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ABSTRACT 
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Fish have been an important food resource for humans throughout history, but with 

growing populations increasing the demand for this resource, many fish stocks have become 

overfished. In response, management has traditionally addressed overfishing by establishing 

regulations that reduce the directed fishing mortality associated with harvesting. However, 

these practices often do not take into account the mortality associated with fish that are 

incidentally captured and discarded (as bycatch). This discard mortality (DM) can represent a 

potentially large source of removals for species that are particularly susceptible to the 

stressors of capture-and-handling and/or discarded at high rates. It is therefore vital to 

understand overall DM in a fishery and the factors associated with capture-and-handling 
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driving mortality. But this information can be very challenging to collect, with many 

species/fisheries having yet to be addressed. In light of these difficulties, my dissertation 

aimed to develop novel tools and techniques that improve our ability to evaluate and/or 

reduce the impacts associated with fisheries-interactions. In particular, this included (1) the 

development of a technique that addresses capture behavior as an underlying driver of 

mortality, (2) a novel application of electronic tags to better deduce fate in a family of 

frequently discarded fish, and (3) a new tool for forecasting where fisheries-interactions (i.e., 

incidental capture) are most likely to occur in both time and space. The information provided 

by these tools and techniques will help inform stock assessments and bycatch mitigation 

strategies, which in turn will help to promote the sustainability of bycatch species. Moreover, 

two species of elasmobranch [thorny skate (Amblyraja radiata) and oceanic whitetip shark 

(Carcharhinus longimanus)] were used as case study species in this dissertation. Both have 

been heavily overfished, but the impact of capture-and-handling remains poorly understood 

for each species. Thus, my dissertation contributes critical capture-related information for 

thorny skate and oceanic whitetip shark, which could aid in the development of future 

mitigation strategies to promote their recovery. 
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INTRODUCTION 

 

 

Elasmobranchs (sharks, skates, and rays) have functioned in marine ecosystems for at 

least 420 million years, playing an integral role in the trophic ecology and stability of an 

ecosystem (Camhi et al., 2008; Huepel et al., 2014). These fishes are k-selected strategists 

that exhibit late maturity, long lifespans, low fecundity, and extended gestation periods 

(Dulvy et al., 2008). But while these life-history characteristics have contributed to the 

evolutionary success of this group, low reproductive potential and intrinsic rate of population 

growth make elasmobranchs particularly vulnerable to anthropogenic stressors (e.g., climate 

change and fishing pressure; Worm and Branch, 2013). In particular, sharks, skates, and rays 

face fishing pressure from recreational and commercial industries as targeted species and/or 

incidental bycatch. Landings of elasmobranchs are primarily tied to commercial “meat” 

markets or the global shark fin trade (Dent and Clarke, 2015), but more often they are 

discarded due to regulatory measures that prohibit landings or low economic value relative to 

other species (Molina and Cooke, 2012). Collectively, fishing pressures have led to 

overfishing and large-scale population declines for this group of fishes, with nearly one-

quarter of elasmobranch species facing some level of extinction risk (Dulvy et al., 2008;  

Ferretti et al., 2010).
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Management of elasmobranchs and other fish is largely predicated upon an 

identification of all sources of input (e.g., recruitment and immigration) and output (e.g. 

emigration, natural and fishing mortality) influencing stock dynamics (Hoggarth et al., 2006). 

This includes direct fishing mortality associated with landings, but also the mortality of 

discarded fish (Crowder and Murawski, 1998). However, discard mortality (DM) is much 

more challenging to address and is often unknown for many species (Crowder and Murawski, 

1998). This presents a major problem for stock assessors and management bodies because 

DM can potentially represent a large source of removals, particularly if a species is 

frequently discarded and subject to high DM rates (Hoggarth et al., 2006). It is therefore vital 

to gain a better understanding of the mortality of discarded fish and the factors associated 

with capture-and-handling that impact animal health/fate. This information will yield more 

accurate stock assessments and provide management and other end-users with the necessary 

information to develop bycatch mitigation strategies that reduce fishing mortality (Crowder 

and Murawski, 1998; Hall and Mainprize, 2005). 

