
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/20468

To cite this version :

Tanguy LOREAU, Victor CHAMPANEY, Nicolas HASCOËT, Philippe MOURGUE, Jean-Louis
DUVAL, Francisco CHINESTA - Learning the Parametric Transfer Function of Unitary Operations
for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing - Applied
Sciences - Vol. 11, n°11, p.5146 - 2021

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/20468
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Learning the Parametric Transfer Function of Unitary 
Operations for Real-Time Evaluation of Manufacturing
Processes Involving Operations Sequencing

Tanguy Loreau 1,2,∗ , Victor Champaney 1,2, Nicolas Hascoët 1, Philippe Mourgue 3, Jean-Louis Duval 2,3 

and Francisco Chinesta 1,2,3,∗

Citation: Loreau, T.; Champaney, V.; 

1 PIMM, CNRS, ENSAM, HESAM, 151 Boulevard de l’Hôpital, 75013 Paris, France;
victor.champaney@ensam.eu (V.C.); nicolas.hascoet@ensam.eu (N.H.)

2 ESI Group Chair CREATE-ID, ENSAM Institute of Technology, 151 Boulevard de l’Hôpital,
75013 Paris, France; Jean-Louis.Duval@esi-group.com

3 ESI Group, 3bis, Rue Saarinen, CEDEX, 94528 Rungis, France; Philippe.Mourgue@esi-group.com
* Correspondence: tanguy.loreau@ensam.eu (T.L.); Francisco.Chinesta@ensam.eu (F.C.)

Featured Application: This paper aims at proposing a machine learning methodology for creating
a parametric transfer function of unitary operations, to be applied in the real-time evaluation of
sequenced operations. This methodology will be applied to the real-time evaluation of induced
structural distortions when printing stiffeners, for any chosen printing operation sequencing.

Abstract: For better designing manufacturing processes, surrogate models were widely considered
in the past, where the effect of different material and process parameters was considered from the
use of a parametric solution. The last contains the solution of the model describing the system
under study, for any choice of the selected parameters. These surrogate models, also known as
meta-models, virtual charts or computational vademecum, in the context of model order reduction,
were successfully employed in a variety of industrial applications. However, they remain confronted
to a major difficulty when the number of parameters grows exponentially. Thus, processes involving
trajectories or sequencing entail a combinatorial exposition (curse of dimensionality) not only due
to the number of possible combinations, but due to the number of parameters needed to describe
the process. The present paper proposes a promising route for circumventing, or at least alleviating
that difficulty. The proposed technique consists of a parametric transfer function that, as soon as it
is learned, allows for, from a given state, inferring the new state after the application of a unitary
operation, defined as a step in the sequenced process. Thus, any sequencing can be evaluated almost
in real time by chaining that unitary transfer function, whose output becomes the input of the next
operation. The benefits and potential of such a technique are illustrated on a problem of industrial
relevance, the one concerning the induced deformation on a structural part when printing on it a
series of stiffeners.

Keywords: surrogate model; additive manufacturing; sequenced process; dynamic mode decompo-
sition; parametric transfer function; model order reduction; artificial neural network

1. Introduction

When joining one flexible part to another with several screw holes, it is not uncommon
to end with some screws that do not enter in their hole. This can be due to some tolerance
issue, but it can also be due to the deformation of the part induced by the residual stresses
due to the stresses applied by the previous operations. In this case, the parts can not
be successfully joined because of the order chosen in the joining unitary operations, as
illustrated with the red screw in Figure 1.

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6881-229X
https://doi.org/10.3390/app11115146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/article/10.3390/app11115146?type=check_update&version=1


Figure 1. The red screw cannot join the two parts because of the screwing order.

In the industry, this example from everyday life is often met when welding [1–3],
screwing, or joining two flexible parts: if the operations of fixation are not executed in a well
designed order, these parts may not be well assembled considering the project requirements.
Additive manufacturing of stiffeners on metal sheets produces the same kind of issues [4,5].
It generates some deflections on these parts. This results in an impossibility to assemble
them on the whole structure.

