
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

Spring 2021 

Rethinking Cache Hierarchy And Interconnect Design For Next-Rethinking Cache Hierarchy And Interconnect Design For Next-

Generation Gpus Generation Gpus 

Mohamed Assem Abd ElMohsen Ibrahim 
William & Mary - Arts & Sciences, mohamedassemibrahim@gmail.com 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ibrahim, Mohamed Assem Abd ElMohsen, "Rethinking Cache Hierarchy And Interconnect Design For Next-
Generation Gpus" (2021). Dissertations, Theses, and Masters Projects. William & Mary. Paper 
1627047836. 
http://dx.doi.org/10.21220/s2-a01c-6214 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1627047836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1627047836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-a01c-6214
mailto:scholarworks@wm.edu


Rethinking Cache Hierarchy and Interconnect Design for Next-generation GPUs

Mohamed Assem Abd ElMohsen Ibrahim

Cairo, Egypt

Bachelor of Science, Cairo University, 2010
Master of Science, Cairo University, 2016

A Dissertation presented to the Graduate Faculty of
The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
May 2021



c© Copyright by Mohamed Assem Ibrahim 2021



APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Mohamed Assem Ibrahim

Approved by the Committee, May 2021

Committee Chair
Adwait Jog, Assistant Professor, Computer Science

College of William & Mary

Dmitry Evtyushkin, Assistant Professor, Computer Science

College of William & Mary

Bin Ren, Assistant Professor, Computer Science

College of William & Mary

Andreas Stathopoulos, Professor, Computer Science

College of William & Mary

Asit Mishra, Senior Deep Learning Computer Architect

NVIDIA

Adwait Jog



ABSTRACT

To match the increasing computational demands of GPGPU applications and to
improve peak compute throughput, the core counts in GPUs have been increasing
with every generation. However, the famous memory wall is a major performance
determinant in GPUs. In other words, in most cases, peak throughput in GPUs
is ultimately dictated by memory bandwidth. Therefore, to serve the memory
demands of thousands of concurrently executing threads, GPUs are equipped with
several sources of bandwidth such as on-chip private/shared caching resources and
off-chip high bandwidth memories. However, the existing sources of bandwidth
are often not sufficient for achieving optimal GPU performance. Therefore, it is
important to conserve and improve memory bandwidth utilization.

To achieve this goal, this dissertation focuses on improving on-chip cache bandwidth
by managing cache line (data) replication across L1 caches via rethinking the cache
hierarchy and interconnect design. First, this dissertation shows that efficient
inter-core communication can exploit data replication across the L1s to unlock an
additional source of on-chip bandwidth, which we call remote-core bandwidth. We
propose to exploit this remote-core bandwidth by investigating: a) which data is
replicated across cores, b) which cores have the replicated data, and c) how to
fetch the replicated data as soon as possible. Second, this dissertation shows that
if data replication is eliminated (or reduced), then the L1s can effectively cache
more data, leading to higher hit rates and more on-chip bandwidth. We propose
designing a shared L1 cache organization, which restricts each core to cache only
a unique slice of the address range, eliminating data replication. We develop
lightweight mechanisms to: a) reduce the inter-core communication overheads
and b) to identify applications that prefer the private L1 organization and hence
execute them accordingly. Finally, to improve the performance, area, and energy
efficiency of the shared L1 organization, this dissertation proposes a DC-L1
(DeCoupled-L1) cache, an L1 cache separated from the GPU core. We show how
the decoupled nature of the DC-L1 caches provides an opportunity to aggregate
the L1s and enables low-overhead efficient data placement designs. These optimiza-
tions reduce data replication across the L1s and increase their bandwidth utilization.

Altogether, this dissertation develops several innovative techniques to improve the
efficiency of the GPU on-chip memory system, which are necessary to address the
memory wall problem. The future work will explore other designs and techniques
to improve on-chip bandwidth utilization by considering other bandwidth sources
(e.g., scratchpad and L2 cache).
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Chapter 1

Introduction

Graphics Processing Unit (GPU) architectures have become increasingly popular for gen-

eral purpose computing because of their capability to provide high compute throughput at

a competitive power budget [5, 89, 69, 6, 74, 113, 68, 70, 99, 2, 1, 18, 56, 118]. Therefore,

GPUs have been employed in many computing systems, including many supercomputers

on Top500 [125] and Green500 lists [124]. Additionally, GPUs have become the default

choice for accelerating a large number of data-parallel applications in various fields such

as artificial intelligence [98, 117, 88], image/video processing [120, 31, 94, 95], physical

simulation [108, 14, 139], gene sequencing [85, 110, 129, 112, 127], financial comput-

ing [111, 87, 83], medical science [101, 118, 84, 29], and security-critical cryptographic

workloads [25, 76, 32, 130].

Unlike CPUs, which typically have limited multi-threading capabilities, GPUs launch

thousands of threads across multiple GPU cores to exploit the high thread-level parallelism

available in GPGPU applications and to mask the long memory latency of a single thread.

To serve these thousands of concurrently executing threads with their required data, GPUs

are dependant on the high bandwidth provided by their memory system. The GPU

memory system consists of two levels of on-chip hardware-managed caches, namely a per-

core private local L1 cache and a shared L2 cache. Additionally, the GPU memory system
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employs an on-chip software-managed scratchpad1. The L2 cache is shared across multiple

cache banks connected to memory channels. These memory channels work independently

of each other and the connected L2 bank(s) caches the data served by the corresponding

memory channel.

1.1 Problem Statement

To match the increasing computational demand of GPGPU applications and to improve

the peak compute throughput, the core counts in GPUs have been increasing as the

manufacturing technology improves. Another recent trend of scaling up the GPUs enables

more kernels from the same or different applications to concurrently execute on the same

GPU to improve the peak compute throughput. However, GPU performance ultimately

faces the famous memory wall [138]. For many workloads, these attempts to boost the

GPU compute capability is limited by memory bandwidth. As a matter of fact, the scaling

in the core count and the multi-kernel executions aggravates the problem. In particular,

with more cores and kernels, more threads can be launched to take advantage of such

compute power, which puts more pressure on the GPU memory hierarchy. Therefore, as

mentioned before, to serve the increasing memory-demands of thousands of concurrently

executing threads, many modern GPUs utilize several sources of bandwidth such as on-

chip private/shared caches and off-chip high bandwidth memories. However, the existing

sources of on-chip bandwidth are usually not sufficient and not efficiently utilized [47, 51,

96, 105, 60, 3]. A straightforward approach to mitigate this issue is to scale the on/off-

chip memory resources. However, memory bandwidth scaling is limited by the cost and

power budgets of the system [144, 126, 19, 93]. Additionally, the off-chip memories are

constrained by their I/O specifications. This makes the memory bandwidth a scarce and

valuable resource. Therefore, it is important to conserve and improve memory bandwidth

utilization. In this dissertation, we observe that the conventional memory hierarchy and

1Scratchpad is referred to as Shared Memory in CUDA terminology.
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interconnect design leads to several limitations and inefficient utilization of the available

on-chip bandwidth sources. We aim to understand these limitations and inefficiencies to

improve the utilization of the on-chip sources of bandwidth instead of (along with) naively

scaling the resources.

1.2 Opportunity

With the conventional GPU memory hierarchy, each GPU core is attached to a pri-

vate local (L1) cache and all cores in the GPU share banked L2 caches [10]. All cores

(and L1 caches) are connected to L2 banks. However, there is no explicit connec-

tion/communication between cores. We observe that such a cache/interconnect design

limits the efficient use of the on-chip cache bandwidth. Specifically, we observe that the

data required by one of the GPU cores (e.g., L1 read misses) can be also found in the

local L1 caches of other remote cores. This is essentially inter-core locality [59, 72, 28, 55],

which exists mainly because other GPU cores have previously requested the same data

(exact sharing) or nearby data in the same cache line (false sharing) and placed it in their

local caches [59]. We formally define inter-core locality as the ratio of L1 misses that can

be found in other L1 caches to total L1 misses. To illustrate the volume of inter-core

locality (i.e., cache line replication), we evaluate 37 applications from different benchmark

suites [86, 20, 26, 100, 48] under a baseline with the conventional memory hierarchy. Fig-

ure 1.1 shows that most of the evaluated applications possess varying degrees of inter-core

locality (up to 95% for AlexNet).
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Figure 1.1: The scope of inter-core locality (i.e., cache line replication) in GPUs.
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In this dissertation, we analyze and leverage such cache line (data) replication across

the L1 caches to improve their utilization, hence boost the on-chip bandwidth and the

overall throughput. Specifically, we consider inter-core locality as a double-edged sword.

On the one hand, inter-core locality can provide additional source of bandwidth. In par-

ticular, the remote cores are capable of supplying the data (given the replicated cache line

is stored in their L1 caches) and hence a potential source of memory bandwidth, namely

remote-core bandwidth. On the other hand, inter-core locality can be considered as waste

of caching resources, which leads to less effective cache capacity, and ultimately leading

to more requests to L2/memory and increasing the bandwidth consumption. Therefore,

in this dissertation, we dissect inter-core locality to boost the on-chip bandwidth in two

ways.

1. We consider inter-core locality as a positive opportunity and utilize the data copies

in the remote cores as additional sources of bandwidth. Instead of serving the L1

read miss at the L2, we can fetch the required data from a nearby remote core.

To show the potential performance benefits of unlocking remote-core bandwidth,

we evaluate an ideal scenario where a given core can fetch replicated data from a

remote core in zero cycles (i.e., no communication overhead). Figure 1.2a shows the

reply bandwidth received by each core in terms of L1 reply bandwidth and L2 reply

bandwidth, and the performance in terms of IPC.2 Both metrics are normalized to

a baseline with the conventional memory hierarchy. We observe an increase in the

L1 reply bandwidth because of utilizing the remote-core bandwidth. This results in

up to 2.1× improvement in performance. Additionally, we observe that exploiting

remote-core bandwidth reduces the pressure on L2 and off-chip memory. To this

end, this dissertation investigates how to efficiently exploit remote-core bandwidth

to boost on-chip bandwidth and overall performance.

2. We consider inter-core locality as a waste and aim to reduce/eliminate it to effectively

2L1 (L2) reply bandwidth is the number of replies received from L1 (L2) over the total execution time.
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Figure 1.2: Potential performance benefits of (a) unlocking remote-core bandwidth with
ideal inter-core communication and (b) eliminating replication across L1 caches with a
hypothetical cache design. Results are normalized to a baseline with the conventional
memory hierarchy.

increase the on-chip caching capacity, hence cache more data. For that, we study

cache and interconnect designs so that the GPU cores (and their L1s) collectively

reduce (or eliminate) data replication. This leads to higher hit rates, which improve

the on-chip bandwidth and overall performance. To show the potential performance

benefits of eliminating data replication across the L1 caches, we evaluate a hypothet-

ical cache design where all GPU cores access a single L1 cache (while maintaining

the total L1 cache capacity and bandwidth) to ensure no replication. Figure 1.2b

shows the performance scope under such impractical system in terms of IPC and

L1 miss rate normalized to a baseline with the conventional memory hierarchy. We

observe a significant drop in the L1 miss rate by up to 99%, which translates to a

performance boost of up to 7.9×. To this end, this dissertation investigates how to

efficiently eliminate/reduce data replication to boost on-chip bandwidth and overall

performance.

To enable both of these directions, we need to efficiently enable inter-core communi-

cation in GPUs. The following section details our contributions.
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1.3 Contributions

This dissertation focuses on utilizing the inter-core locality in the means mentioned above.

First, this dissertation shows how to utilize the replicated data in GPUs via efficient inter-

core communication to search the remote cores and fetch the required data. Second,

this dissertation makes a case for shared L1 caches in GPUs to eliminate data replication

across L1 caches and improve their effective capacity. Finally, this dissertation investigates

a renovated cache hierarchy and interconnect in GPUs to manage data replication across

the L1 caches while reducing the area and energy requirements. In the rest of this section,

we discuss these contributions in details.

1.3.1 Unlocking Remote-core Bandwidth in GPUs

This dissertation proposes to efficiently coordinate the data movement across cores in

GPUs to exploit the remote-core bandwidth [41]. However, this dissertation finds that the

efficient detection and utilization of the remote-core bandwidth presents several challenges.

Specifically, this dissertation addresses:

• Which data is shared (replicated) across GPU cores? To this end, this dissertation

proposes a novel PC-based Sharing Predictor.

• Which remote cores have the shared data? To this end, this dissertation proposes a

novel Supplier-based Core Selector.

• How to efficiently fetch the shared data? To this end, this dissertation proposes a

novel Two-level Probing technique.

1.3.2 A Case for Shared L1 Caches in GPUs

This dissertation introduces a new shared L1 cache organization, where all GPU cores

collectively cache a single copy of each cache line, eliminating data replication [39]. This

is achieved by allowing each core to cache only a non-overlapping slice of the entire address

range. Such a design is useful for significantly improving the collective L1 hit rates but
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incurs latency overheads from additional communication when a core requests data that

does not belong to its assigned address range slice. While many workloads can tolerate

this additional latency, several workloads show performance sensitivities. Therefore, this

dissertation develops lightweight communication optimization techniques and a run-time

mechanism that considers the latency tolerance characteristics of applications to decide

which applications should execute in private versus shared L1 cache configuration and

re-configures the caches accordingly.

1.3.3 A Case for Aggregated Decoupled L1 Caches in GPUs

This dissertation finds that the main source of the inefficient utilization of L1 caches

stems from the tightly-coupled design of GPU cores with L1s [40]. This leads to data

replication (as discussed before) and low per-core L1 bandwidth utilization. To address

these inefficiencies, this dissertation renovates the conventional GPU cache hierarchy by

proposing a new DC-L1 (DeCoupled-L1) cache – an L1 cache separated from the GPU

core. This dissertation shows how decoupling the L1 cache from the GPU core provides

opportunities for aggregating the DC-L1s to reduce data replication across the L1s and

increase their bandwidth utilization. This dissertation investigates:

• How can the DC-L1s be aggregated?

• How can the data placement be managed across the aggregated DC-L1s?

• How can the DC-L1s be efficiently connected to the GPU cores and the L2 banks?

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a general back-

ground for GPUs and the GPU memory hierarchy. In Chapter 3, we present a novel set

of schemes to utilize the inter-core locality via efficient inter-core communication to un-

lock and exploit the remote-core bandwidth. In Chapter 4, we present our novel shared

L1 cache design to eliminate data replication across the L1s and show how a lightweight
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dynamic scheme can improve performance across a wide set of applications. In Chapter 5,

we present our novel decoupled L1 cache design and show that how we utilize such flexible

design to manage data replication using clustering. Finally, in Chapter 6, we conclude

this dissertation and discuss future research directions.
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Chapter 2

General Background on Graphics

Processing Units (GPUs)

In this chapter, we provide a general background of Graphics Processing Units (GPUs).

Specifically, we focus on the baseline GPU architecture and memory hierarchy.

GPU Core Architecture. GPUs achieve high throughput as it is capable of executing a

large number of threads concurrently. To facilitate this, GPUs consists of a large number

of processing elements (PEs), as shown in Figure 2.1. A group of PEs are clustered

into a GPU core (known as Streaming Multiprocessor (SM) in NVIDIA terminology or

Compute Unit (CU) in AMD terminology). The PEs within each core are supported

by a large register file and other caching resources. These private caching resources

include multiple hardware-managed L1 caches (data, instruction, read-only constant,

and read-only texture) and a software-managed scratchpad. Upon launching a kernel

from a given GPGPU application, the threads from the launched kernel are uniformly

distributed on the cores at the granularity of a cooperative thread array (CTA). Each core

is capable of handling threads from multiple CTAs and executes them at the granularity

of a warp (known as wavefront in AMD terminology). A warp is a collection of (usually

32) individual threads that execute in a lock-step manner on the PEs of the same core.
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Figure 2.1: Overview of GPU architecture.

These threads from the same warp execute a single instruction at a time on different data

(i.e., implement SIMD). Multiple warps residing on the same core facilitate in hiding

long memory latencies by executing in a pipelined and multiplexed manner and hence

improving the utilization/throughput of the core. To support such high thread-level

parallelism (TLP), the PEs make use of the per-core register file for saving the con-

text of a large number of concurrent threads to minimize the overhead of context switching.

GPU Memory Hierarchy. We consider the memory hierarchy under a generic GPU

architecture consisting of many GPU cores (and their caching resources), which are

connected to few memory partitions via a Network-on-Chip (NoC) as shown in Figure 2.1.

Each memory partition hosts an off-chip high-bandwidth memory module to support

fast data access for the large number of concurrent threads. Additionally, each memory

partition is associated with a bank (or more) of the shared L2 cache for faster access
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to the required data. A memory controller (MC) within each memory partition is

responsible for scheduling L2 cache misses (i.e., memory requests sent from the L2 cache)

to the GPU memory. The data of the running GPGPU application is interleaved across

multiple memory partitions to achieve high memory bandwidth.

Private and Shared Cache Organizations. As discussed before, the L1 caches in the

baseline GPU architecture are organized as private caches. However, the default for the L2

caches is shared cache organization. The difference between the private and shared cache

organization lies in the placement of the data in the caches. Specifically, with a private

cache organization, each L1 cache can store any cache line. For example, in Figure 2.2a,

given four different address ranges represented by different shades, a private L1 cache can

store any line from all four address ranges. On the other hand, with a shared organization,

the entire address range is interleaved across all the L2 banks. In other words, each L2 bank

caches data from a non-overlapping address range. For example, as shown in Figure 2.2b,

the address range represented by white can be cached by only L2-0, and the address range

represented by black can be cached by only L2-3.

L1-0 L1-1 L1-2 L1-3

(a) With private L1 caches, all the L1s can
cache any address range.

L2-0 L2-1 L2-2 L2-3

(b) With shared L2 caches, each L2 bank serve
only an exclusive address range.

Figure 2.2: Private and shared cache organizations.

Data Locality in GPUs. Under a baseline GPU architecture, the data fetched by a

GPU core exhibits one of the following locality types: no locality, intra-thread, intra-warp,

inter-warp, inter-CTA, and inter-core. No data locality is observed if each thread fetches

data into the cache and never reuse it. Intra-thread is observed if there is a reuse of data

by the same thread. If there is data reuse across threads belonging to the same warp,
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then intra-warp locality is exhibited. If data reuse extends to threads from other warps,

then inter-warp locality is observed. Similarly, inter-CTA locality occurs if there is data

reuse between warps that belong to different CTAs. Finally, if these CTAs are executing

on different cores, then inter-core locality is exhibited.
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Chapter 3

Analyzing and Leveraging

Remote-core Bandwidth in GPUs

Bandwidth achieved from local/shared caches and memory is a major performance deter-

minant in Graphics Processing Units (GPUs). These existing sources of bandwidth are

often not enough for optimal GPU performance. Therefore, to enhance the performance

further, we focus on efficiently unlocking an additional potential source of bandwidth,

which we call as remote-core bandwidth. The source of this bandwidth is based on the

observation that a fraction of data (i.e., L1 read misses) required by one GPU core can

also be found in the local (L1) caches of other GPU cores. In this work, we propose to

efficiently coordinate the data movement across cores in GPUs to exploit this remote-core

bandwidth. However, we find that its efficient detection and utilization presents several

challenges. To this end, we specifically address: a) which data is shared across cores, b)

which cores have the shared data, and c) how we can get the data as soon as possible.

Our extensive evaluation across a wide set of GPGPU applications shows that significant

performance improvement can be achieved at a modest hardware cost on account of the

additional bandwidth received from the remote cores.
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3.1 Introduction

Graphics Processing Unit (GPU) architectures are becoming an inevitable part of every

computing system [125] because of their ability to provide orders of magnitude faster

execution. They have become the default choice for accelerating innovations in various

fields [29, 101, 118, 84, 111, 87, 83, 88, 95] such as high-performance computing (HPC),

artificial intelligence, deep learning, and virtual/augmented reality. Traditionally, GPUs

have relied on bandwidth to achieve high throughput [47, 10, 44, 45, 137, 21]. However,

the current sources of bandwidth such as local/shared caches, scratchpad, and memory

are often not sufficient for achieving the peak GPU throughput [47, 51, 96, 105, 60, 3].

In this work, we focus on dynamically identifying and exploiting an additional source of

bandwidth in GPUs, which we call as remote-core bandwidth. The source of this additional

bandwidth stems from inter-core locality [59, 72, 28, 55] that allows the data required by

one of the GPU cores (i.e., L1 read misses) to be also found in the local L1 caches of

remote GPU cores. Our analysis shows that this additional source of bandwidth leads to

significant improvement in performance, however, can only be leveraged if an efficient inter-

core communication is enabled. However, there are several challenges towards designing

efficient inter-core communication, which have not been addressed by prior works. In

particular, this work addresses the following research questions.

I) How to determine which data can also be found in the local caches of remote cores?

Traditionally, a cache line requested by a core is always found in the GPU memory, as it

stores the data required by the kernel(s). However, the requested data may or may not

be found in the L1 cache of the remote cores due to static data sharing characteristics or

runtime state of the caches [55, 71, 59, 72, 28]. A mechanism that correctly predicts if the

data is shared would reduce unnecessary inter-core communication.

II) How to determine which cores have the data of the requester core? Even if it

is known that the data is shared across cores, determining which cores have the shared

data is critical. A naive approach of sending request probes to all the cores to fetch the
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data can incur significant latency and consume interconnect bandwidth. Therefore, it is

important to determine which cores are likely to have the requested data to reduce the

communication overhead.

III) How to get the data as soon as possible without congesting the interconnect? Fi-

nally, it is important to search the cores such that we do not saturate the interconnect

bandwidth while still reducing the search latency. This latency can be tolerated to a

certain extent; however, long latencies can hurt performance [47]. Moreover, long search

delays decrease the probability of finding the shared data due to cache evictions at the

remote core.

Contributions: To the best of our knowledge, this is the first work that systematically

addresses these questions. Specifically, this work makes the following contributions:

• We observe a bi-modal distribution of inter-core locality across different load in-

structions – some instructions use data that is shared across cores and some do not. We

leverage this observation and use the program counter (PC) to predict which L1 read

misses are likely to be satisfied by the L1 caches of remote cores.

•We develop a low-overhead mechanism that can locally predict which cores are likely

to have the shared data. It is based on our key observation that the data required by

a core is generally shared across only a few cores, which can be detected via sampling a

limited number of core replies.

