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Driving simulator study of the
relationship between motion strategy
preference and self-reported driving
behavior

Carolina Rengifo1, Jean-Rémy Chardonnet2, Hakim Mohellebi1, 
Damien Paillot2 and Andras Kemeny1

Abstract

Faithful motion restitution in driving simulators normally focuses on track monitoring and maximizing the platform
workspace by leaving aside the principal component—the driver. Therefore, in this work we investigated the role of the
motion perception model on motion cueing algorithms from a user’s viewpoint. We focused on the driving behavior
influence regarding motion perception in a driving simulator. Participants drove a driving simulator with two different
configurations: (a) using the platform dynamic model and (b) using a supplementary motion perception model. Both stra-
tegies were compared and the participants’ data were classified according to the strategy they preferred. To this end, we
developed a driving behavior questionnaire aiming at evaluating the self-reported driving behavior influence on partici-
pants’ motion cueing preferences.

The results showed significant differences between the participants who chose different strategies and the scored
driving behavior in the hostile and violations factors. In order to support these findings, we compared participants’ beha-
viors and actual motion driving simulator indicators such as speed, jerk, and lateral position. The analysis revealed that
motion preferences arise from different reasons linked to the realism or smoothness in motion. Also, strong positive
correlations were found between hostile and violation behaviors of the group who preferred the strategy with the sup-
plementary motion perception model, and objective measures such as jerk and speed on different road segments. This
indicates that motion perception in driving simulators may depend not only on the type of motion cueing strategy, but
may also be influenced by users’ self-reported driving behaviors.
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1. Introduction

Driving simulators provide flexible, reproducible, and

highly repeatable simulation environments. They are used

to measure drivers’ behaviors, simulate traffic environ-

ments, evaluate real-world situations, study driver–human

interactions, and validate advanced driver-assistance sys-

tems and autonomous driving. One of the main challenges

of these platforms is to faithfully reproduce car move-

ments in the simulator when considering workspace limits.

To overcome this issue, all the dynamic driving simulators

used by car manufacturers and research laboratories imple-

ment motion cueing algorithms (MCAs), which aim at bet-

ter reproducing motion signals from the vehicle model to

the simulator while keeping the platform within the actua-

tor’s capabilities.

Model predictive control (MPC)1 is used as a flexible

MCA capable of effectively reproducing vehicle move-

ments, manage safety requirements, and maximizing

workspace exploitation of driving simulators. Unlike other

existing MCAs such as classic, adaptive, or optimal, this

technique has shown many advantages in terms of con-

straints handling2,3 and workspace use.4 When using

MPC-based MCA, the motion restitution quality depends

strongly on the underlying mathematical model, and
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finding the most suitable model is a major task that

requires considerable efforts.

The first MPC for MCA applications5 and some recent

MPC versions,6,7 only included an approximate platform

dynamic model in order to prevent exceeding platform

limits. Others MPCs8,9,10,11 choose to additionally inte-

grate the mathematical model of human motion perception

into the control loop to minimize the motion sensation

error between a real vehicle and the driving simulator. The

human motion perception model is based on the mathe-

matical model of the vestibular system since it is the main

human organ capable of sensing motion. However, to the

authors’ knowledge, it has not been shown whether drivers

will prefer the simulator’s motion with an MCA that inte-

grates or not the vestibular system. Hence, this paper pro-

poses to evaluate two different motion configurations from

a user’s viewpoint that depend directly on the mathemati-

cal model used in the control design. The first configura-

tion takes the platform dynamic model without any human

perception model and the second one also uses the vestibu-

lar system model proposed by Telban and Cardullo.12

They will be referred to as A1 and A2, respectively.

Since not all drivers behave in the same way, we

believe that normal driving behavior impacts motion per-

ception in a driving simulator. Therefore, we analyze

whether the driving behavior is a predictor of the user’s

preferences in terms of motion perception.

To assess driving behavior, several self-assessment

measurements have been used in recent decades, which

consist of taking the decisions and actions that drivers take

on the road as indicators of their usual driving behavior.

Among self-reports are the Driver Behaviour

Questionnaire (DBQ),13 designed to study and classify

outlying driving behavior; the Driving Behaviour

Inventory (DBI),14 developed to study the dimensions of

driver stress; the Driving Style Questionnaire (DSQ)15

proposed to assess decision-making styles, the Driver Skill

Inventory (DSI),16 used to compare self-reported driving

abilities with general drivers’ skills, and the

Multidimensional Driving Style Inventory (MDSI),17

which presents a comprehensive and multidimensional

self-report of behavior while driving. We believe that the

lack of a common conceptual framework is one of the dif-

ficulties to address and understand self-reported driving

behavior. In this study, we consider the DBQ and the

MDSI as the basis for defining the driving behavior of

each participant, since to the best of our knowledge they

are the only ones that describe in a general way driving

behaviors based only on drivers’ behavioral habits.

The DBQ is one of the most used self-reports addres-

sing driving behaviors, but does not consider good beha-

viors. The original DBQ version13 and some other

modified versions have been used to evaluate different

characteristics, such as geographical location,18–22 age or

gender,23 cultural influence,24 driving scenario

conditions,25 and have even been used in studies related to

driving simulators.26 The MDSI is newer than the DBQ,

but it tries to classify driving behaviors in a much simpler

and more understandable way. It was designed from previ-

ous self-assessment measurements to create a unique and

multidimensional conceptualization of driving styles.

Although the measures in the questionnaire are subjective,

some authors have shown that they are good indicators of

driving behavior.27–29 Therefore, in this study we evaluate

in a psychometric way (internal consistency and reliabil-

ity), a joint version of both questionnaires in order to

address driving behavior in a driving simulator.

In order to analyze objectively the self-reported driving

behavior and the MCA mathematical model preference,

we use actual measures collected after using the simulator.

Research developed by Kaye et al.27 based on 20 different

studies shows that there are similarities and a positive cor-

relation between driver behavior subscales and objective

measures. Among numerous existing driver performance

indicators, we consider those that have shown to have a

significant influence on self-reported driving behavior vali-

dation and movement restitution in a driving simulator.

