
University of Massachusetts Boston University of Massachusetts Boston 

ScholarWorks at UMass Boston ScholarWorks at UMass Boston 

Graduate Masters Theses Doctoral Dissertations and Masters Theses 

5-2021 

Visualization and Quantification of the Laser-Induced Art of TiO2 Visualization and Quantification of the Laser-Induced Art of TiO2 

by Photoexcitation of Adsorbed Dyes by Photoexcitation of Adsorbed Dyes 

Daniela (Labadini) Graf Stillfried Barreto 

Follow this and additional works at: https://scholarworks.umb.edu/masters_theses 

 Part of the Physical Chemistry Commons 

https://scholarworks.umb.edu/
https://scholarworks.umb.edu/masters_theses
https://scholarworks.umb.edu/diss_theses
https://scholarworks.umb.edu/masters_theses?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=scholarworks.umb.edu%2Fmasters_theses%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages


 

VISUALIZATION AND QUANTIFICATION OF THE LASER-INDUCED ART OF TiO2 

BY PHOTOEXCITATION OF ADSORBED DYES 

 

 

A Thesis Presented 

by 

Daniela (Labadini) Graf Stillfried Barreto 

 

 

 

Submitted to the Office of Graduate Studies, 

University of Massachusetts Boston, 

in partial fulfillment of the requirements for the degree of 

 

 

 

 

MASTER OF SCIENCE 

 

 

 

 

May 2021 

 

 

 

 

Chemistry Program 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 by Daniela (Labadini) Graf Stillfried Barreto 

All rights reserved 

 



 

VISUALIZATION AND QUANTIFICATION OF THE LASER-INDUCED ART OF TiO2 

BY PHOTOEXCITATION OF ADSORBED DYES 

 

A Thesis Presented 

by 

Daniela (Labadini) Graf Stillfried Barreto 

 

Approved as to style and content by: 

 

_______________________________________________________________________ 

Michelle Foster, Associate Professor 

Chairperson of Committee 

 

 

_______________________________________________________________________ 

Jonathan Rochford, Associate Professor  

Member 

 

 

_______________________________________________________________________ 

Jason Evans, Associate Professor  

Member 

 

     _________________________________________ 

     Jason Evans and Jonathan Rochford  

                                                            Co-Graduate Program Directors 

     Chemistry Program 

 

 

     _________________________________________ 

     Michelle Foster, Chair  

Chemistry Department 

 



 

iv 

ABSTRACT 

VISUALIZATION AND QUANTIFICATION OF THE LASER-INDUCED ART OF TiO2 

BY PHOTOEXCITATION OF ADSORBED DYES 

 

May 2021 

 

 

Daniela (Labadini) Graf Stillfried Barreto 

B.S., Universidad Simón Bolívar, Caracas, Venezuela 

M.S., University of Massachusetts Boston 

 

Directed by Professor Michelle Foster 

 

The work presented in this thesis was published as: 

 Labadini, D.; Hafiz, S. S.; Huttunen, P. K.; Wolff, E. P.; Vasilakis, C.; Foster, M. 

Visualization and Quantification of the Laser-Induced ART of TiO2 by Photoexcitation of 

Adsorbed Dyes. Langmuir 2020, 36, 1651–1661.1 

 

 Dye-pretreated anatase TiO2 films, commonly used as photoanodes in dye sensitized 

solar cells (DSSC), were utilized as a model system to investigate the laser-induced anatase to 

rutile phase transformation (ART), using N719 dye, N749 dye, D149 dye, and MC540 dye as 

photo-sensitizers. The visible lasers (532 and 785 nm) used for Raman spectroscopy were able 

to transform pure anatase into rutile at the laser spot when excitation of the dye sensitizer 
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caused an electron injection from the excited state of the dye molecule into the conduction 

band of the TiO2. The three dyes with carboxylic acid anchor groups (N719, N749 and D149 

dyes) experienced ART upon dye excitation; diffuse reflectance infrared Fourier transform 

(DRIFTS) and Raman spectra validated that these dyes were chemisorbed to the semiconductor 

surface. The MC540 dye with a sulfonic acid anchor group did not experience ART and the 

DRIFTS and Raman spectra were inconclusive about the chemisorption of this dye to the TiO2. 

A TiO2 calibration curve and percent rutile contour plots developed for this project are able to 

quantify the amount of rutile created at the surface of the samples. These improved chemical 

images which map rutile concentration help to visualize how ART propagates from the center 

of the laser spot to the surroundings. Factors such as visible light absorption and anchor groups 

that covalently bind to the semiconductor play a key role in effective laser induced ART.    
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CHAPTER 1 

1. INTRODUCTION 

1.1 Renewable energy and metal oxides 

In the United States, non-renewable feedstocks, i.e., petroleum, natural gas, coal and 

nuclear, represent 90% of the country’s energy source. Petroleum, being the largest, takes up 

37% of the country’s energy consumption. It is predicted, that by the year 2050, petroleum 

and its derivatives will still be utilized as a major source of energy in the United States. 

Renewable energy is expected to grow fast by 2050, including solar, wind and hydrothermal 

energy. Therefore, the need of making this industry more efficient and less expensive is 

highly attractive for researchers in the field (www.eia.gov/outlooks/aeo).  

The desire to find an efficient and feasible energy alternative to fossil fuels has been 

the focus of much research, especially in the last decades.2 Possible substitutions include 

photovoltaic devices, such as dye-sensitized solar cells (DSSC), which convert solar energy 

into electricity.3–5 The main components of a DSSC are a photoanode, typically 

nanocrystalline semiconductor materials and a covalently bonded dye sensitizer to it, an 

electrolyte, and a counter electrode.3–5 Conventional wisdom states that when the dye 

molecule gets excited by the sunlight, there should be a spontaneous electron injection from 

the excited state of the dye molecule into the conduction band of the semiconductor.3–5 

 The interest of using metal oxides nanoparticles as photocatalyst materials has 

increased in the past few decades. Metal oxides are readily available, stable, cost efficient 

and, the feature that makes them so attractive, their morphological and electrical 
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characteristics are tunable to the specifics of the final product.6,7 Metal oxide nanoparticles 

are used as semiconductors, catalysts and photocatalysts, in DSSC, as biosensors, etc.… 

Advantages such as higher photocatalytic activity, mostly due to the high surface areas in 

nanoparticles, is appealing for making photocatalytic reactions simpler and more efficient, 

while achieving the same products with little to no solvent use and very few by-products as 

conventional processes.6,7 Also, these nanoparticles can be easily recycled, maintaining their 

catalytic properties intact, compared to their bulk counterparts.6,7 

 

1.2 TiO2: the model metal oxide 

Titanium dioxide (TiO2) has been vastly investigated, as it is the preferred material as 

a catalyst and photocatalyst for the generation of hydrogen from water splitting, CO2 

reduction in presence of water, air and water purification, in DSSC, gas sensors and many 

other applications.8–12 All these applications depend on the specific crystalline phase, 

morphology and chemical properties of the TiO2 used, and fine tuning such properties for 

specific applications has become of great interest.2 TiO2 can be found as anatase, rutile and 

brookite crystalline phases.2,8,11,12 The rutile phase of TiO2 is thermodynamically more stable, 

but anatase is more photoactive.8,12,13 Typically, a mixture of both anatase and rutile TiO2 is 

used, due to the enhancement in the photocatalytic activity provided by the synergistic effect 

of combining both crystalline phases.8,14 DeGussa P25, composed of 80% anatase and 20% 

rutile, is a commercially available mixture of these phases of TiO2 and is being used in much 

of the documented research.3,15 



 3 

1.3 ART: Anatase to rutile phase transformation 

 It is well known, that anatase transforms irreversibly into rutile at elevated 

temperatures; however, the transition temperature is highly affected by the nature of the 

sample, the synthesis method and impurities or defects found at the surface.8,16 In most cases, 

anatase converts into rutile around 600°C in air, but in the literature, it has been reported that 

the transition temperature can be anywhere between 400 – 1200°C.8,17 At these elevated 

temperatures, the metastable anatase phase collapses and readily converts into rutile, the 

thermodynamically more stable phase of TiO2. The anatase to rutile phase transformation 

(ART) typically occurs by the coalescence of neighboring anatase grains, and the 

transformation into rutile highly depends on the initial nanoparticle size, chemical 

surroundings (defects and oxygen vacancies), impurities or dopants, as well as the reaction 

atmosphere.16,18,19   

Several studies have shown that the phase change is dependent on the quality of the 

surface of the prepared TiO2, where oxygen vacancies influence the ART by lowering the 

transition temperature to 600°C.18,19 However, if the TiO2 films are prepared on materials 

that might incorporate impurities in the TiO2 lattice, the ART temperature can be affected, 

such as the study reported by Nakaruk et al., where traces of silicon from the quartz surface 

upon which the TiO2 films were prepared, elevated the ART temperature to 800-850°C.20 

Dopants, such as noble metals (Ag) and transition metals (Cu, Fe and Co), are known to 

lower the transition temperature and mixed anatase and rutile TiO2 samples can be prepared 

without requiring such elevated temperatures.21–25 In fact, doping TiO2 with Ag nanoparticles 

lowered the ART temperature to 400°C, but if higher concentrations of Ag are incorporated, 
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AgCl clusters are formed, which in turn inhibit the ART.26 Therefore, doping of TiO2 

requires the optimization of the concentration of the dopant, in order to achieve the desired 

characteristics of the thin films.  

ART can also be achieved with the use of high-power lasers. Several studies report 

the transformation of pure anatase films into amorphous TiO2, mixed anatase-rutile, and pure 

rutile by irradiating the sample with high-power lasers under vacuum or in an inert 

environment.16,27,28 All studies attribute this ART to the destabilization of the TiO2 surface, 

with its inherent native defects and oxygen vacancies, by the laser inducing the consequential 

coalescence of neighboring anatase grains into either amorphous or rutile TiO2.
16,27,28 When 

the same samples were irradiated under ambient conditions in air, anatase did not transform 

into either amorphous or rutile TiO2, even when irradiated with the highest laser power.16,27,28  

Additionally, amorphous TiO2, typically prepared using the sol-gel method, is able to 

crystallize into anatase in air by irradiating the samples with high power lasers in the UV-

visible range, as in the pulsed laser deposition (PLD) technique.22,29–31 Nevertheless, during 

irradiation with high-power lasers, ART can be induced, as has been reported vastly in the 

literature.21,22,29–31 Benavides et al. were able to control the specific crystalline phase of the 

TiO2 thin film after irradiation with different laser powers, resulting in pure anatase, mixed 

anatase-rutile and pure rutile thin films, as the laser power increased the highest rutile 

concentration was achieved.31    
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1.4 Raman spectroscopy and ART 

 Raman spectroscopy using a Raman confocal microscope is a powerful technique for 

investigating both PLD and laser-induced ART since it has a high-power option for the laser 

to induce crystallization of amorphous TiO2 films, as in PLD, while probing the results with 

a low-power setting of the laser.22 One study using Raman spectroscopy reported the effect 

of doping TiO2 samples with Fe and Al, showing that the Fe-doped TiO2 samples irradiated 

by a ultraviolet laser (325 nm) induced ART, while the Al-doped TiO2 samples inhibited 

ART.24 These findings were compared with pure TiO2 samples, where the ART was achieved 

after 5 hours of laser irradiation with the highest laser power of 20 mW. Doping TiO2 

samples with carbon nanotubes has also exhibited laser-induced ART.24 The addition of 

dopants enables TiO2 to absorb visible light and achieve ART.17,21,25,32 

 

1.5 Surface chemistry of dye pretreated TiO2  

Dye molecules, bound to the TiO2 surface, can also enable visible light absorbance in 

TiO2 thin films, as seen in DSSC. In fact, Parussulo et al. reported that ART can be achieved 

using a Raman spectrometer on a P25 TiO2 sample pretreated with the well-known N3-

Ruthenium dye.33 The Raman spectra verified that the ART propagated from the center of the 

laser spot, where there was a visible hole, to the surroundings, covering a few microns. 

Parussulo et al. conclude that the dye adsorbed on the TiO2 thin film gets electronically 

excited by the visible laser, followed by an increase in temperature that decomposes the dye 

molecule and induces the ART in their P25 substrate.33 However, this study did not report the 

temperature at the laser spot or how much rutile was created or its evolution from the center 
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of the hole to the surroundings. Alternatively, conventional wisdom in DSSC states that, 

when the dye molecule is excited by the sunlight, there is a spontaneous electron injection 

from the excited state of the dye molecule into the conduction band of the 

semiconductor.3,4,34 This electron subsequently travels to the counter electrode of the DSSC, 

converting solar light into electricity. However, if just the dye-TiO2 interface is probed with 

Raman spectroscopy, the electron injection, as expected from DSSC, can cause instability in 

the anatase TiO2 and possibly induce a structural transformation. The unsatisfied dye 

molecule does not get regenerated by the redox mediator, like in a DSSC, and it most likely 

photo-decomposes. 

