88 6.90 4.44 0.27 11.10 s .. 46 0.20 2.10 2.15 · 0. 32 0.57 1. 85 1.13 
5i88 3.53 2.58 2.90 2.59 3.06 4.90 1.03. 2.11 20.20 0.58 1. 80 0.70 
6/88 18.50 10.20 205.40 5. 72 10.10 29.20 4.97 2.65 0.84 1.11 2.99 23.80 
7/88· 197.00 44.00 64.90 5.80 9.66 62.00 65.40· 6.08 so.so 65.30 6.10 63.10' 
8/88 6.00 23.50 78.90 13.20 25.'10 87.20 3.37 · 7.11 169.80 0.54 2.99 1.40 
9/88 11.30 29.10 37.50 5.59 5.11 29.60 3. 0·0 6.94 50.20 1. 06 3.91 36.40. 

10/88 15.80 34.80 43.30 7.00 ·. 1 .. 05 22.00 1. 63 1.69 1. 59 1.40 1. 97 3.18 
1'1/88 5.15 13.60 8.90 15.50 · 24 .. oo . 36. 30 2.33' 2.26 · 1.37 1.27 2.70 3.46 
12/~8 1. 69 8.~5 1.20 3.56 10.50 12.30 1.11 ~.36 nd 1.29 2.45 .nd. 

All values are cells X 104 ml-l ... 
· nd···- no data collected 
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