To design this kind of sequential processes, one possible solution is to test some specific
sequences which seem suitable in high fidelity simulations. Indeed, for sequences involving
a lot of unitary operations, it is not an option to compute each of them: computational
time for only one sequence of operations may take several hours. Thus, teams designing
these processes explore a very small area of the space of possible sequences. Thus, the
quite poor exploration of the design space results in a non optimal choice of the process
sequencing. Some sequences may have improved significantly the quality of the final
product, but they were not tested because of the unaffordable computational time to test
all possible combinations (often in the order of millions).

To overcome the computational cost issue, a valuable route consists of using a reduced
order model [6–8]. The main purpose of model order reduction is to identify a statistical
approximation function f that transforms the inputs X into outputs Y

Y ≈ f (X). (1)

Nowadays, these approaches are very common in the industry: aerodynamics, thermal
comfort, Noise–Vibrations–Harshness (NVH), nonlinear transient dynamics. For a given
loading, the studied system is simulated for several choices of the design parameters.
Then, inputs and outputs are extracted. Finally, the Reduced Order Model –ROM– is
built by computing the approximation function f . The learned model enables simulation,
optimization, inverse analysis, uncertainty propagation, and simulation-based control, in
almost real time, with the expected positive impact in the design and validation processes.

The use of reduced basis in support of machine learning of parametric models or
dynamical systems is attracting the interest of the scientific community [9,10]. Building
reduced order models –ROMs– of a series of unitary operations remains a challenging
issue for the state-of-the-art methodologies because of the combinatorial explosion induced
by all the possible sequences of applying those unitary operations. In this work, we
propose a methodology that allows for alleviating that difficulty, where, more than looking
for representing the effect of any possible sequence, we look for describing the effect of
a unitary operation on the thermomechanical state resulting from the previous unitary
operation. The efficient implementation is based on the fact that the thermomechanical
state all along the whole process can be efficiently expressed (parametrized) in a reduced
basis, extracted by invoking the Singular Values Decomposition –SVD–.

This methodology concerns both data preparation and regression. Concerning the
data, a reduced basis able to represent any possible state of the system will be extracted. Its
coefficients, describing the projection of any state on that basis, is assumed as features of
the learned model. The other features are the ones related to the sequencing. Concerning
the regression able to transform the input features (present state) into the output describing
the state of the system after a unitary operation, according to the sequencing plan, two
different techniques will be employed and compared: the Neural Network –NN– [11] and
the Dynamic Mode Decomposition –DMD– [12].



A dictionary of unitary operations will be constructed with all the corresponding
unitary transfer functions. It will then be used in order to evaluate any sequencing almost
in real time, by chaining these unitary transfer functions, whose output becomes the input
of the next operation.

The benefits and potential of such a technique will be illustrated on a problem of
industrial relevance: the one concerning the induced deformation on a structural part when
printing on it a series of stiffeners, as presented in Section 2.

2. Materials and Methods

The methodology presented in this paper has been developed on a representative case
of study. In this section, we briefly revisit the techniques that will be employed. Then, we
describe the case of study we used in this work. Finally, we present the whole methodology,
from the model construction to the surrogate model use. In what follows, all the high
fidelity simulations have been performed offline by using the commercial software VPS
(Virtual Performance Solution) by ESI Group. The whole reduction process is then made
by using a standard laptop (6 cores, 3 GHz, 16 GB RAM).

2.1. Data Reduction and Model Learners

For the sake of completeness, this subsection revisits the main techniques that will be
employed later: the Singular Values Decomposition –SVD–, the Dynamic Mode Decompo-
sition –DMD–, and the Multi-Layer Perceptron –MLP–.

2.1.1. Singular Values Decomposition

The purpose of the SVD [13] is to decompose any rectangular matrix A of dimensions
N × T as the product of three matrices: U, Σ, and VT

A = UΣVT, (2)

where U is an orthogonal matrix of dimension N × N, Σ a diagonal matrix and V an
orthogonal matrix of dimensions T × T (here, it is assumed that all the matrices are
real valued).

Columns of U are the principal components of A, also called modes. Non-zero
components of Σ, σ1 ≥ σ2 ≥ · · · , are called singular values. Columns of V are the principal
components of size T instead of N: if N is the number of degrees of freedom and T the
number of time instants in the dataset, columns of U are the space principal components
and columns of V are the time principal components.