• We develop a novel two-level probing mechanism that searches the identified cores

in parallel while considering the interconnect bandwidth consumption.

• Our combined schemes take advantage of the untapped remote-core bandwidth,

leading to 21% improvement (up to 40%) in performance if the data is a priori known to

be shared, and 10% (up to 26%) with our PC-based predictor. These results are averaged

across 11 diverse GPGPU applications that exhibit inter-core locality and achieved at a

modest area overhead of 0.058 mm2 per core (determined by detailed RTL synthesis).

Additionally, our proposed schemes do not affect the performance of applications that

possess low inter-core locality.
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3.2 Motivation and Analysis

Many important graph and HPC applications are known to be cache sensitive with sig-

nificant reuse. To capture this reuse, much attention has been given to improving local

cache performance in GPUs (e.g., [105, 47, 46, 42, 51]). However, limited focus is given to

another type of locality, called as inter-core locality [55, 59, 72, 28] (i.e., the data required

by a core can be found in the local L1 caches of other cores). Inter-core locality primarily

results from each core independently requesting data without consulting the L1 cache of

nearby cores. We find that in many cases, other GPU cores have previously requested the

same data (exact sharing) or nearby data in the same cache line (false sharing) and placed

it in their local caches [59]. Consequently, they are also capable of supplying the data and

a potential source of memory bandwidth, which we refer to as remote-core bandwidth. To

unlock this additional bandwidth, efficient inter-core communication is essential.

3.2.1 Inter-core Communication Message Flow

We first provide a high-level overview of how L1 read miss requests are routed to other

cores to exploit inter-core locality. Under a baseline GPU where inter-core communication

is not enabled (Figure 3.1a), a read request which misses in L1 goes through the Network-

on-Chip (NoC) and accesses L2 cache. L2 cache either responds with data or forwards

the request to its associated memory channel. When inter-core communication is enabled

(Figure 3.1b), a read request which misses in L1 (i.e., the requester L1) can probe other

L1 caches (i.e., supplier L1s).1 An L1 read miss goes through the NoC to probe other

L1 caches. If a supplier L1 has the data, it will respond with data; if not, it will send a

NACK. If no supplier L1 responds with the data (or NACK) in a given amount of time

(we define this as Timeout), the requester L1 will fall back to the default scenario shown

in Figure 3.1a to probe the L2 cache.

1The inter-core communication in our proposal is enabled for the read requests only and thus can co-
exist with the existing cache coherence mechanism. A write request to a shared data in L1 is handled by
the default cache coherence mechanism.
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Figure 3.1: L1 read miss handling when inter-core communication is (a) disabled and
(b) enabled.

3.2.2 Potential Benefits of Remote-core Bandwidth

To illustrate the benefits of inter-core communication in GPUs, we consider three different

scenarios for probing other GPU cores, as tabulated in Table 3.1. These scenarios are

formed based on the questions we raised in Section 3.1: (1) is the data shared?; (2) which

remote cores have the data?; and (3) how should the data be fetched? We start with

the assumption that the answer to the first question is known a priori (we will relax

this assumption later in Section 3.3). In other words, we assume a perfect predictor that

determine if the required data exists in the L1 cache of at least one remote core.

Table 3.1: Probing/Communication scenarios.

Scenario
Is the

data shared?

Which remote
cores have the

data?

How is the data
fetched?

Perfect Probing
(PP)

Known Known
Zero-cycle

communication

Direct Probing
(DP)

Known Known
Direct communication

with the nearest supplier

Naive Indirect
Probing (n-IP)

Known
Search all
the cores

Sequentially search
the cores one-by-one

The first scenario, called as Perfect Probing (PP ), assumes that we oracularly know

which cores have the shared data, and this data can be fetched in zero cycles (i.e., no

communication overhead). In the next scenario, called as Direct Probing (DP ), we still

assume that the location of the shared data is known, but a mechanism is required to
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probe the nearest core that shares the data and fetch it. Finally, in the Indirect Probing

mechanism (IP ), we assume that the location of the shared data is unknown, and a single

probe request has to sequentially search all remote cores one-by-one to fetch the data. This

is a naive implementation of IP, and hence mentioned as Naive IP (n-IP ) in Table 3.1.

Section 3.3 discusses our final probing scenario (not shown in Table 3.1), called as Realistic

Probing (RP ), which adopts intelligent IP mechanisms to efficiently fetch data from the

remote cores, and also a technique to determine if a cache line is shared by other remote

cores.

Figure 3.2 shows the reply bandwidth received by each core in terms of L2 reply

bandwidth and remote-core reply bandwidth, and the performance in terms of IPC (both

normalized to the baseline with no inter-core communication) under the aforementioned

probing scenarios. Four observations are in order. First, on average, the total reply

bandwidth is higher under PP scenario compared to other scenarios. Therefore, IPC is also

the maximum in this scenario. Specifically, because IPC ∝ BW/MPKI, where MPKI is

misses-per-kilo-instruction [45, 134], unlocking the remote-core bandwidth shall increase

the overall available bandwidth, which in turn improves IPC. Thus, even if the overall

memory bandwidth can be increased by adding more memory partitions, the additional

on-chip bandwidth from remote cores can further enhance performance.
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Figure 3.2: Performance benefits of remote-core bandwidth for various scenarios. Sec-
tion 3.4 has the details on the experimental methodology.

Second, the remote-core bandwidth under DP is lower in many applications compared

to PP. This is due to the overhead of fetching the data from remote cores. This overhead

is not only in terms of latency of fetching the data; in some cases, the data is no longer
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present in the cache by the time a probe reaches the remote destination. As shown in

Figure 3.3, this results in a loss in remote hit rate (i.e., inter-core locality), which is defined

as the ratio of replies received from the remote cores to L1 read misses. Figure 3.3 results

are normalized to PP with the raw inter-core locality numbers of PP shown at the top

of each application. Third, with n-IP, the overhead of naive searching is more significant

because of the NoC contention, which further decreases the remote-core bandwidth of

n-IP, and thus its performance.
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Figure 3.3: The loss of inter-core locality (remote hit rate) for various scenarios.

Finally, the reply bandwidth for P-2DConv is slightly higher with DP than PP, however,

IPC with PP is higher than DP. This is attributed to the runtime state of the caches such

as cache evictions [59]. Specifically, using IPC ∝ BW/MPKI, the runtime state of the

cache affects MPKI, which may decrease IPC. Also, using zero-cycle communication is

the main performance booster in PP. In summary, utilizing remote-core bandwidth boosts

overall performance and is complementary to the bandwidth received from the memory

partitions.

3.3 Inter-core Communication in GPUs

In this section, we discuss the design of inter-core communication policies, which are

required to exploit the inter-core locality opportunities discussed before.
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3.3.1 Baseline Architecture and Communication Fabric

Our baseline GPU consists of 28 cores connected to 8 L2 slices and memory channels via

NoC. Each core has a local L1 cache, which is connected to its associated NoC interface.

There is a shared L2 cache that is interleaved across 8 banks. Each L2 bank is connected to

a NoC interface for the incoming L2 requests and to its corresponding memory controller

for forwarding the requests to memory in case of L2 misses. We use two separate NoCs:

request and reply NoCs to avoid protocol deadlock [10]. The L2 requests, probes, and the

NACKs use the request NoC, while the replies from cores or L2 use the reply NoC. Similar

to recent works [11, 53, 142, 97] in GPUs, we model a 2D mesh NoC for connecting cores to

memory channels because it inherently enables core-to-core communication. Additionally,

a 2D mesh NoC is scalable as the number of cores increases because it is modular and

easier to lay out on a chip [141, 10, 16].

3.3.2 Communication Knobs: Probe Coverage and Probe Rate

To address the performance overheads of inter-core communication discussed in Sec-

tion 3.2, we consider modulating the number of cores to search (i.e., controlling the probe

coverage) and/or the rate at which the cores are searched (i.e., controlling the probe rate).

Formally, we define IP(C,S,P), where S probes are sent per read miss with a probabil-

ity of P (0 <= P <= 1), or S − 1 probes per read miss are sent with a probability of

1 − P , to search C cores in the GPU system. For example, IP(15,2,0.2) implies that a

core searches 15 remote cores by sending 2 probes per request for around 20% of its L1

read misses and 1 probe per request for the rest. In the case of two (or more) probes per

request, the target cores (i.e., the cores to be probed) are disjointly divided among the

probes as equally as possible to be searched in parallel. For example, under IP(15,2,0.2),

the first probe searches 8 cores and the second probe searches 7 cores. Probe coverage is

determined by the value of C and the probe rate is determined by the value of the pair

(S,P ). Note that both probe coverage and rate affect the consumption of request NoC
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bandwidth (Request/Core/Cycle), which is inherently limited. Therefore, it is important

to control each of these parameters carefully (C, S, and P ) to optimize performance.

3.3.3 Which Remote Cores Have the Data?

Effect of Probe Coverage. Figure 3.4 shows the effect of probe coverage on the re-

mote hit rate and the request bandwidth under IP(C,1,1). The request bandwidth has

three components: a) requests sent to L2, b) probe requests sent to remote cores, and c)

forwarded probe requests from remote cores. We observe that probing a limited number

of cores can reduce the consumption of the request bandwidth at the cost of reducing

inter-core locality. Therefore, it is important to carefully select the number of target cores

that balances the available inter-core locality and the NoC overhead (e.g., C = 15 in

Figure 3.4).
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Figure 3.4: Illustrating (a) inter-core locality (normalized to the PP scenario) and (b)
request bandwidth (normalized to the IP(5,1,1)) under IP(C,1,1) averaged across the
evaluated applications.

Which Cores to Probe? Our next goal is to identify the target cores. This step consists

of predicting which cores have a high probability of providing the shared data and selecting

a subset of them to probe. Figure 3.5 shows the heat map of cores that can supply data

to requester cores for representative applications. Each cell in the heat map represents

how many times a particular core is able to respond to an incoming probe with data. A

requester core is any core that had at least one remote request during execution. This

data is collected assuming that probes can be sent in zero cycles. We observe from this
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Figure 3.5: Supplier heat map for (a) C-BFS, (b) R-CFD, (c) S-SpMV, (d) L-BH, and (e)
PP-2MM under the baseline 6×6 mesh NoC. L2 partitions (and MCs) are highlighted using
thick borders. For these applications, the maximum value in the heat map is 1.94× the
minimum, on average.

figure that some cores can provide the data more than the others. For example, in C-BFS,

the highlighted core is more likely to provide the data. Similar behavior is observed in the

other applications as shown in Figure 3.5. Therefore, probing the cores that have a higher

probability of responding with data is potentially beneficial because it would maintain

inter-core locality, and reduce the request NoC bandwidth consumption.

Selection Criteria. There are multiple design choices when selecting the set of target

cores. Figure 3.6 shows performance of IP(C=27,1,1) under two selector mechanisms,

where 27 is the maximum number of cores that can be searched in our 28-core baseline

architecture. In index-based, which is used in n-IP, a probe sequentially searches the cores

assigned to it based on the core index in ascending order. We propose a supplier-based

selector. In this mechanism, each core locally and periodically collects the number of

data replies received from other cores. This information is then used to assign probability

values for selecting the target cores.2 To reduce the bias in the selection process, (1) the

collected data is reset at the end of each period, and (2) the cores that have not replied

with data during the current period are given a very small probability (half of the lowest

collected non-zero probability) to be selected as target cores. Then, C target cores are

selected for probing based on the collected and modified probability of finding data in

each core. We observe from Figure 3.6 that our supplier-based selector outperforms the

2For example, in a four-core system, if Core1, Core2, and Core3 responded to Core0 with data 5, 3,
and 2 times during a period, respectively, then Core0 will select Core1, Core2, and Core3 as target cores
with 50%, 30%, and 20% probability, respectively.
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Figure 3.6: Performance of selection criteria under IP(27,1,1) averaged across the evalu-
ated applications. Results are normalized to a baseline with no inter-core communication.

index-based selector because of its ability to adapt to the dynamic changes in the sharing

patterns.

3.3.4 How is the Data Fetched?

Effect of Probe Rate. We study the effect of probe rate with the help of Figure 3.7

that shows the performance of IP(27,S,P ) for C-BFS under index-based and supplier-based

selection criteria. In the index-based case, we obtain the highest IPC when S = 1 and

P <= 1. In other words, if we send only one probe for a portion of the read miss requests,

while the rest are directly sent to L2, then performance can improve; with multiple probes

per request, performance drops.
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Figure 3.7: Performance of C-BFS with index-based and supplier-based selectors under
IP(27,S,P ). Results are normalized to a baseline with no inter-core communication.

In the supplier-based case, we observe that the peak performance for C-BFS is shifted

to the right (from 1 to 2 ). This confirms that selecting which cores to search first
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has a positive impact on performance. However, performance still drops when using

S > 1. This is because multiple probes can cause contention in the request NoC resources

(e.g., links, buffers, virtual channel (VC) allocation, switch (SW) allocation). In addition,

multiple parallel probes may lead to redundant replies, thereby congesting the reply NoC

further. Therefore, it is important to modulate the probe rate carefully while handling

the redundant replies.

One way to improve performance in the presence of parallel probes is to limit the

number of data replies to one, so that reply NoC is not further congested. Based on this

idea, we propose a novel Two-level Probing scheme.

Two-level Probing. Our two-level probing scheme overcomes the issue of redundant

replies by leveraging two probe types. The first type is the Leader Probe, which looks

for the data in its assigned target cores and returns once the data is found (similar to

a normal probe). The second type is the Scout Probe, which also looks for data within

its target cores; however, once it finds the data, it does not return with data. Instead,

it appends the core identifier to the candidate suppliers list and then searches the rest

of the assigned cores. The scout probe returns once it completes searching. If the leader

does not return with the data, then the requester initiates the second-level of probing by

injecting a leader-like probe to search all the candidate suppliers sequentially and return

if it finds the data (or failed). There is a singular leader probe in our scheme, while the

rest of the parallel probes are scouts.

To illustrate how two-level probing works, let us consider an example in Figure 3.8.

Assume that S = 2; the leader probe searches the shaded cores, while the scout probe

searches the others. Assuming that the data is present in cores A , B , C , and D , the

leader returns with data (from B ) after searching three cores, and the scout searches all the

assigned fourteen cores and returns with candidate suppliers A and D . However, because

the data is found by the leader, these candidates are ignored. In another scenario, assume

that data is only found in A and D . In this case, the leader searches all the assigned cores

and returns with a NACK back to the requester. The scout returns with the candidate
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Figure 3.8: Illustrating how two-level probing works. The dotted red lines represent the
order of searching the cores in this scenario. Gray nodes are connected to L2s and MCs.

suppliers ( A and D ), so the requester injects a leader-like probe that searches A . On

failing to find the data (for example, evicted by the time the probe reaches A ), it searches

D . In summary, the advantage of two-level probing is the elimination of redundant replies

from different remote L1 caches.

Discussion. Figure 3.9 shows the average performance under IP(C, S, P ) when S and

P (probe rate) are varied, while C (probe coverage) is set to 5, 10, 15, 20, or 27. Since

the request NoC bandwidth is a function of the number of probes sent and the number

of cores to search, decreasing the number of target cores is expected to release more NoC

resources to accommodate more probes. In that case, we observe a further shift to the

right in the peak performance (i.e., we observe better performance when more than one

probe search in parallel). Using C >= 20, we barely observe any benefits from using

S >= 2. We can still get benefits from sending a mix of one or two probes, but not

beyond two probes. On the other hand, using C = 15, we observe a lower reduction in

performance even with S >= 2. Both C = 10 and C = 5 lead to better performance

with S >= 2 compared to C >= 15. To summarize, a trade-off between the number of
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Figure 3.9: Performance with supplier-based selector and two-level probing under
IP(C, S, P ) averaged across the evaluated applications. Results are normalized to the
baseline with no inter-core communication.

cores to search and the parallel probes to inject is required to balance the overall request

bandwidth and to control the forward request bandwidth.

3.3.5 Is the Data Shared?

We have so far assumed that a requester core had a priori knowledge of whether the data

it requests is cached by remote cores. In this section, we propose a two-bit predictor that

uses the Program Counter (PC) information to predict, locally at each core, if the required

data exists in a remote L1 cache. If our predictor anticipates that the data is shared, the

supplier-based core selector and the two-level probing techniques are utilized to search for

the required data. Otherwise, the request is sent directly to L2.

Why Prediction? We start by studying the need for a predictor. From Figure 3.3,

we observe that the raw volume of inter-core locality is not 100% of the read misses.

Additionally, falsely assuming that a read miss is shared causes latency overhead for the

request sent to L2, as probing remote L1 caches imposes a search delay. As a result, if we

assume every read miss is shared, it will cause unnecessary search overhead in the cases

when the data is not shared. For example, in C-BFS, the percentage of shared read miss

request is around 54%. Thus, if we probe remote L1 caches on every read miss, we will

end up with a failed search for 46% of the requests. In other words, almost half of the
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requests will endure unnecessary delay and consume request NoC bandwidth whereas the

data is not shared.

PC and Inter-core Locality. As a first step to designing a sharing predictor, we need

to identify a simple local parameter to use. We investigated multiple parameters, and we

found that request origin PC is a good metric to consider. Figure 3.10a shows the volume

of remote hits for each PC value in C-BFS. We observe that out of nine PCs, only two have

inter-core locality (PC = 80, PC = 288), and one of them (PC = 288) features > 90%

remote hits out of 350120 remote read accesses.
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Figure 3.10: Remote hits vs. remote misses for different PC under (a) C-BFS, and (b)
P-2DCONV. The numbers on each bar represent the total remote read accesses per PC.

To confirm this finding, we inspected the PTX code generated from C-BFS and found

the instructions with PC values of 80 and 288. Algorithm 1 shows a pseudo code snippet

from C-BFS, where the orange lines 4 and 5 correspond to PC 80 and 288, respectively.

Line 5 (PC = 288) possesses high inter-core locality as the graph nodes connected to node

nextNodeID loads g graph visited[nextNodeID], which creates several copies of the same

data in different cores. We observe similar behavior in other evaluated applications.

Algorithm 1 CUDA-BFS code snippet

1: procedure BFS
2: nodeID = blockIdx.x*BLOCK DIM + threadIdx.x
3: for i in all edges connected to current nodeID do
4: nextNodeID = g graph edges[i]
5: if (!g graph visited[nextNodeID]) then
6: g cost[nextNodeID]=g cost[nodeID]+1

This observation leads to the design of our PC-based predictor. If we keep track of the
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number of probe requests sent and the core replies received per PC, then we can develop

a local scheme that predicts if the data is shared.

Two-bit PC-based Predictor. Figure 3.11 shows the finite state machine for our pro-

posed predictor. It keeps track of four different states (hence two-bit) per PC. Specifically,

the states are Strong Shared, Weak Shared, Weak Non-shared, and Strong Non-shared. The

predictor optimistically assumes sharing and starts from a Strong Shared state. If a given

PC fails to show a dominant sharing behavior, it will end up in the most restrictive state

Strong Non-shared. Each state utilizes three variables (W , S, and T ). These variables

are used along with the inter-core replies count (R) to decide the next state. Given state

i, Wi sets the number of read misses to be considered during state i. Si sets the number

of read misses that are assumed to be shared out of Wi requests (Wi >= Si). Once Wi

requests are processed, we compare the number of core replies Ri to the threshold Ti and

based on that, the next state is determined. Based on the current state, if Ri ≥ Ti, then

the next state is set as the state that provides more sharing. On the contrary, if Ri < Ti,

then the next state is the more restrictive state.

Strong 

Shared

Weak 

Shared

Weak 

Non-

Shared

Strong 

Non-

Shared

tS

tNS

tS tS tS

tNS tNS tNS

Figure 3.11: Two-bit PC-based sharing predictor. tS refers to a Sharing transition,
while tNS refers to a Non-Sharing transition.

Discussion. We will discuss the effectiveness of the proposed predictor and its accuracy

in Section 3.5. However, we want to point out one possible concern with our predictor. In

Figure 3.10b, we show the volume of remote hits for each PC value in P-2DCONV. In contrast

to C-BFS, P-2DCONV does not have a few dominant PC values. Specifically, eight out of

ten PCs have around 50% remote hits. Additionally, such behavior is spread throughout

the execution (not shown). As a result, it is difficult to have high accuracy under such

application behavior.
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3.3.6 Implementation Details

Figure 3.12 shows the architectural diagram of our proposal. We start by explaining

the design choices and scenarios in our system. Then, we study the area, power, and

communication overheads.
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Figure 3.12: Hardware organization of our proposal. The shaded components are used
for inter-core communication. The gray components are added to support our proposal.

Probe Injection. On an L1 read miss, a request is added to miss status holding register

(MSHR) to be passed down the memory hierarchy. First, the request is sent to the PC-

based Sharing Predictor A1 to locally predict if the data is present in remote L1 caches.

If the request is predicted to be shared, it will be (1) added to a queue (Selective L2

Requests) in the Timeout Handler A2 that selectively sends the request to L2 if needed,

and (2) sent to the Supplier-based Core Selector to select the target cores for probing A3 .

Then, the Two-level Probing mechanism determines how many probes to send (based on

S and P ), assigns the target cores to the generated probes, and adds the probes to a queue

(Outgoing Probe Requests) holding the core’s own probes for injection arbitration A4 .

Selective L2 Request Timeout. In some cases, probe requests take a long time to
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return (with data or NACK). This might be due to several reasons related to NoC conges-

tion and queuing. We need a failsafe mechanism to ensure forward progress. Therefore,

for every read miss predicted as shared, a corresponding L2 request is also generated, and

placed into Selective L2 Requests queue. Every cycle, the Timeout Handler checks if the

head of the queue timed out. Timeout means that the injected probe(s) failed to retrieve

the data from the target cores in a timely manner. In that case, the head of the Selective

L2 Requests queue competes for injection to be sent to L2 B .

Handling Other Cores’ Probes. On receiving an incoming probe from a remote core,

the probe is added to a queue (Incoming Probe Requests) in the Probe Handler module

C1 . The forwarded probe is processed to differentiate between a leader probe, a scout

probe, or a received NACK. In case of a leader or a scout, the Probe Handler consults

the L1 Cache Arbitration module that prioritizes the local cache accesses over remote

reads.3 In case of no local cache access, the L1 Cache Arbitration module informs the

Probe Handler C2 to check the L1 cache if the required data is cached.