 The capture-and-handling process is an inherently stressful event that can lead to 

physical trauma and blood chemistry alterations that disrupt homeostasis, inciting a cascade 

of adaptive physiological responses to return an organism back to its original state (Chrousos, 

1998; Wendelaar-Bonga, 1998; Barton, 2002; Davis, 2002; Skomal and Mandelman, 2012). 

However, if physical trauma and/or physiological perturbations are too severe or unresolved, 

organisms can experience longer term health consequences (e.g., impaired growth, 

reproduction, and immune system) or even mortality (Barton, 2002; Skomal and Mandelman, 

2012). The factors associated with capture events that can lead to health consequences or 
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mortality includes fishing conditions and practices and biological characteristics (Davis, 

2002; Broadhurst et al., 2006; Veldhuizen et al., 2018). In particular, extended capture 

duration is often cited with links to increased physical trauma and physiological stress 

because of prolonged bouts of struggling and impaired respiration (i.e., metabolic and 

respiratory acidosis; Wood et al., 1993; Dapp et al., 2016; Ellis et al., 2017). Catch 

composition (e.g., rocks or fish with spines) and larger catch biomasses can also exacerbate 

physical damage and lead to hypoxic conditions in mobile fishing gear (Davis, 2002). In 

addition, extreme temperature gradients (between seawater and air) can incite thermal stress 

due to elevated reaction rates (Gale et al., 2013), while prolonged air exposure could collapse 

gill structures and impede oxygen uptake (Arlinghaus, 2007). Biological characteristics also 

dictate the impact of capture-and-handling on animal health/fate. For instance, smaller 

animals can be more susceptible to physical trauma in mobile gear given their less robust 

morphology (relative to larger conspecifics; Davis, 2002; Ellis et al., 2017).  

The aforementioned capture-related factors were presented in terms of how they 

generally impact fish, but ultimately, impacts can be highly variable between species and 

fisheries (e.g., physiological outcomes and mortality rates; Mandelman and Skomal, 2009; 

Veldhuizen et al., 2018; Musyl and Gilman, 2019). It is speculated that these differences 

attribute to underlying mechanisms that influence how an animal reacts and responds to the 

stressors of capture (e.g., metabolic scope, ventilation strategy, and capture behavior; Skomal 

and Bernal, 2010; Dapp et al., 2016; Gallagher et al., 2017; Bouyoucos et al., 2018). 

However, these mechanisms have received minimal direct research attention and there is 

little to no consensus on the true role of each underlying mechanism.  
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Though our understanding of fisheries impact on elasmobranchs has evolved over the 

years, many data gaps still exist that require additional research efforts. To investigate 

capture-and-handling, researchers can match various tools and techniques (i.e., the 

“toolbox”) to study objectives on a case-by-case basis in order to provide the most relevant 

information for a given species/fishery. This toolbox can be categorized into tools and 

techniques that measure factors associated with capture-and-handling, and those that can 

quantify animal health and mortality (Davis, 2002; Pollock and Pine, 2007). Most fishing 

conditions and practices and biological characteristics are simple to record (e.g., visual 

quantification of catch composition, handling method, weather conditions, and sea state), but 

other factors require additional instrumentation. Hook timers are needed to address capture 

duration (hook-and-line fisheries) and gear-borne temperature loggers are required to 

measure bottom seawater temperature in demersal fisheries. In addition, while maturation 

state is straightforward for male elasmobranchs (i.e., calcified claspers), ultrasonography or 

steroid hormone analyses are often needed to assess maturation/gravidity of females 

(Gelsleichter et al., 2002; Daly et al., 2007). Moreover, some factors remain incredibly 

challenging to evaluate with the tools and techniques available to date.  

