
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

2021 

Saved by the shell: Oyster reefs can shield juvenile blue crabs Saved by the shell: Oyster reefs can shield juvenile blue crabs 

Callinectes sapidus Callinectes sapidus 

Katherine S. Longmire 
Virginia Institute of Marine Science 

Rochelle D. Seitz 
Virginia Institute of Marine Science 

Alison Smith 
Virginia Institute of Marine Science 

Romuald N. Lipcius 
Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons 

Recommended Citation Recommended Citation 
Longmire, Katherine S.; Seitz, Rochelle D.; Smith, Alison; and Lipcius, Romuald N., Saved by the shell: 
Oyster reefs can shield juvenile blue crabs Callinectes sapidus (2021). Marine Ecology Progress Series, 
672(163), 173. 
doi: 0.3354/meps13781 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 672: 163–173, 2021
https://doi.org/10.3354/meps13781

Published August 19

1.  INTRODUCTION

1.1.  Nursery habitat

Structurally complex habitats can serve as nursery
grounds for many invertebrates, including blue crabs
Callinectes sapidus. Structured nursery habitats for
blue crabs include seagrass beds (Heck & Thoman
1984, Heck et al. 2003, Lipcius et al. 2005, Seitz et al.
2005, Ralph et al. 2013), non-native algae (Johnston
& Lipcius 2012), salt marshes (Minello et al. 2003),
and coarse woody debris (Everett & Ruiz 1993).
Structure can reduce the ability of a predator to find
prey (Grabowski 2004), which may be key in reduc-
ing predator−prey and cannibalistic interactions of
adult and juvenile blue crabs (Moksnes et al. 1997).
Blue crab survival is enhanced in structured seagrass

habitats versus unstructured habitats, like sandy bot-
tom, due to inhibition of predator detection (Wilson
et al. 1990, Hovel & Lipcius 2001, 2002, Seitz & Ewers
Lewis 2018). Oyster reefs provide protection from
predation for mud crabs in Gulf Coast systems (Hill &
Weissburg 2013), but their function in providing pro-
tection for juvenile blue crabs is unknown. Provision
of habitat to increase survival of juvenile blue crabs
could be an important ecosystem service of restored
oyster reefs and is important to quantify.

1.2.  Prey, predators, and crab size effects

The blue crab is a large portunid crab that is dis-
tributed along the Northwest Atlantic, Gulf of Mex-
ico, and Caribbean coasts (Williams 1984, Lipcius
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& Van Engel 1990) and serves as predator and
prey (Lipcius et al. 2007). It supports one of the
most im portant fisheries in Chesapeake Bay (USA),
with over 75 000 t landed per year, which is worth
US$81 million to the economy (NOAA 2019). This
species is also vital ecologically, as it is a key com-
ponent in the Chesapeake Bay food web (Baird &
Ulanowicz 1989, Lipcius & Latour 2006). The main
predators of ju venile blue crabs typically include
conspecifics and epibenthic fishes (Bromilow &
Lipcius 2017). Blue crabs are epibenthic generalists
that forage on a wide variety of infaunal and epi -
benthic invertebrates as well as on plant material
(Mansour 1992, Meise & Stehlik 2003, Stehlik et
al. 2004). Ecologically, blue crab foraging has major
effects on prey populations and benthic community
structure (Hines 2007). The abundance and avail-
ability of prey, including eastern oysters (Eggleston
1990a,b,c) and hard clams (Van Engel 1958, Spon -
augle & Lawton 1990), can be limi ted by blue crab
predation. Blue crabs are central to Chesapeake
Bay food web models (Baird & Ulanowicz 1989,
Lipcius & Latour 2006); thus, blue crab predator−
prey interactions are key to understanding the
Chesapeake Bay ecosystem.

