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ABSTRACT

In recent years, Graphics Processing Units (GPUs) have become a de facto choice to
accelerate the computations in various domains such as machine learning, security,
financial and scientific computing. GPUs leverage the inherent data parallelism in
the target applications to provide high throughput at superior energy efficiency.
Due to the rising usage of GPUs for a large number of applications, they are
facing new challenges, especially in the security and reliability domains. From
the security side, recently several microarchitectural attacks targeting GPUs have
been demonstrated. These attacks leak the secret information stored on GPUs,
for example, the parameters of a neural network (NN) model and the private user
information. From the reliability side, the innovations to improve GPU memory
systems are making them more susceptible to errors. My dissertation research
focuses on addressing these security and reliability challenges in GPUs while
minimizing the associated overhead of the proposed protection mechanisms.

To improve GPU security, we focus on the previously demonstrated correlation
timing attack. Such an attack exploits the deterministic nature of the coalescing
mechanism in GPUs to correlate the execution time and the number of accesses.
Consequently, an attacker can recover the encryption keys stored on GPUs.
Therefore, to counter the correlation timing attack, we first introduce a randomized
coalescing defense scheme (RCoal). RCoal randomizes the coalescing logic such that
the attacker fails to correlate the execution time and the number of accesses. As a
result, RCoal thwarts the correlation timing attack. Next, we propose a bucketing
based coalescing defense scheme, BCoal, which minimizes the variation in the
number of memory accesses by generating a predetermined number (called buckets)
of memory accesses. With low variation in the number of memory accesses, the
attacker cannot correlate the application execution time and the secret information,
thus failing the correlation timing attack. BCoal generates less memory traffic than
RCoal and, therefore, is performance efficient.

To improve GPU reliability, we address the data memory faults in GPU caches and
DRAM. Existing reliability mechanisms of redundancy and check-pointing fail to
scale with the increasing memory/computational demands on GPUs and quickly
become impractical. To address this problem, we study a wide range of applica-
tions to find that a very small fraction of the data memory is most vulnerable to
faults. This small fraction of the data is not only highly accessed but also highly
shared across GPU threads. Consequently, we propose and develop two reliability
schemes to detect-only and to detect/correct faults in this most vulnerable data
while incurring low overhead. The focus of on-going and future work is to improve
the reliability of machine learning applications.
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Chapter 1

Introduction

Graphics Processing Units (GPUs) provide significant performance and energy efficiency

advantages over CPUs as the former exploits the data-level parallelism in the applica-

tions [60, 5, 69, 118, 59, 61, 106, 3, 2, 12, 54, 122]. As a result, GPUs are largely deployed

to accelerate applications in various fields, such as high-performance computing (HPC),

artificial intelligence (AI), finance, virtual/augmented reality, genomics, and autonomous

vehicle workloads [23, 109, 122, 93, 116, 98, 91, 96, 103, 94].

With the increasing demand for GPUs in the computational and graphical workloads,

the challenges faced by the GPU architecture are also increasing, especially in the secu-

rity and reliability domains. For example, some of the GPU-run applications, such as

DNA and financial computing, process private user data. Furthermore, while the deep

learning workloads benefit from the computational power of GPUs, the neural network

(NN) models are under attack to steal the confidential model parameters and the private

user data processed on the GPUs [37, 81]. Also, cryptographic applications, such as AES

encryption handling sensitive data, are known to achieve significant performance benefits

IEEE Copyright Note: In reference to IEEE copyrighted material which is used with permission in this thesis,
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CHAPTER 1. INTRODUCTION 3

from GPUs [44, 128, 72, 17, 83, 42]. As a result, the secure computations on GPUs are a

primary focus to ensure that the confidential and private data processed is not leaked by

an attacker.

Next, emerging computing needs have fueled the growth of GPU architectures. Specifi-

cally, the growing data sizes in the deep learning and AI workloads have lead to a significant

increase in the GPU storage structures [99]. Consequently, several research efforts have

been made to operate these storage structures efficiently. However, the effect of these

innovations on GPU reliability is not yet well-understood. For example, low voltage cache

designs (i.e., AMD Killi [27] or IBM Dante [11]) for managing power consumption of large

last-level caches in GPUs can increase the likelihood of multi-bit faults. Furthermore,

advanced DRAM architectures make multi-bit faults more common [120, 125]. The in-

creasing multi-bit faults in the GPU memory structures may adversely affect the output

of the applications leading to less reliable GPU computations. The reduced reliable GPU

computations, in turn, may lead to catastrophic failures, such as accidents of autonomous

vehicles [105, 16, 65, 43]. Consequently, the data memory faults in the GPU memory

structures must be addressed to ensure reliable GPU computations.

1.1 Low-Overhead Hardware Techniques for Improving

GPU Security

1.1.1 Problem Statement

As noted above, GPUs outperform CPUs in terms of performance and power efficiency

when executing cryptographic applications, such as AES encryption [42, 72, 17, 83]. How-

ever, several new correlation timing and covert channel attacks have been demonstrated

on GPUs to leak confidential and private user data [44, 80, 135, 45]. Our research focuses

on the recent correlation timing attack on GPU, which exploited the correlation between

the execution time and the number of coalesced accesses to memory to recover the AES
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encryption keys [44]. Specifically, the attacker exploits the relationship between the coa-

lesced accesses and AES encryption keys to reveal the encryption key through an offline

correlation analysis with the help of the recorded encryption execution time and encrypted

(cipher-) text.

1.1.2 Contributions

We introduce two hardware-based defense mechanisms for GPUs to mitigate the corre-

lation timing attack and prevent the leakage of security-sensitive data. The first defense

mechanism, RCoal, randomizes the memory access coalescing mechanism to generate ad-

ditional accesses to thwart the correlation timing attack [49]. For the second defense mech-

anism, we propose a bucketing-based coalescing mechanism, BCoal [50]. BCoal generates

additional memory accesses whenever necessary to match the total number of accesses

to a set of pre-determined numbers (called buckets). Consequently, BCoal reduces the

correlation between the number of accesses and private data to mitigate the correlation

timing attack. Furthermore, since BCoal generates fewer memory accesses compared to

RCoal, BCoal proves to be a performance efficient defense mechanism.

Our research on secure GPU computing through hardware techniques makes the fol-

lowing contribution:

• We analyze the correlation timing attack on GPUs to show that the regularity and

deterministic nature of the memory access coalescing is a major security vulnerability.

•We propose two novel hardware-based defense mechanisms to mitigate the correlation

timing attack leveraging the memory access coalescing. The first defense mechanism,

RCoal, randomizes the memory coalescing logic to eliminate the relationship between the

number of memory accesses and the execution time to thwart the correlation timing attack.

• Our second defense mechanism, BCoal, implements a bucketing-based coalescing

mechanism to always issue pre-determined numbers (chosen from a small set, called buck-

ets) of coalesced accesses by padding additional accesses to the real accesses whenever

necessary. As a result, the correlation between the number of accesses and the execution
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time reduces thus mitigating the correlation timing attack.

• We demonstrate through the theoretical and empirical analysis that both of our

defense mechanisms offer improved security against the correlation timing attack at a low

performance overhead. Furthermore, both defense mechanisms offer a tradeoff between

the security and performance that can be set by a user.

•We show that both, RCoal and BCoal, defense mechanisms incur a very low hardware

overhead.

1.2 Low-Overhead Hardware Techniques for Reliable GPU

Computing

1.2.1 Problem Statement

The current generation of GPUs employs an error checking and correction (ECC) mech-

anism called single error correction and double error detection (SECDED) to detect and

correct the data memory faults [58]. SECDED-ECC corrects single-bit fault and de-

tects up to two-bit faults. However, as noted earlier, with the growing error rate in the

GPU memory structures, the number of multi-bit (more than 2-bits) faults is increas-

ing [120, 125, 27, 11]. SECDED-ECC is not capable of addressing these rising multi-bit

faults and, therefore, the GPU output reliability cannot be guaranteed. A stronger ECC,

such as Chipkill, can address the multi-bit faults. However, Chipkill is not feasible to

implement on GPUs [58]. As a result, a performance efficient reliability mechanism to

address the rising multi-bit faults is needed.

1.2.2 Contributions

To devise a performance efficient reliability scheme, we adopt a data-centric approach [48].

We begin with the GPU application profiling to study how the data memory is accessed

by an application during runtime. We noted that a small fraction of the data memory is
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highly accessed and shared by the GPU threads as compared to the rest of the memory. We

call this highly accessed and shared memory as hot memory. Next, we simulate the fault

injections to study their impact on this small fraction of hot memory on GPU application

output. We note that the faults in the hot memory spread widely across GPU warp

thread instructions leading to catastrophic failures, for example, misclassifications in the

neural networks. Consequently, we conclude that the hot memory should be prioritized

to be covered under the reliability mechanism. Based on our observations, we develop

a detection-only and detection-and-correction reliability schemes to reduce GPU output

corruption.

Our research work on performance efficient reliable GPU computing makes the follow-

ing contribution:

•We perform a detailed application-level analysis to show that a small fraction of data

used by a large number of GPGPU application threads can dramatically increase their

vulnerability to multi-bit faults. This data is usually read-only and can be profiled with

low-overhead.

• We develop both detection and correction mechanisms that prioritize the reliability

of this identified critical data. Our mechanisms leverage the critical data information

obtained from the software for the partial data replication and execute checks only for

this small fraction of data.

• Our selective detection and correction mechanisms based on partial data replication

exhibit very limited overhead due to the fact that overhead of additional checks (and

associated memory accesses) can be hidden thanks to latency tolerance property of GPUs.

Quantitatively, we significantly improve GPU reliability, an average 98.97% drop in the

number of execution runs with corrupt output while incurring a low average performance

overhead of 1.2%.
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1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides an overview of GPU

architecture, along with the memory access optimization techniques and data memory

faults and their impact. Chapter 3 introduces our first defense scheme against correlation

timing attacks which employs randomized coalescing. Chapter 4 details our bucketing-

based coalescing scheme which secures the GPU against correlation timing attacks. In

Chapter 5, we present our data-centric reliability mechanism to address the data memory

faults in GPUs. We present the initial findings of our ongoing exploration of the reliability

of the machine learning (ML) models in Chapter 6. Finally, in Chapter 7, we conclude

this dissertation and provide details of possible future research directions.



Chapter 2

A General Background on

Graphics Processing Units (GPUs)

In this chapter, we provide a general background on Graphics Processing Units (GPUs).

Specifically, we focus on the GPU memory access optimization techniques and application

execution on GPUs. We also introduce the data memory faults and their impact on GPU

applications.

2.1 Baseline GPU Architecture

Figure 2.1 shows a baseline GPU architecture. A typical GPU is comprised of a set

of processing cores known as Streaming Microprocessors (SMs) in Nvidia terminology.

Each SM is comprised of several processing elements (PEs), usually 32. To leverage the

parallelism in applications, GPUs employ a single instruction multiple thread (SIMT)

programming paradigm to launch applications on SMs. In SIMT, GPUs execute the same

set of instructions with different data on multiple threads in lockstep. These threads are

grouped in concurrent thread array (CTA) blocks and are launched on SMs. The SMs split

each CTA block into warps (usually 32 threads/warp) and process each warp individually

on the PEs. By launching multiple warps on each SM, GPUs hide memory access latency

8
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Figure 2.1: Overview of GPU Architecture.

by executing warps in a multiplexed manner to improve the efficiency of SMs.

To address the high bandwidth requirement of the GPU applications, GPUs employ

high-bandwidth global memory (DRAM) along with multi-level caches. Each SM on GPUs

has a private L1 cache shared across the corresponding PEs. Next, GPUs have multiple

L2 cache banks shared between all SMs connected through an interconnection network.

Finally, the L2 cache banks are connected to the off-chip DRAM through separate memory

channels.

2.2 GPU Memory Access Optimization Techniques

Memory bandwidth is one of the most performance-critical shared resources in GPUs [47,

46]. GPUs adopt several memory bandwidth optimization techniques, such as memory

access coalescing, caching and merging to reduce the number of accesses to the global

memory. In this sub-section, we provide a brief overview of these optimizations.

Access Coalescing. In GPUs, threads within a warp execute the instructions in lock-

step. For a global memory load instruction, all 32 threads within a warp execute 32 load

instructions. The coalescing unit in the LD/ST unit merges multiple memory requests

from different threads of the same warp (intra-warp coalescing) into as few cache line-
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sized coalesced memory accesses as possible. The intra-warp coalescing happens at the

sub-warp granularity, where the coalescing unit of the SM determines the coalesced ac-

cesses of the warp by examining a group of threads belonging to the same sub-warp. If the

threads of a sub-warp access data within a contiguous memory block, their requests are

coalesced together to reduce memory bandwidth consumption. The size and number of

sub-warps are typically fixed and remain the same throughout the application execution.

However, to achieve security, the coalescing mechanisms can be randomized (RCoal [49])

so that the coalesced accesses are no longer predictable to the attacker.
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Figure 2.2: Memory access coalescing in GPUs. c© 2018 IEEE.

Figure 2.2 illustrates the coalescing in baseline GPU and previously proposed ran-

domized coalescing techniques. Assume a single warp with four threads. The per-thread

addresses and the requested block addresses (BA) are shown with corresponding thread-

ids (tid) and sub-warp id (sid). In the baseline GPU, we assume a single sub-warp (sid =

0 for all threads) and hence all threads participate together in the coalescing. Since the

requests from tid 1 and 2 map to the same cache block, only three accesses are generated

( A ) to conserve the memory bandwidth.

Caching. GPUs further conserve the memory bandwidth by exploiting the temporal

and spatial locality in memory accesses across and within warps with the help of hard-

ware caches. Current GPUs employ two levels of caches, L1-cache (shared by the warps

executing on the same SM) and L2-cache (shared by the warps executing on different

SMs).

Access Merging. The coalesced memory accesses from a warp are sent to the L1-

cache. Upon cache misses, the memory accesses are logged in the miss-status holding
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registers (MSHRs). Multiple cache-missed coalesced accesses to the same cache block

from different warps on the same SM are merged (inter-warp merging) in MSHRs. Note

that as independent loads from the same warp can be issued to improve memory-level

parallelism, MSHRs also help in merging redundant accesses from the same warp (intra-

warp merging) if they are issued at different times. Another source of inter-warp merging

is via MSHRs at L2-cache, where the redundant L2-cache misses (across different SMs)

can be merged together.

2.3 Data Memory Faults in GPUs

2.3.1 Data Memory Faults and Their Impact in GPUs

GPUs are susceptible to a variety of faults due to the manufacturing process variations,

on-chip cross-talk between interconnects, alpha/neuron particle strikes, temperature vari-

ations, power supply noise, etc. [77, 125, 85, 86, 120, 121, 27]. In our research work, we

focus on memory faults in GPUs. The memory faults may cause the bits of the stored data

to flip to a different value than the original. This changed value of the data may lead to

the silent data corruption (SDC) of the GPU output, where the application is successfully

executed but results in erroneous output.

The effect of the data memory faults can be well understood when studied with respect

to application usage. GPUs are increasingly used for the machine learning applications,

such as self-driving cars, medical imaging, or computer virus detection. A data memory

fault may cause a mis-classification in the respective machine learning application. The

impact of such mis-classification itself depends upon the purpose of an application. In the

case of a self-driving car, a mis-classification due to the data memory error may lead to a

crash endangering lives and property. In the case of medical imaging, a mis-classification

may lead to misdiagnosis leading to delay in critical care of a patient.

The faults in the hardware are addressed through an on-chip error checking and cor-

rection (ECC) mechanism, which mitigates the effect of faults on the application output.
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The current generation of GPUs employs a single-bit error correction and double-bit error

detection (SECDED) ECC mechanism to address the data memory faults in the caches

and DRAM [58]. The multi-bit (more than two-bit) faults cannot be addressed in the

current generation GPUs.

2.3.2 Importance of Data Memory Faults in GPUs

Due to the increasing workload sizes, the sizes and the operating speeds of the GPU

memory are increasing rapidly. Figure 2.3 shows that the L2 cache sizes are increasing

rapidly over the generations of GPUs from the major vendors. Consequently, significant

research efforts have been made to operate the L2 cache at low voltage to achieve power

efficiency [28, 27]. However, when operated at a low voltage, the fault rate of the L2 caches

increases as well [28].
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Figure 2.3: L2 Cache size trend for Nvidia and AMD GPUs.

Next, several field studies have demonstrated that the DRAMs in GPUs are more

susceptible to multi-bit faults compared to the DRAMs in CPUs as the former uses a

weaker ECC mechanism, SECDED, while the latter uses a stronger ECC mechanism,

Chipkill [120, 121, 77]. However, the implementation of Chipkill [19] on GPUs is currently

not feasible [58].
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RCoal: Mitigating GPU Timing

Attack via Subwarp-based

Randomized Coalescing

Techniques

3.1 Introduction

Graphics Processing Units (GPUs) are becoming an inevitable part of every computing

system because of their ability to provide fast and energy-efficient computation. Given

such ability, GPUs are also now being used to accelerate a variety of cryptographic algo-

rithms. For example, the popular Advanced Encryption Standard (AES) algorithm [78] is

known to achieve significant speedups on GPUs compared to CPUs [34, 41, 89, 66] as the

AES algorithm exposes abundant thread-level parallelism to leverage high bandwidth and

compute throughput of GPUs. With such increasing popularity of GPUs to accelerate

security-sensitive applications, it is imperative to keep GPUs secure against a variety of

side-channel attacks and other security vulnerabilities.

In this paper, we specifically focus on the correlation-based timing attacks on GPUs.

13
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In general, a correlation-based timing attack exploits the relationship between the secret

data and its impact on the processing time of an application: the attacker sends a large

number of data samples to calculate the correlation between the actual processing time

and the secret data. Among the guessed values for the secret data, the one leading to

the highest correlation is the actual secret data. Notably, the recent work from Jiang et

al. [44] demonstrated a correlation-based timing attack on a remote GPU server. They

exploited two observations. First, the number of coalesced memory accesses in the last

round can be deterministically calculated based on the last round private key byte and the

encrypted text. Second, the number of coalesced accesses in the last round is correlated

with the total execution time. With these two observations, an attacker can recover each

key byte by picking the value that best correlates with the recorded total execution time

from the remote GPU server1.

The goal of this paper is to design low-overhead defense mechanisms to thwart timing

attacks that exploit the memory coalescing in GPUs. To this end, a straightforward

solution is to eliminate the correlation between the number of coalesced accesses and the

total execution time by disabling the memory access coalescing mechanism completely.

However, since the memory access coalescing is one of the key features in GPUs that

optimizes the memory bandwidth consumption, the disabling of coalescing will incur a

heavy performance penalty due to increase in the number of memory accesses [61, 55, 44,

112]. To provide a better trade-off between security and performance, we propose RCoal,

a series of three tunable coalescing mechanisms to guard against correlation-based timing

attacks.

The first mechanism focuses on tuning the granularity at which threads are coalesced

together, thereby increasing the number of coalesced accesses at a finer granularity. We call

this technique as fixed-sized subwarp (FSS) defense mechanism, where the size of subwarp

determines the coalescing granularity. FSS mechanism helps to reduce the correlation

between the coalesced accesses and total execution time by reducing the variance in the

1Section 3.2 presents more details on the attack.
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coalesced accesses. Building on the first mechanism, the second mechanism focuses on

randomly changing the size of each subwarp. We call this technique as random-sized

subwarp (RSS) defense mechanism where the size of each subwarp affects the attacker’s

ability to correctly determine the number of coalesced accesses. The final mechanism

focuses on randomly changing the thread elements of each subwarp. We call this technique

as random-threaded subwarp (RTS) defense mechanism as the coalescer picks random

thread elements to form a subwarp. RTS can be applied to both FSS and RSS to further

hinder the attacker’s ability to determine the number of coalesced accesses correctly.

To the best of our knowledge, this is the first work to thwart timing attacks in GPUs

via randomized coalescing techniques. In summary, this paper makes the following con-

tributions:

• We generalize the correlation-based timing attack on GPUs and show that the reg-

ularity and determinism in memory access coalescing is a major security vulnerability.

•We propose three novel coalescing mechanisms to mitigate the timing attacks arising

from memory access coalescing. These mechanisms revolve around carefully changing the

size, number, and thread elements of a subwarp to reduce the correlation between the

number of coalesced accesses and the total execution time.

• We present a detailed information-theoretical analysis to show that our randomized

coalescing mechanisms can improve the GPU security by 24 to 961 times. Our exten-

sive simulation results confirm the theoretical results and demonstrate that the improved

security can be achieved at a performance loss of 5 to 28%.

•We propose a new metric called RCoal Score that provides an opportunity for hard-

ware engineers to tune the security and performance trade-off as per their requirements.

We discuss two such security-performance trade-off designs and conclude that RSS and

RTS mechanisms provide significant advantages towards performance and security, respec-

tively.
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3.2 Background

In this section, we briefly introduce a) the baseline GPU architecture and the process of

memory access coalescing, b) the anatomy of AES encryption, and c) the baseline timing

attack assumed in this paper.

3.2.1 Baseline GPU Architecture

Overview. Figure 3.1 shows a high-level schematic of the GPU architecture. A typical

GPU consists of multiple cores, called as streaming multiprocessors (SMs) in NVIDIA

terminology. Each SM takes advantage of the Single Instruction, Multiple Threads (SIMT)

programming paradigm [54] to schedule multiple threads on its processing elements (PEs).