To evaluate the impact of capture-and-handling on the immediate health of an animal, 

researchers can choose from various health indicators that focus on either the degree of overt 

physical trauma, activity level, or a combination of the two (i.e., a vitality index; Davis, 

2002; Ellis et al., 2017). In addition, phlebotomy and blood chemistry analyses can be 

incorporated to directly evaluate the degree of physiological stress (Skomal and Mandelman, 

2012; Ellis et al., 2017). Researchers could also test reflex impairment as a proxy for a 
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compromised physiological state (Raby et al., 2012; Davis, 2010), but little work has been 

done with elasmobranchs to validate the connection between reflexes and actual 

physiological status (Davis, 2010).  

Evaluating animal fate can also be accomplished with a variety of tools and 

techniques. The simplest form of fate monitoring relies on confinement periods (e.g., on-

board holding tank or sea cages; Portz et al., 2006) post-capture, with mortalities visually 

identified either at the end of confinement or intervals throughout (Benoît et al., 2012; 

Mandelman et al., 2013; Sulikowski et al., 2020). However, confinement studies can produce 

misleading results if fish exhibit confinement stress and/or shielding from predation 

precludes accounting for a major source of mortality (Davis, 2002; Laptikhovsky, 2004; 

Portz et al., 2006). Tagging studies (conventional or electronic) offer an alternative form of 

monitoring that allows researchers to evaluate fate under more realistic discarding conditions 

where animals can swim freely and interact with their environment (Davis, 2002; Ellis et al., 

2017).  

Conventional tags are fisheries-dependent and reliant upon high recapture and 

reporting rates (Hueter et al., 2006). These tags are a more economical monitoring tool due to 

their low-cost, but several factors that influence reporting rates, such as tag shedding, 

participation of fishers, and emigration, make it very difficult to come to any definitive 

conclusions about fate with this technique (Kohler and Turner, 2001). Mortality is also not 

directly observed with these tags, but rather inferred from reporting rates (Ellis et al., 2017). 

In contrast, electronic tags record movement and provide researchers with a more continuous 

monitoring approach where mortality is directly identified at discrete times (via movement or 
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lack thereof; Davis, 2002; Hammerschlag et al., 2011; Ellis et al., 2017). Pop-up satellite 

archival transmitting (PSAT) tags are a type of electronic tag that has become one of the 

more frequently used tools (e.g., Campana et al., 2015; Sulikowski et al., 2020; Mohan et al., 

2020). These tags record pressure (depth), water temperature, and light-level data over a pre-

determined time-period, upon which they detach from the animal and float to the surface 

where archived data are then transmitted via the Argos satellite array (Hammerschlag et al., 

2011). In addition to the appeal of fisheries-independent data recovery, PSAT tags monitor 

animals with little to no spatial restrictions outside of extreme depths that can damage 

sensors (Hammerschlag et al., 2011). High-cost of PSAT tags does make it logistically 

difficult to collect large sample sizes, but with an appropriate subsample of animals across 

the range capture-and-handling factors, relevant estimates of DM can be generated via these 

tags (Hammerschlag et al., 2011).  

Information provided by these tools and techniques can be incorporated into stock 

assessments and used by fisheries managers and other end-users (e.g., industry stakeholders) 

when developing bycatch mitigation strategies (Benaka et al., 2016). In particular, DM 

estimates benefit stock assessments because they permit a comprehensive approximation of 

fishing mortality that translates into more relevant biological reference points, which are used 

to determine that status of a stock (i.e., overfished/overfishing; Crowder and Murawski, 

1998; Hoggarth et al., 2006; Benaka et al., 2016). This status is then used by fisheries 

managers when determining the level of regulation needed to promote a sustainable stock, 

which will also require knowledge of DM rates and the factors driving mortality. In general, 

input management controls are used to regulate the amount of allowable fishing effort (e.g., 
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days-at-sea or gear-limitations), while output controls are used to control the amount of legal 

catch (e.g., total allowable catch or individual transferable quotas; Crowder and Murawski, 