If the incoming probe is a leader, and the data is not found, the probe is added to a

queue (Forwarded Incoming Probes) to forward it to the next target core (or the requester

if no more target cores). However, if the data is found locally, then a probe reply is added

to a queue (Replies to Incoming Probes) holding the replies to be sent to the requester

cores. The rationale behind this queue is to mitigate the head-of-line blocking that can

occur in the Incoming Probe Requests queue if the reply failed to find space for injection

into the reply NoC. The head of the Replies to Incoming Probes is pushed into the reply

NoC C3 . On the other hand, a scout probe updates its candidate supplier list if the data

is found, and is always added to the Forwarded Incoming Probes queue to be sent to the

next target core (or the requester if no more target cores). The head of the Forwarded

Incoming Probes contends for injection into the request NoC C4 .

In case of a returning own leader/scout, the Probe Handler notifies the Two-level

3Dual ported caches may be needed for applications where L1 bandwidth is not sufficient [57]. However,
we do not observe L1 bandwidth as a bottleneck in our applications and hence arbitration is sufficient.
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Probing module D1 to keep track of the injected probes per request. If all outstanding

probes are received without data reply or candidate suppliers, then the Two-level Probing

module informs the Timeout Handler D2 . If the timeout of the failed request has not

fired yet, it is retrieved from the Selective L2 Requests queue to compete for injection to

be sent to L2 D3 .

Injection Arbitration. Our design supports different types of messages to be injected

into the request NoC. Consequently, to keep the system stable, we must maintain the

injection rate into the NoC. We do so by arbitrating between five different request types

(ordered from the highest to the lowest priority): non-shared requests, selective L2 re-

quests, forwarded probes, processed NACKs, and outgoing probes. The Injection Arbi-

tration selects the winner of the arbitration to be injected into the request NoC based on

the priorities of the competing requests E .

Deflection of Incoming Probes. To control the queuing delay at the core, a mechanism

is required to limit the number of probes received by a given core. If the Incoming Probe

Requests queue is full, we deflect the incoming probes at the NoC level by passing a signal

from the core to the NoC router to convey the unavailability of queue space F . The router

then deflects the probe request to its next target cores or to its requester if no more target

cores exist.

Overhead. The PC-based Sharing Predictor supports up to 64 PC values. We empirically

select the values of W , S, and T based on the following, Wi = 32 × 2i, Si = Wi/4
i,

Ti = ceil(Si/8), where 0 ≤ i ≤ 3. Both Timeout Handler and the Two-level Probing

modules track up to 32 outstanding requests, which is the MSHR size. The Supplier-based

Core Selector monitors the replies from 27 remote cores (in our 28-core baseline GPU)

over a period of 8192 cycles. Finally, we empirically choose 2048 cycles as the timeout

value in the Timeout Handler. Under this timeout, only 0.7% of the probe requests fail

to return with a reply (or a NACK).

To estimate the area overhead, we differentiate between the hardware used to enable

inter-core communication (shaded components in Figure 3.12), and the hardware used
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to optimize such communication (gray components in Figure 3.12). We faithfully syn-

thesized the RTL design of the hardware required for the inter-core communication and

our schemes using the 65nm TSMC libraries in the Synopsys Design Compiler. We use

these synthesized Verilog models for the area and leakage power. Additionally, we use

DSENT [119] to estimate the NoC dynamic power assuming a 45nm technology. The area

overhead for inter-core communication is 0.089 mm2 per core, while the area overhead for

our schemes is 0.058 mm2 per core. The total leakage power overhead is 2.022 mW per

core. The difference in the dynamic power compared to the baseline is 0.05794 W .

In terms of communication overhead, we add 1-bit in the request to mark as a probe,

and 1-bit to identify as a leader or scout. A 32-bit group identifier is added to uniquely

identify the probes belonging to the same request. Additionally, up to fifteen target cores

need to be searched, and each core needs ceil(log227) bits, that is 75 bits required in total.

All this overhead in the request fits in the baseline flit size of 32 bytes.

3.4 Experimental Setup

Simulated System. We model our schemes and inter-core communication using a cycle-

level simulator – GPGPU-Sim v.3 [10]. A detailed platform configuration is described in

Table 3.2.

Evaluated Applications. We use sixteen applications from five benchmarks suites

(CUDA SDK (C) [86], Rodinia (R) [20], SHOC (S) [26], Lonestar (L) [15], and Poly-

Bench (P) [100]) for evaluation. Eleven out of sixteen applications have inter-core locality

greater than 30% (Figure 3.2). The rest of the applications have inter-core locality less

than 10%.

3.5 Experimental Results

In Section 3.3, we studied the effect of both probe coverage C and probe rate (S, P ) on

the efficiency of the inter-core communication under a mesh-based system. We proposed
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Table 3.2: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 28 cores (CUs), SIMD width = 32 (16 × 2)

Resources / Core
48KB scratchpad, 32KB register file, Max.
1536 workitems (48 wavefronts, 32 workitems/wavefront)

L1 Caches / Core
16KB 4-way L1 data cache
12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache
8-way 128 KB/memory channel (1MB in total)
128B cache block size

Features
Memory coalescing and inter-wavefront merging enabled,
immediate post dominator based branch divergence handling

Memory Model

8 GDDR5 memory controllers (MCs)
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock, Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [38], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6, tCDLR = 5, tWR = 12

Interconnect
6× 6 mesh topology, 700MHz interconnect clock,
32B flit size, 1 VC per port, 8 flits/VC,
iSLIP VC and switch allocators

three techniques (supplier-based core selector, two-level probing, and PC-based sharing

predictor) to exploit the remote-core bandwidth via efficient inter-core communication.

We evaluate IP(C=15,S=2,P=0.2), an IP scenario that incorporates supplier-based core

selector and two-level probing under a perfect sharing predictor. Although IP knows

the sharing information a priori, we investigate it thoroughly as it gives an attainable

upper bound of the inter-core communication benefits via our schemes. In order to reach

such upper bound, we evaluate RP(C=5,S=2,P=0.5), a Realistic Probing scenario that

does not need any software support and adopts PC-based sharing predictor in addition to

supplier-based core selector and two-level probing.

We choose IP(15,2,0.2) as it balances the trade-off between losing inter-core locality

(due to searching fewer cores) and incurring latency (due to searching more cores). In

general, given an arbitrary GPU, searching 35%-55% of the cores is a valid choice to

maintain the required balance under IP scenario. Also, using two probes parallelizes the

search process without overwhelming the request NoC resources. For RP(5,2,0.5), we

reduce the number of target cores (C = 5) because we use a realistic PC-based predictor.
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Specifically, if we use C = 15, any misprediction will result in searching fifteen cores even

though the data is not shared. This leads to unnecessary latency overhead for the whole

data fetching process. In general, under RP, searching 15%-25% of the cores balances the

inter-core locality and the request NoC bandwidth consumption. Also, to further reduce

the search overhead, RP(5,2,0.5) uses a higher probe rate. We compare these mechanisms

against:

• DP utilizes a perfect sharing predictor and sends a probe request to the oracularly

known nearest sharer (Section 3.2).

• IP(27,1,1), which is equivalent to n-IP, uses a perfect sharing predictor, however, it

searches all the cores sequentially based on core index to find the shared data (Section 3.2).

• Cooperative Caching Network (CCN) [28] uses a ring NoC to connect all the

cores. On a read miss, CCN traverses the ring and searches the cores sequentially. To limit

the search overhead, a throttling scheme based on the ratio between replies received and

requests sent, over a sampling window, is used. Since CCN NoC is a crossbar augmented

with a ring, we emulate it by using index-based core selector under RP(27,1,1).

• Locality-Aware Last-Level Cache (LA-LLC) [146] utilizes a locality-aware L2

that records the last sharer core. Upon receiving a read request from a core, the locality-

aware L2 forwards the request to the last sharer in case of a hit, instead of serving the

request.

Effect on Performance. Figure 3.13 shows the performance of our proposed schemes in

terms of IPC and total reply bandwidth received by a core (in terms of L2 reply bandwidth

and remote-core reply bandwidth), respectively. The results are normalized to the baseline

architecture with no inter-core communication. We draw five main observations. First,

IP(15,2,0.2) achieves 21% and 8% IPC improvement over the baseline and IP(27,1,1),

respectively. The superiority of IP(15,2,0.2) over the baseline comes from unlocking the

remote-core bandwidth, thus increasing the total available on-chip bandwidth. However,

higher performance compared to IP(27,1,1) comes from searching fewer cores for the re-

quired data with higher confidence. Also, the possibility of sending two parallel probes



CHAPTER 3. UNLOCKING REMOTE-CORE BANDWIDTH IN GPUS 36

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

B
a
s
e
li
n

e
D

P
IP

(1
5
,2

,0
.2

)
IP

(2
7
,1

,1
)

R
P

(2
7
,1

,1
)

R
P

(5
,2

,0
.5

)

C-BFS C-NN C-BFS2 R-CFD S-SpMV L-BH P-2DCONV P-3DCONV P-2MM P-3MM P-GEMM Mean

N
o

rm
a
li

z
e
d

 R
e
p

ly
 B

W
(R

e
p

ly
/C

o
re

/C
y
c
le

)

N
o

rm
a
li
z
e
d

 I
P

C

L2 Reply Remote-core Reply IPC

Figure 3.13: The effect of the proposed schemes on IPC and reply bandwidth.

helps in improving the performance as it cuts down the search latency. Second, DP yields

better performance compared to IP(15,2,0.2) for almost all evaluated applications except

S-SpMV and P-GEMM (also observed in Figure 3.2). Such counter-intuitive behavior for

these two applications is due to the existence of only a few supplier cores for the majority

of the requests (Section 3.3.3), leading to NoC hotspots near some cores under DP. Conse-

quently, the remote-core bandwidth is reduced. In contrast, under IP(15,2,0.2), if a given

target core is busy, the request is deflected to the next target core (Section 3.3.6) thereby

alleviating hotspots. Moreover, DP is dependent on a single target core, thus it risks the

possibility of not finding the data due to eviction and falls back to probing L2/memory.

On the other hand, IP(15,2,0.2) searches more cores, so even if a target supplier core

evicted the data, the probe moves to the next core in its supplier list.

Third, the performance of RP(27,1,1) is lower than the baseline. This is because of

the misprediction overhead. The overhead of searching 27 cores for each misprediction

causes a 15% drop in IPC. Therefore, searching less number of cores mitigates the mis-

prediction overhead. Fourth, RP(5,2,0.5) performs better than IP(27,1,1), that utilizes

perfect sharing predictor, because of its lower search overhead. Specifically, RP(5,2,0.5)

searches only 5 cores compared to 27 cores in case of IP(27,1,1). Also, RP(5,2,0.5) divides

the search process among two probes. As a result, even in case of failing to find the data,

the smaller search space and the parallel search lessens the overhead. Fifth, the total

reply bandwidth follows the same trend as IPC. This conforms to what we discussed in

Section 3.2. Additionally, the reply bandwidth from the remote cores in RP(5,2,0.5) is

less compared to the other schemes. This is because RP(5,2,0.5) searches 5 cores only,
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thus perceives lower inter-core locality (refer to Figure 3.4a).

Figure 3.14a shows the precision and recall of RP(5,2,0.5).4 In general, we find preci-

sion and recall to be high for many applications, except a few ones. These applications do

not have a few dominant PC values as previously discussed in Figure 3.10b. On average,

RP(5,2,0.5) achieves 72% precision and 88% recall. Since the precision controls the mis-

prediction volume, we investigate the sensitivity to different precision values by studying

an imperfect IP. Figure 3.14b shows the effect on IPC using imperfect IP(5,2,0.5) and im-

perfect IP(15,2,0.2), respectively, under different precision values (100%, 95%, 90%, 80%,

and 70%). These precision values are achieved by injecting non-shared requests into the

NoC. A precision of X% under IP means that (100−X)% of the non-shared requests are

considered as shared. We observe that the drop in IPC in IP(15,2,0.2) increases with less

precise predictors (up to 85% performance loss). This is because the unnecessary overhead

per mispredicted request is high (searching 15 cores). However, in IP(5,2,0.5), the drop is

less severe (up to 45%) due to lower misprediction overhead (searching 5 cores).
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Figure 3.14: Illustrating (a) precision and recall for RP(5,2,0.5) and (b) effect of predic-
tion precision on IP.

We can further bridge the gap between RP(5,2,0.5) and IP(15,2,0.2) if a software-based

technique or a programmer input is utilized to provide sharing insight. For example, if

a software-based mechanism provides the sharing PC information (instead of using the

PC-based predictor), we can achieve performance improvement more than RP(5,2,0.5).

Specifically, for C-BFS2 and S-SpMV, an IPC improvement of 37% and 5% is achieved

4Precision measures the percentage of the shared predictions that were truly shared. Recall measures
the percentage of the truly shared cases the predictor identified.
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respectively, compared to 38% and 6% in the case of IP(15,2,0.2). To conclude, any

increase in the prediction precision helps improving the performance of RP(5,2,0.5).

Finally, we evaluate RP(5,2,0.5) against LA-LLC. On average, RP(5,2,0.5) achieves

10% IPC improvement compared to 2% from LA-LLC. LA-LLC uses the existence of the

data in L2 as sharing indicator and forwards the read request to the last sharer core instead

of serving at L2. However, the data may be evicted by the time the request reaches the

last sharer. This degrades LA-LLC overall prediction precision to an average of 60% and

as low as 40% for applications like P-3MM, and P-GEMM. Also, considering only the last

sharer, vs. five cores in RP(5,2,0.5), in the search space decreases the chances of finding

the data.

In summary, using IP(15,2,0.2) allows for higher performance as it balances the trade-

off between searching more cores vs. sending more probes. However, searching fewer cores

as in RP(5,2,0.5) is favored if a low-overhead option is required to balance out any penalty

due to mispredictions.

Effect on Link Utilization. Figure 3.15 shows the effect of IP(15,2,0.2) and RP(5,2,0.5)

on the request and reply NoC link utilization. We choose three applications as represen-

tatives and compare both mechanisms to baseline and DP. Two observations are in order.

First, in the request NoC, both IP(15,2,0.2) and RP(5,2,0.5) have higher link utilization

compared to baseline and DP. This is a result of utilizing the links to communicate among

cores for searching and retrieving the required data. IP(15,2,0.2) achieves better link uti-

lization in a couple of applications (e.g., C-BFS) due to searching more cores. Second, in

the reply NoC, IP(15,2,0.2) and RP(5,2,0.5) have similar behavior in the highly utilized

links, however, the lowest utilization in IP(15,2,0.2) is higher than in RP(5,2,0.5). This

is because IP(15,2,0.2) searches more cores compared to RP(5,2,0.5), thus enabling more

sources to deliver replies. Subsequently, more links are used to retrieve data from the

target cores.

Performance Impact on Applications with low Inter-core Locality. Some appli-

cations have either low inter-core locality or none. Figure 3.16 shows the performance of



CHAPTER 3. UNLOCKING REMOTE-CORE BANDWIDTH IN GPUS 39

Baseline DP IP(15,2,0.2) RP(5,2,05)

0

0.1

0.2

0.3

0.4

0.5

L
in

k
 U

ti
li

z
a
ti

o
n

Links

C-BFS

0

0.1

0.2

0.3

0.4

L
in

k
 U

ti
li

z
a
ti

o
n

Links

R-CFD

0

0.1

0.2

0.3

0.4

0.5

L
in

k
 U

ti
li

z
a
ti

o
n

Links

P-2DCONV

0

0.2

0.4

0.6

0.8

L
in

k
 U

ti
li

z
a
ti

o
n

Links

C-BFS

0

0.2

0.4

0.6

0.8

L
in

k
 U

ti
li

z
a
ti

o
n

Links

R-CFD

0

0.2

0.4

0.6

0.8

1

L
in

k
 U

ti
li

z
a
ti

o
n

Links

P-2DCONV

R
e
q

u
e

s
t 

N
o

C
R

e
p

ly
 N

o
C

RP(5,2,0.5)

Figure 3.15: The effect of the proposed schemes on the request and reply NoC link
utilization.
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Figure 3.16: The effect of the proposed schemes on applications with low inter-core
locality. Results are normalized to the baseline with no inter-core communication.

five applications, from different benchmarks suites, with < 10% inter-core locality under

PP, DP, IP(15,2,0.2), and RP(5,2,0.5). Two observations are in order. First, the perfor-

mance gain from PP, DP, or IP(15,2,0.2) is less than 1%. This is due to the reduced scope

of inter-core locality. Second, our RP(5,2,0.5) does not affect the evaluated applications

negatively. On average, IPC under RP(5,2,0.5) drops 1% for these applications. This

is because the small scope of sharing drives the PC-based sharing predictor towards the

most restrictive Strong Non-shared state which assumes less shared requests over a larger

window of requests. This shows that our predictor can handle the absence of inter-core

locality without degrading performance.
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3.5.1 Sensitivity Studies

Effect of CTA Scheduling. We use the widely-used round-robin CTA scheduler to

achieve better load balancing of CTAs across cores [47]. However, our proposal should still

be effective under different CTA scheduling mechanisms. For example, a CTA scheduler

that assigns nearby CTAs on the same core [46] still leaves a significant room to exploit

inter-core locality. Figure 3.17a shows the portion of remote hit requests that have CTA

distance ≤ 8 (with the nearest supplier core) and above. We observe that for nine out of

eleven applications, the portion with CTA distance > 8 is more than 50% of the requests

with at least one remote hit. We conclude that even with a CTA scheduler that assigns

up to eight consecutive CTAs on the same core, we still have a large scope for inter-core

communication to unlock the remote-core bandwidth.
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Figure 3.17: Sensitivity studies on (a) CTA scheduling, (b) NoC resources, and (c) NoC
size.

Effect of NoC Resources. Figure 3.17b shows the sensitivity when increasing the NoC

resources. We consider three configurations; double the NoC frequency, double the flit

size, and double the virtual channels. We also show the results of the baseline NoC used

so far (Section 3.3.1), denoted as Base. IP(27,S,1) is evaluated under each of them and

normalized to the corresponding configuration baseline. First, we observe that our schemes

are still beneficial even with double the NoC resources. Second, increasing the number

of probes (S) under 27 cores is still not helpful. Third, our schemes benefit the most

under double the VCs. This is because searching cores and pushing more probes cause

contention at the VC allocator and SW allocator. Thus, doubling the VCs may mitigate

the VC allocation contention but at the cost of extra hardware.

Effect of NoC Size. We study the scalability of our schemes using 8 × 8 mesh and
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10 × 10 mesh under two different configurations. Figure 3.17c shows the IPC and reply

bandwidth (both normalized to the configuration mesh baseline) under IP(C%,1,1), where

C% represents the percentage of cores to be searched. The used notation in the figure is

(number of cores, number of L2/memory partitions). We observe that the IPC follows a

similar trend to what we observed using the baseline 6 × 6 mesh. Specifically, searching

25% or 50% of the cores leads to higher performance in terms of both IPC and reply

bandwidth.

Effect of Additional Memory Partitions. Figure 3.17c shows the effect of increasing

the number of memory partitions (this increases the total L2 capacity, L2 bandwidth, and

memory bandwidth) in the system. For an 8 × 8 mesh, we study systems with 8 and

16 memory partitions. For a 10 × 10 mesh, we study systems with 16 and 32 memory

partitions. We observe that even with more memory partitions, our proposal enhances

IPC due to efficiently unlocking the remote-core bandwidth.

Effect of Core to Memory Partition Ratio. Figure 3.17c studies varying the ratio

of core to memory partition count. We observe that our schemes can boost IPC in all

systems. Even in a large (68,32) system, IP(C=25%,1,1) achieves 17% IPC improvement

over the baseline 10× 10 mesh.

Comparison against a Crossbar-based Baseline. In Figure 3.17c, we observe that

our schemes perform better than a crossbar-based baseline in terms of both IPC and reply

bandwidth under (56,8), (48,16), and (84,16) systems. Under a large (68,32) system, a

crossbar-based baseline performs close to, but still not as good as, our schemes. Note

that for such large systems, the complexity of the crossbar is high. Also, the performance

difference between the mesh-based baseline and the crossbar-based baseline is in line with

a simple bisection bandwidth analysis for both systems.5

We conclude that our design is robust and can perform well across a wide range

of hardware mechanisms and system configurations, such as CTA scheduling policies,

5For the systems we consider in this work, the ratio of crossbar bisection bandwidth to 2D mesh bisection
bandwidth is equal to the ratio of the number of memory partitions to twice the mesh dimension.
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L2/memory bandwidth, and core to memory partition ratio. It also outperforms the

crossbar-based baseline.

3.6 Related Work

In this section, we briefly discuss works that are the most relevant to this study.

Intra-core Locality in GPUs. There is a large body of work that focuses on exploiting

the locality that exists within a GPU core [105, 106, 47, 51, 114, 73, 46, 44, 53, 96, 52,

81, 67, 78, 140]. In this work, we specifically focus on the locality that exists across cores.

Multiple prior CTA schedulers [65, 8, 122, 136, 71] used different heuristics to exploit the

locality across CTAs. However, as shown by prior works [131, 8, 148], there is no single

ideal CTA scheduling policy that benefits all applications. This is because inter-CTA

locality, data access pattern, and execution time of CTAs are hard to know at compile

time, which increases the complexity of the CTA scheduling problem. Hence, we choose

the round-robin CTA scheduler as it is the most commonly used. Our analysis shows that

the data sharing across L1 caches is pervasive and hence our solutions are effective.

Inter-core Locality in GPUs. Prior works proposed mechanisms to exploit inter-core

locality in GPUs by allowing communication between multiple L1s by connecting the

cores via a ring NoC [28] or using the L2 cache to forward the read request to a supplier

L1 [146]. Other works proposed coherence-like mechanisms [123] to enable communication

across L1 caches. Inter-core locality information has also been used to propose a packet

coalescing mechanism to reduce NoC pressure [55]. Although these works either identify

inter-core locality, propose architectures to enable inter-core communication, or utilize

coherence-like mechanisms, they do not provide a way to (1) probe multiple L1 caches

in parallel, and (2) identify which L1 caches to probe for high probe success rate. Our

schemes allow the inter-core communication to be low-latency due to parallel probes, and

low bandwidth-demanding due to the reduced number of useless probes sent. Finally,

previous works studied coherence communication predictors based on address [79, 64],
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instruction [49], or both [77, 50]. These works focused on tracking coherence events at the

directories. Our work uses an effective PC-based predictor to filter the read misses that

have less probability of sharing across the GPU cores.