Consequently, the average and the standard deviation of

speed,26,30 the average and standard deviation of the lateral

position,28 and the average of jerk31 are taken as perfor-

mance indicators of driving simulators.

The main objective of the present study is to provide a

deeper understanding of driving behavior and it relation-

ship with the motion perception model preference in a

driving simulator. Additionally, objective support is pro-

vided by correlating performance measures obtained in

driving simulation tests to define in a forward-looking

manner the control strategy according to self-reported driv-

ing behaviors. In this sense, if the knowledge of drivers’

behavior is available, MCAs can be improved and adapted

specifically according to drivers’ desires, making the simu-

lation more immersive, realistic, and pleasant for each

driver.

The rest of the paper proceeds as follows. Section 2

presents the MCA implemented in the driving simulator

we used. Section 3 shows the user study including the pro-

cedure and all materials employed in this study. Section 4

exposes the research findings, followed by a detailed dis-

cussion in Section 5. Conclusions from this work are

drawn in Section 6.

2. Motion cueing strategy

The platform we considered here (see Section 3.1) cannot

provide long linear accelerations due to the workspace

limitations. Hence, in the control design, we use the tilt

coordination technique to provide an additional inertial

restitution along the inclination axes of the platform. This

is made possible by the sensory ambiguity of the otolith



organs, as they perceive the inclination of the head and

horizontal accelerations as linear accelerations. The driver

will perceive gravity acceleration g in its vertical plane

and an acceleration gu in its horizontal plane that inter-

venes on the perceived specific forces (i.e., the total reac-

tion force acting on a body per unit of mass in m/s2;

equation (1)). This inclination technique allows restituting

an acceleration of amplitude gu, thus providing the per-

ception of a continuous surge acceleration (Figure 1).

fx = ax � g sin (u) ð1Þ

To ensure the proper performance of this technique, it is

important to respect the perception thresholds32 and set

the screen on which the driving environment is displayed

relative to the platform so that the driver perceives accel-

erations and not inclinations. If the screen is not fixed, the

virtual environment must be modified accordingly.

The MCA implemented in this paper is based on MPC.

This strategy allows finding the most optimal longitudinal

and rotational accelerations that must be sent to the simu-

lator while respecting the constraints within a prediction

window.

2.1. Mathematical model

An approximate mathematical model is used to predict the

system’s future behavior within a prediction horizon. In

this study we consider two main models that will define

the optimization statement: the driving simulator dynamic

model and the human motion perception model.

2.1.1. Platform model. The simulator dynamic system cor-

responds to a double integrator (equation (2)) in order to

control the platform position p, the linear velocity v, the

linear acceleration ulin, the angle u, the angular speed v,

and the rotational acceleration urot along the X and Y axes.
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This model is the one used in the A1 strategy.

2.1.2. Perception model. The idea is to additionally integrate

human motion perception in the control loop to improve

simulation realism and immersion. Then, rather than fol-

lowing the acceleration tracking trajectory, the system will

track the perceived motion accelerations using a vestibular

system model that includes a set of motion sensors for all

specific forces.33 Two main components are involved in

motion perception: the otolith organs that respond to linear

accelerations, gravitational forces, and head tilt; and the

semicircular channels that are sensitive to movements in

their specific rotation plane by detecting head rotations or

angular accelerations. In the present study, we use the

model proposed by Telban and Cardullo.12

Figure 1. Tilt platform along the longitudinal acceleration.



The model for the semicircular canals is implemented

in the control design as a filter for the three rotation angles.

The otolith model is represented in a state-space form as
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where,

T1 =
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, T2 =
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,

T3 =
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, T4 =
1
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The different parameters represent the static sensitivity

Goto, the long time constant tLoto, the lead constant taoto,

and the short time constant tsoto. These constants were

obtained through subjective responses collected during dif-

ferent experiments and are detailed by Zacharias.32

The system (equation (3)) is merged with the platform

system (equation (2)) to impose physical constraints in the

optimization phase:
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This model is used in the A2 strategy.

2.2. Motion restitution

Although for the simulator we consider here the system’s

X–Y available stroke is 5.2 m, the simulator cannot fully

restore accelerations in most cases. Then, the input signals

have been scaled in order to reproduce as best as possible

motion in the simulator. According to Berthoz et al.,34 the

use of lower unit gains between 0.5 and 0.75 provides the

best perceived coherence of self-motion. Therefore, in this

study we chose a gain of 0.6 for scaling the specific force

signal f . The most relevant perception and physical limits

implemented in this study are presented in Table 1.

In order to illustrate the tracking performance of strate-

gies A1 and A2, we randomly selected a participant’s data

obtained from a driving test that lasted approximately 250

seconds. For this purpose, the terrain scenario (see

Figure 4) was used. Figure 2 shows the specific force

tracking along the X and Y axes for both MCAs.

We can observe in Figure 2 that the main difference

between the two strategies is that A2 restores more transi-

ent accelerations than A1. It is worth clarifying that nei-

ther A1 nor A2 manages the tracking trajectory 1:1 due to

the limitations of the simulator’s workspace (see Table 1).

Another MCA objective is to make the best use of the

available platform workspace. When the driving simulator

is in the neutral position (X: 0 meter; Y: 0 meter), the

available stroke is 62.5 m in all directions. In Figure 3 we

can see the simulator workspace in terms of position and

tilting angles used for each configuration on the 250 s

driving test. In terms of rail displacement, strategy A1

exploits more of the working envelop in both X and Y

axes. Nevertheless, strategy A2 privileges more the incli-

nation of the platform to restore linear accelerations than

does strategy A1.

In terms of simplicity, strategy A2 is more complex

than just taking the platform dynamic model as the number

of states in the control system is higher; however, both sys-

tems can be implemented in real time and, therefore, the

computational performance is not discussed in the present

study.