Prey size and habitat complexity are important in a
predator−prey relationship. In unvegetated mud ha -
bi tats, juvenile blue crab survival increases with
carapace width (CW) (Johnston & Lipcius 2012),
although the opposite is true in eelgrass habitats,
leading to a predation-induced ontogenetic shift in
habitats (Lipcius et al. 2007). Moreover, predators in
structurally complex habitats are less successful than
those in habitats that are not complex (Sih et al. 1985,
Stoner 2009). Structurally complex habitats provide
spaces and cover (i.e. shells, corals, and plants) in
which animals can hide; thus, juvenile blue crabs are
able to avoid multiple predators using habitat refuge.
Therefore, the interstitial space provided by oyster
reefs may serve as a refuge for juvenile blue crabs
against predation and cannibalism.

Key components in predator−prey interactions
involve aspects of the functional response of a pred-
ator, such as encounter time, handling time, and ha -
bitat (Holling 1959a,b). Handling time (HT), the
time required for a predator to capture and consume
prey, typically increases with armored prey (e.g.
eastern oyster Crassostrea virginica), thereby reduc-
ing consumption rates (Hassell 1978). Time to first
en coun ter, or encounter time (ET), can be defined
as the  initial predatory interaction between searcher
(pre dator) and prey (Gurarie & Ovaskainen 2013).
The effect of increased HT is typically a quantitative

reduction in predation rate allowing local persist-
ence, whereas the effect of a reduced ET is a quali-
tative shift and decreasing predation rates at low
prey densities, resulting in a low-density refuge
(Seitz et al. 2001). A predator's ET changes with
habitat when structural impediments to predators,
such as decreased sediment penetrability (Lipcius &
Hines 1986, Seitz et al. 2001) or increased vegetative
cover (Lipcius et al. 1998, Hovel & Lipcius 2001),
result in reduced accessibility of prey to predators.
These structural impediments may thus en hance
survival from cannibalism and predation (Lipcius &
Hines 1986, Glas pie & Seitz 2018). Thus, examining
ET and HT using field experiments can be insightful
to aid further research on the effects of habitat on
pre dator− prey interactions.

1.3.  Ecosystem services of oyster reefs

Oyster reefs provide abundant ecosystem services,
such as habitat and foraging grounds for recreation-
ally and commercially valuable fish (Peterson et al.
2003, Coen & Grizzle 2007, Pfirrmann & Seitz 2019).
Recently, oyster restoration has been em ployed not
only to enhance oyster abundance but also to en -
hance production of other species (Peterson et al.
2003, Plunket & La Peyre 2005, Rodney & Paynter
2006, Coen et al. 2007). The habitat benefits of oyster
reefs have been documented for finfish and some
crab species in other ecosystems (Posey et al. 1999,
Gregalis et al. 2009), such as in the southeast Atlantic
(Meyer & Townsend 2000, Wilber et al. 2012) and the
Gulf of Mexico (Thomas et al. 1990, zu Ermgassen et
al. 2021); however, the function of eastern oyster
reefs as habitat for blue crabs in Chesapeake Bay
remains unknown. Crabs and fish may increase their
production on oyster reefs depending on reef charac-
teristics, environmental conditions, and season (Coen
& Grizzle 2007, Gregalis et al. 2009, Robillard et al.
2010, Humphries et al. 2011, Yeager & Lay man
2011). Thus, studies from one system may not neces-
sarily apply to another. Studies from other systems
suggest that small crabs, such as mud crabs, prefer
oyster reef over vegetated marsh edge or unvege-
tated habitats, potentially due to the abundance of
small refugia (Shervette et al. 2011). However, this
preference for oyster-reef habitat over marsh or
unvegetated habitats has not been documented for
juvenile blue crabs.

Recent studies on restored oyster reefs using settle-
ment trays demonstrated that larger juvenile and
adult crabs utilized oyster reefs, but predominantly
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as foraging grounds (Karp et al. 2018). Hence, stud-
ies are warranted to determine the role of oyster
reefs as potential refuge habitat for juvenile blue
crabs.