3.7 Chapter Summary

Traditionally, GPUs have been depending on the bandwidth from local/shared caches and

memory to achieve high performance. Going forward, other sources of bandwidth need

to be explored and leveraged given that the issue of bandwidth is going to be even more

critical in large-scale GPU-based systems. Our detailed analysis in this work shows that

remote-core bandwidth can significantly improve the GPU performance within a single

GPU node. However, there are several challenges in unlocking this remote-core bandwidth,

which this work systematically addresses. First, we leverage the bi-modal distribution of

inter-core locality across PCs to determine which data is expected to be shared across

cores. Second, we dynamically generate an inter-core locality map that guides the probing

mechanism to determine which cores to probe for increasing the probability of finding

the shared data. Finally, we develop a novel two-level probing technique to get the data

as soon as possible without saturating the interconnect. We conclude that our efficient

inter-core communication provides a significant improvement in performance and on-chip

bandwidth at a modest hardware cost.
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Chapter 4

Analyzing and Leveraging Shared

L1 Caches in GPUs

Graphics Processing Units (GPUs) concurrently execute thousands of threads, which

makes them effective for achieving high throughput for a wide range of applications.

However, the memory wall often limits peak throughput. GPUs use caches to address

this limitation, and hence several prior works have focused on improving cache hit rates,

which in turn can improve throughput for memory-intensive applications. However, al-

most all of the prior works assume a conventional cache hierarchy where each GPU core

has a private local L1 cache and all cores share the L2 cache. Our analysis shows that this

canonical organization does not allow optimal utilization of caches because the private

nature of L1 caches allows multiple copies of the same cache line to get replicated across

cores.

We introduce a new shared L1 cache organization, where all cores collectively cache

a single copy of the data at only one location (core), leading to zero data replication.

We achieve this by allowing each core to cache only a non-overlapping slice of the entire

address range. Such a design is useful for significantly improving the collective L1 hit

rates but incurs latency overheads from additional communications when a core requests

data not allowed to be present in its own cache. While many workloads can tolerate this
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additional latency, several workloads show performance sensitivities. Therefore, we de-

velop lightweight communication optimization techniques and a run-time mechanism that

considers the latency-tolerance characteristics of applications to decide which applications

should execute in private versus shared L1 cache organization and reconfigures the caches

accordingly. In effect, we achieve significant performance and energy efficiency improve-

ments, at a modest hardware cost, for applications that prefer the shared organization,

with little to no impact on other applications.

4.1 Introduction

Graphics Processing Units (GPUs) have emerged as very effective general-purpose acceler-

ators for a wide range of applications. They have been successful because they provide very

high throughput at a competitive power budget. High-bandwidth memories provide the

foundation for supporting the fine-grain multithreading that GPUs rely upon for achieving

high throughput. However, the well-known memory wall [138] is often the performance-

limiting factor for GPUs. Traditionally, a popular approach to address the memory wall

problem has been to employ on-chip memories such as caches. In CPUs, caches have been

very effective in cutting down memory latencies. In GPUs, however, latency is not often

the first-order challenge for many applications because of the high level of multithread-

ing. Still, GPUs are equipped with both software-managed (scratchpad) and hardware-

managed on-chip memories (caches) to reduce traffic to the lower levels of the memory

hierarchy. An increase in on-chip memory hit rate can lead to a proportional decrease

in memory traffic, translating into performance improvements for memory-intensive pro-

grams [82, 134]. Therefore, researchers in the past have invested significant efforts in im-

proving cache performance via hardware and software methods [105, 47, 46, 42, 51, 58, 148].

GPUs typically employ a two-level cache hierarchy, where each core is associated with a

private local L1 cache, and all cores in the GPU share a banked L2 cache. An interconnect

connects all cores to the L2 caches and memory partitions. The L1 caches are responsible
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for reducing traffic to the interconnect and L2 cache, while the L2 cache helps to reduce

memory traffic. This work challenges such a conventional cache organization and reveals

inefficiencies in the existing cache hierarchy in the context of GPUs. In particular, we focus

on addressing the inefficiencies associated with GPUs’ private local L1 caches. Specifically,

because of the private nature of the L1 caches, the same cache lines can be requested by

different cores, leading to high inter-core locality [71, 59, 72, 28]. This data (cache line)

replication reduces the effective aggregate capacity of the L1 caches across all cores, leading

to their lower bandwidth utilization as we will show in Section 4.2.

To address these challenges, we propose and evaluate shared local L1 caches in GPUs.

The key idea is to ensure only one copy of data exists across L1 caches, thereby eliminating

data replication and making better use of the finite cache capacity. We propose to realize

the shared L1 caches by making minimal changes to the existing L1 cache controller and

address mapping policies, with no changes to the L1 caches. Normally, each core can cache

any data from the entire address range. Instead, our shared L1 cache design restricts each

core to cache only a unique slice of the address range. Consequently, each core caches

data from non-overlapping address ranges, which eliminates data replication across local

caches.

Although such a design is attractive for GPUs, it requires inter-core communication if

one core requests data that is not mapped to its allocated address range. In such situations,

additional latency will be incurred to fetch the data from the L1 cache of a remote core.

Fortunately, thanks to the latency-tolerance of many GPGPU applications, an increase

in latency often has a negligible impact on performance. However, not all applications a)

can tolerate long memory latencies, b) exhibit data replication, or c) are sensitive to cache

capacity (i.e., their working sets fit in L1 cache or they stream with little-to-no locality).

Consequently, shared local caches can have negative or no effect on such applications’

performance. To address these concerns, we develop lightweight mechanisms to a) reduce

the inter-core communication overhead and b) identify applications that prefer the private

L1 organization and hence execute them accordingly.
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Contributions: This work contributes the following:

•We propose shared L1 caches in GPUs. To the best of our knowledge, this is the first

work that performs a thorough characterization of shared L1 caches in GPUs and shows

that they can significantly improve the collective L1 hit rates and reduce the bandwidth

pressure to the lower levels of the memory hierarchy.

• We develop GPU-specific optimizations to reduce inter-core communication over-

heads. These optimizations are vital for maximizing the benefits of the shared L1 cache

organization.

• We develop a GPU-specific lightweight dynamic scheme that classifies application

phases and reconfigures the L1 cache organization (shared or private) based on the phase

behavior.

• We extensively evaluate our proposal across 28 GPGPU applications. Our dynamic

scheme boosts performance by 22% (up to 52%) and energy efficiency by 49% for the

applications that exhibit high data replication and cache sensitivity without degrading

the performance of the other applications. This is achieved at a modest area overhead of

0.09 mm2/core.

• We make a case to employ our dynamic scheme for deep-learning applications to

boost their performance by 2.3×.

4.2 Motivation and Analysis

In this section, we first quantify the data replication problem associated with private L1s

in GPUs (as described in Section 4.1) and then make a case for shared L1s to address this

inefficiency.

4.2.1 Analysis of Wasted L1 Cache Space

Figure 4.1 shows the line replication ratio under the baseline private L1 organization for

the evaluated applications (methodology detailed in Section 4.5). The line replication
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Figure 4.1: Performance of the evaluated applications in terms of L1 miss rate, line repli-
cation ratio, and IPC improvement under 16× the L1 cache size (normalized to baseline).
The left-hand y-axis represents cache line replication ratio and raw L1 miss rate.

ratio is defined as the ratio of L1 misses that can be found in other L1 caches to total L1

misses. We observe that the replication ratio varies across the applications. Specifically,

some applications have no replication (e.g., C-BLK) or low replication (e.g., C-RAY), while

others have high replication (e.g., C-BFS).

Identifying Target Applications. The waste due to data replication may not affect all

applications. Only the applications that are sensitive to larger cache space are expected

to benefit if the wasted cache space is reduced/eliminated. Therefore, we study their

performance under a 16× larger L1 cache in Figure 4.1. We observe that 13 applications

are both capacity-sensitive and possess high data replication. To identify the subset of

the capacity-sensitive applications that are sensitive to data replication, we study their L1

miss rates. Applications with low L1 miss rates (e.g., C-NN and S-SpMV) may not suffer

under private L1 caches because the majority of their requests can be satisfied locally.

These applications tend to have working sets smaller than the baseline L1 cache capacity.

In general, we consider an application to be sensitive to data replication if it 1) has a

replication ratio of >10%, 2) has an L1 miss rate of >50%, and 3) observes a speedup

of >5% with 16× capacity.1 Based on these criteria, we observe that 11 applications are

sensitive to data replication (marked by the blue boxes in Figure 4.1). These are our

target applications.

1This criteria is empirical and is not used by our proposed scheme in Section 4.4.
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4.2.2 A Case for Shared L1 Caches

One way to eliminate data replication is to enable a shared cache organization across

the local L1 caches. Under a private L1 organization, each core can cache any line. For

example, given four different address ranges represented by different shades in Figure 4.2a,

a private L1 cache can store any cache line from all four address ranges. However, under

a shared L1 organization, the entire address range is interleaved across all cores and such

mapping is fixed. In other words, each core caches data from a non-overlapping address

range. For example, as shown in Figure 4.2b, the address range represented by white can

be cached by only L1-0, and the address range represented by black can be cached by only

L1-3. Because an exclusive slice of the address range maps to a single L1, the shared L1

organization ensures no cache line replication across L1s. However, to fully unlock the

potential of the shared L1 organization, the cores need to communicate to fetch the data

that do not belong to their assigned address ranges.

L1-0 L1-1 L1-2 L1-3

(a) Private per-core L1 caches. All L1s can
cache any address range.

L1-0 L1-1 L1-2 L1-3

(b) Shared L1 caches across cores. Each L1 can
cache only an exclusive address range.

Figure 4.2: Private and shared cache organizations.

Sources of Benefits. To understand the scope of potential performance benefits of the

shared L1 organization, we set up a hypothetical design where all cores can communicate

with each other with zero cycle overhead and share their L1 caches ensuring no data

replication. Figure 4.3 and Figure 4.4 show performance in terms of IPC and L1 miss rate

for the identified target applications executing on this hypothetical system, normalized to

the private L1 baseline. We observe, in Figure 4.3, that such a hypothetical configuration

improves performance by between 14% and 83% across these applications, and 39% on

average. The main reason for such a performance boost is the significant 79% reduction
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across local L1 caches. Results are normalized to the private L1 baseline.

in the collective L1 miss rate (shown in Figure 4.4) that results in better L1 bandwidth

utilization (i.e., total collective useful bandwidth received from the L1 hits is higher than

the baseline).2 Consequently, the L2 and memory bandwidth consumption is reduced,

thereby making the L1s more effective at addressing the memory wall challenge.

Overall, we conclude that the shared L1 organization eliminates wasted L1 cache capac-

ity and thus can lead to a significant performance improvement for the target applications.

Therefore, we refer to them as shared-friendly applications. Next, we propose a shared L1

cache design that aims to achieve the performance of this hypothetical cache design for

the shared-friendly applications.

2L1 and L2+Memory reply bandwidth represent the number of replies received from L1 and
L2+Memory, respectively, over the total execution time.
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4.3 Shared L1 Caches: Design, Analysis, and Optimizations

In this section, we describe our design that enables both private and shared L1 organiza-

tions, and demonstrate the potential performance of a realistic shared L1 organization.

4.3.1 Terminology and Address Mapping

Under a shared L1 organization, we define two terms that we use in this paper: requester

and home cores. A requester is a core that requests a given cache line and the home is

the core that can cache that line. For example, in Figure 4.2b, the home core of a line

that falls in the black address range is core L1 − 3. If core L1 − 3 requests that line,

then the core is both the requester and the home for that line. Additionally, a typical

memory access under a shared cache organization can be either local or remote. An access

is considered local if the requester core is also the home core. Otherwise, an access is

remote. For example, in Figure 4.2b, if core L1 − 0 requests a cache line from the black

address range, then it will send a remote request to the home core L1− 3.

Selecting the Home Core. To select the home core for a given cache line, we use core

bits. These core bits are selected from the physical address of a request. The process of

selecting these bits is analogous to selecting the DRAM bank bits based on the physical

address. In the private L1 cache organization, there are no core bits because the requester

is always the home. In a system with N local L1 caches (each attached to one core) that

are organized in a shared fashion, we use the least significant dlog2(N)e bits of the tag

as core bits to select the home core for a given cache line. Because the core count or the

cache being organized as private or shared does not affect the number of tag bits according

to this mapping policy, our system always uses 20 bits as tag.

4.3.2 Shared L1 Caches Design

Figure 4.5 shows the communication flow in a simple design that enables the L1 caches to

be organized as either private or shared. Each core is connected to an L1 cache, which has
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Figure 4.5: Request/Reply flow in a shared L1 organization. The L1 Arbitrator and the
In/Out queues, shown in black in (a), are newly added to support our proposal. Dashed
lines represent L1/MSHR bypassing.

associated MSHR to track pending L1 misses. The MSHRs are connected to the network-

on-chip (NoC) that routes L1 misses to the L2. In the baseline private L1 organization,

each core sends requests to its local L1, and the misses go through its local MSHR to

access the L2 via the NoC.

Handling Read Requests. With a shared L1 organization, a remote read request skips

the L1 cache of the requester core because the data cannot be there. It then also skips

the local MSHR A and goes through the NoC to reach the home core. The home core

queues the received remote request B and consults its local L1 cache arbitrator C , which

prioritizes the local cache requests over remote requests. If there are no local requests,

the remote request accesses the L1 cache of the home core. Otherwise, the local request

is processed D and the remote request remains queued. If the request hits in the home

L1 cache, then the L1 queues the read reply E for injection into the NoC back to the

requester. If the request misses in the home L1 cache, then the home core sends the
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request to the L2 cache through the NoC F .3 Once a read reply is received from the

L2 via the NoC, the home core installs the reply in its local L1 and concurrently queues

the reply E to be injected to the requester through the NoC. Finally, the requester core

receives and processes the remote read reply without caching it locally G .

Handling Write Requests. With a shared L1 organization, a remote write request

follows the same flow as a remote read request. However, a remote write request always

skips the MSHR of both the requester and the home. Also, we use write-through and

no-write-allocate policies in the L1 caches (Section 4.5). Therefore, on a write hit, a

given write request modifies the cache line in the home core. The modified cache line is

forwarded to the L2 cache through the NoC. However, on a write miss, no cache line is

allocated at the home core and the updated data is delivered to the L2 cache. Once a

write ACK is received from the L2, the home core forwards the write ACK to the requester

core via the NoC.

Handling Coherence. With a shared L1 organization, only a single copy of a cache

line may exist across L1s. Therefore, there may not be a need for coherence mechanisms

within a single GPU.

Handling Non-L1 Requests All non-L1 (instruction, texture, and constant cache)

misses from the GPU core are not affected by the shared cache organization. Non-L1

misses are simply forwarded to the L2 via the NoC as in the private L1 baseline.

Handling Atomic Operations. In the baseline, atomic operations skip the L1 cache

and are handled at L2/MC [10]. Similarly, in our design, atomic operations skip the

requester and home L1 caches and are handled at the unaltered L2/MC.

Communication Fabric. We evaluate shared L1 caches with a mesh intercon-

nect [11, 53, 142, 97] in Section 4.3.3 and present a case study of a crossbar-based system

in Section 4.6.3. Other interconnect topologies that allow inter-core communication can

be used to unlock the full potential of shared L1 caches, but we leave the study of such

3A single MSHR entry is allocated for a unique cache line address at the home’s L1 to allow coalescing
of misses originating from both local and remote read requests.
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topologies for future work.

4.3.3 Performance Analysis and Optimizations

We analyze the impact of shared L1 cache design on the shared-friendly applications in

terms of performance, L1 miss rate, and the reply network latency as shown in Figure 4.6.

We observe that although the shared design (denoted as Shared) helps in significantly

reducing the L1 miss rate by 80% (as expected per our discussion in Section 4.2.2), it does

not translate into performance improvement over the private L1 baseline. In fact, we ob-

serve a performance degradation of 5%. This is because of the overhead incurred (average

packet latency of the reply traffic increases by 2.2×) due to the additional communication.

Therefore, it is essential to analyze this overhead and propose optimizations to alleviate

it.

Optimization I: Reducing Wasted NoC Bandwidth. Because the requester does not

install data for remote requests in its own L1, fetching the requested data at a full cache

line granularity from the home core wastes NoC bandwidth if only a portion of the line is

actually requested by the requester. Figure 4.7 shows how much data within a line is used

by the requester cores for shared-friendly applications. “Access=N” denotes that N bytes

out of 128, which is the cache line size, are used by the requester. We observe that many

applications do not need the entire cache line data and in fact need only a quarter of it

most of the time. We apply this known observation [104] in a different context for reducing

interconnect traffic between cores. Based on this observation, we design the system such

that the data reply from the home to the requester only carries the data requested by

the requester, not the entire line. The key idea is to reduce unnecessary data movement

and to also avoid wasting precious NoC bandwidth. With the help of this optimization

(denoted as Shared+Chunk), we observe a significant speedup of 23% for shared-friendly

applications as shown in Figure 4.6a.

Optimization II: Better Distribution of Requests. The next optimization

(Min(H,L2)) balances the interconnect traffic by selectively routing the L1 requests to
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Figure 4.6: Performance of a realistic shared L1 organization. Results are normalized to
the private L1 baseline.

either the home L1 or to L2, whichever is fewer hops away. The key idea is to better

utilize both the home cores’ bandwidth and the L2 bandwidth and cut down latency by

going to the nearest source of data. In Figure 4.6, Shared+Chunk+Min(H,L2) shows the

effect of applying Min(H,L2) on top of Shared+Chunk. In this experiment, we apply Opti-

mization I (chunking) on the traffic from either the home core or L2 to the requester core.

We make several key observations. First, with Shared+Chunk+Min(H,L2), we improve

the performance benefits to 26%. This is because of the better distribution of interconnect

traffic and reduced latency. In Shared+Chunk, all requests go to home cores, which has
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Figure 4.7: Fraction of useful bytes within a cache line.

the potential to create network hotspots and limit the achieved bandwidth from the home

cores. With Shared+Chunk+Min(H,L2), there is a better balance between requesters

obtaining their data from home cores and L2. Second, Shared+Chunk+Min(H,L2) does

not provide significant L1 hit rate benefits, compared to Shared+Chunk. Its performance

benefit is mainly because of a more uniform distribution of traffic on the chip, not due

to reduced cache contention at the home caches. Finally, Shared+Chunk+Min(H,L2) re-

duces the latency overhead to 9%, mainly because of lower hop counts and more uniform

traffic distribution. We conclude that, for shared-friendly applications, our optimizations

can reduce the wasted bandwidth, provide a good balance between miss rate reduction

and network latency, and show promising performance improvements. For the rest of the

paper, we will refer to Shared+Chunk+Min(H,L2) as Shared++.

Evaluating Non-shared-friendly Applications. So far, we have proposed an opti-

mized shared L1 organization and validated its usefulness on the shared-friendly applica-

tions. For completeness, we evaluate Shared++ further on other applications (17) that are

not classified as shared-friendly (denoted as non-shared-friendly applications). Figure 4.8

shows the performance of these applications normalized to the private L1 baseline. Three

observations are in order. First, most of these applications perform as well as the private

L1 baseline and are hence classified as insensitive. These applications are likely to have

a high tolerance to the latency overhead induced by the shared L1 organization. Second,

two of these applications (C-Kmeans and P-COVAR) perform better than the private L1 or-
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Figure 4.8: Non-shared-friendly applications under Shared++. Results are normalized
to the private L1 baseline.

ganization. C-Kmeans achieves a 14% performance improvement because of the Min(H,L2)

optimization. C-Kmeans has high sensitivity to cache size and no replication across cores.

Thus, by bypassing the home core and directly going to L2, we effectively increase the

cache capacity (increase the L1 hit rate). As for P-COVAR, its 20% improvement is because

of the work imbalance between the cores in some kernels under the private L1 baseline.

Specifically, some kernels do not have enough CTAs for all the cores, which leaves the L1

caches of some cores not utilized in the baseline. However, with Shared++, all the L1

caches serve the requests based on the required address range. Finally, five applications

suffer a drop in performance under the proposed shared L1 organization (minimum = 12%,

maximum = 51%). We observe that these applications either have high L1 cache locality

leading to low L1 miss rates (< 10%) or low latency tolerance. To make a strong case

for the shared L1 organization, we need a mechanism that identifies such private-friendly

applications and executes them in a private L1 organization.

4.4 A Dynamic Mechanism for Handling Private-friendly

Applications

In this section, we present a per-core lightweight dynamic scheme that locally classifies an

application at runtime as shared-friendly or private-friendly and executes the application
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on a shared or private L1 organization accordingly. Our dynamic scheme utilizes a two-step

process: a sampling phase followed by an execution phase. During the sampling phase of a

core, it simultaneously collects runtime metrics for both shared and private organizations.

Once the sampling phase of a core ends, it evaluates the locally collected information and

chooses the desired L1 organization during the next execution phase. After concluding

an execution phase, a new sampling phase starts. By repeating this two-step process, our

scheme can adapt to the changing behavior of the application.

4.4.1 Sampling Methodology

In this section, we discuss the details of the sampling mechanism and the per-core collected

information as shown in Figure 4.9.
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Figure 4.9: Sampling phase of the dynamic scheme.

Concurrent Evaluation of Private and Shared L1 Organization. Our scheme
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concurrently evaluates both a shared and a private L1 organization using the local L1

cache during the sampling phase. We accomplish such simultaneous evaluation by treating

half of the L1 cache sets as shared and the other half as private. We assign the even sets

and the odd sets to be treated as private and shared, respectively A . We interleave the set

indexing between private and shared at a fine granularity to decrease the bias of requests

focusing on a subset of the cache sets. Note that this approach is not a dynamic cache

partitioning scheme, thus we do not have the associated overheads [109]. We do not change

the indexing of the cache as the set bits are the same. We use the least significant bit

(LSB) of the set bits to determine if the required set is even (to be treated as private) or

odd (to be treated as shared) B .