 

1.6 Research Objective 

To gain further insight into the laser-induced ART of dye-pretreated TiO2 samples, 

popular Ruthenium dyes, N719 and N749 (black dye), and organic dyes, D149 (purple dye) 

and Merocyanine 540 (MC540) are used to attempt laser-induced ART on pure anatase TiO2 

samples. The Ruthenium dyes have been reported to experience a high efficiency of 

converting solar energy into electricity; however, due to the high cost and difficult 

purification processes of these Ruthenium dyes, recent research has focused on using metal-

free organic dyes, which could provide competitive efficiencies for DSSC.5,34–36 The binding 

method of these dyes to the TiO2 surface, by either carboxylates (N719, N749 and D149 

dyes)5,37–39 or sulfonates (MC540 dye)40,41 are probed with vibrational spectroscopy. Beyond 

exploring the ability of these dyes to induce ART, one highlight of this study is the 

development of a TiO2 calibration curve, which allows quantification of the rutile created 
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from laser-induced ART. A few studies have attempted to quantify the rutile TiO2 created 

from laser-induced ART using Raman spectroscopy;24,25,42 however, those studies report 

results as rough estimates of the amount of rutile found at the surface. This study will 

quantify and allow visualization of the laser-induced ART of dye-pretreated TiO2 films, by 

developing percent rutile contour plots, or calibrated Raman chemical mapping images.  
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CHAPTER 2 

2. EXPERIMENTAL SECTION 

2.1 Materials 

Anatase TiO2 with an average particle size of 20-30 nm was purchased from Inframat 

Advanced Material. Rutile TiO2 with an average particle size of 30 nm was purchased from 

US Research Nanomaterial, Inc. The Di-tetrabutylammonium cis-bis(isothiocyanato) bis(2,2′-

bipyridyl-4,4′-dicarboxylato)ruthenium(II) or N719 dye, the Tris(N,N,N-tributyl-1-

butanaminium)[[2,2′′6′,2′′-terpyridine]-4,4′,4′′-tricarboxylato(3-)-

N1,N1′,N1′′]tris(thiocyanato-N)hydrogen ruthenate(4-) or N749 black dye, the 5-[[4-[4-(2,2-

Diphenylethenyl)phenyl]-1,2,3-3a,4,8b-hexahydrocyclopent[b]indol-7-yl]methylene]-2-(3-

ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-3-thiazolidineacetic acid or D149 purple 

dye and the 5-[(3-sulfopropyl-2(3H)-benzoxazolylidine)-2-butenylidene]-1,2-dibutyl-2-

thiobarbituric acid or MC540 dye were all purchased from Sigma-Aldrich, Inc. Ethanol (200 

proof) was purchased from Pharmaco-Aaper. 18mm × 18mm borosilicate Corning® cover 

glass was purchased from Sigma-Aldrich, Inc. The Ti-nanoxide HT/SP, a titanium paste for 

UV-Vis experiments, was purchased from Solaronix. All the materials were used as received. 

The anatase and rutile TiO2 crystallinity, as purchased, were confirmed with Raman 

spectroscopy and X-Ray powder diffraction and the corresponding spectra can be seen in figure 

1.  
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Figure 1.  Raman and PXRD spectra of pure anatase (red) and rutile (blue) TiO2 used for the 

dye-pretreated TiO2 films. Both spectra clearly indicate pure anatase and rutile TiO2.
18,19,43–45 

The PXRD data was collected at room temperature using a dual source Bruker D8 

Venture single-crystal diffraction system, IμS microfocus Copper source, equipped with 

a XRD2 plug-in for work with powders and APEX2 software. 

 

2.2 Methods 

2.2.1 TiO2 films preparation 

TiO2 films were prepared by mixing 0.1 g of TiO2 nanoparticles with enough 

spectroscopic grade ethanol in a mortar and pestle to form a homogeneous paste. The paste 

was smeared as a square on a borosilicate cover glass using a razor blade and Scotch® 

MagicTM tape. The TiO2 film was then calcined for 30 minutes at 450°C, in order to remove 

the solvent. For the UV-Vis experiments, the same procedure was performed, but the 

Solaronix titanium paste, containing terpineol and organic binders, was used to create a 
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transparent film. Dye solutions were all 6x10-4 mM in ethanol. The TiO2 films were 

submerged overnight in the dye solutions and rinsed three times with ethanol before any 

experimentation.  

 

2.2.2 UV-Vis experiments 

UV-Vis spectra of the dyes adsorbed onto the TiO2 transparent film were collected on 

a Cary 5000 high performance UV-Vis-NIR spectrophotometer from Agilent Technologies 

using a double beam set up and a PbSmart detector, in the range of 350-900 nm, with a 

spectral band width of 2 nm, scanning for 0.1 s in every nanometer, and a scan rate of 600 

nm/min.  

 

2.2.3 DRIFTS experiments 

Diffuse reflectance infrared Fourier transform (DRIFTS) spectra of the pure dyes on 

KBr and the dyes adsorbed onto the TiO2 were collected using a liquid nitrogen cooled 

Nicolet iS 50 FT-IR spectrometer (128 scans, 2 cm−1 resolution, MCT-High D* detector) 

equipped with a Praying Mantis diffuse reflectance accessory (Harrick Scientific). The 

Praying Mantis was situated inside the sample compartment of the FTIR, and samples were 

purged with N2 in the sample compartment for 20 minutes prior to collection of the spectra, 

in order to decrease the moisture in the sample. 
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2.2.4 Raman spectroscopy experiments 

Raman spectra of pure TiO2, anatase-rutile standards (AR-standards), pure dyes and 

dyes adsorbed onto the TiO2 were collected with a Bruker SENTERRA confocal Raman 

Microscope in air using a green (532 nm) and a red (785 nm) laser, with 9-15 cm-1 resolution. 

A 2 mW laser power, 3 coadditions at 3 seconds each for the 532 nm laser was used to 

characterize the TiO2 crystalline phases, as well as the dye features. To induce the ART with 

the 532 nm laser, a 1 second laser pulse of 20 mW, the highest available laser power, was 

used. For the 785 nm laser-induced ART, a 1 second laser pulse with 25 mW, the closest 

option available similar to the one used with the 532 nm laser, was used. For all experiments, 

the light was focused to a spot size of approximately 2 µm in diameter, using a 50x objective 

and a slit aperture of 50x1000 µm. Spectra were collected in the wavenumber range of 45-

4450 cm-1. Neutral density filters inside the Raman spectrometer were used to alter the laser 

power. 

A thermocouple was used to check the temperature during the experiment. The laser 

was first focused on the thermocouple itself, and only a temperature change of about 15°C 

was seen. During the laser-induced ART experiment, the thermocouple was placed as near as 

possible to the laser spot on the dyed TiO2 sample and a temperature change of only 5°C was 

seen, suggesting that the temperature increase caused by the photo-decomposition of the dye 

is minimal and thus not responsible for the phase change seen during the laser-induced ART.   
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2.3 Data Analysis  

2.3.1 Curve fitting 

AR-standards for an anatase and rutile TiO2 calibration curve were prepared with 

pure anatase and rutile nanoparticles ranging from 0-100% rutile by weight ratio. Individual 

spectra for each AR-standard were fitted to a Voigt curve, a mixture between a Gaussian and 

a Lorentzian curve, which works well for fitting the asymmetric peaks of TiO2.
46,47 Figure 2 

shows a curve fitting example from a 50% rutile AR-standard. Two theoretical peaks were fit 

under each of the characteristic peaks used in this analysis, for anatase (515 cm-1) and rutile 

(447 cm-1), due to the asymmetric character of these features. The green curves in figure 2 

represent the fit curves for the rutile peak, the blue curves for the anatase peak, and the 

orange curve is for another anatase peak at 396 cm-1, which is not used for calibration. For 

each curve fitting, an R2 value of at least 0.998 or higher was achieved.  
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Figure 2. Raman curve fitting example for a 50% rutile AR-standard. The black curve is the 

experimental data, green curves are the fit peaks for the rutile 447 cm-1 peak, blue curves are 

the fit peaks for the anatase 515 cm-1 peak, the orange curve is the fit curve for the anatase 

396 cm-1 peak, and the red curve is the result curve from the entire fitting. 

The wavenumber range for the curve fitting includes both anatase peaks at 396 cm-1 

and 515 cm-1 and the rutile peak at 447 cm-1. This section of the spectrum was chosen for all 

curve fittings performed for this study. The anatase peak at 396 cm-1 was included in the 

curve fitting, due to the overlap between this peak and the 447 cm-1 rutile peak. The two 

peaks fit for each of the characteristic anatase (515 cm-1) and rutile (447 cm-1) were added 

together to form the relative integrated intensity for the respective anatase and rutile peaks. 

The following peak ratio formulas were considered for calculating either the anatase or the 

rutile volume fractions (Va and Vr respectively) in each AR-standard: 
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𝑉𝑎 =  
𝐴𝑎

𝐴𝑎+ 𝐴𝑟
 (Eq. 1) 

𝑉𝑟 =  
𝐴𝑟

𝐴𝑎+ 𝐴𝑟
 (Eq. 2) 

where Aa and Ar represent the respective relative integrated intensity, i.e., the area under each 

of the anatase or rutile peaks.48 Equations 1 and 2 assume that anatase and rutile TiO2 are the 

only crystalline phases in the sample and their respective volume fractions add up to 1 (Va + 

Vr = 1). The areas of the peaks fit for the rutile 447 cm-1 peak (green curves in figure 2) were 

added together to form the total relative integrated intensity for that rutile peak. The same 

was done for the anatase 515 cm-1 peak. Using equations 1 and 2, the volume fractions for 

each crystalline phase were obtained. For the example shown in figure 2, using this method, 

the volume fractions were found to be 0.44 for rutile and 0.56 for anatase. When all 16 of the 

50% rutile AR spectra were analyzed, the average volume fractions were found to be 0.4995 

for rutile and 0.5005 for anatase. 

 

2.3.2 Calibration curve 

Standard mixtures for an anatase and rutile TiO2 calibration curve were prepared with 

pure anatase and rutile nanoparticles ranging from 0-100% rutile by weight ratio. Figure 3 

shows the resulting Raman spectra of these AR-standard as the weight % of rutile is 

increased by increments of 10%.  
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Figure 3. Average Raman spectra for each AR-standard. The average of 16 different spectra 

for each of the AR-standards were used for the anatase and rutile TiO2 calibration curve. The 

number indicates percentages of rutile present in each AR-standard. The asterisks indicate 

the characteristic anatase (515 cm-1) and rutile (447 cm-1) peaks used for the analysis.  

A quantitative analysis is possible since the anatase and rutile TiO2 have very distinct 

Raman spectra and the isolated band intensities for each anatase and rutile peak are 

proportional to the respective concentration in the sample.48 To calculate spectroscopically 

the concentration of anatase and rutile in one sample, specific and isolated peaks from each 

TiO2 crystalline phase were considered and are marked with an asterisk in figure 3. For 

anatase the peak at 515 cm-1 and for rutile the peak at 447 cm-1 were chosen because those 
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peaks are the first to appear when either anatase or rutile are present in a sample at very low 

concentration (< 10%). The anatase peak at 144 cm-1, being the most prominent anatase peak, 

could be an appropriate choice of peak to select for the calibration curve; however, the 

intensity trend does not illustrate the consistent growth expected as the anatase concentration 

increases.49 Therefore, the anatase peak at 515 cm-1, which is comparable in intensity with 

the other anatase peaks and even with the rutile peaks, better represents the actual percent 

composition of that crystalline phase in a sample using this methodology. Figure 3 illustrates 

the gradual development of each phase, i.e., as the intensity of the anatase peak at 515 cm-1 

decreases, so does the concentration of anatase in the sample.  

Raman spectra of the AR-standards were collected at sixteen points on the surface 

and the resulting spectra were averaged to provide each AR-standard spectrum presented in 

figure 3. Individual spectra for each AR-standard were fitted to a Voigt curve and the average 

relative integrated intensity and average volume fraction from this quantitative analysis for 

each AR-standard are listed in Table 1, and the results are plotted in the calibration curve 

shown in figure 4. The x-axis is the known concentration of rutile TiO2 in each AR-standard, 

and the y-axis is the average volume fraction calculated. The error bars in each point in 

figure 4 are the standard deviations from the average volume fractions for each AR-standard.  
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Table 1. Calculated relative integrated intensities and volume fractions for the anatase and the 

rutile calibration curve. 

% Rutile 

in AR-

standard 

Average rutile 

integrated 

intensity (Ar) 

Average 

rutile 

volume 

fraction (Vr) 

standard   

deviation 

of Vr 

Average 

anatase 

integrated 

intensity (Aa) 

Average 

anatase 

volume 

fraction (Va) 

standard 

deviation    

of Va 

100 264838.05 1 0 0 0 0 

90 388205.01 0.9165 0.0175 35563.22 0.0835 0.0175 

80 205083.71 0.8283 0.0250 42478.62 0.1717 0.0250 

70 131315.73 0.6879 0.0380 60232.11 0.3121 0.0380 

60 192239.39 0.5795 0.0378 141034.33 0.4205 0.0378 

50 181040.41 0.4995 0.0410 181255.79 0.5005 0.0410 

40 142979.73 0.3895 0.0193 224430.62 0.6105 0.0193 

30 137833.11 0.3036 0.0108 315699.97 0.6964 0.0108 

20 50334.64 0.1713 0.0352 242081.68 0.8287 0.0352 

10 21025.15 0.0629 0.0075 314508.03 0.9372 0.0075 

0 0 0 0 236183.89 1 0 
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Figure 4. Calibration curve with error bars and linear fit for rutile (circle) and anatase 

(square) TiO2 using AR-standards. The plot shows the progression to a higher content of 

rutile and a lower content of anatase. 

