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PERSPECTIVES
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Abstract
Nitrogen pollution is one of the primary threats to coastal water quality globally, and governmental regulations andmarine policy are
increasingly requiring nitrogen remediation in management programs. Traditional mitigation strategies (e.g., advanced wastewater
treatment) are not always enough to meet reduction goals. Novel opportunities for additional nitrogen reduction are needed to
develop a portfolio of long-term solutions. Increasingly, in situ nitrogen reduction practices are providing a complementary
management approach to the traditional source control and treatment, including recognition of potential contributions of coastal
bivalve shellfish. While policy interest in bivalves has focused primarily on nitrogen removal via biomass harvest, bivalves can also
contribute to nitrogen removal by enhancing denitrification (the microbial driven process of bioavailable nitrogen transformation to
di-nitrogen gas). Recent evidence suggests that nitrogen removed via enhanced denitrificationmay eclipse nitrogen removal through
biomass harvest alone. With a few exceptions, bivalve-enhanced denitrification has yet to be incorporated into water quality policy.
Here, we focus on oysters in considering how this issuemay be addressed.We discuss policy options to support expansion of oyster-
mediated denitrification, describe the practical considerations for incorporation into nitrogen management, and summarize the
current state of the field in accounting for denitrification in oyster habitats. When considered against alternative nitrogen control
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strategies, we argue that enhanced denitrification associated with oysters should be included in a full suite of nitrogen removal
strategies, but with the recognition that denitrification associatedwith oyster habitats will not alone solve our excess nitrogen loading
problem.

Keywords Denitrification . Oyster . Eutrophication . Nutrient management . Nitrogen

Introduction

Excess nitrogen loading is a leading cause of coastal ecosys-
tem degradation globally (Breitburg et al. 2018). The symp-
toms of nitrogen pollution are well known and include eutro-
phication, harmful algal blooms, low oxygen conditions, and
declines in biodiversity (Powers et al. 2005; Greening and
Janicki 2006; Bricker et al. 2008; Breitburg et al. 2009;
Turner et al. 2009). For over three decades, various strategies
have been deployed to mitigate the negative impacts of excess
nitrogen primarily in coastal waters across Europe, North
America, Asia, and Australia (Boesch 2019). In the United
States, the Clean Water Act (CWA) requires establishment
of ambient water quality standards for rivers, lakes, and estu-
aries. Eutrophication due to excessive anthropogenic nutrient
loads often results in a failure to achieve these standards. If
this occurs, total maximum daily loads (TMDLs) are devel-
oped to establish the total amount of nitrogen that a waterbody
can receive and still achieve the water quality standards. State
and local governments are then responsible for developing
nitrogenmanagement plans to achieve nitrogen control targets
in the TMDL (Copeland 2001; USEPA 2002).While there are
success stories, nitrogen pollution is a recalcitrant problem,
requiring both persistence and innovation to address
(Fulweiler et al. 2012).

Nitrogen is particularly challenging to manage because it
enters coastal water bodies through both point (e.g., sewage)
and nonpoint (e.g., diffuse surface runoff from agricultural
and urban lands and atmospheric deposition) sources and
these require different management solutions. In the CWA,
point sources (typically municipal and industrial wastewater
treatment facilities) are permitted through the National
Pollution Discharge Elimination System (NPDES; 33 U.S.C.
§§1251-1387). Under nitrogen TMDLs, permits require
wastewater treatment facilities to meet nitrogen effluent con-
centrations and load limitations (called wasteload allocations).
These permit efforts have successfully reduced point source
loading of nitrogen in several high-profile waterbodies such as
Long Island Sound, Tampa Bay, and Chesapeake Bay
(Greening et al. 2014; Varekamp et al. 2014; Ator et al.
2019). While initially developed for wastewater treatment fa-
cilities, in some cases, permitting with nitrogen effluent limi-
tations has been extended to other sources such as municipal
separate storm sewer systems (MS4s).

Many watersheds, however, are dominated by nonpoint
source loads rather than point sources of nitrogen (Carpenter
et al. 1998; Boesch 2019). Under a TMDL, nitrogen loads
from such sources, called load allocation, must be reduced
but often with few direct federal regulatory requirements.
Nonpoint source nitrogen loading is arguably harder to man-
age because loads are expensive to identify, measure, and
monitor. Regulating nonpoint sources is also more difficult
due to the legal and practical difficulties of assigning nitrogen
control responsibilities to nonpoint sources (Carpenter et al.
1998; Paerl et al. 2002; Minan 2005; Green et al. 2008).
TMDL implementation plans typically rely on a variety of
voluntary federal, state, and local programs to induce reduc-
tions in nitrogen nonpoint source loads. For example, federal
and state programs provide landowners with financial assis-
tance to adopt specific practices, such as cover crops, conser-
vation tillage, and nutrient management plans, that reduce
agricultural nitrogen runoff. Local governments may encour-
age reductions in urban nonpoint nitrogen through educational
campaigns to reduce lawn application of fertilizer and finan-
cial inducements to adopt stormwater control measures such
as rain gardens and rainwater harvesting (Houle et al. 2013;
Gonzalez et al. 2016).