It is difficult to decide which of these two strategies is

the best in general terms if only a signal analysis is per-

formed. Hence, in the following section we will introduce

a driver-in-the-loop experience aiming at analyzing, from

both subjective and objective viewpoints, the driver’s pre-

ference for each of the algorithms.

3. User study

The overall settings and the research approach of the driv-

ing simulator study are detailed in this section.

3.1. Apparatus

The experiment was performed on the ULTIMATE driv-

ing simulator at Renault, Virtual Reality and Immersive

Simulation Center in France. The simulator consists of a

real body car integrated to a Hexapod platform and

mounted on large X–Y rails that provide a combination of

angular and translational motions (see Table 1). This

Table 1. Workspace and perceptive limits considered in the
control design.

Limits Displacement Velocity Acceleration

X rail 2.6 m 2 m/s 5 m/s2

Y rail 2.6 m 3 m/s 5 m/s2

Tilt/roll 5.5� 4�/s 8�/s
Tilt/pitch 5� 4�/s 8�/s



system integrates a visual scene projected on a spherical

screen to provide a 210� field of view. The high-quality

projection system and the full-vehicle cabin provide a rea-

listic and immersive environment.

3.2. Participants

Forty-one licensed drivers (8 female, 33 male) with a valid

driving license employed by the Renault group completed

and returned the driving behavior survey. Given the simu-

lator’s availability, 20 participants drove the simulator and

signed a consent form (mean age: 36.7 years, SD: 12.1

years). Two of the recruited participants were familiar with

the driving simulator, but before the present study they had

not driven the simulator with any of the proposed config-

urations. One participant was unable to finish due to

simulator sickness. Five females aged 22–40 years (mean:

27.8, SD: 7.2) and 14 males aged 22–61 years (mean: 39.6,

SD: 12.5) were included in the analysis regarding motion

perception. The time required for each participant was one

hour.

3.3. Experimental setup

The experiment was conducted in several stages. The first

phase consisted of filling out the driving behavior ques-

tionnaire (see Section 3.4.3) and some information about

the subjects themselves, such as age and gender. In the

second step, subjects were installed in the simulator and

safety instructions were given. Participants were asked to

pay attention to the different situations that could affect

the movement perception in each track of the scenario (see

Figure 2. MCA restitution according to the MPC mathematical model: without any perception model (A1) and including a
perception model (A2).

Figure 3. Simulator’s workspace during the test. (a) Platform displacement. (b) Hexapod angles.



Figure 4). Participants started with a familiarization driv-

ing test that lasted 150–200 s, and then drove the scenario

with each of the strategies. The configurations were pre-

sented to the subjects in random order to avoid learning

effects. Between each drive, participants were requested to

complete a motion questionnaire (see Section 3.4.2) to

evaluate the perception in the simulator for each MCA, A1

and A2. Each participant took 5–10 min to complete this

questionnaire. At the end of the experiment, they were

asked to indicate which strategy they preferred.

The driving simulator test was conducted using the ter-

rain shown in Figure 4. The sound inside the simulator’s

cabin depended on the vehicle’s engine and remained the

same for all maneuvers.

3.4. Materials
3.4.1. Test scenario. During the driving scenario genera-

tion, both the terrain and relevant situations were taken

into account to evaluate the movement restitution and gen-

erate signals with high and low frequencies for longitudi-

nal and rotational accelerations. The terrain was specially

designed to generate situations in a city, a highway, mer-

ging sections, and long turns. The scenario generation was

done with the SCANeR Studio driving simulation software

from AV Simulation.

Figure 4 shows the terrain used in the present study.

Different road segments named from 1 to 5 were defined

to represent specific driving situations. The first segment

takes place in the city and the speed is limited to 50 km/h.

It reproduces several start-and-stop situations to evaluate

linear high-frequency accelerations along X (see Figure 5).

The second segment corresponds to a merging section with

speed limited to 50 km/h and mostly aims at producing lat-

eral movements. The third segment is a highway limited to

100 km/h and generates linear continuous accelerations

along the X axis. The fourth segment is a highway exit

limited to 50 km/h to represent constant lateral accelera-

tions. The last one corresponds to an urban road with a

70 km/h speed limit representing a slalom-type condition

to reproduce lateral transient accelerations along Y . Traffic

signs are present and verbal instructions were provided in

the familiarization phase to indicate the respective speed

limit for each track. The distance covered by each partici-

pant and for each MCA was approximately 2.8 km.

3.4.2. Motion restitution questionnaire. After testing each

MCA, participants were asked to score the platform’s

motion restitution according to certain statements from the

study carried out by Berthoz et al.34 In the questionnaire,

four statements had to be scored using a seven-point Likert

scale (1: ‘‘strongly disagree’’; 7: ‘‘strongly agree’’). The

statements were: ‘‘I forgot the simulator,’’ ‘‘Motion was

realistic,’’ ‘‘I felt I was driving,’’ and ‘‘I drove as usual.’’

At the end of the driving test, participants were asked to

choose the MCA they preferred, A1 or A2. This choice is

essential in the objective analysis as it determines the way

the collected data are divided and analyzed.

3.4.3. Driving behavior questionnaires. Self-reported driving

behavior questionnaires were implemented to understand

whether the subject’s preference regarding motion restitu-

tion was influenced by real driving behavior or not. For

this study, we chose to use two of the most commonly

used ones—the DBQ13 and the MDSI17—in order to

address driving behavior in a driving simulator. The DBQ

is widely used to report and identify individuals’ aberrant

behaviors such as violations, errors, and lapses. The MDSI

categorizes driving behaviors in different styles, not only

based on aberrant behaviors. For this reason, in the present

study we considered both questionnaires.