Linear regression was performed on the calibration curve to provide a relationship of 

the volume fraction of rutile (Vr) and the actual percent composition (xr) in any analyzed 

sample. The same would go for the anatase phase, with the difference that the percent 

composition calculated of anatase (xa) would be xa = 100 – xr. From the linear fit, the 

following equations were obtained: 

𝑉𝑟 =  0.01031𝑥𝑟 − 0.0212 (Eq. 3) 

𝑉𝑎 =  −0.01031𝑥𝑎 + 1.0212 (Eq. 4) 
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where Vr and Va represent the volume fractions of rutile and anatase determined from the 

curve fit and xr and xa the actual percent composition of rutile and anatase in any sample. 

This linear fit had a R2 value of 0.998. Since the volume fraction from anatase or rutile 

depends on the data collected for any unknown sample, it is logical to rearrange equations 3 

and 4 to the following formulas:  

𝑥𝑟 =  96.993 𝑉𝑟 + 2.056 (Eq. 5) 

𝑥𝑎 =  99.049 − 96.993 𝑉𝑎 (Eq. 6) 

Once the volume fraction of anatase and rutile of the sample is determined from the 

spectrum; then equations 5 and 6 can be solved to determine the actual percent composition 

of anatase and rutile in the sample. 

 

2.3.3 Contour plots  

The entire bleached area the laser induced ART experiment was considered for this 

analysis and was scanned in the Raman spectrometer with a low laser power (2 mW) and 

high spatial resolution (1 µm between each scan spot). An approximately 25µm × 25µm 

analysis grid was selected to cover the entire bleached area, and each point was scanned three 

times for three seconds each. The resulting spectra were inspected for rutile features, and 

only those spectra containing rutile were chosen to determine the rutile propagation area, 

which is roughly 11µm × 11µm in size. Each graph in this region was analyzed as described, 

and values for the rutile volume fractions were obtained using equation 2, converted to 

percent rutile using equation 5, and plotted in figure 5. The contour plot is a spatial and 

percent composition analysis, using a data matrix of 11 × 11 data points, of the sample. Each 
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point represents a value for percent rutile and all the points are separated by 1 µm, indicated 

by the tick marks on the contour plot in figure 5. Origin Lab Pro 2019b software generated 

this image by correlating each point in a linear fashion. The contour plot goes from 0%-100% 

rutile, and each color represents a percent composition as seen in the scale bar. The lines 

inside the contour plot are simply indicators of 5% increments. Dark purple represents 100% 

rutile, whereas dark red 0% rutile. 

 

Figure 5. Contour plot of the percent rutile analyzed on a N719 dye pretreated anatase TiO2 

film. The color distribution goes from 100% rutile in dark purple to 0% rutile in dark red.  
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CHAPTER 3 

3. RESULTS AND DISCUSSION 

3.1 N719 dye pretreated TiO2 films using 523 nm laser 

Pure anatase TiO2 films pretreated with the N719 dye were probed with Raman 

spectroscopy using a 532 nm green laser at 20 mW. After 1 s, the surface of the dyed TiO2 

film changed from a dark red, uniform appearance (figure 6A) to a bleached spot (figure 6B). 

After bleaching, the films were analyzed with a low laser power (2 mW) to obtain the Raman 

spectra from different positions within the bleached area, from point 1 in figure 6B, until 

reaching the center of the laser spot at point 4. Figure 6 shows the Raman spectrum at each 

point indicated in figure 6B. The spectrum from point 1 on the outer boundary of the hole, 

shows a typical Raman spectrum of anatase TiO2, with the five characteristic phonon peaks 

of this phase, indicated by the letter “a” in figure 1, at 144 (Eg), 197 (Eg), 396 (B1g), 515 (A1g, 

B1g) and 638 (Eg) cm-1.43,44 Additionally, there are features in the spectrum that are due to the 

dye molecules. The N719 dye is comprised of a Ruthenium metal center, surrounded by two 

bipyridine molecules and two thiocyanate groups.37 The bipyridine molecules each have two 

carboxylic acid groups with which it can anchor, or bind, to the TiO2 substrate.37 

Representative Raman modes of the N719 dye appear at higher wavenumbers, designated by 

a letter “d” in figure 6, around 1027, 1268, 1471, 1544 and 1609 cm-1, indicative of the 

stretching modes of carbon-carbon, carbon-oxygen and carbon-nitrogen single or double 

bonds in the bipyridine rings and carboxylic acid anchor groups.37,38,50,51 When the center of 

the bleached spot is analyzed via Raman spectroscopy, features known to be due to the rutile 
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phase of TiO2, at 144 (B1g), 236 (two phonon band/second-order effect), 447 (Eg) and 

610 (A1g) cm-1, appear.45,52,53 The spectrum collected at point 2 in figure 6, shows the typical 

anatase TiO2 Raman modes, but in addition, at 447 cm-1 there is a characteristic rutile peak 

starting to grow in. At higher wavenumbers, there is no evidence of the dye features, 

suggesting that the dye has bleached or photo-decomposed.33 The characteristic rutile peaks 

become more apparent as the points in figure 6B come closer to the center of the laser spot; 

in fact, the Raman spectrum of point 3 has a more accented 447 cm-1 rutile peak and the 

appearance of another rutile peak around 610 cm-1. The spot where the laser irradiated the 

sample, point 4, has a much higher content of rutile, compared to points 3 and 2, and there is 

no evidence of any characteristic anatase peaks. Therefore, this Raman spectrum is 

representative of pure rutile TiO2, where the distinctive peaks are labelled with a letter “r” in 

figure 6.   
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Figure 6. Raman spectra from different positions indicated from 1-4 after a 20 mW 532 nm 

laser pulse (1s) on the N719 dye pretreated pure anatase TiO2 film. Figure insets A and B show 

the microscope image before and after the laser pulse. The letters on the graphs represent a for 

anatase, r for rutile, and d for N719 dye features.  

The spectra seen in figure 6 illustrate the ART induced by the photoexcitation of the 

N719 dye with a green laser and show the rutile phase propagating across the area bleached 

by the laser pulse. The 2 mW green laser for 3 coadditions at 3 seconds used to analyze the 

sample surface caused a slight bleaching; however, no rutile was detected, as seen in figure 7. 

The ART, however, was not seen when irradiating a pure anatase TiO2 film, with no dye 

present, with the same 20 mW green laser, as seen in figure 8.16,27,28 Thus, rutile nucleation 

occurs where the laser irradiated the dye pretreated sample and propagates beyond the laser 

width of 2 µm, covering the entire bleached area (approximately a 25µm × 25µm area).16,27,31 
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Figure 7. Raman spectra and microscope images of the irradiation of the N719 dye-pretreated 

TiO2 film with different laser powers of the green (532 nm) laser. A) 1 second with 0.2 mW; 

B) 1 second with 2 mW; C) 3 coadditions at 3 seconds each with 2 mW (this set up was used 

to characterize the samples after the laser-induced ART experiment, and the irradiation caused 

faint bleaching; no rutile was detected); D) 1 second with 5 mW (the irradiation caused faint 

bleaching; no rutile was detected); E) 1 second with 10 mW (~ 70% rutile was found at the 

laser spot); F) 1 second with 20 mW (this set up was used to induce the ART).  
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Figure 8. Raman spectra and microscope images of pure anatase TiO2 films before (A), after 

irradiation with the green laser (532 nm) at 20 mW for 1 second (B), and after irradiation with 

the red laser (785 nm) at 25 mW for 1 second (C). The surface experienced no change and 

there was no rutile detected.16,27,28 

Figures 7 and 8 show that the optical parameters chosen for the Raman analysis of the 

dye pretreated samples (3 coadditions at 3 seconds each with 2 mW) did not affect the results 

from the laser-induced ART (1 second with 20 mW). The results seen in figures 7 and 8 also 

serve to verify at what laser power the rutile phase starts appearing in the samples (figure 8), 
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and clearly indicate that a dye molecule is needed to be present in order for the sample to 

experience ART, since no rutile was found in pure TiO2 samples irradiated with the highest 

laser power (figure 7). 

 

3.2 N719 dye pretreated TiO2 contour plot using 532 nm laser  

The N719 dye pretreated TiO2 film irradiated with a 20 mW 532 nm green laser for one 

second to induce ART was analyzed in detail to quantify the amount of rutile created on the 

surface and was plotted as a contour plot as shown in figure 9. The contour plot goes from 0%-

100% rutile, and each color represents a percent composition as seen in the scale bar. The lines 

inside the contour plot are simply indicators of 5% increments. Dark purple represents 100% 

rutile, whereas dark red 0% rutile.  
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Figure 9. 11µm × 11µm contour plot of the percent rutile analyzed on a N719 dye pretreated 

anatase TiO2 film irradiated for 1s with a 20 mW 532 nm laser. The color distribution goes 

from 100% rutile in dark purple to 0% rutile in dark red.  

The contour plot in figure 9 presents how pure anatase TiO2 coated in N719 dye is 

converted into rutile after irradiation with a 20 mW 532 nm laser for 1s. The phase 

transformation propagates from the center, where the laser impinged upon the sample which 

has the highest concentration of rutile, to the surroundings, where the rutile concentration 

gradually drops to zero.  This phenomena clearly illustrates the nucleation and propagation of 

the laser-induced ART even beyond the area of laser excitation.16,27,31 Spectra from the 
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different positions in the dark purple area show pure rutile, with characteristic peaks at 144, 

236, 447 and 610 cm-1, and no sign of any anatase peaks, as illustrated in the spectrum of 

point 4 in figure 6. This area represents percentages of rutile that are >95%, and the highest 

was found to be 99%. Between 5%-95% rutile in the scale bar, the Raman spectra of the 

different positions show a mixture of anatase and rutile phases, where the characteristic rutile 

peak at 447 cm-1 decreases, as the anatase peak at 515 cm-1 increases, as illustrated in points 

2 and 3 in figure 6. As the rutile concentration approaches 0%, the rutile peak at 447 cm-1 

disappears and the dye features at higher wavenumbers appear in the Raman spectrum, 

exemplified by point 1 in figure 6.  

The experiment with the N719 dye pretreated anatase TiO2 film irradiated with a 20 

mW 532 nm laser illustrates how pure anatase is transformed into pure rutile. Figure 10 

shows the UV-Vis absorption spectra for the N719 dye adsorbed on TiO2.  
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Figure 10. UV-vis spectrum of N719 dye adsorbed onto a TiO2 film. The dotted line shows the 

wavelength of the green laser used for this series of experiments. 

Typically, Ruthenium dyes show strong electronic transitions in the visible region of 

the spectrum, representing the singlet metal-to-ligand charge-transfer excitations from the 

Ruthenium center into the bipyridine rings.54,55 The N719 dye adsorbed on TiO2 in this 

experiment shows two peaks at 375 and 499 nm, representing these intense electronic 

transitions. The latter transition at 499 nm is close to the wavelength of the green laser used 

for the experiment, 532 nm.  It is likely that when the N719 dye is excited by the 532 nm 

laser there is a transfer of an electron from the excited electronic state of the dye into the 
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TiO2 conduction band which destabilizes the anatase phase and consequently induces the 

ART, similar to the process seen in DSSC.16,27,28 However, since there is no counter electrode 

or a redox mediator, it is only natural for the dye to photo-decompose.33 Clearly, the dye 

plays a key role in the laser-induced ART, since pure anatase TiO2 did not create ART, even 

at long irradiation times, as seen in figure 8. 

 

3.3 N749, D149 and MC540 dye pretreated TiO2 contour plots using 532 nm laser 

To further investigate, the same experiment of pretreating a pure anatase TiO2 film 

with a dye and irradiating it with a green laser (532 nm) was performed with three other dyes 

commonly used as photosensitizers, namely the N749 dye, the D149 dye and the 

Merocyanine 540 dye.5,37–41,56–58 Figure 11 shows the UV-vis absorption spectrum of the 

dyes adsorbed onto a TiO2 film.  
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Figure 11. UV-vis spectrum of N719, N749 dye, D149 dye and MC540 dye adsorbed onto 

TiO2 films. The dotted lines show the wavelength of the green and red lasers used for this 

series of experiments. 

All dyes experience electronic transitions in the visible region; the N749 dye shows 

two peaks at 416 nm and 609 nm; the D149 dye also shows two peaks at 368 nm and 506 

nm; and the MC540 dye only shows a single broad peak around 499 nm. The maximum 

absorbance peak in the visible range for all the dyes is between the wavelengths of 500 nm- 

600 nm, indicating that they absorb a significant amount of light at the 532 nm wavelength of 
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the green laser used for the experiment. Therefore, it is expected that when the dyed TiO2 

films are irradiated with the green laser, ART should be induced.  