These threads are scheduled at the granularity of a warp, which is essentially a collection

of (usually 32) individual threads that execute a single instruction on the PEs in a lock

step manner. Each SM can execute multiple warps concurrently in a multiplexed manner

to hide the long global memory latencies and improve the utilization of core resources (e.g.,

register file, scratchpad memory). All SMs are connected to global memory partitions via

an on-chip interconnect. In this paper, we evaluate the proposed techniques on a GPU

architecture simulated using a cycle accurate GPU simulator – GPGPU-Sim [6]. More

details on the simulated architecture are given in Table 3.1.

Table 3.1: Key configuration parameters of the simulated GPU configuration. c© 2018
IEEE.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, 15 SMs

32 threads/warp, one subwarp per coalescing unit
Features immediate post dominator based branch divergence handling
Memory Model 6 GDDR5 Memory Controllers (MCs), FR-FCFS scheduling

16 DRAM-banks, 4 bank-groups/MC, 924 MHz
memory clock Global linear address space is
interleaved among partitions in chunks of 256 bytes
Hynix GDDR5 Timing [39], tCL = 12, tRP = 12, tRC = 40,
tRAS = 28, tCCD = 2, tRCD = 12, tRRD = 6

Interconnect 1 crossbar/direction,
1400MHz interconnect clock, islip VC and switch allocators

Memory Access Coalescing. One of the effective ways to improve the collective perfor-
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Figure 3.1: Overview of Baseline GPU Architecture. c© 2018 IEEE.

mance of the concurrently executing threads on GPUs is to optimize the global memory

bandwidth. To this end, several techniques such as intra-warp memory access coalescing,

inter- and intra-warp request merging via miss status handling registers (MSHRs), sec-

toring [112], and L1/L2 caching have been proposed for GPUs. In this work, we focus on

intra-warp memory access coalescing technique, which merges multiple memory requests

from different threads of the same warp in to as few cache line sized coalesced memory

accesses as possible.

The coalescing unit (part of LD/ST unit of the SM) performs the agglomeration of

memory requests from the threads in a warp at a subwarp level, where the number of

subwarps is an architectural parameter. If the threads of a particular subwarp request

nearby data within a contiguous block of the memory, their requests are coalesced together

to avoid redundant accesses. Therefore, if the memory access size, subwarp size, and

thread-data pattern (e.g., if/when thread to table index mapping is known) are known,

the number of memory accesses can be calculated accurately. As per CUDA programming

guide [95], the scalar threads from the same warp can be coalesced together (subwarp size

of 1), at a half-warp basis (subwarp size of 2) or at a quarter-warp basis (subwarp size of
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4). The subwarp size is decided based on the size of the memory request from each thread.

The generated coalesced accesses are serviced at the rate that matches with the underlying

cache/memory bandwidth. To correctly simulate the number of coalesced accesses as that

of in the baseline attack model (explained later in the section), we assume subwarp size

to be 1 in our baseline architecture.

To understand the effect of subwarps on coalescing, consider an example with warp

comprising of four threads under two different cases employing the number of subwarps

(num-subwarp) as 1 and 2, respectively, as shown in Figure 3.2. We assume that four

threads generate four accesses and if perfectly coalesced will generate one coalesced access

(memory block). When all the threads are considered together for coalescing (i.e., Case 1:

num-subwarp is 1), only three coalesced accesses are generated as the requests from the

second and third thread are coalesced into one request. When num-subwarp is 2 (Case 2),

the coalescing is performed independently for each subwarp. Consequently, two coalesced

accesses per subwarp (in total four) are generated.

3.2.2 AES Encryption

Basics. The Advanced Encryption Standard (AES) [78] is a widely used symmetric-

key algorithm. The AES standard specifies 128, 192, and 256 bits as the standard key

lengths. Without losing generality, we focus on AES-128, which employs a 128-bit key to

encrypt the plaintext. AES-128 algorithm consists of 10 rounds each with its own round

key of 16 bytes, which is generated from the encryption key. In each round, subBytes()

transformation (details of other transformation can be found in prior works on AES [34,

41, 89, 66]) performs a table look-up operation on the substitution (S-box) table. In the

last round, a table look-up operation is performed on the T4 S-box table followed by bitwise

XOR operation with the last round key. This operation is expressed by Equation 3.1 for

the jth byte of output ciphertext (cj) and ith input state of the last round (ti, table lookup

index) [34, 44]. T4 [ ] represents the last round S-box table look-up operation whose result
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Figure 3.2: Effect of subwarps on memory coalescing. c© 2018 IEEE.

is XORed with jth byte of the last round key (kj).

cj = T4 [ti]⊕ kj (3.1)

GPU Implementation of AES Encryption. A CUDA implementation of AES divides

the plaintext across multiple parallel threads to improve GPU throughput. Each thread

performs encryption on one line (block) of the plaintext. Therefore, each warp consists of

32 threads performing 32 different encryptions. The line to thread mapping is sequential

and deterministic in the baseline implementation. If the size of the plaintext exceeds

32 lines, then it is divided sequentially among several warps. For example, a plaintext

with 1024 lines will employ 32 warps each executing 32 lines of the plaintext. Figure 3.3

shows the encryption process for the last round on 32 threads of a single warp. Each

thread performs encryption of a byte (pj) of the input text, where j varies from 1 to 16.

All threads of the warp work in a lock-step manner and perform the same table look up

operation (T4 [ti]) with different values of ti. The accesses are coalesced together by the

coalescing unit, and when the replies come back, all threads use the same last round key

(kj) to generate one column of the ciphertext cj as per Equation 3.2. In Equation 3.2, tid

is the thread index.
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ctidj = T4

[
ttidi

]
⊕ kj (3.2)

3.2.3 Baseline Timing Attack

In this paper, we use the correlation timing attack proposed by Jiang et al. [44] as the

baseline attack. The attack model assumes that the attacker sends a large number of

plaintexts to a remote GPU AES encryption server. The attacker collects the ciphertexts

and records the total execution time for each plaintext. The goal is to correctly find all 16

last round key bytes by exploiting a key observation that there is a high correlation between

the number of memory accesses and the total execution time on GPU. The baseline attack

targets the last round key since it is the most vulnerable round and key expansion is

invertible (i.e., it is possible to derive the original private key from any round key) [82].

The observation is that each table lookup index in the last round can be computed from a

byte of the last round key (kj) and the corresponding byte of ciphertext (cj), independent

of other ciphertext bytes (as shown in Equation 3.3). Thus, the attacker is able to observe

the security leakage separately at per-byte level.

ti = T−1
4 [cj ⊕ kj ] (3.3)
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Figure 3.4: Overview of the process of guessing one of the correct last round key byte
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m,n
j is the number of memory requests for mth guess of the jth last round key byte

using nth plaintext. n varies between 1 to N, where N is the number of plaintext samples.
m varies from 0 to 255 and j varies from 1 to 16. c© 2018 IEEE.

Figure 3.4 shows the attack process for recovering the jth last round key byte (kj). The

attack process has two major steps. The first step involves a guessed key value kmj where

m ranges from 0 to 255. According to Equation 3.3, the table lookup index of each thread

(ttid,mi ) can be computed, as shown in Figure 3.4a. Once the indices are obtained for

all threads, the attacker can calculate the expected number of coalesced accesses (Am,nj )

for the nth plaintext with the known and deterministic behavior of coalescing (in our

configuration, 16 consecutive table elements are mapped sequentially to the same memory

block). This particular attack assumes num-subwarp to be 1 (i.e., all threads in the warp

are processed together for coalescing). This first step is repeated for all possible 256 key

byte guesses for the jth byte and for N plaintext samples. As a result, a memory access
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matrix is generated as shown in Figure 3.4b. Each row of the matrix corresponds to the

number of guessed memory accesses for a particular key guess (m) across N plaintext

samples (Amj ).

The second step involves calculating the correlation between each row (key guess) of

the memory access matrix with the last round execution time (E) to encrypt each plaintext

(collected by the attacker). Since both the total and last round execution time correlate

with last round coalesced accesses (shown in Figure 3.5), the guessed key value (α) is

correct for kj if it has the maximum correlation value (corrαj ) with E. For the rest of the

paper, we assume a stronger attack with the capability of accessing last round execution

time as compared to the realistic attack, which is weaker due to the noise in the total

execution time.

3.3 Motivation and Goals

The primary reason behind the success of the baseline correlation timing attack is the

deterministic behavior of memory access coalescing that allows accurate calculation of

the coalesced accesses generated. To verify this on our GPGPU-Sim based simulation

environment, we plot the correlation values (corrmj ) of all 256 possible values of m for 0th

key byte (k0, j=0). We calculate this correlation value between the coalesced accesses

from the attack and the execution time of the last round of AES-128. From Figure 3.6a,
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we observe that the correlation value is the highest (highlighted in red and encircled) for

the correct value of the 0th key byte among all other guess values. We observe this trend

for all 16 last round key bytes indicating that we can successfully guess all of them.

As a first step towards defending against the baseline attack, we aim to eliminate the

relationship between the number of coalesced accesses and the last round execution time

by disabling the coalescing mechanism. As a result, the number of coalesced accesses will

always be 32 (i.e., the worst case scenario) from a warp with 32 threads. We executed the

same baseline attack with coalescing disabled to find that there is no correlation between

the number of coalesced accesses and the last round execution time. Consequently, we

could not successfully guess any of the key byte. Figure 3.6b shows the plot of correlation

values against the possible values of the 0th key byte. The correlation of the correct key

byte is very close to zero, so as that of other key guesses.
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Figure 3.6: Effect of Coalescing on the Recovery of 0th Last Round Key Byte (k0): a)
Recovery is Successful when Coalescing is Enabled, b) Recovery is Unsuccessful when
Coalescing is Disabled. c© 2018 IEEE.

Although disabling the coalescing is an effective technique to defend against the base-

line correlation timing attack, absence of memory access coalescing degrades the GPU

performance and energy efficiency significantly [61, 55, 44, 112]. Our own experiments

show that the performance degrades by up to 178% for AES-128 algorithm encrypting

plaintext of 1024 lines. Also, the data movement (i.e., the number of memory accesses)

increases by 2.7×. Therefore, disabling the coalescing is not an attractive solution from



CHAPTER 3. RANDOMIZED COALESCING TECHNIQUE, RCOAL 24

the perspective of GPU efficiency.

In this paper, our goal is to design randomized coalescing techniques to carefully bal-

ance the security and performance trade-offs. Our techniques exploit two primary short-

comings of the GPU AES implementation that lead to the successful correlation timing

(baseline) attack. First, all threads of a warp are grouped in a single subwarp for coalesc-

ing. As a result, the calculation of number of coalesced accesses becomes straightforward:

a) determine the requested table look up indices, and then b) given that the table ele-

ments are sequentially mapped to the memory blocks and the size of each block is known,

determine the number of memory blocks (coalesced accesses) required. Second, because

all threads of the warp were considered together for coalescing, the order in which the

threads are grouped together had no impact on the coalescing. However, if coalescing is

performed at a subwarp-level (with number of subwarp being more than one), the order

of grouping the threads would affect the total number of coalesced accesses depending on

which threads fall into the same subwarp. To address these two shortcomings, we focus

on the following three randomized coalescing aspects to weaken the correlation between

the coalesced accesses calculated by the baseline attack and the execution time from the

encryption.

• Number of Subwarps: We choose the number of subwarps that is unknown to

the baseline attacker. The benefit of using subwarps is that the attacker may not be able

to correctly estimate the number of coalesced accesses. Further, with a large number

of subwarps, the variance in the number of coalesced accesses decreases, entailing more

number of plaintext samples to establish a weak correlation. This weak correlation reduces

the information leakage over the timing channels. We call this defense mechanism as Fixed

Subwarp Size (FSS), as the size of subwarp chosen by the defense mechanism is fixed.

• Size of Subwarps: In case the attacker knows the number of subwarps (or calcu-

lates it based on the timing information), we aim to increase the strength of the defense

mechanism by randomizing the number of threads per subwarp such that the total num-

ber of threads per warp still remains 32. This randomness makes the number of coalesced
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accesses harder to estimate (same reasoning as FSS) even if the number of subwarps is

known to the attacker. We call this defense mechanism as Random Subwarp Size (RSS)

as the size of each subwarp is chosen randomly.

• Thread Elements of Subwarps: Our last mechanism is focused on further en-

hancing the GPU security by randomizing the thread elements of each subwarp (Random-

threaded Subwarp (RTS)). It introduces additional randomness in the number of coalesced

accesses generated. Note that RTS can be combined with both FSS and RSS defense

mechanisms.

3.4 Subwarp based Defense Mechanisms

In this section, we discuss a series of subwarp-based defense mechanisms that are designed

to weaken the deterministic memory coalescing logic in GPUs. By doing so, the baseline

attack that leverages the knowledge of memory coalescing logic will find it difficult to

correctly guess the last round key bytes, thereby improving the security of the GPU-based

systems.

3.4.1 Fixed-sized Subwarps (FSS)

In the baseline attack, the attacker assumes that the number of subwarps (num-subwarp)

is 1, and hence, all threads are processed together for coalescing. In our first defense

mechanism, fixed size subwarps (FSS), we break this assumption by choosing a value of

num-subwarp that is unknown to the attacker. In order to understand the impact of

num-subwarp on performance, consider Figure 3.7a. We find that the total execution time

increases with increase in the value of num-subwarp. It is because a large num-subwarp

leaves few threads for being coalesced together thereby reducing coalescing possibilities

across the threads within a warp. This leads to increased number of coalesced accesses

resulting in the performance loss.

Advantages of FSS. Although FSS has disadvantage in terms of performance, we find
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Figure 3.7: Performance of FSS enabled AES with respect to number of subwarps: a)
Execution Time and Total Memory Accesses per plaintext with increasing number of
subwarps, b) Average of correlations between the last round execution time and the last
round memory accesses for all key bytes. The last round memory accesses are calculated
assuming correct values of a key byte and the number of subwarps for coalescing to be
one. c© 2018 IEEE.

that such a mechanism can improve the GPU security against the baseline attack. It is

because a value of num-subwarp other than 1 will generate different number of coalesced

accesses than the baseline attack, which assumes num-subwarp to be 1. Therefore, the

attacker will find it hard to guess the correct key byte as the correlation between the

estimated number of coalesced accesses and the execution time reduces. To understand

this further, we evaluate FSS-enabled GPU under the baseline attack. Figure 3.7b shows

the average correlations for the correct guesses of all 16 key bytes of the last round key.

As expected, we observe that the correlation between the last round execution time and

coalesced accesses calculated from the attack reduces with the increase in the value of

num-subwarp. Therefore, a high number of samples would be required to correctly guess

the last round keys depending on the num-subwarp value.

Limitations of FSS. We evaluate the security of FSS mechanism when the attacker

knows or correctly calculates the value of num-subwarp. For example, the calculation can

be done based on the significant execution time differences across num-subwarp values

(Figure 3.7). By repeatably measuring the execution time for encryption for a plaintext,

an attacker can determine which num-subwarp is used by the remote GPU server. We call
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this new attack as “FSS Attack”, where the attacker first calculates the number of last

round coalesced accesses generated per subwarp. Next, since the last round execution time

correlates with the last round coalesced accesses across a complete warp, the attacker sums

up the last round coalesced accesses across all subwarps in a warp. Algorithm 1 illustrates

the steps to calculate the number of last round coalesced accesses per warp.

Algorithm 1 Algorithm for FSS attack to calculate the number of last round coalesced
accesses for a given key byte guess while considering num-subwarp.

kj ← guess value
last round mem accesses← 0
for i = 0→ num-subwarp do

mem accesses subwarp[i]← 0

for grp = 0→ num-subwarp do
for i = 0→ 32

num-subwarp
do

holder[i]← 0

% comment: line represents plaintext line
% comment: LEN represents the total number of lines in the plaintext

for line = grp∗LEN
num-subwarp

→ (grp+1)∗LEN
num-subwarp

do

holder[T4−1[cipher[line][j]⊕ kj ] >> 4] + +

for i = 0→ 32
num-subwarp

do

if holder[i]! = 0 then
mem accesses subwarp[grp] + +

for i = 1→ num-subwarp do
if mem accesses subwarp[i]! = 0 then

last round mem accesses← last round mem accesses+mem accesses subwarp[i]

We evaluate the effectiveness of FSS-enabled GPU under the FSS-attack in Figure

3.8, which illustrates that the attacker is able to establish a high correlation between the

number of coalesced accesses and the last round execution time using the FSS attack.

Using Algorithm 1, the attacker can calculate the last round memory accesses across

the whole warp as observed during the encryption. Therefore, the attacker can establish

a high correlation between the calculated number of last round coalesced accesses and

the observed last round execution time to successfully recover the last round key. For

num-subwarp = 32 (not shown), the variation in the numbers of last round coalesced

accesses generated across all plaintexts drops to 0. Subsequently, the correlation between

the number of last round coalesced accesses from Algorithm 1 and the observed last

round execution time also drops to 0. Therefore, FSS enabled GPU is immune to the

correlation timing attacks only when num-subwarp = 32 but at the cost of performance.
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In summary, we conclude that the stand alone FSS-enabled GPU cannot provide adequate

security against the generalized correlation timing attacks. Therefore, improved defense

mechanisms are required.
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Figure 3.8: Fixed Size Subwarp (FSS) mechanism against FSS attack. c© 2018 IEEE.

3.4.2 Random-sized Subwarp (RSS)

In Random-sized Subwarp (RSS) defense mechanism, the size of each subwarp is randomly

chosen by the hardware. It implies that the coalescing unit considers different numbers

of threads per subwarp for coalescing together. This results in increased randomness in

the number of last round coalesced accesses generated per warp leading to reduction in

correlation. We consider two distributions to generate sizes of subwarps: normal and

skewed. Figure 3.9 shows these distributions for 1000 plaintexts and with the assumption

of num-subwarp = 4. In the normal distribution case, the mean of the distribution is

close to that of the FSS scenario (32/num-subwarp). According to empirical results (not

shown), this implies that security and performance of RSS with normal distribution is
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similar to that of FSS.
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Figure 3.9: Subwarp size distribution of RSS for num-subwarp = 4. c© 2018 IEEE.

In order to improve security and performance over FSS, we consider skewed size dis-

tribution for the RSS mechanism that leads to significant differences in the subwarp sizes.

This has two benefits. First, due to the mismatch in the subwarp sizes, the attacker will

find it hard to correctly calculate the last round coalesced accesses using Algorithm 1.

Second, the skewed distribution also results in an improved performance, since the op-

portunities for coalescing increases with the subwarp size. Further, we ensure that the

skewed distribution considers all possible subwarp size combinations equally likely and no

subwarp is empty (a formalization can be found in Section 3.5.2.3). In summary, we use

skewed distribution for RSS to improve security and performance.

3.4.3 Random-threaded Subwarp (RTS)

In addition to the size and number of subwarps, we consider an additional level of random-

ness that comes from the choice of threads that form a particular subwarp. By random

allocation of the threads to different subwarps, we eliminate the in-order mapping of

threads to the subwarp. We find that such random formation of subwarps significantly

changes the number of expected coalesced accesses as the threads processed for coalescing

in a subwarp are chosen randomly. We define this technique as Random-threaded Subwarp
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(RTS).
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Figure 3.10: Effects of different defense mechanisms on coalescing for num-subwarp =
2: a) FSS+RTS and b) RSS+RTS. sid represents subwarp id and tid represents thread
id. c© 2018 IEEE.

RTS can be applied on top of both FSS and RSS, called as FSS+RTS and RSS+RTS,

respectively. Extending the example used in Section 3.2.1 to study the impact of subwarps

on coalescing, Figures 3.10a and 3.10b illustrate examples of FSS+RTS and RSS+RTS

with 4 threads and 2 subwarps, respectively. In the case of FSS+RTS, the size of both

subwarps is 2 but threads are not mapped in order. For example, subwarp 0 (sid = 0) has

two threads 0 and 2 (tid = 0 and 2) instead of threads 0 and 1. Therefore, four coalesced

accesses are generated. In the case of RSS+RTS, sizes of the subwarp are different: 1 and

3. Consequently, the mapping of one of threads is changed (i.e., tid = 0 is now mapped

to sid = 1) leading to total three coalesced accesses. In summary, we find that RSS can

help in reducing the number of coalesced accesses while providing randomness (along with

RTS) for better security.

3.4.4 Implementation Details

In order to implement the proposed subwarp based defense mechanisms, we modify the

coalescing unit to allow flexibility in processing of threads for memory access coalescing.
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Figure 3.11 shows a schematic of the memory coalescing unit (MCU) of GPU (the ad-

ditional hardware logic for security is shaded). As described by Leng et al. [61], each

MCU contains a multi-entry pending request table (PRT). Each entry in the PRT table

stores the thread index (tid), the base and offset addresses of the memory requests from

the threads, and their sizes. An entry is logged when a memory request is issued from a

thread. We add an additional subwarp-id (sid) field to identify which threads should be

coalesced together. The subwarp-id and thread-id mapping is set by the hardware logic

at the beginning of the application execution and does not change during the execution.

