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A B S T R A C T

The aim of this paper is to investigate the effective properties of Fe–TiB2 composites obtained after hot or cold
rolling. The elastic moduli of both hot and cold rolled composites are measured experimentally using several
methods. Microstructure analyses based on SEM observations are performed to characterize the distribution of
particles and cracks, and are then used to generate 3D representative microstructures using the RSA method.
This allows the numerical determination of the overall elastic behavior of Fe–TiB2 composites using full‐field
FFT‐based simulations. In addition, Young’s moduli of the hot rolled Fe–TiB2 composites are also determined
analytically using the mean‐field homogenization scheme of Mori–Tanaka. The elastic properties determined
experimentally, analytically and numerically are in a good agreement. Overall, a significant improvement of
the specific stiffness in comparison to standard steels is achieved irrespective of the processing conditions.

1. Introduction

For over more than a decade, weight reduction for automotive
structures has been a major driving force for research in high perfor-
mance steels. For many components the main design criterion has been
the yield strength, in order to support load without any irreversible
(plastic) deformation. Much research has been carried out to optimize
yield strength versus formability, leading to new generations of high
strength steels, such as DP (dual phase) and TRIP (transformation‐
induced plasticity) steels. With these steels, weight reduction has been
achieved by reducing the thickness of components, which leads natu-
rally to a decrease in stiffness. In applications where the design crite-
rion is the stiffness, other alternative materials are thus needed.

Metal Matrix Composites (MMC) are particularly interesting for
stiffness design criteria because a significant increase of the stiffness
can be achieved if the reinforcing particles have a higher value of
Young’s modulus than that of the matrix [26]. In particular, Fe–TiB2

composites have attracted substantial interest, since TiB2 has
a high Young’s modulus and substantially lower density than steel.
Much work has focused on the manufacturing process, synthesis,
microstructure analysis [3,42,51], physical and mechanical
properties [8,24,28,4,43], and damage mechanisms [11,20,25,48,
10,50,14,9,49].

The interest of the Fe–TiB2 composites studied here is both the
specific manufacturing process and the improved mechanical proper-
ties of these steel composites. Titanium diboride “TiB2” is covalent
and has been used as a reinforcement for several composites, espe-
cially for aluminum and steels. The crystal structure of TiB2 is hexag-
onal and is composed of titanium atoms in a hexagonal lattice and
boron atoms in a triangular lattice. It has a very high melting point
(around 3000°C [40,7]). It is particularly attractive due to its high
hardness [39], its chemical stability, electrical and thermal conductive
character, as well as its mechanical properties. Indeed it has a trans-
verse isotropic elastic behavior which is generally approximated by
an isotropic behavior with a very high elastic modulus E = 583 GPa
[38]. Thus, as reinforcements, TiB2 particles are often considered as
the best for steel matrix composites, thanks to their mechanical and
physical properties; in addition to their mechanical properties, the
lightweight of TiB2 particles helps Fe–TiB2 MMC to have a lower den-
sity (ρ) than steel and hence a substantially higher specific stiffness
(E=ρ).

Previous microstructures of Fe–TiB2 composites showed the pres-
ence of two families of particles [24], large primary particles with
hexagonal section and small eutectic particles; a particle volume frac-
tion of about 13% led to an increase of the specific stiffness of about
15% compared to standard steels. It was also shown that plastic flow
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• Experimentally, several techniques can be used to measure Young’s
moduli of metallic alloys, such as (i) static methods through tensile
tests with high resolution strain measurement and (ii) dynamic
tests based on flexural resonance method. These methods provide
valuable macroscopic values of elastic moduli which can be, in gen-
eral, measured with uncertainties of 1–2% [29].

• The elastic properties of composites can be alternatively investi-
gated by micromechanical modelling, which consists in the determi-
nation of the homogenized properties based on the statistical
distribution of inclusions in terms of their morphology, sizes and
volume fractions. The generation of random representative
microstructures, based on Scanning Electron Microscopy (SEM)
observations and image analyses, can be performed by several
methods [47] such as (i) collective rearrangement inspired by
molecular dynamics which allows to achieve high volume fraction
of inclusions (50 to 70% depending on the shape of the particles)
and (ii) random sequential adsorption (RSA) algorithm which is
efficient for composites containing low volume fraction of inclu-
sions (less than 30%). The reconstructed microstructures are then
used as an input of a micromechanical analysis which can be per-
formed by several methods:

– Mean‐field approaches of homogenization, based on Mor-
i–Tanaka’s homogenization model, provide an analytical esti-
mate of the macroscopic elasticity tensor based on the
morphology, volume fraction and local behavior of the phases
[34,6,1]. This method is generally used for heterogeneous mate-
rials with a volume fraction of particles that does not exceed
30% and is adapted to composites reinforced with particles
[21,44].
– Full‐field simulations, based on the finite‐element method
(FEM) or Fast Fourier Transforms (FFT), allow the local and
overall mechanical fields of a heterogeneous material to be
computed. The FFT‐based method of [36] is particularly inter-
esting for numerical homogenization because (i) calculations
are directly performed from microstructures obtained either
from SEM, tomography or image reconstruction, without any
meshing operations, (ii) it relies on the computational complex-
ity of fast Fourier transforms which makes the method very effi-
cient and faster than FEM and (iii) periodic boundary
conditions are built‐in, which makes the method suitable to
compute the effective properties, in contrast with the finite ele-
ment method which requires some additional pre‐processing on
the opposite RVE boundaries [37,18,45]. Several accelerated

schemes [17,31,33] have been developed to improve the low
convergence rate of the basic scheme [36] in the case of highly
contrasted materials. This method, which in most cases pro-
vides macroscopic results that are close to that predicted by
mean‐field approaches [21–23,25], permits to take into consid-
eration microstructural details such as cracks [19].

