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1. Introduction
Coastal wetlands are thought to disproportionally influence the global carbon (C) budget because of C ac-
cumulation rates 1 to 2 orders of magnitude greater than terrestrial systems (Chmura et al., 2003; Mcleod 
et al., 2011). Salt marshes, mangroves, and seagrasses account for ∼50% of C buried in the ocean despite 
covering <2% of the ocean's surface (Duarte et al., 2005). However, sea level rise, reduced sediment supply, 
and other anthropogenic stressors threaten the persistence and strength of the coastal carbon sink (Kir-
wan & Megonigal, 2013; Saintilan et al., 2020). Extensive historical loss of coastal ecosystems (Kirwan & 
Gedan, 2019) suggests that coastal wetlands are simultaneously valuable yet vulnerable C sinks (Hopkinson 
et al., 2012; Nahlik & Fennessy, 2016; Theuerkauf & Rodriguez, 2017), making it imperative to understand 
how the coastal C sink will respond to global change (Ward et al., 2020).

For more than a decade, blue carbon research has focused on quantifying C stored in the soils of single 
ecosystems, often at single points within an ecosystem (Chmura et al., 2003; Duarte et al., 2005; Mcleod 
et  al.,  2011; Ward et  al.,  2020). However, climate change limits the applicability of this traditional blue 
carbon approach by altering the position of ecotones, the spatial extents of ecosystems within the coastal 
landscape, and the partitioning of C between soils and vegetation (Kirwan & Megonigal, 2013; Kirwan, 
Temmerman, et al., 2016; K. Krauss et al., 2018; Osland et al., 2017; J. A. Smith, 2013). For example, sea lev-
el rise is leading to the widespread migration of wetlands into retreating upland forests across the Atlantic 
coast of North America (Kirwan & Gedan, 2019; Schieder et al., 2018), where coastal ecosystems and their 
carbon pools are expected to change rapidly (i.e., at decadal time scales) (Enwright et al., 2016; K. Krauss 
et al., 2018; Schieder & Kirwan, 2019; Wang et al., 2019). Following conventional blue carbon approaches 

Abstract Sea level rise alters coastal carbon cycling by driving the rapid migration of coastal 
ecosystems, salinization of freshwater systems, and replacement of terrestrial forests with tidal wetlands. 
Wetland soils accumulate carbon (C) at faster rates than terrestrial soils, implying that sea level rise may 
lead to enhanced carbon accumulation. Here, we show that carbon stored in tree biomass greatly exceeds 
carbon stored in adjacent marsh soils so that marsh migration reduces total carbon stocks by ∼50% in less 
than 100 years. Continued marsh soil carbon accumulation may eventually offset forest carbon loss, but 
we estimate that the time for replacement is similar to estimates of marsh survival (i.e., centuries), which 
suggests that forest C may never be replaced. These findings reveal a critical C source not included in 
coastal C budgets driven by migrating ecosystems and rapidly shifting allocations between carbon stored 
in soils and biomass.

Plain Language Summary Forests along the upland edge of salt marshes are being killed 
by rising sea levels and replaced with salt marsh in a process called marsh migration. Marsh soils, unlike 
soils in forest, quickly accumulate carbon in their soils. This indicates that marsh migration could possibly 
increase carbon storage across the landscape. Here, we show the opposite, that sea level rise reduces 
coastal carbon stocks through the loss of woody aboveground biomass. This loss is partially offset with 
expanding organic soil in the newly formed marsh, but the amount of carbon lost from forest mortality 
is far greater than that gained by the growing marsh soils. Continued carbon accumulation in wetland 
soils may eventually compensate for forest carbon loss, but the time it would take for marshes to replace 
that lost carbon is at the scale of centuries, which is approximately the same amount of time predicted 
for marshes to drown from rising sea levels. This suggests that forest carbon may never be replaced and 
reveals a critical source of carbon under climate driven landscape changes.
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focusing on soil C, this transgression should increase coastal C by replacing a low C burial system (up-
land forest) with a high C burial system (salt marsh) (Elsey-Quirk et al., 2011; Mcleod et al., 2011; Morris 
et al., 2016; Wang et al., 2019). Yet, this traditional approach largely ignores the contribution of C stored 
in biomass, which is known to be important in other systems. For example, living biomass accounts for 
∼30% of C stored in mangroves and nearly half of C stored in the world's forests (Hamilton & Friess, 2018; 
Pan et al., 2011). In contrast to terrestrial systems that exhibit positive carbon-climate feedbacks (Melillo 
et al., 2017), work in coastal wetlands points to a potentially negative carbon-climate feedback, where marsh 
soil carbon accumulation rates increase with warming-driven sea level rise (Doughty et al., 2016; Kirwan & 
Mudd, 2012). However, we show here that tree biomass rather than soil organic matter dominates C stocks 
in rapidly migrating marsh-forest ecotones, so that sea level-driven marsh migration leads to a century scale 
loss of C that is, unaccounted for in our conceptual understanding of coastal C cycling.