In all cases, pure anatase TiO2 films were pretreated with dyes with identical 

concentrations, followed by a 1s of a 20 mW laser irradiation with the 532 nm green laser 

from the Raman spectrometer. The resulting spectra from each dye experiment were 

subjected to the same analysis performed on the N719 dye pretreated film, to create contour 

plots representing the percent of rutile transformation in the bleached area, as seen in figure 

12. The contour plot for the N719 dye pretreated TiO2 film is also included in figure 12(A) to 

better compare all the dyes.  
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Figure 12. Percent rutile contour plot of dye pretreated pure anatase TiO2 films irradiated 

with a 20 mW 532 nm laser for 1s. A) N719 dye; B) N749 dye; C) D149 dye; D) MC540 

dye. The color distribution goes from 100% rutile in dark purple to 0% rutile in dark red. All 

the contour plots are 11µm × 11µm in size and the color scale bar goes from dark red, 

representing 0% rutile, to dark purple, representing 100% rutile, with 5% increments 

indicated by the fine black lines inside the contour plots. 

From figure 12, it is evident that only three dyes, namely the N719 dye, N749 dye 

and D149 dye, induced the ART after laser irradiation. The MC540 dye showed no sign of 
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rutile being formed at the surface. In fact, the microscope image after irradiation with the 532 

nm laser showed no bleaching or decomposition of the dye. One way to compare the ability 

of different dyes to transform the TiO2 substrate from anatase to rutile is to look at the 

highest percentages of rutile found at the laser spot. For TiO2 films dyed with the Ruthenium 

dyes 99% rutile was found in the dark purple area in both contour plots, meaning that pure 

anatase was converted into pure rutile (figure 12A and B). However, for the D149 pretreated 

TiO2 film, the highest concentration of rutile found in the sample is 93%, represented by the 

light purple in the contour plot (figure 12C). This result follows the trend seen in the 

literature, where Ruthenium dyes show higher efficiency as compared to the organic dyes, 

when used as a photosensitizer or in DSSC.34,36   

 

3.4 N719, N749, D149 and MC540 dye pretreated TiO2 contour plots using 785 nm laser 

To validate the argument that it is the electronic excitation of the dye due to 

absorption of the green light which leads to an electron injection from the excited state of the 

dye into the conduction band of the TiO2 film that induces the ART, the same experiment 

was carried out by irradiating the dye pretreated TiO2 film with a 785 nm laser. Figure 11 

shows the UV-Vis absorption spectra of the dyes adsorbed into the TiO2, and in all cases 

absorbance at 785 nm is significantly lower than the absorbance at 532 nm; thus, there should 

be minimal light absorption by the dye molecules and therefore little to no ART. The four 

dye-pretreated TiO2 films were subjected to a 25 mW 785 nm 1s pulse in an attempt to 

induce ART. Figure 13 shows the contour plots that were generated for TiO2 films pretreated 

with each dye, after the quantitative analysis was implemented. These plots were generated 
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following the same analysis performed on the dye pretreated TiO2 films, as shown in figure 

12.  

 

Figure 13. Percent rutile contour plot of dye pretreated pure anatase TiO2 films irradiated 

with a 25 mW 785 nm red laser for 1 s. A) N719 dye; B) N749 dye; C) D149 dye; D) MC540 

dye. The color distribution goes from 100% rutile in dark purple to 0% rutile in dark red. All 

the contour plots are 11µm × 11µm in size and the color scale bar goes from dark red, 

representing 0% rutile, to dark purple, representing 100% rutile, with 5% increment indicated 

by the fine black lines inside the contour plots. 
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Similar to the results with the 532 nm laser, figure 13 shows that the N719, N749 and 

D149 dyes induced the ART after laser irradiation with the 785 nm laser. The MC540 dye 

continues to show no sign of rutile transformation. Since none of these dyes strongly absorb 

at this wavelength, the ART is quite curious. To better understand the extent of the 

transformation, the highest percent rutile was compared between the samples. For the N719 

dyed film, anatase was completely converted into rutile, showing 99%. In the case of the 

N749 dye and the D149 dye experiments, the highest percent rutile found was 95% and 90%, 

respectively. For this experiment with the red laser and minimal light absorbance, the 

Ruthenium dyes still show a higher percent rutile than the organic dye (D149), continuing to 

follow the trend that the Ruthenium dyes show higher efficiency than the organic dyes.34,36 

One way to compare the ability of different dyes to transform the TiO2 substrate from anatase 

to rutile is to look at the area of rutile propagation, where there is between 50%-100% rutile 

in the contour plots, since most of the rutile created at the surface is contained within that 

range. Comparing the results obtained from the experiments of dyed TiO2 films irradiated 

with the two different lasers, anatase was converted into rutile when N719 dye, N749 dye 

and D149 dye were used to pretreat the TiO2 films. All these dye-pretreated TiO2 films 

experience a visible change at the surface after laser irradiation, bleaching and the 

appearance of a hole at the laser spot are found during both experiments. The MC540 dye 

pretreated TiO2 film did not experience visible change at the laser spot and no ART was seen 

during either laser experiment. For the laser-induced ART using the 532 nm laser the N719 

dye pretreated TiO2 film experienced a rutile propagation area of 36 µm2. For the N749 dye 

pretreated TiO2 film a significantly larger rutile propagation area was found, namely 72 µm2, 
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twice as large with the N749 dye as with N719. The D149 dye pretreated TiO2 film has a 

rutile propagation area of only 20 µm2 after irradiation. The results using the 785 nm laser 

were expected to be less or nonexistent compared to the results using the 532 nm laser since 

all the dyes absorb visible light at 785 nm at a much lower intensity than at 532 nm. 

Interestingly, both the N719 dye and D149 dye pretreated TiO2 films experience a larger 

rutile propagation area when using the red (785 nm) laser, namely 42 µm2 and 39 µm2 

respectively. The slight increase in the rutile propagation area, compared to the areas 

obtained from the green laser experiment, might be due the increased laser power of the red 

laser available to us (25 mW as opposed to 20 mW for the green laser). For the N749 dye 

pretreated TiO2 film, the results are as expected, and the rutile propagation area is 36 µm2, 

half as small when irradiating with the 785 nm laser compared to the 532 nm laser. The 

MC540 dye pretreated TiO2 film is the only dye from this experiment that did not show any 

ART, even though it absorbs light in the visible range in the UV-vis spectrum (figure 11). 

These results indicate that the dyes absorbing light near the given wavelength of the laser is 

not the only factor leading to ART, since using the 785 nm laser with its minimal light 

absorbance by the dyes ART was still achieved with similar rutile propagation areas. The fact 

that the MC540 dye does not induce ART begs the question of how this dye is different from 

the others.  

 

3.5 DRIFTS and Raman spectra of pure dyes and dye pretreated TiO2 films 

To investigate the absorption mechanisms of the dyes to the TiO2 films, all the 

samples where studied using DRIFTS and Raman spectroscopy. Both Ruthenium dyes have 
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carboxylic acid anchor groups. The dye molecules will bind to the TiO2 through the 

carboxylic acid anchor groups and form surface carboxylates.5,37–39 The other two 

commercial dyes, D149 and MC540, are categorized as organic dyes and are large, highly 

conjugated molecules. Like the Ruthenium dyes, the D149 has a carboxylic acid anchor 

group. However, the MC540 dye has a sulfonic acid anchor group, which should form a 

surface sulfonate when bound to the TiO2 surface, the same way as the dyes containing 

carboxylic acid groups form surface carboxylates and bind to the nanoparticle surface.40,41 

Figure 14 presents the Raman and DRIFTS spectra of the pure N719 (figure 14A) and N749 

(figure 14B) dyes and the dyes adsorbed onto the anatase TiO2 surface.  

 

Figure 14. DRIFTS and Raman spectra of the N719 (A) and N749 (B) dyes, before and after 

being adsorbed to anatase TiO2. The asterisks represent the characteristic anatase Raman 

peaks. The light grey squares represent the carbonyl and carboxylate regions. 

The DRIFT spectra of the pure N719 (figure 14A) and N749 (figure 14B) dyes 

indicate the following characteristic IR bands for the carboxylic acid anchor group: at 1720 

and 1717 cm-1 for the double bonded C=O stretching mode, at 1230 and 1250-1226 cm-1 for 
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the single bonded C-O stretching mode and at 1135 and 1130 cm-1 for the C-O-H bending 

mode, respectively.33,37,59 In addition, peaks at 1610 and 1377 cm-1 for the N719 dye (figure 

14A) and peaks at 1608 and 1365 cm-1 for the N749 dye (figure 14B) are correlated to 

asymmetric and symmetric stretching modes of the –COO-, respectively.33,37,59 This is an 

indication that both protonated and deprotonated carboxylic acid groups are present in the 

spectra of the pure dyes.33,37,59 The DRIFT spectra change when the dyes are adsorbed onto 

the TiO2 surface. The most prominent changes are the loss of the carbonyl peaks and the 

slight shift of the asymmetric and symmetric stretching modes of the carboxylate peaks 

found at 1599 and 1356 cm-1 for the N719 dye (figure 14A) and 1583 and 1349 cm-1 for the 

N749 dye (figure 14B), suggesting that the dyes are covalently bonded to the TiO2 

surface.33,37,59 Raman shifts at 1365 and 1359 cm-1 indicating the symmetric stretch of the 

carboxylate group of the N719 (figure 14A) and N749 (figure 14B) respectively, further 

support the conclusion that these dyes are chemisorbed to the TiO2.
33,37,59 The asymmetric 

stretch of the carboxylate is hard to recognize in the Raman spectra, due to the overlap with 

the pyridine Raman shifts.37,59,60 The peak associated with the C-O-H bending was also 

absent when the dyes are bound to the TiO2, further confirming the chemisorption of the 

dyes.33,37,59  

Figure 15 presents the DRIFT spectra of the pure D149 (figure 15A) and MC540 

(figure 15B) dyes and when the dyes are adsorbed onto the TiO2 surface. Raman spectra were 

not possible to collect for these dyes, due to high fluorescence experienced during the 

analysis. As discussed previously, the Ruthenium dyes both show chemisorption to the 

substrate in the form of loss of the carbonyl peak and shift of the symmetric and asymmetric 
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carboxylate features. The D149 dye has a carboxylic anchor group and should present similar 

stretching modes characteristic of the carboxylate features, as seen with the Ruthenium dyes.  

 

Figure 15. DRIFTS spectra of the D149 (A) and MC540 (B) dyes, before and after being 

adsorbed to anatase TiO2. The light grey squares represent the carbonyl and carboxylate 

regions. 

Similar to the Ruthenium dyes, the DRIFT spectrum of the pure D149 dye (figure 

15A) presents the following characteristic peaks associated to the protonated and 

deprotonated carboxylic acid anchor group: at 1723-1677 cm-1 for the double bonded C=O 

stretching mode, at 1238 cm-1 for the single bonded C-O stretching mode, at 1144-1125 cm-1 

for the C-O-H bending mode, and at 1548 and 1389 cm-1 for asymmetric and symmetric 

stretching modes of the –COO-.33,37,58,59 The DRIFT spectrum of the dye adsorbed onto TiO2 

(figure 15A) changes as expected for a chemisorbed molecule, namely partial loss of the 

carbonyl peak and the slight shift of the asymmetric and symmetric stretching modes of the 

carboxylate feature at 1564 and 1382 cm-1, respectively.33,37,58,59 The characteristic feature of 

the C-O-H bending is also absent in the spectrum of the dye adsorbed to the TiO2. Therefore, 
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the D149 dye is covalently bonded to the TiO2 surface.33,37,58,59 The MC540 dye has a 

sulfonic acid group that will form a sulfonate when covalently bound to the TiO2.
40,41 

Characteristic features of the protonated and deprotonated sulfonic acid in the DRIFT 

spectrum (figure 15B) appear at 1413-1380 and 1092 cm-1 for the symmetric and asymmetric 

S=O stretching mode, and at 1188 and 1118 cm-1 for the asymmetric and symmetric 

stretching modes of the –SO3.
61–64 However, the DRIFT spectrum of the MC540 dye 

adsorbed onto the TiO2 (figure 15B) presents similar peaks, strongly suggesting that dye is 

physisorbed and not covalently bound to the TiO2. 