The aim of this paper is to investigate experimentally, analytically
and numerically, the effect of hot and cold rolling on the effective
properties of new Fe–TiB2 composites obtained by continuous casting.
The characterization of the new Fe–TiB2 composites is of particular
interest in order to assess the effect of the microstructure (after rolling)
on the overall elastic properties. The novelty of the approach consid-
ered in this work is that it consists in investigating the effective elastic
properties of Fe–TiB2 composites by combining experimental measures
and a micromechanical modelling based on microstructure analysis
and reconstruction. The advantages of this homogenization‐based
approach are that (i) it unravels the effect of the microstructure (such
as particle shape and cracks) on the macroscopic properties and (ii) it
can be used as a numerical tool to design optimal microstructures tai-
loring mechanical properties.

The paper is organized as follows. In Section 2, a microstructure
analysis is performed in order to extract the essential features of
Fe–TiB2 composites. The elastic moduli of hot rolled and cold rolled
Fe–TiB2 composites are determined experimentally in Section 3. In
Section 4, representative microstructures are reconstructed from
SEM image analysis. Analytical and numerical approaches of homoge-
nization are applied in Section 5 to the determination of the overall
elastic properties of Fe–TiB2 composites. Finally, in Section 6 the com-
petition between particle aspect ratio and crystallographic anisotropy
is investigated numerically.

2. Material and microstructure analysis

The reference manufacturing process of Fe–TiB2 composites of this
study was developed by ArcelorMittal [5]. These composites, designed
for their high specific stiffness (E=ρ), are obtained by in situ precipita-
tion of TiB2 particles during eutectic solidification. This process leads
to very clean and particularly strong matrix/reinforcement interfaces
[8,28].

The manufacturing process of Fe–TiB2 composites has been modi-
fied recently in order to refine the microstructure and homogenize
the size of TiB2 particles. Significant fractions of TiB2 reinforcements
(10–25% by volume) can be reached through the control of the chem-
ical composition of the composite, while the size of the reinforcements
can be widely optimized through the solidification rate of the material.
After continuous casting, slabs of Fe–TiB2 are either hot or cold rolled,
and both are subjected to recrystallization annealing at 800 °C for
25 min (4 min of temperature rise and 21 min of holding time).

The hypereutectic composition of Fe–Ti–B steel studied here (see
Table 1 for the composition) allows a fine microstructure with a uni-
form and homogeneous reinforcements distribution in the matrix to
be obtained. The obtained microstructure, illustrated by Fig. 1, shows
a ferritic matrix (light contrast) reinforced with particles elongated in
the rolling direction (dark contrast). Two types of TiB2 particles are
present in the ferritic matrix: primary hexagonal particles, formed
before eutectic transformation, and eutectic ones. The sizes and shapes
of primary and eutectic particles are close to each other and can be
related to prolate spheroids elongated in the rolling direction.

The microstructure of the hot and cold rolled Fe‐TiB2 composites
were also characterized by EBSD. The EBSD crystal orientations maps,
performed on 1� 1 mm2 surfaces and represented in Fig. 2, reveal that
the matrix exhibits equiaxed grains in the RD plane with a mean grain
size of about 3 μm. A weak crystallographic texture is observed in the
matrix. EBSD analysis of the material shows also the crystallographic
texture of the particles: the transverse isotropic axis of the TiB2 parti-

is inhomogeneous in the Fe matrix and that particle fracture is the pre-
dominant damage mechanism with almost no debonded particles dur-
ing deformation [24,25].

Recently, improvements in continuous casting of this composite 
steel, achieved by modifications of the composition and the solidifica-
tion rate, have led to a significantly finer particle distribution. After 
casting, the Fe–TiB2 products obtained are processed either by (i) 
hot rolling or (ii) hot rolling followed by cold rolling (which will be 
simply termed as cold rolling throughout the paper, for simplicity), 
to obtain the desired sheet thickness required. Then, both undergo a 
recrystallization annealing.

The understanding of the effect of microstructure and processing 
on the elastic properties of metal‐matrix composites is of great interest 
in applications where stiffness is considered as primary design crite-
rion. In the case of Fe–TiB2 composites, it appears necessary to quan-
tify precisely their elastic properties after processing or forming. 
Indeed, the process of cold rolling is expected to induce damage, in 
the form of particle cracking or decohesion of the particles/matrix 
interfaces, which will ultimately decrease the overall stiffness due to 
the presence of micro‐voids [14].

Several methods allow to estimate the elastic properties of 
composites:



cles, represented by the axis c in Fig. 3, is mainly oriented along the
rolling direction (see 0001f g pole figure in Fig. 2c).

The main feature of the hot rolling process is a redirection of TiB2

particles in the rolling direction without any damage of the particles.
In contrast, some particles were fractured during the cold rolling pro-
cess. Overall, the average volume fraction of particles is the same for
both composites (since this is the same material before the rolling pro-
cess) and is of about vf ¼ 10%. The following analysis will highlight
the main differences between the microstructures of the hot and cold
rolled composites.

The hot rolled composite A microstructure analysis has allowed
the determination of a volume fraction for TiB2 particles of about
vf ¼ 10% in both the rolling direction (RD) and the transverse direc-
tion (TD). In addition, it has led to a classification of the particles
according to their (i) aspect ratios in the rolling direction, and their
(ii) diameters in the transverse direction, which is represented in
Fig. 4.

First, the aspect ratios of the particles, represented in Fig. 4a, are
classified from 1 to 6 and their distribution is relatively homogeneous
in terms of volume fraction. The chosen group distribution is as fol-
lows: (a) 20% of the total volume fraction of particles for those having
an aspect ratio of 1, (b) 27% for particles having an aspect ratio of 2,
(c) 23% of particles having an aspect ratio of 3, and finally (d) an aver-
age of 30% of particles having an aspect ratio of 6. The distribution of
the particle diameters, represented in Fig. 4b, reveals that there is a
considerable lead of particles whose diameters are between 1 and
4 μm. Their average contribution to the volume fraction is around
92% and the contribution of the remaining particles is less than 8%.
The chosen diameters that will represent all the particles are 2 and
3 μm.