The logic is dependent on the adopted defense mechanism. In case of FSS and RSS, the

bits are set based on the chosen value of num-subwarp and the sizing mechanism. The

subwarp-ids are allotted in order, that is, first group of threads will belong to the first

subwarp with sid set to 0 and so on. For RTS, the available sids are allotted randomly

to the threads in a warp. The additional hardware overhead of our mechanisms is related

to the addition of subwarp-id field to each PRT entry. The number of concurrent warp

scheduler per SM in our case is two. Therefore, for each SM, the nominal overhead would

be 32 × 2 × 5 bits (to represent 32 maximum possible values of sid) = 320 bits.

3.4.5 Corresponding Attacks

Similar to the FSS attack, which generalized our baseline attack, we assumed that the

attacker is aware of the details of our defense mechanisms implemented on GPU. Therefore,

for each defense mechanism, we modified Algorithm 1 to mimic the respective defense

mechanism on the attacker’s side. For example, against the RSS+RTS enabled GPU,

the corresponding attack algorithm simulates RSS-like subwarp size distribution along

with random allocation of threads to subwarps within a warp as in RTS. We assume

corresponding attacks in the rest of the paper.
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Figure 3.11: Modified Coalescing Unit to realize FSS, RSS, and RTS defense mechanisms.
The additional hardware required is the field to store subwarp-id (sid) for each thread.
c© 2018 IEEE.

3.5 Theoretical Security Analysis

3.5.1 Analytical Model

To measure the security strength of the defense mechanisms introduced in Section 3.4,

we inspect a natural metric of the (expected) number of samples needed to successfully

launch the correlation timing attack.

To estimate that, we use T to represent the measurement vector, a vector of the

encryption times for a sample set using the actual key. For the jth last round key byte kj ,

we use Ûkmj to represent the estimation vector of kmj , a vector of the coalesced accesses for

the same sample set if 0 ≤ m ≤ 255 were the actual value of kj . The correlation attack

essentially tries to find the value m̂ that maximizes the correlation with the measure

vector:

m̂ = arg max
m

(ρ(T, Ûkmj ))

We follow the derivation in [76, 124] to estimate the number of needed samples, S, for
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a successful attack as follows:

S = 3 + 8×
( Zα

ln
(1+ρ(T,Û)

1−ρ(T,Û)

))2
≈ 2× Z2

α

ρ2(T, Û)
(3.4)

where Û is a short hand for Ûkm̂j
, ρ represents the correlation and Zα is the quantile of the

standard normal distribution for α, the desired success rate of an attack. With α = 0.99,

2×Z2
α is approximately 11. Zα is proportional to α. So the smaller α is, the smaller S is

(i.e., fewer samples are needed).

To estimate ρ2(T, Û), we observe that (as shown in Figure 3.5) the total execution

time of AES is proportional to the number of last-round coalesced accesses. Hence, we

can draw on the latter in the analytical model2. Hence, let us assume that U is the actual

vector of number of coalesced accesses from the lookup of table T4 with respect to the key

byte kj (Equation 3.1 in Section 3.2.2). We can rewrite Equation 3.4 as

S ∝ 1

ρ2(U, Û)
=
(µ(U × Û)− µ(U)µ(Û)

σ(U)σ(Û)

)−2
=
(µ(U × Û)− µ2(U)

σ2(U)

)−2
(3.5)

where µ and σ, as standard, respectively represent the mean and standard deviation of a

random variable. The last equation is true since U and Û are identically distributed.

3.5.2 Analysis of Defense Mechanisms

To make the analysis general, we assume there are in total M subwarps and N threads.

Moreover, we assume that each lookup table may map to R memory blocks. As discussed

in Section 3.2, our configuration has N = 32 and R = 16.

We first define three useful definitions.

Definition 1 Given m threads, if each thread accesses one of n memory blocks in a uni-

2We note that using the number of coalesced accesses rather than the execution time assure a lower
bound on the number of samples since the later is noisier than the former.
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form way, then the number of coalesced accesses, Nm,n, obeys the following distribution:

P (Nm,n = i) =
1

nN
n!

(n− i)!

{
m

i

}

where
{
m
i

}
denotes the Stirling number of the second kind.

Here,
{
m
i

}
represents the ways of partitioning m threads into i non-empty subsets; n!

(n−i)! ,

i-permutations of n, represents the ways of forming i non-empty subsets from n memory

blocks.

It is infeasible to compute Equation (3.5) by enumerating all possible mappings from

threads to memory blocks since there are in total RN possibilities (1632 = 2128 when

N = 32 and R = 16). However, we note that with RTS, the number of coalesced accesses

only depends on the frequency of the R memory blocks, which is defined as follows.

Definition 2 For R memory blocks and n threads, we define a frequency set F as

{(f1, . . . , fR) | f1 + · · ·+ fR = n}

where fi ∈ F represents the frequency of accessing the i-th memory block among the n

threads.

Given a frequency vector F ∈ F , we note that the “contribution” of each memory

block to the number of last-round coalesced accesses U is independent. Hence,

Definition 3 Given a frequency sequence F ∈ F and a vector C = {c1, · · · , cm} that

specifies the capacity of each subwarp, if each thread uniformly accesses one of the |F |

memory blocks, then the number of coalesced accesses, written as MF,C , satisfies

µ(MF,C) =
∑
fi∈F

∑
cj∈C

(1− CS−cjfi
/CSfi)

where Cmn denotes the binomial coefficient and S =
∑

1≤j≤n cj.
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Here, C
S−cj
fi

/CSfi is the probability that the j-th subwarp is empty and µ(MF,R) is the

sum of the expectations for each subwarp and each memory block.

Next, we derive the (normalized) samples needed for a successful attack for each de-

fense mechanism. We skip the theoretical analysis for the RSS mechanism since it requires

enumerating all possible mappings from threads to memory blocks rather than the fre-

quency set, making it infeasible for the calculation. Instead, we provide the empirical

results for the RSS mechanism in Section 3.6.

3.5.2.1 FSS

With sufficiently random plaintexts, the probability that one thread accesses one of the R

memory blocks is 1/R. Hence, for each subwarp with size N/M , the number of coalesced

accesses is NN/M,R. Since each subwarp is independent, we have

µ(U) = M × µ(NN/M,R) σ(U) = M × σ(NN/M,R)

For µ
U×Û , we note that given any sequence of memory blocks being accessed by

threads, U is identical to Û . Hence, µ(U × Û) = µ(U2) = σ2(U) + µ2(U).

3.5.2.2 FSS+RTS

The random permutation does not affect µ(U) and σ(U). For µ(U × Û), (U |F ) and (Û |F )

are independent and identical for any F ∈ F . Hence, the term is equivalent to

∑
F∈F

P (F )µ2(U |F ) (3.6)

Here, P (F ) is the probability of seeing the frequency vector F . Among all RN combina-

tions of N memory accesses, Cf1N C
f2
N−f1 · · ·C

fR
N−

∑
1≤j≤R−1 fj

= (N)!
Πfi∈Ffi!

match F . Hence,

we have P (F ) = (N)!
Πfi∈Ffi!

× 1
RN . Moreover, µ(U |F ) is the same as µ(MF,{N/M,··· ,N/M})

since each subwarp has size N/M .
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3.5.2.3 RSS+RTS

We use Ui to represent the coalesced accesses of the i-th subwarp. With RSS, Ui and Uj

are not independent. Hence, we cannot compute σ(U) as for FSS.

However, given the size of each subwarp, Ui and Uj are independent for any 1 ≤ i, j ≤

M . We use W = {(w1, · · · , wM ) |
∑

1≤i≤M wi = N ∧ ∀1≤i≤M . wi 6= 0} to denote all

possible non-empty sizes of subwarps under RSS. Due to uniformity, P (W ) = 1
|W| for any

W ∈ W.

For µ(U), we have µ(U) =
∑

W∈W P (W )µ(U |W ) =
∑

W∈W P (W )
∑

wi∈W µ(Ui|wi)

where µ(Ui|wi) is the same as µ(Nwi,R). For σ(U), we know σ2(U) = µ(U2)− µ2(U) and

µ(U2) =
∑
W∈W

P (W )µ(U2|W )

=
∑
W∈W

P (W )
( ∑

1≤i≤M
σ2(Ui|wi) + µ2(U |W )

)

Here, σ2(Ui|wi) = µ(U2
i |wi) − µ2(Ui|wi) and µ(U |W ) =

∑
1≤i≤M µ(Ui|wi) due to inde-

pendence. We note that (Ui|wi) is Nwi,R and (U2
i |wi) is (Nwi,R)2. So these terms can be

computed via Definition 1.

For µ(U × Û), we can reuse Equation 3.6 since with RTS, (U |F ) and (Û |F ) are in-

dependent and identical. Similar to FSS+RTS, µ(U |F ) =
∑

W∈W P (W )µ(MF,W ) in this

case.

3.5.3 Results

Table 3.2: Security analysis results with N = 32 and R = 16, where N is the number of
threads and R is the number of memory blocks. Here, M is the number of subwarps and
S is the number of samples normalized to FSS with M = 1 case. c© 2018 IEEE.

ρ S (normalized)
M FSS FSS+RTS RSS+RTS FSS FSS+RTS RSS+RTS
1 1.00 1.00 1.00 1 1 1
2 1.00 0.41 0.20 1 6 25
4 1.00 0.20 0.15 1 24 42
8 1.00 0.09 0.11 1 115 78
16 1.00 0.03 0.05 1 961 349
32 0.00 0.00 0.00 ∞ ∞ ∞
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We use a Python script to compute the correlation and normalized sample size for a

successful attack. The results are summarized in Table 3.2.

As expected, when M = 32, we have ρ = 0 and S = ∞ because in this case, each

thread is mapped to one subwarp and hence, U = 32 regardless of the last-round key.

Otherwise, FSS is the least secure (ρ = 1, S = 1), where the key can be revealed easily

(as shown in Figure 3.8). For both FSS+RTS and RSS+RTS, increasing the number

of subwarps reduces ρ and increases S. We note that FSS+RTS is more secure than

RSS+RTS for M = 8 and 16 though the latter adds randomness to the subwarp size. We

hypothesize the reason for this improved security is that one of the subwarps has large

size under RSS+RTS most of the times (see, Figure 3.9). In this case, the correlation

between measurement vector and estimation vector is higher than that under FSS+RTS.

Moreover, the empirical results are consistent with the evaluation (Section 3.6).

Since, in practice, the attacker may observe only the noisy total execution time rather

than the last-round coalesced accesses as assumed for the theoretical analysis, the absolute

value of needed samples for a successful attack is very large. We note that the FSS

mechanism with M = 1 is the same as the (baseline) architecture used in [44]. As reported

in [44], one million timing samples are needed (if the timing data measured is clean) in

this case, and the samples can be collected within 30 minutes. Hence, we estimate that

under FSS+RTS with M = 16, around one billion samples (refer Table 3.2) are needed for

a successful attack. Although such an attack is theoretically possible, it is not practical

since collecting timing samples alone may take (30 minutes ∗ 961 ≈) 20 days.

3.6 Experimental Analysis of Security and Performance

In this section, we present empirical results to support the theoretical results discussed

in Section 3.5. We first analyze the security of each mechanism by assessing the key

recovery ability using the scatter plots and by inspecting the reduction in the correlation

values. Subsequently, we discuss the effects of the proposed mechanisms on performance
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and data movement. All the results are collected on a GPU architectural simulator,

GPGPU-Sim [6]. Note that it is impractical to execute the attack experiments with a

large number of plaintexts on a simulator. However, because of the less noisy environment

in the simulators compared to the real hardware, we were able to demonstrate the baseline

attack with 100 plaintext samples (each with 32 lines) in Section 3.3. Therefore, for a fair

comparison, we use the same number of samples to demonstrate the effectiveness of our

defense mechanisms.

3.6.1 Effect on Security

FSS+RTS Attack on FSS+RTS enabled GPU. Figure 3.12 shows four scatter plots

each with a different value of num-subwarp. Each scatter plot shows the correlation values

between the last round execution time and the number of last round coalesced accesses

calculated from the FSS+RTS attack algorithm for all the guessed values of the key byte

0. We notice that as num-subwarp increases the last round key byte recovery gets difficult

as opposed to the standalone FSS defense mechanism. This enhancement in the security

is due to the random noise added by the RTS mechanism. Although the FSS+RTS attack

implements the random thread allocation in the attack algorithm, it is hard to correctly

match the thread allocation order to the one used during the encryption. We conclude that

the randomization in the thread allocations allows FSS+RTS to improve GPU security.

RSS Attack on RSS enabled GPU. Figure 3.13 shows four scatter plots each with a

different value of num-subwarp. Each scatter plot shows the correlation values between the

last round execution time and the number of last round coalesced accesses calculated from

the RSS attack algorithm for all the guessed values of the key byte 0. For num-subwarp

greater than 2, we observe that the key byte recovery is difficult as the correlation value

for the correct guess is no longer the highest. The drop in the correlation value against the

RSS attack is due to the random nature of the subwarp sizing employed in RSS defense

mechanism. This random subwarp sizing is changed between the plaintexts and is hard

to mimic during the correlation timing attack. Therefore, with the random sizing of the
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Figure 3.12: FSS+RTS defense mechanism against FSS+RTS attack. c© 2018 IEEE.

subwarps, the RSS defense mechanism offers improved security as compared to the FSS

defense mechanism.

RSS+RTS Attack on RSS+RTS enabled GPU. Figure 3.14 shows four scatter plots

each with a different value of num-subwarp. Each scatter plot shows the correlation values

between the last round execution time and the number of last round coalesced accesses

calculated from the RSS+RTS attack algorithm for all the guessed values of the key byte

0. Similar to FSS+RTS and RSS defense mechanisms, we notice that the recovery of

the correct value of the key byte is difficult with the RSS+RTS defense mechanism for

num-subwarp greater than 2. The RSS+RTS leverages the randomness in the subwarp

sizing and in the thread allocation to the subwarps, which is very difficult to replicate in

the RSS+RTS attack. We conclude that RSS+RTS offers security benefits over the FSS

defense mechanism.

Security Comparisons. Figure 3.15 compares the security offered by the different de-

fense mechanisms proposed in this work using the average correlation. As noted in Section
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Figure 3.13: RSS defense mechanism against RSS attack.
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Figure 3.14: RSS+RTS defense mechanism against RSS+RTS attack. c© 2018 IEEE.
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Figure 3.15: Comparison between the security offered by FSS, FSS+RTS, RSS and
RSS+RTS based on the average of correlations between the last round coalesced accesses
for all key bytes and the last round execution time observed during the encryption. The
last round coalesced accesses are calculated using the corresponding attacks. c© 2018
IEEE.

3.4, the FSS defense mechanism fails to reduce the correlation as the FSS attack can cor-

rectly calculate the last round coalesced accesses. For FSS+RTS, RSS and RSS+RTS

defense mechanisms, we observe a decrease in correlation for num-subwarp = 2 and 4. We

observe slight fluctuations in the respective correlations for RSS and RSS+RTS defense

mechanisms for num-subwarp = 8 and 16 due to increased randomness in the coalescing.

This randomness affects the incorrect guesses of the key bytes as well and results in an

overall improved security. Also, we notice that RSS+RTS outperforms all other defense

mechanisms for num-subwarp = 2 and 4, while FSS+RTS outperforms rest of the defense

mechanisms for num-subwarp = 8 and 16. For num-subwarp = 2 and 4, the RSS+RTS

introduces randomness in the coalescing at subwarp sizing as well as at thread to subwarp

allocation level. Therefore, the correlation values decreases more in RSS+RTS than in

FSS+RTS. However, for num-subwarp = 8 and 16, the variance in the last round coa-

lesced accesses is lower in the case of FSS+RTS compared to RSS+RTS. It is because

FSS+RTS has more subwarps with the same size compared to RSS+RTS. These findings

are corroborated by the theoretical analysis (Table 3.2).



CHAPTER 3. RANDOMIZED COALESCING TECHNIQUE, RCOAL 42

3.6.2 Effect on Performance and Data Movement

Figure 3.16 shows the execution time and the total number of memory accesses with respect

to num-subwarp for each defense mechanism. In Figure 3.16a, we notice an increase in

the total memory accesses with respect to num-subwarp. This increase in the memory

accesses is attributed to the subwarp based defense mechanisms – FSS and RSS – which

reduce the possibility of memory accesses coalescing by dividing the threads of a warp

into different subwarps. Therefore, we observe an increase in the execution time as the

num-subwarp increases (Figure 3.16b). We make two more observations. First, the RTS

mechanism does not affect the performance. Although the order of the thread allocation

to the subwarps dictates the number of coalesced accesses in a subwarp and hence across

the entire warp, the overall effect on performance averages itself out over a large number

of plaintexts.
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Figure 3.16: Performance and Data Movement Comparisons between FSS, FSS+RTS,
RSS, and RSS+RTS. c© 2018 IEEE.

Second, the RSS-based mechanisms (RSS and RSS+RTS) show a slightly lower increase

in the memory accesses compared to the FSS-based mechanisms (FSS and FSS+RTS).

This is because the skewed distribution of subwarp sizes in the RSS-based mechanisms

(Section 3.4.2) increases the possibility of a few subwarps to be larger than others. There-

fore, on average, the RSS and RSS+RTS defense mechanisms perform better than the

FSS and FSS+RTS defense mechanisms.
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3.6.3 Evaluating the Trade-off Between Security and Performance

We define the RCoal Score metric, as per Equation 3.7, to allow hardware engineers to

achieve a trade-off between the security and performance as per design requirements.

RCoal Score =
Sa

execution timeb
(3.7)

In the above equation, S is the square of the inverse of the average correlation values

calculated from the attack as shown in Figure 3.15. The parameters (a and b) can be set by

the hardware engineer to put an appropriate emphasis on either security or performance.

For example, Figure 3.17a shows the RCoal Score values for a security-oriented system

with a = 1 and b = 1. We note that FSS+RTS with num-subwarp = 8 and 16 is best

suited for improving GPU security, albeit with a considerable loss in the performance. For

a performance-oriented system, we set a = 1 and b = 20, as shown in Figure 3.17b. In

this case, for num-subwarp = 8 and 16, RSS+RTS scores higher than FSS+RTS since it

offers an improvement in the performance at a moderate loss in security.
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Figure 3.17: Comparison between the FSS, FSS+RTS, RSS and RSS+RTS defense
mechanisms based on the RCoal score against the corresponding attacks: a) Security-
oriented system with a = 1 and b = 1, b) Performance-oriented system with a = 1 and
b = 20. c© 2018 IEEE.

3.6.4 Case Study: Plaintext with 1024 Lines

We evaluate the scalability of the subwarp based defense mechanisms by increasing the

plaintext size to 1024 lines. To negate the ill-effects of the warp scheduling noise during

the security evaluation of the defense mechanisms, we correlate the last round coalesced
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accesses calculated from the corresponding attacks with the last round coalesced accesses

observed during the encryption. It is evident that if the attacker is able to correctly

estimate the last round coalesced accesses during the attack, then the correlation will be

highest for the correct guess of the key byte leading to a successful recovery of the key. We

discuss the security and the performance of each mechanism with respect to num-subwarp.

Security. Figure 3.18a shows the average correlation for all key bytes of the last round

key for each defense mechanism. As expected, we notice that the average correlation

decreases for FSS+RTS, RSS and RSS+RTS mechanisms for num-subwarp greater than

1. We conclude that our defense mechanisms improve security on GPUs encrypting large

plaintexts as well.
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Figure 3.18: Effects of the defense mechanisms on security against the corresponding
attacks and performance with respect to the number of subwarps for plaintext with 1024
lines: a) Average of correlations between the last round coalesced accesses from the attack
and the execution for all key bytes, b) Execution time (normalized to the case when
num-subwarp=1) with respect to the number of subwarps. c© 2018 IEEE.

Performance. Figure 3.18b shows the execution time for each mechanism normalized to

the baseline case of num-subwarp set to 1. As in the case of plaintext with 32 lines, we note

that the RTS mechanism does not affect the execution time. Also, the the execution time

increases with num-subwarp. Additionally, as earlier, RSS-based mechanisms increase the

coalescing possibilities and deliver better performance than the FSS-based mechanisms.

In conclusion, we observe that RSS+RTS mechanism offers an improved security with

performance degradation in the range of 29 to 76% for num-subwarp = 2, 4, and 8. This
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indicates that the defense mechanisms presented in this work scale well with the plaintext

size.

3.7 Discussion and Future Work

In the context of RCoal, we discuss the following two future research directions.

• The current implementation of RCoal spans over the entire execution of the AES

and assumes that all rounds are equally vulnerable [101]. The advantage of such an

implementation is that it does not require software support to identify the vulnerable

portions (rounds) of the code. To enhance the performance further, RCoal can be limited

only to the vulnerable part of the code. However, that would require software support to

correctly identify the vulnerable portions of the code and hardware support to frequently

turn coalescing on and off based on which warps are executing the vulnerable code at a

given time. We leave the development of such hardware/software support as a part of the

future work.

• We presented a series of defense mechanisms that focused only on the intra-warp

coalescing techniques. Therefore, we disabled other bandwidth conserving optimizations in

GPUs (e.g., MSHRs and caches). However, we believe our proposed intra-warp coalescing

will be more effective if randomization is employed at all levels of the memory hierarchy.

We leave the development of these randomization techniques as a part of the future work.

3.8 Related Work

To the best of our knowledge, this is the first work that proposes randomized coalescing

mechanisms to thwart timing attacks in GPUs. In this section, we list works relevant to

ours.