Sampling Phase. During the sampling phase, we use counters to gather information that

is crucial for classifying the running application C . For example, we count the number

of accesses and misses to the local L1 cache to estimate the L1 miss rate at the end of

the sampling phase. Because we evaluate both shared and private cache organizations

concurrently, we use two groups of counters for each option, and only the corresponding

counters are updated based on the LSB of the set bits. For example, if a core receives a

read reply from L2 to install in an odd set, then the replies from L2 counter for the sets

that are treated as shared is incremented D . The sampling phase continues until both the

shared and private groups each process at least RS local L1 accesses (RS = 512 requests)

E , where a local L1 access occurs when a core generates a request that is destined to its

local L1 cache (i.e., requester = home). This makes the time interval for the sampling

phase variable. Also, this ensures that each group observes enough requests to have a fair

evaluation between the two options.

Execution Phase. Once the sampling phase ends, the counters from each group are used

to evaluate which cache organization to use F . The evaluation is based on the metrics

discussed in Section 4.4.2. After evaluation, the execution phase starts under the desired

L1 organization. The next sampling phase starts after processing REx local L1 accesses
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(REX = 16384 requests).4

Selecting the Home Core. Due to the self-paced nature of our dynamic scheme, a given

core may be in either sampling or execution phase. Additionally, a core locally chooses

the preferred L1 organization. Nevertheless, as discussed in Section 4.3.1, a core under a

shared L1 organization (during sampling or execution) still uses the core bits to determine

the home core, even if the home core is under private L1 organization or in a sampling

phase.

Handling Coherence. The coherence protocol utilized in the private L1 baseline is used

in our dynamic mechanism. Specifically, both the private L1 baseline and our dynamic

scheme employ flushing-based software coherence [92, 90, 5, 103, 121, 140, 116].5 This

is ensured by the usage of 1) a write-through L1 cache that is invalidated and flushed

at every kernel boundary or at synchronization points, and 2) a shared L2 cache that is

inherently coherent. Such system-wide flushing of the L1 caches does not differentiate

between a core that is under execution phase (private or shared) or sampling phase. In

other words, all L1 caches in the system will be invalidated and flushed indiscriminately

at kernel boundary or synchronization points to ensure coherence.

Handling Private-to-Shared Transition. In case shared L1 organization is desired for

the execution phase, then some leftover cache lines may exist in the cache. A leftover line

is a cache line that was cached during sampling in the sets treated as private but does not

belong to the assigned address range of the core. However, if a leftover line is requested,

then the core will skip its local L1 cache (as requester 6= home) and forward the request

to the home core. Thus, these leftovers lines are not utilized by the requester core during

the execution phase. Additionally, a request destined to a cache set storing a leftover line

will always lead to a tag mismatch with the leftover line as the core bits are different. We

employ a lazy invalidation scheme instead of migrating the leftover lines or flushing the

4RS and REx values are empirically chosen based on the insight to have longer execution phases to
minimize any sampling overheads.

5If a hardware-based coherence protocol is used, the directory at L2 will correctly keep track of the list
of sharer cores and the invalidations will only be sent to the sharers.
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L1 cache because of its simplicity. However, the cache replacement policy may be updated

to consider the leftover lines for victim-selection. These lines can be identified by using

either the core bits or by setting an extra 1-bit per cache line during sampling. Such a

policy should replace the leftover lines sooner leading to better cache utilization.

4.4.2 Sampled Metrics

In this section, we assess the effectiveness of two possible metrics that can be used in

classifying an application to be either shared-friendly or private-friendly. A good metric

should clearly distinguish between shared-friendly and private-friendly applications with

minimum overhead in terms of the sampled information.

Metric I: Average Memory Access Time (AMAT) is a well-known metric used to

analyze memory system performance in the CPU domain. AMAT is a good candidate

for evaluation as it covers the cache capacity aspect (via the miss rate) and reports the

average overall latency. For our scheme, AMAT is defined as:

AMAT = L1HitLatency + (
L

L+R
× L1LocalMissRate × L2AccessLatency) + (

R

L+R
×AMATHome)

(4.1)

AMATHome = HomeAccessLatency + (L1RemoteMissRate × L2AccessLatency) (4.2)

where L is the number of a core’s own local L1 accesses, and R is the number of a core’s

own remote L1 accesses. L/(L+R) represents a fraction of the given core’s own requests

that belong to its assigned address range. Similarly, R/(L + R) represents a fraction of

the core’s own requests that do not belong to its assigned address range.

At the end of the sampling phase, we evaluate AMAT for both shared and private L1

organizations and choose the option with the lower AMAT. Figure 4.10a shows the effec-

tiveness of AMAT to choose between shared and private L1 organization using four non-

shared-friendly applications (one insensitive and three private-friendly) and four shared-

friendly applications. We observe that for the non-shared-friendly applications, AMAT
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Figure 4.10: Effect of different metrics on the dynamic scheme.

(DynAMAT ) performs as well as the baseline by clearly identifying the insensitive and

private-friendly applications. It also performs better than Shared++ for C-TRA, C-NN, and

S-SpMV. However, DynAMAT performs poorly with the shared-friendly applications, los-

ing the performance benefits gained by using the shared L1 organization. This is because

AMAT is oblivious to latency tolerance in GPUs. Thus, even with the latency overhead

imposed by the shared L1 organization to access remote home cores, GPUs may be able

to hide such an increase in latency due to their huge parallelism. This makes a case for

using another metric.

Metric II: Effective Bandwidth (EB) is defined as the ratio of bandwidth to miss

rate and is calculated based on the level of memory hierarchy under consideration. At

a given core, EB is computed as BW/CMR, where CMR = L1MissRate × L2MissRate.

EB is a good candidate for the following reasons. First, Wang et al. [134] showed that

IPC ∝ EB. Thus by optimizing for a higher EB, we aim for a higher IPC as well.

Second, EB is sensitive to the change in the L1 effective capacity as it has an L1 miss

rate aspect. Third, EB accounts for latency tolerance in GPUs as well by considering

bandwidth. In other words, even if some requests end up incurring high latency, more

requests may be processed within the same time interval, increasing the overall received

bandwidth. Finally, using EB, we can distinguish the performance impact of requests

being cached using a shared or a private organization. However, doing so by using a direct
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performance metric (e.g., IPC) would be difficult because our scheme deals with requests,

not instructions. Furthermore, performance metrics might vary due to reasons other than

L1 performance (e.g., bandwidth obtained from software-managed caches [45]), which can

lead to an inaccurate classification of applications during runtime. In our scheme, our

proxy EB is defined as:

EB =
L2Replies

L1MissRate
+HomeReplies (4.3)

where L2Replies and HomeReplies are the number of read/write replies from L2 and home

core(s), respectively.

At the end of the sampling phase, we evaluate EB for both shared and private L1

organizations and choose the option with higher EB. Figure 4.10b shows the effective-

ness of EB in choosing between shared and private L1 organizations. We observe that

EB (DynEB) achieves the performance improvement of a shared L1 organization for the

shared-friendly applications. As for the non-shared-friendly applications, EB performs

as well as private for C-BLK and C-TRA. However, for C-NN and S-SpMV, EB falls behind

the private L1 organization by up to 33%. To remedy that, we utilize our observation

(Section 4.3.3) that such applications have significantly low L1 miss rates (< 10%) and

low latency tolerance.

Optimization. We augment our DynEB by checking if the sets treated as private have

an L1 miss rate lower than L1MRThreshold (= 10% in our evaluation). DynEB+L1MRpr

denotes the updated DynEB in Figure 4.10b. DynEB+L1MRpr performs as well as the

private L1 organization for the non-shared-friendly applications while maintaining the IPC

improvement for the shared-friendly applications. We also updated the AMAT-based met-

ric with the L1 miss rate optimization and, as shown in Figure 4.10a, DynAMAT+L1MRpr

is still not effective with the shared-friendly applications.
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4.4.3 Hardware Overhead

As discussed in Section 4.3.2 and Section 4.4.1, our optimized shared L1 organization and

DynEB do not change the L1 caches or the NoC. We only update the request handling

architecture to manage the remote accesses. We synthesized the RTL design of the hard-

ware required for our optimized shared L1 organization using the 65nm TSMC libraries

in the Synopsys Design Compiler and estimated the area overhead to be 0.085 mm2 per

core. DynEB leads to an additional area overhead of 0.005 mm2 per core.

4.5 Experimental Setup

Simulated System. Our baseline architecture assumes a generic GPU, consisting of

multiple cores that have private local L1 caches. These caches are connected to multiple

address-sliced L2 cache banks via a NoC. We use two separate networks: request and reply

networks to avoid protocol deadlocks [10]. We faithfully model our shared L1 cache orga-

nization, inter-core communication, and other mechanisms using a cycle-level simulator –

GPGPU-Sim v.3 [10]. A detailed platform configuration is described in Table 4.1.

Table 4.1: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 28 cores (CUs), SIMD width = 32 (16 × 2)

Resources / Core
48KB scratchpad, 32KB register file, Max.
1536 workitems (48 wavefronts, 32 workitems/wavefront)

L1 Caches / Core
16KB 4-way Write-through L1 data cache - Latency = 28 cycles [54]
12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache
8-way 128 KB/memory channel (1MB in total)
128B cache block size - Latency = 120 cycles

Features
Memory coalescing and inter-wavefront merging enabled,
immediate post dominator based branch divergence handling

Memory Model

8 GDDR5 memory controllers (MCs)
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock, Global linear address space is
interleaved among partitions in chunks of 256 bytes [33]
Hynix GDDR5 Timing [38]

Interconnect
6× 6 mesh topology, 700MHz interconnect clock,
32B flit size, 4 VCs per port, 4 flits/VC,
iSLIP VC and switch allocators
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Evaluated Applications. We evaluate 28 benchmarks from four suites (CUDA-SDK

(C) [86], Rodinia (R) [20], SHOC (S) [26], and PolyBench (P) [100]).

4.6 Experimental Results

In this section, we evaluate and compare the following against a private L1 organization

baseline:

• Shared++: Our shared L1 organization augmented with the optimizations in Sec-

tion 4.3.3.

•DynEB: Our EB-based dynamic scheme, augmented with the L1MRpr optimization

(Section 4.4.2), to classify applications either as shared-friendly or private-friendly.

• Best(Private,Shared++): This configuration statically captures the best of both

private and shared L1 organizations by picking the organization that achieves higher IPC.

Effect on Performance. Figure 4.11 shows the IPC performance of our proposed so-

lutions normalized to the private L1 baseline. We observe the following. First, DynEB

exploits the benefits of the shared L1 organization for shared-friendly applications. Specif-

ically, DynEB enhances IPC by 22% on average over the private baseline and is within 3%

of Best(Private,Shared++) for the shared-friendly applications. This is because DynEB

significantly reduces data replication, thus it increases the effective L1 cache capacity.

Second, DynEB compensates for the IPC loss of the private-friendly applications under

Shared++. As discussed in Section 4.3.3, these applications have a significantly low L1

miss rate and high sensitivity to latency. Thus, their performance suffers because, with

Shared++, even a cache hit may have to go through the NoC. DynEB identifies these

applications and prefers a private L1 organization for them. Finally, for the insensitive

non-shared-friendly applications, DynEB improves performance by 1%, 2%, and 4% over

Best(Private,Shared++), Shared++, and private L1 baseline, respectively. This is because

DynEB enables each core to adapt to the changing behavior of the executing application

and obtain the advantages of both shared and private L1 organizations during different
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Figure 4.11: The effect of the proposed solutions on IPC. Results are normalized to the
private L1 baseline.

phases of execution.

Overall, DynEB improves performance of all evaluated applications by 9%. To demon-

strate that, in Figure 4.12, we show normalized speedup for the evaluated applications

sorted ascendingly. This is under the shared L1 organization (Shared), the optimizations

in Section 4.3.3 (Shared+Chunk and Shared++), and the dynamic scheme (DynEB). We

observe that although Shared+Chunk and Shared++ push the tail of the S-curve to-

ward the private L1 organization, they still suffer due to the private-friendly applications.

However, DynEB can recover the performance loss of these applications.
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Figure 4.12: The effect of the proposed solutions on IPC as S-curve. Results are nor-
malized to the private L1 baseline.

Effect on L1 Miss Rate. Figure 4.13 shows how effective our solutions are for decreas-

ing L1 miss rate. The results are normalized to the private L1 baseline. We observe the

following. First, Shared++ leads to lower L1 miss rates compared to the private L1 orga-
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Figure 4.13: The effect of the proposed solutions on L1 miss rate. Results are normalized
to the private L1 baseline.

nization because of the extra effective capacity achieved using a shared L1 organization.

Specifically, with Shared++, the L1 miss rate drops by 77% and 88% for shared-friendly

and private-friendly applications, respectively. As for the insensitive non-shared-friendly

applications, Shared++ reduces the L1 miss rate by only 13% as these applications possess

low data replication (Figure 4.1).

Second, for shared-friendly applications, DynEB decreases the L1 miss rate by 57%

compared to a private L1 organization. This is because DynEB aims to adapt to the

shared-friendly nature of these applications and executes them under a shared L1 organi-

zation. However, DynEB causes a 88% increase in the L1 miss rate compared to Shared++

because it runs half the cache sets as private during sampling. Additionally, some cores

may end up running under a private L1 organization during some execution phases, which

may lead to replication across cores, and thus less effective capacity and higher L1 miss

rate. Specifically, Figure 4.14 quantifies the number of replicas across the cores under

both private and shared L1 cache organizations and under DynEB. As expected, with

Shared++, we maintain only a single copy of the data. However, under Private, each core

can cache any data from the address range, which may lead to more replications across the

cores (2.7 replicas on average). DynEB maintains fewer replicas compared to Private but

more compared to Shared++ (1.4 replicas on average). This result conforms with the L1

miss rate increase under DynEB compared to Shared++. Finally, for the private-friendly
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Figure 4.14: The effect of the proposed solutions on number of replicas.

applications, DynEB achieves an L1 miss rate similar to the private L1 baseline, as shown

in Figure 4.13. These applications prefer a private L1 organization due to their high L1 hit

rate and latency sensitivities, and DynEB runs them under their preferred organization.

Effect on Energy. The shared L1 organization introduces inter-core traffic. However,

the chunking optimization (Section 4.3.3) reduces such overheads by only sending the data

requested by the requester, not the entire line. Moreover, our proposed schemes reduce

L2 and off-chip memory traffic. Using flit and hop counts as well as L2 and memory ac-

cess counters, we use DSENT [119] and GPUWattch [70] to estimate energy consumption.

Overall, the total power under DynEB is similar to baseline, with <1% reduction averaged

across all evaluated applications. Given the improvement in the overall throughput and

execution time, the average energy savings under DynEB is 9% compared to the base-

line. Therefore, DynEB improves performance-per-watt by 9% and the energy efficiency

(performance-per-energy) by 20%, on average across all evaluated applications. For the

shared-friendly applications, DynEB maintains the total power consumption (similar to

baseline) and saves energy by 18%. Therefore, DynEB enhances performance-per-watt

and energy efficiency for the shared-friendly applications by 22% and 49%, respectively.

Effect on Latency. Our private L1 baseline and proposed solutions assume a local L1

access latency of 28 cycles. The shared L1 cache organization imposes a latency overhead

of 54 cycles, on average, for the communication between the requester and the home cores.

Such inter-core communication overhead is insignificant compared to the 247 cycles, on
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average, to communicate with L2 in the baseline. Also, such latency overhead does not

negatively affect the evaluated applications because of their latency-tolerant nature.

Adaptability of DynEB. The performance results so far show the versatility of DynEB.

This is because DynEB utilizes a repeated two-step process of sampling and execution.

Thus, DynEB adapts to the changing characteristics of a given application’s execution.

Also, DynEB is local per core. Hence, each core independently monitors application needs

and decides the desirable mode of execution. To visualize this adaptive nature, Figure 4.15

shows how DynEB changes the execution mode under C-BFS and C-NN for a representative

core. For both applications, DynEB identifies the desirable mode of execution and sticks

to it for almost the entire execution.
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Figure 4.15: Execution timeline under DynEB for (a) C-BFS and (b) C-NN. S refers to
a sampling phase. Ex-Sh and Ex-Pr refer to an execution under Shared++ and Private,
respectively.

4.6.1 Sensitivity Studies

Effect of L1 Cache Size. We evaluate the effect of doubling the L1 cache size per

core on the performance of our schemes. We observe that Shared++ and DynEB achieve

around 11% improvement for the shared-friendly applications while maintaining the pri-

vate performance of the non-shared-friendly applications, over a private baseline with 2×

L1 cache size. The lower scope of the improvement is because the working set of some
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shared-friendly applications can now fit in the larger L1 cache. Additionally, some of these

applications are latency-sensitive, making a shared L1 organization less desirable for them

under 2× L1 cache size. We also compare Shared++ and DynEB, for the shared-friendly

applications, under the baseline L1 cache size (Table 4.1) against a private L1 organiza-

tion with double the L1 cache size, denoted as Private(2x). We observe that Shared++

and DynEB improves IPC over Private(2x) by 8% and 4%, respectively. This shows that

by enabling a shared L1 organization, we can perform better compared to a system with

double the L1 cache resources without the extra cost/overhead of increasing the L1 cache

size (84% cache area overhead).6

Effect of L2 Cache Size. We evaluate a boosted private L1 baseline with double the

L2 cache size. We observe almost no performance improvement for the shared-friendly

applications compared to the baseline. This is because performance is limited by the L2

reply bandwidth bottleneck [146, 97, 148]. Such a bottleneck is relieved with Shared++

and DynEB as the shared L1 organization utilizes the remote cores as an additional source

of bandwidth.

Effect of L1 Access Latency. In our baseline and proposed schemes, we assume 28

cycles access latency for the L1 caches. Figure 4.16 shows average performance with

DynEB under different L1 access latency, ranging from 8 to 64 cycles, each normalized

to its respective private L1 baseline. We observe that DynEB achieves 17% performance

improvement for the shared-friendly applications even under an L1 access latency of 8

cycles while maintaining the performance of the non-shared-friendly applications.

Effect of Core Count. We study the scalability of Shared++ and DynEB using 8 × 8

mesh and 10 × 10 mesh NoCs under two different configurations. Figure 4.17 shows

performance of both Shared++ and DynEB normalized to their respective private L1

organization baseline. The notation in the figure is (number of cores, number of memory

partitions). We observe that IPC follows a similar trend to what we observed using the

baseline (28,8) 6×6 mesh. Specifically, with DynEB, we gain significant IPC improvement

6The cache area overhead is estimated using CACTI 6.5 [80].
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Figure 4.17: Sensitivity study on core and uncore components.

for the shared-friendly applications and maintain the private performance for the non-

shared-friendly applications. For example, for an (84,16) system, DynEB improves IPC

by 33% and 4%, on average, for the shared-friendly and non-shared-friendly applications,

respectively. We observe higher IPC improvement under increased core count because the

overall L1 capacity increases with more cores, thus the available collective L1 bandwidth

increases under shared L1 organization. Also, with more cores, the home camping effect is

reduced. Home camping, which is similar to partition camping [4], is caused by memory

accesses that are skewed towards a subset of the home cores, which may degrade the

performance. Thus, by increasing the core count, each core is assigned a smaller slice

of the address range which should likely lead to a uniform traffic distribution among the

home cores and hence scales performance.

Effect of Additional Memory Partitions. Figure 4.17 shows the effect of increasing

the memory partitions count (this increases total L2 capacity, L2 bandwidth, and memory
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bandwidth). For an 8×8 mesh, we study systems with 8 and 16 memory partitions. For a

10×10 mesh, we study systems with 16 and 32 memory partitions. We observe that for the

systems with a smaller number of memory partitions, our schemes achieve performance

boost at least as good as the systems with a greater number of memory partitions. This

is because our schemes are more beneficial with more cores.

Effect of Core to Memory Partition Ratio. Figure 4.17 shows that our schemes can

boost IPC for the shared-friendly applications under varying core-to-memory partition

ratio. Even in a large (68,32) system, DynEB achieves 21% IPC improvement over the

baseline (68,32) 10× 10 mesh.

4.6.2 Case Study: Deep-Learning Applications

In this section, we briefly characterize three popular deep-learning workloads from Tango

benchmark suite [48], namely AlexNet (AN), ResNet (RN), and SqueezeNet (SN). Addi-

tionally, we evaluate their performance under DynEB assuming a big 76-core system with

24 memory partitions (using 10× 10 mesh) to mimic recent GPUs oriented to processing

deep-learning applications. Figure 4.18a characterizes the evaluated applications in terms

of L1 miss rate and line replication ratio (Section 4.2). We observe high replication ratio

(up to 98% for SN) and high L1 miss rate (up to 98% for SN) in the evaluated applica-

tions, making them perfect candidates for our proposed schemes. Reducing this significant

replication across the L1s enables more data to be cached on-chip, which boosts the L1 hit

rate, on-chip bandwidth, and overall performance, as shown in Figure 4.18b. Specifically,

on average, DynEB reduces the L1 miss rate by 79% for these applications, thus improving

their performance by up to 3.9× and by 2.3× on average.

4.6.3 Case Study: Crossbar-based Shared L1 Cache Design

In this section, we evaluate the shared L1 organization under a crossbar NoC. A con-

ventional crossbar connecting cores on one side of the crossbar to L2 slices on the other

does not support inter-core communication. Therefore, in this case study, we investigate
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Figure 4.18: Analyzing deep-learning applications in terms of L1 miss rate, line replica-
tion ratio, and performance improvement under DynEB.

enabling such communication via the L2 slices. Then, we propose using work distribution

crossbar [30, 34], which is already utilized in the graphics (rendering) pipeline, to forward

inter-core traffic.

Inter-core Communication via L2 Slices. We update the L2 slices to simply receive

a remote request/reply from a requester/home core and forward it back to the target

home/requester core. We observe that using L2 to forward the inter-core traffic reduces

performance by 23% compared to the private L1 organization. This is due to the contention

between L2 replies and forwarded remote traffic, thereby significantly delaying the remote

traffic and thus losing performance.