The cold rolled composite After cold rolling, the distribution of
the particles aspect ratios is the same than that after hot rolling. How-
ever, an important feature of the cold rolled composite is that it con-
tains an average volume fraction of about 0:15% of voids in the
form of cracks, which have been revealed by SEM observations after

Element C Al Cr Mn Ni Si Ti B P Fe

Weight % 0.04 0.07 0.06 0.09 0.04 0.17 5.4 1.69 0.01 Bal.

Fig. 1. SEM (image mode: BSE) micrographs of Fe–TiB2 composite (TiB2 particles appear with dark contrast). (a) Hot rolled, rolling direction, (b) Hot rolled,
transverse direction (c) Cold rolled, rolling direction, (d) Cold rolled, transverse direction.

Table 1
Chemical composition of the Fe–TiB2 composite.



electrolytic polishing. Details of the cold rolled microstructure, show-
ing cracked particles and an example of one cracked particle in the
cold rolled composite are given in Fig. 5.

3. Experimental determination of Young’s moduli of Fe–TiB2

composites

In this section, the Young’s moduli of the cold rolled composite, in
the rolling and transverse directions, will be measured experimentally
using several static and dynamic methods and compared to those of
the hot rolled composite measured by an extensometer.

3.1. Experimental methods

For tensile tests, a double‐sided extensometer (class 0.2) from
Zwick (Clipon) was used in parallel to a strain gauge HBM 1‐LY41‐
3/350 applied on both faces of rectangular section test‐piece. Valida-

tion of the gauge factor was previously done using a shunt resistor.
Preloading at 80% of the yield strength is previously applied to elim-
inate bending artifacts and a minimum of two runs is applied (contin-
uous loading/unloading cycles) at the same strength. Least squares fit
is used on the linear elastic domain of loading to determine the
Young’s modulus. The measurement is considered valid only if the
strain increment on opposite faces of the sample does not differ more
than 3% as recommended in ASTME111 [15] to eliminate all possible
issue in relation to misalignment and out‐of‐plane bending defects.
Three samples were characterized for each direction to provide statis-
tic data.

In parallel, out‐of‐plane flexural resonance method on “free‐free”
beam test‐piece with rectangular cross‐section was used on the same
samples [2]. The fundamental vibration frequency is determined by
sweeping the frequency to detect resonance. Two wires are used to
support the sample at the fundamental flexural node position and
piezo‐vibrators are applied on the sample just outside the nodal posi-
tion to promote the vibration. The length and thickness of the samples
are carefully measured and the density is determined with helium pyc-
nometer to reach a higher level of accuracy. Since this method can be
sensitive to surface finish and poor dimensional tolerance, the machin-
ing of the samples was carefully controlled to reduce scattering. For a
rectangular section beam in flexure, Young’s modulus is given by the
formula

E ¼ 48π2

α2

� �
ρf 2

L4

t2
T
t
L
; ð1Þ

where f is the resonance frequency, ρ the density, L the length (50 mm),
l the height (9.8 mm) and t the thickness (from 1 to 2.5 mm) of the
beam. Sample dimension was designed to avoid any overlapping of
vibration mode (L=t > 20). In Eq. (1), the parameter α, which depends
on experimental conditions, reads α ¼ 22:37 [13]. Finally, the parame-

Fig. 2. EBSD mappings of grain orientations in the rolling direction plane; the dark phase corresponds to TiB2 particles. (a) Cold rolled composite, (b) Hot rolled
composite and (c) Crystallographic texture of the TiB2 particles.

Fig. 3. Hexagonal crystal structure of titanium diboride.



ter T is a correcting factor close to 1 which integrates shear and rotary
inertia [46,41]. For L=t > 20;T is given by the formula

T ¼ 1þ 6:858
t2

L
: ð2Þ

3.2. The cold rolled composite

Young’s moduli of the cold rolled Fe–TiB2 were measured in two
directions (RD and TD) and the results are summarized in Table 2.
Very similar results are obtained from the three methods presented
in Section 3.1 (extensometer, strain gauges and resonance).

The elastic anisotropy is characterized by the non‐dimensional
(normalized) factor

a ¼ jERD � ETDj
1
2 ERD þ ETDð Þ ð3Þ

which approximately represents the deviation from isotropy, where ERD

and ETD respectively denote the longitudinal Young’s modulus (in the
rolling direction) and the transverse Young’s modulus. (In the case of
an isotropic material, the property ERD ¼ ETD holds which implies that
a ¼ 0; thus an increase of a characterizes an increase of the anisotropy).

A difference of about 10GPa between the longitudinal and trans-
verse Young’s moduli is obtained experimentally which leads to a devi-
ation from isotropy a of about 0.042.

3.3. The hot rolled composite

Since it has been shown that the different methods used to measure
the Young’s moduli of cold rolled Fe–TiB2 samples at room tempera-
ture gave almost the same results, we consider only the extensometer
method for the hot rolled composite. The elastic properties are shown
in Table 3.

Both longitudinal and transverse Young’s moduli of the hot rolled
composite are higher than that of the cold rolled composite. The roll-
ing direction seems to be more affected by the cold rolling than the
transverse direction. In that case, the deviation from isotropy a is of
about 0.014 for the hot rolled composite which implies that the elastic
anisotropy is a little less pronounced for the hot rolled composite.

Fig. 4. Results of the SEM image analysis for the hot rolled Fe–TiB2 composite. (a) Distribution of the particles’ aspect ratios in the RD and (b) Distribution of the
particles’ diameters in the TD.

Fig. 5. SEM micrographs of Fe–TiB2 cold rolled composite. (a) Typical microstructure showing several cracked particles in the cold rolled composite (indicated by
arrows) and (b) Example of a cracked particle in the cold rolled composite.

Table 2
Measures of Young’s moduli of the cold rolled Fe–TiB2 composite.