1998; Hoggarth et al., 2006; Benaka et al., 2016). Best fishing practices and gear-

modifications can also be required to reduce the impact of capture and number of fisheries-

interactions, while maintaining fishing opportunities for the industry (Hoggarth et al., 2006; 

Benaka et al., 2016). In addition, time-area closures can be afforded to defined areas of 

concern (e.g., spawning or nursery grounds or areas with high catch rates) to more directly 

reduce interactions and fishing mortality (Hall and Mainprize, 2005; Broadhurst et al., 2006;  

Benaka et al., 2016). But while many bycatch mitigation strategies are available, it can often 

be difficult for managers and other stakeholders to identify the most practical and effective 

strategies for a given species/fishery, especially when the species being managed are data-

poor and/or interact with multiple fisheries.  

In light of the potential impact of capture-and-handling on animal health/fate and the 

need for capture-related information from a management and mitigation standpoint, the 

primary objective of this dissertation was to contribute new tools and techniques to our 

toolbox for addressing fisheries-interactions. This included a novel application of electronic 

tagging to deduce fate in an elasmobranch family (Chapter I), a tool that can identify 

spatiotemporal bycatch hotspots where fisheries-interactions are most likely to occur 

(Chapter II), and a technique for evaluating capture behavior (Chapter III). These tools and 

techniques complement the pre-existing toolbox and are applicable to a wide range of species 

and fisheries, beyond those described in this dissertation. In addition, two overfished species 

of elasmobranch (thorny skate, Amblyraja radiata; and oceanic whitetip shark, Carcharhinus 
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longimanus) were used as case study species in this dissertation. Both are discarded at high 

rates and it is not clearly understood how capture-and-handling affects the population 

dynamics of these species. Therefore, the secondary objective of this dissertation was to 

provide information for these species that will improve our understanding of their fisheries-

interactions and aid in the development of future bycatch mitigation strategies that will 

promote their recovery. 
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CHAPTER 1 

  

UTILIZATION OF POP-UP SATELLITE ARCHIVAL TRANSMITTING TAGS TO 

EVALUATE THORNY SKATE (AMBLYRAJA RADIATA) DISCARD MORTALITY IN 

THE GULF OF MAINE GROUNDFISHIN BOTTOM TRALWL FISHERY 

 

 

Abstract 

Thorny skate (Amblyraja radiata) remain one of the most overfished species in the 

Gulf of Maine (GOM) despite being designated as a prohibited (zero-possession, mandatory 

release) species by the New England Fishery Management Council in 2003. To better 

understand the extent to which discard mortality (DM) occurring after incidental capture in 

the GOM groundfish bottom trawl fishery may be impeding recovery, 75 individuals (55 – 

94 cm total length, TL) were tagged with pop-up satellite archival transmitting (PSAT) tags 

and monitored for up to 28 days following capture under representative commercial trawl 

fishing practices. Data recovered from 61 PSAT-tagged skate were analyzed with a 

longitudinal survival analysis to estimate DM and identify influential capture-related 

variables. DM rate was found to be a function of TL, with larger skates (> 70 cm; DM = 

16.5%) experiencing lower mortality than smaller conspecifics (55 – 70 cm; DM = 24.5%). 
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From our results, we estimate annual thorny skate DM in the GOM groundfish bottom trawl 

fishery to be 79.2 ± 0.2 mt, which accounts for less than one percent of the existing stock 

biomass in the GOM (8,400 mt). This study confirms that thorny skate are relatively resilient 

to bottom trawl fishing practices in the GOM, and suggests that other sources of mortality 

may be impeding population recovery. 

 

Introduction 

In the U.S. Gulf of Maine (GOM), skate species managed under the Northeast Skate 

Complex Fishery Management Plan (FMP) are both harvested and taken as bycatch by 

fisheries operating in the region. Under the FMP, fishing mortality for seven species is 

managed through a single complex-wide quota on total allowable landings (NEFMC, 2003). 