2. Methods
2.1. Approach and Study Area

We measured biomass and soil C stocks across the forest-marsh ecotone at four rapidly transgressing sites 
in the Chesapeake Bay region of Maryland and Virginia in the United States of America (Figure 1). The 
Chesapeake Bay serves as a model region for studying the C implications of sea level-driven land conver-
sion because rates of relative sea level rise (between 3 and 6 mm yr−1) are twice as fast as eustatic rates 
(∼2 mm yr−1) and the gently sloping, rural coast allows for many opportunities for marsh migration. Ap-
proximately 100,000 acres of salt marsh have migrated into retreating coastal forests since the mid-nine-
teenth century, and rates of forest retreat are accelerating in parallel with relative sea level rise (Schieder & 
Kirwan, 2019; Schieder et al., 2018). Regional conditions in the Chesapeake Bay create rapid, widespread 
landscape changes that exemplify the slower, yet eventual, ecosystem shifts that salinization drives across 
the coastal landscape.
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Figure 1. A general map of the Chesapeake Bay in Virginia and Maryland (U.S.) showing the region's location along the mid-Atlantic seaboard, site locations, 
and four inset maps showing individual sampling locations across the marsh forest boundary at each site (a) Moneystump Swamp, (b) Monie Bay, (c) Goodwin 
Island, (d) Phillips Creek. The vegetation zones are differentiated by symbol color. High marsh is blue, transition zone is purple, low forest is yellow, mid forest 
is orange, and high forest is red. The dashed line delineates the general marsh-forest boundary.
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Within the Chesapeake Bay, we studied sites at Goodwin Island (GI), Phillips Creek (PC), Monie Bay (MB), 
and Moneystump Swamp (MS). At each site, four transects starting in salt-unaffected forest and ending in 
young salt marsh that was once upland forest were established perpendicular to the marsh-forest ecotone. 
We identified and delineated five unique vegetation zones along the transects according to vegetation and 
forest health: high forest, mid forest, low forest, transition zone, and high marsh (Figure 1). The high forest 
is defined as a forest unaffected by salt intrusion displaying a mixed aged structure of both coniferous and 
hardwood trees. The mid forest displays early signs of salt stress and exhibits 100% hardwood tree mor-
tality, but conifer seedling regeneration is present in the understory and the canopy has a predominantly 
healthy, mixed age structure. The low forest is defined by relatively higher salt stress, indicated by limited 
conifer regeneration, increased standing conifer tree mortality, and shrub species dominance in the under-
story. The transition zone has ∼50% mortality in all standing trees with an understory dominated by Phrag-
mites australis and typical high marsh herbaceous species. The high marsh is dominated by herbaceous 
marsh grasses Distichlis spicata, Spartina alterniflora, and Spartina patens, and has no living canopy. This 
general vegetation pattern is observed in retreating coastal forests throughout the Atlantic Coast (Brinson 
et al., 1995; Kirwan & Gedan, 2019; Langston et al., 2017; Smart et al., 2020; J. A. Smith, 2013; Williams 
et al., 2003), suggesting that our sites are broadly representative of the sea level-driven conversion of upland 
forest to marsh throughout the Atlantic Coast. As discussed below, simple projections of topography and sea 
level rise suggest that these spatial gradients in vegetation type correspond to the temporal evolution of the 
coastal landscape, where complete conversion of forest to marsh occurs in less than 100 years on average at 
our sites (tmig, Table S1).