Experimental methods Young’s moduli
(GPa)

Deviation from isotropy

ERD ETD a

Extensometer 222.4 233.9 0.050
Strain gauge 223.5 230.2 0.030
Resonance 223.4 233.9 0.046



4. Microstructure reconstruction from SEM images analysis

The statistical analysis made in Section 2 allows the classification
of the particles into 5 groups. The average fraction of each group,
diameters and aspect ratios of the particles are given in Table 4.

The sizes and volume fractions of particles of the cold rolled
Fe–TiB2 composite as well as the volume fraction of cracks in each
group of particles are summarized in Table 5. The only difference
between the hot and the cold rolled composite is the presence of some
cracked particles in the cold rolled composite.

This 2D SEM image statistical analysis will serve as a basis to gen-
erate representative 3D microstructures of Fe–TiB2 composites. 3D
reconstructed microstructures are required because they allow build-
ing periodic RVEs which are needed for FFT‐based calculations. Fur-
thermore, all geometrical and topological parameters defining the
microstructure can be easily modified in order to introduce porosity
or cracks as observed in the case of cold rolled Fe–TiB2, or to explore
alternative distributions of constituents for material design.

Since the materials considered in this work (hot and cold rolled
Fe–TiB2 composites) contain low volume fraction of inclusions, the
RSA method [47] is applied to generate all groups of spheroidal inclu-
sions and cracks determined by image analysis (Tables 4 and 5). The
RSA method consists in adding spheroidal particles sequentially into
a cubic matrix:

1. A particle is generated in a randomly chosen position x; y; zð Þ
where a spheroid (sound or cracked particle) is added. The cracks
are generated in the plane normal to the rolling direction;

2. The new generated candidate is accepted only if it does not inter-
cept any other particle generated previously. Otherwise it is
removed;

3. The process is repeated until the desired number of particles (or
cracks) and/or volume fraction is reached.

In order to reduce the microstructure generation time cost, the big-
gest particles are generated first and are followed by the smallest ones.
Examples of reconstructed microstructures for both hot and cold rolled
Fe–TiB2 composites are provided in Fig. 6.

In practice, two types of discrepancies may occur during the gener-
ation of a microstructure: (i) voxelization artifacts related to the dis-
cretization of an ellipsoidal particle using (cubic) voxels and (ii)
errors on the desired volume fraction since particles are added sequen-
tially. In order to avoid voxelization artifacts, a sufficient number of
voxels was considered for the smallest reconstructed TiB2 particle as
it is close to an ellipsoidal shape. Then, three RVE sizes ((128)3,
(256)3 and (512)3) were studied in order to reduce the error made
on the desired volume fraction. For the three RVE sizes considered,
the same particle sizes (in voxel) were chosen, so an increase of the
resolution (from (128)3 to (512)3) leads to an increase of the number
of particles and thus allows the desired volume fraction of particles to
be reached more accurately. In order to quantity the effect of the RVE
size on the volume fraction, the relative error

e ¼ vdesiredf � vreachedf

vdesiredf

�����
����� ð4Þ

is calculated. The reconstruction of the microstructures is carried out on
a 64‐bit desktop computer with 128 GB RAM and an Intel Xeon Gold

6140 CPU, 2.30 GHz, Ubuntu 16.04 LTS. The CPU time and relative
error e associated to the microstructure generations using the RSA
method are given in Table 6 for each RVE resolution ((128)3, (256)3

and (512)3).
As expected, the CPU time and the number of the generated parti-

cles are the highest for the (512)3 discretization, for both the hot and
the cold rolled composites. For the (128)3 discretization, the relative
error on the volume fraction of the truly generated particles is the
highest. Indeed, for a desired volume fraction vf ¼ 10%, only
vf ¼ 9:1% of particles are generated for the (128)3 discretization,
while vf ¼ 9:8% and vf ¼ 9:9% of particles are reached for the
(256)3 and (512)3 discretizations, respectively. The CPU time of the
cold rolled composite is higher than the hot rolled one, merely because
we have made the choice to generate the particles first, then add the
cracks after.

5. Analytical and numerical modelling of the overall elastic
properties of Fe–TiB2 composites

5.1. Analytical and numerical approaches of homogenization for
heterogeneous materials

Two methods for the determination of the overall elastic properties
of heterogeneous materials are presented. The full‐field FFT‐based
method is the main homogenization technique used here to obtain
effective properties of the hot and cold rolled Fe–TiB2 composites.
The analytical homogenization method by the Mori–Tanaka’s mean
field approach will also be used to assess the numerical results
obtained by the FFT‐based method.

5.1.1. Analytical homogenization by mean field approaches
The Mori–Tanaka scheme [34] is a mean‐field homogenization

method for elastic properties, based on the Eshelby inclusion problem
[16]. We investigate the overall behavior of a n‐phases composite
made of a matrix and n� 1ð Þ phases.

The stiffness tensors of the matrix and the remaining phases (parti-
cles for example) are respectively denoted by C0 and Cr , and their vol-
ume fractions are respectively denoted by f 0 and f r (with r ranging
from 1 to n� 1). The macroscopic stiffness tensor of the composite,
denoted by Chom, is given by

Chom ¼ ∑
n�1

r¼0
f rCr : Tr

� �
: ∑

n�1

r¼0
f rTr

� ��1

: ð5Þ

In Eq. (5), the tensor Tr is given by

Tr ¼ Iþ SEsh
r : C�1

0 : Cr � C0ð Þ� ��1 ð6Þ

where SEsh
r is the (classical) Eshelby tensor.

In the case of hot rolled Fe–TiB2 composites, which are made of a
matrix containing 5 groups of spheroidal particles, this mean‐field
homogenization method is naturally adapted. In the case of cold rolled
Fe–TiB2 composites, however, this method is not suitable due to the
presence of cracks which are not accounted for by the original Mor-
i–Tanaka’s model. Therefore, full‐field homogenization methods are
considered hereafter to overcome the intrinsic limitations of Mori
and Tanaka’s scheme.