Given the challenges and limitations associated with man-
aging nitrogen sources, in situ nitrogen reduction practices
that remove nutrients from the water after they have entered
the waterbody have also been growing in use (Malone 1984;
Stephenson and Shabman 2017b). These practices typically
function by enhancing a naturally-occurring biological com-
munity or habitat that is a net nitrogen sink in the environment.
Some of these practices (e.g., floating wetlands, stream, and
wetland restoration) are already included in existing nitrogen
management plans in the United States (Phipps and Crumpton
1994; Craig et al. 2008; Mulbry et al. 2010; White and
Cousins 2013).

One group of organisms that is being increasingly recog-
nized for their contributions to in situ nitrogen reduction and
potential relevance to nitrogen management is bivalve shell-
fish (Newell 1988; Lindahl et al. 2005). Bivalve shellfish re-
move nitrogen directly from the water column by assimilating
filtered and ingested suspended particulates that contain nitro-
gen into tissue and shell biomass (Higgins et al. 2011; Rose
et al. 2014; Bricker et al. 2020). Sequestered nitrogen may
then either be retained in a stable habitat or removed from
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the system via harvest (Carmichael et al. 2012; Petersen et al.
2014; Rose et al. 2014). While implementation is currently
geographically limited, enhancement and subsequent harvest
of populations of eastern oysters (Crassostrea virginica) and
hard clams (Mercenaria mercenaria) have been recently ap-
proved for inclusion in local (clams and oysters) and regional
(oysters only) nitrogen management (Town of Mashpee
Sewer Commission 2015; Cornwell et al . 2016).
Enhancement (without harvest) of natural oyster biomass
through reef restoration is currently being considered for in-
clusion as a nitrogen reduction practice by the Chesapeake
Bay Program (Reichert-Nguyen 2018). Ingested particles that
are not assimilated may be ejected as biodeposits and buried in
the sediment, although data on this process are limited
(Beseres Pollack et al. 2013; Kellogg et al. 2014; Lai et al.
2020).

A third potential pathway of nitrogen removal by shellfish
is through enhancement of denitrification, the microbial-
driven process of converting reactive (i.e., bioavailable) nitro-
gen to non-reactive di-nitrogen (N2) gas (e.g., Kellogg et al.
2013; Hoellein et al. 2014; Humphries et al. 2016; Smyth et al.
2016; Bilkovic et al. 2017; Zhu et al. 2019). Denitrification is
unique, in that the nitrogen is no longer bioavailable and is
removed from the immediate ecosystem where water quality
problems can occur. Bivalve shellfish may enhance local de-
nitrification rates by concentrating organic matter in underly-
ing sediments, where the carbon and nitrogen from
biodeposits, and its eventual decomposition, may provide re-
actants and conditions needed to support denitrification and
lead to increases in nitrogen removal even in eutrophic areas
(Zhu et al. 2019). Microbial communities in the anoxic guts of
shellfish and on their shells may further contribute to denitri-
fication (Caffrey et al. 2016; Arfken et al. 2017; Ray et al.
2019).

Oyster-mediated denitrification has been measured in a va-
riety of coastal and estuarine ecosystems. In some locations,
substantial enhancement of denitrification has been docu-
mented over bare sediment controls (e.g., Kellogg et al.
2013; Humphries et al. 2016), but this has not been observed
in all locations and/or at all times within a single location (e.g.,
Higgins et al. 2011, Westbrook et al. 2019). A recent meta-
analysis, however, examined the available data on directly
measured sediment denitrification under oyster reefs and
aquaculture farms (Ray and Fulweiler 2021). They report that
oysters have a strong positive effect on denitrification in both
scenarios. While the effect of oysters on denitrification was
higher in reef habitats compared to aquaculture habitats, there
was no statistical difference between the two, suggesting that
both habitats increase nitrogen removal equally (Ray and
Fulweiler 2021).

Here, we describe the opportunities and challenges of in-
corporating bivalve-mediated denitrification into existing ni-
trogen management programs. The inclusion of oyster-

mediated denitrification in nitrogen management is also cur-
rently under review by the multi-state Chesapeake Bay
Program (Reichert-Nguyen 2018). We focus on oysters be-
cause of their wide-spread and growing role in both aquacul-
ture and reef restoration and consider how including oyster
driven denitrification in nitrogen management plans may im-
pact both of these management areas. We discuss policy op-
tions to support expansion of oyster-mediated denitrification,
describe the practical considerations for incorporation into
nitrogen management, and summarize the current state of
the field in accounting for denitrification in oyster habitats.