2.2. Field Methods

Within each vegetation zone along each transect, we established a 100-m2 plot within which we surveyed 
vegetation and quantified C stocks. To estimate the total amount of C present within a plot, we estimated 
C within three distinct C stocks (woody C, herbaceous C, and soil C). Woody C includes the above- (stem 
wood, bark, and branches) and belowground biomass of the trees and shrubs, and was estimated from al-
lometric estimations of biomass. For trees, we used species-specific allometric equations to predict above 
and belowground biomass from diameter at breast height (1.37 m) measurements of all trees within the 
plot (Chojnacky et al., 2014; Clark & Schroeder, 1985; Jenkins et al., 2003; Martin et al., 1998; McElligot & 
Bragg, 2013; Norris et al., 2001; Ter-Mikaelian & Korzukhin, 1997). Aboveground shrub biomass within the 
100 m2 plot was approximated from allometric equations as a function of basal diameter and, belowground 
shrub biomass was approximated using a 1.098 root-to-shoot ratio for marsh shrubs (Conti et  al.,  2019; 
Mokany et al., 2006). Herbaceous C includes aboveground macrophyte biomass was destructively harvested 
from six randomly distributed 0.25 m2 plots nested within each 100 m2 plot during peak biomass (July–Au-
gust 2019), separated into live and dead fractions, and dried to a constant weight.

Soil C was quantified by collecting three soil samples within each plot using a hand turn, four-inch soil 
mud auger in the forest zones and a Russian peat corer in the transition zone and high marsh. The soil C 
stock includes all organic C beneath unincorporated detritus and forest litter. To compare sediment samples 
from different vegetation zones with variable depths, soil samples were portioned into two depth intervals: 
0–10 cm (hereafter referred to as “shallow soils”), which was consistent across vegetation zones, and 10 cm 
to parent material (“deep soils”), as defined by the point of resistance into inorganic clay or sand (Table S1). 
All soil samples were analyzed for dry bulk density (DBD) and percent organic matter using loss-on-igni-
tion methods. To measure soil C accumulation rates, larger diameter (15 cm) cores were taken at two high 
marsh plots at each site for 210Pb gamma emission dating. Elevation relative to a benchmark at each site 
was measured at the center, highest, and lowest point of the plot using a laser level. The average value of 
each plot was then referenced to NAVD88, using an RTK GPS at the benchmark location, and mean higher 
high water (MHHW) using interpolated tide gauge data summarized in Holmquist et al. (2019). Statistical 
differences of similar stocks across the vegetation zones were calculated using a one-way ANOVA with a 
95% confidence interval applied to average stock values from the four sites.
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2.3. Lab and Analytical Methods

Biomass was converted to C using species-specific conversion ratios (McElligot & Bragg,  2013; Norris 
et al., 2001) or using a general 50% conversion for mixed herbaceous macrophytes, shrub, and deciduous 
tree biomass. Following the general approach of C. B. Craft et al. (1991), we converted the organic content 
of soils to total organic C (TOC) by constructing an empirical relationship for our sites and vegetation zones. 
Eight dried soil samples within each vegetation zone were selected to represent the range of organic mat-
ter from the vegetation zones. We then measured TOC by packaging ∼3 mg of homogenized sediment in 
tin capsules, treating it with aerosolized 6 mol HCl for 12 h, drying the sample for an additional 12 h, and 
processing the sample in a CHN analyzer (Thermo Electron Corporation FlashEA 1112, NC Soil Analyzer), 
which was calibrated using acetanilide standards (71.09% C, 10.36% N). The relationship between organic 
matter and C was consistent across vegetation zones, so one collective relationship was used to estimate soil 
C content across all zones (TOC = 0.0033(%OM)2 + 0.2967(%OM) + 8.4341, R2 = 0.73) (Figure S1).