5.1.2. Numerical homogenization by full-field FFT-based calculations
In many cases, mean‐field approaches cannot be used when the

microstructures considered are too complex, as in the case of cold
rolled Fe–TiB2 composites due to the presence of cracks. In such case,
it becomes necessary to rely on full‐field simulations. The FFT‐based
method can notably be used to determine the effective properties of
composites by applying the following procedure:

Experimental method Young’s moduli
(GPa)

Deviation from isotropy

ERD ETD a

Extensometer 230.4 233.7 0.014

Table 3
Measures of Young’s moduli of the hot rolled Fe–TiB2 composite.



1. Impose periodic boundary conditions at the edges of the RVE;
2. Apply the local behavior law corresponding to each constituent of

the composite;
3. Solve for six loading conditions, by imposing only one non‐zero

component of the macroscopic stress tensor σij to the RVE;
4. Compute the macroscopic strain tensor ɛ by spatial averaging of the

local strain tensor ɛ over the RVE;
5. Each independent equation of the overall elastic law σij ¼ Cijklɛkl

provides between one and three coefficients of the stiffness tensor
Cijkl for each macroscopic stress tensor σij;

6. Post‐process to eventually compute global stress and strain, in the
composite.

In practice, the augmented Lagrangian scheme is used for the calcu-
lations because of the high contrast between the mechanical properties
of the matrix, particles and voids (in the form of cracks). The simula-
tions are performed using the software CraFT [36,31].

For the simulations, we consider the reconstructed microstructures
using the procedure described in Section 4 based on SEM image anal-
ysis. For the microstructures of the hot rolled Fe–TiB2 composite, the
average volume fraction of reinforcements is about 10 %. In the case
of cold rolled composites, there is an additional volume fraction of
about 0.15 % of cracks (which decreases the volume fraction of the
matrix).

In terms of the local behavior of the phases, an isotropic linear elas-
tic behavior is considered for the ferritic matrix, which is characterized
by a Young’s modulus E = 210 GPa and a Poisson’s ratio ν ¼ 0:33.

Group G1 G2 G3 G4 G5

Diameter (μm) 2 3 3 3 2
Aspect ratio 6 3 2 1 1

Fraction of particles (%) 30 23 27 10 10

Volume fraction of particles (%) 3 2,3 2,7 1 1

Table 5
Classification of the five groups (G1, G2, G3, G4 and G5) of particles and cracks in the cold rolled composite.

Group G1 G2 G3 G4 G5

Diameter (μm) 2 3 3 3 2
Aspect ratio 6 3 2 1 1

Fraction of particles (%) 30 23 27 10 10

Fraction of cracked particles (%) 45 40 30 30 30

Fig. 6. Microstructure reconstruction of Fe–TiB2 composite after SEM image analysis (RVE size = 5123 voxels). (a) Hot rolled composite and (b) Cold rolled
composite.

Table 6
The CPU time required for RVE generation by RSA method, the number of the particles and the relative error on the generated volume fraction of particles in the case
of vf = 10%, for hot and cold rolled Fe–TiB2 composites, for the three discretizations considered.

CPU time (seconds) Number e
RVE Size Hot rolled Cold rolled of particles (%)

RSA-(128)3 14.9 28.5 56 9
RSA-(256)3 119.1 185.0 449 2
RSA-(512)3 1097.2 1359.7 3595 1

Table 4
Classification of the five groups (G1, G2, G3, G4 and G5) of particles in the hot rolled composite.



ĈTiB2 ¼

654:5 56:5 98:4 0 0 0
56:5 654:5 98:4 0 0 0
98:4 98:4 454:5 0 0 0
0 0 0 526:4 0 0
0 0 0 0 526:4 0
0 0 0 0 0 598

0
BBBBBBBB@

1
CCCCCCCCA

GPað Þ: ð7Þ

In the following, the direction c will be supposed to coincide with
the sphedoidal axis of the particles, which is itself supposed to be
aligned with the rolling direction. This axis will be denoted by x3 by
convenience.

5.2. Overall elastic properties of the hot and cold rolled composite

5.2.1. Representativeness of the calculations
First, we need to study the effect of the RVE resolution on the effec-

tive properties of the composite, in order to choose a suitable one.
Three different RVE discretizations ((128)3, (256)3 and (512)3 voxels)
are investigated and the CPU time, associated to one simulation using
the numerical FFT‐based method, is given in Table 7.

An increase of the RVE resolution naturally leads to an increase of
the CPU time required to make one full computation of the elastic
properties of both hot or cold rolled Fe–TiB2 composites. Furthermore,
we can notice that the calculations, in the case of cold rolled compos-
ites, require more CPU time due to the presence of cracks; indeed the
infinite contrast in phases induced by cracks is known to increase the
number of iterations in FFT‐based calculations [36].

Then, it is necessary to perform a statistical analysis of the calcula-
tions in order to obtain representative results [52]. It should be noted
that this statistical analysis is performed for a given RVE size; the
results of the statistical analysis are independent of the volume frac-
tion of particles (and thus the overall properties) but depend on the
distribution of particles. As shown in Section 4, an increase of the
RVE size leads to an increase of the number of particles and thus pro-
vides a more random distribution of particles, which is expected to
improve the representativeness of the calculations. Due to the large
number of particles generated randomly (see Table 6), the overall elas-
ticity tensor determined numerically is expected to have a transverse
isotropic behavior. The statistical analysis can thus be performed on
the Young’s moduli in the rolling and transverse directions, respec-
tively denoted by ERD and ETD and defined by

ERD ¼ 1
Ŝ33

; ETD ¼ 1
Ŝ11

; ð8Þ

where Ŝ is the overall compliance tensor. For a given resolution, n RVE
are generated based on the microstructure reconstruction procedure
described in Section 3, and used to compute the overall elastic proper-
ties. According to [21] (see also [27]), the number n of simulations is
sufficient if the following inequality is verified:

max XRD;XTDð Þ ⩽ 0:1%;XRD ¼ Tn�1
1�αSERD
ERD

ffiffiffi
n

p ; XTD ¼ Tn�1
1�αSETD
ETD

ffiffiffi
n

p :

In Eq. (9), SERD and SETD are estimates of the standard deviation of
ERD and ETD, respectively, and T is the quantile of the student distribu-
tion with n� 1 degrees of freedom. Furthermore, the confidence level
is generally set as 1� αð Þ ¼ 0:95 (see [21]).