Opportunities to Integrate Oyster-Mediated
Denitrification into Nitrogen Management
Programs

Expansion of oyster-mediated denitrification via increased
aquaculture and restoration can be encouraged with payment
and other support for these services. A variety of policy op-
tions exist to support the expansion of oyster-mediated deni-
trification by the public and private sectors, and several op-
tions have been piloted and used to aid water quality manage-
ment efforts (Fig. 1).

State and local governments’ efforts to mitigate nitrogen
input from unregulated nonpoint sources offer a diverse range

Fig. 1. Policy options to support expansion of oyster-mediated denitrifi-
cation. Opportunities are categorized based on sector, and include both
financial and nonfinancial mechanisms that could increase implementa-
tion of restoration and aquaculture practices. Oyster graphic by Tracey
Saxby via https://ian.umces.edu/imagelibrary/displayimage-4336.html
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of policy options and opportunities to support and expand
implementation of oyster-mediated denitrification enhance-
ment practices (Fig. 1—public sector). For most nonpoint
source programs, financial assistance is typically provided
based on the installation or maintenance of a practice or ac-
tivity that is intended to remove nitrogen. Federal and state
“cost-share” programs pay a portion of the costs to install
practices such as cover crops, stream buffers, and livestock
exclusions from streams. A variety of practice-based financial
assistance programs can support oyster-based denitrification,
including subsidies for oyster aquaculture gear, oyster seed
costs, and payments for enhanced shelling of a barren seafloor
(Bosch et al. 2010). If these efforts are successful in increasing
oyster numbers and denitrification, progress can be claimed
within a TMDL that recognizes denitrification as an accept-
able water quality control option.

Government agencies responsible for TMDL implementa-
tion also have a number of other options to expand oyster
production to enhance nitrogen removal. These actions could
indirectly lower the price of inputs needed for oyster produc-
tion or enhance oyster prices, thus facilitating additional in-
vestment in oyster production. State and/or local agencies
could streamline and lower barriers to securing permits and
leases to expand oyster production, an approach being piloted
by Falmouth, MA, through the siting of aquaculture develop-
ment zones (Town of Falmouth 2017). Another alternative to
increase production is through enhancements to put-and-take
fisheries, currently being implemented in Mashpee, MA
(Town of Mashpee Sewer Commission 2015). Local govern-
ments may alter zoning requirements or property taxes to sup-
port oyster infrastructure (e.g., hatchery production and oyster
processing facilities). Local and state programs could also
create certification programs that promote the environmental
stewardship provided by local oyster production (Kuminoff
et al. 2008). These actions could be part of a TMDL imple-
mentation plan, and local governments could claim progress
toward reducing nitrogen loads to a targeted waterbody.

Oyster-mediated denitrification can be supported directly
through implementation of payment for ecosystem services
(PES) programs, whereby producers of ecosystem services
(e.g., nitrogen removal) are compensated by beneficiaries to
continue providing the services (Farley and Costanza 2010).
In PES programs for water quality, compensation is paid
based on the quantity of pollutants removed per unit of time
(e.g., USD kg−1). A variety of nitrogen reduction practices—
including both traditional infrastructure and nature-based
solutions—have been implemented or proposed, from in situ
practices such as stream or wetland restoration to sewering.
Beneficiaries could be public agencies seeking to achieve pub-
lic water quality goals or regulated entities that need to offset
nitrogen discharge. In the latter case, nitrogen trading pro-
grams have been proposed as a mechanism to enable regulated
nitrogen sources to meet nitrogen reduction goals by paying

other entities to help meet their nitrogen load requirements
(WLA) (Willamette Partnership and World Resources
Institute 2015). Regulated sources may be interested in trading
as a way to offset unavoidable growth or as a way to reduce
compliance costs. These other entities (sellers) could be other
point sources who discharge nitrogen below their permit
levels and thus have “excess” nitrogen available for trading.
The excess nitrogen control created by the seller must be
quantified on a mass load basis (kg) and defined in both tem-
poral and spatial dimensions, often called a credit.
Alternatively, the regulated source may be allowed to pur-
chase nitrogen credits from unregulated nonpoint sources, typ-
ically agriculture sources (sometimes called “point–nonpoint”
trading). Nitrogen credits, however, could also be generated
and sold by entities who actively invest to increase in situ
nitrogen removal processes (Stephenson and Shabman
2017b). This could include nutrient sequestration or practices
that enhance oyster-mediated denitrification (Fig. 1—nitrogen
producers).