We measured soil salinity by preparing 1:5 soil to water suspensions from the top 10 cm of soil collected 
from three points in each plot (Hardie & Doyle, 2012). The suspensions were homogenized according to 
Rhoades (1992), allowed to settle for 18 h, and then filtered through a 20 micron filter to obtain extracts 
(He et al., 2012), which were measured using a FieldScout EC 450 Meter conductivity probe. To determine 
soil C accumulation rates in the high marsh sediment cores, we measured Pb210 activities down core using 
gamma spectrometry. We then applied the constant initial concentration (CIC) model, which approximates 
an average sediment accumulation rate, on dated sediment cores from the high marsh, with Cs137 as an in-
dependent chronometer (Appleby & Oldfield, 1978; Sanchez-Cabeza & Ruiz-Fernandez, 2012) (Figure S2). 
C accumulation rates were obtained by measuring DBD and the concentration of C in dated sediments and 
multiplying them by the accumulation rates derived from the CIC model (Arias-Ortiz et al., 2018).

3. Results and Discussion
3.1. Shifting C Allocations in Marsh-Forest Ecotones

The total C stock averaged across sites decreased by ∼50% from the high forest (17.44 ± 2.9 kg C m−2) to the 
high marsh (9.73 ± 1.59 kg C m−2). Total C was maximized in the mid forest (22.1 ± 0.63 kg C m−2), though 
total C in the mid forest and high forest were not statistically different (Figure 2a, Figures S3–S6, p = 0.33). 
Total C stocks increased with increasing elevation (R2 = 0.21, p = 0.05) and decreasing salinity (R2 = 0.57, 
p << 0.05) (Figures 2e and 2f); both trends were consistent across all sites (Figure 2e). Based on a regionally 
averaged rate of sea level rise (SLR, 4.46 mm y−1) and the difference in elevation between high forest and 
high marsh, we estimate that our chronosequence represents less than a century (tm = ΔElevation/SLR), 
though this simple approach ignores pulse events and any dynamic feedbacks that could accelerate or me-
diate the transgression process (Figure 2e, Table S1).

The average C stock of living woody vegetation decreased from 13.2  ±  4.0  kg  C  m−2 in the high forest 
to 0.18  ±  0.02  kg  C  m−2 in the high marsh. Specifically, tree carbon decreased from 12.7  kg  C  m−2 to 
0.09 kg C m−2 and shrubs decreased from 0.62 to 0.09 kg C m−2. Shrub density was maximized in the mid 
forest (6.22 kg C m−2, p << 0.05) where it accounted for 38% of C stored in woody biomass, but across 
every forest zone, C stored in trees was found to be greater than C stored in shrubs (Figure 2b, p << 0.05). 
Forest zones were consistently dominated by above ground, woody C in living biomass rather than herba-
ceous or soil C (p = 0.06). Herbaceous C increased from the high forest (0.03 ± 0.01 kg C m−2) to the high 
marsh (0.34 ± 0.03 kg C m−2) (Figure 2c). Herbaceous C was maximized in the transition zone at each site 
(p  =  0.08) where Phragmites australis presence increased the herbaceous C stock by an average of 57% 
(Figure 2c, p << 0.05), compared to Moneystump Swamp where P. australis has historically been removed 
(Figures 2c and S4). The transition zone and high marsh had far smaller biomass C stocks, but had sub-
stantial contributions from soil C stocks. Deep soil C increased by an order of magnitude along the forest 
(0.11 kg C m−2) to marsh (6.4 kg C m−2) gradient while shallow soil C decreased slightly. Overall, soil C 
approximately doubled across the forest to marsh gradient and deep soil C contributed 70.3% of the total C 
stock in the high marsh (Figures 2d, 2a, and S5). Using the CIC model, the average vertical accretion rate 
across the high marsh zones of four sites was 2.35 ± 0.84 mm y−1 and ranged from 1.44 to 3.11 mm y−1 
(Figure S2, Table S1). Carbon accumulation rates calculated from dry bulk density, total organic carbon, and 
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the CIC derived sedimentation rates varied between 0.036 and 0.065 kg C m−2y−1 (Table S1). Nevertheless, 
forest zones were consistently dominated by above ground biomass C rather than herbaceous or soil C.