The criterion defined by Eq. (9) is then applied for the three RVE
discretizations considered ((128)3, (256)3 and (512)3) which allows
the minimum number of calculations needed to achieve representa-
tiveness to be obtained. Convergence is reached after 4 calculations
for the resolution of (128)3, 3 calculations for the resolution of
(256)3 and 2 calculations for the resolution of (512)3.

Thus, by taking into consideration (i) the CPU time (of particle gen-
eration and calculation), (ii) the error made on the volume fraction of
particles (due to the generation method), and (iii) the number of cal-
culations needed to obtain representative results, a discretization of
(256)3 is chosen for all calculations.

5.2.2. Effective properties of the hot rolled Fe–TiB2 composite
The non‐zero components of the overall stiffness tensor of the hot

rolled Fe–TiB2 composite, denoted by Ĉ with the Kelvin notation, have
been determined numerically using the FFT‐based method and are
given in Table 8. These coefficients approximately verify the relations
Ĉ11 ¼ Ĉ22; Ĉ13 ¼ Ĉ23; Ĉ44 ¼ Ĉ55, and Ĉ66 ¼ Ĉ11 � Ĉ12, which is
expected since the overall behavior of the reconstructed hot rolled
composite is isotropic transverse by construction (due to the random
generation of the particles).

Then, the Young’s moduli in the rolling and transverse directions
ERD and ETD (defined by Eq. (8)) determined numerically by the FFT
method are given in Table 9, together with the analytical results given
by the Mori–Tanaka scheme. The first observation is that the predicted
elastic moduli obtained by the FFT‐based method are in very good
agreement with results provided by the Mori–Tanaka scheme and that
the transverse elastic modulus (ETD) is higher than the modulus in the
rolling direction (ERD).

The anisotropy of the overall behavior can be characterized by
computing the distance between the (anisotropic) elasticity tensor
and its closest isotropic tensor, allowing to define rigorously the notion
of deviation from isotropy of tensors; this permits to extend to tensors
the parameter a that was approximately introduced in Section (3.2) for
the experimental data (see Eq. (3)). In order to characterize the devi-
ation from isotropy of the macroscopic behavior, we first determine
the elastic properties of its closest isotropic tensor (denoted by Eiso

and νiso), which are given in Table 9. This was done using the Log‐
Euclidean distance of [32] (see also [35]) which is invariant by inver-
sion of the stiffness tensor, allowing the determination of a unique
closest isotropic tensor (see Appendix B). The distance between the
anisotropic tensor determined either by FFT or Mori–Tanaka’s scheme,
and its respective closest isotropic one, denoted by dln, is also given in
Table 9. Since the Log‐Euclidean distance is related to the relative
error between elasticity tensors (see [12]), the values obtained in both
cases (roughly 0.018) confirm that the predicted elastic moduli of hot
rolled Fe–TiB2 composites are very close to isotropy. This unexpected
overall isotropic behavior is related to a competition between the ani-
sotropic behavior and the spheroidal shape of the particles (see [12]).

Table 7
CPU time required to the computation of elastic properties by FFT-based method
for hot and cold rolled Fe–TiB2 composites, for three resolutions.

RVE CPU time (seconds)
Discretization Hot rolled Cold rolled

FFT-(128)3 23.6 28.5
FFT-(256)3 168.5 1870.8
FFT-(512)3 1331.1 17882.7

For the particles, the crystal structure of TiB2 is hexagonal and com-
posed of titanium atoms of hexagonal lattice and boron atoms of trian-
gular lattice. Both are stacked alternately along the vertical axis c. (The
local basis a; b; cð Þ is represented in Fig. 3). Thus, the spheroidal TiB2
particles have a “transverse isotropic” behavior in the direction c, with
transverse properties that are higher than their longitudinal ones. For
the elastic behavior of the TiB2 particles, we consider the experimental
values of [38]; the stiffness tensor of the TiB2 particles, expressed using 
Kelvin notation (see Appendix A for a description of the Kelvin nota-

tion for tensors) and denoted by ĈTiB2 , reads in the local basis a; b; cð Þ:



5.2.3. Effective properties of the cold rolled Fe–TiB2 composite
The non‐zero components of the overall stiffness tensor of the cold

rolled Fe–TiB2 composite are given in Table 10. As in the case of hot
rolled composites, these coefficients approximately verify the relations
Ĉ11 ¼ Ĉ22; Ĉ13 ¼ Ĉ23; Ĉ44 ¼ Ĉ55, and Ĉ66 ¼ Ĉ11 � Ĉ12, which is
expected since the overall behavior of the reconstructed cold rolled
composite is isotropic transverse by construction because the cracks
are generated randomly in the direction normal to the rolling
direction.

The Young’s modulus in the rolling and transverse directions, ERD

and ETD, deduced from the overall stiffness tensor determiner numer-
ically,1 are given in Table 11. It is worth noting that the Young’s mod-
ulus in the transverse direction is not affected by the presence of
cracks while a significant decrease of the Young’s modulus in the rolling
direction is observed, in comparison with the hot rolled composite.