Trades involving nonpoint source reduction or in situ ni-
trogen removal approaches have been limited to date
(Stephenson and Shabman 2017c). Only two active nitrogen
trading programs in the United States currently allow nutrient
credit trades involving oysters, Virginia’s Nutrient Credit
Exchange and Maryland’s Nutrient Trading Program.
Demand for nonpoint source credits within the Virginia pro-
gram is currently low (Stephenson and Shabman 2017a).
Maryland’s program has only recently been implemented,
and trading thus far has been limited (Maryland Department
of the Environment 2020). The low volume of trading is partly
due to limited demand from permitted sources. Federal per-
mitting programs are, by design, intended to maximize point
source reductions so regulatory programs act to limit the abil-
ity of permitted sources to achieve compliance using third-
party sources (Stephenson and Shabman 2017c). Nitrogen
trading programs involving regulated nonpoint sources, such
as municipal separate storm sewer (MS4) programs, may be a
promising option for future trades involving oyster-mediated
denitrification enhancement. However, to be attractive to any
potential buyer, the nitrogen removal costs ($ lb−1 year−1) of
in situ projects would need to be competitive with those in-
curred by point and nonpoint sources that currently offer
credits. Within existing point source trading programs, the
price of nitrogen credits is typically less than $10 lb−1 year−1

(CTDEEP 2018; Virginia Nutrient Credit Exchange
Association 2020). Recent demonstration trades involving ni-
trogen removal through assimilation into oyster tissue in-
volved one-time payments to two growers of $50–400 lb−1

year−1 (Wheeler 2020).
The private sector could also provide financial support for

expansion of oyster denitrification (Fig. 1—private sector).
For “impact investors”—those seeking financial, social, and
environmental returns on investments—valuing oyster-
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mediated denitrification allows for evaluation of the magni-
tude of environmental or social impact opportunity relative to
other options (e.g., investment in other nitrogen reduction ap-
proaches) and could inspire further investment (O’Shea et al.
2019). In some cases, the financial support may be voluntary
donation. In others, investors may provide financing only un-
der the expectation that another party will repay once services
are provided. For example, “environmental impact bonds”
have been proposed as an option for private investors to pro-
vide funds to local or state governments for implementation of
nitrogen reduction practices (e.g., oyster restoration), with a
return on their investment only upon a successful outcome.

Consideration for Establishing a Policy
Framework

Timing and Location of Nitrogen Reduction Delivery

As an in situ nitrogen removal practice, the physical location
of oysters in the impaired waterbody may lead to a suite of
nitrogen removal benefits that differ from land-based alterna-
tives (Table 1).Water quality equivalence refers to the relating
of different nitrogen removal practices to achieving the same
desired ambient water quality response (e.g., increased dis-
solved oxygen) (Stephenson and Shabman 2017b). Since
oyster-associated nitrogen removal via denitrification occurs
directly in the water, nitrogen removal is not delayed by ni-
trogen transport and attenuation within the watershed
itself (Keller et al. 2014). This provides the benefit of creating
more immediate positive impacts in situations where upstream
nitrogen reduction efforts may be delayed by social/political
inertia or lag times in source control associated with nitrogen
transport times (Meals et al. 2010). For example, in ground-
water fed systems like Cape Cod, MA, or Long Island, NY,
USA, the delay in water and nutrient transport can result in
decades-long travel times for nutrients from upstream sources
to estuarine waters. Thus, historic or legacy loads will contin-
ue to affect an impaired waterbody for decades or longer after
upstream source controls are implemented (Van Meter et al.
2016). At the same time, forgoing upstream investments in
source control in favor of in situ approaches, implies allowing
for continuing damages nitrogen may cause in transport, say
in intercepting ponds. Therefore, while in situ approaches may
complement source control efforts, and potentially enhance
the cost-efficiency, and immediacy of pollution control ef-
forts, they are not substitutes for one another.

Ensuring Effectiveness of Payments for Increasing
Implementation of Nitrogen Reduction Practices

Since oyster-mediated denitrification also provides the oppor-
tunity to achieve nitrogen reduction without physical removal

of the organisms from the local environment (as opposed to
nitrogen removal via biomass extraction), integrating bivalve-
mediated denitrification into nitrogen management plans
could have major impacts on a variety of conservation and
resource management plans. For restoration projects, pay-
ments for nitrogen removal services would provide a contin-
ual, quantifiable benefit that might motivate additional reef
restoration activities and lead to an increase in restored acre-
age in sanctuaries or other areas protected from harvest; sim-
ilar impacts have been proposed from valuing other services
(Grabowski et al. 2012). Currently, most restoration activities
are funded via public or private grants. However, the rate at
which oyster habitat is being lost far exceeds the capacity of
current public funding for restoration (Hernandez et al. 2018).
Payments for nitrogen removal services add value since reefs
would be considered a mitigation strategy, if sources of
funding can be identified. This valuation may encourage local
community “buy-in” and create further incentives for private
entities to invest in restoration of degraded systems.