With this decomposition, one can easily approximate ai, the ith column of A, by
projecting it on the principal components, to compute its reduced coordinates (αi1, · · · , αir)

[αi,1 · · · αi,r] = aTi Ũ, (3)

where Ũ contains the first r columns of U.
The columns ai can be approximated in the reduced basis composed by the columns

of Ũ

ai ≈
r

∑
j=1

αijuj. (4)

Thus, the SVD allows for approximating any rectangular matrix A by projecting its
columns in a reduced basis consisting of r dimensions instead of N, with in general N � r.
More details on this technique can be found in [14–16].



2.1.2. Dynamic Mode Decomposition

When working on the approximation of a dynamical system, one can try to reduce its
complexity. One can also be tempted in approximating the state X at time ti+1 from the
one existing at time ti, ∀i

X(ti+1) = f (X(ti)), i ∈ {1, . . . , T − 1}. (5)

This is the rationale employed in the DMD [17–20]. Equation (5) can be rewritten as

X(ti+1) = A X(ti), i ∈ {1, . . . , T − 1}, (6)

with A a square matrix of size N. Writing Equation (6) for each state of the system leads to
the following matrix equation:

X = AX̃, (7)

with X = [XT XT−1 · · · X2], X̃ = [XT−1 XT−2 · · · X1]. The DMD model, i.e., the matrix A,
can be computed by applying different techniques, one of them described and used later.
By replacing the linear operator A with a nonlinear function f , stronger nonlinearities can
be efficiently addressed as reported in [21] by using neural networks.

2.1.3. Multi-Layer Perceptron

Neural Networks are a class of nonlinear regressors. Given a set of inputs X and a set of
outputs Y, one can easily use a Neural Network to compute a nonlinear function f such as

Y ≈ f (X). (8)

When an NN contains more than one hidden layer of neurons, it is called Multi-
Layer Perceptron. Figure 2 schematizes the architecture of a MLP with one hidden layer
consisting of p neurons. The MLP takes as inputs vectors of size n and transforms them
into output vectors of size m.

Figure 2. Example of a multi-layer perceptron.

In the MLP illustrated in Figure 2, coefficients ωi,j and hi,j are the weights of the
neurons connectors, and k refers to the kth data in the Design of Experiments –DoE–.
The function that generates the ith component of an output Yk from the input Xk reads

Yk,i = fi(Xk) = φ

(
p

∑
l=1

hl,i φ

(
n

∑
j=1

ωl,j Xk,j + b1

)
+ b2

)
, (9)



with b1 and b2 the bias introduced at each connection and φ the activation function.
The weights of fi are obtained by minimizing the difference between the output prediction
and the known output that is ‖Yk,i − fi(Xk)‖, for all i, k.

The trickiest concern when using the MLP is the choice of the so-called hyper-
parameters, e.g., number of layers, number of neurons in the hidden layers, etc. For
additional information, the interested reader can refer to [22–25].

2.2. Case of Study

In complex metallic structures, it is often required to weld some parts or to print
stiffeners by using additive manufacturing to enhance mechanical performances. These
kinds of operations induce structural distortions, due to the installed residual stresses.

Predicting those induced distortions allows for finding the optimal operations sequenc-
ing to minimize them, or to design a modified structure such that the induced distortions
will produce the wished final structure geometry fulfilling the requested tolerances.

In the case study addressed here, we consider the metallic shell structure whose ge-
ometry and dimensions are shown in Figure 3, constituted of steel (E = 210 GPa, assumed
described from an adequate elastoplastic behavior). The structure is being rigidified by
printing two stiffeners on it. Each stiffener consists of four printed layers, and, conse-
quently, a sequence of eight unitary operations will define the global process. As it can be
noticed, many possibilities exist of sequencing these eight unitary operations, and the final
accumulated structure distortion depends on the sequencing choice made. The final state
for a particular sequencing choice is shown in Figure 4.

Figure 3. Metallic structure considered in the present case study.