The main differences between the four dyes being tested is both the number and type 

of anchoring group available on the molecule. For the N719 dye, N749 dye and D149 dye, 

the molecules all have carboxylic acid anchor groups. Both Ruthenium dyes have three 

(N749 dye) or four (N719 dye) anchor groups and the organic dye D149 has one. The 

Ruthenium dyes showed a complete loss of the carbonyl peak as seen in the DRIFT spectra 

(figure 14), and experienced a full conversion of anatase into rutile, while the D149 dye still 

had evidence of the carbonyl peak in the DRIFT spectra of the adsorbed D149 dye (figure 

15A), indicating only a partial loss of this feature. This might explain why this dye converted 

pure anatase into 93% rutile, and not a complete transformation. The MC540 dye only has 

one sulfonic acid anchor group, and the DRIFT spectrum (figure 15B) was inconclusive 

about the chemisorption of this dye to the TiO2 surface, which could explain why this dye did 

not undergo ART. Alternatively, the sulfonic acid anchor group on the MC540 dye might not 

allow effective electron injection from the electronically excited dye into the TiO2 
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conduction band.3,4,34,35,65 Either way, no ART is seen when the TiO2 film is pretreated with 

MC540. 
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CHAPTER 4 

4. CONCLUSION 

4.1 Summary  

The assumption that the electronic excitation of the dyes leads to an electron injection 

into the conduction band of the TiO2, which induces the ART, is expected for the experiment 

with the 532 nm laser but is surprisingly also witnessed when using the 785 nm laser. The 

fact that when using the 785 nm laser for all three dyes with a carboxylic acid anchor group 

the rutile propagation area is comparable in size introduces the idea that independent of the 

absorption intensity at a specific wavelength, as long as the dye is covalently bound to the 

substrate and the complex is able to absorb at the given frequency, there will be energy 

available to cause ART, since the transfer would only be possible through the bond formed 

between the dye molecules and the TiO2.
3,4,34 

The induced ART due to the photoexcitation of the dyes chemisorbed to the TiO2 

films using either of the lasers showed a larger rutile propagation area when the Ruthenium 

dyes were used than when the D149 dye was used, following the trend that Ruthenium dyes 

experience higher efficiency over organic dyes.34,36 Anatase is transformed to rutile due to 

the electron injection from the excited state of the dye into the conduction band of the TiO2 

through the covalent bond formed at the surface with the dye molecule.3,34,65 Both Ruthenium 

dyes have more carboxylic acid anchor groups, compared to the D149 dye which only has 

one; thus, the likelihood of forming covalent bonds with the TiO2 surface is higher for the 
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Ruthenium dyes. For the case of the MC540 dye, no rutile was found at the surface, and no 

clear evidence was found that this dye is chemisorbed to the TiO2. This leads to the 

conclusion that MC540 has no electron injection mechanism under the conditions of this 

simplified experiment. The results obtained from this study agrees with the literature about 

the efficiency of the anchor groups that bind to the TiO2 surface and allow electron injection 

from the dye molecule to the substrate, namely that carboxylic acid anchor groups are the 

preferred moiety in dyes over sulfonic acid anchor groups for this purpose.3,4,34,35,65  

The system investigated in this work, the interface of a dye molecule chemisorbed to 

a TiO2 film, somewhat resembles the interface found in DSSC. Conventional wisdom in 

DSSC states that, when the dye molecule is excited by the sunlight, there should be a 

spontaneous electron injection from the excited state of the dye molecule into the conduction 

band of the semiconductor.3,4,34 However, this is only possible when the dye is covalently 

bound to the TiO2 surface.3,4,34 In a DSSC, the electron that was transferred into the TiO2 

conduction band subsequently travels to the counter electrode, thus converting solar light into 

electricity. The simplified system investigated here can be considered half a DSSC, where 

only the dye-TiO2 interface is considered. Like in a DSSC, the dye chemisorbed onto the 

TiO2 will get electronically excited by the high-power laser irradiation, and as expected, 

there will be a spontaneous electron injection from the excited state of the dye molecule into 

the TiO2. However, without a counter electrode there is no place for that electron to go, so 

the energy instead is dissipated into a phase change.16,27,28,31,33 Laser-induced ART was only 

seen when the dyes were covalently bound to the substrate via a surface carboxylate, namely 

in the films pretreated with the N719, N749 and D149 dyes. The electron injection induces 
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the ART and causes the dye to photo-decompose, since there is no counter electrode to 

transfer the electrons and generate electricity and no redox mediator to regenerate the dye 

molecule. The Raman spectrometer for this experiment was very useful in probing the dyed 

TiO2 films with high power lasers to induce ART and then analyze the surface with low laser 

power. For that reason, a Raman spectrometer could be convenient to use as a test for 

scientists developing dyes for DSSC; if the sample experiences ART upon high power laser 

irradiation, then the electron injection necessary for a successful DSSC was achieved. 22 

 

4.2 Conclusions 

Anatase TiO2 was converted into rutile by irradiation with a visible laser when the 

TiO2 film was pretreated with dyes commonly used in DSSC (N719 dye, N749 dye and D149 

dye). When the samples were irradiated with a 532 nm or a 785 nm laser, all the dyes were 

electronically excited, injecting an electron from the excited state of the dye molecule into 

the conduction band of the TiO2, as seen in a DSSC. This electron injection destabilizes the 

anatase TiO2, which induces ART. Since there is no counter electrode or redox mediator the 

dye photo-decomposes, as evidenced by a bleaching at the laser spot. Contour plots, uniquely 

designed for this study, helped to visualize, and quantify the laser-induced ART. Raman and 

DRIFTS spectra verified that these three dyes were chemisorbed to the surface of the TiO2, 

allowing for the efficient electron injection through surface carboxylates. The MC540 dye, 

with a sulfonic acid anchor group, did not induce ART with either laser and the DRIFT 

spectrum was inconclusive about the chemisorption of this dye to the TiO2, illustrating that 

the sulfonic acid anchor group is not efficient in the electron injection process. Factors such 
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as visible light absorbance and chemisorption of the dye to the semiconductor are the major 

sources of the efficient electron injection that induced the ART. This experiment shows a 

simple method to test dyes used for DSSC and confirm the electron injection from the 

excited state of the dye into the conduction band of the TiO2, by examining the ART. The 

more ART that occurs, the more efficient said dye will be for use in DSSCs. The overall 

results from this study follow the trends in the literature, where Ruthenium dyes show higher 

performance in DSSC over the organic dyes, as well as the carboxylic acid anchor groups are 

the preferred moiety in dyes.3,34,65   
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5. EPILOGUE 

Elucidating the photocatalytic oxidation of acetaldehyde with the dual-cocatalyst Ag-FeOx-

TiO2 nanocomposite  

Oral qualifying exam proposal developed by Daniela (Labadini) Graf Stillfried Barreto 

 

5.1 Significance 

Currently, Americans spend most of their time indoors, approximately 90% of their 

day.66,67 Indoor air is 10% more contaminated with volatile organic compounds (VOCs) than 

outdoor air.68 Heterogeneous photocatalysis, also called photocatalytic oxidation (PCO), is a 

clean technology with the capacity to photodegrade VOCs into carbon dioxide (CO2) and 

water (H2O) at room temperature.67,69–71 Titanium dioxide (TiO2) is considered one of the 

most promising photocatalysts and has been vastly investigated for PCO, due to its chemical 

stability, non-toxicity, and low cost.72–74 The general working principle of PCO begins with 

the activation of the photocatalyst with light of sufficient energy followed by the generation 

of photogenerated electron-hole pairs which drive the surface reactions.75–78 The major 

drawbacks of TiO2 PCO is the fast recombination of the electron-hole pairs and that it can 

only be activated with UV light, which is no more than 5% of sunlight.13,79,80 Therefore, it is 

of extreme importance to synthesize TiO2-based visible-light absorbing photocatalysts that 

efficiently photodegrade indoor VOCs. 

Strategies for developing visible-light absorbing TiO2-based photocatalysts include 

doping TiO2 nanoparticles with compounds such as noble metals, metal oxides, carbonaceous 

materials, etc.80,81 Noble metal dopants can act as electron sinks and provide effective proton 
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reduction sites, making them a reduction cocatalyst; in addition, some noble metals (Au and 

Ag) can enhance the visible light absorbance of TiO2.
81–85 Colored metal oxides, such as iron 

oxide (FeOx) also absorb visible light, due to their narrower band gap energy.86,87 Most metal 

oxide dopants act as oxidation cocatalysts since they capture photogenerated holes.81 In order 

to maximize PCO using TiO2-based nanocomposites, incorporating more than one cocatalyst 

serves to combine the properties of both reduction and oxidation cocatalysts, such as better 

separation of the photogenerated electron-hole pairs, visible light absorbance, and an increase 

in active sites.81  

In this study, Ag and FeOx dopants, acting as reduction and oxidation cocatalysts, 

respectively, will be used to synthesize visible-light absorbing Ag-FeOx-TiO2 

nanocomposites for the PCO of a model indoor air VOC, acetaldehyde. The surface 

chemistry of the Ag-FeOx-TiO2 nanocomposites will be investigated before, during, and 

after the PCO of acetaldehyde using in situ surface analytical techniques. This research 

project will provide insightful information about the role of surface hydroxyls and active 

surface species on the dual-cocatalyst-nanocomposites during the PCO of acetaldehyde. It is 

important to understand how these surface active sites and hydroxyls relate to the formed 

surface intermediates, products, and by-products. Ultimately, this information will help 

determine a clear reaction mechanism for the PCO of VOCs using visible light absorbing 

TiO2-based photocatalysts. The main goal of this study will be to determine the optimal 

TiO2-to-dopant ratio to maximize the visible light absorbance and efficiently photodegrade a 

model VOC, acetaldehyde.    
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5.2 Research aims 

1. Synthesis and characterization of Ag-TiO2, FeOx-TiO2, and Ag-FeOx-TiO2 

nanocomposites, including composition, size, surface area, crystallinity, and analysis 

of surface hydroxyls and active sites, to determine the optimal TiO2-to-dopant ratio to 

maximize visible light absorption. 

2. Elucidate surface chemistry of the optimal TiO2 nanocomposites during the reaction 

with acetaldehyde in the dark and as a function of relative humidity. 

3. Elucidate surface chemistry of the optimal TiO2 nanocomposites during the 

photocatalytic oxidation of acetaldehyde under visible light and as a function relative 

humidity. 

5.3 Background 

5.3.1 Indoor air quality and acetaldehyde 

Typically, Americans spend 90% of the day indoors. Therefore, indoor air will impact 

people’s health, comfort, and productivity. Long-term exposure to indoor air pollutants can 

be detrimental to human health, causing “sick building syndrome” (headaches and dizziness), 

and in some extreme cases, cancer.88,89 Volatile organic compounds (VOCs), nitrogen oxides 

(NOx), carbon monoxide (CO), and particulate matter are known to be the main indoor air 

pollutants. The main sources of VOCs come from combustion by-products (e.g., stove or 

oven), building and furniture materials, office equipment (printers and computers), and 

consumer products (e.g., cleaning products). Technologies to remove indoor air pollutants 

include adsorption,90 condensation,91 plasma combined with catalysis,92–94 incineration and 

thermic combustion,91 and ozonation.95 All these methods are known to generate large 
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quantities of toxic by-products and solid intermediates that linger on the surface of the 

photocatalyst. The working principle of these methods is basically a transfer of the VOCs 

from the gas-phase into a liquid/solid phase, i.e., moving the VOCs from one place to 

another. The VOCs are therefore not broken down into simpler and less toxic molecules.  

Acetaldehyde is an important indoor pollutant released by some building materials 

(polyurethane foams), cigarettes, adhesives, coatings and inks.96 Aldehyde concentrations are 

higher indoors than outdoors, which can lead to “sick building syndrome”.96,97 The effect to 

human health is dependent on the amount of aldehyde present, as well as length and 

frequency of exposure. In general, acetaldehyde can irritate the human respiratory system by 

inhalation, adversely affect the cardiovascular system, irritate skin and eyes upon contact, 

and it is classified as a carcinogen.98 Acetaldehyde concentration in indoor air is typically 

found at levels of parts per billion (ppb), but higher concentrations, 25-200 parts per million 

(ppm), have been found to cause eye and upper respiratory tract irritation.98 Therefore, for 

indoor air quality purposes, it is important to efficiently remove acetaldehyde from the 

environment. 

 

5.3.2 Heterogeneous photocatalytic oxidation 

Heterogeneous photocatalytic oxidation, also known as PCO is a process where light 

is used to activate a solid photocatalyst in order to reduce air pollution. PCO technology has 

attracted great attention for removal of gaseous pollutants at low concentrations (ppb level) 

owing to its superior features over traditional methods, including room temperature 

operation, activity towards various contaminants and the ability to photodegrade them to 
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benign products, such as CO2 and H2O. Depending upon the photocatalyst used for the PCO, 

there are typically no significant by-products generated and the reactions occur without the 

use of solvents.67 When using PCO for indoor air pollution abatement purposes, the reaction 

is a heterogeneous photocatalytic reaction, where the amount of water is limited and varies 

with different humidity levels. TiO2 is one of the preferred materials to be used as a 

photocatalyst and has been vastly investigated for PCO reactions of dyes, water contaminants 

and VOCs.2,12,76,78,99 TiO2 can be found as anatase, rutile and brookite crystalline 

phases.2,8,11,75 Of all the crystalline phases, rutile is considered the more thermodynamically 

stable, while anatase is more photoactive.8,13,75 In most of the studies, TiO2 is used as a 

mixture of anatase and rutile crystalline phases, where the typical ratio is 80% anatase and 

20% rutile. This mixture can be found commercially as P25. Researchers prefer P25 over 

pure rutile or pure anatase TiO2 mostly due to the increase in the photocatalytic activity owed 

to the synergistic effect provided by the combination of the two crystalline phases.8,14 In 

addition, due to the defective nature of TiO2, which include oxygen vacancies, or Ti3+ and 

Ti4+ interstitials, it can readily react with water in the environment, forming surface 

hydroxyls in order to satisfy the defect sites.100 The surface hydroxyls play a vital role in the 

reactivity of TiO2, aiding in the adsorption of molecules to the TiO2 surface, or reacting with 

adsorbates to create surface intermediates or products.100 

The PCO reaction is initiated by activating the photocatalyst with light of sufficient 

energy, i.e., UV light with pure TiO2. Electrons in the valence band are excited to the 

conduction band, leaving holes in the valence band. Typically, these electron-hole pairs 

migrate to the photocatalyst surface, where they initiate redox reactions with adsorbed VOCs. 
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One concern is that the majority of the photogenerated electron-hole pairs will recombine in 

the bulk or at the surface which would affect the photocatalytic activity. However, for 

heterogeneous PCO, adsorption of organic compounds on the surface of the photocatalyst is 

often mentioned as a prerequisite for photocatalytic reactions, and thus the photogenerated 

electrons and holes can directly react with the adsorbed VOCs.12,71,77,78 Therefore, it is 

important to study the surface reactions between the photocatalyst and the VOCs in the dark 

and during visible light irradiation, in order to decipher the reaction mechanism.  