Inter-core Communication via Work Distribution Crossbar. We propose to utilize

the work distribution crossbar [30, 34], which already exists and is used by the graphics

pipeline, to handle inter-core traffic instead of using the L2 slices. The work distribution

crossbar is a scalable multistage butterfly NoC that supports 1) the distribution of triangle

and fragment work necessary for load balancing and 2) the synchronization communica-

tion necessary for ordering in the graphics pipeline [30]. Therefore, the work distribution

crossbar inherently enables inter-core communication. A multistage butterfly (k-ary n-fly)

supports a system with up to kn nodes organized in n stages, where each stage has kn−1

switches with a radix k (i.e., k × k crossbar switch). For our 36-node baseline system

(28 cores and 8 memory partitions), we assume a 6-ary 2-fly butterfly NoC. Figure 4.19
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Figure 4.19: Performance of the shared L1 organization in terms of IPC under a crossbar-
based system. NS refers to non-shared-friendly applications. Results are normalized to a
crossbar-based system with private L1 organization.

shows performance of Shared+Chunk (Section 4.3.3) and DynEB (Section 4.4.2) under

the work distribution crossbar. We observe the following. First, Shared+Chunk and

DynEB improve performance of the shared-friendly applications, on average, by 76% and

65%, respectively. Second, for the non-shared-friendly applications (denoted as NS in Fig-

ure 4.19), Shared+Chunk incurs a 5% performance drop, on average. However, DynEB

maintains these applications’ private performance and offers a 2% performance improve-

ment, on average. This is because DynEB obtains the advantages of both shared and

private L1 organizations per each application needs.

Overall, Shared+Chunk and DynEB improve performance of all evaluated applica-

tions (denoted as All in Figure 4.19) by 18% and 23%, respectively. To demonstrate

that, Figure 4.20 summarizes the effect of the shared L1 organization (Shared), the pro-

posed chunking optimization (Shared+Chunk), and the dynamic scheme (DynEB) on the

evaluated applications sorted ascendingly. Similar to the mesh-based system, Shared and

Shared+Chunk can provide performance benefits for the shared-friendly applications, but

they fail to push the tail of the S-curve towards the private L1 baseline due to the private-

friendly applications. On the other hand, DynEB recovers the lost performance of the

private-friendly applications, while improving the shared-friendly applications.

Scalability. We study the scalability of Shared+Chunk and DynEB for a 64-node sys-

tem under two different configurations. Specifically, we evaluate a 48-core system with
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Figure 4.20: The effect of the proposed solutions on IPC as S-curve. Results are nor-
malized to a crossbar-based system with private L1 organization.

16 memory partitions and a 56-core system with 8 memory partitions. For both config-

urations, we assume a 4-ary 3-fly butterfly NoC. Figure 4.21 shows performance of both

Shared+Chunk and DynEB normalized to their respective private L1 baseline. The no-

tation in the figure is (number of cores, number of memory partitions). We observe a

similar trend to what we observed with the 36-node system. In particular, Shared+Chunk

significantly boosts performance of shared-friendly applications while falling short for non-

shared-friendly applications. On the other hand, DynEB matches the performance boost

of the Shared+Chunk for shared-friendly applications and maintains the private perfor-

mance for non-shared-friendly applications. Additionally, similar to our observation in

Section 4.6.1, performance improvement under the 56-core system is higher compared to

the 48-core system. This is because our proposed shared L1 organization benefits more in

the presence of more L1 caches.
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Figure 4.21: Crossbar-based system scalability.
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4.7 Related Work

To our knowledge, this is the first work to make a case for using shared L1 caches in

GPUs. In this section, we briefly discuss works that are most relevant to this study.

Intra-core Locality in GPUs. There is a large body of work that focuses on exploiting

the locality that exists within a private local L1 cache in GPUs [105, 106, 47, 51, 114, 73].

In this work, we specifically focus on the locality that exists across L1 caches. Multiple

prior CTA schedulers [65, 8, 122] have used different heuristics to exploit the locality across

CTAs. However, they are not ideal [46, 71, 131], and the fundamental problem of cache

line replication across private L1 caches remains. While the goal of these schedulers is to

improve cache performance, our approach 1) is not dependent on any scheduling algorithm,

2) does not require any software support to determine private and shared data, and 3)

does not only reduce replication but can eliminate it. In general, prior L1 cache capacity

management works based on bypassing [122, 60], sectoring [104], or compression [9] do

not ensure zero data replication across L1s. However, they can continue to improve the

performance of local L1 caches while our shared L1 organization can facilitate coordination

across L1s for their better utilization.

Inter-core Locality in GPUs. Prior works proposed mechanisms to exploit inter-core

locality in GPUs by allowing communication between multiple L1s via connecting L1s

through a ring network [28], using the L2 cache to forward inter-core traffic [146], or

coherence-like mechanisms [123]. Although these works identified and exploited inter-core

locality via inter-core communication, they do not provide a way to reduce or eliminate

data replication across L1 caches as we do. Our shared L1 organization utilizes inter-

core communication to eliminate the L1 cache wastage without the need for searching or

prediction. Zhao et al.[148] boost performance of applications with high degrees of data

sharing between cores by replicating the shared cache lines across different L2 slices. This

is complementary to our work as ours improves the L1 bandwidth utilization while their

work improves the L2 bandwidth.
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Replication Control in CPUs. Many works have investigated the trade-offs between

shared and private caches in the context of CPUs. These works use a flavor of replica-

tion control [75, 37, 143, 22, 12, 61, 128], cooperative capacity management mechanisms

across cores [17, 102, 107, 27, 36, 62], hybridized shared/private designs [145, 63], OS-level

techniques [23, 35], or focus on different architectures/components [115, 13]. Our work

differs from those in multiple aspects. First, most of the replication management works in

the CPU context consider latency as an important metric for controlling replication. We

show that using a latency metric (i.e., AMAT) performs poorly in GPUs as it does not

consider the latency-tolerance property of applications. Therefore, we investigate a GPU-

oriented metric (i.e., EB) to gauge an application’s affinity towards a private or shared

L1 organization. Second, all works in the CPU context investigate the aforementioned

approaches for the last-level caches as L1 caches always aim to reduce latency. Due to the

latency-tolerant and throughput-oriented behavior of GPUs, optimizing for hit rate (and

hence bandwidth) is usually more important than optimizing for latency, so we consider

using a shared cache organization for L1 caches. Finally, our mechanism is entirely locally

managed, and no coordinated mechanisms are needed to make a decision.

4.8 Chapter Summary

In this work, we show that using a shared L1 cache organization in GPUs is attractive

in terms of performance for many applications. We also address the challenges related to

applications that lose performance from such an organization with low-overhead commu-

nication optimization techniques and a lightweight dynamic mechanism that gauges an

application’s affinity towards a private or shared L1 organization and configures the L1

caches accordingly. We show that our techniques can boost performance and can be even

more beneficial for future large GPUs with many cores. We hope that this work will open

up new research directions in sharing other resources in the GPU (e.g., software-managed

caches).
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Chapter 5

Analyzing and Leveraging

Decoupled L1 Caches in GPUs

Graphics Processing Units (GPUs) use caches to provide on-chip bandwidth as a way to

address the memory wall. However, they are not always efficiently utilized for optimal

GPU performance. We find that the main source of this inefficiency stems from the tightly-

coupled design of cores with L1 caches. First, such a design assumes a per-core private

local L1 cache in which each core independently caches the required data. This allows

the same cache line to get replicated across cores, which wastes precious cache capacity.

Second, due to the many-to-few traffic pattern, the tightly-coupled design leads to low

per-core L1 bandwidth utilization while L2/memory is heavily utilized.

To address these inefficiencies, we renovate the conventional GPU cache hierarchy by

proposing a new DC-L1 (DeCoupled-L1) cache – an L1 cache separated from the GPU

core. We show how decoupling the L1 cache from the GPU core provides opportunities to

reduce data replication across the L1s and increase their bandwidth utilization. Specifi-

cally, we investigate how to aggregate the DC-L1s; how to manage data placement across

the aggregated DC-L1s; and how to efficiently connect the DC-L1s to the GPU cores and

the L2/memory partitions. Our evaluation shows that our new cache design boosts the

useful L1 cache bandwidth and achieves significant improvement in performance and en-
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ergy efficiency across a wide set of GPGPU applications while reducing the overall NoC

area footprint.

5.1 Introduction

Graphics Processing Unit (GPU) architectures are a critical component in most high-

performance computing systems [125] as they provide faster and more energy efficient

execution for many general purpose applications [29, 101, 118, 84, 111, 87, 83, 88, 95].

GPUs employ a conventional two-level cache hierarchy where each core incorporates a

private L1 cache and all the GPU cores are connected via a Network-on-Chip (NoC)

to a shared and banked L2 cache. The L1 and L2 caches are used to boost the on-

chip bandwidth as a means to address the well-known memory wall problem [138]. An

increase in the on-chip bandwidth translates into performance improvements for memory-

sensitive applications [82, 134, 132]. Therefore, prior research efforts developed hardware

and software schemes to improve cache performance [105, 47, 46, 51, 42, 58, 148, 133].

However, we find that the conventional cache hierarchy leads to inefficient utilization of

the valuable on-chip caches. Specifically, the tight coupling between the GPU cores and

the L1 caches, under this conventional cache organization, results in the following two

inefficiencies.

The first inefficiency stems from the many-to-few communication between the L1s and

the L2 banks. This puts more pressure on the few L2s and less pressure on the many

per-core L1s, which results in a low bandwidth utilization for the per-core L1s [43]. The

second inefficiency is due to the private nature of the L1 caches. This may lead to high

cache line (data) replication across the L1 caches [59, 28, 72, 71] as each GPU core may

independently cache the same cache line. Such replication effectively wastes the overall

L1 cache capacity, leading to lower L1 hit rates and hence reduces its useful bandwidth. If

cache line replication is reduced, then the L1 caches can effectively provide more capacity

to cache more data, leading to higher hit rates, more delivered on-chip bandwidth, and
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reduced pressure on the L2 and memory.

In this work, we address these two inefficiencies by breaking the tight coupling between

the GPU cores and the L1 caches. To achieve that, we renovate the GPU two-level cache

hierarchy and propose DeCoupled-L1 (DC-L1) caches, where we separate the L1 caches

from the GPU cores. The decoupled nature of the DC-L1 caches enables aggregating

the DC-L1 caches into bigger caches (while maintaining the total L1 cache capacity), in

which each DC-L1 cache is accessed by multiple GPU cores. Aggregating DC-L1 caches

improves their individual bandwidth utilizations and reduces data replication across the

DC-L1s as more cores are accessing a given DC-L1. Although extreme aggregation of DC-

L1s (all cores accessing one DC-L1) eliminates replication and improves DC-L1 bandwidth

utilization, it can drastically reduce the overall peak L1 bandwidth and hence performance.

In this work, we use the aggregation granularity as a knob to reduce replication and

improve cache bandwidth utilization while managing the overall peak L1 bandwidth.

Once we achieve a suitable aggregation granularity, we propose managing data place-

ment across the DC-L1s to further reduce replication. Specifically, we evaluate a shared

DC-L1 cache design to eliminate replication across the DC-L1 caches. With a shared

DC-L1 cache design, each DC-L1 exclusively caches a unique slice of the address range.

This ensures only one copy of data exists across DC-L1s, thereby eliminating replication

and making better use of the finite cache capacity. However, we show that the shared

DC-L1 cache design requires all-to-all communication between the GPU cores and the

DC-L1s, which imposes significant NoC area/power overheads. Additionally, it imposes

both scalability and NoC clocking challenges. Therefore, we propose to vary the sharing

granularity using a Clustered DC-L1 cache design to balance the trade-off between the

replication waste and the NoC overheads. With such a design, we group the DC-L1 caches

into clusters and enable the shared cache organization only within each cluster instead of

enabling a fully shared cache across all DC-L1s. Therefore, we eliminate replication within

the DC-L1 cluster and reduce replication across all the DC-L1s in a controlled fashion.

This improves overall GPU throughput while reducing the overall GPU area and energy
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requirements.

To enable these DC-L1-based cache designs, a revamped NoC design is also required to

connect the DC-L1 caches to the GPU cores and the memory partitions. The updated NoC

design depends on the granularity of DC-L1 aggregation and the granularity of sharing

under the clustered DC-L1 cache design. Also, given the shared nature of the L2 slices

and the unique address range assigned to each DC-L1 within a cluster, each DC-L1 will

communicate only with a few L2 slices. This further reduces the overall area and energy

requirements.

Contributions: To our knowledge, this is the first work that performs a thorough design

space exploration and characterization of decoupled L1 caches in GPUs to improve their

bandwidth utilization. We address the inefficiencies of the conventional GPU caches and

propose renovating both the cache and NoC design. In particular, by decoupling and

aggregating the L1 caches, we enable a practical clustered shared L1 cache design that

reduces data replication and boosts the L1 bandwidth utilization. Such cache design is

supported by a two-level NoC design that is optimized to save the overall area and energy.

Overall, this work contributes the following:

• We propose Decoupled-L1 caches (DC-L1) where we dissociate the L1 caches from

the GPU cores and aggregate them.

• We propose co-designing the DC-L1 caches and the NoC to build a shared DC-L1

cache organization that eliminates cache line replication across the DC-L1 caches. We

show that our holistic approach significantly improves the collective L1 hit rates and

reduces the bandwidth pressure to the lower levels of the memory hierarchy for the appli-

cations that are sensitive to high replication volume.

• To address the drawbacks of the shared DC-L1 organization (NoC area/power over-

heads, scalability, and clocking challenges), we propose a clustered shared DC-L1 cache

design that limits data replication. This cache design enables a cluster of GPU cores

to access a cluster of shared DC-L1 caches, thus eliminating data replication within the

cluster and reducing it across the GPU.



CHAPTER 5. AGGREGATED DECOUPLED CACHES IN GPUS 82

• We evaluate our clustered DC-L1 design across 28 GPGPU and deep-learning ap-

plications. On average, our proposal boosts performance by 75% (up to 8×) for the

applications that are sensitive to high data replication without degrading performance of

the applications that are insensitive. Additionally, our proposal reduces the total NoC

area by 50% and improves energy efficiency by 95%.

5.2 Motivation and Analysis

In this section, we discuss the inefficiencies of tightly coupled L1 caches in GPUs and make

a case for separating and aggregating the L1 caches to address those drawbacks.

5.2.1 Inefficiency#1: Cache Line Replication across L1 Caches

With the baseline private L1 cache design, each GPU core satisfies its L1 requests from

the local L1 cache. On a miss, each core independently fetches the required data from the

L2 cache. This may lead to replication across L1s if the cores request the same cache line,

leading to wasted cache capacity.

Wasted L1 Cache Capacity. The volume of replication of the evaluated applications

is shown in Figure 5.1 in terms of Replication Ratio, sorted in ascending order. Repli-

cation ratio is defined as the ratio of L1 misses that can be found in other L1 caches to

total L1 misses. We observe that the replication ratio varies across the evaluated applica-

tions. Specifically, some applications have no replication (e.g., C-BLK) or low replication

(e.g., C-RAY), while others have high replication (e.g., C-BFS). We also observe that deep-

learning applications (T-AlexNet, T-ResNet, and T-SqueezeNet) have significantly high

replication. For example, T-AlexNet has a replication ratio of 95%.

Identifying Replication-sensitive Applications. The waste due to data replication

may not affect all applications. Only the applications that are sensitive to larger cache

space are expected to benefit if the wasted cache space is reduced/eliminated. Therefore,

we study performance of the evaluated applications under a 16× larger L1 cache in Fig-
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Figure 5.1: Performance of the evaluated applications in terms of IPC improvement under
16× the L1 cache (normalized to baseline), L1 miss rate, and cache line replication ratio.
The left-hand y-axis represents replication ratio and raw L1 miss rate. The experimental
methodology is detailed in Section 5.7.

ure 5.1. We observe that 15 applications are both capacity-sensitive and possess high

data replication. To identify the subset of the capacity-sensitive applications that are

replication-sensitive, we study their L1 miss rates. Applications with low L1 miss rates

(e.g., C-NN) may not suffer under private L1 caches because the majority of their requests

can be satisfied locally. In general, we consider an application to be replication-sensitive

if it 1) has a replication ratio of >25%, 2) has an L1 miss rate of >50%, and 3) ob-

serves a speedup of >5% with 16× capacity.1 Based on these criteria, we observe that 12

applications are replication-sensitive (marked by the blue boxes in Figure 5.1).

Effect of Eliminating Replication. To estimate the potential performance benefits

of eliminating data replication for the replication-sensitive applications, we evaluate a

hypothetical design where all GPU cores access a single L1 cache (while maintaining

the total L1 cache capacity and bandwidth) to ensure no replication in Figure 5.2. We

observe that the L1 miss rate is reduced significantly by an average of 89.5% under such

design. This is because removing replication allows for more data to be cached in L1s,

thus improving L1 hit rates. For deep-learning applications, we observe an exceptional

99% reduction in the L1 miss rates as they have high replication volume as shown in

Figure 5.1. Overall, for the replication-sensitive applications, the significant reduction in

1This criteria is empirical and is not used by our proposed designs.
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Figure 5.2: Illustrating performance of a hypothetical cache design that eliminates repli-
cation across L1s on replication-sensitive applications (normalized to baseline).

L1 miss rates leads to more delivered on-chip bandwidth from the L1s, which translates

to an IPC improvement of 2.9× on average.

5.2.2 Inefficiency#2: Low L1 Cache Utilization

The tight coupling of the L1 caches and GPU cores along with the many-to-few commu-

nication pattern (between the L1s and the L2 banks) puts more pressure on the few L2

banks and less pressure on the many L1 caches. This leads to low bandwidth utilization

of the per-core L1 caches. We define the per-core L1 bandwidth utilization as the ratio of

a core’s L1 accesses (requests) over the total cycle count. Figure 5.3 shows the maximum

bandwidth utilization of the L1 cache data port, across all L1s, under all the evaluated

applications sorted in ascending order. We observe that the highest bandwidth utilization

of the L1 data ports is 18%. The low bandwidth utilization of the L1 caches is also shown

by recent work [43, 54] where they show a significant gap between the theoretical peak L1

cache bandwidth and the achieved L1 cache bandwidth. 2 Additionally, we verified our

findings in Figure 5.3 using nvprof 9.2 [91] on a Quadro P6000 GPU and observed the

maximum L1 bandwidth utilization to be 11.1% on average. For a comprehensive view, we

also study the utilization of NoC links that carry the data replies from the L2 to the GPU

cores. Figure 5.3 shows the maximum NoC link utilization, across all links connected to

2The higher measured L1 bandwidth reported by [43] is due to using a microbenchmark designed to
pressure the data load requests on the L1 cache.
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Figure 5.3: L1 cache data port and NoC link utilization.

GPU cores, for all evaluated applications in ascending order. Similar to the data port, the

maximum link utilization is low (30%), which further shows the underutilization of the

per-core L1s.

5.2.3 Solution: Decouple and Aggregate L1 Caches

We point out that a major cause for the inefficiencies is the tight coupling between the

GPU core and the L1 cache within it. Therefore, we propose a DeCoupled-L1 cache

(DC-L1) – an L1 cache separated from the GPU core (Section 5.3). This breaks the tight

coupling between these entities and enables optimizations to reduce replication across the

L1s and boost their bandwidth utilizations. These optimizations include aggregating the

DC-L1 caches (Section 5.4) and managing data placement across the aggregated caches

(Section 5.5 and Section 5.6).

5.3 Decoupled-L1 (DC-L1) Design

In this section, we describe Decoupled-L1 (DC-L1) caches and demonstrate how the DC-

L1s, GPU cores, and L2/memory are connected. Also, we discuss the request/reply flow

under the DC-L1-based design.

DC-L1 Node and NoC Design. Figure 5.4 A shows our DC-L1 node design. A

DC-L1 node simply contains the DC-L1 cache (DC-L1$), two queues to handle the traffic

from/to the GPU core, and two queues to handle the traffic to/from the L2 and memory
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Figure 5.4: Decoupled-L1 (DC-L1) node and NoC design.

partitions.3 A GPU core in our design is a Lite Core. A lite GPU core is similar to the

baseline GPU core but without the L1 data cache and the associated MSHR. Because the

L1 caches are now separated from the GPU cores, we breakdown the NoC into two parts.

The first NoC B (NoC#1) connects the GPU cores and the DC-L1 nodes. The second

NoC C (NoC#2) connects the DC-L1 nodes and the L2/memory. The design of both

NoCs is determined by the number of DC-L1 nodes and the cache organization.

Handling Read Requests. With a DC-L1-based design, an L1 read request is injected

into NoC#1 to the target DC-L1 node as the GPU core does not have an L1 cache (and

associated MSHR) anymore. The target DC-L1 node queues the received request into Q1

1 to be served by the DC-L1$ in FIFO manner. The request at the head of the queue

accesses the DC-L1$. If the request hits in the DC-L1$, then the DC-L1 node queues the

read reply into Q2 2 for injection into NoC#1 back to the GPU core. If the request misses

in the DC-L1$, then the DC-L1 node queues the request into Q3 3 to be forwarded to

the L2 cache through NoC#2. Once a read reply is received from the L2 via NoC#2, the

3The hardware overhead of the DC-L1 node is discussed in Section 5.8.
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DC-L1 node queues the reply into Q4 4 to be installed in its DC-L1$. Concurrently while

caching the reply, the DC-L1 queues the reply to be injected to the requester GPU core

through NoC#1 5 . This read reply is not necessarily full cache line sized; it only needs

to provide the data requested by the requester GPU core. This is because, in our design,

a GPU core does not have an L1 cache to install the data in. Hence, if the whole cache

line is not required by the core, then sending the read reply at a full cache line granularity

from the DC-L1 will waste NoC#1 bandwidth [104]. We refer to this optimization as

Sectoring.

Handling Write Requests. A write request follows the same flow as a read request.

However, because we use a write-evict policy for the DC-L1 caches (Section 5.7), on a

write hit, a given write request evicts the cache line from the DC-L1$. The evicted cache

line is forwarded to the L2 cache through NoC#2. On a write miss, no cache line is

allocated at the DC-L1$ and the updated data is delivered to the L2 cache as we use

a no-write-allocate policy. Once a write ACK is received from the L2, the DC-L1 node

forwards the write ACK to the requester GPU core via NoC#1.