Timing attacks. Cryptographic algorithms implemented on CPUs have been the major

targets of timing attacks. Those attacks exploit the fact that key-dependent memory

accesses, such as table-lookups in AES, affect the memory access patterns and hence, the
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status of data cache. Hence, an attacker may infer private keys by observing the execution

time of either a cryptographic algorithm (e.g., [102, 9, 8, 30]), or his own application if

the data cache is shared (e.g., [30, 142, 40, 145]).

Pietro et al. [107] identified that the memory leaks are possible at various levels of GPU

memory hierarchy, especially at software-managed scratchpad memory and register file. A

recent work [45] exploits a new fine-grained timing channel caused by bank conflicts in a

GPU’s shared memory. A complete AES key recovery timing attack was first demonstrated

on a commercial GPU architecture by Jiang et al. [44]. We have already extensively

discussed this attack and proposed defense mechanisms that trade-off performance for

security.

Timing channel mitigation. Several hardware-based timing attacks have been pro-

posed in the context of CPUs [102, 67, 144, 132, 133, 70, 136]. Among those works, more

related are mechanisms based on randomization [132, 133, 70, 136]. Most of these works

randomize the memory-to-cache mapping or the cache replacement policy, while our work

proposes to randomize the coalescing behavior.

Coalescing and Bandwidth Saving Techniques in GPUs. Kloosterman et al. [55]

proposed warp-pool, an enhanced inter-warp sharing mechanism to reduce global memory

accesses. Rhu et al. [112] proposed cache sectoring mechanism to reduce unnecessary data

fetches from global memory. A series of warp scheduling techniques [47, 51, 114, 113] have

been proposed to reduce cache misses and improve memory bandwidth utilization. None

of these works focused on hardware security issues, as we do in this paper.

3.9 Conclusions

Our findings confirm that the deterministic nature of the coalescing logic is a major cause

of security vulnerability in GPUs. To address this vulnerability, we propose a series of

defense mechanisms that allow the coalescing logic to randomly change the number of

coalesced accesses. Specifically, we propose to randomize: a) the granularity at which
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intra-warp coalescing is performed in the baseline architecture, and b) allocation of the

thread elements per subwarp. Our theoretical and empirical results show that our random-

ized coalescing defense mechanisms significantly improve the GPU security at a modest

performance loss.



Chapter 4

BCoal: Bucketing-based Memory

Coalescing for Efficient and Secure

GPUs

4.1 Introduction

Graphics Processing Units (GPUs) provide orders of magnitude higher throughput com-

pared to CPUs thanks to a large number of computational units attached with high band-

width memory. GPUs have traditionally accelerated a wide-range of arguably security

insensitive applications ranging from gaming to high-performance computing. However,

many applications that benefit from GPUs nowadays process or contain security/privacy-

sensitive information. For example, DNA and financial computing applications that heav-

ily process private data are taking advantage of GPUs [94, 92]. The deep learning com-

munity has significantly benefited from the computational power of GPUs but now is

also concerned about the privacy of their models and vendors; they are interested in pro-

tecting them from motivated attackers [37, 81]. Cryptographic and other computations

that handle sensitive data are also known to achieve significant performance benefits from

GPUs [49, 44, 128, 72, 17, 83, 42].

48
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With the growing need for secure GPU computation, it is important to protect GPUs

from a variety of possible side-channel attacks. For example, several attacks (especially,

cache-based side-channel attacks [131, 132, 133, 70, 71, 111, 141]) on the CPU side have

exploited the fact that critical information can be leaked if it affects the latency (or total

execution time). In the same vein, new correlation timing attacks and covert channels [44,

80, 135, 45] are being exposed in GPUs – a recent attack [44] showed that AES private keys

can be recovered by exploiting the correlation between the number of coalesced accesses

and execution time. Specifically, an attacker exploits the relationship between the private

keys and the number of coalesced accesses to reveal the entire private key by performing

off-line correlation analysis with the help of recorded execution time and encrypted (cipher)

text information.1

Kadam et al. [49] presented the first work to address the aforementioned correlation

timing attack. They showed that by randomizing the logic of coalescing unit (RCoal),

additional accesses can be generated such that the correlation between the baseline (real)

accesses and the execution time is reduced. Consequently, the attacker finds it hard to

recover the private keys. However, we find that RCoal has two major drawbacks. First,

the performance loss for security gain is very high due to the randomization of coalescing

logic, especially for large plain texts. Second, RCoal provides sub-optimal security in the

presence of other memory bandwidth conserving mechanisms such as miss-status holding

registers (MSHRs) and caches. As we further demonstrate in Section 4.3, the additional

duplicate accesses generated during randomization are merged back in MSHRs to render

RCoal ineffective. Therefore, RCoal turned-off caches and MSHRs for security reasons,

leading to even more significant performance overheads.

To efficiently address the limitations of RCoal, we propose a new bucketing-based

coalescing technique – BCoal. It always generates the number of coalesced accesses equal

to one of the pre-determined values (known as buckets), irrespective of program secrets.

This implies BCoal would generate additional memory accesses (if necessary) along with

1More details on the attack are provided in Section 4.2.
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the real accesses to match the bucket requirements. As the number of accesses is always

equal to the pre-determined values, the variance in the number of accesses drops. As a

result, BCoal reduces the correlation to mitigate the timing attack.

To reduce the performance overhead of additional accesses, we select optimal bucket

features by analyzing the application-level coalescing profile. The goal of profiling is

to select the bucket features such that overall fewer additional accesses are generated.

Further, we observe that the generation of additional accesses is non-trivial because we

need to ensure that they affect the execution time at the same rate as the real accesses,

otherwise their effect on the execution time can be filtered out (i.e., noise can be filtered

out from signal). To address this issue, we generate unique additional accesses to the

same memory space as that of the real accesses. We find that this helps in reducing the

disparity between caching/merging probabilities of real accesses and additional accesses,

thereby making their individual effects on execution time also similar. Consequently, our

bucketing-based coalescing technique provides security even in the presence of MSHRs

and caches.

To the best of our knowledge, this is the first work that proposes a bucketing-based

coalescing technique for GPUs to achieve better security compared to the state-of-the-

art scheme while incurring low overhead. In summary, this paper makes the following

contributions:

• We perform a detailed analysis to show that the state-of-the-art defense schemes

against the coalescing-based correlation timing attack are inefficient. They incur a signif-

icant performance and data movement overhead as they work only when the bandwidth

conserving hardware such as caches and MSHRs are not employed.

•We propose a new bucketing-based coalescing mechanism (BCoal) that always issues

pre-determined numbers (chosen from a small set, called buckets) of coalesced accesses by

padding additional accesses to the real accesses, if necessary.

• Our analysis shows that the generation of padded accesses is non-trivial and the

effect of MSHRs and caches should be considered to ensure security. BCoal implements a
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homogeneous padding mechanism to ensure that the real and padded accesses affect the

execution time similarly even in the presence of MSHRs and caches. Therefore, an attacker

fails to separate the timing effect of padded accesses thereby improving the security.

• Our theoretical and experimental analysis shows that BCoal significantly improves

the security (i.e., drops the correlation by up to 100%) at a modest performance overhead

ranging from 5% to 15%. We also evaluate BCoal across a large set of GPGPU appli-

cations and show that coalescing with three equally-spaced buckets provides an excellent

performance-security trade-off that can be leveraged to secure the GPUs.

4.2 Background

This section briefly introduces: a) the baseline GPU architecture, b) bandwidth conserving

mechanisms, c) the AES encryption on GPU, and d) the baseline correlation timing attack

and the state-of-the-art defense mechanism against it.

4.2.1 Basics of GPU Architecture

We consider a baseline GPU architecture with multiple cores, known as streaming multi-

processors (SMs) in NVIDIA terminology. The SMs are connected to memory partitions

via an interconnect as shown in Figure 4.1. GPUs achieve high throughput by execut-

ing a large number of threads concurrently. To facilitate this, GPUs are supported by a

large register file (for fast context switching across threads) and high bandwidth mem-

ories (for fast data access to a large number of concurrent threads). Each SM executes

the threads assigned to it at the granularity of a warp, which is essentially a collection

of (usually 32) individual threads that execute a single instruction on the processing ele-

ments (PEs) of the SM in a lock-step. The warps hide long memory latencies to improve

the utilization/throughput of the SM via executing in a pipelined and multiplexed man-

ner. Throughout the paper, we evaluate the proposed techniques on a cycle-level GPU

simulator – GPGPU-Sim [6]. Table 4.1 provides details of the simulated architecture.
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Figure 4.1: Overview of Baseline GPU Architecture. c© 2020 IEEE.

Table 4.1: Key configuration parameters of the simulated GPU. c© 2020 IEEE.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, 15 SMs
L1 Caches / Core 16KB 4-way L1 data cache, 2KB 4-way I-cache

128B cache block size
L2 Caches 16-way 256 KB/memory channel (1536 KB in total),

128B cache block size
Features Inter-warp merging enabled
Memory Model 6 GDDR5 Memory Controllers, FR-FCFS scheduling

16 DRAM-banks, 924 MHz memory clock
Interconnect 1400MHz interconnect clock

4.2.2 Bandwidth Conserving Mechanisms

Memory bandwidth is one of the most performance-critical shared resources in GPUs [47,

46]. GPUs adopt several memory bandwidth optimization techniques, such as memory

access coalescing, caching and merging to reduce the number of accesses to the global

memory. In this sub-section, we provide a brief overview of these optimizations.

Access Coalescing. In GPUs, threads within a warp execute the instructions in lock-

step. For a global memory load instruction, all 32 threads within a warp execute 32 load

instructions. The coalescing unit in the LD/ST unit merges multiple memory requests

from different threads of the same warp (intra-warp coalescing) into as few cache line-

sized coalesced memory accesses as possible. The intra-warp coalescing happens at the

sub-warp granularity, where the coalescing unit of the SM determines the coalesced ac-
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cesses of the warp by examining a group of threads belonging to the same sub-warp. If the

threads of a sub-warp access data within a contiguous memory block, their requests are

coalesced together to reduce memory bandwidth consumption. The size and number of

sub-warps are typically fixed and remain the same throughout the application execution.

However, to achieve security, the coalescing mechanisms can be randomized (RCoal [49])

so that the coalesced accesses are no longer predictable to the attacker.
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Figure 4.2: Memory access coalescing in GPUs. c© 2020 IEEE.

Figure 4.2 illustrates the coalescing in baseline GPU and previously proposed ran-

domized coalescing techniques. Assume a single warp with four threads. The per-thread

addresses and the requested block addresses (BA) are shown with corresponding thread-

ids (tid) and sub-warp id (sid). In the baseline GPU, we assume a single sub-warp (sid =

0 for all threads) and hence all threads participate together in the coalescing. Since the

requests from tid 1 and 2 map to the same cache block, only three accesses are generated

( A ) to conserve the memory bandwidth. With randomized coalescing, the threads are

randomly assigned to subwarps and hence lead to unpredictable effects on coalescing. In

Figure 4.2(b), we observe that four accesses are generated ( B ) due to different sub-warp

ids assigned to the random groups of thread. More details on the randomized coalescing

techniques are discussed in Section 4.2.4.

Caching. GPUs further conserve the memory bandwidth by exploiting the temporal
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and spatial locality in memory accesses across and within warps with the help of hard-

ware caches. Current GPUs employ two levels of caches, L1-cache (shared by the warps

executing on the same SM) and L2-cache (shared by the warps executing on different

SMs).

Access Merging. The coalesced memory accesses from a warp are sent to the L1-

cache. Upon cache misses, the memory accesses are logged in the miss-status holding

registers (MSHRs). Multiple cache-missed coalesced accesses to the same cache block

from different warps on the same SM are merged (inter-warp merging) in MSHRs. Note

that as independent loads from the same warp can be issued to improve memory-level

parallelism, MSHRs also help in merging redundant accesses from the same warp (intra-

warp merging) if they are issued at different times. Another source of inter-warp merging

is via MSHRs at L2-cache, where the redundant L2-cache misses (across different SMs)

can be merged together.

4.2.3 AES Encryption

To demonstrate the GPU timing attack exploiting the vulnerability due to memory co-

alescing, we consider the widely used symmetric-key algorithm, Advanced Encryption

Standard (AES) [78, 34, 41, 89, 66] with a key length of 128 bits, to encrypt the plaintext.

AES-128 algorithm consists of 10 rounds, each with a 16-bytes round key generated from

the encryption key. We focus on the last round of the AES, which is shown to be the most

vulnerable to side-channel attacks [44]. The last round involves a table (for the S-box

table T4) look-up operation followed by bitwise XOR operation with the last round key.

Our AES implementation on GPU is from Jiang et al. [44, 42], which was used in the

original attack [44] and a known defense [49]. We used the same implementation for a

fair comparison. The AES implementation on GPU involves dividing the plaintext across

multiple parallel threads to achieve high throughput. Each thread encrypts a line of the

plaintext independent of other threads. Therefore, a warp consisting of 32 threads can

perform 32 different encryptions concurrently. In general, the line to thread mapping
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is sequential and deterministic. If the size of the plaintext exceeds 32 lines, then it is

divided sequentially among several warps. For example, a plaintext with 1024 lines will

employ 32 warps each executing 32 lines of the plaintext. To ensure a stronger baseline

for comparison, the AES implementation used in this paper performs random mapping of

threads to the warps (known as input blinding) to gain additional security [49].

4.2.4 Baseline Attack and Defense Mechanism

Baseline Attack. In this work, we use the same attack model as designed by Jiang et

al.[44]. It assumes that the attacker can send a large number of plaintexts to a remote

GPU-based AES [78, 34, 41, 89, 66] encryption server and collect the ciphertext. The

attacker also records the total execution time required to complete each encryption. The

attack was also shown to be very effective in noisy environments[44].

Given that the GPU coalescing procedure is deterministic [61] and the last round of

AES is invertible [44], the attacker can calculate the number of coalesced accesses with

the help of ciphertext and a last round key guess. As the number of coalesced accesses is

correlated with the execution time in the baseline system [44], the key guess that leads to

the best correlation across a large number of encryptions is determined to be the correct

key. This attack further assumes that the round tables are kept in GPU DRAM, which

can be cached in L1/L2 caches based on the access patterns. For brevity, we skip the

algorithmic details of the attack and refer readers to prior works [49, 44]. Also, the

rest of the paper assumes a stronger attacker with the capability of accessing last round

execution time as compared to the realistic attack, which is weaker due to the noise in

the total execution time. Consequently, we assume the goal of the attacker is to correctly

guess the last round AES encryption key [49], which can divulge all other round keys by

reverting the fixed AES key generation schedule.

Figure 4.3 shows the scatter plots for the baseline correlation attack for the single-warp

(plaintext with 32 lines) and multi-warp (plaintext with 64 lines) cases. Each scatter plot

shows the correlation values for all 256 possible values for the 3rd key byte of the last
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(b) Plaintext with 64 lines.

Figure 4.3: Baseline Attack. c© 2020 IEEE.

round. Each point on the scatter plot corresponds to a correlation value between the

number of coalesced accesses (on a per-warp basis) calculated by the attacker and the

execution time of the last round of AES-128. In the multi-warp case, the maximum value

of the number of coalesced accesses across all warps is used as the warp that generates the

most number of coalesced accesses has shown to dominate the total execution time [44].

From Figure 4.3, we observe that the correlation value is the highest (highlighted in red

and encircled) for the correct value of the 3rd key byte among all other guess values for

the single- as well as the multi-warp case. Therefore, the correct value of the key byte

3 is recoverable. We observe this trend for all last round key bytes indicating successful

recovery.

Baseline Defense. Kadam et al. [49] presented a series of randomized coalescing (RCoal)

mechanisms to defend against the correlation timing attacks. They showed that randomiz-

ing the number of subwarps, the sizes of subwarps, and the thread elements of the subwarp

can improve the GPU security, however at the cost of performance loss and increased data

movement between SMs and memory. Based on these three parameters, three RCoal

mechanisms were proposed: fixed-sized subwarp (FSS), random-sized subwarp (RSS), and

random-threaded subwarp (RTS). They showed that the best performance-security trade-

off can be achieved with an RCoal mechanism (RSS+RTS+4), which uses the number

of subwarps to be 4, the sizes of warps are chosen based on a skewed distribution, and

the thread elements are chosen randomly based on a uniform distribution. In rest of the
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(a) RCoal(4) with Plaintext (32 lines).
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(b) RCoal(32) with Plaintext (32 lines).
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(c) RCoal(4) with Plaintext (64 lines).
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(d) RCoal(32) with Plaintext (64 lines).

Figure 4.4: Effect of different RCoal coalescing schemes on the recovery of one of the
last round key byte (shown in red circle). In RCoal, the caches and MSHRs are disabled
for security reasons (refer Section 4.3-B). c© 2020 IEEE.

paper, we denote this best of the RCoal scheme as RCoal(4). Note that if the number of

subwarps is equal to the number of threads in a warp then it is equivalent to coalescing

being disabled as all threads independently participate in the coalescing procedure. For

example, with a warp size of 32, choosing the number of subwarps to be 32 is equivalent

to disabling the coalescing. We denote this as RCoal(32). RCoal(32) was shown to be the

most secure design as the number of coalesced access is always constant at 32 [49]. Due

to security concerns, RCoal disabled caches and MSHRs (refer to Section 4.3.2 for more

details).

Figure 4.4 shows the scatter plots for RCoal(32) (the most secure mechanism) and

RCoal(4) (best of RCoal) using plaintext with 32 and 64 lines. In contrast to the baseline

attack, for RCoal(32) and RCoal(4), the correlation between the number of coalesced ac-

cesses and execution time with the correct key (highlighted in red and encircled) dropped

significantly. Consequently, this point is no more distinguishable among the other corre-
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lation points ensuring successful defense against the attack. We observe this trend for all

last round key bytes.

4.3 Motivation and Analysis

Although RCoal helps in improving the GPU security significantly, it also incurs a very

high performance and data movement overhead. To substantiate the overhead of RCoal,

Figure 4.5 shows the total execution time and number of DRAM accesses for two scenarios:

a) RCoal(32) – the most secure design, and b) RCoal(4) – the best of RCoal. These results

are shown for three different sizes of plaintexts (32, 64, and 1024) and are normalized

to the baseline GPU. We observe that the overhead of RCoal(32) is very high – more

than 27× increase in the number of DRAM accesses leading to over 9.4× increase in the

execution time. Furthermore, the performance degradation increases rapidly with the size

of plaintexts. The same trend is visible for RCoal(4) as well.
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Figure 4.5: Illustrating the overhead of RCoal defense scheme for different sizes of plain-
text. The results are normalized to a baseline GPU with MSHRs and caches. c© 2020
IEEE.

4.3.1 Performance Overhead Analysis of RCoal

There are two major reasons behind the large performance and data movement overhead.

First, RCoal introduces sub-optimal and randomized coalescing that causes additional

memory traffic. To understand this, we analyze the number of coalesced accesses generated



CHAPTER 4. BUCKETING BASED COALESCING TECHNIQUE, BCOAL 59

0 4 8 12 16 20 24 28 32
Number of Coalesced Accesses

0%
5%

10%
15%
20%
25%

%
 o

f I
ns

tr
uc

ti
on

s

(a) Baseline.

0 4 8 12 16 20 24 28 32
Number of Coalesced Accesses

0%

5%

10%

15%

20%

%
 o

f I
ns

tr
uc

ti
on

s

(b) RCoal(4).

0 4 8 12 16 20 24 28 32
Number of Coalesced Accesses

0%
20%
40%
60%
80%

100%

%
 o

f I
ns

tr
uc

ti
on

s

(c) RCoal(32).

Figure 4.6: Histogram of the number of coalesced accesses generated across a warp for
1000 plaintext samples each with 32 lines. c© 2020 IEEE.

in three different architecture options: baseline, RCoal(4), and RCoal(32). For these

three options, Figure 4.6 shows the number of coalesced accesses with respect to the

percentage of load instructions in the AES CUDA implementation. We observe a bimodal

distribution in the baseline scenario (Figure 4.6(a)): the first peak occurs when only

one coalesced cache line access is generated for roughly 20% instructions and the second

peak occur between 12-16 coalesced cache line accesses for the remaining instructions.

The first peak is observed due to the loads for the round keys and the second peak is

due to the table lookup operations. With RCoal(32) (Figure 4.6(c)), the coalescing unit

performs worst to always generate 32 coalesced accesses for all load instructions. As

noted before, this is similar to the coalescing being disabled. Although it is the most

secure option, the average number of coalesced accesses and the overall number of DRAM

accesses increase significantly (Figure 4.5). In RCoal(4) (Figure 4.6(b)), we observe that

the second peak has shifted to the right compared to Figure 4.5(a) due the obfuscation of

the coalescing mechanism that generates additional memory traffic. Overall, RCoal(4) and
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RCoal (32) generate additional memory traffic and incur performance penalties to reduce

the correlation between the number of baseline coalesced accesses and the execution time.

Importantly, RCoal ignores the application properties, especially the baseline coalescing

profile to optimally generate the traffic while reducing the correlation.

Second, due to the security reasons, RCoal schemes were only shown to work in the

absence of other bandwidth optimization techniques, such as caches and MSHRs. The

absence of MSHRs and caches has a substantial impact on the performance and data

movement, and is well-documented in GPU literature [6, 47, 117]. The combined effect

of sub-optimal coalescing, and absence of MSHRs and caches leads to a sharp increase in

the number of DRAM accesses resulting in high performance degradation.