 

5.3.3 Dopants/Cocatalysts 

The practical application of TiO2-based photocatalysis is restricted by the rapid 

recombination of photogenerated charge carriers and narrow light response range.81 

Therefore, there is a need to find visible-light absorbing photocatalysts that effectively 

photodegrade the VOCs using sunlight, providing enhanced photocatalytic activity by 

efficiently separating photogenerated electrons and holes. Dopants, or cocatalysts, are 

considered enhancement/reinforcement materials that can lower the electron-hole 

recombination and thus improve the photocatalytic activity (increase the number of active 

sites) and stability of the main photocatalyst, and most importantly extend the light 

absorbance into the visible range.81 Cocatalysts are categorize into reduction and oxidation 

cocatalysts, meaning they capture either the photogenerated electrons or holes, respectively. 

Noble metals, such as Ag, are examples of reduction cocatalysts, and metal oxides, such as 

FeOx, are considered oxidation cocatalysts.  
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It is thought that incorporating noble metals like Ag into TiO2 improves the visible 

light absorption of the photocatalyst.101 In addition, silver nanoparticles facilitate the 

separation of photogenerated electron-hole pairs when integrated into TiO2.
102  One study 

showed that a system incorporating silver nanoparticles on TiO2 as dopants up to 5 wt% was 

able to photodegrade formaldehyde more efficiently than pure TiO2. The Ag-doped 

photocatalyst showed an absorption peak around 450 nm in the UV-Vis spectrum, allowing 

the photocatalyst to absorb in the visible range. The photocatalyst doped with 5 wt% of Ag, 

therefore indicated an improvement in the photocatalytic activity of the photocatalyst both by 

absorbing in the visible range, and reducing the electron-hole recombination.101 However, in 

this study, increasing the silver nanoparticles content in the photocatalyst above 5 wt% 

decreased the photocatalytic activity of the substrate.  

Similar to the silver nanoparticles, FeOx nanoparticles incorporated on the TiO2 are 

also thought to promote the charge separation of photogenerated electrons and holes.103,104 

More importantly, FeOx nanoparticles are considered photocatalysts on their own and 

present a lower band gap than TiO2 nanoparticles, which allows them to absorb light in the 

visible range. Therefore, introducing FeOx into the co-catalytic system will provide more 

active sites, allow for better charge separation, and enhance the visible light absorbance, thus 

improving the overall photocatalytic activity of the FeOx-doped TiO2 photocatalysts. One 

study reported that adding up to 1.8 wt% FeOx nanoparticles to TiO2 significantly improved 

the visible light absorbance by showing an absorption peak around 540 nm in the UV-vis 

spectrum, however, when testing the photocatalyst for the photocatalytic oxidation of 

acetaldehyde, 0.1 wt% of iron oxide nanoparticles showed the best performance.104 This 
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indicates that more iron content improves the visible light absorbance, but also can decrease 

the photocatalytic activity, since the FeOx nanoparticles are bigger in size, which has been 

proven to facilitate the electron-hole recombination.87,103,104 

Thus, adding Ag or FeOx nanoparticles to TiO2 has been shown to enhance visible 

light absorbance and decrease electron-hole recombination, thus improving the photocatalytic 

efficiency of doped TiO2 photocatalysts. Ag or FeOx doped TiO2 photocatalysts have been 

shown to be more efficient in photodegrading dyes or water-contaminants in solution, 

compared to pure TiO2.
103–107 However, few studies report the PCO of VOCs using doped-

TiO2 photocatalysts.105,106 In addition, there is very little information about combining Ag 

and FeOx nanoparticles to create the dual cocatalyst Ag-FeOx-TiO2 nanocomposite and use 

it for the PCO of VOCs. One study reports the photocatalytic oxidation of pentoxifylline, a 

recalcitrant vasodilator drug, using TiO2-based nanocomposites doped with Ag and Fe.106 

Researchers demonstrated that incorporating 1.5 wt% of Ag and iron-containing clay beads 

with TiO2 resulted in a Ag-Fe-TiO2 photocatalyst with high photocatalytic efficiency; it 

enhanced visible light absorbance and increased the photocatalytic activity, compared to pure 

TiO2 and Ag-TiO2. Similar to much of the research performed on doped-TiO2, this study 

carried out PCO of the drug in solution; therefore, there is a missing hole in the literature, 

studying novel Ag-FeOx-TiO2 nanocomposites for the PCO of VOCs found in indoor air.  

Previous studies published on Ag-TiO2 or FeOx-TiO2 nanocomposites for the PCO of VOCs, 

investigate how these photocatalysts efficiently photodegrade the molecules found in indoor 

air with visible light, but the results are heavily focused how much CO2 was formed and 

using this data to calculate the photocatalytic efficiency of the photocatalyst.103–105,108 Typical 
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experiments are performed in photocatalytic reactors with a gas chromatogram (GC) used to 

identify products and by-products. Very little information is known about the surface 

chemistry before, during, and after PCO of VOCs and how this influences the formation of 

the products. Therefore, the fundamental surface science investigation proposed here will 

provide insight about the surface intermediates that play a vital role in the PCO of 

acetaldehyde by the novel visible light absorbing dual cocatalyst Ag-FeOx-TiO2.   

 

5.3.4 PCO of acetaldehyde with pure and doped TiO2  

The PCO of acetaldehyde on TiO2 has been studied extensively, either on its own or 

through the PCO of ethanol on TiO2, where acetaldehyde is the main intermediate.97,109–121 

There is some disagreement on which intermediates are formed from acetaldehyde and how 

they are finally converted into CO2. Typically, anatase or P25 TiO2 were used as 

photocatalysts, and the PCO was performed in different types of photoreactors with UV-light 

irradiation, where the outlet gases were analyzed by GC. Most studies on acetaldehyde 

photodegradation report that the main intermediate is acetic acid, which then photo-oxidizes 

into CO2.
97,109,114–118 One of these studies was able to identify other surface intermediates, 

such as formaldehyde and formic acid, when they analyzed the TiO2 surface with FTIR-ATR 

after the PCO reaction.97 Other authors studied the PCO of ethanol and found that the main 

surface intermediate is acetaldehyde.110–112,119–121 Consequently, the studies show that once 

acetaldehyde is formed at the surface, it further photo-oxidizes to acetic acid, to produce 

formaldehyde, formic acid and finally CO2.
111 Another group found that acetaldehyde is 

transformed into a mixture of formic acid and formaldehyde, which further photo-oxidizes 
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into formic acid and CO2.
111 In situ FTIR studies validate the presence of acetates and 

formates, evidenced by the symmetric and asymmetric carboxylate (COO-) stretches between 

1300-1500 cm-1, and carbonyl peaks around 1700 cm-1. These surface features have the 

potential to lead to the formation of acetic acid, formaldehyde, and formic acid as surface 

intermediates during the PCO of acetaldehyde over TiO2.
96,122,123 The FTIR studies agreed 

that the main intermediate for the PCO of acetaldehyde is surface bound acetate, with the 

potential of forming acetic acid, but they differ with the following intermediates involved in 

the formation of CO2. 

There is still disagreement on the different photocatalytic pathways present in the 

PCO of acetaldehyde on TiO2. Most of the studies report similar intermediates; however, 

some studies do not report any intermediates and say that acetaldehyde is photo-oxidized 

directly into H2O and CO2. Diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) is a powerful technique able to investigate surface intermediates involved in the 

PCO of acetaldehyde.101,102 In fact, this tool has led to the discovery of key surface 

intermediates of various PCO reactions of VOCs using TiO2 based photocatalysts, which 

have ultimately influenced the proposed reaction mechanism of studies that did not use this 

surface characterization technique.124  

The PCO of formaldehyde has been investigated with Ag-doped TiO2 photocatalysts 

using in situ DRIFTS. It was found that incorporating up to 5 wt% of Ag into the TiO2 

enhanced the visible light absorption and improved the photocatalytic activity.101 

Formaldehyde was photo-oxidized into H2O and CO2, which was verified by combining the 

GC data with DRIFTS. DRIFTS data showed that Ag nanoparticles facilitated the 
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photodegradation of formaldehyde by visible light irradiation, evidenced by the formation of 

formate species on the surface. The same experiment was done with pure TiO2, and no 

formate features were seen in the DRIFTS spectra, showing that pure TiO2 cannot be 

activated by visible light, and thus indicating that Ag plays a key role for visible light 

absorbance. Another study incorporated 0.1 wt% of FeOx nanoparticles into TiO2, which 

resulted in the highest photocatalytic efficiency for the oxidation of acetaldehyde while 

enhancing visible light absorbance.104 Transmission FTIR data during the PCO reaction 

showed surface bound acetate features as an intermediate during the PCO of acetaldehyde. 

These studies were able to identify surface intermediates during the visible light PCO 

of VOCs on doped TiO2 substrates. Unfortunately, there is missing information on evaluating 

DRIFTS or FTIR data by incorporating more than one dopant and varying the percentage of 

each dopant in the photocatalyst. In addition, monitoring the relative intensity of the 

characteristic IR bands of the surface intermediates as a function of irradiation time will lead 

to a better understanding of how the PCO reaction is progressing. Ultimately, this will give 

insight to develop a realistic reaction mechanism of the PCO of VOCs using visible light. It 

is likely that the oxidation reaction happens either through the photogenerated electrons or 

holes, active surface sites from the dopants or the TiO2, or surface hydroxyls. DRIFTS will 

allow the monitoring of surface intermediates and surface hydroxyls on the photocatalyst 

surface and evaluate the role they play in PCO reactions. Additionally, transmission FTIR 

studies of the headspace over the photocatalyst will allow the observation of IR-active gas-

phase products and by-products of the PCO of VOCs using visible light. In fact, one study of 

the PCO of ethanol over TiO2 nanoparticles with UV-light attempted the simultaneous FTIR 
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analysis of the surface and gas-phase reactions, by connecting a DRIFTS setup with a 

transmission FTIR gas cell together.125 Researchers found that adsorbed ethanol quickly 

transformed into acetate features upon UV-light irradiation, and characteristic bands for CO2 

and acetaldehyde were seen in the gas-phase spectra as the formed products of the PCO of 

ethanol. Thus, this setup of monitoring the surface and gas-phase reactions will provide 

insightful information about the reaction mechanism of the PCO reactions. 

This proposal outlines a fundamental in situ surface science investigation of visible-

light-absorbing Ag-FeOx-TiO2 nanocomposites, with varying compositions of Ag and FeOx, 

from 0-5%. These nanocomposites will be used for the PCO of acetaldehyde using visible 

light as a model indoor air VOC. An intensive characterization of the Ag-FeOx-TiO2 

nanocomposites will be performed using diffuse reflectance ultraviolet-visible spectroscopy 

(DR-UV-Vis), Raman spectroscopy, powder X-ray diffraction (PXRD), scanning electron 

microscopy with elemental analysis (SEM, EDX), surface area analysis, X-ray photoelectron 

spectroscopy (XPS), and DRIFTS. Once characterization is complete, the PCO of 

acetaldehyde by the Ag-FeOx-TiO2 nanocomposites will be investigated via DRIFTS under 

visible light irradiation by varying relative humidity, dopant concentration and visible light 

density, in order to determine the effect each has on the PCO reaction. The information 

obtained from these in-depth in situ studies of the surface chemistry of Ag-FeOx-TiO2 

nanocomposites will allow researchers to use these inexpensive nanocomposites effectively 

and efficiently for the PCO of indoor air VOCs using visible light. 
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5.4 Research Plan 

5.4.1 Aim 1 

Synthesis and characterization of Ag-TiO2, FeOx-TiO2, and Ag-FeOx-TiO2 

nanocomposites, including composition, size, surface area, crystallinity, and analysis of 

surface hydroxyls and active sites, to determine the optimal TiO2-to-dopant ratio to maximize 

visible light absorption. 