Handling Non-L1 Requests. Because the DC-L1 node is on the path to L2, all the

instruction, texture, and constant cache misses from the GPU core must go through the

DC-L1 node to be forwarded to the L2 via NoC#2. These non-L1 requests do not access

the DC-L1$. A given non-L1 request is simply moved from Q1 to Q3 bypassing the DC-

L1$. Similarly, a non-L1 reply is moved from Q4 to Q2. For clarity, the bypassing of

DC-L1$ is not shown in Figure 5.4.

Handling Atomic Operations. In the baseline, atomic operations skip the L1 cache

and are handled at L2/MC [10]. Similarly, in our design, atomic operations skip the

DC-L1 cache and are handled at the unaltered L2/MC.
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5.4 Private DC-L1 Caches

In this section, we address the inefficiencies discussed in Section 5.2. Specifically, to reduce

data replication across the DC-L1s and improve their individual bandwidth utilizations,

we investigate aggregating the DC-L1s into larger DC-L1s.

5.4.1 Designing Private DC-L1 Caches

Given a system with X GPU cores and X DC-L1 nodes, where each DC-L1 node hosts

a single DC-L1$ with size C, we aggregate these X DC-L1$ to form Y bigger DC-L1$

(X > Y ). Each of the Y larger DC-L1$ has a size of (X×C)/Y and is hosted in a DC-L1

node.4 Under this design, each DC-L1 node is accessed privately by a group of N = X/Y

cores via an N × 1 crossbar in NoC#1. We refer to this private aggregated DC-L1 design

as PrY . In that sense, we can vary Y to control the granularity of aggregation (X/Y ).

Table 5.1 shows the different NoC configurations of a private DC-L1 design using different

Y values under our 80-core baseline (Section 5.7). For example, Figure 5.5 shows the

design of Pr40, where 80 DC-L1s are aggregated into 40 DC-L1s each with double the

cache capacity. With Pr40, each DC-L1 node is privately accessed by two cores via a 2×1

crossbar in NoC#1. Such a private cache organization allows each DC-L1 to cache any

line. For example, given the different address ranges represented by different patterns in

Figure 5.5, a private DC-L1 cache can store any line from all address ranges.

5.4.2 Evaluating Private DC-L1 Caches

Performance. We evaluate performance of a private DC-L1 cache design on the

replication-sensitive applications in terms of IPC and DC-L1 miss rate, normalized to

the private L1 baseline in Figure 5.6. We start with Pr80 where we decouple the L1

caches without any aggregation. As shown in Table 5.1, Pr80 connects the GPU cores

to the corresponding DC-L1 nodes using 32-Byte direct links in NoC#1, while connect-

4The size of the MSHR is scaled proportionally when aggregating the DC-L1s. For example, when
aggregating two DC-L1s, the associated MSHR is doubled in size.
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Table 5.1: NoC size and peak L1 bandwidth reduction under different private DC-L1
configurations.

Config.
NoC#1

Crossbars
NoC#2

Crossbars
Peak L1

BW
Peak L1

BW Drop

Baseline NA
(×1)

80× 32 XBar
128 Bytes
1 Cycle × 80 -

Pr80
(×80)

Direct Links
(×1)

80× 32 XBar
128 Bytes
4 Cycles × 80 4×

Pr40
(×40)

2× 1 XBar
(×1)

40× 32 XBar
128 Bytes
4 Cycles × 40 8×

Pr20
(×20)

4× 1 XBar
(×1)

20× 32 XBar
128 Bytes
4 Cycles × 20 16×

Pr10
(×10)

8× 1 XBar
(×1)

10× 32 XBar
128 Bytes
4 Cycles × 10 32×
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Figure 5.5: Pr40 design.

ing the DC-L1 nodes to L2/memory using a 80×32 crossbar in NoC#2.5 Because of the

32B links, the 128B cache line fetched from a given DC-L1 will be decomposed into four

32B chunks (assuming no control metadata) to be delivered sequentially to a requester

core. Therefore, the peak theoretical DC-L1 cache bandwidth is 4× less than baseline

(Table 5.1). Nonetheless, as shown in Figure 5.6a, performance of Pr80 in terms of IPC

is similar to baseline (3% drop on average). This is attributed to the latency tolerance

property of GPGPU applications. This also shows that the peak L1 bandwidth is suffi-

5The 32B links are inline with the baseline link width in Section 5.7.
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Figure 5.6: Performance under private DC-L1 design. Results are normalized to the
private L1 baseline.

ciently abundant (as shown in [43, 54]) that even reducing it by 4×, we still achieve similar

throughput. However, Pr80 does not reduce DC-L1 miss rate as shown in Figure 5.6b.

This indicates no reduction in data replication across the DC-L1s. This is expected as,

under Pr80, we do not aggregate the DC-L1s.

Under aggregated DC-L1s, a group of cores access a common caching resource (a single

DC-L1$). For example, under Pr40, two cores access a single DC-L1$. As there is no cache

line replication within a single cache, DC-L1 aggregation should reduce replication and

enhance the collective hit rate of the DC-L1s. This is shown in Figure 5.6b where the

DC-L1 miss rate drops by 19%, 49%, and 74% under Pr40, Pr20, and Pr10, respectively.

In terms of throughput, Pr40 improves the IPC of the replication-sensitive applications by

15%, on average, compared to baseline. This is because of the reduction in data replication,

hence higher DC-L1 hit rates, which leads to an increase in the on-chip bandwidth and
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overall performance. On the other hand, Pr20 and Pr10 reduce average performance by

3% and 34%, respectively. This is due to the significant drop in their peak L1 bandwidth

(Table 5.1) and the lower NoC bandwidth due to using smaller crossbars in NoC#2, which

limits their bisection bandwidth.

To understand the scope of the private DC-L1 design under different DC-L1 node

counts, we assume a perfect DC-L1$ with 100% hit rate. Figure 5.7 shows the average

IPC improvement for the replication-sensitive applications under both normal and perfect

DC-L1$ normalized to the private L1 baseline. Three observations are in order. First, Pr10

under perfect DC-L1$ still leads to a drop in performance by 28% due to the reduced DC-

L1 cache and NoC bandwidth. Second, Pr20 and Pr40 improve performance under perfect

DC-L1$ by 40% and 90%, respectively, compared to their normal DC-L1$ counterparts.

However, Pr40 has a higher IPC boost of 2.2× compared to the baseline with normal

L1 cache. Finally, Pr80 under perfect DC-L1$ boosts performance by 3.3× compared to

Pr80 with normal DC-L1$. However, it does not match the 5.2× improvement of having

a perfect L1 cache in the baseline private case (denoted as Base). This is due to the 4×

drop in the peak L1 bandwidth under Pr80.
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Figure 5.7: Illustrating the potential performance of DC-L1 under private DC-L1 design.
Results are normalized to the private L1 baseline.

Area & Power. We study NoC area and static power breakdown under different pri-

vate DC-L1 configurations, normalized to the private baseline in Figure 5.8.6 We use

6We estimate the NoC dynamic power in Section 5.8.
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DSENT [119] to model the crossbars in both NoC#1 and NoC#2, assuming a 22nm

technology and assuming that all the evaluated crossbars can operate at the same clock

frequency. We observe the following. First, Pr80 adds insignificant area and static power

overhead compared to the baseline. This is because Pr80 only adds links to connect a

given GPU core to its corresponding DC-L1 node. Second, Pr40, Pr20, and Pr10 reduce

the NoC area by 28%, 54%, and 67%, respectively. This is due to breaking down the

baseline 80×32 crossbar into smaller crossbars, thus reducing the NoC area [148, 147].

Specifically, using smaller crossbars leads to a lower area overhead from Crossbar and the

Switch Allocator within each router. Third, the static power reduction under Pr40 is just

4%. This is because the small crossbars of Pr40 reduces the per-router static power from

the Crossbar and the Switch Allocator components; however, it increases the static power

from Buffer components (due to more routers). Finally, the static power reduction under

Pr20 or Pr10 is more than Pr40. This is because Pr40 uses more small crossbars in NoC#1

and a bigger crossbar in NoC#2 (Table 5.1).

Verdict. Because Pr40 improves throughput while reducing the NoC area and main-

taining the power consumption (compared to baseline), we choose 40 DC-L1 nodes for

the rest of this work. However, to bridge the Pr40 performance gap between normal and

perfect DC-L1, we need to investigate other innovative ways to reduce data replication,

thus further improving the DC-L1s collective hit rates.
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5.5 Shared DC-L1 Caches

To eliminate data replication across the DC-L1 caches, we investigate enabling a shared

DC-L1 cache organization. Under a shared organization, the entire address range is in-

terleaved across all the DC-L1s and such mapping is fixed. In other words, each DC-L1

exclusively caches data from a non-overlapping address range. A DC-L1 that can cache a

given cache line is the home DC-L1 of that line. For example, Figure 5.9 shows that the

black address range can be cached by only DC-L1 39. In other words, DC-L1 39 is the

home of the black address range. Because an exclusive slice of the address range maps to

a single DC-L1, the shared organization ensures no cache line replication across DC-L1

caches.
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Figure 5.9: Sh40 design.

5.5.1 Designing Shared DC-L1 Caches

To enable a shared DC-L1 organization, any core needs access to any DC-L1 node. Fig-

ure 5.9 shows one possible design to achieve that under our setup (Section 5.7). In this

design, 80 GPU cores are connected to 40 DC-L1 nodes via an 80×40 crossbar in NoC#1.

We refer to this design as Sh40 (or ShY in general, where Y is the total number of DC-L1

nodes).
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Selecting the Home DC-L1. To select the home DC-L1 for a given cache line, we use

the home bits. These home bits are selected from the physical address of the request. The

process of selecting these bits is analogous to selecting the appropriate L2 bank based on

the physical address. In general, ShY design requires dlog2(Y )e home bits to identify the

home DC-L1.

Handling Requests. An L1 or a non-L1 request/reply (read or write) follows the same

flow in Section 5.3. The only difference is that the request/reply is forwarded to the home

DC-L1.

5.5.2 Evaluating Shared DC-L1 Caches

Performance. We evaluate the performance of Sh40 on the replication-sensitive appli-

cations in terms of DC-L1 miss rate and IPC, normalized to the private L1 baseline in

Figure 5.10. Under Sh40, the DC-L1 miss rate drops significantly by an average of 89%

(minimum = 27%, maximum = 99%). The significant drop in the DC-L1 miss rate is

expected as these applications have high data replication across the DC-L1s (Section 5.2),

which is eliminated under shared DC-L1 design. This effectively provides L1 cache capac-

ity to store more cache lines, thus improving the L1 hit rate and the on-chip bandwidth.

The boosted on-chip bandwidth from the DC-L1s is translated into a throughput boost

of 48% on average (up to 2.9× for T-AlexNet) as shown in Figure 5.10b.

However, two replication-sensitive applications (P-2MM, P-3DCONV) do not benefit from

Sh40. Specifically, P-2MM achieves only 6% speedup because Sh40 can lead to a partition

camping problem. Partition camping [4] is caused by cache accesses that are skewed toward

a subset of the DC-L1 nodes. This leads to load imbalance between the DC-L1s and limits

the benefits of the shared cache design. As for P-3DCONV, it suffers a 3% performance loss

with Sh40 due to its sensitivity to available L1 cache bandwidth. Specifically, the traffic

in NoC#1 is high due to the absence of the L1 caches from the GPU cores and the high

DC-L1 hit rate with Sh40. Thus, the reduced peak cache bandwidth with 40 DC-L1s

(Table 5.1) limits the performance benefits of P-3DCONV under Sh40.
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Figure 5.10: Performance under Sh40. Results are normalized to the private L1 baseline.

Area & Power. Although Sh40 improves performance of the replication-sensitive ap-

plications, it uses an 80×40 crossbar in NoC#1 to route the traffic from/to any GPU

core to/from any DC-L1 node. This crossbar, in addition to a 40×32 crossbar in NoC#2,

incurs a NoC area overhead of 69% and a NoC static power overhead of 57% compared to

the private baseline.

Replication-insensitive Applications. We evaluate performance of Sh40 on the ap-

plications that are classified as replication-insensitive in Figure 5.11. We observe the

following. First, most of these applications perform as well as the baseline (e.g., R-LUD

and C-BLK). These applications have a high tolerance to the latency overhead induced

by the DC-L1 design. Second, R-SC performs better than the baseline. This is because

R-SC suffers from work distribution imbalance as some cores are assigned more CTAs.

This leads to imbalance in L1 cache accesses across the cores under the baseline. How-
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Figure 5.11: Performance of replication-insensitive applications under Sh40. Results are
normalized to the private L1 baseline.

ever, given the shared nature of the DC-L1 under Sh40, such imbalance in DC-L1 cache

accesses is mitigated, which reduces the bottlenecks and improves performance. Second,

five applications suffer a drop in performance with Sh40 (minimum = 40%, maximum

= 85%). We refer to these applications as poor-performing applications in Figure 5.11.

These applications either have high L1 hit rates and low latency tolerance (C-NN), suffer

from partition camping (C-RAY, P-3MM, and P-GEMM), or are sensitive to the reduced peak

L1 cache bandwidth (P-2DCONV).

Verdict. Although Sh40 significantly improves performance of replication-sensitive ap-

plications, it incurs a considerable NoC area and static power overhead. Also, some

replication-insensitive applications suffer significant performance loss with Sh40. There-

fore, to make a strong case for DC-L1-based designs, we need to address these two issues.

5.6 Clustered Shared DC-L1 Caches

We need a design that provides performance boost for the replication-sensitive applica-

tions while reducing area and energy requirements. Also, it should not negatively affect

the replication-insensitive applications. Therefore, in this section, we investigate limiting

replication instead of eliminating it. Also, we utilize the fact that smaller crossbars in

NoC#1 can be operated at a higher frequency to boost performance of both replication-

sensitive and replication-insensitive applications.
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5.6.1 Designing Clustered Shared DC-L1 Caches

The main reason behind the NoC area and power overhead of Sh40 is the 80×40 crossbar

used in NoC#1. This crossbar is essential to enable the fully-shared cache organization.

Specifically, because each DC-L1 exclusively caches a non-overlapping slice of the address

range, a communication path is required between any GPU core and any DC-L1 node.

On the other hand, with Pr40, replication is still high, but the overall NoC area and

static power is reduced. This presents a trade-off between the reduction in replication and

the NoC area/power requirements. Therefore, we propose a cluster-based shared DC-L1

design where we enable the shared cache model across a cluster of DC-L1 caches instead

of all of them. This eliminates replication across the DC-L1s of the same cluster, as

shown in Figure 5.12. However, it still allows replication across the DC-L1s in different

clusters. Using the number of clusters as a design parameter, we can limit replication

while controlling the NoC area and power requirements.

With this design, a cluster of M DC-L1 nodes is accessed by N cores via an N ×M

crossbar in NoC#1. We refer to this design as ShY+CZ, where Y is the total number of

DC-L1 nodes and Z is the number of clusters (Z = Y/M). Additionally, because of the

shared nature of the L2 slices and that each DC-L1 within a cluster is assigned a unique

address range, a given DC-L1 will communicate only with a few L2 slices. Therefore,

instead of using a full Y × L crossbar in NoC#2 to connect the Y DC-L1 nodes to the L

L2 slices (L ≥ M , L mod M = 0), a given DC-L1 will communicate only with O = L/M

L2 slices via an Z × O crossbar in NoC#2. For example, Figure 5.12 shows the design

of Sh40+C10 with 40 DC-L1s and 10 clusters. Each cluster consists of 8 cores accessing

4 shared DC-L1s via an 8×4 crossbar in NoC#1. The 40 DC-L1s are connected to the

32 L2 slices via four 10×8 crossbars in NoC#2. Specifically, all the 10 DC-L1s across the

clusters that are assigned the same address range access the 8 L2 slices that serve such

address range via a 10×8 crossbar in NoC#2. To illustrate, in Figure 5.12, the DC-L1s

that serve the cross-hatched address range are connected to the L2 slices 0 to 7 (shown as
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Figure 5.12: Sh40+C10 design.

different colors) that jointly serve such address range.

Selecting the Home DC-L1. As discussed in Section 5.5.1, the selection of the home

DC-L1 is based on the home bits. The only difference is the number of bits used from the

physical address of a request. Specifically, ShY +CZ design requires dlog2(Y/Z)e home

bits.

5.6.2 Evaluating Clustered Shared DC-L1 Caches

Performance. In Figure 5.13, we evaluate performance of the clustered shared DC-L1

cache design on the replication-sensitive applications under different cluster counts. The

results are normalized to the private L1 baseline. In this figure, C1 and C40 are equivalent

to Sh40 and Pr40 designs, respectively. We make several observations. First, the L1 miss

rate is higher when cluster count is more than one (C > 1). This is due to increased

replication compared to the C1 case that keeps only a single copy of a given cache line

across the DC-L1s. Specifically, up to 5, 10, 20, 40, and 80 copies of a cache line can exist

across the DC-L1s with C5, C10, C20, C40, and baseline, respectively. This leads to an

average L1 miss rate reduction (compared to baseline) of 72%, 61%, and 41% with C5,

C10, and C20, respectively.
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Figure 5.13: Performance of Sh40 under different cluster counts. Results are normalized
to the private L1 baseline.

Second, the performance improvement is still significant under C5, C10, and C20 even

with the smaller reduction in the L1 miss rate (compared to C1). For example, C10 im-

proves performance by 41%, on average, over the private L1 baseline. This represents a

5% drop in performance compared to C1. Third, the majority of the replication-sensitive

applications perform better with C1 because of their sensitivity to the additional effective

cache capacity achieved by eliminating the replication. On the other hand, some appli-

cations (e.g., T-AlexNet) perform better with clustering. This is because the controlled

replication using clustering balances the useful L1 bandwidth from the additional cache ca-

pacity and from having multiple copies (hence sources) of a given cache line. This shows

that controlled data replication may not negatively affect, and can even help improve,

overall performance.

Finally, P-3DCONV does not obtain speedup with the clustered design and S-Reduction
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loses performance (15% drop). As discussed in Section 5.5.2, the low performance of

P-3DCONV is due to its sensitivity to the reduced peak cache bandwidth with the DC-L1-

based designs. As for S-Reduction, its performance improves only with the fully-shared

C1 design due to its replication pattern. This is evident by the 97% drop in L1 miss

rate with C1. With other clustering options, L1 miss rate does not drop, which means

no reduction in replication. Thus, neither the on-chip bandwidth nor performance is

boosted. On the contrary, due to the decoupled nature of the DC-L1 design and the

latency intolerance of the application, we observe performance degradation.

Area & Power. We evaluate the NoC area and static power of different cluster counts,

normalized to the private L1 baseline, in Figure 5.14. Similar to our observation in Sec-

tion 5.4.2, breaking the 80×40 crossbar in NoC#1 with C1 (Sh40) and using smaller

crossbars to form the clusters leads to savings in the NoC area and static power. Also,

using smaller crossbars in NoC#2 instead of the 40×32 crossbar further improves such

savings. Specifically, compared to baseline, we observe a NoC area savings of 45%, 50%,

and 45% with C5, C10, and C20, respectively. As for NoC static power, we observe a

reduction of 15%, 16%, and 14% with C5, C10, and C20, respectively. Given the perfor-

mance improvement and area/power savings of C10, we choose this design for the rest of

this work. We refer to it as Sh40+C10.
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Figure 5.14: NoC area and static power under different cluster counts. Results are
normalized to the private L1 baseline.

Replication-insensitive Applications. Figure 5.15 shows performance of the poor-
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Figure 5.15: Performance of poor-performing replication-insensitive applications under
Sh40+C10. Results are normalized to the private L1 baseline.

performing applications that significantly suffered with Sh40. We observe that Sh40+C10

drastically improves performance of three of these applications compared to Sh40. Specif-

ically, C-RAY, P-3MM, and P-GEMM benefit as the effect of partition camping is lower with

the clustered design. In other words, the DC-L1 contention from partition camping is re-

lieved by having multiple home DC-L1s (ten under Sh40+C10). However, even with this

improvement, performance losses in these five applications are still significant compared

to the private L1 baseline with a maximum drop of 49% in P-2DCONV. Therefore, we need

to further improve the performance of these applications.

5.6.3 Frequency-boosted Clustered Shared DC-L1 Design

To further boost performance of both replication-sensitive and replication-insensitive (es-

pecially poor-performing) applications, we improve the performance of NoC#1. This NoC

between the GPU cores and the DC-L1 nodes is busy with request and reply traffic due to

the absence of L1 caches in the GPU cores and the high hit rate of the DC-L1s under the

clustered shared design. To improve performance, we utilize the fact that our Sh40+C10

uses smaller crossbars in NoC#1. This enables us to boost the frequency of these small

crossbars with minimal effect on the overall NoC dynamic power (evaluated in Section 5.8).

Using DSENT, we estimate the maximum operating frequency of different crossbars used

in our designs in Figure 5.16. We observe the low maximum operating frequency of the
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80×32 crossbar used in the baseline and the 80×40 crossbar used in Sh40. On the other

hand, the small crossbars used in Pr40 (2×1) and Sh40+C10 (8×4) can operate at signif-

icantly higher frequencies. Therefore, in Sh40+C10, we double the baseline frequency of

the 8×4 crossbars in NoC#1 while keeping the baseline frequency of the 10×8 crossbars

in NoC#2 the same.7 We refer to this design as Sh40+C10+Boost.

From Figure 5.15, we observe that the frequency-boosted design improves perfor-

mance of the poor-performing replication-insensitive applications significantly. The per-

formance impact is particularly evident in P-2DCONV as it is sensitive to the available

peak cache bandwidth (discussed in Section 5.5.2). By doubling the frequency of NoC#1,

Sh40+C10+Boost partially compensates for the drop in the peak cache bandwidth due to

using 40 DC-L1s (Table 5.1). Specifically, instead of enduring 8× peak cache bandwidth

reduction with Sh40+C10 (compared to baseline), Sh40+C10+Boost has a 4× reduction.

Verdict. Sh40+C10+Boost is a balanced design that limits replication to at most 10

replicas. It achieves significant performance improvements for the replication-sensitive

applications while reducing the NoC area and static power. Additionally, the boosted

frequency in NoC#1 recovers most of the lost performance of the poor-performing appli-

cations. We evaluate this design in Section 5.8.