3.2. Upland Transgression Decreases C Stocks

For the last two decades, the paradigm in blue carbon research has maintained that vegetated intertidal sys-
tems disproportionately affect the global C cycle because rates of soil C burial far exceed those of terrestrial 
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Figure 2. The C stock of distinct pools across the high forest to high marsh gradient, where the C stock refers to the 
average stock of four sites in the Chesapeake Bay. (a) Cumulative average C stocks by pool, (b) woody C partitioned 
into C stored in trees and shrubs, (c) herbaceous C separated into sites with and without P. australis, (d) soil C in upper 
10 cm (“shallow”) and from 10 cm to parent material depth (“deep”). Relationships between total C stock and elevation 
(e) and soil salinity (f) for each site and vegetation zone. The black dashed lines indicate the linear regression between 
total carbon stock and elevation (e, y = 12.63× + 8.323) and salinity (f, y = −0.563× + 16.706). Roman numerals 
represent statistically significant differences between vegetation zones while asterisks (*) represent statistically 
significant differences between sites with and without P. australis.
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systems (Chmura et al., 2003; Duarte et al., 2005; Mcleod et al., 2011). By inference, sea level-driven conver-
sion of terrestrial forests to tidal marshes would be expected to increase rates of C burial and consequently 
increase soil C stocks over time (Elsey-Quirk et al., 2011; Morris et al., 2012; Wang et al., 2019). Our find-
ing that the magnitude of C stored in marsh soils is greater than coastal forest soils is consistent with this 
paradigm (Figure 2d). However, we also show that C stored within the living biomass of terrestrial, coastal 
forests far exceeds the total amount of C stored in adjacent marshes (Figure 2a). This observation suggests 
that sea level-driven land conversion could lead to substantial losses of C that are not considered in current 
conceptual models of coastal C cycling.

The total C stock in forested zones was dominated by C stored in living trees, and tree mortality drove the de-
crease in total C across the forest-marsh ecotone (Figure 2a). We observed a strong, significant relationship 
between increasing soil salinity and decreasing total C (Figure 2f), which is consistent with previous work 
that identifies salinity as a primary driver of tree mortality and forest retreat (Brinson et al., 1995; Williams 
et al., 2003). Our measures do not account for dead yet present vegetation, such as logs or standing dead 
trees, suggesting that we potentially overestimate the gradient in C stocks across the forest zones, and un-
derestimate the gradient between stressed forest and high marsh. However, previous work suggests that liv-
ing trees dominated the aboveground C stock while dead woody vegetation comprised <9% of aboveground 
C (K. Krauss et al., 2018). Additionally, far greater C stocks in live tree biomass than in marsh soils (Fig-
ures 2a, Smart et al., 2020) suggests that most carbon stored in live trees does not persist in marsh soils and 
is instead lost through decomposition, as indicated by rapid decomposition rates (Kozlowski, 1997) and ele-
vated tree methane fluxes near the marsh-forest boundary (Martinez & Ardon, 2021; Norwood et al., 2020). 
This indicates that forest carbon preservation is relatively small, but the exact quantification of preserved 
forest carbon is still unknown. The expansion of shrubs and P. australis and increasing soil organic matter 
thickness may increase C accumulation in migrating forest-marsh ecotones (C. Craft, 2000; Elsey-Quirk 
et al., 2011; McTigue et al., 2019; Smith, 2013) (Figure 2a). However, we find that these processes only par-
tially offset tree mortality and that the net total C stock decreases by approximately 50% with the conversion 
of forest to marsh (Figure 2a).