Based on the existing questions in the DBQ, a new mod-

ified version was produced with 28 items (see Table 2)

according to the highest load scores from previous stud-

ies.19,23,25,35,36 Items with high factor loading scores can be

used to describe the group of behavior in which they were

classified. All 28 items are present in short DBQ versions

as in the studies by Lajunen et al.24 and Reimer et al.37 and

are oriented toward specific populations. These questions

include some of the original scales,13 such as violations,

errors, and lapses. However, the factorial structures that

define the scales of the DBQ can vary between different

driving cultures and nations. Therefore, an exploratory fac-

tors analysis was used to define the categories for this modi-

fied DBQ (see Section 4.2).

Figure 4. Top view of the terrain used for the driving test.
Figure 5. Screenshot of the drivers’ view of the virtual
scenario in the first situation.



The original MDSI contains 44 items to address four dif-

ferent driving styles: anxious driving, patient and careful

driving, careless driving, and angry and hostile driving. In

order to reduce the number of questions from the original

MDSI form, we selected 27 questions (Table 3) from previ-

ous studies.17,38,39 The 27 items were analyzed in explora-

tory factor analysis (EFA) to determine their relevance in

the factors that address a specific driving behavior. This

modification had to be made as the simulator availability

and the time per participant to complete all the experiments

was one hour. In addition, long questionnaires tend to demo-

tivate subjects in terms of answering seriously and may have

a tendency to reproduce systematic answers.40

Eight questions were used for both the DBQ and the

MDSI questionnaires, which led to a final self-report form

with 47 questions.

Subjects indicated the frequency with which they

engaged in a specific type of behavior, basing their judg-

ment on their personal driving experience. Each subject

was instructed to indicate for each item how often they

engaged in such behaviors on a six-point scale, where

1 = never and 6 = nearly all the time.

3.5. Data extraction

Data were collected after each drive in the simulator with

the intention of objectively analyzing the influence of sub-

jects’ driving behaviors and their preference regarding stra-

tegies A1 and A2. As explained before, the terrain used for

the test scenario was divided into five road segments (see

Figure 4). The segments were separated according to the

vehicle position in the terrain. The intersections between

Table 2. Factor model and component loading of the modified DBQ.

Factors and items Loading Mean (SD)

Errors α= 0:79
[Q1] Drive away from traffic lights in second gear 0.52 1.55 (0.78)
[Q4] Forget where you left your car in a car park 0.59 2.30 (1.18)
[Q6] Switch on the lights instead of the windscreen wipers 0.79 1.48 (0.93)
[Q21] Nearly hit something due to misjudging my gap in a parking lot 0.51 1.68 (0.69)
[Q24] Get into the wrong lane approaching a roundabout or junction 0.61 1.73 (0.75)
[Q43] Misjudge the speed of an oncoming vehicle when passing 0.66 2.08 (1.07)
Lapses: A α= 0:76
[Q5] Brakes to avoid a collision when vehicle ahead has slowed down 0.49 2.05 (0.81)
[Q8] Forget about the road along which you have just traveled 0.4 2.08 (0.83)
[Q18] Become angered by a certain type of driver and indicate your hostility 0.56 1.53 (0.72)
[Q19] I fail to notice someone at the pedestrian crossing 0.48 1.95 (0.71)
[Q26] Fail to check the rear mirror before pulling out or changing lanes 0.76 1.45 (0.60)
[Q31] Queuing to turn left onto a main road. You pay such close attention to the
main stream of traffic that you nearly hit the car in front

0.72 1.78 (0.95)

Lapses: B (α= 0:7)
[Q9] Miss your exit on a motorway and must make a lengthy detour − 0.58 2.03 (0.83)
[Q25] Misread the signs and exit from a roundabout on the wrong road − 0.62 2.05 (1.01)
[Q37] Plan my route badly. so that I hit traffic that I could have avoided − 0.39 2.35 (1.10)
[Q45] Intending to drive to a destination, you find yourself on the road to your
usual destination

− 0.43 2.30 (1.24)

Violations: risk A (α= 0:7)
[Q3] Drive close or ‘‘flash’’ the car in front as a signal for that driver to go faster 0.63 2.08 (1.10)
[Q23] Overtake a slow driver on the inside 0.64 2.35 (1.17)
[Q32] Driving too close to the car ahead of you 0.66 2.05 (1.15)
[Q14] Deliberately disregard the speed limits late at night or early in the morning 0.39 2.95 (1.50)
[Q28] Ignore ‘‘give way’’ signs and narrowly avoid colliding with traffic having right
of way

0.35 1.35 (0.53)

Violations: risk B (α= 0:5)
[Q12] Drive through traffic lights that have just turned red 0.62 1.25 (0.49)
[Q15] Nearly hit a cyclist who has come up on your inside when turning 0.5 1.23 (0.42)
[Q17] Driving after drinking 0.45 1.53 (0.68)
[Q27] Attempt to overtake a vehicle that you hadn’t noticed was signaling its
intention to turn left

0.38 1.20 (0.46)

[Q10] Forgetting what gear you are in and checking*
[Q13] Getting angry with another driver and following him*
[Q29] Get involved in unofficial races with other drivers*

α = Chronbach’s alpha.

*item removed to compute the expected score and α.



each segment were not taken into account as they were con-

sidered as transition sections. We took all subjects’ driving

data after driving the simulator with A1 and A2 MCAs, then

the measures’ averages of both strategies were computed for

each of the five road segments. The measures (driving-motion

indicators) calculated per participant were the average for jerk

in m/s3, speed in km/h, lateral position in meters, and the stan-

dard deviations for speed and lateral position. These para-

meters were selected based on their relevance in reporting

driving behaviors in previous studies.26,28,29,31

Jerk was calculated as the rate of acceleration change.

Only an X or Y jerk value was considered per segment as

these depended on the motion restitution signal (e.g., in #1

and #3 road segments, the situations produced mostly X lin-

ear accelerations while in the remaining road segments the

situations produced Y linear accelerations). The lateral posi-

tion was provided by the SCANeR Studio simulation soft-

ware: when the virtual car was in the middle of the lane, the

lateral position corresponded to zero, 1.5 m when fully to

the right and 21.5 m when fully on the left side. We only

took the absolute values to evaluate the average. Regarding

this indicator only, the last road section that represents the

slalom condition was not considered as the vehicle is con-

stantly changing its lane. In order to be able to compare the

simulation data of all participants, we separated them into

MCA-preference groups (i.e., the participants who preferred

strategy A1 and the participants who preferred strategy A2).