To be effective, the financial and nonfinancial incentive
systems acknowledging oyster-mediated denitrification must
increase the number of oysters placed in coastal waters
through both aquaculture and restoration over what would
have occurred in an absence of the program. Additionality is
the incremental level of nitrogen removal achieved from what
would have occurred in an absence of active management
policy efforts. The result would be payments for services that
would have been provided anyway, without payment, through
the course of normal business operations (Flood 2019).
Additionality may be particularly challenging within the con-
text of shellfish aquaculture where positive financial returns
are already being achieved from the sale of oysters alone
(Table 1). In such a setting, existing oyster producers are pro-
viding nitrogen removal services for free. One policy chal-
lenge is to determine how and when to start “counting” new
or additional production. Establishing such a “baseline” is
empirically and practically challenging in this context
(Stephenson and Shabman 2017b). Establishing baselines
must address equity issues since new entrants or marginal
producers could be subsidized at the expense of existing pro-
ducers that would operate profitably without payments. Non-
additionality also raises potentially adverse water quality out-
comes. Within a trading context, a nitrogen discharger could
purchase nitrogen credits from an existing oyster operation in
order to increase nitrogen loads without any corresponding
increase in denitrification.

The impact of any payment of nitrogen removal services
program, including credit trading programs, on aquaculture
growth will also depend partly on the value of the credit or
payments. Economic modeling has suggested that higher
credit prices will facilitate growth in the aquaculture industry
(Weber et al. 2019). The effectiveness of payments in achiev-
ing nutrient reduction may be limited by other constraints
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farmers face, such as lease area, available working waterfront
space, and market for their product.

Alteration of Farming Practices

The type of financial incentive system can alter the size and
characteristics of oyster production. For example, input subsi-
dies can skew oyster investments toward specific types of
inputs or production methods. PES systems that relate oyster
size to higher levels of oyster processing may lead to changes
in the size composition of marketed oysters (Taylor et al.
2019). For example, if denitrification is impacted by stocking
density, harvest size, ploidy, or farming strategy (e.g., off-
bottom vs. bottom cultivation), this could lead to the use of
new techniques or possible production of larger oysters.
Increased oyster production may create the need for the oyster
aquaculture industry to develop new or differentiated markets
for their product and the equipment needed to support them,
especially if nitrogen reduction is influenced by cultivation
practices. In this sense, payments for nitrogen reduction ser-
vices may provide incentives for industry investment in long-
term sustainability of the environment, fishery, and commu-
nity. For example, oyster production in the Northeastern
United States is almost entirely (95+%) for the half-shell mar-
ket sold by the piece, though there are alternative markets for
shucked or processed product (The Hale Group 2016). These
alternative markets may have greater capacity to handle addi-
tional growth in volume, but local infrastructure to support
farming strategies that maximize denitrification may not cur-
rently exist throughout the region. Additional revenue from
nitrogen reduction payments could make that avenue more
attractive to businesses and investors.

Ancillary Benefits Provided by Oysters

Enhancement of oyster populations, whether through aquacul-
ture or reef restoration practices, would also provide addition-
al ecosystem services beyond nitrogen reduction. Ancillary
benefits in addition to nitrogen reduction are often a consid-
eration in developing TMDL implementation plans (Table 1).
The filtering of water by oysters can increase water clarity and
improve conditions for species such as seagrasses (Newell and
Koch 2004; Wall et al. 2008). Some evidence suggests that
oyster feeding and growthmight also sequester carbon (Fodrie
et al. 2017). Oysters also directly provide habitat for other
organisms as they grow via reef formation. Support of com-
mercially and recreationally important finfish stocks through
habitat provisioning may lead to additional ecosystem ser-
vices (Gilby et al. 2018). Colonization of oyster reefs or aqua-
culture gear by other suspension feeding organisms may fur-
ther enhance water clarity improvements and support addi-
tional denitrification enhancement (Kellogg et al. 2018).
Oyster reefs have also been shown to provide shoreline

protection through wave attenuation and shoreline stabiliza-
tion (Meyer et al. 1997; La Peyre et al. 2014). Oysters in reefs
(Peters et al. 2017) and aquaculture settings (Varney et al.
2018) can contribute to stock enhancement through larval out-
put, as long as diploid oysters (i.e., capable of reproduction)
are used. Although issues concerning mixture of gene pools
may need to be addressed (Jaris et al. 2019), these studies
highlight the potential for oyster populations to be self-
sustaining and require less maintenance than other nitrogen
removal tools. Further, an increase in aquaculture production
of oysters could contribute shell materials useful for restora-
tion activities (reef or bed enhancement) and buffer against
ocean acidification (Filgueira et al. 2015). Importantly, any
of these “ancillary” benefits may actually be the driver of reef
restoration programs. Valuing nitrogen removal via denitrifi-
cation would add benefits to these projects and similarly aid
their growth even outside a TMDL framework.

Siting Considerations

The nature of in situ oyster-mediated denitrification also
means that some sites may not be suitable for this approach
(Table 1). Environmental considerations affecting siting in-
clude factors such as temperature, salinity, water quality, cur-
rents, flushing times, and availability of sufficient food quality
and quantity to support oyster growth. Social considerations
may lead to constraints on production inputs, such as opposi-
tion from coastal residents and competing spatial uses of
coastal or estuarine waters, such as recreational boating and
commercial fishing (Dalton et al. 2017). Interactions among
stakeholders and resulting regulations, combined with noted
spatial differences, may affect implementation of some of the
incentivization mechanisms we have described.