Previous work in other transgressing coastal ecosystems suggests that sea level rise and saltwater intrusion 
may decrease total C stocks more generally. Ecosystem transgression in many regions of the U.S. is char-
acterized by encroachment into wetland forests rather than the upland forests considered here (Brinson 
et  al.,  1995; Doyle et  al.,  2010). Wetland forests, despite having organic rich soils, experience decreased 
aboveground biomass associated with tree mortality where marshes replace forested wetlands (Brinson 
et al., 1995; K. Krauss et al., 2018; K. W. Krauss et al., 2007). In other systems, salinization and salt water 
intrusion into tidal freshwater systems has been shown to reduce C fixation (Herbert et al., 2018), increase 
soil respiration (Chambers et al., 2011), and lead to peat collapse (Chambers et al., 2014), resulting in de-
creased soil C stocks. Additionally, salt water intrusion reduces belowground biomass while also enhancing 
greenhouse gas efflux after prolonged exposure (Ardón et al., 2018; Wilson et al., 2018). These observations 
from mostly freshwater systems offer mechanistic insight into the processes that lead to decreases in specific 
carbon stocks and suggest that the patterns of loss we observe may apply more generally to other types of 
transgressing coastal systems (A. J. Smith & Goetz, 2021).

3.3. Timescales of C Replacement

Although we find that marsh migration consistently leads to a net loss of total carbon (Figures 2a and S6), 
our finding that soil C stocks increase across the marsh-forest ecotone (Figure 2d) suggest that C stored in 
marshes may increase through time and perhaps eventually offset C lost from forest mortality. C stored in 
marsh soils increases through time as belowground organic matter accumulates in newly flooded, anaero-
bic soils (C. Craft et al., 1999; Stagg et al., 2016). Sediment cores taken from our study sites in much older 
sections of the marsh display deeper, organic rich soils reflecting larger carbon stocks typical of mature salt 
marshes (Dontis et al., 2020; Schieder & Kirwan, 2019; Thomas, 2004). Carbon accumulation rates are also 
expected to increase with increasing tidal inundation associated with accelerated sea level rise (Gonneea 
et al., 2019; Kirwan & Mudd, 2012; McTigue et al., 2019; Rogers et al., 2019). Thus, the size of the C stock in 
marshes and its ability to offset C loss due to forest mortality depends on marsh age.
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Given the high carbon accumulation rate in marsh soils and the high soil C content of older marshes (Elsey-
Quirk et al., 2011; Holmquist et al., 2018; K. Krauss et al., 2018), salt marshes may eventually offset C, that 
is, lost during marsh migration. We estimate the “time to replacement” of forest C at each site as:


Δ

CAR
f

r
m

C
t (1)

where ΔCf is the total amount of C lost from the forest during transgression (kg m−2), CARm is the C accu-
mulation rate in the adjacent high marsh (kg m−2 y−1), and tr is the time (y) needed to replace the forest C 
lost with marsh soil C. The inheritance of carbon from terrestrial systems into the migrating marsh soils is 
unknown and beyond the scope of this paper. To account for the unknown amount of inherited C, we cal-
culate Cf in two ways. First, we assume that all C in the forest is lost during the transgression process so that 
ΔCf = Cf, where Cf is the total forest C stock observed in the mid or high forest. This calculation represents 
the maximum time to replacement (tr,max) as it assumes no preservation of forest C in soils. Alternatively, 
we assume that a substantial fraction of C measured in the high marsh soils is C that has been preserved 
from forests, so that ΔCf = Cf-Cm, where Cm is the measured marsh C stock, representing the minimum total 
C stock during marsh migration. This calculation represents a minimum time to replacement (tr,min) as it 
includes refractory C in forest soils that has been preserved in soils during transgression, and assumes that 
any forest C in the high marsh soil will continue to be preserved in the future. Based on measured values of 
Cf, Cm, and CARm at each of our sites, Equation 1 predicts that it will take ∼130–760 years for marsh soil C 
to replace forest C lost during transgression (Table S1). This approach intentionally compares rates of C ac-
cumulation in one system with C stocks in another system, allowing us to calculate replacement timescales 
associated with migrating ecosystem boundaries in a manner that is easily applicable across ecosystems and 
spatial scales.