We call these group A1 and group A2, respectively. This

classification is made to collect the motion indicators by

preference group and to verify whether there is a correlation

between the groups’ data and their self-reported driving

behaviors. This decision was also influenced by the dispar-

ity between the answers to the different questionnaires. The

groups were selected according to the participants’ answers

regarding the order of preference in the last part of the

experiment (see Section 3.4.2).

4. Results

The analysis consisted of several steps mainly divided into

objective and subjective analyses. Figure 6 serves as a sup-

port to illustrate the way the analyses in this study are

Table 3. Factor model and coefficients loading of the modified MDSI.

Factors and items Loading Mean (SD)

Anxious driving style α= 0:84
[Q1] Drive away from traffic lights in second gear 0.54 1.55 (0.78)
[Q5] Brakes to avoid a collision when vehicle ahead has slowed down 0.53 2.05 (0.82)
[Q6] Switch on the lights instead of the windscreen wipers 0.66 1.48 (0.93)
[Q7] It worries me when driving in bad weather 0.71 2.13 (1.09)
[Q19] I fail to notice someone at the pedestrian crossing 0.45 1.95 (0.71)
[Q20] Feel uncomfortable while driving 0.62 1.45 (0.86)
[Q21] Nearly hit something due to misjudging my gap in a parking lot 0.65 1.68 (0.69)
[Q36] Driving makes me feel frustrated 0.57 1.85 (1.21)
[Q37] Plan my route badly, so that I hit traffic that I could have avoided 0.42 2.35 (1.09)
[Q43] Misjudge the speed of an oncoming vehicle when passing 0.56 2.08 (1.07)
Careful driving style α= 0:71
[Q11] Feel reassured while driving 0.41 5.13 (1.02)
[Q22] Tend to drive cautiously 0.71 4.75 (1.08)
[Q33] Feel I have control over driving 0.35 5.33 (0.83)
[Q34] On a clear freeway, I usually drive at or a little below the speed limit 0.59 3.85 (1.75)
[Q38] Wait patiently when not having right of way 0.4 5.05 (1.36)
[Q42] Base my behavior on the motto ‘‘better safe than sorry’’ 0.51 4.58 (1.41)
[Q46] Ready to react to unexpected maneuvers by other drivers 0.49 4.85 (1.09)
Hostile driving style α= 0:78
[Q41] Like to take risks while driving 0.72 1.93 (0.99)
[Q47] Enjoy the excitement of dangerous driving 0.83 2.15 (1.21)
Impatient driving style α= 0:6
[Q2] Get impatient during rush hour 0.45 3.28 (1.09)
[Q35] Insert into that lane as soon as possible when the lane next to me starts to move 0.78 2.33 (0.92)
Risky driving style α= 0:68
[Q12] Drive through traffic lights that have just turned red 0.37 1.25 (0.49)
[Q16] Read messages while driving 0.68 1.98 (1.21)
[Q30] Do relaxing activities while driving 0.40 1.97 (1.05)
[Q40] Fix my hair/eat while driving 0.42 1.90 (1.11)
[Q44] Write messages while driving 0.85 1.73 (0.96)
[Q39] In a traffic jam, I think about ways to get through the traffic faster*

α = Chronbach’s alpha.

*item removed to compute the desired loading score and α.



presented. The subjective analysis integrated the MCA and

the driver behavior forms. Regarding the MCA question-

naire, we evaluated from the participants’ viewpoints the

differences between strategies A1 and A2. For the driving

behavior questionnaire, an analysis was conducted to cate-

gorize separately the 28 DBQ items and the 27 MDSI

items within specific groups we call factors.

Concerning the objective analysis, we considered the

groups based on their MCA preference as presented in the

previous section. For each group, correlation tests were

carried out between the self-reported driving behavior and

the driving-motion indicators.

4.1. MCA preference

Subjective analyses were completed for groups A1 and

A2. Seven participants chose the A1 configuration (con-

taining only the vehicles’ dynamic model) and 12 partici-

pants chose the A2 strategy (which, in addition to the

vehicle dynamics, integrates the human perception model).

Since the data for groups A1 and A2 do not follow a

normal distribution, nonparametric paired Wilcoxon

signed-rank tests with a significance level of 5% were

used to compare the differences between the groups. The

means and standard deviations for the MCA form scores

for each group can be seen in Figure 7. The mean values

Figure 6. Overview of the analysis framework.

Figure 7. Subjective evaluation of the MCA statements depending on the subjects’ preferred strategy. (a) Group A1. (b) Group A2.



support the participants’ MCA choices (i.e., for the A1

group, the MCA forms statements have been scored better

when using strategy A1 than strategy A2 and vice versa).

Regarding only the MCA statement scores that were

statistically significantly different, the sign test indicated

that group A1 forgot more about the driving simulator

when driving the simulator with A1 MCA than with A2

(Z = 2:731, p= 0:018). For the participants of group A2,

the test found that the statements ‘‘I feel like I was driv-

ing’’ (Z = 2:135, p= 0:032) and ‘‘I drove as usual’’

(Z = 2:098, p= 0:036) were significantly higher when

using strategy A2 than using A1 (i.e., their behavior was

not influenced by being in a driving simulator rather than a

real car). Finally, for the same group, the test indicated that

the mean for the motion realism scores with strategy A2

was statistically significantly higher than the mean for the

same statement with strategy A1 (Z = 2:315, p= 0:006).
In the following sections, these results will be correlated

with the data collected from each participant and will be

compared with their real driving behavior.