The structure model consists of a quadrilateral elements mesh of 1.76 mm thickness.
The mesh contains about 42,000 nodes. The printed stiffeners are modeled by using solid
elements, and are applied at two different locations (left and right stiffeners), four layers in
each stiffener (eight unitary operations), using a predefined sequencing. The high-fidelity
simulations are carried out by using the commercial software VPS that considers the right
material behavior (needing a fine-tuning material calibration) and its integration by using
an experienced finite element discretization taking into account the irreversible inelastic
(plastic) behavior. For additional details on the considered model and its finite element
discretization, the interested reader can refer to the VPS user manual [26].



Figure 4. Final state related to an 8-unitary operations sequence (displacements ×3).

In this quite simplistic case study, there are many possible sequences. This number
grows exponentially when considering more stiffeners, and/or much more layers in each.
The simulation of all the possibilities is out of reach in most of industrial applications
because each calculation can be computationally expensive (several hours calculation).
Each printed layer in each stiffener will modify the structure state (deformation), and
the final deformation will strongly depend (due to the nonlinear behavior) on the chosen
sequence of unitary operations. Figure 5 shows the states after each of the eight unitary
operations when considering the sequence {1, 2, 1, 2, 1, 1, 2, 2}, where 1 refers to a layer
applied in the left stiffener and 2 when it is applied on the right stiffener. Because of the
software employed, seams are all present in the model, even if they have still not been
mechanically activated.

2.3. Proposed Methodology

In this section, we present the methodology which we developed to build a surrogate
model of a sequenced process. First, we present how we prepare the data for the model
computation. Then, we solve the regression problem with the MLP and with the DMD to
finally explain how to use the resulting models.

2.3.1. Data Preparation

The extracted data from the finite elements model are the initial nodes coordinates
and their displacements after each operation.

In our case, we want to use the surrogate model to generate all the intermediate
structure states for a new sequence Sk (k is the sequence number in the DoE) of size T and
initial state Xk(t0) = X0. T is the number of unit operations, T = 8 for all sequences. Thus,
for all i ∈ {1, . . . , T}, we need to predict the state Xk(ti) taking as input the previous state
Xk(ti−1) when applying the unitary operation sk(ti−1).

Thus, the regression reads as:

Xk(ti) = f (Xk(ti−1), sk(ti−1)), ∀i ∈ {1, . . . , T}. (10)

Because the function we search must be the same for all states of the system, we can
write Equation (10) by grouping all states of the system in the same matrix, as it is done
when applying the DMD

Xk = f
(
X̃k, Sk

)
, (11)

with X̃k = [Xk(tT−1) · · · X0] and Xk = [Xk(tT) · · · Xk(t1)] respectively the input and the
output state matrices (of size N × T) of the system subjected to the sequence Sk.



Figure 5. High-fidelity simulation of the sequence {1, 2, 1, 2, 1, 1, 2, 2} (displacements ×3 for visualization). Both stiffeners
are placed from the beginning on the sheet, and each layer of them is sequentially mechanically activated.

Once again, because the function f must be the same for all tested sequences, i.e.,
the whole DoE, constituted of NC simulations, we can concatenate all the input matrices
together and all the output matrices together into bigger matrices that we simply note X̃
and X, both of size N × (T × NC). Thus, the regression problem reads

X = f
(
X̃, S

)
, (12)

where S is the vector concatenating all the sequences, of size T × NC and f the generic
function. This function is constructed (learned from the data) by using the procedures
described in Section 2.3.2.



In order to reduce the complexity, we compute the SVD of matrix X, built for each
coordinate axis. The normalized singular values related to the three nodal displacements
are plotted in Figure 6.

Figure 6. Normalized singular values related to the three nodal displacements.

As we can see in these graphs, the singular values decrease very fast, and three
modes suffice to reduce the singular values of two orders of magnitude. Thus, we expect
approximating reasonably well the structure state (nodal displacements) with a very
limited number of vectors of the reduced basis. In addition, 95% of accuracy is attained by
employing only the first three modes that will constitute the reduced basis. This reduction
is quite impressive: moving from a space of dimension N (the number of nodes) to one
involving only three degrees of freedom (the size of the reduced basis) only introduced a 5%
loss of accuracy. In what follows, we consider richer bases for obtaining higher accuracy.