Availability of space for cultivation or restoration may
present additional challenges (Beckensteiner et al. 2020). A
potential constraint that combines social and environmental
considerations is the presence of high bacterial abundance in
a location that is also experiencing nitrogen-related water
quality impairments. Harvest of shellfish from waters with
high bacterial abundance is prohibited, precluding aquaculture
activities for public consumption. Oyster reef restoration in
closed or prohibited waters has been viewed by some states
as an “attractive nuisance” due to public health concerns sur-
rounding the potential for illegal harvest, personal consump-
tion, or even sale into the commercial food supply. A lack of
adequate resources for enforcement to prevent illegal harvest
precludes oyster restoration projects in closed waters in US
states such as New Jersey and Massachusetts (Holley et al.
2018). In areas where environmentally and socially suitable
areas for aquaculture and restoration do not coincide with
watershed impacts to water quality, credit trading programs
may facilitate the development of “hotspots” where nutrient
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removal benefits are realized in areas spatially removed from
the impacts. Regulatory programs governing nutrient credit
trading must explicitly address the spatial distribution of the
benefits and impacts to ensure the expected water quality ben-
efits are realized.

Siting challenges may be addressed through the use of a
growing number of GIS-based mapping tools to aid in the
identification of appropriate sites that minimize user conflict
and have no bacteria-based water quality restrictions
(Wickliffe et al. 2019). The incorporation of local monitoring
data relevant to oyster growth into these mapping tools would
further improve siting of oyster-mediated denitrification en-
hancement practices (Bricker et al. 2016).

Quantification of Nitrogen Removal

Denitrification is a nitrogen removal pathway for many com-
mon nitrogen reduction best management practices (see
Table 1), and quantification of this removal pathway must
be addressed in any nitrogen management program. If a site
is environmentally suitable and socially acceptable for oyster
installation, a further challenge will be to properly estimate the
impacts of oysters on nitrogen removal for achieving water
quality goals and evaluating effects of management alterna-
tives. A related policy challenge is the level of certainty in the
magnitude of nitrogen removal provided, given observed var-
iability in denitrification enhancement across space and time.
There are generally three approaches to quantifying nitrogen
removal from oyster habitats: direct measurement, measure-
ment of indirect proxies, and ecological modeling. In nitrogen
management programs, the vast majority of nitrogen reduc-
tion strategies utilize modeled approaches (Table 1).

Direct Measurement

A recent review has identified best practices for documenting
oyster-mediated denitrification enhancement associated with
either oyster aquaculture or restoration practices (Ray et al. in
revision). A set of recent recommendations from the
Chesapeake Bay Program included site-specific measure-
ments of denitrification to determine local rates due to vari-
ability derived from the complex feedbacks that occur be-
tween bivalves, the water column, and the reef microbial com-
munity (Reichert-Nguyen 2018). Oysters interact with the wa-
ter column by impacting surrounding hydrodynamic condi-
tions, ultimately affecting particle transport and leading to
changes in food availability and particle concentrations.
Individual oyster filtration rates are a function of oyster size,
age, particle availability, temperature, and salinity (Ehrich and
Harris 2015). These processes ultimately affect rates of
biodeposit production, and the biodeposits themselves are
subject to resuspension and transport before they become

available for either burial, N-removal via denitrification, or
ammonification that results in a recycling of N back to the
water column (Testa et al. 2015).

The rates of nitrogen removal will be dependent on the
local environment experienced by a given oyster, especially
in terms of average current velocities and phytoplankton and
suspended sediment concentrations, as well as the ways that
ambient salinity and temperature impact a variety of physio-
logical factors. Physical configuration of the oysters in a reef,
and variations in aquaculture cultivation practices, may also
impact nitrogen removal. For example, for off-bottom aqua-
culture, bottom sediment quality and the presence of nitrifying
and denitrifying microbes are important. Sites with poor sed-
iment conditions (e.g., high hydrogen sulfide concentrations)
will result in minimal or no denitrification (Higgins et al.
2013). Changes in oyster density would also impact nitrogen
removal and thus need to be monitored. An excess of oysters
could result in overabundance of biodeposits resulting in poor
bottom sediment conditions and thus decreased rates of nitri-
fication/denitrification. Although it is important to highlight
that as of now, when taken together, the current available data
demonstrates that sediments from oyster habitats have higher
rates of nitrogen removal via denitrification than bare sedi-
ments (Ray and Fulweiler 2021). While oysters may form
self-sustaining populations that are resilient to disasters such
as hurricanes and droughts that may render other management
strategies ineffective, the isolated or synergistic impacts of
disease, predator outbreaks, and other environmental changes
may limit population growth and even lead to catastrophic
population loss (Garland and Kimbro 2015).