4.2. Driving behavior questionnaire

The 28 DBQ items and the 27 MDSI items used in the

present study were submitted to an EFA to reduce the

number of variables and clearly identify behavioral fac-

tors. In this analysis we used the principal axis factoring

method and the varimax rotation to correlate the factors in

the final result. The techniques used to determine the num-

ber of factors in both forms were the parallel analysis, the

Kaiser criterion (i.e., keeping factors with eigenvalues

greater than 1), and visual inspection of scree plots. We

decided to interpret only the items with an absolute load-

ing value of 0.30 or higher to obtain a good interpretability

of factors, considering the size of the population test and

the number of questions. This value is supported by the

majority of researchers.41 Neither DBQ nor MDSI items

had loading scores inferior to 0.35 (see Tables 2 and 3).

Finally, for the consistency of the DBQ and the MDSI, all

obtained factors were checked with Cronbach’s alpha as

an estimate of internal reliability.

MDSI: A first EFA revealed poor results since the

loading value of each variable in its respective factor was

less than 0.30. In addition, the reliability Cronbach’s alpha

coefficient was not satisfactory for half of the factors,

being less than 0.7. As a result, a second EFA was con-

ducted to group the variables into new factors, this time

without question 39 since its loading value was less than

0.3 with its corresponding factor. The second analysis

gave a distribution of 26 elements with 5 factors explain-

ing 50% of the total common variance of the modified

MDSI. The resulting Tucker’s congruence coefficient was

0.84, which corresponds to a fair similarity between the

different driving styles or factors. Table 3 summarizes for

each driving style the question item, a brief description,

the questions’ loading values, the a coefficient by style,

and the mean and SD for all questions.

DBQ: An initial EFA gave a Tucker coefficient of less

than 0.7; therefore, questions with a load below the load-

ing threshold (Q10, Q13, Q29) were deleted and a new

analysis was performed. The latter resulted in a distribu-

tion of 25 elements with 4 factors explaining 47% of the

total common variance of the modified DBQ. The Tucker

coefficient obtained was 0.88, which provides a fair simi-

larity between the factors structure.

Following the methodology of Reason et al.,13 the fac-

tors classification depends on the type of behavior and risk

category. The different factors were established based on

the three main categories found in the literature:23,25,42

errors, lapses, and violations. In our case, lapses and viola-

tions were divided into two subcategories that refer to the

risk level: A indicates a higher risk, (i.e., a definite risk to

other road users) and B a lower risk (i.e., some possibility

of risk to others). The B lapses may correspond to ‘‘slips’’

since they are not intended actions. The internal reliability

for the violations for risk B was found to be poor

(a= 0:5); therefore, we unified the violations into only

one factor (a= 0:68). All five factors were analyzed.

Table 2 shows the means and standard deviations for each

of the 25 items of the new version of the DBQ.

In order to investigate whether the type of driving beha-

vior had a relationship with the participants’ MCA choice,

we compared the self-reported driving behaviors between

the groups with Wilcoxon Mann–Whitney U tests. The

results of this analysis indicated that group A2 had signifi-

cantly higher scores in the hostile driving style

(U = 10, p= 0:005) and in the violations factor

(U = 16, p= 0:046) than group A1. None of the remain-

ing factors were significantly different between groups A1

and A2.

This result will be correlated with the motion driving

indicators in Section 4.3. Figure 8 shows the mean and SD

values for the different groups in each driving behavior

questionnaire.

To evaluate the relationship between the question-

naires, Pearson correlations were computed between the

five driving styles—anxious, careful, hostile, impatient,

and risky—and the five DBQ factors—errors, lapses risk

A, lapses risk B, violations risk A, and violations risk B.

Additional correlations were computed for the violations

group (A and B) together, as this factor has greater internal

reliability than the separate A and B violations factors.

Correlations were computed with the questions’ score

average (Table 4), and for all participants who answered

the DBQ (Section 3.4.3). Strongly positive correlations

were observed for two driving styles: the first one is the

anxious style with errors and lapses, and the second one is

the hostile driving style with violations. The careful style

is moderately negatively correlated with errors and lapses



with important risks. We can observe also that the impati-

ent and risky styles are not correlated with DBQ factors.

4.3. Relationship between self-reported and actual
driving behavior

From the previous results we can show that the only differ-

ence between groups A1 and A2 regarding driving beha-

vior was found for the MDSI hostile style and for the DBQ

violations factor. Pearson correlations indicate that there

was a significantly positive association between both fac-

tors (r = 0:597, p \ 0:01). In order to understand objec-

tively this result, and using the methodology explained in

Section 3.5, we computed the minimum, maximum, aver-

age, and standard deviation values for all driving-motion

indicators (speed, jerk, and lateral position) in each road

segment. These indicators are listed in Table 5 and are cor-

related with the hostile style and the violations factors.

Table 6 provides an overview of Pearson correlations

between the driving behavior scores for both factors and

motion indicators for groups A1 and A2. Correlations were

made for each road segment since the situations in each

segment were generated to reproduce different types of

motion, as explained in Section 3.4.1.

For group A1, none of the measures presented had a

significant correlation with the hostile style, and only the

SD of the lateral position presented a significantly and

strongly negative correlation with the violations factor

(r = � 0:805, p= 0:029). This result was expected since

the first road segment only lasts 300 m and presents

Figure 8. Groups A1 and A2 means and standard deviations for the factors in the MDSI and DBQ forms. (a) MDSI scores. (b)
DBQ scores.

Table 4. Correlations of DBQ and MDSI driving behaviors.

Styles Errors Lapses A Lapses B Violations A Violations B Violations (AB)

Anxious 0.87 (< 0.001) 0.58 (<0.001) 0.473 (0.003) − 0.089 (0.594) 0.033 (0.844) − 0.064 (0.700)
Careful − 0.329 (0.043) −0.396 (0.013) 0.109 (0.513) − 0.203 (0.221) 0.110 (0.512) − 0.134 (0.421)
Hostile − 0.005 (0.981) 0.143 (0.391) 0.000 (0.998) 0.55 (<0.001) 0.345 (0.034) 0.60 (< 0.001)
Impatient 0.114 (0.490) − 0.096 (0.565) − 0.080 (0.631) 0.258 (0.118) 0.043 (0.118) 0.237 (0.151)
Risky − 0.056 (0.742) 0.074 (0.656) 0.000 (0.997) 0.171 (0.304) 0.239 (0.305) 0.235 (0.155)

Table entries are correlation coefficients (r) with p values in parentheses. Statistically significant values are in bold.