However, highly restrictive species-specific regulations such as retention limits and complete 

prohibitions (i.e., zero-possession) on commercial landings have been enacted to reduce 

mortality on overfished populations (NEFMC, 2003; Curtis and Sosebee, 2015). While these 

measures may mitigate the impact of direct harvest (Waring, 1984; Hoenig and Gruber, 

1990; Sulikowski et al., 2003), some species still experience high rates of incidental capture 

(as bycatch), and discard mortality (DM) can continue to have significant impacts on skate 

populations due to their life history characteristics (e.g., slow growth, late maturation, and 

low fecundity). In fact, high DM rates may even perpetuate population declines by impeding 

species recovery (Davis, 2002). 

Thorny skate (Amblyraja radiata) are one of the most overfished species in the GOM, 

with National Oceanic and Atmospheric Administration (NOAA) Northeast Fisheries 
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Science Center (NEFSC) bottom trawl survey biomass indices currently near 55 year lows 

(i.e., 0.17 kg/tow, less than 5% of the biomass target; NMFS, 2017). In response to this 

chronically poor stock status, the Northeast Skate Complex FMP prohibited this species in 

2003 to reduce fishing mortality associated with commercial landings. However, thorny skate 

biomass in the GOM has declined further since the prohibition (Sosebee et al., 2016), thereby 

suggesting that other sources of mortality, and/or environmentally-driven distributional shifts 

(e.g., Nye et al., 2009), are impeding stock recovery. For example, DM associated with the 

groundfish bottom trawl fishery, which was recently estimated to account for 72.6% (or 

322.8 metric tons, mt) of total annual thorny skate live-discards in the GOM (Sosebee et al., 

2016), may represent a significant source of mortality. 

DM in the GOM groundfish bottom trawl fishery was previously addressed by 

Mandelman et al. (2013), wherein short-term mortality was found to be 23% for 351 skates 

that were caught under representative trawl conditions and monitored in submerged 

enclosures for 72-hours. However, the authors urged caution when considering the adoption 

of this estimate for stock assessments because of uncertainties associated with the 72-hour 

cross-sectional results, particularly the compromised state (i.e., listless or moribund) of 

surviving skates at the completion of the 72-hour trials, and the higher mortality (54%) 

evident in a subsample (n = 35) of thorny skate that were transported to shore-based tanks 

and monitored for seven days. Long-term DM beyond 72-hours has been reported for several 

other fish species (Kaimmer and Trumble, 1998; Knotek et al., 2018; Schram and Molenaar, 

2018), and shown to extend upwards of 27-days post-capture in a simulated trawl-capture 

with Pacific halibut, Hippoglossus stenolepis (Davis and Olla, 2001). However, the extent to 
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which confinement stress throughout monitoring and/or transport or shielding from post-

release predation, two potential limitations of confinement studies (Portz et al., 2006), 

affected the 23% DM estimate of Mandelman et al. (2013) is unknown. Nonetheless, the 

NEFMC incorporated the 23% DM rate into stock assessments under Framework Adjustment 

2 to the Northeast Skate Complex FMP (NEFMC, 2014). Given the impact of assumed DM 

rates on annual catch limits and quotas set for the Northeast Skate Complex, a further 

investigation of trawl-caught thorny skate DM with monitoring periods exceeding 72-hours 

is warranted to address the aforementioned uncertainties and confirm the accuracy of current 

DM estimates. 