The objectives of the current study were to (1)
examine survival of juvenile blue crabs on oyster
habitat versus unstructured sand habitat; (2) deter-
mine changes in survival of juvenile crabs with crab
size in the 2 habitats; (3) identify predators respon-
sible for crab mortality; and (4) quantify ETs and
HTs of different predators. We hypothesized that
(1) oyster habitat would increase juvenile blue crab
survival; (2) juvenile blue crab survival would
increase with crab size; (3) predators of juvenile
crabs would differ between oyster and sand habi-
tats; and (4) ETs and HTs would differ significantly
among predators.

2.  MATERIALS AND METHODS

2.1.  Site selection

This study was conducted in the York River at a
subtidal (1−2 m water depth) location near the Vir-
ginia Institute of Marine Science (VIMS) in Glouces-
ter Point, VA, from late July through early October
2017. Hydrographic conditions (water temperature,
salinity, and dissolved oxygen [DO]) were obtained
from a nearby VIMS Virginia Estuarine and Coastal
Ob serving System (VECOS) monitoring buoy at
Glou cester Point (CBNERR 2018). Hydrographic
data from late July to early October 2017 indicated
that water temperature averaged 26.0°C and
ranged from 22 to 28°C, salinity averaged 20.6
(17−21), and DO averaged 6.6 mg l−1 (2.9−17.5 mg
l−1).

Sites were muddy sand or oyster reef habitats, with
the latter consisting of oyster reef communities that
had grown naturally on plastic mesh aquaculture
bags containing oysters and placed on racks (2.4 m ×
1 m × 0.3 m) adjacent to VIMS (37° 14’ N, 76° 30’ W).
These oyster reef communities grew on the tops and
sides of the bags and resulted from natural settle-
ment of wild oyster larvae on the bags over a few
years. The oyster reef communities developed simi-
lar in structure to a natural oyster reef, and consisted
of oysters, sponges including red beard Microciona
prolifera, mud crabs (Xanthidae), gobies (Gobiidae),
striped blennies Chasmodes bosquianus, and feather
blennies Hypsoblennius hentz. Three sand sites and
3 oyster sites at least 5 m apart were chosen haphaz-
ardly and marked with PVC poles.

2.2.  Blue crab survival

Juvenile Callinectes sapidus (10−50 mm CW) of
both sexes were collected from the York River, VA,
and kept in flow-through tanks. All crabs used in our
experiments were immature; blue crabs do not reach
sexual maturity until 82 mm CW for males (Williams
1984) and 90 mm CW for females (Van Engel 1958).
Crabs were measured, then tethered with 20 cm
lengths of monofilament fishing line by slip knots
tightened and secured around the carapace spines of
the crab. Monofilament length was shortened from
20 to 12 cm after the fourth trial to accommodate the
field of view of the underwater camera system. This
change in tether length did not significantly impact
our results, with the short tether trials having a mean
(±SE) proportional survival of 0.54 ± 0.16 and the
long tether trials having a mean proportional survival
of 0.54 ± 0.10. Crabs up to 30 mm CW were tethered
with 5.4 kg test mo nofilament, while crabs measur-
ing 30−50 mm CW were tethered with 6.8 kg test
monofilament. These test monofilament weights
were sufficient to tether the crabs used in this study
and not break due to wave action (Heck et al. 2001,
Moody 2003, Lipcius et al. 2005). A drop of cyano-
acrylate adhesive and a small square of black duct
tape were used to secure the knot of the crab tether.
Black tape was chosen because it does not reflect
light and would not likely attract predators. The
monofilament line was then secured to a fishing
swivel. Crabs were kept in individual plastic contain-
ers with air holes for at least 12 h in flow-through
tanks, to ensure tether retention and crab survival,
following methods from previous studies (Lipcius et
al. 2005, Johnston & Lipcius 2012, Bromilow & Lip-
cius 2017).