4.3.2 Effect of MSHRs and Caches on Security with RCoal

Effect of MSHRs. In the presence of MSHRs, RCoal scheme becomes vulnerable to

the correlation timing attacks. RCoal randomizes the access coalescing and generates

redundant accesses to the same block addresses to reduce the correlation between the

execution time and the number of baseline coalesced accesses. The MSHRs render RCoal

scheme ineffective by merging the redundant accesses to the same block addresses leading

to similar correlation as in the case of baseline GPU. The effect of MSHRs on RCoal

scheme is prominent for the table lookup instructions experiencing a high cache-miss rate

as the corresponding accesses are likely served through MSHRs leading to predictable

access merging. This is especially true for the initial table lookup instructions of the last

round because T4 table elements are less likely cached. Figure 4.7 shows this merging-

back phenomenon using the example from Figure 4.2. RCoal(4) generated 4 accesses A ,

including one redundant access. However, MSHRs merged back the cache-missed accesses,

leading to the same number of accesses ( B ) generated to the DRAM as that of in the

baseline case. Consequently, it leads to the same correlation and information leakage as

that of the baseline GPU.

Effect of caches. The security of RCoal depends on the cache hit rates. For example,
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Figure 4.7: Effect of MSHRs on the cache-missed coalesced accesses in RCoal scheme.
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(a) RCoal(32) + MSHRs + Caches.
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(b) RCoal(4) + MSHRs + Caches.

Figure 4.8: The presence of MSHRs and caches leads to successful recovery of one of the
last round key bytes in RCoal(32) and RCoal(4). Plaintext has 32 lines. c© 2020 IEEE.

in the case of RCoal(32), if all accesses of a table lookup instruction are always cached,

then all 32 accesses from the coalescing unit are served by the cache. Therefore, if the

execution time remains constant due to the constant number of accesses to the cache,

the attacker cannot establish the correlation between the number of baseline coalesced

accesses and the execution time to reveal the private key. However, a perfect cache hit

rate cannot be guaranteed for all the table lookup instructions across a large number of

plaintext samples. Therefore, if the accesses of a table lookup instruction miss in the

cache, the key byte can still be recovered with RCoal due to the access merging in MSHR

as discussed earlier. To illustrate this point, Figure 4.8 shows the scatter plots for the

first table lookup instruction of the last round with MSHRs and caches enabled. We note

that the private key byte 3 corresponding to the first table lookup instruction can easily

be recovered in both the RCoal scenarios.

In summary, RCoal becomes vulnerable due to the access optimizations in MSHRs and

caches.
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4.3.3 Our Proposal and Goals

Our goal is to design a mechanism that reduces the performance overheads of RCoal

while offering comparable security. To this end, we propose BCoal: a bucketing-based

coalescing mechanism to address the primary performance-related shortcomings of RCoal

discussed before. BCoal matches the number of coalesced accesses generated for a global

memory load instruction per warp to one of the predetermined values (denoted as buck-

ets). To match the number of accesses to one of the preset bucket sizes, we pad the

real coalesced accesses from a warp with additional (padded) memory accesses. Since the

total numbers of accesses always match one of the bucket sizes, their overall variance de-

creases. Furthermore, as observed earlier for RCoal, MSHRs adversely affect the security

by merging the redundant accesses after randomized coalescing. Therefore, the padding

mechanism in BCoal is devised such that MSHRs cannot merge the real and padded

accesses, thereby maintaining a very low variance in the resulting number of accesses.

Additionally, the padding mechanism ensures that the real and padded accesses follow

similar access merging and caching pattern, such that they affect the execution time at

the same rate. Subsequently, the individual effects of real and padded accesses on the

execution time are indistinguishable. Therefore, in BCoal-enabled GPU, the attacker will

not be able to correlate the number of real coalesced accesses with the observed execution

time. Consequently, the security offered by BCoal scheme against the correlation timing

attacks remains intact even in the presence of MSHRs and caches. In summary, BCoal

scheme presented in this work not only offers improved security but also incurs minimal

performance degradation as compared to RCoal.

4.4 Anatomy of Bucketing in GPUs

In this section, we first explain our general approach towards realizing a bucketing scheme

and then explore the design challenges in meeting the bucketing requirements in the pres-

ence of MSHRs and caches. Finally, based on our analysis, we present our secure bucketing
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scheme – BCoal.

4.4.1 Bucket Features

Let us assume a system with n buckets and sizes of buckets to be: b1,..,bi, bi+1,...,bn where

∀i : bi < bi+1. A predetermined number of coalesced accesses are generated per table

lookup (load) instruction as per the bucket size. If a load instruction generates n number

of coalesced accesses, where bi < n ≤ bi+1, then additional accesses are padded such that

the total number of coalesced accesses is equal to bi+1. The number of buckets is selected

to achieve the desired reduction in the variance of the number of coalesced accesses. For

example, with only one bucket, the number of accesses generated is always equal to the size

of that bucket, thus, reducing the variance to zero. As the number of buckets increases,

the variance in the number of coalesced accesses increases due to the increased number

of distinct possible values for the coalesced accesses. This leads to higher information

leakage, however, also reduces the total number of additional padded accesses.

We revisit Figure 4.6(a) to select the bucket features for AES. We observe that the

number of coalesced accesses during the AES encryption on GPU never exceeds 16. There-

fore, we select the size of the bucket to be 16 as one of the options and denote the scheme

as BCoal(16). With only one bucket of size 16 in the coalescing unit, the AES encryp-

tion will always generate 16 number of coalesced accesses to reduce their variance to 0.

Consequently, the correlation between the number of real coalesced accesses and the ex-

ecution time drops as well. However, with only one bucket, each (security-sensitive and

security-insensitive) load instruction sends 16 accesses, leading to performance degrada-

tion (Section 4.6).

The performance of BCoal scheme can be further improved by adding multiple buckets

of intermediate sizes. We propose to add one more bucket with size 1 because of the bi-

modal distribution observed in Figure 4.6(a) and call this scheme BCoal(1, 16). The

performance degradation in BCoal(1, 16) will be lower than in BCoal(16) because the

coalesced accesses generated by instructions other than the table lookups (the first peak
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in Figure 4.6(a)) now fit into the added bucket. Furthermore, in BCoal(1, 16), as the

bucket with size 1 does not affect the table lookup instructions, its effect on the security

is minimum. We quantify all performance and security results in Section 4.6.

4.4.2 Estimation of Number of Padded Accesses

To generate an optimal number of padded memory accesses for bucketing, we first need

to determine the number of real memory accesses generated for a load instruction of a

warp. The number of real coalesced accesses generated by the load instruction is stored

as the pending request count (PRC) in the coalescing unit [61]. By reading PRC, we

determine the number of real memory accesses. Next, we compare the number of real

memory accesses generated with the preset bucket values. If the number of real memory

accesses does not match, then we generate a number of padded memory accesses equal

to the difference between the next larger bucket value and the number of real memory

accesses. For example, in BCoal(1,16), if the number of original memory accesses is 12,

then we need to generate 4 extra memory accesses.

4.4.3 Design Challenges in Generating Padded Accesses

We consider the effect of MSHRs and caches on RCoal scheme while designing the padding

mechanism for BCoal. In RCoal, the redundant accesses to the same block addresses were

merged in MSHRs eliminating the security offered by randomized coalescing of accesses.

Therefore, to meet the bucketing requirement, we must generate padded accesses to the

unique block addresses. Consequently, all memory accesses originating from a warp, real

and padded, have unique block addresses. The unique accesses for padding are generated

randomly from an address range that is accessible to the AES CUDA application. In our

case, the block address range spans over the five tables used for table lookups and the

round keys used for each round, all saved in the DRAM.

To evaluate the resulting bucketing scheme, we first determine the possibility of key

byte recovery in the absence of MSHRs and caches. Figure 4.9a shows the scatter plots for
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the bucketing scheme employing padding via unique accesses in the absence of MSHRs and

caches. We note that the correct value of the key byte cannot be recovered as the attacker

fails to establish a correlation between the real number of accesses and the execution time.

The low correlation is attributed to the constant number of accesses generated per table

lookup instruction across the plaintext samples leading to the low variance in them.

From the above padding mechanisms employed in the bucketing scheme, we make the

following observation:

Observation I: For the secure bucketing scheme, the block addresses of the padded

accesses should be random and unique (that is, exclusive of the block addresses of the real

and other padded accesses of the corresponding table lookup instruction).
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(b) With MSHRs and caches.

Figure 4.9: Evaluation of security offered by the bucketing scheme employing unique
access padding mechanisms with one bucket of size 16. Plaintext has 32 lines. c© 2020
IEEE.

Effect of MSHRs and caches. We evaluate the effect of MSHRs and caches on the

security of above bucketing mechanism using the scatter plot in Figure 4.9b. We note that

while the correlation and related key byte value leakage is low, the correct value of the key

byte can still be recovered. The key byte value leakage is possible because the real and

padded accesses affect the execution time at different rates due to their distinct merging

and caching patterns.

The distinct access merging and caching patterns are caused because of the different

block address ranges accessed by the real and padded accesses. In the above bucketing

scheme, the padded accesses generated in each round access the same range of block ad-
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dresses spread across the entire memory space of the AES CUDA application. In contrast

to the padded accesses, in the last round, the real accesses target only the T4 table el-

ements. As the real accesses are confined to a narrower address space (only T4 table

elements) as compared to the padded accesses (entire application memory space), their

respective merging and caching patterns are different. Therefore, the padded and real

accesses affect the execution time at different rates. An attacker can then treat the effect

of padded accesses on the execution time as noise and filter it out over a large number

of plaintext samples to correlate the real accesses and the execution time to recover the

private key. The effect of MSHRs and caches on the real and padded accesses leads to the

following observation:

Observation II: The padded and real accesses should be homogeneous in terms of their

respective probabilities of merging in MSHRs and caching.

4.4.4 BCoal: A Secure Bucketing Scheme

From the observations I and II recorded previously, we note that for a secure bucketing

scheme to operate in the presence of MSHRs and caches, the padded accesses should have

the following two characteristics: i) the block addresses of the padded accesses should be

random and exclusive (unique) of the block addresses of the other accesses and ii) the

padded accesses should follow the same merging and caching pattern as that of the real

accesses.

Padding via Homogeneous Unique Accesses. The first property of the desired

padding mechanism is met by ensuring that the block addresses of the padded accesses

are random and unique across each security-sensitive load instruction. To enforce the

second property, we recall the merging mechanism in MSHRs, where the accesses going to

the same block addresses are merged together. Furthermore, the caching also works at the

block address granularity. Therefore, to obtain similar merging and caching probabilities

across all accesses, we restrict the block addresses of the padded accesses to the range

of possible block addresses of the real accesses, thereby generating homogeneous unique
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accesses.2

During the AES execution, the table lookup instructions of the first nine rounds access

first four tables, while for the last round only T4 table is accessed. Therefore, to meet the

bucketing requirements, the padding mechanism should restrict the block address range

of the padded accesses to the block address range of the first four tables in DRAM during

the first nine rounds, while to the block address range of T4 table in DRAM during the last

round. As the padding mechanism maintains similar merging and caching properties for

the real and the padded accesses, the attacker cannot segregate their effects on the total

execution time. Therefore, the attacker will fail to establish the correlation between the

real number of coalesced accesses and the execution time, thereby failing to recover the

key byte value. Furthermore, as all rounds of AES encryption are potentially vulnerable

to timing attacks [100], BCoal is enabled for all ten rounds of AES.

In summary, we select the padding via homogeneous unique accesses for the BCoal

bucketing scheme. We present the security and performance evaluation of the proposed

BCoal scheme with MSHRs and caches enabled in Section 4.6.

4.5 Hardware/Software Overhead

In this section, we describe the implementation overhead of BCoal. We consider a gen-

eralized BCoal scheme, which targets a security-sensitive application with an arbitrary

number of program sections. For example, the two program sections in AES are the first

9 rounds and the last round. The generated padded accesses have memory addresses that

target respective program sections.

Storage overhead. The storage requirement is for keeping track of a) bucket sizes and

b) the start/end addresses of the program sections. To store the buckets sizes, BCoal uses

a 32-bit mask that covers all 32 possible number of coalesced accesses across a warp. The

indices of the mask are set as per the BCoal configuration. For example, for BCoal(1,

2This heuristic may have to be tuned for different applications based on their memory access pattern.
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16, 32), only 1st, 16th and 32nd bits are set. Next, BCoal maintains an address table –

accessible by all SMs executing the security-sensitive application – to save the start and

end 32-bit addresses of each program section. For an application with N program sections,

the size of the table will be (2N × 32) bits. For AES with 2 program sections, the size of

the table will be 128 bits and the total storage overhead is 128 + 32 = 160 bits.

Address Generation. The generation of unique homogeneous accesses for padding

follows three steps: a) determine the number of padded accesses needed, b) determine

the unique homogeneous block addresses for the accesses, and c) generate the accesses.

As noted in Section 4.4.2, the pending request count (PRC) in the memory coalescing

unit (MCU) records the number of real accesses across a warp. Therefore, the number of

padded accesses needed can be identified by comparing the size of a bucket with PRC.

Since the maximum value of PRC (limited by the maximum possible number of coalesced

accesses) and the maximum size of a bucket is 32, BCoal needs a 5-bit comparator.

The address range for each program section is known from the memory allocation and

data copy operations executed at the start of a GPGPU application. This information

can also be embedded in the load instructions. To generate padded accesses in the range

of the program section under execution, BCoal uses a 32-bit random address generator.

4.6 Analysis of Security & Performance

In this section, we first analyze the security of our proposed bucketing-based coalescing

mechanism, BCoal, via experimental and theoretical analysis. Subsequently, we discuss the

effects of the proposed mechanism on performance and data movement. We also compare

BCoal with RCoal in terms of security, performance and data movement. Finally, we

generalize our mechanism across a wide range of GPGPU applications.

All the results are collected on a cycle-level GPU simulator – GPGPU-Sim [6]. We

assume the same number of samples as that of in the attack scenario [49] for plaintext with

32 lines. For plaintext with 64 lines, we use 1000 samples, the same number as needed for



CHAPTER 4. BUCKETING BASED COALESCING TECHNIQUE, BCOAL 69

the successful attack, to evaluate the defense mechanism for a fair comparison.

4.6.1 Experimental Analysis of Security

For the security evaluation of BCoal scheme in the presence of MSHRs and caches, we

consider two configurations: i) default with one bucket of size 16 denoted as BCoal(16)

and ii) performance efficient with two buckets of sizes 1 and 16 denoted as BCoal(1, 16).

For each BCoal configuration, we plot a scatter plot as explained in Section 4.2.4.
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(b) BCoal(1, 16)+MSHRs+Caches.

Figure 4.10: BCoal defense scheme against correlation attack for plaintext with 32 lines.
c© 2020 IEEE.

Plaintext with 32 lines. Figure 4.10 shows the scatter plots for BCoal scheme using

plaintext with 32 lines with MSHRs and caches enabled. We note that the key byte

recovery is not possible because of the low correlation between the number of accesses

and the execution time. The low correlation can be explained as follows. With BCoal

scheme, three scenarios can occur for a table lookup instruction. First, all accesses –

real and padded – for the instruction are cached. In this case, the instruction always

generates 16 accesses to the cache. Second, no accesses are cached, therefore, generating

16 DRAM accesses to the unique block addresses which MSHRs cannot optimize. In both

scenarios, the number of accesses to the cache or DRAM remains constant leading to

reduced correlation with the execution time. In the third case, a partial set of accesses of

the instruction are either cached or merged in MSHR. Here, since the real and the padded

accesses target the same block address range, their merging and caching probabilities are
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Figure 4.11: BCoal defense scheme against correlation attack for plaintext with 64 lines.
c© 2020 IEEE.

similar. Subsequently, the attacker cannot distinguish between the effects of the padded

and real accesses on the execution time and fails to correlate the number of real coalesced

accesses and the execution time. In conclusion, the attacker fails to recover the key byte

in a BCoal-enabled GPU.

Plaintext with 64 lines. Figure 4.11 shows the scatter plots for BCoal scheme using

plaintext with 64 lines with MSHRs and caches enabled. We note that the key byte

recovery is not possible because of the low correlation between the number of accesses and

the execution time. To understand the low correlation, we refer to the correlation timing

attack described by Jiang et al. in [44] for the multi-warp case, where the attacker treats

each warp individually executing a plaintext with 32 lines and chooses the warp with the

highest number of coalesced accesses to recover the key. Therefore, the observations made

for a single warp case hold true for the multi-warp case as well. Particularly, the attacker

cannot correlate the number of real coalesced accesses and the execution time due to the

low variance in the number of accesses, and the homogeneity between the real and padded

accesses. Therefore, the attacker fails to recover the key byte value in the multi-warp

scenario.

The experimental analysis concludes that BCoal-enabled GPU successfully mitigates

the correlation timing attacks in single-warp and multi-warp scenarios.
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4.6.2 Theoretical Analysis of Security

We present an analytical framework to analyze the security of AES. Before a formal

analysis, we consider one instruction in the last round that accesses 12 unique memory

block addresses before padding. When only one bucket is used (at 16), the 4 padded

memory accesses are drawn from the same memory space as the 12 real requests. Hence,

there is no information leakage. In general, we will shortly prove that when BCoal uses

one bucket at 16, there is no information leakage.

When multiple buckets are used, say at 12 and 16, the attacker can infer if the number

of real block addresses being accessed are up to 12 or between 12 and 16, which leaks

some information. However, as we show next, the leakage in general is minimal, due

to the randomized mapping from plaintext lines to warps. The randomized mapping

obfuscates which plaintext lines share the same warp.

To quantify the leakage of BCoal, we note that threads across different warps are not

synchronized and the longest warp execution time dominates the time measurement [44].

Hence, one of the warps, the dominant warp, will have true timing. Known attacks on

multiple warps [44] analyze each warp and use the longest running (dominant) warp for

correlation analysis to recover the AES private keys. So it is safe to focus on an arbitrary

warp in the rest of the analysis. Moreover, we assume the padded and real accesses are

homogeneous (as described in Section 4.4.2). Hence, their probabilities of merging in

MSHRs and caching are identical.

To make a fair comparison with RCoal, we follow the analytical model and assumptions

of RCoal [49]. Futher, we target an arbitrary last-round key byte k and assume that U

is the number of real accesses for the lookup of last round table, T4, with respect to the

key byte k, from the dominant warp. Following RCoal [49], we estimate the number of

plaintext samples required to successfully recover an AES key byte, S, as

S ∝
(µ(U × Û)− µ(U)µ(Û)

σ(U)σ(Û)

)−2
(4.1)
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where Û is the number of coalesced accesses when the guessed key byte is identical to k,

µ and σ are the mean and standard deviation of a random variable respectively.

We first prove BCoal leaks no information with one bucket.

Lemma 1 When BCoal only uses one bucket at 16, the needed samples to break AES is

infinite.

Proof: With only one bucket, P (Û = 16|U = u) = 1 for any u. Hence, µ(Û) = 16 and

µ(U×Û) =
∑

u P (u)µ(U×Û |U = u) = 16
∑

u u×P (u) = 16µ(U). Hence S = (0)−2 =∞.

�

When the number of buckets is more than one, the computation is more involved.

To simplify the analysis, we further make a conservative assumption that an attacker

may directly observe the unpadded memory blocks in the following analysis. Therefore,

µ(Û) = µ(U), σ(Û) = σ(U).

In AES, the lookup table relevant to key byte k has 16 unique memory block addresses.

With sufficiently random plaintexts and a warp with 32 threads, each thread accesses one of

16 memory block addresses in a uniform way. Hence, the number of unique block addresses

U , obeys the following distribution: P (U = i) = 1
1632

16!
(16−i)!

{
32
i

}
, where

{
32
i

}
denotes the

Stirling number of the second kind. Here,
{

32
i

}
represents the ways of partitioning 32

threads into i non-empty subsets; 16!
(16−i)! , i-permutations of 16, represents the ways of

forming i non-empty subsets from 16 memory block addresses. From this distribution, we

can compute both µ(U) and σ(U) by their definitions.

To compute µ(U×Û), we note that due to the random mapping from plaintext lines to

warps, U and Û only depend on the frequency of accessing the 16 memory block addresses

among the 64 lines of plaintext, which is defined as follows.

Definition 4 For 16 memory blocks and 64 plaintext lines, the frequency set of all possible

accesses to the block addresses are

F = {(f1, . . . , f16) | f1 + · · ·+ f16 = 64}
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Table 4.2: Security Analysis. S denotes the normalized number of samples required to
successfully recover an AES key byte [49]. c© 2020 IEEE.

Schemes Correlation ρ (normalized) S
RCoal(4) 0.15 42×
RCoal(32) 0.00 ∞
BCoal(16) 0.00 ∞

BCoal(1,16) 0.16 37×

where fi ∈ F represents the frequency of accessing the i-th memory block address among

the 64 plaintext lines.

Given F ∈ F , µ(U |F ) =
∑

fi∈F µ(1block i is accessed|fi), where 1block i is accessed is an

indicator random variable that has value 1 if block address i is being accessed in the

dominating warp. Given fi accesses to block address i, the probability that it is accessed

in the dominating warp is (1 − C64−32
fi

/C64
fi

), where Cmn denotes the binomial coefficient.