Proxies for Denitrification Enhancement

If widespread use of shellfish-induced denitrification is to oc-
cur within water quality management programs, straightfor-
ward and low-cost options are needed to quantify the nitrogen
removal services from enhanced denitrification (Groffman
et al. 2006). Some evidence suggests that proxies could be
used to quantify denitrification enhancement. Sisson et al.
(2011) observed a relationship between denitrification rates
and oyster biomass in experiments conducted at a reef resto-
ration site in Chesapeake Bay. Others (Piehler and Smyth
2011; Hoellein and Zarnoch 2014; Zhu et al. 2019) have ob-
served positive relationships among sediment organic content,
sediment oxygen demand, and denitrification rates. A general
impact of oyster presence on denitrification rates could also be
determined, mirroring an approach that has been used to esti-
mate impacts of vegetation on denitrification rates (Alldred
and Baines 2016). Monitoring of oyster biomass or sediment
properties could provide assurance to nitrogen management
programs that locally established denitrification rates continue
to be relevant at a much lower cost than sustaining a time
series of denitrification measurements. Continued research
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into low-cost predictors of denitrification would increase the
likelihood that oyster-mediated denitrification enhancement
practices would be used in nitrogen management programs.

Model Development

Active use of shellfish-related denitrification as a water quality
management option will be greatly increased with the devel-
opment of sufficiently acceptable models to quantify the
levels of nitrogen removal through denitrification. Predicting
denitrification in estuarine settings is not a new modeling
challenge. A process-based model for simulating sediment
biogeochemistry processes in coastal ecosystems was initially
developed by Di Toro (2001) as the “sediment flux model”
(SFM). This forms the basis for simulating benthic–pelagic
coupling in the Chesapeake Bay Eutrophication Model
(Cerco and Noel 2004), as well as models for Long Island
Sound (HydroQual 1991), Massachusetts Bay (HydroQual
and Normandeau Associates 1995), and several other coastal
systems. Cerco (2015) adapted these formulations by includ-
ing bivalves to predict nutrient removal by oysters in the Great
Wicomico River sub-estuary. The SFM also forms the basis
for a modeling effort by Testa et al. (2015) to simulate bio-
geochemistry around floating oyster farm aquaculture in com-
bination with hydrodynamic processes that act upon
biodeposits that are ultimately the organic material that fuels
denitrification and burial of nitrogen in and around oysters.
Harris et al. (2019) have combined a 2-D hydrodynamic par-
ticle tracking model with model formulations that simulate
filtration rates (Ehrich and Harris 2015), biodeposition, and
the SFM to consider how reef morphology, oyster size and
density, and environmental conditions such as current veloc-
ity, chlorophyll-a concentrations, temperature, and salinity
combine to influence nitrogen cycling and removal. These
models have the capacity to investigate how multiple factors
combine to affect removal of phytoplankton from the water
column and facilitation of burial, recycling, or denitrification
using SFM. The challenge of using these models is their high
data requirements for parameterization, but a hope for future
application is that general relationships may be used to make
predictions about oysters related to nitrogen removal.

Reduced complexity models that are designed for end-user
input such as the farm aquaculture resource management
(FARM) model also estimate nitrogen removal (Rose et al.
2015; Bricker et al. 2018). While applications of FARM have
generally been restricted to computing nitrogen removal through
bioextraction (i.e., sequestration in tissues and shells with subse-
quent harvest), Bricker et al. (2020) combined FARM model
estimates of bioextractive removal with published local measure-
ments of oyster-mediated denitrification to provide a more holis-
tic estimate of oyster-associated nitrogen removal in Great Bay;
NH. Kellogg et al. (2018) applied a reduced complexity box
model rooted in site-specific observations to the tributary-scale

oyster restoration in Harris Creek, MD. The model projected that
restored oysters are now removing over 200% of watershed ni-
trogen inputs. Denitrification was responsible for the largest frac-
tion of these removals (73%), followed by sequestration in shell
(13%), tissue (10%), and burial (3%). The model is now avail-
able online for stakeholders to estimate nitrogen removals as a
function of restored area, oyster density, and oyster size (Kellogg
and Brush 2018). These models do not have the fine spatial and
mechanistic detail of the SFM or particle-tracking hydrodynam-
ics, but nevertheless reproduce the observations, are easily pa-
rameterized, can still be tailored to site-specific locations, and can
be served online. Both types of models (finely resolved and
reduced complexity) have the potential to inform nutrient man-
agement programs that incorporate oyster-mediated denitrifica-
tion. Additional research is needed to compare predictions pro-
duced by these different types of models, to further hone them to
site-specific applications, and to build consensus on appropriate
modeling tools.