Tethering is a common method to measure relative
predation of small benthic species, including crus-
taceans (Heck & Wilson 1987, Pile et al. 1996, Hovel
& Lipcius 2001, Moody 2003, Lipcius et al. 2005,
Johnston & Lipcius 2012). Since the ability of tethered
animals to escape predation is limited to the length of
the tether (Zimmer-Faust et al. 1994), tethering can
lead to inflated natural mortality rates. As such, the
method can only be used to measure relative rates of
predation, not absolute rates. Tethering also has the
potential to introduce treatment-specific bias in sur-
vival (Peterson & Black 1994). However, previous
studies found no significant interaction between
treatment and habitat (Pile et al. 1996, Hovel & Lip-
cius 2001, Lipcius et al. 2005); therefore, we assumed
there was no treatment- specific bias in our experi-
ments, which used similar tethering  methods.
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All tethered crabs were active and had both claws
intact. At each sand site, a tethered crab was at -
tached by a swivel to a metal garden stake pushed
flush with the bottom. At each oyster habitat site, a
zip tie was attached around the oyster rack structure,
surrounded by the oyster community, and a tethered
crab was attached by swivel to the zip tie (Fig. 1).
Tethered crabs had full use of all of their limbs and
could bury or hide in their respective habitats. Trials
lasted 24 h, with a subset of trials under continuous
video surveillance (see details in Section 2.3), at the
end of which tethers were pulled up and checked to
see if crabs were alive or had been eaten. Following
previous studies, a piece of carapace, a chewed line,
or a cut line indicated evidence of predation (Bro -
milow & Lipcius 2017). Because tethered crabs were
held for at least 12 h prior to deployment, there is
high confidence that crabs were not able to cut their
line or escape their tether. Some trials did not use
video and were only used for assessing survival.
Fresh crabs were used at the start of each 24 h trial.
In total, 21 trials were run at sand and oyster sites
simultaneously, with 42 crabs tethered at sand sites,
and 42 at oyster sites (Fig. 2). Crabs that molted dur-
ing a trial (3 in oyster trials; 2 in sand trials) were
excluded from analyses, resulting in 39 and 40 crabs
in the oyster and sand trials, respectively.

2.3.  Predator−prey interactions

A 4-channel underwater camera system (Ever -
Focus SV-DVC4, Shark Marine Technologies) with

DVR capabilities (ECOR264-4*1) was utilized to re -
cord predation activity for a subset of the 24 h trials.
Recording rate was 30 frames per second. Cameras
were positioned on numbered PVC poles at 4 of the 6
sites, such that the entire range of each tethered crab
was in the camera’s field of view (distance from the
crab was 30−40 cm depending on water clarity and
habitat type). Low light black and white cameras
(SV-14R2) and infrared cameras for night filming
(SV-16HR) were used. In total, 47 crabs in 14 trials
were recorded (oyster habitat n = 31, sand habitat
n = 16). Cameras were not used during trials that oc -
curred during stormy weather due to poor visibility.
Moreover, predator identification was only attempted
in trials where visibility was adequate. Video footage
was reviewed by fast forwarding until a predation
event occurred and then that segment was analyzed

slowly. ET was defined as the time
from the start of the trial to the initial
predatory interaction be tween a po -
ten tial predator and a tethered crab
(Gurarie & Ovaskainen 2013). HT was
defined as time (h) from ET to when
the prey was eaten, or the time spent
feeding on a prey item (Giller 1980).

2.4.  Statistical analyses

To address the hypotheses regard-
ing juvenile crab survival, we de -
veloped 5 statistical models (g1−g5)
 following an information-theoretic ap -
proach (Burnham & Anderson 2002,
Anderson 2008), including the null
model for comparison (Table 1). Each
model represented a hypothesis and

PVC marker 

Buried stake

Tethered 
crab

(B)

PVC marker and camera 

Tethered crab Oyster reef

(A)

Fig. 1. Tether set-up used in the (A) oyster habitat and (B) sand habitat. The
camera was oriented so as to encompass the entire range of the tether. Not 

drawn to scale

Fig. 2. Distribution of crab carapace width used for tethering 
in (A) oyster habitat and (B) sand habitat
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included different com binations of variables that
could describe ob served differences in the response
variables.