Hence,

µ(U |F ) =
∑
fi∈F

1− C32
fi
/C64

fi

Given F ∈ F , U and Û are independently and identically distributed. Hence,

µ(U × Û) =
∑
F∈F

P (F )µ(U |F )2 =
∑
F∈F

P (F )
( ∑
fi∈F

1−
C32
fi

C64
fi

)2
Here, P (F ) is the probability of seeing the frequency vector F . Among all 1664 com-

binations of memory accesses from 64 threads, C64
f1
C64−f1
f2

· · ·C
64−

∑
1≤j≤15 fj

f16
= (64)!

Πfi∈Ffi!

match F . Hence, we have P (F ) = (64)!
Πfi∈Ffi!

× 1
1664

.

Putting all pieces together, we use a Python script to compute the correlation and

normalized the sample size needed for a successful attack, similar to the RCoal analy-

sis [49]. The results are summarized in Table 4.2. We note that with 1 bucket, BCoal

rules out leakage entirely. With multiple warps, its security is comparable with RCoal(4),

the best of the RCoal schemes. Note that the results of RCoal in Table 4.2 only applies

when MSHR and caches are disabled. But with homogeneous padded and real accesses,

the results of BCoal also applies even if MSHR and caches are enabled.
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In summary, this theoretical security analysis demonstrates that when MSHR and

caches are disabled, both RCoal and BCoal schemes provide significant security against

the correlation timing attack. However, if the MSHRs and caches are enabled, RCoal

becomes vulnerable due to the access merging and caching as illustrated in Figure 4.8. In

contrast to RCoal, BCoal has high security even in the presence of MSHRs and caches as

shown both in Table 4.2 and in Section 4.6.1.

4.6.3 Experimental Analysis of Performance

To evaluate the performance and scalability of BCoal scheme against RCoal, we plot the

execution time and number of DRAM accesses in Figure 4.12 for plaintext with 32, 64 and

1024 lines. We first demonstrate the effect of different coalescing strategies in BCoal and

RCoal by comparing them in the absence of MSHRs and caches in Figure 4.12a. We note

that the number of DRAM accesses increases sharply with the plaintext size in RCoal

as compared to BCoal due to the inefficient access coalescing in RCoal. Consequently,

RCoal suffers severe performance degradation as compared to BCoal as the plaintext size

increases.

Figure 4.12b demonstrates the effect of MSHRs and caches on the performance of

BCoal and RCoal. Both schemes show a significant reduction in the DRAM traffic leading

to reduced performance degradation. However, in the presence of MSHRs and caches,

RCoal is insecure (Section 4.3.2) and BCoal is secure (Section 4.6.1 and 4.6.2). For BCoal,

the performance degradation is limited to 5% and 15% for BCoal(1, 16) and BCoal(16),

respectively. In summary, the performance of BCoal (with MSHRs and caches) scales well

with the plaintext size as opposed to secure RCoal (without MSHRs and caches).

4.6.4 Evaluating BCoal on Other Applications

We evaluate BCoal on a wide range of applications from various suites such as CUDA-SDK

(C) [97], Rodinia (R) [13], Lonestar (L) [10], Mars (M) [35], Shoc (S) [18] and Polybench

(P) [108]. For these applications, we evaluate only the performance of BCoal, as the
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Figure 4.12: Performance of BCoal for different plaintext sizes. All results are normalized
to the baseline GPU. c© 2020 IEEE.

bucketing driven reduced variation in the number of coalesced accesses ensures improved

security. The address range of the padded accesses is spread over the entire memory space

of the respective application. We examine the effects of the number and sizes of buckets

on the application performance using Figure 4.13. The MSHRs and caches are enabled

for the evaluation.

Number of buckets. In Figure 4.13, the first two configurations of BCoal, BCoal(1,

16, 32) and BCoal(1, 32), demonstrate the effect of the number of buckets on various

applications. Both configurations have a bucket of size 1 to reduce the DRAM traffic

in applications that exhibit perfect coalescing (i.e, all threads in a warp are served by a

single cache block at a given time). We notice that most applications are unaffected by

the number of buckets, as they can leverage the bucket of size 1 through good coalescing

profiles.

In C-CONS and C-NN, the number of DRAM accesses increase in BCoal(1, 32) as the

number of coalesced accesses between 2 to 31 are padded to meet the bucket 32. The in-
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Figure 4.13: Performance Evaluation of BCoal on GPGPU applications with MSHRs/-
caches enabled. Results are normalized to the baseline GPU. c© 2020 IEEE.

creased number of accesses in combination with high cache-misses results in increased

DRAM traffic leading to increased performance degradation. In C-TRA, P-CORR and

P-COVAR, although the number of DRAM accesses does not change drastically, the ex-

ecution time increased in BCoal(1, 32) over BCoal(1, 16, 32). The increase in execution

time is attributed to the increase in the number of L1 cache accesses in BCoal(1, 32) as

it lacks the bucket of size 16. The increased L1 accesses, even if cached (thus leading to

fewer DRAM accesses), are satisfied serially thereby increasing the execution time.

Sizes of buckets. BCoal(1, 32) and BCoal(16, 32) demonstrate the effect of bucket

sizes on various applications. We noticed that the performance degradation is severe for

BCoal(16, 32) compared to BCoal(1, 32) due to the increased number of DRAM accesses in

BCoal(16, 32). In BCoal(16, 32), the smallest bucket size is 16, therefore all applications,

even the ones with good coalescing profiles, generate at least 16 DRAM accesses for each

memory access instruction. Subsequently, the number of DRAM accesses increase resulting

in increased performance degradation.

In summary, we observe that the application performance is more affected by the sizes

of buckets than the number of buckets. A careful bucket size selection can reduce the

number of padded requests thereby reducing the overall data movement.

A Generic BCoal configuration. From Figure 4.13, we note that BCoal(1, 16, 32)
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configuration results in only 1.15% average performance loss. The security and perfor-

mance of AES with BCoal(1, 16, 32) is identical to BCoal(1, 16) because the bucket of

size 32 in BCoal(1, 16, 32) is never used as the baseline number of coalesced accesses never

exceed 16 as shown in Figure 4.6a. Therefore, BCoal(1, 16, 32) can be widely adopted as

it offers good security at a minimal performance loss. However, for optimal security and

performance tradeoff, a user can perform application-specific offline profiling of coalesced

accesses (discussed in Section 4.3) to determine appropriate bucket features.

4.7 Related Work

In this section, we highlight the prior works that are the most relevant to this paper.

Attacks. Implementations of cryptographic systems on CPUs are vulnerable to timing

attacks. Several AES implementations contain key-dependent memory accesses, which

eventually affect the status of the data cache. Via cache-probing technique, an attacker

can quickly recover the entire private key of AES and RSA by measuring the execution

time of either a cryptographic algorithm (e.g., [7, 100, 9, 8, 30]) or his/her own application

if the data or instruction cache is shared (e.g., [30, 142, 40, 145]). On GPUs, Jiang et

al. [44] demonstrated a novel complete AES key recovery timing attack that exploits the

coalescing features on a commercial GPU architecture (discussed in Section 4.2.4). They

also developed a new fine-grained timing channel caused by shared memory bank conflicts

in GPUs [45]. Wang et al.[130] developed partial attacks against RCoal[49] focusing on

the configurations with high variance in the number of coalesced accesses. Our BCoal

mechanism further reduces the variance making it a much stronger defense.

Defense mechanisms. Several hardware-based defense mechanisms have been proposed

in the context of CPUs [102, 67, 144, 132, 133, 70, 136]. However, those mechanisms

have been shown to work only for cache-based timing attacks and not for GPU coalescing-

related vulnerabilities. The memory traffic shaping schemes to mitigate the timing attacks

in CPUs have been extensively explored [146, 26, 4]. With the help of fake/dummy access
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generation mechanism, these schemes enforce the memory traffic to follow either a constant

rate or a pre-determined distribution over a time epoch. These schemes differ from BCoal

in two ways. First, BCoal works at a finer instruction-level granularity to shape the

memory traffic. The single-instruction multiple-thread (SIMT) execution model of GPUs

allows parallel thread memory access generation across a warp, which is leveraged by

BCoal to estimate and generate padded accesses for each sensitive instruction. Second,

BCoal ensures that the real and padded accesses are to the same memory space, which

helps in making their individual effects on execution time similar. This makes it harder

for the attacker to distinguish padded accesses from the real accesses.

Lin et al.[68] proposed new software-based mechanisms specific to AES for reducing

the information leakage due to coalescing units. On the other hand, BCoal is a generic

hardware-based coalescing mechanism applicable to all security-sensitive GPGPU applica-

tions that are vulnerable to coalescing-based correlation timing attacks. This also makes

BCoal complementary to other software-based implementations of cryptographic work-

loads. Köpf et al. [56] ensures that the execution time matches one of the discrete bucket

values, while BCoal ensures the number of memory accesses generated per load instruc-

tion conform to a predefined set of values, that is buckets. Further, buckets in the prior

work [56] assumes input blinding for a tight leakage bound. In BCoal, we utilize the in-

herent parallelism in GPUs to randomize the mapping from inputs to threads, achieving

a similar blinding effect for arbitrary applications.

4.8 Conclusions

We propose a bucketing-based coalescing scheme (BCoal) to thwart the coalescing-based

correlation timing attack without incurring high performance overhead. The key insight is

to redesign GPU memory coalescing such that it always issues a pre-determined number

of memory accesses (called buckets). Our modified coalescing unit generates additional

memory accesses (if necessary) along with the real accesses to match the bucket require-
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ments. These additional padded accesses reduce the variance in the total number of

coalesced accesses to significantly enhance the security. BCoal carefully generates padded

accesses such that they have similar caching/merging probability as that of the real ac-

cesses. Such a mechanism significantly helps in retaining the security even in the presence

of the MSHRs and caches. In conclusion, we believe that BCoal addresses the memory

coalescing related vulnerability in GPUs while incurring low performance overhead.



Chapter 5

Data-centric Reliability

Management in GPUs

5.1 Introduction

Graphics Processing Units (GPUs) have become an inevitable part of every computing

system due to their ability to provide large improvements in performance and energy ef-

ficiency compared to CPUs [60, 5, 69, 118, 59, 61, 106, 3, 2, 12, 54, 122]. Consequently,

they have become the default choice for accelerating innovations in various fields such as

high-performance computing (HPC), artificial intelligence (AI), and even reliability-critical

autonomous vehicle software [23, 109, 122, 93, 116, 98, 91, 96, 103]. The emerging comput-

ing needs of these domains have fueled the growth of GPU architectures. Especially, the

growing focus on deep learning has increased GPU demands tremendously. Almost every

year AMD and NVIDIA unveil new GPU designs that incorporate significant innovations

to their GPUs leading to improved performance and energy efficiency. For example, the

latest Ampere architecture [99] has an L2 cache size that is 10x larger comparing to pre-

vious generations and new high bandwidth memories are being incorporated into almost

all new GPUs.

The effect of the above innovations on GPU reliability is not yet well-understood.

80
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For example, advanced DRAM architectures make single-bit and multi-bit faults more

common [120, 125, 85, 86, 87]. Similarly, low voltage cache design proposals (i.e., AMD

Killi [27] or IBM Dante [11]) for managing power consumption of large last-level caches in

GPUs [27, 99] can cause an increased number of multi-bit faults. These multi-bit faults

can lead to catastrophic failures, such as accidents of autonomous vehicles [105, 16, 65, 43].

Unfortunately, the existing ECC mechanisms cannot correct multi-bit faults. SECDED is

only capable of detecting up to two-bit faults and of correcting one-bit fault only. Other

mechanisms such as ChipKill [19] are currently not feasible in GPUs [58]. Popular methods

such as check-pointing [90, 29, 58] come with significant overhead costs due to the large

amounts of data the GPGPU applications typically process [47]. Similarly, redundant

computation techniques, if not carefully performed, can lead to significant overheads in

terms of both performance and energy [21, 129, 31, 75, 137].

In order to provide low-overhead reliability in GPUs, especially in the context of multi-

bit faults, we take a data-centric approach. Based on our extensive application-level anal-

ysis, we find that for a large number of applications, only a limited amount of data needs

additional reliability protection compared to the baseline SECDED. Such data constitutes

a small fraction of the entire application memory, is read-only, and is highly accessed

and shared across the majority of concurrently executing warps. We show that if this

data is subject to multi-bit faults, it can lead to incorrect application output (e.g., high

mis-classifications errors in the case of neural networks) as the faulty data is accessed by

multiple thread instructions across the majority of warps. Interestingly, we observe that

this critical portion of the data can be profiled and this information can then be passed

on to hardware for developing low-overhead correction and detection mechanisms.

To the best of our knowledge, this is the first work that takes a data-centric approach

towards improving GPU reliability while incurring low overhead. In summary, this paper

makes the following contributions:

•We perform detailed application-level analysis to show that a small fraction of critical

data (hot memory blocks) used by a large number of GPGPU application threads can
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dramatically increase thread vulnerability to multi-bit faults. This data is usually read-

only and can be profiled with low-overhead.

• We develop both detection and correction schemes for application resilience that

prioritize reliability fortification of this identified critical data. Our resilience schemes

leverage data information obtained from the application source code and access pattern

for replicating only the hot memory blocks.

• Our reliability management schemes exhibit very limited overhead due to the small

fraction of data that gets replicated and to the fact that the performance overhead of

additional checks (and associated memory accesses) is largely hidden thanks to the latency

tolerance property of GPUs.

Quantitatively, our resilience schemes significantly improve GPU reliability by drop-

ping the number of silent data corruption (SDC) outcomes in the application runs by

98.97% on average, while incurring a low average performance overhead of 1.2% for de-

tection and 3.4% for detection-and-correction scheme.

5.2 Background

In this section, we present a brief overview of the baseline GPU architecture and the

sources of faults in the caches and memory. Finally, we describe the fault injection model

and the error metrics for each application used throughout the paper.

5.2.1 Baseline GPU Architecture

Figure 5.1 shows a generic GPU architecture. It is composed of a set of cores, known as

streaming multiprocessors (SMs) in NVIDIA terminology. Each SM consists of an array of

processing elements (PEs) and several load/store (LD/ST) units. Furthermore, each SM

is associated with an L1 cache shared across the PEs. Next, all SMs on the GPU share

multiple L2 cache banks which are connected through an interconnection network. Each

L2 cache bank is connected to a separate memory channel. Finally, all SMs are supported
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Figure 5.1: A Schematic of the Baseline GPU Architecture. c© 2021 IEEE.

by high-bandwidth off-chip global memory (DRAM). Throughout the paper, we evaluate

the proposed techniques on a cycle-level GPU simulator – GPGPU-Sim [6]. Note that we

assume that caches and memory are already protected by SECDED ECC and hence we

focus only on the effect of multi-bit errors on application output. Table 5.1 provides more

details on the simulated architecture.

Table 5.1: Key configuration parameters of the simulated GPU. c© 2021 IEEE.

Core Features 1400MHz core clock, SIMT width = 32 (16 × 2)
Resources / Core 32KB shared memory, 32KB register file, 15 SMs
L1 Caches / Core 16KB 4-way L1 data cache, 2KB 4-way I-cache

128B cache block size
L2 Caches 16-way 256 KB/memory channel (1536 KB in total),

128B cache block size
Memory Model 6 GDDR5 Memory Controllers, FR-FCFS scheduling

16 DRAM-banks, 924 MHz memory clock
Interconnect 1400MHz interconnect clock

Program Execution Model. A CUDA program consists of multiple functions known

as kernels. A kernel is launched across many threads, where each thread is responsible

for a set of instructions to be processed on the PEs. The threads are organized in groups,

known as Co-operative Thread Arrays (CTAs). The number of CTAs and their size (i.e.,

the number of threads per CTA) are configured by the programmer at the kernel launch

time. Each CTA is assigned to one SM. The number of CTAs assigned per SM is governed

by the resources available per SM. Threads of a CTA are executed on the PEs at a

granularity of warps, where each warp is usually a group of 32 threads. Within a warp,
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all 32 threads are processed in lockstep, executing the same instructions on different data.

5.2.2 Data Memory Faults in GPUs

Hardware faults arise due to particle strikes, temperature/voltage fluctuations, or pro-

cess variations [79]. Prior work has shown that GPUs are susceptible to a variety of

faults [77, 125, 85, 86, 120, 121, 27]. In this work, we focus on faults occurring in the

GPU memory hierarchy. Single-bit and multi-bit faults in the storage cells or the read

logic of the SRAM (cache) and DRAM may cause errors in the stored data [20, 14, 53, 52].

Consequently, the application may read erroneous data resulting in silent data corruption

(SDC) in its output.

The impact of the data memory faults on the application output depends on the

application usage. For example, a memory fault in the GPU while executing a convolution

neural network (CNN) can result in image mis-classification. If the CNN is employed

in self-driving automobiles, then such mis-classification can cause catastrophic results,

including loss of lives. We provide more details on the effects of faults on applications in

Section 5.3.3.

GPUs use (SECDED)-based error checking and correction (ECC) codes to address the

faults in GPU caches and memory [58]. SECDED ECC detects and corrects single-bit

faults, and detects double-bit faults in the application memory. However, the growing

multi-bit faults are harder and expensive to detect and correct. This is the focus of this

paper.

5.2.3 Fault Injection Setup

5.2.3.1 Fault Model

To emulate data memory errors caused by faults in caches and DRAM, we follow the

error emulation framework described by Luo et al. [74]. To this end, we inject faults in
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the data memory blocks allocated by the application address space, irrespective of how

they are mapped in the caches and DRAM. To clearly show the impact of increasing bit

faults, we run two sets of fault injection experiments: first, we inject faults only in a

single memory block. Second, we inject faults in 5 different memory blocks. For brevity,

additional options are not shown.

1 data memory block: We select one 128B data memory block from the application

address space. The memory block selection is determined by the objective of the fault

injection experiment (refer to Sections 5.3.3 and 5.5.2 for details).

5 data memory blocks: Here, we select 5 128B data memory blocks from the application

address space. As in the 1 memory block case, the block selection depends on the objective

of the fault injection experiment.

Within the selected memory block(s), we randomly target a word to inject faults. The

injected faults are modeled as permanent and stuck-at faults. Furthermore, for stuck-at

faults, we assumed that a faulty bit is stuck at either a logical 0 or 1 with equal probability.

To study the effect of multi-bit faults on the application output, we inject either 2-bit,

3-bit, or 4-bit faults at random bit locations within the target word. For each setting, we

execute 1000 runs to achieve statistically significant results [62, 33, 88].

5.2.3.2 Error Metric Selection

The faults in the data memory blocks may go undetected by SECDED-ECC in GPUs

and cause an incorrect application output. This is a case of silent data corruption (SDC).

To identify whether a fault-injected application run results in an SDC output, we adopt

metrics tailored to each application. For the applications from the Polybench suite, the

output is either a single- or multi-dimensional vector. To determine whether the output

is an SDC, we note how many vector elements deviate from the fault-free baseline output

vector. Applications from the Axbench suite generate images as output. Therefore, we

compare the output image from a fault-injected run with the output image from the fault-

free baseline run. Table 5.2 details the error metric selected for each application. For each



CHAPTER 5. RELIABILITY THROUGH ACCESS REPLICATION 86

Table 5.2: Output Error Metrics for Applications. c© 2021 IEEE.

Application Output Format Error Metric

C-NN Vector Classifications Percentage of Mis-sclassifications in
output.

P-BICG Result Vector Percentage of output vector elements
with different values than the
baseline.

P-GESUMMV Result Vector
P-MVT Result Vector
A-Laplacian Filtered Image

Normalized Root Mean Square Error
compared to the baseline image.

A-Meanfilter Filtered Image
A-Sobel Edge Detected Image
A-SRAD Image

application, we set a threshold value (either directly provided by the benchmark suite or

reasonably set based on the application behavior) to determine output quality, that is,

whether the application run resulted in an SDC outcome.

5.3 Motivation and Workload Analysis

In this section, we first highlight the problem of increasing memory faults in GPUs. Next,

we analyze the application memory access pattern and illustrate that a small fraction of

data memory (hot memory) in GPGPU applications is highly accessed and shared across

multiple warps. Finally, we demonstrate the vulnerability of GPGPU applications to faults

in hot memory.

5.3.1 Problem Definition and Goals of This Work

Current Trends. Innovations in GPU memory systems lead to tremendous growth

in performance and energy efficiency. For example, the on-chip GPU cache sizes are

consistently increasing across GPU generations to accommodate increasing working data

sets, see Figure 5.2. From the DRAM perspective, memory bandwidth and capacity are

growing consistently. Advanced high-bandwidth memories (HBM) in GPUs now have up

to sustained bandwidth of 1-2 TB/sec with capacities of 16-32GB [99].

Unfortunately, the effect of memory innovations on GPU reliability is not well under-

stood. Recent efforts are directed towards reducing on-chip power mainly by operating

the caches at near-threshold voltage [28, 27] but such reduction leads to a significant in-
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Figure 5.2: L2 Cache size trends for NVIDIA and AMD GPUs. c© 2021 IEEE.

crease in multi-bit faults [28]. Previous studies have demonstrated that SECDED ECC

is not sufficient to mitigate faults in DRAM [77, 120, 121]. Sridharan et al. [120, 121]

showed through a field study that DRAM failures are dominated by permanent faults

rather than transient faults and result in faulty data. Another field study by Martino et

al. [77] compares CPU and GPU error rates and demonstrates that GPUs are three-orders

of magnitude more susceptible to errors than CPUs.