Again, the deviation from isotropy of the macroscopic stiffness ten-
sor is characterized by the determination of its closest isotropic tensor,
using as previously the Log‐Euclidean distance. The elastic properties
of the closest isotropic tensor (denoted by Eiso and νiso) and the distance
dln are given in Table 11. In the case of the cold rolled Fe–TiB2 compos-
ite, the distance between the elasticity tensor determined numerically
and its closest isotropic tensor (roughly 0.033) is higher than that
obtained in the case of hot rolled ones (0.018); this implies that the
presence of voids (in the form of cracks) decreases the overall isotropy
of the composite. Moreover, the Young’s modulus associated to the
closest isotropy tensor of the cold rolled composite
(Eiso ¼ 230:0 GPa) is lower than that of the hot rolled composite
(Eiso ¼ 232:0 GPa). Thus, the effective properties, as well as the overall

isotropy of the hot rolled Fe–TiB2 composites, decrease (slightly) after
cold rolling.

6. Discussion

A summary of the effective elastic properties is given in Table 12.
Overall, the Young’s moduli determined numerically by FFT using rep-
resentative microstructures reconstructed from SEM images are in
good agreement with that measured experimentally for both hot rolled
and cold rolled FeTiB2 composites. Some comments are in order:

• In the case of hot rolled composites, the Young’s moduli in the
transverse direction appear to be very close to that in the rolling
direction, which implies that the overall behavior is close to iso-
tropy. This is confirmed by the values of the parameters character-
izing the deviation from isotropy, a ¼ 0:014 for the experimental
results and dln ¼ 0:018 for the numerical results.

• In the case of cold rolled composites, a decrease of about 7:3 GPa of
the longitudinal Young’s modulus (ERD) is observed in the experi-
mental results, and of about 4:7 GPa in the numerical ones. A small
decrease of the transverse Young’s modulus (ETD) is also observed.
This loss of stiffness is associated with an increase of the deviation

Table 10
Average values of stiffness tensor coefficients obtained after FFT computations of the reconstructed cold rolled Fe–TiB2 composites

Stiffness tensor coefficients in Kelvin notation (GPa)
Ĉ11 Ĉ12 Ĉ13 Ĉ22 Ĉ23 Ĉ33 Ĉ44 Ĉ55 Ĉ66

FFT-(256)3 328.0 151.7 148.9 328.0 148.9 316.5 174.9 174.8 176.1

1 In that case, the Mori–Tanaka’s predictions are not given since this does not take
cracks into consideration.

Table 11
The Young’s moduli in two directions (RD and TD), calculated by the FFT-based method for the reconstructed cold rolled Fe–TiB2 composite, as well as the associated
closest isotropic tensor Young’s modulus and the Log-Euclidean distance characterizing the deviation from isotropy.

ERD (GPa) ETD (GPa) Eiso (GPa) νiso (–) dln

FFT-(256)3 223.9 232.1 230.0 0.32 0.033

Table 9
The Young’s moduli in two directions (RD and TD), calculated by the FFT-based method and by the Mori–Tanaka scheme for the reconstructed hot rolled Fe–TiB2

composite, as well as the associated closest isotropic tensor Young’s modulus and the Log-Euclidean distance characterizing the deviation from isotropy.

ERD (GPa) ETD (GPa) Eiso (GPa) νiso (–) dln

FFT-(256)3 228.6 232.7 232.0 0.32 0.018
Mori–Tanaka 228.6 232.4 232.0 0.32 0.018

Stiffness tensor coefficients in Kelvin notation (GPa)
Ĉ11 Ĉ12 Ĉ13 Ĉ22 Ĉ23 Ĉ33 Ĉ44 Ĉ55 Ĉ66

FFT-(256)3 329.0 152.2 150.4 329.0 150.4 322.7 176.9 176.9 176.6

Table 12
Summary of the effective elastic properties of hot rolled and cold rolled FeTiB2

composites.

Hot rolled Cold rolled

ERD (GPa) ETD (GPa) ERD (GPa) ETD (GPa)

Experimental 230.4 233.7 223.1 232.6
FFT-(256)3 228.6 232.7 223.9 232.1

Table 8
Average values of stiffness tensor coefficients obtained after FFT computations of the reconstructed hot rolled Fe–TiB2



from isotropy, with values a ¼ 0:042 for the experimental results
and dln ¼ 0:033 for the numerical results. Since an important frac-
tion of cracks was observed in the cold rolled composite, the
decrease of both the overall elastic properties and the overall iso-
tropy is attributed to the presence of these cracks which have nucle-
ated during the plastic deformation induced by cold rolling
processing.

This modeling, based on microstructure reconstruction and statisti-
cal analysis, is a powerful tool to investigate the properties of compos-
ites. It can be notably used for material design by making changes in
the microstructure in order to tailor mechanical properties. In the pre-
sent case, it could be used to study the effect, on the effective proper-
ties of the Fe–TiB2 composite, of several geometrical and
morphological parameters related to the TiB2 particules including vol-
ume fraction, misalignment of some particles and aspect ratios, among
others.

Since the hot rolled Fe–TiB2 composite exhibits a quasi‐isotropic
behavior, it is of interest to study numerically the effect of the TiB2

particles aspect ratio on the deviation from isotropy. A simplified case
with only one family of particles is considered in order to focus only on
the aspect ratio. Several microstructures reinforced with 10% of ellip-
soïdal TiB2 particules are thus randomly generated with different
aspect ratios and some of them are represented in Fig. 7. The effect
of the aspect ratio on the ETD and ERD is represented in Fig. 8, for a fer-
ritic matrix with isotropic Young’s modulus E ¼ 210 GPa reinforced
with a volume fraction of 10% of TiB2 particles (whose behavior is

given by Eq. (7)). The gap between ETD and ERD is maximal when
the aspect ratio is equal to 1. When the aspect ratio increases, the
gap between ETD and ERD decreases. For an aspect ratio of about 20
the two moduli ETD and ERD becomes equal. The deviation from iso-
tropy in Fe–TiB2 composites is thus related to a subtle coupling
between the intrinsic material anisotropy of the TiB2 particles and
the anisotropy induced by the aspect ratio of the particles.