Figure 7 plots the approximation error of all the states concerned in the DoE projected
into a 5D reduced basis. Even if, as noticed, 5 modes offer excellent performances, errors in
the prediction are amplified in posterior operations, and, consequently, it is important to
retain a reduced basis that is accurate enough.

Figure 7. Graph: Maximum modal approximation error with respect to the maximum displacement
when using five modes. Picture: Reduced approximation of the deformed structure (displace-
ments ×3).



Approximation errors when using 5 and 10 modes’ reduced bases are compared in
Figure 8. As we can see in this figure, the 5 modes approximation produces a maximum
approximation error around 0.025 mm. To minimize the error growth during the inte-
gration (error accumulation), the use of 10 modes seems a better option, and it provides
excellent accuracy.

Figure 8. Approximation error when using 5 and 10 modes in the reduced basis.

With this choice, each state of the evolving structure can be expressed by a vector with
10 components. In order to address the potential nonlinearities induced by the sequencing
and the increase of the structure stiffness, we include in the regression the sequencing as
well as the index that identifies the operation within the sequence, as described below:

Xk =


α1,1 · · · α1,T−1

...
. . .

...
α10,1 · · · α10,T−1

s1 · · · sT−1
1 · · · T − 1


k

and Yk =

 α1,2 · · · α1,T
...

. . .
...

α10,2 · · · α10,T


k

(13)

2.3.2. Regression

In order to compute the regression, a valuable route consists of separating the opera-
tions performed in the left and the right stiffeners. To improve the predictability capacity
even more, one could also cluster the model depending on the existence or not of at least
a printed layer in one of the stiffeners as illustrated in Figure 9. It is named the topology
clustering in what follows.

• DMD-based regression.

The DMD-based regression reads

Y r/l,c = Ac
r,lX

r/l,c, (14)

where Y (resp. X ) concatenates the matrices Yk (resp. Xk) related to the right or left
stiffeners (r/l) and associated with cluster c (in reference to Figure 9).

The problem is solved by using the Tikhonov regularization [27,28] and proceeds
by enforcing Equation (14) while adding a penalty related to the norm of the searched
matrix A, except for the last two columns afecting the sequencing information contained
in the state matrix X . The problem is solved using the Ridge algorithm in the scikit-learn
package in Python.



Figure 9. Cases with at least one layer was printed (red) or no layer printed (white).

• MLP-based regression.

To set the MLP hyper-parameters, we iterate until obtaining results good enough in
the approximation function. This results with:

- An input and an output layers, respectively constituted of 12 and 10 neurons;
- 2 hidden layers, with 12 neurons per layer;
- relu the activation function, which is relu(x) = max(0, x);
- Adam algorithm [25] to compute weights;
- the optimization process stops when the score is not improving anymore, according to

the scikit-learn documentation [29]

As for the DMD, to solve this problem, we use the class MLPRegressor available in the
scikit-learn package in Python.

When building this MLP on the whole training dataset, we obtain very unsatisfying
results, with an accuracy that degrades when the process advances. To improve it, we build
the MLP as a self controlled system: instead of learning with the whole dataset, it learns
with 70% of it. Thus, it learns with 70% of 80% of a total of 70 data points, thus 39 data points.
Then, we use the resulting MLP to predict the whole training dataset. These predictions
are then used as inputs, with the reference inputs, to train a new MLP, whose outputs are
the reference states. Thus, the MLP trains with 56 data points and 56 predictions, built with
the first MLP trained with only 39 data points. Figure 10 schematizes this training process.

Figure 10. Learning process for the self controlled MLP.



• Dictionary model use.

As different models have been learned, when integrating, after each unitary operation,
one must identify the model to be employed (right/left and the cluster with respect to
Figure 9). The procedure is illustrated in Figure 11.

Figure 11. Prediction process for the dictionary model.