Tethered crab survival was modeled as a binary
response (1 = alive, 0 = dead), with crab CW (mm) as
a continuous covariate and habitat (oyster, sand) as a
fixed factor. Models were analyzed using logistic
regression to determine the probability of crab sur-
vival, and bias-corrected Akaike’s information crite-
rion (AICC) values were calculated to determine the
best model. Weighted model probabilities (wi) based
on Δi values were used to determine the probability
that a particular model was the best-fitting model.
Statistical analyses were conducted using R (R Core
Team 2017) and RStudio (version 1.3.1093; RStudio
Team 2017) statistical software. Parameter estimates
of the best-fitting model were used to calculate bino-
mial survival probabilities as:

(1)

where θ is the probability of survival, α is the para -
meter for the baseline condition (constant), and βi are
parameters representing increases or
decreases in survival due to the effect
of corresponding independent vari-
ables xi. Note that interaction terms
are represented as βixixj.

3.  RESULTS

3.1.  Juvenile crab survival

There was no bias between habitats
in the mean CW of crabs used for teth-
ering experiments or for the CW distri-

bution of crabs that survived after tri-
als versus crabs that were eaten. The
range of crab CW used in the experi-
ments was 13.7−49.1 mm (mean ± SE =
28.4 ± 1.5) in sand treatments and
11.6− 47.4 mm (mean = 27.7 ± 1.5) in
oyster treatments (Fig. 2), and did
not differ significantly between treat-
ments (Kolmogorov-Smirnov test, p =
0.847). The mean CW for crabs that
survived (n = 27) was 29.6 ± 1.7 mm,
whereas the mean CW for crabs eaten
during trials (n = 52) was 27.3 ±
1.3 mm, indicating that these mean
CWs did not differ significantly due to

the overlapping 95% confidence intervals.
For juvenile crab survival (crabs from both filmed

and unfilmed trials), models g2 (habitat and crab CW)
and g4 (habitat alone) had the highest weighted
probabilities, 0.39 and 0.48, respectively (Table 1).
Although model g4 had a higher weighted probabil-
ity, the effect of habitat was nearly equivalent in both
models (Table 2), so we interpreted both model g4

and model g2 to include the effect of crab CW in the
results. Models g2 and g4 both fit the data better than
the null model and the global model with an inter -
action effect (likelihood ratio χ2 test, p > 0.1), and
explained 15.4 and 13.6% of the deviance, respec-
tively. A Stukel test indicated the model fit the data
satisfactorily (likelihood ratio χ2 test, p > 0.1). Juve-
nile crab survival differed significantly between
habitats, as indicated by the 95% confidence interval
for the effect of sand habitat in model g4 (Table 2).
Mean crab survival, calculated from Eq. (1) and pa -
rameter estimates in Table 2 for model g4, was 53.8%
in oyster habitat, which was over 3-fold higher than
in the sand habitat (15.0%).

To assess the joint effects of crab CW and habitat
(Fig. 3), parameter estimates of model g2 (Table 2)

θ
α β β β

α β=
+

+ + + … +

+ +
e

e

x x x

x

i i1 1 2 2

1 11 ββ β2 2x xi i+ … +

Model Variable(s) k AICC Δi wi % deviance 
explained

g1 CW + H + (CW × H) 4 94.51 2.54 0.13 15.6
g2 CW + H 3 92.39 0.42 0.39 15.4
g3 CW 2 104.63 12.66 <0.01 1.1
g4 H 2 91.97 0.00 0.48 13.6
g5 Null 1 103.63 11.65 <0.01 −

Table 1. Akaike’s information criterion (AIC) calculations for logistic regres-
sion models corresponding to the different hypotheses for juvenile blue crab
survival represented by gi. k: number of parameters, including variance (σ2),
in model gi; AICC: bias-corrected AIC value; Δi: difference in the AICC value
between model gi and the best model; wi: probability that model gi is the best
model in the set; CW: crab carapace width; H: habitat in which juvenile crabs 

were placed (either sand or oyster reef)

Model Parameter Estimate SE 95% CI

g2 Intercept = oyster reef −0.905 0.862 −2.629, 0.819
CW 0.038 0.029 −0.020, 0.096