7. Conclusion

The aim of this paper was to study, experimentally, analytically and
numerically, the effective properties of hot and cold rolled Fe–TiB2

composites whose microstructures have been recently refined.
First, the Young’s moduli in the rolling and transverse directions of

hot and cold rolled Fe–TiB2 composites have been determined experi-
mentally using several methods (extensometer, strain gauge and reso-
nance). A small loss of stiffness is observed in cold rolled composites.

Then, a microstructure analysis of Fe–TiB2 composites, based on
SEM observations, has permitted to classify TiB2 particles into five
groups in terms of their diameters and aspect ratios in both composites
as well as cracks in cold rolled composites. This classification has
served as a basis to generate representative microstructures using
the RSA method.

The generated microstructures were used to determine the overall
elastic properties of the hot and cold rolled Fe–TiB2 composites using
analytical homogenization and numerical full‐field FFT‐based simula-
tions. A good agreement is observed with the experimental results,
which confirms that the damage induced by cold rolling degrades
(moderately) the overall elastic properties of Fe–TiB2 composites.

It is worth noting that the effective properties of both hot and cold
rolled Fe–TiB2 composites are still higher than that of standard steels,
which still makes them good candidates in lightweight structures with
stiffness as primary criterion. Since cold rolling induces a small
decrease of the overall stiffness, it is expected that processes based
on plastic deformation (such as forming) would also lead to decrease
of the elastic properties. This implies that the effect of processing on
the elastic properties must be carefully taken into account for MMC
composites to be used in industrial applications.

Future developments of this work will concern (i) the study of the
overall stiffness evolution of Fe–TiB2 composites during plastic defor-
mation (e.g. in tensile tests and forming processes) and (ii) the numer-
ical prediction of the overall rigidity of industrial structural parts made
of Fe–TiB2 composites and obtained after forming, using the
homogenization‐based damage model developed by [14].
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Fig. 7. Randomly generated spheroidal (prolate) particles with a volume fraction of 10%. (a) Aspect ratio of 1, (b) Aspect ratio of 3, (c) Aspect ratio of 6 and (d)
Aspect ratio of 9.

Fig. 8. Influence of the particles’ aspect ratio on the moduli ETD and ERD.



Cijkl ¼ Cjikl ¼ Cijlk; Cijkl ¼ Cklij;

Sijkl ¼ Sjikl ¼ Sijlk; Sijkl ¼ Sklij:

The Kelvin notation in elasticity (see [30] for a comprehensive
description of the Kelvin notation) is a very useful tool to express
the tensorial elasticity law. Fourth‐order elasticity tensors in three
dimensions are equivalent to second‐order tensors in six dimensions;
the tensor C can be represented by the 6� 6 matrix Ĉ defined by

Ĉ ¼

C1111 C1122 C1133
ffiffiffi
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ffiffiffi
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:

ðA:2Þ
Second‐order symmetric tensors in three dimensions are equivalent

to vectors of six dimensions. Thus, the associated stress and strain vec-
tors denoted σ̂ and ɛ̂ are given by

σ̂ ¼

σ11

σ22

σ33ffiffiffi
2

p
σ23ffiffiffi

2
p

σ13ffiffiffi
2

p
σ12

0
BBBBBBBB@

1
CCCCCCCCA
; ɛ̂ ¼

ɛ11
ɛ22
ɛ33ffiffiffi
2

p
ɛ23ffiffiffi

2
p

ɛ13ffiffiffi
2

p
ɛ12

0
BBBBBBBB@

1
CCCCCCCCA
: ðA:3Þ

The elasticity law can then be rewritten with the Kelvin notation as

σ̂ ¼ Ĉ � ɛ̂; ɛ̂ ¼ Ŝ � σ̂; Ĉ � Ŝ ¼ Î6; ðA:4Þ
where Î6 is the 6� 6 identity matrix.

Appendix B. The closest isotropic tensor to an arbitrary elasticity
tensor

In many applications, it is of interest to determine the closest iso-
tropic tensor to an arbitrary elasticity tensor. The problem considered
reduces to the minimization of the distance between the given tensor
C and the closest isotropic tensor Ciso sought. It has been shown in
[32,35] that the most suitable distance function for tensors, in this
problem, is the Log‐Euclidean function because it is invariant by
inversion.

We are thus looking for the closest isotropic tensor Ciso of a given
tensor C, which is necessarily of the form

Ciso ¼ 3κJþ 2μK; ðB:1Þ

where κ and μ are respectively the bulk modulus and shear modulus; J
and K are linearly independent isotropic tensors defined by

J ¼ 1
3
I3 � I3; K ¼ I� J; ðB:2Þ

where I3 is the second‐order identity tensor. Using the Kelvin nota-
tion (the tensors C and Ciso are respectively represented by their
6� 6 matrices Ĉ and Ĉiso as shown in Appendix A), the closest iso-
tropic tensor Ĉiso is that which minimizes the Log‐Euclidean distance
[32]

dln Ĉ; Ĉiso

� 	
¼ ln Ĉ

� 	
� ln Ĉiso

� 	��� ������ ���; ðB:3Þ

where �j jj j is the classical Euclidean norm and ln �ð Þ is the logarithm
function of a 6� 6 matrix (see [32,35]). The minimization of the dis-
tance (B.3) is unique and leads to the bulk modulus and shear modulus
of the closest isotropic tensor to C:

κ ¼ 1
3 exp ln Ĉ

� 	
: Ĵ

� 	

μ ¼ 1
2 exp

1
5 ln Ĉ

� 	
: K̂

� 	
:

8><
>: ðB:4Þ
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Appendix A. The Kelvin notation in elasticity

The tensorial elasticity law relates the second‐order stress and 
strain tensors, respectively denoted by σ and ɛ, through the linear 
relations

σ ¼ C : ɛ; ɛ ¼ S : σ; C : S ¼ S : C ¼ I; ðA:1Þ 
where C and S respectively denote the fourth‐order stiffness and com-
pliance tensors, and I is the fourth‐order identity tensor. Elasticity ten-
sors are positive‐definite and possess minor and major symmetries
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