3. Results

To evaluate the methodology presented in the previous section, we applied all the
possible sequences (70 in this case) to the system to constitute the dataset. It has then been
divided into two groups: train and test. We performed that selection randomly. In what
follows, we only use the training dataset to build the ROMs and the testing dataset to
validate them. Whether we applied the regression with the DMD or the MLP, the presented
results have been produced with the same methodology, sketched in Figure 12. Section 3.1
presents the results we obtained with the MLP regression and Section 3.2 the results we
obtained when using the DMD.

Figure 12. ROM generation workflow.

To avoid the impact of very small solutions in the calculation of relative errors, the
absolute error in L2-norm is considered. Sometimes, we will give a percentage to discuss
the error. It is defined as the maximum error divided by the maximum displacement at
each state.

3.1. MLP Results

Figures 13 and 14 show the results we obtained when using the MLP regression,
respectively, without and with the topology clustering. These figures plot the maximum
error of the approximation obtained by using the ROM and the maximum displacement of
the reference solution, at each state. Clustering does not introduce significant advantages
when combined with the MLP regression.

Furthermore, as we can see in these graphs, some states are approximated with more
than 50% of error. It is too much even for a ROM that aims at keeping and ensuring
good accuracy.



Figure 13. Maximum prediction error and maximum displacement for the MLP regression without topology clustering.

Figure 14. Maximum prediction error and maximum displacement for the MLP regression with topology clustering.

Figure 15 shows a 3D view of one of the worst approximations we obtained with
the MLP regression. As it can be seen in this picture, maximum errors are essentially
concentrated at the corners of the metal sheet for the first five states. The prediction quality
should be improved to fulfill standard tolerances.

For that purpose, we searched for better neural network hyper-parameters. Results
are reported in Table 1. According to this table, the choice for the neural network hyper-
parameters, for this type of architecture and data, seems quite optimal.



Figure 15. MLP approximation of sequence {2, 2, 2, 1, 2, 1, 1, 1} compared with the reference solution
(displacements ×10 for visualization).

Table 1. Results for different choices of hyper-parameters for the neural network.

Number of
Hidden Layers

Number of
Neurons

Activation
Function

Maximum
Error

2 (12, 12) relu 2.5 mm
2 (20, 20) relu 5.5 mm
2 (40, 40) relu 3 mm
2 (20, 12) relu 3 mm
2 (40, 20) relu 2.5 mm
2 (40, 20) logistic 4.5 mm
2 (40, 20) tanh 6.5 mm
2 (40, 20) identity 2.9 mm
3 (12, 12, 12) relu 4 mm
3 (40, 40, 40) relu 4 mm
4 (12, 12, 12, 12) relu 2.8 mm
4 (40, 40, 40, 40) relu 2.8 mm



3.2. DMD Results

Figures 16 and 17 show the results we obtained using the DMD respectively without
and with topology-based clustering. They plot the maximum error of the approximation
provided by the ROM and the maximum displacement of the reference solution at each
state. This maximum absolute error remains smaller than the one obtained with the
MLP regression.

Furthermore, as we can see comparing these two figures, the topology clustering leads to
a better approximation, justifying its consideration when using the DMD-based regression.

Figure 16. Maximum prediction error and maximum displacement for the DMD approximation without topology clustering.

Figure 17. Maximum prediction error and maximum displacement for the DMD approximation with topology clustering.



In Figure 17, the maximum error does not exceed 10% of the maximum displacement.
Furthermore, the absolute error is always less than 0.7 mm. For a metal sheet of around
300 mm in size, this error could be acceptable in certain applications.

In addition to this quite reduced absolute error, we can see that the maximum error during
the whole sequence seems to stay globally stable, without exhibiting net accumulation.

Figure 18 shows a 3D view of the worst approximation we obtained with the DMD
model. As we can see in this picture, maximum errors are again essentially concentrated at
the corners of the metal sheet.

Figure 18. DMD approximation of sequence {2, 2, 2, 1, 2, 1, 1, 1}with its reference (displacements ×10
for visualization).

4. Conclusions

The presented paper addressed the recurrent issue of creating reduced order models of
processes involving sequencing. Evaluating the effect of all the possible processing sequences
represents an unattainable objective because of the associated curse of dimensionality.



Thus, in general, processing designs are based on simplified models, the use of existing
heuristics and knowledge, or the exploration of small regions of the design space, all of
them underperforming.