7We do not boost NoC#2 frequency as it has less traffic due to the high hit rate of the DC-L1s. We
evaluate a frequency-boosted baseline in Section 5.8.1.
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5.7 Experimental Setup

Simulated System. Our private L1 baseline assumes a generic GPU, consisting of

multiple cores that have private L1 caches. These caches are connected to multiple address-

sliced L2 cache banks via a NoC. We use two separate networks (request and reply) to avoid

protocol deadlocks [10]. Our baseline and proposed designs assume a separate scratchpad

memory and L1 data cache. The software-managed scratchpad memory is local per-core

and its performance characteristics (latency and bandwidth) are unchanged across all

designs. We model our baseline and proposed designs using GPGPU-Sim v.3 cycle-level

simulator [10]. Table 5.2 provides a detailed platform configuration.

Table 5.2: Configuration parameters of the simulated GPU.

Core Features 1400MHz core clock, 80 cores (CUs), SIMD width = 32 (16 × 2)

Resources / Core
48KB scratchpad, 32KB register file, Max.
1536 workitems (48 wavefronts, 32 workitems/wavefront)

L1 Caches / Core
16KB 4-way Write-evict L1 data cache - Latency = 28 cycles [54]
12KB 24-way texture cache, 8KB 2-way constant cache,
2KB 4-way I-cache, 128B cache block size

L2 Cache
8-way 128 KB/memory channel (4MB in total)
128B cache block size - Latency = 120 cycles

Features
Memory coalescing and inter-wavefront merging enabled,
immediate post dominator based branch divergence handling

Memory Model

16 GDDR5 memory controllers (MCs)
FR-FCFS scheduling, 16 DRAM-banks, 4 bank-groups/MC,
924 MHz memory clock, Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [38]

Interconnect
80× 32 crossbar topology, 700MHz interconnect clock,
32B flit size, 4 VCs per port, 4 flits/VC,
iSLIP VC and switch allocators

Evaluated Applications. We evaluate 28 applications from five representative and

diverse benchmarks suites (CUDA-SDK (C) [86], Rodinia (R) [20], SHOC (S) [26], Poly-

Bench (P) [100], and Tango (T) [48]).

5.8 Experimental Results

In this section, we evaluate and compare the following against the private L1 baseline:
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• Pr40: The proposed private DC-L1 cache design (Section 5.4) in which we reduce

the number of the DC-L1 nodes to 40 while maintaining the total DC-L1 cache capacity.

• Sh40: The proposed fully-shared DC-L1 cache design (Section 5.5) in which we

enable a shared DC-L1 cache organization to eliminate data replication across the DC-

L1s.

• Sh40+C10: The proposed cluster-based DC-L1 cache design (Section 5.6.1) in

which we apply the shared cache design across a cluster of DC-L1s to eliminate data

replication within the cluster and limit replication in the GPU.

• Sh40+C10+Boost: The proposed frequency-boosted Sh40+C10 (Section 5.6.3)

that doubles the frequency of the small 8×4 crossbars in NoC#1 under Sh40+C10 design.

Effect on Performance. Figure 5.17 shows performance of our proposed designs in

terms of IPC normalized to the private L1 baseline. We observe the following. First,

all the proposed designs improve performance of the replication-sensitive applications by

varying degrees. Specifically, an improvement of 15%, 48%, 41%, and 75% is achieved

under Pr40, Sh40, Sh40+C10, and Sh40+C10+Boost, respectively. Second, performance

of P-3DCONV only improves under Sh40+C10+Boost (31%). This is because the cache

bandwidth sensitivity of P-3DCONV (Section 5.5.2) is addressed by the frequency boost

in NoC#1, which partially compensates the lost peak cache bandwidth under the DC-

L1-based designs. Third, performance of P-2MM improves with Sh40+C10(+Boost) as

the DC-L1 contention from partition camping is alleviated by having 10 home DC-L1s.

Fourth, S-Reduction still suffers a drop in performance (14%) under Sh40+C10+Boost

due to its replication pattern that can only be eliminated/reduced under the fully shared

Sh40, as discussed in Section 5.6.2. For the same reason, P-SYRK achieves a lower IPC

improvement of 13% with Sh40+C10+Boost compared to 2.4× with Sh40. Finally, even

with excluding T-AlexNet, T-ResNet, and T-SqueezeNet from the replication-sensitive

applications, Sh40+C10+Boost achieves 29% improvement over the private L1 baseline.

These deep-learning applications possess high data replication (Figure 5.1) and therefore

highly benefit from Sh40+C10+Boost (4.4×).
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Figure 5.17: The effect of the proposed designs on IPC. Results are normalized to the
private L1 baseline.

For the replication-insensitive applications, a 7%, 22%, and 11% drop in performance

is incurred under Pr40, Sh40, and Sh40+C10, respectively. However, Sh40+C10+Boost

maintains performance of these applications with an average IPC drop of only <1%. This

is because of the frequency boost in NoC#1, which in return pushed performance of the

poor-performing replication-insensitive applications (e.g., C-NN and P-2DCONV). For the

remaining replication-insensitive applications, we observe a 1% performance drop under

Pr40, and a 3%, 1%, and 2% improvement under Sh40, Sh40+C10, and Sh40+C10+Boost,

respectively. Overall, Sh40+C10+Boost improves performance of all evaluated applica-

tions by 27%, as shown in Figure 5.17. To demonstrate that, we show the speedup of all

evaluated applications sorted in ascending order under the proposed designs in Figure 5.18.

This shows that Sh40+C10+Boost can provide performance benefits for the replication-

sensitive applications. Also, Sh40+C10+Boost pushes the tail of the S-curve towards the

private L1 baseline, thus maintaining performance of the replication-insensitive applica-

tions.

Effect on L1 Miss Rate. Figure 5.19 shows the effectiveness of our designs in reducing

the DC-L1 miss rate. The results are normalized to the private L1 baseline. The reduction

in the DC-L1 miss rate under Sh40+C10(+Boost) is higher compared to Pr40 and lower

compared to Sh40. Such a reduction is directly proportional to the reduction in data

replication. Figure 5.20 quantifies the number of replicas across the DC-L1s under the
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Figure 5.19: The effect of the proposed designs on L1 miss rate. Results are normalized
to the private L1 baseline.

evaluated designs for the replication-sensitive applications. As expected, only a single

copy of the data (i.e., zero replicas) is maintained under Sh40. However, under the private

L1 baseline, each L1 can store any cache line, which may lead to more replicas across

the L1s (7.7 replicas on average). Pr40 can reduce the replication compared to baseline

(Section 5.4.2), which is shown by the reduction in the DC-L1 miss rate and the lower

replica count (5.7 replicas on average). Sh40+C10+Boost strikes a middle ground between

Pr40 and Sh40 (2.8 replicas on average).

Effect on L1 Utilization. Figure 5.21 illustrates the bandwidth utilization of the

L1/DC-L1 cache data port (maximum per L1/DC-L1 accesses over the execution time)

with our designs for all evaluated applications sorted in ascending order. We observe that

all the proposed designs show higher DC-L1 data port utilization compared to baseline

L1 data port utilization. This is from reducing the number of DC-L1 nodes (by aggre-
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Figure 5.21: L1/DC-L1 cache data port utilization.

gating the DC-L1 caches), which leads to more requests served by each DC-L1 compared

to baseline. For a comprehensive view, we also studied the utilization of NoC links that

carry the data replies from the L2 to the DC-L1s and observed similar trends.

Energy Analysis. With Sh40+C10+Boost, an 8×4 crossbar (in NoC#1) connects a

nearby cluster of 8 GPU cores and 4 DC-L1 nodes via short 3.3mm links. The DC-

L1 nodes and the L2 slices are connected to the 10×8 crossbars (in NoC#2) via long

12.3mm links.8 We use DSENT to estimate the power consumption of the crossbars in

both NoC#1 and NoC#2 assuming a 22nm technology. We use GPGPU-Sim to collect

the flit count and NoC link activity to estimate the injection rates from the GPU cores,

DC-L1 nodes, and L2 banks. We feed these estimates into DSENT to compute NoC dy-

namic power. Figure 5.22 shows the static, dynamic, and total NoC power breakdown for

Sh40+C10+Boost normalized to the private L1 baseline. We observe the following. First,

8These conservative estimations are similar to prior work [147, 148].
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Figure 5.22: NoC power under Sh40+C10+Boost. Results are normalized to the private
L1 baseline.

Sh40+C10+Boost reduces the NoC static power by 16% compared to baseline. Second,

compared to baseline, the dynamic power of Sh40+C10+Boost is on average 20% higher

because of the high traffic volume in NoC#1. Finally, even with the high dynamic power

toll, the overall NoC power under Sh40+C10+Boost 2% lower than baseline. Given the

improvement in the overall throughput and execution time, the average energy savings

under Sh40+C10+Boost is 35% compared to baseline. Therefore, Sh40+C10+Boost im-

proves performance-per-watt and energy efficiency (performance-per-energy), on average,

by 29.5% and 95%, respectively.

Area Analysis. Figure 5.23 shows the area overhead/savings of Sh40+C10+Boost in

terms of the queues within the DC-L1 nodes, the DC-L1 caches, and the NoC. We dis-

cussed the NoC area breakdown in Section 5.6.2 and showed that Sh40+C10 reduces NoC

area requirements by 50%. The Boost optimization affects the NoC dynamic power and

minimally affects the NoC area. As for the queues within the DC-L1 nodes, we use four

queues (Figure 5.4) in each DC-L1 node. Each queue holds up to four 128B entries. All

the queues impose an overhead of 6.25% compared to the total baseline L1 cache. This

overhead is compensated by the 8% cache area savings from aggregating the DC-L1 caches

in a fewer number of DC-L1 nodes. The cache area is estimated using CACTI 6.5 [80].

Even though the cache budget is maintained under Sh40+C10+Boost, we save area as we

use fewer cache ports. Specifically, Sh40+C10+Boost has 50% less DC-L1 cache banks
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Figure 5.23: Area overhead/savings under Sh40+C10+Boost. Results are normalized to
the private L1 baseline.

and hence less cache ports.

Latency Analysis. The decoupled nature of the DC-L1s imposes additional latency for

the communication between the GPU cores and the DC-L1s. We estimated such latency

under the evaluated applications with Sh40+C10+Boost, and observed an overhead of

54 cycles, on average. Another source of latency overhead is the aggregation of the DC-

L1s. Specifically, with Sh40+C10+Boost, each DC-L1 cache is double the size of the

baseline L1 cache, which adds a 7% increase in the DC-L1 access latency. Specifically,

the DC-L1s with Sh40+C10+Boost have an access latency of 30 cycles, compared to

28 cycles L1 access latency in the baseline (Table 5.2). Such latency overheads do not

negatively affect the evaluated applications because of the latency tolerance of the GPGPU

applications. In fact, given the additional provided on-chip bandwidth from the DC-L1s

with Sh40+C10+Boost, we observe a 53% reduction in the overall round trip time to fetch

the required data, compared to the private L1 baseline.

5.8.1 Sensitivity Studies

Hierarchical Crossbar. Zhao et al. [147, 148] proposed a hierarchical two-stage cross-

bar design to improve the NoC scalability, area, and power. In Figure 5.24, we evaluate

a hierarchical crossbar design similar to [147] (denoted as CDXBar) normalized to the
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Figure 5.24: Sensitivity study on using a hierarchical crossbar.

private L1 baseline. We observe that both the replication-insensitive and the replication-

sensitive applications incur performance degradation of 7% and 14% with CDXBar, re-

spectively. This is because the main design goal of CDXBar is not performance. For a fair

comparison with Sh40+C10+Boost, we study doubling the NoC frequency of the small

crossbars in the first stage of CDXBar (denoted as CDXBar+2xNoC1 ) and observed a

minor performance improvement (<1%) compared to CDXBar. This is because CDXBar

(and CDXBar+2xNoC1) does not reduce data replication across the L1 caches, which puts

pressure on the crossbars of the second stage of CDXBar. Hence, once we double the fre-

quency of both stages of CDXBar (denoted as CDXBar+2xNoC ), we observe performance

improvement of 29% for the replication-sensitive applications. Such improvement is 26%

lower compared to the 75% improvement under Sh40+C10+Boost. As for the replication-

insensitive applications, CDXBar+2xNoC improves their performances by 5% compared

to a slight <1% loss under Sh40+C10+Boost. However, CDXBar+2xNoC incurs higher

dynamic NoC power overhead due to doubling the frequency of all the crossbars. In sum-

mary, Sh40+C10+Boost improves performance significantly compared to CDXBar-based

designs, while achieving similar NoC area and power savings.

L1 Access Latency. In our baseline, we assume 28 cycles access latency for the L1 caches

(Table 5.2). Figure 5.25 shows performance of Sh40+C10+Boost under different L1 (and

DC-L1) access latency, ranging from zero to 64 cycles, normalized to its respective private
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Figure 5.25: Sensitivity study on L1/DC-L1 access latency.

L1 baseline. We observe that Sh40+C10+Boost achieves a significant 66% performance

improvement for the replication-sensitive applications even under zero access latency while

maintaining the performance of the replication-insensitive applications (<1% drop).

CTA Scheduling. We evaluate the effect of the state-of-the-art distributed CTA sched-

uler [8] compared to the default round-robin CTA scheduler under Sh40+C10+Boost.

Even with such scheduler, we observe 46% performance improvement for the replication-

sensitive applications. The reduction in performance benefits is attributed to mapping the

nearby CTAs to the same core which may reduce replication.

System Size. We study the scalability of our frequency-boosted clustered shared design

(Section 5.6) by evaluating Sh60+C10+Boost under a 120-core system with 60 DC-L1s,

48 L2s, and 24 memory channels. We observe that performance follows a similar trend to

the evaluated 80-core system. Specifically, we gain significant IPC improvement of 67%

for the replication-sensitive applications, and maintain the private performance for the

replication-insensitive applications.

Boosted Baseline. We investigate various boosted baselines with 2× the per-core L1

cache capacity, 2× the NoC frequency, and 5× the flit size, respectively.9 For the

replication-sensitive applications, we observe that these boosted baselines achieve per-

formance improvement of 33%-36% normalized to the private L1 baseline. Such improve-

9The 5× flit size boosted baseline delivers a given 128B read reply (or write request) in one flit.
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ment is 22% lower compared to the 75% improvement under Sh40+C10+Boost. As for

the replication-insensitive applications, the boosted baselines can improve their perfor-

mance by 2%-6% compared to a slight <1% loss under Sh40+C10+Boost. However, these

boosted baselines incurs significant area and power overheads. Specifically, using DSENT

and CACTI, the cache-boosted baseline incurs a cache area overhead of 84%, and the

flit-boosted baseline incurs a NoC area and static power overhead of 18.5× and 4.2×, re-

spectively. As for the frequency-boosted baseline, the 80×32 crossbar cannot be operated

using 2× the baseline frequency. Finally, our proposed designs are expected to improve

performance with larger DC-L1s or boosted NoC resources.

Sectoring. We study the effect of disabling the sectoring optimization (Section 5.3) on

the evaluated applications under Sh40+C10+Boost. This optimization aims to reduce

NoC#1 bandwidth consumption by only sending the required portion of the cache line

to the requester GPU core. We observe that even when disabling this NoC optimization,

Sh40+C10+Boost improves performance of the replication-sensitive applications by 48%

over a private L1 baseline. As for the replication-insensitive applications, on average,

Sh40+C10+Boost suffers a 5% performance drop.

5.9 Related Work

To our knowledge, this is the first work to make a case for clustered shared decoupled L1

caches for GPUs. In this section, we briefly discuss works that are most relevant to this

study.

Intra-core Locality in GPUs. Prior works focused on exploiting the locality that exists

within a private L1 cache [105, 106, 47, 51, 73, 114]. In this work, we focus on the locality

that exists across L1 caches. Other works proposed CTA schedulers [65, 8, 122] using

different heuristics to exploit the locality across CTAs and improve cache performance.

However, these schedulers are not ideal, and the problem of uncontrolled replication across

L1 caches persists. Our proposed designs restrict replication to a preset limit (e.g., at
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most 10 copies with Sh40+C10+Boost) and do not require any software support. In

general, prior L1 cache capacity management techniques using bypassing [66, 122, 60],

sectoring [104, 7], or compression [9] do not control replication across L1s. However, these

works can improve performance of each individual DC-L1, while our designs facilitate

coordination across DC-L1s for their better utilization.

Inter-core Locality in GPUs. Prior works focused on improving the private L1 band-

width utilization by exploiting inter-core locality and enabling inter-core communication.

This was achieved by using a ring to connect the GPU cores [28], using the L2 cache to

forward inter-core traffic [146], or coherence-like mechanisms [123]. These works do not

reduce replication across L1s. However, our designs reduce replication and eliminate the

need for inter-core communication. Prior work [135, 24] proposed sharing an L1 data

cache across a group of cores. This cache design is similar to the private DC-L1 cache

design (Section 5.4) which suffers from high data replication compared to our design (Sec-

tion 5.6). Specifically, Sh40+C10+Boost improves performance over such design by 52%

for the replication-sensitive applications. Zhao et al. [148] utilized inter-core locality to ad-

dress bandwidth bottlenecks at L2 by replicating cache lines across different L2 slices. This

work is complementary to our work as it targets the L2 bandwidth, while ours improves

the L1 capacity and its bandwidth utilization.

Replication Control in CPUs. Prior CPU works investigated the trade-offs between

shared and private cache design for the last-level caches. These works proposed forms of

replication management [75, 143, 22, 12, 37, 61, 128], cooperative capacity management

mechanisms [17, 102, 107], hybrid shared/private designs [145, 63], coherence protocols to

enable inter-core communication [36, 62], or OS-level techniques [23, 35]. Other works fo-

cused on different architectures and components [115, 13]. These works focused on latency

as it is often the first-order challenge in CPU workloads. However, to our knowledge, our

work is the first to propose replication control and clustered shared decoupled L1 cache

design in GPUs in order to boost on-chip bandwidth.
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5.10 Chapter Summary

In this work, we showed that rethinking the cache hierarchy and interconnect design

in GPUs can be rewarding in terms of performance, area, and energy. Specifically, we

introduced the DC-L1 cache, an L1 cache decoupled from the GPU core to address the

low bandwidth utilization of the L1s and the wasted L1 cache capacity due to cache line

replication across the L1 caches. We used the DC-L1s and proposed a clustered-based DC-

L1 cache organization, where a cluster of GPU cores access a cluster of shared DC-L1s.

With a clustered shared cache organization, we eliminated data replication within each

cluster and limited the overall replication in the GPU. Our designs improve the effective

L1 cache capacity, which significantly boosts on-chip bandwidth and overall performance.
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Chapter 6

Conclusion and Future Research

Directions

6.1 Summary of Dissertation Contributions

GPUs are designed to provide high compute throughput via high thread-level parallelism.

For each generation of GPUs, the number of cores continuously grow, providing higher

peak throughput. To support the continuous scaling of compute throughput, it is crucial

to conserve and improve on-chip memory bandwidth utilization. The research proposed

in this dissertation boosts the on-chip bandwidth via the following three contributions.

1. Unlocking Remote-core Bandwidth in GPUs. We develop probing mechanisms

to efficiently unlock remote-core bandwidth – an additional source of bandwidth in

GPUs. The key idea is to dynamically and locally track data replication across the cores

to limit inter-core communication overhead. The proposed mechanisms achieve that by

1) leveraging the program counter (PC) information to predict which data is replicated

across cores, 2) generating an inter-core locality map to predict which remote cores have

the replicated data, and 3) employing a two-level probing technique to search the selected

remote cores without crippling the interconnect. Our efficient inter-core communication
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boosts the on-chip bandwidth and overall performance.

2. Shared L1 Caches in GPUs. We propose a renovated cache design that enables

both private and shared models for L1 cache. The key idea is to dynamically detect the

GPGPU applications (or phases within an application) that exhibit high data replication

and utilize the shared L1 cache model for it. The shared L1 caches eliminate such

replication across the L1s thus improving the L1 hit rates and boosting the on-chip

bandwidth. The proposed cache design achieves that via a low-overhead dynamic scheme

to configure the L1 cache as either shared or private based on locally tracking the

application phases. Additionally, to efficiently utilize the additional on-chip bandwidth

from shared L1 caches, we develop optimizations to reduce inter-core communication

overheads. Our evaluation shows that the proposed cache design significantly reduces the

data replication and improves the overall performance.

3. Aggregated Decoupled L1 Caches in GPUs. We propose co-designing the cache

hierarchy and the interconnect and present DC-L1 cache – an L1 cache separated from

the GPU core. The proposed cache hierarchy is still two-level with the DC-L1 as the

first level of caching and shared L2 is the second level. The key idea is to break the

tight coupling of the L1 caches and the GPU cores, which our analysis shows to be the

main source of the L1 bandwidth underutilization. Decoupling the L1 cache from the

GPU core enables aggregating the DC-L1s to reduce data replication across the L1s and

increase their bandwidth utilization. Additionally, we further control data replication

across DC-L1s using our frequency-boosted clustered DC-L1 design, where a cluster of

DC-L1 caches are shared by a cluster of cores. Our evaluation shows that the proposed

cache hierarchy and interconnect boost the on-chip bandwidth while reducing the area

and energy requirements.
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6.2 Future Research Directions

6.2.1 Short-term Direction: Improved On-chip Bandwidth Utilization

One line of future work continues exploring other research opportunities to improve on-

chip bandwidth utilization in GPUs by considering other bandwidth sources. Specifically,

there are several open research questions.

• What is the volume of data replication between the L1 and L2 caches? and how to

develop techniques to address the inefficiencies caused by such replication?

•What is the volume of replication across the per-core software-managed scratchpad?

and how to utilize such replication to boost their bandwidth utilization?

• How to leverage value locality and predictability to extend the scope of inter-core

locality and unlock an additional source of bandwidth?

6.2.2 Long-term Direction: Graphics Pipeline & Workloads

This dissertation focuses on the general-purpose computing side of the GPUs. However,

another critical and interesting aspect is investigating the graphics side of the GPUs.

Graphics workloads are critical from business and research perspectives. From a business

perspective, computer graphics represents huge market worth billions of dollars. It involves

video games, augmented/virtual reality, content creation, and cloud gaming. From a

research perspective, there is less focus on these workloads from the computer architecture

community due to the inherent complexity involved in the rendering process, and lack of

tools in the community. Therefore, to identify areas of improvement, it is critical to gain

a low-level understanding on how these workloads work and their interaction with the

graphics pipeline.
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