Table 5. Mean, standard deviation, minimum, and maximum
scores for motion indicators.

Min. Max. Mean SD

Road section 1
Jerk X − 224.23 198.65 0.09 0.02
Speed 0.00 66.65 25.46 3.01
Lateral position 0.00 0.56 0.14 0.07

Road section 2
Jerk Y − 9.95 15.91 − 0.08 0.10
Speed 30.11 79.20 51.73 5.63
Lateral position 0.00 1.65 0.41 0.13

Road section 3
Jerk X − 17.86 16.35 − 0.04 0.04
Speed 34.35 120.20 81.00 7.00
Lateral position 0.00 1.15 0.27 0.14

Road section 4
Jerk Y − 9.25 17.92 0.03 0.03
Speed 41.63 97.39 61.66 9.39
Lateral position 0.00 1.75 0.41 0.24

Road section 5
Jerk Y − 19.12 54.81 0.01 0.03
Speed 1.17 112.33 74.77 8.86



several start-and-stop maneuvers with a maximal speed

limit of 50 km/h. Regarding group A2, Pearson correlations

showed several strong relations between the factors and the

measures. Comparing the hostile style, the mean of jerk

along X for road segment 1 (r=0:648, p= 0:031) and the

mean speed on road segments 2 (r = 0:618, p= 0:043)
and 4 (r = 0:743, p= 0:009) presented a strongly positive

correlation. Regarding violations, two measures correlated

strongly positively with this factor: mean speed on road

segment 4 (r = 0:669, p= 0:024) and SD of speed on

road segment 5 (r = 0:631, p= 0:037). This result sup-

ports that there is a difference according to the self-reported

driving behaviors between groups A1 and A2.

5. Discussion

The aim of this study was to analyze, from a driver’s view-

point, the MCA mathematical model’s influence and its

relationship with driving behavior in a driving simulator.

Two different models were compared: A1, which included

only the simulator dynamics, and A2, which complemen-

ted A1 with a human motion perception model. Such a

study can generally be obtained by using only a subjective

approach. However, in the current study we performed a

deeper analysis with respect to the reasons that led partici-

pants to choose the strategy that suits them best. Hence,

we examined objectively the self-reported driving beha-

viors and the real data indicators obtained after driving the

simulator with both strategies.

Comparing subjectively the A1 and A2 strategies, the

results showed that the preference between both strategies

can arise for different reasons. In fact, the group that pre-

ferred strategy A1 scored higher for the statement ‘‘I for-

got the simulator,’’ while group A2 scored higher for the

remaining statements such as ‘‘I felt I was driving’’ and ‘‘I

drove as usual and motion felt realistic.’’ This result can

be explained by seeing how strategy A1 restores move-

ment (see Figure 2)—that is, transient accelerations are

smoother than those produced by strategy A2, thus pro-

ducing a comfortable but slightly unrealistic motion effect.

Looking at driving behavior’s influence on participants’

MCA choice, we evaluated a modified version of the

MDSI and DBQ forms. Items from the original scales of

the DBQ and MDSI revealed a structure of five compo-

nents each. For the DBQ, the factors are interpreted as

errors, lapses of risk A, lapses of risk B, and violations.

This structure confirms the original classification13 and

supports the distinction between each factor as observed in

Table 6. Correlation for groups A1 and A2 between performance indicators and factors that present a statistically significant
difference in the driving behavior questionnaire: hostile style and violations.

Hostile – group A1 Violations – group A1 Hostile – group A2 Violations – group A2

Road section 1
Mean jerk X − 0.242 (0.600) − 0.230 (0.620) 0.648 (0.031) 0.534 (0.090)
Mean speed − 0.093 (0.843) − 0.096 (0.837) 0.215 (0.525) − 0.026 (0.939)
SD speed − 0.537 (0.214) − 0.572 (0.180) 0.132 (0.698) 0.398 (0.225)
Mean lateral position − 0.340 (0.456) − 0.739 (0.058) − 0.102 (0.764) − 0.409 (0.212)
SD lateral position − 0.352 (0.438) − 0.805 (0.029) − 0.162 (0.635) − 0.332 (0.319)

Road section 2
Mean jerk Y 0.615 (0.142) 0.578 (0.174) − 0.08 (0.816) − 0.477 (0.138)
Mean speed − 0.573 (0.179) − 0.598 (0.156) 0.618 (0.043) 0.550 (0.080)
SD speed − 0.061 (0.896) − 0.492 (0.262) 0.195 (0.566) 0.191 (0.573)
Mean lateral position 0.338 (0.458) 0.372 (0.411) 0.209 (0.538) − 0.506 (0.113)
SD lateral position 0.220 (0.636) 0.480 (0.276) 0.235 (0.486) − 0.592 (0.055)

Road section 3
Mean jerk X 0.180 (0.699) 0.140 (0.764) 0.497 (0.120) − 0.154 (0.651)
Mean speed − 0.370 (0.414) − 0.140 (0.765) 0.596 (0.053) 0.567 (0.069)
SD speed − 0.222 (0.632) − 0.311 (0.497) 0.101 (0.768) 0.244 (0.470)
Mean lateral position 0.275 (0.550) 0.144 (0.758) − 0.395 (0.230) − 0.115 (0.736)
SD lateral position 0.244 (0.598) − 0.003 (0.994) − 0.175 (0.607) − 0.22 (0.516)