On the other hand, the possibility of having a real-time accurate predictor of the effect
of any sequence on the final properties and performances could represent an impressive
opportunity in engineering.

In the present paper, we succeeded to accomplish that challenge by combining differ-
ent ideas and methodologies, whose performances were proven in a case study of industrial
relevance, in particular:

• Global solutions can be represented in a reduced basis, that is, the dimensionality of
the thermomechanical fields remains much smaller than the number of processing
sequences. We proved that a quite reduced number of modes allows for representing
the states of the distorted structure.

• More than trying to link the sequencing with the final state of the structure, facing the
sequencing parametrization issue, here we proposed the construction of a parametric
transfer function related to a unitary operation. From a given state, it can predict the
next state after the unitary operation.

• We proposed employing different regressions for accomplishing that modeling, in
particular the DMD and the MLP, both working quite well, with the performances of
the former improved by using clustering, and the ones of the last improved by using
a self-controlling procedure.

• The models were successfully learned and they performed very well in the data
reserved for validation purposes.

Future works will address more complex scenarios, propose an improved clustering,
better address nonlinear behaviors, and improve the DoEs, as well as the approximation of
other processes involving sequencing, as for example spot-welding.

Author Contributions: Conceptualization, F.C. and T.L.; methodology, T.L.; software, T.L.; validation,
P.M.; formal analysis, V.C., T.L. and N.H.; writing—original draft preparation, T.L.; writing—review
and editing, V.C., F.C.; visualization, T.L. and N.H.; supervision, F.C. and J.-L.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon request.

Acknowledgments: The authors knowledge the SOFIA PSPC project, the H2020 ASSALA project,
as well as the CREATE-ID ESI-ENSAM Chair.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ROM Reduced Order Model
MLP Multi-Layer Perceptron
NN Neural Network
DMD Dynamic Mode Decomposition
SVD Singular Values Decomposition
DoE Design Of Experiments
VPS Virtual Performance Solution



References
1. Deng D.; Murakawa H. FEM prediction of buckling distortion induced by welding in thin plate panel structures. Comput. Mater.

Sci. 2008, 43, 591–607. [CrossRef]
2. Gannon, L.; Liu, Y.; Pegg, N.; Smith, M. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates.

Mar. Struct. 2010, 23, 385–404. [CrossRef]
3. Wärmefjord, K.; Söderberg, R.; Lindkvist, L. Strategies for optimization of spot welding sequence with respect to geometrical

variation in sheet metal assemblies. In Proceedings of the ASME 2010 International Mechanical Engineering Congress and
Exposition, Vancouver, BC, Canada, 12–18 November 2010; pp. 569–577.

4. Mehnen, J.; Ding, J.; Lockett, H.; Kazanas, P. Design study for wire and arc additive manufacture. Int. J. Prod. Dev. 2014, 19, 2–20.
[CrossRef]

5. Josten, A.; Höfemann, M. Arc-welding based additive manufacturing for body reinforcement in automotive engineering.
Weld. World 2020, 64, 1449–1458. [CrossRef]

6. Chinesta, F.; Leygue, A.; Bordeu, F.; Aguado, J.V.; Cueto, E.; Gonzalez, D.; Alfaro, I.; Ammar, A.; Huerta, A. PGD-based
computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 2013, 20, 31–59. [CrossRef]

7. Chinesta, F.; Keunings, R.; Leygue, A. The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer; Springer
briefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2014.

8. Chinesta, F.; Huerta, A.; Rozza, G.; Willcox, K. Model Order Reduction. In Encyclopedia of Computational Mechanics, 2nd ed.;
Stein, E.; de Borst, R.; Hughes, T., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015.