Effect of sand habitat −1.966 0.561 −3.088, −0.844a

g4 Intercept = oyster reef 0.154 0.321 −0.488, 0.796
Effect of sand habitat −1.889 0.547 −2.983, −0.795a

aWhen a confidence interval excludes 0, a parameter estimate is consid-
ered to differ significantly from 0

Table 2. Parameter estimates from logistic regression models g2 and g4 for
juvenile blue crab survival. The sand habitat is compared to the oyster habitat 

(baseline). CW: carapace width 
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were used to generate survival probabilities using
the following equations:

(2)

(3)

where x1 = crab CW. These represent survival proba-
bilities in oyster habitat (Eq. 2) and sand habitat
(Eq. 3), although the estimated effect of crab CW had
high variance (Table 2). In oyster reef habitat,
survival ranged from 38.5% for a small 12 mm CW
crab to 72.6% for a larger 50 mm CW crab
(Fig. 3). Conversely, in sand habitat, sur-
vival was much lower, ranging from only
8.1% for a small crab to 27.1% for a larger
juvenile (Fig. 3). To display the disparity
in survival probability as a function of CW
in the 2 habitats, we calculated the differ-
ences in survival probability between the
habitats (cf. Figs. 3 & 4). The magnitude
of the difference in survival probability
ranged from 0.30 for small juveniles to 0.46
for larger juveniles (Fig. 4), but the percent
difference was inversely related to CW.
Oyster reef habitat in crea sed survival prob-
ability by almost 400% for small juveniles
but <200% for larger juveniles (Fig. 4).

3.2.  Predator identity and behavior

In total, 47 individual juvenile crabs
were filmed, of which 25 had instances of

predation that were filmed. Predators were positively
identified in 16 instances, with adult blue crabs and
the northern pufferfish Sphoeroides maculatus as the
most common predators (Table 3, Fig. 5). The range
in CW of tethered crabs with filmed instances of pre-
dation was 21.1−40.0 mm. The 2 main predators did
not have sufficient ETs or HTs in both habitats to per-
mit inter-predator comparisons. Thus, we limited the
results to quantitative descriptions of ETs and HTs by
habitat.

For ET in the sand habitat, 8 adult blue crabs en -
countered a tethered crab. Mean (±SE) ET was 8.5 ±
2.35 h, with a range of 0.15−16 h. No northern puffer-
fish encountered tethered crabs in the sand. In the
oyster habitat, only 1 adult blue crab encountered a
tethered crab, 13 h after the start of the trial. In con-
trast, 6 northern pufferfish encountered a tethered
crab in oyster habitat. Mean ET was 6.75 ± 3.0 h, with
a range of 1−21 h.

For HT in the sand, all 8 adult blue crab encounters
led to consumption over 0.08−0.27 h with a mean HT
of 0.13± 0.02 h. In the oyster habitat, the single adult
blue crab consumed the tethered crab in 0.18 h.
Meanwhile, all 6 northern pufferfish encounters led
to consumption over 0.02−0.37 h with a mean HT of
0.08 ± 0.07 h.

Other fish including red drum, black drum, croa -
ker, white perch, and yellow perch were recorded
scavenging tethered crab remains, but they never
made the initial attack (Table 3). In 1 instance, a blue
crab scavenged the remains of a tethered crab eaten

θ
. .

. .
=

+

− +

− +
e

e

x

x

0 905 0 038

0 905 0 038

1

11

θ
. . .

. .
=

+

− − +

− −
e

e

x0 905 1 966 0 038

0 905 1

1

1 9966 0 038 1.+ x

168

Fig. 3. Crab survival by habitat and carapace width. Eqs. (2)
and (3) were used to generate the curves of survival probability

Fig. 4. Difference and percent difference in crab survival probability
between oyster habitat and sand habitat. Eqs. (2) and (3) were used to
generate the difference in survival probability, and reflect the distance
between the curves in Fig. 3. Difference = (Eq. 2 − Eq. 3)/Eq. 3 either as 

a magnitude or percent difference
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by a pufferfish. Two black seabass were recorded
attacking a tethered crab, but only one successfully
attacked and consumed the tethered crab. One oys-
ter toadfish was caught consuming a tethered crab

when the crab tether was pulled at
the end of an unfilmed trial.