Modeling and quantification efforts should be evaluated
within the policy context of ambient water quality manage-
ment. Water quality managers may consider the level of cer-
tainty and confidence in nitrogen removal practices to gener-
ate specific levels of nitrogen control. In the policy context,
uncertainty of model estimates of oyster-mediated denitrifica-
tion enhancement should be evaluated against the uncer-
tainties and costs (Rose et al. 2015) associated with other
nitrogen removal practices to achieve ambient water quality
goals, in particular nonpoint source load reductions (Table 1).
Nonpoint source management efforts within the TMDL pro-
gram rely almost exclusively on modeled estimates of the
effectiveness of nonpoint source management actions
(Table 1; e.g., best management practices like bioretention,
cover crops, riparian buffers). Beyond permitted sources,
monitoring within a TMDL occurs at the ambient level to
track overall progress toward achieving water quality stan-
dards but not at the level of tracking the nitrogen removal
outcomes of individual nonpoint source management actions.

Water quality managers commonly accept and rely on av-
erage removal efficiencies for nonpoint source practices that
have considerable observed ranges in control effectiveness
(Liu et al. 2017; Stephenson et al. 2018; Aguilar Marcus and
Dymond Randel 2019). For example, most urban and agricul-
tural nonpoint source best management practices (BMPs)
have multiple nitrogen removal processes and removal path-
ways. The pathways are not all thoroughly characterized in the
literature, and expert judgment is often used in place of
models to determine removal effectiveness rates of BMP types
(Stephenson et al. 2018). Yet, these practices form the back-
bone of most nonpoint source control efforts. While oyster
denitrification is subject to complex and site-specific condi-
tions, the level of uncertainty in nonpoint source effectiveness
may be considered as useful references when evaluating and
quantifying in situ removal options.
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Conclusions

This summary shows the potential of, and challenges to, inclu-
sion of oyster denitrification in nitrogen management programs.
In many respects, oyster denitrification is not unique to water
quality management, as denitrification is an important nitrogen
reduction pathway for many land based nonpoint source prac-
tices (Table 1). Verification of oyster-mediated denitrification
may be facilitated by being able to quantify the oyster biomass
responsible for enhancing nitrogen processing. Development of
models to estimate denitrification enhancement associated with
oyster habitats may yield more widespread implementation by
nitrogen management programs.

Oyster-mediated denitrification enhancement is emerging
as one of several nitrogen reduction tools employed by re-
source managers, and the discussion here illustrates its poten-
tial to contribute to coastal and estuarine nitrogen manage-
ment. Similar arguments could be made for consideration of
denitrification enhancement by other organisms, such as
clams, mussels, and wetland plants (Nizzoli et al. 2006;
Bastviken et al. 2007; Alldred and Baines 2016; Bilkovic
et al. 2017; Zhu et al. 2019). Recognizing and valuing this
additional nitrogen reduction service may encourage the ap-
plication of in situ practices and expand their contributions to
overall nutrient management. While the challenges we have
described here for oyster-mediated denitrification enhance-
ment will likely exist for other species, the benefits of
employing these methods and markets to support them likely
exist as well. Beginning to account for this ecosystem service
will encourage advances in both management and research.

Given the noted benefits and challenges associated with
integrating oyster-mediated denitrification into nitrogen re-
duction plans, an adaptive management approach will be crit-
ical for successfully implementing new practices and integrat-
ing them into the broader approach to nitrogen management.
Adaptive management, which is an iterative process by which
management actions are modified in response to progress on
achieving objectives, is thought to be useful for dealing with
the inherent uncertainty in the management of complex sys-
tems (Eberhard et al. 2009). Adaptive management can be
useful in areas of active research, where new findings can
influence implementation of management programs. This is
true for many novel management tools. For example, the
Chesapeake Bay Program recognized the potential for stream
restoration projects to result in increased denitrification rates,
considered the uncertainty associated with estimates of those
denitrification rates, and approved a best management practice
that credits denitrification enhancement associated with
stream restoration (Berg et al. 2013). The expert panel for this
best management practice noted that available data did not
allow a “perfect estimate” of nitrogen removal, but also rec-
ognized the benefits of this approach and decided to support
its use while closely monitoring results. The Chesapeake Bay

Program noted that although nitrogen removal associated with
stream denitrification was calculated using a single equation,
adaptive management processes allow variability in this rate
to be re-considered as more science becomes available, and in
fact, this BMP was re-evaluated and the credited rates of de-
nitrification enhancement were updated several years later
(Altland et al. 2020).

In summary, it is clear that more tools are needed to reduce
excess anthropogenic nitrogen in estuaries. For bivalve shell-
fish such as oysters, we should consider the full potential for
nitrogen reduction, including denitrification, and methods to
incentivize these in situ practices. Current science is able to
directly measure microbially-mediated denitrification and the
scientists are actively developingmore robust tools to estimate
these rates with both empirical relationships and mechanistic
models. Finally, the adaptive management framework
employed by coastal and estuarine resource managers is suf-
ficiently sophisticated to integrate this nuance into both resto-
ration and aquaculture contexts, with a diversity of potential
implementation frameworks.
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