Our goals. In this work, we aim to devise performance-efficient resilience schemes to ad-

dress the multi-bit faults in L2-caches and DRAM. Since GPUs operate on large amounts

of data in parallel, addressing the faults in the entire memory space incurs high perfor-

mance and storage overhead [21]. Aiming to minimize this overhead, we propose a selective

memory protection technique that is based on the observation that protecting only a small

fraction of the data memory against multi-bit faults is sufficient to provide high reliabil-

ity. To illustrate the above, we first analyze the memory access pattern of applications to

identify if there is a fraction of memory with a high number of accesses comparing to the

rest of the memory blocks. We show that this data is highly accessed and shared across

multiple warps. We term the memory blocks of this highly accessed and shared fraction

of the memory hot memory blocks. Next, we show that faults in hot memory blocks can

result in silent data corruption (SDC) of the application output. Finally, we develop mech-

anisms to identify the hot memory blocks. Our analysis of several application codes shows

that the hot memory blocks are usually read-only, constitute a very small fraction of the
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(a) C-NN
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(b) P-BICG
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(c) P-GESUMMV
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(d) A-Laplacian
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(e) A-Meanfilter
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(f) A-SRAD
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(g) C-BlackScholes
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(h) P-GRAMSCHM

Figure 5.3: Normalized number of accesses to data memory blocks. For (a)-(f), we note
that very few memory blocks experience a very high number of RD accesses compared to
other blocks. c© 2021 IEEE.

total application memory, and can be identified quickly. Using these insights, we pro-

pose two selective memory protection mechanisms, where we duplicate/triplicate the hot

memory blocks to achieve low-overhead detection/correction schemes. We also show how

reliability-performance trade-offs can be achieved by adjusting the amount of replication.
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5.3.2 Application Access Pattern Analysis

Application Selection. To evaluate the impact of the proposed resilience schemes, we

focus on applications with a clear and quantifiable output. Applications are drawn from

popular benchmark suites including CUDA-SDK [97], Polybench [108], and Axbench [143].

We also ensure that the selected applications show variability in terms of memory access

patterns.

Application Classification based on Access Pattern. We examine the read (RD)

accesses to the data memory blocks from the application address space. We focus on the

RD accesses as they are the most dominant ones in the memory access pattern. We analyze

the access count to each memory block of the application under observation. In Figure 5.3,

we show example plots for 8 applications, where the RD access counts to each memory

block are sorted from low to high. Based on the access patterns in Figure 5.3, we split the

applications into two primary categories. First, for applications in Figure 5.3(a)-(f), we

note that few memory blocks account for a high number of RD accesses. Specifically, for

C-NN, the memory block with the highest number of RD accesses has 4732-times more

RD accesses than the memory block with the least number of RD accesses. On the other

hand, for applications in Figure 5.3(g)-(h), we note that no memory blocks have high RD

accesses compared to the rest of the memory blocks. For example, for C-BlackScholes, the

numbers of accesses across different memory blocks are equal. Lastly, for P-GRAMSCHM,

the number of accesses increases in small steps, and therefore, there are no memory blocks

with a disproportionally high number of RD accesses.

Here, we focus on applications demonstrating access profiles similar to those shown

in Figure 5.3(a)-(f), where a small number of memory blocks accounts for a very high

number of RD accesses compared to the rest of the memory blocks. Table 5.2 lists the

selected applications.

Observation I: For several GPGPU applications, a small number of data memory blocks

incurs a very high number of read (RD) accesses as compared to the rest of the memory

blocks.
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Warp-level Spread of Highly Accessed Data. Next, we profile the RD accesses of

applications listed in Table 5.2 to see if the highly accessed data memory blocks are always

shared across multiple warps. To this end, we plot the number of warps accessing the data

memory blocks, with memory blocks sorted by the total number of RD accesses from low

to high, see Figure 5.4.
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(b) A-Laplacian
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Figure 5.4: Percentage of active warps accessing the data memory blocks. c© 2021 IEEE.

Figure 5.4(a)-(b) (P-BICG and A-Laplacian), show that the highly accessed memory

blocks are also shared across all the active warps. This trend is representative of all

applications in this study except for C-NN and A-SRAD. For C-NN and A-SRAD, see

Figure 5.4(c)-(d), we note that while the highly accessed data memory blocks are not

shared across all warps, they are still highly shared across multiple warps when compared

to the rest of the memory blocks.

Observation II: Highly accessed data memory blocks are typically shared across a large

number of warps compared to the rest of the memory blocks accessed by the applications.

Therefore, an error in the hot memory blocks (that are highly accessed and shared) can

spread across a large number of warps, making output degradation increasingly likely.
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Figure 5.5: Fault injection methodology to evaluate application vulnerability of hot
memory blocks to the memory faults. The data memory blocks are sorted based on the
total number of accesses to each block. c© 2021 IEEE.

5.3.3 Impact of Faults in Data Memory

Having identified the hot memory blocks in Section 5.3.2, here we test our hypothesis

that faults in these hot memory blocks likely cause an SDC of the application output.

Figure 5.5 illustrates our fault injection setup to demonstrate the effect of faults in the

hot memory blocks as compared to the rest of the memory blocks. The data memory blocks

are divided into two categories based on the access count profile shown in Figure 5.3: hot

memory blocks and the rest of the memory blocks ( 1 ). As explained in Section 5.2.3, we

do two distinct experiments: 1) with 1 block for fault injections per run and 2) with 5

blocks for fault injections per run. To demonstrate the likelihood of SDC output if faults

occur in the hot memory blocks, we select random data memory blocks only from the

hot memory blocks. We randomly target a word within each selected block ( 2 ) and then

inject faults at random bit locations in the target word ( 3 ). Next, to show the likelihood

of SDC output if faults are injected in the rest of the memory blocks, we select random

data memory blocks only from that space for fault injection.

We compare the SDC of the application output in both cases. Figure 5.6 shows the

number of SDC outcomes for the hot memory blocks and the rest of the memory blocks.

For all applications, we notice a clear trend: the number of SDC outcomes increases as

the number of faults for the selected data memory blocks increase. Furthermore, as the

number of faulty data memory blocks increase (5 faulty blocks vs 1 faulty block), the
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number of SDC outcomes further increases.
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Figure 5.6: Effect of faults in the hot (highly accessed/shared) memory blocks versus
the rest of the memory blocks on the application output. c© 2021 IEEE.

Observation III: Faults in the hot memory blocks likely result in more SDCs in the

application output comparing to faults in the rest of the memory blocks. Furthermore,

as the number of faulty data memory blocks and/or the number of bit faults per data

memory block increases, the probability of an SDC output increases.
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5.4 Data-centric Reliablity Management: Analysis, Design,

and Implementation

In this section, we describe the application source code analysis to identify hot data

objects. Based on this analysis, we introduce two resilience schemes that prioritize the

hot memory for reliability protection to minimize SDCs while incurring low performance

loss.

5.4.1 Application Source Code Analysis

As noted in Observation III, the hot memory blocks must be prioritized for reliability

protection. Therefore, we first identify to which input data objects in the application

source code these hot memory blocks belong. We start by examining the read-only data

objects in the application source code against the load instructions in the corresponding

PTX code. Here, we provide the analysis for the three representative applications –

namely, P-BICG, C-NN, and A-Laplacian.

We begin with P-BICG. The relatively simple source code of this application facilitates

understanding the access pattern to the data objects of interest. P-BICG application

accepts three read-only input data objects– A, r and q – for two CUDA kernel functions.

Listing 5.1 shows the source code for the first kernel, bicg kernel1, which accepts A

and r. From Listing 5.1, we note that A and r are accessed by each thread of a kernel

in a for-loop on line 14. After examining the PTX code for P-BICG in relation to the

addresses of the hot memory blocks, we note that only the memory blocks of data object

r are highly accessed. This can be seen by examining the access patterns of A and r with

respect to their access indices, [i * NY + j] and [i], respectively. Note that the offset

for the index of the data objects A increases by a large value of i * NY + j. Consequently,

the data memory blocks of A show low locality, and hence are not highly accessed and

shared. On the other hand, the index of r increases by a small value of i, which results

in uniformly strided accesses with a high locality. Consequently, the data memory blocks
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of r are highly accessed. We notice a similar access pattern for q in the second kernel of

P-BICG. Out of three read-only input data objects to P-BICG, r and q experience a very

high number of accesses and are shared across multiple warps.

Listing 5.1: First Kernel in P-BICG.

1 #de f i n e NX 3072

2 #de f i n e NY 3072

3

4 g l o b a l void b i c g k e rn e l 1 ( f l o a t ∗A, f l o a t ∗r , f l o a t ∗ s )

5 {

6 in t j = blockIdx . x ∗ blockDim . x + threadIdx . x ;

7

8 i f ( j < NY)

9 {

10 s [ j ] = 0 .0 f ;

11 i n t i ;

12 f o r ( i = 0 ; i < NX; i++)

13 {

14 s [ j ] += A[ i ∗ NY + j ] ∗ r [ i ] ;

15 }

16 }

17 }

Next, we analyze source code and the corresponding PTX code of C-NN and observe

that the data objects Layer1 Weights and Layer2 Weights, which are inputs to the

kernel functions of the first (shown in Listing 5.2) and second (not shown here) layers

of C-NN, are highly accessed and shared across different warps. Here, we focus only on

Layer1 Weights which incurs the highest number of accesses. Note that Layer1 Weights

is accessed on lines 11 and 15 in FirstLayer kernel of C-NN, see Listing 5.2. The access

generated by a thread of a block on line 11 is to the same data element of Layer1 Weights

across threads of a cooperative thread array (CTA)-block. As a result, the corresponding

data memory blocks of Layer1 Weights experience a high number of accesses from a

large number of threads from different warps. The next access to Layer1 Weights on

line 15 is inside a for-loop. Additionally, the offset to the index is regular and small

([weightBegin+i]). Consequently, as noted for P-BICG, this results in uniformly strided

accesses to the data memory blocks of Layer1 Weights. Since a large number of threads

execute the corresponding for-loop, the data memory blocks of Layer1 Weights get a very
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high number of accesses. This is also true for the data memory blocks of Layer2 Weights

in the next kernel of C-NN.

Listing 5.2: First layer in C-NN.

1

2 g l o b a l void F i r s tLayer ( f l o a t ∗Layer1 Neurons , f l o a t ∗Layer1 Weights , f l o a t ∗Layer2 Neurons )

3 {

4 in t blockID=blockIdx . x ;

5 i n t pixelX=threadIdx . x ;

6 i n t pixelY=threadIdx . y ;

7 i n t weightBegin=blockID ∗26;

8 i n t windowX=pixelX ∗2 ;

9 i n t windowY=pixelY ∗2 ;

10 f l o a t r e s u l t =0;

11 r e s u l t+=Layer1 Weights [ weightBegin ] ;

12 ++weightBegin ;

13 f o r ( i n t i =0; i <25;++ i )

14 {

15 r e s u l t+=Layer1 Neurons [ ( windowY∗29+windowX+kernelTemplate [ i ] ) +(29∗29∗ blockIdx . y ) ]∗

Layer1 Weights [ weightBegin+i ] ;

16 }

17 r e s u l t =(1.7159∗ tanhf (0 .66666667∗ r e s u l t ) ) ;

18 Layer2 Neurons [ (13∗13∗ blockID+pixelY∗13+pixelX )+(13∗13∗6∗ blockIdx . y ) ]= r e s u l t ;

19 }

Lastly, we examine the source code of A-Laplacian shown in Listing 5.3. The ac-

cess profile (Figure 5.3(d)) identifies the data memory blocks of the filter data object

d LaplacianMatrix as the most highly accessed (see line 24) In contrast to P-BICG and

C-NN, the index offset of d LaplacianMatrix does not change linearly. However, since

the entire d LaplacianMatrix fits in one memory block, its accesses converge to that

memory block. Consequently, the data memory block of d LaplacianMatrix is highly

accessed and shared across multiple warps. Following d LaplacianMatrix, width, and

height are the next most highly accessed and shared data objects.
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Listing 5.3: Filter Kernel in A-Laplacian.

1 g l o b a l void Lap l a c i anF i l t e r ( P ixe l ∗ g DataIn , P ixe l ∗ g DataOut ,

2 i n t ∗ width , i n t ∗ height , f l o a t ∗ d LaplacianMatrix )

3 {

4 s h a r e d Pixe l sharedMem [BLOCK HEIGHT∗BLOCK WIDTH] ;

5 i n t x = blockIdx . x ∗ TILE WIDTH + threadIdx . x ;

6 i n t y = blockIdx . y ∗ TILE HEIGHT + threadIdx . y ;

7 i f ( x < FILTER RADIUS | | x > ∗width − FILTER RADIUS − 1 | | y < FILTER RADIUS | | y >

∗he ight − FILTER RADIUS − 1)

8 {

9 in t index = y ∗ (∗width ) + x ;

10 g DataOut [ index ] = g DataIn [ index ] ;

11 return ;

12 }

13 in t index = y ∗ (∗width ) + x ;

14 i n t sharedIndex = threadIdx . y ∗ blockDim . y + threadIdx . x ;

15 sharedMem [ sharedIndex ] = g DataIn [ index ] ;

16 sync th r eads ( ) ;

17 i f ( threadIdx . x >= FILTER RADIUS && threadIdx . x < BLOCK WIDTH − FILTER RADIUS &&

threadIdx . y >= FILTER RADIUS && threadIdx . y < BLOCK HEIGHT − FILTER RADIUS)

18 {

19 f l o a t sum = 0 ;

20 f o r ( i n t dy = −FILTER RADIUS ; dy <= FILTER RADIUS ; ++dy)

21 f o r ( i n t dx = −FILTER RADIUS ; dx <= FILTER RADIUS ; ++dx)

22 {

23 f l o a t c en t e rP i x e l = ( f l o a t ) ( sharedMem [ sharedIndex + (dy ∗ blockDim . x + dx

) ] ) ;

24 sum += cen t e rP ix e l ∗ d LaplacianMatrix [ ( dy + FILTER RADIUS) ∗

FILTER DIAMETER + (dx+FILTER RADIUS) ] ;

25 }

26 Pixe l r e s = max(0 , min ( ( P ixe l )sum , 255) ) ;

27 g DataOut [ index ] = re s ;

28 }

29 }

We performed similar application source code analysis for all applications studied

here. Table 5.3 lists the read-only input data objects for the GPU kernel functions of each

application along with their respective sizes. The data objects are ordered from high to

low in terms of the number of accesses, those identified as hot data objects are in bold

and can be identified by examining the application source code. Lastly, from Table 5.3,

we note that while the hot data objects are highly accessed and shared, they occupy

significantly less space than the rest of the data objects combined. For example, in C-NN,

the hot data objects, that is Layer1 weights and Layer1 Weights, occupy only 2.15% of

the total application data memory. We notice a similar trend across all applications.
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We also performed runtime temporal analysis on the accesses to the hot data objects.

Since, in most applications, accesses to the data objects are uniformly strided with small

offset, the accesses have high temporal locality (e.g., for P-BICG). For other applications

such as A-Laplacian, since the hot data objects are small enough to fit in few data memory

blocks, accesses to these exhibit high temporal locality.

Table 5.3: Input data objects to the GPU applications. Data objects are sorted based
on the number of accesses incurred (Highest to Lowest). The emboldened data objects
are classified as hot data objects (highly accessed and shared). c© 2021 IEEE.

Application Input Data Objects Size of hot memory
blocks normalized to
the total application
memory (in percentage)

Percentage of accesses to
hot memory blocks w.r.t.
the total number of ac-
cesses

C-NN Layer1 Weights,
Layer2 Weights, Layer3 Weights,
Layer4 Weights, Images

2.15 34.99

P-BICG p, r, A 0.064 5.7
P-GESUMMV x, A, B 0.025 4.8
P-MVT y1, y2, a 0.048 5.8
A-Laplacian Filter, Filter Height, Fil-

ter Width, Image
0.001 73

A-Meanfilter Filter Height, Filter Width, Im-
age

0.0001 39.89

A-Sobel Filter, Filter Height, Fil-
ter Width, Image

0.001 73

A-SRAD i N, i S, i E, i W, Image 0.86 39.67

Observation IV: Through offline application source code analysis, the hot data objects

forming the hot memory blocks can be identified. Furthermore, these hot data objects

have a very small memory footprint (at the most 2.15%) compared to the rest of the

data objects. Lastly, the hot data objects experience high temporal locality.

Note that this analysis can be adapted for other applications using available binary

instrumentation tools for GPUs [127, 1]. The binary instrumentation tools offer two useful

functionalities: First, the memory tracing functionality can be extended to identify the

hot memory blocks. Second, the application instruction profiling at the binary level can

help to identify the hot data objects. The access pattern and source code analyses are

done once offline, and therefore, have no runtime overhead.
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5.4.2 Detection and Correction Resilience Schemes

We leverage the information related to hot memory blocks (Observations I, II, and IV)

to devise detection/correction schemes. We particularly focus on Observation III that

demonstrates that the hot data objects must be prioritized for protection against multi-

bit faults. As discussed in Section 5.3, the proposed resilience schemes target multi-bit

faults in L2-cache and DRAM. Our resilience schemes complement the existing SECDED-

ECC protection.

5.4.2.1 Multi-bit Fault Detection

As the read-only hot data objects prioritized for protection are smaller in size compared

to the total application memory (refer to Table 5.3), we replicate the hot data objects for

“protection”. Replication allows to easily identify the multi-bit faults by comparing their

two copies.

Given an application, we first sort the data objects based on the number of their

accesses and identify the hot data objects (this is done with a one-time offline source code

analysis as described in Section 5.4.1). For the applications studied in this work, Table 5.3

lists all the data objects per application sorted from high to low number of accesses. The

hot data objects to be prioritized for reliability protection are emboldened.

Next, we duplicate the selected data objects in the GPU DRAM at two distinct loca-

tions. During the application execution, if a memory access to the data memory blocks of

one of the reliability-protected data objects is an L1-cache hit, then the normal operation

takes place where the data is returned to the corresponding SM core. However, if the

access is an L1-cache miss, then the LD/ST unit at the L1-cache generates two accesses,

each to one of the two copies of the data memory block. Once both accesses return data

to L1-cache, the copies of data are compared bit-wise to identify any multi-bit faults. If a

bit mismatch is identified, then our reliability scheme generates a terminate signal to the

GPU application causing the application to exit early and notify the user. In this case,
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the user is expected to rerun the application.

Since the detection-only scheme duplicates the L1-cache missed accesses to the data

memory blocks of selected read-only data objects, the main source of performance loss

is the additional accesses going to the L2-cache and DRAM. To minimize performance

loss, we leverage the fact that this is a detection-only scheme: if the protected data is

corrupted, then the application is terminated. Therefore, it is not necessary to wait for

both copies of the data to arrive before proceeding with the application execution. Instead,

we devise a lazy bit comparison: once we receive the first data copy for a corresponding

load instruction, the execution moves forward. As soon as the second copy is received,

then the lazy comparison is performed to check for multi-bit faults. Consequently, any

performance loss is minimized as the execution is not stalled.

5.4.2.2 Multi-bit Fault Detection-and-Correction

We next describe the second resilience scheme which not only detects multi-bit faults but

also corrects them. To detect and correct the multi-bit faults, we employ a majority vote

mechanism that is implemented via data triplication. Each copy is stored at a distinct

location in the GPU DRAM with distinct memory addresses. For each L1-cache missed

access for the data object covered under the reliability scheme, we generate three accesses

to the L2-cache. Once all three accesses are returned to the LD/ST unit at the L1-

cache, we perform a three-way bitwise comparison on the received data copies. During

the comparison, if all the data copies have the same bits indicating no bit fault, then the

application execution moves forward. If a bit mismatch is observed in one of the copies

indicating a bit fault, then based on the majority vote the offending bit is changed to the

correct value. The corrected bit value is used for the computation. Since the data copies

are stored at distinct locations, the probability of the same bit fault occurring in all three

data copies is minimal.

In this detection and correction scheme, we wait for all three data copies to be received

in order to perform the three-way comparison for data correction. Consequently, the two
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sources of performance loss are 1) the increased number of memory accesses due to the

three accesses to the data and 2) the stall times when the LD/ST unit at L1-cache waits

for all three accesses to return with data. For the set of applications examined here, we

do not observe a significant performance loss, because the size of the input data objects

prioritized for the reliability improvement is small as shown in Table 5.3.

5.4.3 Implementation Overhead

In Section 5.4.1, we identified the hot data objects via manual application of source code

analysis. For an unknown application, the same access pattern analysis can be automated

with the assistance of binary instrumentation tools, such as NVBit [127]. Note that this

information collection is a one-time process and typically done offline. Based on the

profiled information, the following steps are performed.