Pure TiO2, Ag-TiO2, FeOx-TiO2 and Ag-FeOx-TiO2 photocatalysts will be 

synthesized to conduct the proposed research. TiO2 nanoparticles will be the main 

component of the nanocomposites, namely a mixture of anatase and rutile, similar to P25, 

which has shown excellent photocatalytic properties.8,14 FeOx and Ag nanoparticles will be 

used as dual-cocatalysts, in order to extend the light absorption of the TiO2 into the visible 

range. TiO2 nanoparticles will be prepared by a well-established precipitation technique 

using titanium isopropoxide as a precursor.126 The doped TiO2 nanocomposites will be 

synthesized similarly, by adding ferric nitrate (Fe(NO3)3) and silver nitrate (AgNO3) to the 

TiO2 precursor solution.127 The Fe and Ag salts are combined in the desired proportion, 

ranging from 0 to 5 wt%, and the doped TiO2 samples are allowed to precipitate. The 

nanoparticles are then calcined at 450°C for up to four hours. This method should result in 

nanocomposites that contain a mixture of anatase and rutile TiO2 with Ag and/or FeOx 

incorporated within the framework of the compound, and will be designated as TiO2, Ag(1-

5)-TiO2, FeOx(1-5)-TiO2, and Ag(1-5)-FeOx(1-5)-TiO2. Sample preparation is key in this 

step, since anatase is capable of transforming into rutile at high temperatures (around 
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600°C).8,17 In fact, Fe is known to lower the anatase-to-rutile phase transformation (ART) 

temperature.21,22,24,25         

Therefore, it is expected that the nanocomposites with higher Fe-oxide content will 

also have higher content of rutile which can ultimately affect the photocatalytic activity of 

the nanocomposite, since rutile is less photoactive than anatase.8,12,13 The goal is to have 

silver and iron be well dispersed as dopants on the TiO2.  

Once all of the nanocomposites have been synthesized, they must be characterized, 

not only to verify that the correct nanoparticles have been created, but also to achieve a better 

understanding of the visible light absorption, structure, composition, and surface features of 

the nanocomposites. These properties will be monitored both in the bulk and on the surface, 

before and after photocatalytic reactions, to determine if there are any significant changes to 

the crystallinity or the number of active surface sites on the substrate.  

 

5.4.1.1 Visible light absorption of the nanocomposites 

Pure TiO2 is only capable of absorbing UV light, and therefore it is of extreme 

importance to determine which of the synthesized Ag(0-5)-FeOx(0-5)-TiO2 nanocomposites 

will absorb in the visible. During this phase of the research, the nanocomposites will be 

analyzed with diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis), in order to collect the 

absorption spectrum. DR-UV-Vis is a very suitable technique to study opaque powdered 

samples and determine their spectral characteristics.128 DR-UV-Vis will determine which 

combination of the Ag(0-5)-FeOx(0-5)-TiO2 nanocomposites are optimal to maximize visible 

light absorption. Studies show that higher content of Ag or FeOx usually translates into more 
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dopants nanoparticles within the TiO2, which maximizes the visible light absorption 

properties in the photocatalysts.101,104,106 A recent study showed that the presence of both Ag 

nanoparticles and iron containing clay beads on TiO2 presented enhanced visible light 

absorption compared to pure TiO2 and Ag-TiO2.
106 Therefore, it is expected that the 

synthesized Ag(1-5)-FeOx(1-5)-TiO2 nanocomposites will experience higher intensity peaks 

in the visible region of the DR-UV-Vis spectra, over the pure TiO2, Ag(1-5)-TiO2 and Fe(1-

5)-TiO2 nanocomposites. 

 

5.4.1.2 Crystallinity of the Ag-FeOx-TiO2 nanocomposites 

All the possible combinations of the different Ag(0-5)-FeOx(0-5)-TiO2 

nanocomposites that absorb light in the visible region (400-750 nm) will be chosen for the 

further characterization experiments. Raman spectroscopy will be utilized to identify the 

characteristic crystalline phases of the different nanocomposites. It is expected, that the 

photocatalysts will contain both anatase and rutile TiO2, and the spectra for those titania 

polymorphs are well documented.43,44 The characteristic Raman phonon peaks of anatase 

TiO2 (144, 197, 396, 515 and 638 cm-1) are very distinct from those of rutile TiO2 (144, 236, 

447 and 610 cm-1).1 In fact, a recent publication developed a mechanism to determine the 

percent composition of each crystalline phase in a sample.1 With the help of this calibration 

method, it will be possible to determine the amount of anatase and rutile present in the 

nanocomposites. The Ag and FeOx content in the photocatalysts will be very low (0-5 wt%), 

and the Raman spectra of the doped-TiO2 samples are expected to remain unchanged. 

However, in the case of higher content of the dopants, some peaks might appear in the 
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Raman spectra, especially for the FeOx, with Raman-active phonon peaks around 226, 245, 

292, 299, 411, 498 and 612 cm-1.129 Some of the Raman peaks of the FeOx overlap with the 

characteristic peaks for anatase and rutile TiO2, and due to the high content of TiO2 the 

presence of the FeOx nanoparticles in the Raman spectrum might be difficult to identify. The 

peaks around 226-299 cm-1 are the most likely to be identified in the Raman spectra of the 

FeOx doped-TiO2 samples. In the case of the Ag nanoparticles present in the 

nanocomposites, no peaks are likely to appear in the Raman spectra, since it is expected that 

these Ag nanoparticles are composed of elemental Ag and not AgOx.101  

Similar to Raman spectroscopy, powdered x-ray diffraction (PXRD) can further 

verify the crystallinity of the doped-TiO2 nanocomposites. Monitoring the crystal structure of 

the selected Ag-FeOx-TiO2 photocatalysts as the amount of Ag and FeOx is increased from 

0-5 wt% will provide valuable structural information for the system. It is expected that 

PXRD peaks characteristic to anatase (101, 004, 200, 105 and 211) and rutile (110, 101, 200, 

111, 210, 211, 220) will appear in the spectrum of the synthesized TiO2 

nanocomposites.19,26,76 Typically, the PXRD of doped-TiO2 should remain unchanged since 

the dopant’s concentrations are so low. However, in nanocomposites with high content of Ag 

and FeOx, some peaks characteristic of metallic Ag and FeOx nanoparticles might show up 

in the spectrum.101,106 Additionally, using the Scherrer equation with the PXRD data from the 

Ag-FeOx-TiO2 nanocomposites, it is possible to calculate the size of the nanoparticles, if the 

peaks are not broadened by the dopants.104 

To further characterize the Ag-FeOx-TiO2 nanocomposites, the surface area and pore 

size of the photocatalysts will be determined with a Brunauer-Emmett-Teller (BET) surface 
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area analyzer. These values are important for photocatalytic reactions because the higher the 

surface area the more active surface sites will be available for the photo-reactions to occur. It 

is expected that the pore size and surface area will change only slightly after co-precipitating 

the Ag and FeOx nanoparticles.101 However, there is a chance that the dopants will be located 

inside the pore, which could interfere with the surface area and pore size. The topography 

and particles size of the Ag-FeOx-TiO2 can also be observed and determined with the use of 

scanning electron microscopy (SEM). This analysis will provide insightful information on 

how the synthesized nanocomposites look and their size, complementing the PXRD data. It is 

more likely that Ag and FeOx nanoparticles will be distinguished from TiO2 nanoparticles by 

SEM when the content of the dopants is higher, since the nanoparticles will be bigger in size 

compared to the lower concentration nanocomposites. However, the use of elemental 

analysis (EDX) in the SEM will help identify the presence of Ag and Fe in the samples. Even 

when the dopant’s concentration is minimal, the EDX can identify it. In addition, elemental 

mapping can provide insightful information on how well dispersed the Ag and FeOx 

cocatalysts are dispersed in the nanocomposites.104 

 

5.4.1.3 Surface activity of the Ag-Fe-TiO2 nanocomposites 

To verify the composition of the Ag-FeOx-TiO2 nanocomposites and to analyze the 

oxidative states present on the surface, x-ray photoelectron spectroscopy (XPS) will be 

utilized. The XPS of TiO2 typically shows peaks characteristic to the Ti4+ and O2- 

states.101,104,106 Studies of doped-TiO2 with either Ag or FeOx show the appearance of peaks 

associated with the dopants. XPS is capable of identifying if the Ag present in the cocatalyst 
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is metallic silver or silver oxide, as well as distinguishing Fe(II) from Fe(III) in FeOx.104,106 It 

is possible that the appearance of the peaks in the XPS spectra will be very broad and of low 

S/N, adding some difficulty to the identification of the oxidative states of the dopants. Most 

publications just report the XPS spectra of the synthesized nanoparticles, and it would be of 

great interest to determine the XPS spectra of the nanocomposites under visible light 

irradiation. Monitoring the changes of the XPS peaks of the as-synthesized nanocomposites 

while shining visible light might provide valuable information if the oxidative states of the 

components change or peaks disappear. 

A series of studies has attempted to characterize the Ag-TiO2, FeOx-TiO2, or Ag-

TiO2 incorporated in Fe-containing beads nanocomposites using PXRD, XPS, and 

SEM.101,102,104,106 However, there has been no attempt to identify the native features present 

on the surface, such as surface hydroxyls, which can play such a vital role in the surface 

chemistry during photocatalytic reactions. Therefore, a thorough DRIFTS study will allow 

for the identification of these features while adding much needed clarity to the identity and 

quantity of active sites present on the Ag-FeOx-TiO2 composites. During this phase of the 

research project, close attention will be paid to the hydroxyl region of the DRIFTS spectrum 

(wavenumbers between 3750-3300 cm-1) of the Ag-FeOx-TiO2 composites to identify the 

possible hydroxyl reactive sites on the surface. On TiO2 nanoparticles, surface hydroxyls are 

known to play a vital role in surface reactions.100 In addition, they are known to facilitate the 

adsorption of the VOCs on the photocatalyst surface. Characterizing the surface hydroxyls 

that are bound to the surface of the Ag-FeOx-TiO2 nanocomposites is a major step in 

understanding the active sites on the photocatalyst. 
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After characterizing the initial native surface hydroxyls on the surface of the as 

synthesized Ag-FeOx-TiO2 nanocomposites, the next goal will be to characterize the 

hydroxyl features most affected by visible light irradiation by observing the shifts in band 

energies or intensities as a function light exposure. Observing these changes will provide 

insight about which hydroxyl features, if any, are removed from the surface by the visible 

light and in turn considered the most reactive sites. In the case that any surface hydroxyls 

were removed completely from the substrate, water vapor will be introduced at low pressures 

to re-hydroxylate the surface allowing the observation of the order in which the active sites 

of the nanocomposites react with water. Understanding the stability and reproducibility of the 

hydroxyl groups bound to the surface of the Ag-FeOx-TiO2 nanocomposites while being 

exposed to light will clarify the properties of active surface sites. 

 

5.4.2 Aim 2 

Elucidate surface chemistry of the optimal TiO2 nanocomposites during the reaction 

with acetaldehyde in the dark and as a function of relative humidity. 

 

5.4.2.1 In situ DRIFTS surface chemistry investigation 

Once the selected Ag-FeOx-TiO2 nanocomposites are well characterized, the next 

aim of this research proposal will be to analyze their reaction with acetaldehyde in the dark. 

DRIFTS is frequently used to identify surface bound intermediates by observing fine details 

of the spectrum.124 In addition, oxygen containing hydrocarbons are easy to differentiate via 

IR. During this surface chemistry investigation, the acetaldehyde will be introduced to the 
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reaction chamber containing the Ag-FeOx-TiO2 nanocomposites at low pressures between 

0.01-0.1 torr and allowed to equilibrate. While equilibrium is reached DRIFTS spectra will 

be collected frequently to observe the chemistry taking place on the surface of the 

nanocomposites. Identification of intermediate states formed on the surface occurs by 

monitoring the vibrational bands associated with functional groups present in the 

intermediate molecules.124 Identifying the active sites, where the acetaldehyde molecule 

binds, will also be possible through the analysis of the DRIFTS spectrum, and as a result it is 

possible to state if the acetaldehyde is physisorbing or chemisorbing to the surface.  

Some studies on the reaction of acetaldehyde with TiO2 have claimed that it first 

reacts with the surface through the carbonyl group of the acetaldehyde. This is evidenced by 

a shift in the frequency of the characteristic carbonyl peak in the DRIFTS spectrum, which is 

usually around 1700 cm-1. Then, the carbonyl peak disappears, and new bands are formed. 

Some studies report that acetaldehyde undergoes an aldol condensation on the TiO2 surface, 

evidenced by the formation of 2-butenal i.e., crotonaldehyde.130–132 Crotonaldehyde is formed 

by the dehydrogenation of intermediate 3-hydroxybutanal, which has also been reported in 

the FTIR spectrum of the reaction of acetaldehyde with TiO2.
132,133 For the formation of 

crotonaldehyde, two adjacent acetaldehyde molecules are needed to be adsorbed on TiO2 

surface, which then react via an aldol condensation.134 However, indoor air concentrations 

are too low to saturate the surface and the reaction between two adjacent acetaldehyde 

molecules is very unlikely. In the literature it is also proposed that acetaldehyde can be 

oxidized by defects on the TiO2 surface and create a surface acetate species.130–132 In the 

DRIFTS spectrum this can be seen as the presence of symmetric and asymmetric carboxylate 
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features, typically found in the wavenumbers between 1500-1300 cm-1. Some studies suggest 

the formation of ethoxy species, which are a product of reduction of acetaldehyde on the 

TiO2 surface through proton abstraction from a surface OH group.135  

Clearly, there is varied information on how acetaldehyde reacts with TiO2. 