4.  DISCUSSION

4.1.  Juvenile crab survival

Survival of juvenile blue crabs
was over 3-fold higher in oyster
habitat compared to sand. This is
the first experimental demonstra-
tion of the potential for oyster reefs
to serve as nursery habitat that
reduces predator-induced mortal-
ity for this species. Juvenile crab
survival also increased with crab
CW, and though not significant, we
included crab CW as an independ-
ent variable due to the extensive
evidence for an effect of blue crab
size on survival (Pile et al. 1996,

Hovel & Lipcius 2001, Lipcius et al. 2005, Johnston &
Lipcius 2012, Bromilow & Lipcius 2017). The positive
relationship between survival and crab CW is bio -
logically important because the low survival of the
smallest crabs may eliminate them from sand habi-
tats in general (Pile et al. 1996). An ontogenetic shift
in habitats has been proposed as a mechanism for
blue crabs to improve survival as they grow (Bro -
milow & Lipcius 2017), with movement out of struc-
tured habitats as crabs grow larger than about 25 mm
CW. The increased survival in structured oyster
habitats for juvenile blue crabs is not surprising
given the use of other structured nursery habitats by
small juvenile crabs (Orth & van Montfrans 1987,
Wilson et al. 1990, Everett & Ruiz 1993, Hovel & Lip-
cius 2001), and use of oyster habitats by other species
(Brown et al. 2014). The efficacy of oyster habitats as
nurseries for juvenile blue crabs in Chesapeake Bay
might depend on the presence of competing species,
such as shrimp (Eggleston 1998) and mud crabs, if
they deter juvenile blue crabs from using oyster reef
as habitat (Grabowski et al. 2008, Hill & Weissburg
2013). Mud crabs are prevalent in oyster reefs or
shelly habitats (Williams 1984, Grabowski et al.
2008). Thus, areas with high densities of mud crabs
may preclude use of oyster reefs by small juvenile
blue crabs.

The increased survival of juvenile crabs in struc-
tured habitats presumably arises from the ability of
the crabs to utilize small crevices among and be -
tween the structural elements, which protect small
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Species Total Oyster Oyster Sand Sand 
encoun- habitat habitat habitat habitat 

ters encounter consumption encounter consumption

Predators
Blue crab (adult) 9 1 1 8 8
Northern pufferfish 6 6 6 0 0
Black seabass 2 2 1 0 0
Oyster toadfish 1 1 1 0 0
Scavengers
White perch 3 3NP 3NP 0 0
Croaker 2 0 0 2BC 2BC

Black drum 1 1NP 1NP 0 0
Blue crab (adult) 1 1NP 1NP 0 0
Red drum 1 0 0 1BC 1BC

Yellow perch 1 0 0 1BC 1BC

Table 3. List of predators and scavengers organized by total number of encoun-
ters, regardless of consumption. Oyster (sand) habitat encounter: number of times
a predator/scavenger encountered a tethered crab in the oyster (sand) habitat;
oyster (sand) habitat consumption: number of times a predator/scavenger con-
sumed a tethered crab in the oyster (sand) habitat. Superscripts indicate which
scavengers associated with which dominant predator (NP: northern pufferfish; 

BC: blue crab)

Fig. 5. Dominant predators identified from video surveil-
lance: (A) adult blue crab (on sand habitat) and (B) northern
pufferfish (on oyster habitat). Images show tethered crabs 