First, we replicate the data objects protected by our resilience schemes in GPU DRAM

(either two or three times, depending on our target). We store the start addresses of each

copy of the data object. These start addresses are used to generate the replication accesses

to the required data index within the data object. To do so, we add the memory offset

calculated for the original memory access to the respective start address. For each data

object, we need either 32 bits or (2 × 32 =) 64 bits to store the start addresses in the

detection-only and detection-and-correction, respectively. We allocate 128 bytes for the

start address storage, which accommodates (128B/(32×4) =) 32 and (128B/(2×32×4) =)

16 data objects for detection and detection/correction, respectively. In our analysis, the

maximum number of data objects to a GPU application never exceeds five (Table 5.3).

We use a 32-bit adder to compute the data index mentioned above for the copy accesses.

Second, to replicate the L1-cache missed accesses to the protected data objects, we

track their respective load instructions. To do so, we store the addresses of load instruc-

tions to the corresponding data objects in the LD/ST unit near L1-cache. Each load

instruction needs 32 bits to store its address. We allocate 128 bytes for the instruction

address storage, which accommodates (128B/(32 × 4) =) 32 load instruction addresses.
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In our applications, the number of load instructions does not exceed 22. The LD/ST

unit checks the program counter to see if one of the load instructions to the protected

data objects experiences a miss, in which case, additional accesses are generated to the

copies of data objects. To compare the data copies, we use a 256-bit wide comparator for

comparing the data at 32B granularity. Lastly, we allocate 128 bytes to store at most 32

load instructions awaiting the comparison of their data copies at the LD/ST unit. Note

that all overheads associated with the data movement and stalls are modeled and final

results already include these overheads.

5.5 Experimental Results

In this section, we experimentally evaluate the proposed detection-only and detection-

and-correction resilience schemes using the applications listed in Table 5.2.

5.5.1 Performance Evaluation

Note that the results presented in this subsection come from one profiling run only. Fig-

ure 5.7 plots for each application a) the execution time for each application and b) the

L1-cache missed accesses. All metrics in Figure 5.7 are plotted normalized to the baseline

case (i.e., the baseline execution with no resilience scheme). Therefore, the “1.0” value on

the y-axis in each plot represents the baseline value. Note that the numeric values on the

x-axis correspond to the cumulative number of data objects covered under the resilience

schemes. The data objects covered are by their order of importance as shown in Table 5.3.

For example, for C-NN, “1” corresponds to Layer1 weights, while “2” corresponds to

Layer1 weights and Layer2 weights, and so on.

5.5.1.1 Detection-Only

For evaluating performance, we focus on the overhead due to the duplication of accesses in

the detection-only resilience scheme. Therefore, we ignore the cases where data memory
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Figure 5.7: Performance overhead of Detection-only (dark bar) and Detection-and-
Correction (white bar) resilience schemes. All numbers are normalized to the baseline
case (no reliability protection, 1.0). The hot data objects reside in hot memory blocks. c©
2021 IEEE.

errors result in application crashes. From Figure 5.7, we make the following observations.

First, across all applications, as the number of data objects covered by the detection-

only resilience scheme increases, the respective application execution times increase. This

loss in performance is consistent with the increase in L1-cache missed accesses due to

duplication. Second, the L1-cache missed accesses increase fractionally when we cover

only the hot data objects, which is attributed to their small memory footprint in addition
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to their spatial and temporal locality (Observation IV). Lastly, the detection-only scheme

implements a lazy bit-wise evaluation, where application execution proceeds when any

copy of the duplicated data arrives at the LD/ST unit of L1-cache. (Recall that the

execution does not stall awaiting both accesses to arrive.) Therefore, when only the hot

data objects are protected, the corresponding performance loss on average is only 1.2%,

see Figure 5.7. In contrast, when all data objects are protected, the average performance

loss becomes 40.65% due to the steep increase in duplicated accesses.

5.5.1.2 Detection-and-Correction

We make the following observations from Figure 5.7 regarding the detection-and-correction

scheme. First, similar to the detection-only scheme, as the number of protected data ob-

jects increases, the L1-cache missed accesses increase but this increase is larger comparing

to detection-only. This is expected as accesses are now triplicated. In addition, to correct

the fault(s), execution is stalled for all three accesses to arrive with data. Consequently,

the execution time increases as a function of the volume of the protected data objects.

It is interesting to note that when we enable detection-and-correction for hot data

objects only, the corresponding average performance loss is only 3.4% as the increase in

the number of L1-cache missed accesses is still minimal (almost at the same level as for

the detection-only scheme). If all application data objects were to be triplicated, the

average performance loss shoots to 74.24%. Overall, the performance loss triggered by

the detection-and-correction is much higher than for the detection-only scheme if all data

objects are protected but it is nearly at the same level with detection-only if only hot data

objects are protected.

5.5.2 Reliability Evaluation

We evaluate the two resilience schemes based on the percentage of SDC outcomes for

1000 fault injection experiments. Recall that this number of experiments is necessary

to achieve results of statistical significance (95% confidence intervals with ±3% error
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Figure 5.8: Fault injection for evaluating fault detection-and-correction: the probability
of a memory block selection depends on the number of its L1-missed accesses (since the
proposed schemes address faults in L2-caches and DRAM). c© 2021 IEEE.

margins) [62, 33].

We inject faults in the entire application memory space, see Figure 5.8. Specifically,

for reliability evaluation, we select the data memory block(s) where the faults are to be

injected based on its number of L1-missed accesses (a missed access forces bringing data

from L2-caches and DRAM which are highly susceptible to faults) during an application

run ( 1 ). Recall that we perform two distinct experiments: 1) with 1 block for fault

injections per run and 2) with 5 blocks for fault injections per run (see Section 5.2.3). We

randomly target a word within the selected memory block(s) for fault injections ( 2 ) and

then inject faults at random bit locations in the selected word ( 3 ).

Figure 5.9 plots the number of SDC outcomes versus the (cumulative) number of data

objects protected by the resilience schemes. Across all applications, the baseline case with

no enabled resilience scheme is more susceptible to faults. As we cumulatively protect more

data objects, the number of SDC outcomes reduces. When either the per memory block

bit faults or the number of faulty memory blocks increases, the number of SDC outcomes

increases as well. Across all applications, protecting hot data objects with the proposed

resilience schemes decreases the number of SDC outcomes significantly (an average drop

of 98.97%) across all fault injection configurations.1

1In some cases, we observe that the number of SDC outcomes is less than 3% (the statistical error
margins). However, the majority of cases, especially at higher fault rates, demonstrate clear benefits of
our schemes.
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Figure 5.9: Silent data corruption due to faults in L2-cache and DRAM: The x-axis
represents the number of protected data objects cumulatively increasing, starting from the
baseline case (no data objects are protected). The y-axis shows the number of SDC outputs
out of 1000 runs for each error injection configuration. The detection-only/dectection-
and-correction schemes stop the multi-bit data memory errors caused by the faults from
propagating to the output. c© 2021 IEEE.
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5.5.3 Reliability and Performance Tradeoff

Figure 5.9 shows that in the absence of resilience schemes, GPGPU applications are highly

vulnerable to multiple memory faults. Yet, as we cumulatively protect an increasing num-

ber of data objects, the number of SDC outcomes decreases, but at a small performance

cost. Figure 5.7 shows that since the focus is on protecting a limited number of hot data

objects, the performance degradation due to protection is indeed minimal. Across all ap-

plications, with the detection-and-correction (the detection-only) scheme, on average hot

memory blocks can be protected with a performance loss of only 3.4% (1.2%) resulting in

a 98.97% drop in the number of SDC outcomes. On the contrary, if all data are protected

the performance loss becomes 74.24% (40.7%). By selecting the number of data objects

to be protected and especially when protection is applied to hot data objects only, the

desired reliability and performance tradeoff can be achieved.

5.6 Related Works

To our knowledge, this is the first work that makes a case for data-centric reliability

management in GPUs. In this section, we briefly discuss the works that are most related

to ours.

Memory/Cache Errors. Sridharan et al. [120] discovered that almost half of the DRAM

faults are multi-bit failures, and more than 50% of the DRAM faults are permanent. Tiwari

et al. [125] showed through a large scale GPU study that GPU DRAM is most vulnerable

to multi-bit errors compared to the rest of GPU hardware. Furthermore, two independent

studies demonstrate the necessity of improved ECC, such as Chipkill, instead of SECDED

due to increasing multi-bit errors in DRAMs [77, 121]. Due to increasing cache sizes,

several efforts have been developed to operate caches at low voltage to improve power

efficiency. Recent works have demonstrated experimentally that bit faults increase as

the operating voltage of the cache reduces [28, 11, 27]. In this paper, we address these

multi-bit faults in cache/memory via low-overhead detection/correction mechanisms.
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Error Injection Studies. GPU-Qin injects fault at the micro-architecture level to sim-

ulate transient faults in GPUs, excluding caches and memory [24, 25]. LLFI [64] is an

LLVM compiler-based fault injection framework for GPUs, where an intermediate repre-

sentation is modified to simulate error injection. SASSIFI [33] directly injects faults into

low-level SASS instructions. PCFI [110] inject errors in different parts of instructions to

simulate errors in the GPU register files and memory. Unlike the compiler-based meth-

ods used in GPU-Qin and SASSIFI, Tselonis et al. [126] propose GUFI to validate the

feasibility of using the commonly used GPGPU simulator, GPGPU-Sim [6] to study the

reliability of GPGPU applications. Nie et al. [88] propose a fault-site pruning mechanism

that dramatically reduces the number of required fault-injection experiments in GPGPU

applications to obtain results of high statistical significance, this pruning methodology is

also adapted for multi-bit faults [138]. SUGAR [139] speeds up the evaluation of GPGPU

application error resilience by judicious input sizing and illustrates how analyzing a small

fraction of the input is sufficient to estimate application resilience with high accuracy while

dramatically reducing experimentation time.

Reliability Solutions. Redundant computations by modifying source code are explored

for fault tolerance as GPUs have a large number of on-chip cores [21]. Thread remap-

ping into reliable and unreliable warps can facilitate partial replication mechanisms for

error detection/correction at the warp level and shows superior performance to standard

duplication/triplication [137]. Nie et al. [84] show that when a quantifiable loss in out-

put quality is acceptable to the user, one can reduce the overhead of protection/recovery

mechanisms by taking advantage of resilience patterns of threads at different hierarchies

(i.e., kernel/thread-block/warp). Compiler-based redundant multithreading (RMT) com-

pares the outputs from replicated computations for error detection, albeit with a highly

variable performance loss [129, 31]. Mahmoud et al. [75] introduce a replication algorithm

to duplicate select GPU instructions while maintaining low performance loss. Another

approach for fault-tolerance is checkpoint-restart, where upon the fault occurrence the

application restarts from the last checkpoint [90, 29]. However, the associated overhead
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of the checkpoint-restart mechanism is prohibitive [58].

For caches operating at low voltage, Killi [27] offers a variable ECC mechanism for a

subset of L2 cache lines, while disabling the cache lines with more than one fault at the

cost of cache capacity. Chandramoorthy et al. [11] implement a boosted SRAM cache,

where the cache voltage is boosted for each read and write operation.

Prior works suggest heterogeneous reliability solutions for CPU workloads [38, 74,

63, 73, 32]. Hukerikar et al. [38] devise a software-based parity mechanism to improve

the reliability of critical program objects in HPC applications. Luo et al. [74] show that

applications exhibit different memory error resiliency based on the error location in DRAM

and propose a hardware/software mechanism to enhance memory reliability. Li et al. [63]

profile scientific applications to relate changes in application behavior and the location

and frequency of error. SDCTune [73] identifies and protects SDC-prone program data

based on static and dynamic features. Hari et al. [32] deploy low-cost program detectors in

the SDC-crucial section of the program to identify and reduce SDCs. Ranger [15] restricts

output values of selected layers in CNNs to minimize error propagation to improve CNN

resilience.

The schemes proposed in this work complement the SECDED ECC by detecting and

correcting multi-bit faults in the GPU L2 cache and DRAM. To the best of our knowledge,

this is the first work that identifies the most vulnerable data in the context of GPGPU

application resilience. Based on this information, our schemes protect the highly-used

input data objects and provide improved reliability at a low overhead.

5.7 Conclusions

Multi-bit faults are typically an unwanted side-effect of GPU memory performance inno-

vations. In this paper, we perform an in-depth application-level analysis of memory access

patterns and show that a large number of applications work on a limited number of hot

data objects of highly-accessed data, which are also shared by a majority of warps. Such
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highly accessed and shared data is vulnerable to faults potentially leading to silent data

corruption in the application output. We show that as hot data objects constitute a small

fraction of the total memory footprint, protecting them against faults is an inexpensive

solution that provides high application resilience in the presence of multi-bit faults.



Chapter 6

Exploration of the Reliability of

ML Models

The emerging machine learning (ML) models are becoming increasingly complex. As a

result, the ML models need larger storage space and are getting slower. Consequently,

several optimizations have been introduced to reduce the ML model size and the execution

times. The popular optimizations include weight compression [22], weight pruning [140]

and weight quantization [134]. However, the reliability of ML models in the presence of

these optimizations is not explored in detail. To bridge this gap, this chapter explores the

reliability of ML models that employ weight quantization.

6.1 Advantages of Weight Quantization in ML Models

This initial study specifically focuses on the weight quantization of the machine learning

models, where the data type of weight parameters is quantized from the default 32-bit

floating-point (FP32) to a smaller data type, for example, 8-bit integer (INT8). We

evaluate the effect of the weight quantization on the model size, execution time, and

classification accuracy across different ML models using the ImageNet dataset [115]. We

use PyTorch [104] Framework for the evaluation. The results are summarized in Table 6.1.

110



CHAPTER 6. EXPLORATION OF THE RELIABILITY OF ML MODELS 111

Table 6.1: Comparison between 32-bit floating-point and weight quantized (INT8) ML
models.

ML Model
Number of

Convolution Layers
Size (MB)

Execution Speedup
Accuracy (%)

FP32 INT8 FP32 INT8
AlexNet [57] 5 234 59 4.02X 56.624 56.092
VGG19 [119] 16 575 144 5.26X 72.36 47.146
ResNet50 [36] 53 103 76 18.55X 76.012 75.854
InceptionV3 [123] 94 109 25 11.60X 77.248 77.062

From Table 6.1, we note that the weight quantization offers significant storage size

reduction and execution speedups across all ML models studied here. Furthermore, except

for VGG19, the degradation in classification accuracy is minimal.

6.2 Impact of Memory Faults on the Quantized Models

In this section, we evaluate the reliability of FP32 and INT8 ML models when memory

faults occur. We quantify the reliability of an ML model by observing the classification

accuracy. To do so, we focus on the images correctly classified during a baseline (fault-free)

execution run. We use validation images from ImageNet dataset [115].

6.2.1 Fault Model

The convolution layers in the image classifier ML models are computationally important

layers. Therefore, we focus on the faults in the convolution layers. Specifically, we inject

faults in the weights of the convolution layers. We select a random weight element from

a random convolution layer of the ML model under study. In the selected weight element

we randomly flip two bits irrespective of the data type of the weight element. The faults

are modeled as permanent faults. To meet the statistical significance, we execute 3000

fault injection runs [62, 33, 88].

6.2.2 Impact of Memory Faults

Figure 6.1 illustrates a histogram to demonstrate the impact of memory faults on the

classification accuracy of FP32 and INT8 AlexNet models. In Figure 6.1, the x-axis
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represents the percentage of mis-classifications per execution run. The bin size on the

x-axis is 0.25%. On the y-axis, we plot the number of execution runs corresponding to the

percentage of mis-classifications on the x-axis.

(a) FP32 (b) INT8

Figure 6.1: Impact of faults in a weight element on the classification accuracy in FP32
and quantized (INT8) AlexNet model.

In Figure 6.1, for FP32 model, we note that around 90% (2690 out of 3000) of execution

runs experience a negligible percentage of mis-classifications (at most 2.5%) when the faults

are injected in a weight element. In contrast to the FP32 model, for the weight quantized

INT8 ML model, only around 33.4% (1002 out of 3000) of execution runs experience a

very low percentage of mis-classifications. Around 66.7% of execution runs experience

more than 2.5% of mis-classifications. Therefore, we conclude that the weight quantized

(INT8) ML model is more vulnerable to the faults in the weights compared to the FP32

ML model.

Next, we identify the convolution layers most vulnerable to the faults. To this end, we

segregate the fault injected execution runs in Figure 6.1 based on in which layer the faults

were injected. Figure 6.2 illustrates the impact of faults on the classification accuracy

for the individual convolution layers of AlexNet when selected fault injection. For both –

FP32 and INT8 – models, we note that when the faults occur in the earlier convolution

layers, the probability of mis-classification is higher as compared to when the faults occur

in the latter layers. Therefore, we conclude that the earlier layers of an ML model should

be prioritized for reliability protection.
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(a) FP32
(b) INT8

Figure 6.2: Contribution of faults in weights of different convolution layers of float 32
(FP32) and quantized (INT8) ML models on the classification accuracy.
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The future work may consider exploring different low-overhead reliability techniques

to improve the resiliency of the weight quantized ML models.



Chapter 7

Conclusion and Future Research

Directions

7.1 Summary of Dissertation Contributions

GPUs exploit the inherent parallelism in applications to offer significant performance and

power efficiency benefits over CPUs. As a result, GPUs are being increasingly deployed

across a wide range of applications, such as financial computing, machine learning, medical

imaging. Most of the aforementioned applications process confidential information, for

example, encryption keys, user medical/financial data, etc. Furthermore, GPUs are also

deployed in critical applications, such as self-driving cars, scientific computing, etc. These

applications demand reliable compute operations on GPUs as faulty computations could

lead to either fatalities or loss of resources. Consequently, our research focuses on secure

and reliable GPU computations. To this end, we make the following contributions:

1. Improving GPU Security

For GPU security, our research focuses on mitigating a previously demonstrated cor-

relation timing attack on GPUs. The attack exploited the deterministic nature of the

memory access coalescing in GPUs to correlate the number of accesses and the execution

time to recover the AES encryption keys. We introduce two hardware-based defense mech-

115
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anisms to prevent the leakage of confidential data due to the correlation timing attack.

Our first defense mechanism, RCoal, randomizes the GPU coalescing mechanism so

that a random number of memory accesses are generated which in turn makes the execution

time unpredictable. Consequently, an attacker cannot correlate the number of accesses

and the execution time, thus fails to recover the AES encryption keys. We evaluate RCoal

scheme through the theoretical and empirical analysis to demonstrate that RCoal mitigates

the correlation timing analysis. Furthermore, RCoal offers a tradeoff between the desired

security and performance overhead.

While RCoal improves the GPU security against the correlation timing attack, it also

incurs a high performance overhead as RCoal disables caches and miss-status holding

registers (MSHRs) for security. To address the performance loss of RCoal, we introduce a

bucketing-based coalescing mechanism, BCoal. BCoal always generates a constant number

of accesses, termed as a bucket, by padding the original number of accesses with additional

accesses whenever necessary. Additionally, BCoal generates the padded accesses such that

the memory optimizations performed by the caches and MSHRs do not affect the security

offered adversely. Consequently, BCoal offers security against the correlation timing attack

with a minimal performance overhead. Our theoretical and empirical analysis show that

BCoal successfully thwarts the correlation timing attack. BCoal also provides a tradeoff

between the security and performance overhead, which can be set by the user.

2. Improving GPU Reliability

For GPU reliability, our research focuses on addressing the multi-bit data memory

faults in the L2 cache and DRAMs while incurring a low performance overhead. To

this end, we adopt a data-centric approach, wherein a user can decide the data memory

coverage of the reliability scheme based on the desired performance overhead. We begin

with application profiling to identify the fraction of the data memory highly accessed

and shared across GPU threads. We call this highly accessed and shared memory as

hot memory. We, furthermore, note that the memory footprint of the hot memory is

very small compared to the rest of the application memory. Using the fault injection
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simulations, We demonstrate that the memory faults in the hot memory will more likely

result in GPU output corruption as compared to the memory faults in the rest of the

memory. Consequently, we prioritize the hot memory for reliability protection. To this

end, we propose two reliability schemes, detection-only and detection-and-correction, to

address the memory faults. Both our reliability schemes offer a tradeoff between the

desired reliability and performance overhead.

7.2 Future Research Directions

The machine learning (ML) applications are deployed in different applications, such as

medical imaging and self-driving cars. These applications demand protection against

attacks that may steal confidential data, such as patient details. Furthermore, the afore-

mentioned applications need a reliability guarantee to ensure correct application output,

for example, in a self-driving car. As a result, the security and reliability aspects of the

ML applications are now leading research challenges.

On the security front, innovative attacks are launched against the hardware accelera-

tors, such as GPU, to steal the private user information processed by the ML applications

and the proprietary ML model parameters. Therefore, to improve the security of ML

applications the following questions should be considered:

• What are the software and hardware vulnerabilities of ML applications that an

attacker can exploit to launch an attack?

• How to mitigate the attacks on the ML applications while maintaining low perfor-

mance overhead?

On the reliability front, the reliability of ML applications could be studied in light

of different optimizations applied to the ML models to speedup their execution time and

reduce their storage size. The baseline (unoptimized) ML models are usually quite resilient

to the faults. However, the model optimizations, such as weight quantizations, can make

the ML applications more vulnerable to the faults in the weight elements of the ML
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model. Consequently, following questions are raised in regards to the reliability of the ML

applications:

• How to quantify the adverse effects of different model optimizations, such as weight

quantization and pruning, on the reliability of ML applications?

• How to improve the reliability of ML applications when different model optimizations

are applied to the underlying ML models?
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