Interestingly enough, in the studies performed on the PCO of ethanol with acetaldehyde as an 

intermediate, there is no evidence of acetaldehyde undergoing an aldol condensation, and the 

formation of crotonaldehyde on the surface of TiO2. For studies proposed in this research 

proposal with Ag-FeOx-TiO2 nanocomposites, similar surface species are expected to be 

found as on bare TiO2. Because of the presence of the dopants, these features might be 

enhanced on specific surface sites, or might not appear at all.135,136  

 

5.4.2.2 Transmission FTIR investigation 

The reaction of acetaldehyde in the dark with the Ag-FeOx-TiO2 nanocomposites will 

be performed in a gas cell to verify if any gas-phase products arise from the oxidation of 

acetaldehyde with surface active sites of the nanocomposites. The Ag-FeOx-TiO2 

nanocomposites will rest in a layer on the bottom of the transmission cell with the FTIR 

beam passing through, sampling the headspace above the photocatalyst. FTIR spectra will be 

collected frequently during introduction of acetaldehyde to identify any gas phase, IR active 

products as the reaction proceeds. It is expected that the acetaldehyde features in the gas-

phase will decrease as the acetaldehyde adsorbs onto the surface of the nanocomposites. 

However, much acetaldehyde is likely to remain in the gas-phase. 



 68 

5.4.2.3 Effect of relative humidity  

Indoor air can be affected by external factors (air conditioning, rain, heat), which 

impact the relative humidity. It is therefore important to simulate the different relative 

humidity levels found indoors, where 5% being the lowest (dry conditions) and 70% the 

highest (damp conditions), during the reaction of acetaldehyde with the Ag-FeOx-TiO2 

nanocomposites. The characterization studies in Aim 1 will have allowed the understanding 

of the nature of the Ag-FeOx-TiO2 nanocomposites hydroxylated surface. This knowledge 

can be used to selectively hydroxylate the substrate to mimic different relative humidity 

levels found in indoor air and monitor the surface via in situ DRIFTS when acetaldehyde is 

introduced into the reaction chamber. Since water is present in most photocatalytic oxidation 

reactions, it is important to understand the role of water during the reaction of acetaldehyde 

with the nanocomposites in the dark, in order to have initial information to compare it to 

when the PCO occurs.100,137 It is thought that surface hydroxyls are important binding sites 

for the molecules, by which they can hydrogen bond to the surface and subsequently react 

with surface active sites. However, too much water can actually be disadvantageous, where 

water would take all the active sites by physisorbing or chemisorbing to the surface, leaving 

significantly fewer active sites for the adsorbates.122,138 The monitoring of different levels of 

relative humidity will also be observed via transmission FTIR, to further understand any 

changes the reaction of acetaldehyde with the Ag-FeOx-TiO2 nanocomposites undergoes as a 

function of the presence of water vapor. 

After the meticulous surface characterization of the reaction of the Ag-FeOx-TiO2 

nanocomposites with acetaldehyde in the dark and as a function of relative humidity is well 
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understood, conclusions can be drawn about the influence Ag and FeOx nanoparticles, and 

relative humidity have on the acetaldehyde adsorption to the nanocomposite’s surface, and 

the role each plays during the reaction in the dark. The results obtained during this stage of 

the research proposal are of extreme importance and will provide a reference point for the 

PCO of acetaldehyde under visible light. 

 

5.4.3 Aim 3  

Elucidate surface chemistry of the optimal TiO2 nanocomposites during the 

photocatalytic oxidation of acetaldehyde as a function of visible light density and relative 

humidity. 

 

5.4.3.1 In situ DRIFTS surface chemistry investigation 

Once the reaction of acetaldehyde with the Ag-FeOx-TiO2 nanocomposites in the 

dark is well characterized, visible light from white LEDs will be introduced to the system 

through a quartz window on the reaction chamber. Visible light has the potential to generate 

electrons and holes, as well as to activate the surface hydroxyl groups in the Ag-FeOx-TiO2 

nanocomposites, which are suggested to be a driving force of photocatalytic reactions.71,75,77 

The effect these photogenerated electrons and holes have on the PCO of acetaldehyde will be 

determined by observing the changes to the DRIFTS spectrum as the system is exposed to 

visible light of known energies for set amounts of time. Acetaldehyde will be introduced to 

the reaction chamber at low pressures between 0.01-0.1 torr and allowed to equilibrate. Once 

acetaldehyde has reacted with the surface in the dark and reached equilibrium, the white 
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LEDs will be turned on, and DRIFTS spectra will be collected until there are no more 

changes in the spectra. Ideally, H2O and CO2 are the only products of any PCO reaction. 

Bound CO2 is typically found around 2300 cm-1 in the DRIFTS spectrum if it does not desorb 

from the surface. In the case of water, it can be recognized as physisorbed or chemisorbed 

water in the region of the OH stretching in the DRIFTS spectrum, around 3600-3000 cm-1, 

and in the region of the HOH bend around 1600 cm-1.100 However, it is very likely that as the 

PCO progresses, the surface hydroxyls rearrange as they react with the adsorbed 

acetaldehyde, as well as the surface intermediate species that are formed from the PCO.  

Studies suggest the formation of acetic acid, formic acid, and formaldehyde as intermediates 

in the PCO of acetaldehyde over TiO2, confirmed by GC or temperature programmed 

desorption (TPD). Based on this information, a study attempted to follow the reaction at the 

surface of TiO2 and decipher the surface intermediates that lead to acetic acid, formic acid, 

and formaldehyde.96 Upon UV light irradiation, FTIR spectra presented characteristic peaks 

of monodentate and bidentate formate features, evidenced by the symmetric and asymmetric 

stretches of COO- peaks between 1500-1300 cm-1.72,96 Similarly, characteristic peaks for 

bidentate acetate features can be seen in the form of symmetric and asymmetric COO- peaks 

between 1500-1400 cm-1. In the case of formaldehyde, studies have shown that is an 

intermediate in the PCO of ethanol and is therefore expected to be an intermediate in the 

PCO of acetaldehyde. Hauchecorne et al. found unassigned monodentate formate features in 

the FTIR spectra during the PCO of acetaldehyde on TiO2, namely symmetric and 

asymmetric COO- around 1500-1300 cm-1.96 Ultimately, the authors confirmed that these 

formate features corresponded to adsorbed formaldehyde in the form of dioximethylene 
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(DOM). DOM is an intermediate in the adsorption mechanism of formaldehyde on TiO2 and 

formate features in the form of symmetric and asymmetric COO- are typically found around 

1500-1300 cm-1.110,111,121 Hauchecorne et al. proposed a photocatalytic reaction mechanism, 

as seen in figure 2, where the initial surface intermediates, surface bound formate and 

acetate, were further photo-oxidized into monodentate formate. Ultimately, all surface 

formate features were photo-oxidized to CO2.
96 

It is expected, that the PCO of acetaldehyde using the Ag-FeOx-TiO2 nanocomposites 

with visible light irradiation will follow similar trends to the experiments found in the 

literature with pure TiO2 and UV-light irradiation. In addition, doping the TiO2 with Ag and 

FeOx nanoparticles should enhance the total mineralization of acetaldehyde under visible 

light irradiation. In general, there is mixed information on how acetaldehyde is photo-

oxidized on the surface of pure TiO2 in the literature. Surface species like acetates and 

formates are formed and, based on GC data or TPD, most studies suggest that common 

intermediates which desorb during the PCO of acetaldehyde are acetic acid, formic acid, and 

formaldehyde. The thorough DRIFTS analysis at this stage of the research proposal will 

provide a better understanding of the surface reactions occurring during the PCO of 

acetaldehyde with Ag-FeOx-TiO2 during visible light irradiation. In addition, following the 

trend of variation of the intensity of characteristic bands of adsorbed acetaldehyde and the 

formed surface intermediates as a function of irradiated time, can give important information 

to propose a photocatalytic reaction mechanism and correlate the surface intermediates to 

formed products or by-products.  
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5.4.3.2 Transmission FTIR investigation 

As in Aim 2, transmission FTIR investigations of the system during visible light 

irradiation will monitor the headspace over the photocatalysts for formation of IR-active 

products and by-products desorbed during the PCO of acetaldehyde using Ag-FeOx-TiO2 

nanocomposites under visible light irradiation. In situ FTIR papers refers to all the formed 

molecules as intermediates and GC data validates that those intermediates desorb from the 

surface. Therefore, these intermediates should be considered by-products of the PCO of 

acetaldehyde. That is why transmission FTIR investigations will provide insightful 

information regarding the formation of products and by-products. Upon visible light 

irradiation, it is expected that CO2 and H2O appear in the FTIR-spectra, as well as any 

desorbed by-products/intermediates. In addition, following the trend of variation of the 

relative intensities of the characteristic bands of these products or by-products, and 

correlating them with the time-dependent study of the in situ DRIFTS investigations of 

surface intermediates, will further provide invaluable information and help build a realistic 

photocatalytic reaction mechanism.  

 

5.4.3.3 Effect of relative humidity  

As stated earlier in Aim 2, a thorough analysis of the PCO of acetaldehyde with Ag-

FeOx-TiO2 nanocomposites as a function of different relative humidity levels is important to 

replicate the various conditions found in indoor air. That is why the in situ DRIFTS and 

transmission FTIR investigations will be monitored for different relative humidity levels 

ranging from dry conditions (5% RH) to wet conditions (70% RH). For example, the PCO of 
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acetaldehyde over P25 TiO2 under UV-light irradiation was benefited by the presence of 

water vapor (it was very low in the absence of water), whereas the photocatalytic oxidation 

of ethanol in the same study with the same photocatalyst showed the opposite trend.138 

However, it has also been shown that under high humidity conditions (approx. 50% RH), 

acetaldehyde will desorb from the TiO2 surface and be replaced with water molecules.122  

 

5.4.3.4 Post reaction characterization 

During photocatalysis, the Ag-FeOx-TiO2 nanocomposites can experience many 

structural changes as surface bound hydroxyls are consumed and new oxygen vacancies or 

reduced Ti3+ are created. Once all experiments have been completed, the Ag-FeOx-TiO2 

nanocomposites will undergo a complete re-characterization as outline in Aim 1 to identify 

any changes in the photocatalyst. 

 

5.4.3.5 Optimized Ag-FeOx-TiO2 nanocomposite 

Combining all of the data provided by this research proposal an optimized Ag-FeOx-

TiO2 nanocomposite can be identified. This analysis will also offer fundamental information 

on the conditions that are most beneficial for the PCO of acetaldehyde on the surface of Ag-

FeOx-TiO2 nanocomposites. By focusing on analyzing the surface chemistry of these 

transformations as a function of visible light density and relative humidity it will be 

determined how these variables either promote or hinder the different reactive sites on the 

Ag-FeOx-TiO2 nanocomposites. The information obtained from these in situ studies of the 

surface chemistry of Ag-FeOx-TiO2 nanocomposites will allow for the effective and efficient 
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use of these inexpensive materials as photocatalysts to abate indoor air pollutants using 

sunlight.  

 

5.5 Intellectual Merit 

Photocatalytic oxidation of indoor VOCs has been studied with TiO2-based 

photocatalysts using UV-light irradiation. However, the main drawbacks of TiO2 

photocatalysts is the fast electron-hole recombination and the activation with UV-light, 

which constitutes only 5% of the solar light. Therefore, there is a need to modify the TiO2 to 

hinder as much a possible the electron-hole recombination and broaden the light absorbance 

capability into the visible light region. This research proposal targets these two variables by 

doping the TiO2 with Ag and FeOx nanoparticles, to create the novel visible-light-absorbing 

Ag-FeOx-TiO2 nanocomposites, where Ag and FeOx will allow for visible light absorption, 

enhance the electron-hole separation, and provide more reaction sites to ultimately better the 

photocatalytic activity. In addition, the thorough in situ surface investigation using DRIFTS 

in combination with transmission FTIR will help to fill the holes missing from the literature 

to better understand the reactions happening in the surface, as well as in the gas-phase, that 

will ultimately allow to propose realistic reaction mechanisms with the main goal of 

illustrating that efficient visible-light-absorbing photocatalysts are able to photodegrade 

VOCs found in indoor air.  
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5.6 Broader impacts of the proposed work 

The novel Ag-FeOx-TiO2 nanocomposites proposed in this research project are very 

cost-effective and able to phototactically oxidize many indoor air pollutants with visible light 

coming from the windows and indoor lights. These nanocomposites can be scaled up and 

produced in large quantities to be used in the treatment of air purification systems in industry, 

office spaces and even homes. By incorporating these nanocomposites as a layer over paints 

or furniture materials, for example, the versatile Ag-FeOx-TiO2 nanocomposites will be able 

to photodegrade indoor air VOCs into harmless products, such as H2O and CO2. This has the 

potential to impact people’s health, by making indoor environments safe from any harmful 

chemicals, so that people can be comfortable and breathe cleaner air.  
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