Our proposed replacement time metric leads to a conceptual model of changing carbon stocks that may 
be relevant to a variety of migrating ecosystems (Figure 3). In our system, the initial total C stock in the 
upland forests (Cf) decreases with the onset of salt water intrusion (a). Progressive forest mortality leads to 
C loss until the total C stock is minimized (Cm) when forests are first replaced by marshes (b), but devel-
oping marsh soils increase the total C stock through time and the system begins to partially offset lost C. 
As the marsh ages, soil C stocks increase with sea level rise as developing marsh soils accumulate carbon 
until submergence (c), potentially compensating for or even exceeding the lost forest carbon (d). However, 
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Figure 3. Conceptual diagram of the changing total C stock associated with the transition from forest to marsh. The 
total carbon stock in the forest (Cf) decreases through time following salt water intrusion (a) in response to forest 
mortality. Carbon stocks reach a minimum (Cm) when forests are first replaced by marshes (b), but then increase 
through time as developing marsh soils accumulate carbon. Carbon stocks increase with sea level rise until marshes 
submerge (c), potentially compensating for the loss of forest carbon (d). Variable times to submergence (c1, c2) relative 
to the time to replacement (d) suggest that complete replacement of forest carbon is tenuous.
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in the studied Chesapeake Bay region, marshes submerge or erode on timescales (c1, c2; Hussein, 2009; 
Kirwan, Walters, et al., 2016; Schieder et al., 2018) that overlap with estimated times of carbon replacement  
(d, 130–760 years) (Table S1), suggesting that complete replacement of forest carbon is tenuous. Moreover, 
salt intrusion can lead to forest die-off without marsh migration (Taylor et al., 2020), leading to a large loss 
of aboveground C with little to no replacement in accumulating soil C stocks.

While the conceptual model is potentially generalizable across systems, the magnitude and rate of change 
would be expected to vary. For example, rapidly decreasing aboveground biomass and increasing below-
ground carbon stock is likely a common response to inundation and salinization, though rates would 
be determined by particular species tolerance and biogeochemical settings (Field et  al.,  2016; Flester & 
Blum, 2020). In contrast to our reported long timescales of replacement, we expect tr to be relatively short 
in sequences beginning as freshwater wetlands or agricultural fields due to low values of ΔCf from initial 
high soil C stocks or limited aboveground biomass, respectively (K. Krauss et al., 2018; Broek et al., 2016). 
Additionally, this framework can be applied to other transgressing systems, such as mangrove forest en-
croachment into hypersaline salt flats, to show that some transgressing ecosystems lead to rapidly increased 
carbon storage without having to replace lost C (Yando et al., 2016). The general framework we present is 
intentionally simplistic, thereby allowing for its application to larger scale landscape models parameterized 
with spatially variable terms or to other transgressing ecosystems with site specific information.

3.4. Broader Implications

The traditional focus on wetland soils leads to an important and unique negative carbon-climate feedback 
proposed for the coastal zone, where accelerated sea level rise drives faster soil C accumulation (Kirwan & 
Mudd, 2012; Rogers et al., 2019; Wang et al., 2019). In contrast, our finding that C stored in the biomass of 
woody vegetation is far greater than the C stored in young, adjacent marshes (Figure 2) implies that sea level 
rise will lead to a net loss of C that cannot be predicted on the basis of wetland soil C stocks alone. Further-
more, our simple estimates of time to replacement suggest that the loss of C from forests following marsh 
migration will work against the proposed negative carbon-climate feedback in marsh soils at the scale of 
centuries (Table S1). Together, these findings help broaden the scope of traditional blue carbon research by 
connecting adjacent ecosystems, identifying a C source not considered in our current conceptual under-
standing of coastal carbon-climate feedbacks, and demonstrating that sea level rise will lead to fundamental 
changes in C allocation between soils and biomass at the coastal interface.
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