being consumed
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crabs from either being seen or encountered by pred-
ators (e.g. Wilson et al. 1990, Pile et al. 1996, Hovel &
Lipcius 2001, Orth & van Montfrans 2002). The per-
cent increase in crab survival in oyster reef habitat as
compared to sand was greatest for small juveniles
compared to larger juveniles, suggesting that oyster
reefs are most important for the smallest size classes.
Our results regarding crab survival agree with our
hypothesis and with previous studies showing high
juvenile blue crab survival in structured versus
unstructured habitats (Lipcius et al. 2007, Bromilow
& Lipcius 2017). Vegetated habitats (i.e. emergent
and submerged aquatic vegetation) are presumed to
be the primary nursery habitat for juvenile blue crabs
in other systems (Heck & Thoman 1984, Beck et al.
2001, Heck et al. 2003) as well as in Chesapeake Bay
(Lipcius et al. 2007). However, the novel demonstra-
tion of oyster protection of juvenile blue crabs from
predation suggests that restored oyster reefs may
serve as alternative nursery habitats, like the exotic
red alga Agarophyton vermiculophyllum in Chesa-
peake Bay (Johnston & Lipcius 2012) and oyster reefs
in the Gulf of Mexico (zu Ermgassen et al. 2021).

4.2.  Predator identity and behavior

Our video recordings allowed us to identify the
main successful predators of juvenile blue crabs in
different habitats, with adult blue crabs most com-
mon in sand habitats and northern pufferfish most
common in oyster habitats. Cannibalism is a well-
known source of mortality for juvenile blue crabs
(Dittel et al. 1995, Hines & Ruiz 1995), but the north-
ern pufferfish was only recently identified as a pred-
ator of juvenile blue crabs in video surveys (Moody
2003, Bromilow & Lipcius 2017). A few other preda-
tors were seen in our studies, including red drum,
croaker, black seabass, and oyster toadfish, but these
were secondary predators and were uncommon.

Blue crabs are olfactory (Weissburg & Zimmer-Faust
1993) and chemotactile foragers (Lipcius & Hines 1986,
Keller et al. 2003), and they may have been able to
detect prey in sand habitat more easily than puffer-
fish, which likely rely on visual cues since they com-
monly feed only during the daytime (Strand 2004).

4.3.  Limitations

We suspect that juvenile blue crab survival on
 natural, large-scale oyster reefs would be similarly
im proved as compared to sand habitats, but this

needs experimental validation. Furthermore, preda-
tor iden tifications and encounter times were limited
at times by poor water clarity in the York River dur-
ing late summer. Of the 25 videos, 10 were excluded
due to poor visibility. Nonetheless, in instances where
predators were identified, predators were relatively
habitat-specific. Issues with limited visibility could
be remedied by replicating the experiment in the
spring and late fall when water clarity is typically
better but still warm enough for many predators,
which may also identify any seasonal differences in
predator activity. Finally, juvenile crabs in the mid-
range size class (20−30 mm CW) were more heavily
represented than the smaller and larger size classes
(Fig. 2), which may have reduced the statistical
power to detect a strong effect of crab size on sur-
vival (Pile et al. 1996, Hovel & Lipcius 2001, Lipcius
et al. 2005, Johnston & Lipcius 2012, Bromilow & Lip-
cius 2017). Specifically, we had difficulty catching
many crabs in the 40−50 mm CW size class for exper-
iments. However, there was a general continuum of
individuals from 10−50 mm CW used in trials for both
habitats, and the CW relationship was apparent. Dis-
tributing the replicates more evenly would provide a
stronger representation of juvenile crab survival and
likely strengthen our confidence in the difference in
survival by size.

4.4.  Implications

The value of oyster reefs for supporting survival of
juvenile crabs in our system suggests that restoration
of oyster reefs could be beneficial for restoring the
ecosystem service of providing alternative nursery
habitat for juvenile crabs. This increased under-
standing of the ecosystem value of oyster reefs for
blue crabs should help increase success in the eco-
nomic valuation of ecosystem services provided by
oyster reefs (Grabowski et al. 2012). Specifically, this
work should increase economic valuation of habitat
provisioning related to increased production of
mobile fish and invertebrates (Peterson et al. 2003).
Future work could focus on examining juvenile blue
crab use of large (greater than 1 ha [10 000 m2])
restored reefs in the lower Chesapeake Bay (Karp et
al. 2018) or natural oyster reefs, to improve our
understanding of ecosystem services of restored and
natural oyster reef habitats.
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