Road section 4
Mean jerk Y 0.094 (0.841) 0.337 (0.460) 0.466 (0.149) 0.202 (0.551)
Mean speed − 0.272 (0.555) − 0.154 (0.741) 0.743 (0.009) 0.669 (0.024)
SD speed − 0.086 (0.854) − 0.606 (0.149) 0.483 (0.132) 0.345 (0.298)
Mean lateral position − 0.295 (0.521) 0.649 (0.115) 0.413 (0.207) − 0.168 (0.620)
SD lateral position − 0.100 (0.832) 0.648 (0.116) 0.315 (0.345) − 0.246 (0.466)

Road section 5
Mean jerk Y − 0.355 (0.435) − 0.387 (0.391) 0.121 (0.722) − 0.379 (0.251)
Mean speed − 0.493 (0.261) − 0.491 (0.263) 0.548 (0.081) 0.360 (0.277)
SD speed 0.573 (0.179) 0.659 (0.107) 0.415 (0.204) 0.631 (0.037)

Table entries are Pearson correlation coefficients (r) with p values in parentheses. Statistically significant values are in bold.



other studies.19,23 For the MDSI, the structure reveals five

styles interpreted as: anxious, careful, hostile, impatient,

and risky. These were in line with those reported in the lit-

erature,28,38,39 except for the distress-reduction style as it

was composed of many items that were not considered in

this study.

The results showed two main findings: first, both forms

have several factors with strongly positive correlations,

such as the hostile style with violations and the anxious

style with errors and lapses. The careful style presented

moderately negative correlations with errors and lapses A.

This finding reflects the importance of creating a unified

form to facilitate and generalize driving behavior under-

standing. The second finding indicated that only the viola-

tions and hostile factors can be considered as potential

indicators for MCA design—that is, the participants who

preferred driving the simulator with strategy A2 scored

higher in both factors than participants of group A1.

As we aimed to support previous outcomes, we exam-

ined objectively the relationship between both self-reported

factors (i.e., hostile driving and violations) and different

driving indicators such as jerk, speed, and lateral position.

We used the participants’ data after driving the simulator

with strategies A1 and A2. The objective analysis was per-

formed for both groups; group A1 included participants who

preferred strategy A1 and group A2 included the remaining

participants. Regarding group A1, no relationship was found

between the factors and the driving simulator measures.

However, for group A2 the indicators had several correla-

tions with these factors. In the hostile style, jerk in the first

section of road was strongly positively correlated. This

means that drivers who scored higher on the hostile driving

style scale had higher average jerk when facing situations

with high-frequency accelerations such as starting and brak-

ing scenarios. The same group had higher average speed in

road segments that represented merging and exit sections on

the highway. Regarding violations behavior, group A2 had a

strong correlation with mean speed and SD of speed in road

segments characterized by high and low frequencies of lat-

eral acceleration. This result is in line with the studies by

Zhao25 and Helman and Reed,26 in which a significantly

positive correlation exists between average speed and the

violation factor. This factor is correlated positively with a

more aggressive driving style. Unlike the results found by

Hooft van Huysduynen et al.,28 the role of mean and SD of

the lateral position as relevant indicators for assessing driv-

ing behavior was not confirmed in this study.

These results provide additional evidence that drivers’

MDSI or DBQ scores are a useful and reliable tool to iden-

tify people’s behavior while driving, as also observed in

previous studies.25,27,29,43 Furthermore, these results sup-

port that a joint version of violations and hostile behavior

also could be used to assess the MCA characteristics in

specific driving scenarios that require more important

motions, such as the slalom situation or a braking scenario.

Drivers with this self-reported driving behavior will prefer

that linear and lateral accelerations be faithfully restored

by the simulator.

5.1. Limitations

There are two major limitations in this study that could be

addressed in future research. First, given the availability of

the simulator, this study had a low number of participants.

The moderate size and low representation of the subjects

may limit the generalization of our findings. This fact may

be responsible for the internal reliability values in some

driving behavior factors and contribute to lower correla-

tions regarding objective measures. In addition, the small

sample size did not make it possible to analyze others fac-

tors that may affect the motion preference and the self-

declared driving behavior such as the gender and age of

the participants. Nevertheless, this study provides a pro-

mising basis for adapting and validating the type of model

to be used, taking into account driver behavior. Thus,

replication of our results in a larger confirmatory study is

needed.

Second, proper adaptation of the self-reported forms is

needed before using the presented DBQ for general motion

control design. However, the current study supports the

importance of using driver-in-the-loop feedback when

designing MCAs.

6. Conclusions

Despite the small sample size, the present study suggests

important insights that can improve movement perception

in a driving simulator:

� The model implemented in MPC-based MCA plays

an important role in users’ motion perception. The

results show that subjects were able to differentiate

between using only the model dynamics and addi-

tionally integrating the vestibular system model.
� Driver-in-the-loop feedback must be considered in

the motion control design to improve MCAs as it is

difficult to evaluate motion perception if only theo-

retical data and signal analysis are taken into

account. The knowledge of each subject’s driving

behavior can provide more realistic, pleasant, and

immersive simulations.
� Self-reports can be a valuable tool to study and

improve motion perception in driving simulators.

They can provide reliable information about the

reasons that motivate drivers to choose a specific

MCA.
� The results show that it would be ideal to unify and

further improve both the DBQ and the MDSI ques-

tionnaires to facilitate research in real road driving

behavior.



� The results give complementary support for the use of

driving simulators in studies related to driving beha-

vior in a controllable, virtual, and safe environment.
� From a practical viewpoint, only a hostile style and

violations behavior serve as a predictor to know

whether or not to implement a motion perception

model into the control design in MPC.

Additionally, this study reveals that the knowledge of
users’ driving behavior can be exploited in driver profiling
for MCAs in specific situations and for specific groups of
drivers. Future research would increase the number of sub-
jects and incorporate more elements in the DBQ to address
the types of behaviors that reflect greater correlation with
the choice of control strategy, especially those related to
hostile style and violations behaviors. A validated subject’s
psychological fidelity form will be an important part of
further experiments in order to thoroughly understand the
impact of the perception model on the control algorithms.
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