9. Hesthaven, J.S.; Ubbiali S. Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys.
2018, 363, 55–78. [CrossRef]

10. Pulch, R.; Youssef, M. Machine learning for trajectories of parametric nonlinear dynamical systems. J. Mach. Learn. Model. Comput.
2020, 1. [CrossRef]

11. Anderson, J.A. Simple Neural Network Generating an Interactive Memory. Math. Biosci. 1972, 14, 197–220. [CrossRef]
12. Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [CrossRef]
13. Golub, G.H.; Reinsch, C. Singular value decomposition and least squares solutions. Linear Algebra 1971, 656, 134–151.
14. Henry, E.R.; Hofrichter, J. Singular value decomposition: Application to analysis of experimental data. Methods Enzymol. 1992,

210, 129–192.
15. Wall, M.E.; Rechtsteiner, A.; Rocha, L.M. Singular value decomposition and principal component analysis. In A Practical Approach

to Microarray Data Analysis; Springer: Berlin/Heidelberg, Germany, 2003; pp. 91–109.
16. Martin, C.D.; Porter M.A. The extraordinary SVD. Linear Algebra 2012, 119, 838–851.
17. Schmid, P.J.; Li L.; Juniper M.P.; Pust, O. Applications of the dynamic mode decomposition. J. Comput. Dyn. 2011, 25, 249–259.

[CrossRef]
18. Tu, J.H.; Rowley C.W.; Luchtenburg D.M.; Brunton S.L.; Kutz J.N. On dynamic mode decomposition: Theory and applications.

J. Comput. Dyn. 2014, 1, 391–421. [CrossRef]
19. Williams, M.O.; Kevrekidis I.G.; Rowley, C.W. A data-driven approximation of the koopman operator: Extending dynamic mode

decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [CrossRef]
20. Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 2016, 15, 142–161.

[CrossRef]
21. Qin, T.; Wu, K.; Xiu, D. Data driven governing equations approximation using deep neural networks. J. Comput. Phys. 2019,

395, 620–635. [CrossRef]
22. Medsker, L.R.; Jain, L.C. Recurrent neural network. Des. Appl. 2001, 5.
23. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
24. Bengio, Y.; Goodfellow, I.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2017.
25. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
26. Virtual Performance Solution 2018—Reference Manual. Available online: https://myesi.esi-group.com/downloads/software-

documentation/virtual-performance-solution-2018-reference-manual-online (accessed on 28 May 2021).
27. Calvetti, D.; Reichel, L. Dynamic mode decomposition with control. BIT Numer. Math. 2003, 43, 263–283. [CrossRef]
28. Rifkin, R.M.; Lippert R.A. Notes on Regularized Least Squares. 2007. Available online: https://dspace.mit.edu/handle/1721.1

/37318 (accessed on 28 May 2021).
29. Scikit-Learn MLPRegressor—Reference Manual. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.

neural_network.MLPRegressor.html?highlight=mlpregressor#sklearn.neural_network.MLPRegressor (accessed on 28 May 2021).

http://doi.org/10.1016/j.commatsci.2008.01.003
http://dx.doi.org/10.1016/j.marstruc.2010.05.002
http://dx.doi.org/10.1504/IJPD.2014.060028
http://dx.doi.org/10.1007/s40194-020-00959-3
http://dx.doi.org/10.1007/s11831-013-9080-x
http://dx.doi.org/10.1016/j.jcp.2018.02.037
http://dx.doi.org/10.1615/JMachLearnModelComput.2020034093
http://dx.doi.org/10.1016/0025-5564(72)90075-2
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1007/s00162-010-0203-9
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1137/15M1013857
http://dx.doi.org/10.1016/j.jcp.2019.06.042
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://myesi.esi-group.com/downloads/software-documentation/virtual-performance-solution-2018-reference-manual-online
https://myesi.esi-group.com/downloads/software-documentation/virtual-performance-solution-2018-reference-manual-online
http://dx.doi.org/10.1023/A:1026083619097
https://dspace.mit.edu/handle/1721.1/37318
https://dspace.mit.edu/handle/1721.1/37318
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html?highlight=mlpregressor#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html?highlight=mlpregressor#sklearn.neural_network.MLPRegressor

	Introduction
	Materials and Methods
	Data Reduction and Model Learners
	Singular Values Decomposition
	Dynamic Mode Decomposition
	Multi-Layer Perceptron

	Case of Study
	Proposed Methodology
	Data Preparation
	Regression


	Results
	MLP Results
	DMD Results

	Conclusions
	References