Pop-up satellite archival transmitting (PSAT) tags are powerful fisheries-independent 

tools for monitoring post-release fate over extended durations (Campana et al., 2009). These 

tags can be rapidly applied (externally) to an animal prior to release, and allow the animal to 

swim freely and interact with its environment for a user-defined period prior to reporting 

their archived data via the Argos satellite system. These data can then be used to infer the 

post-release fate of an animal, determine the timing of mortality (if evident), and evaluate the 

effects of the capture and handling process on survival. Although PSAT tags have not 

previously been used to investigate skate DM, they have been used to examine movement 

patterns of several skate species including the common skate (Dipturus batis; Wearmouth 

and Sims, 2009), Arctic skate (Amblyraja hyperborea; Peklova et al., 2014) and big skate 

(Beringraja binoculata; Farrugia et al., 2016) over long-term periods (weeks to months), 

thereby demonstrating their utility for DM estimation. For these reasons, the objective of this 

study was to derive DM estimates for trawl-caught thorny skate over extended monitoring 
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periods via PSAT tags. In addition to estimating DM rates, this study aimed to identify the 

most-influential factors (e.g., fishing conditions and practices, individual biological traits, 

and degree of capture-related physical trauma) that affect thorny skate mortality, which could 

then be incorporated into a best-practice framework to reduce mortality in the GOM 

groundfish bottom trawl fishery. 

 

Methods 

Study site and fishing protocol  

At-sea trials (n = 9 single-day trips) to collect information on thorny skate condition 

and DM rate following capture with typical commercial fishing practices in the GOM 

groundfish bottom trawl fishery were conducted during August and September 2016 (n = 7 

days) and September 2017 (n = 2 days) in the coastal waters off northern Massachusetts (Fig. 

1.1). All trials occurred aboard a mid-sized (~ 13 m) commercial fishing trawl vessel, the F/V 

Mystique Lady (Gloucester, MA, USA), and tows (n = 27) were conducted using a standard 

trawl net (16.51 cm codend mesh; 20.12 m head rope length; 21.95 m footrope length; 8.90 

cm cookie sweep) with 127 cm trawl doors. Fishing was conducted in depths that ranged 

from 55 to 161 m and occurred on predominately soft-bottom substrate in calm seas (< 1 m 

wave height) for durations of 30 – 240 minutes and at speeds of 2 to 4 kts. Bottom seawater 

and air temperatures were measured during all tows and on-deck sampling with HOBO 

temperature loggers (Onset Computer Corp., Bourne, MA, USA) affixed to the head rope of 

the trawl net and to the topside of the vessel, respectively. The temperature logger on the 

topside of the vessel was housed in an RS1 Solar Radiation Shield (Onset Computer Corp.) 
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to more accurately measure on deck air temperatures. From these measurements, the 

temperature gradient evident during each sampling event was calculated as the difference 

between bottom seawater and air temperatures. Temperature gradients during this study 

reflect “worst-case scenario” summer temperature regimes in the GOM (elevated bottom to 

surface seawater gradients and highest air temperatures), which are known to exacerbate 

capture-related stress in congeneric species of skate from this region (e.g., > 9°C temperature 

gradients; Cicia et al., 2012).   

 

Sampling procedure  

Following each tow, the catch was deposited on-deck and the total catch weight (in 

kg) was estimated by the vessel captain. Fishermen then followed standard commercial 

practices in the GOM trawl fishery when culling/sorting catch. This included sorting of the 

catch by species into fish totes (71 cm × 41 cm × 28 cm) either by hand or by inserting a fish 

pick (a hand-held tool with a metal hook or nail for lifting and maneuvering catch) into the 

wing musculature. To examine the effect of air exposure on DM, individuals were sampled 

continuously over a period of ~ 75 minutes from the initial air exposure of the net codend, 

which represents the maximum elapsed on-deck time prior to discard in the fishery.  

For each skate sampled, the sex and total length (TL; cm) were recorded. Maturity 

status was also recorded, with male skates considered mature when claspers were long and 

fully calcified (Ruocco et al., 2006), and female skates recorded as mature based on 

palpitation for developing egg cases or having a distended/vascularized cloaca (i.e., 

suggesting recent parturition; Sosebee, 2005). Each skate was also assigned a nominal injury 
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code based upon the level of overt physical trauma as originally described in Mandelman et 

al. (2013) (Table 1.1; Appendix Fig. A.1). Injury assessments for all skate were conducted by 

a single researcher and therefore were not subject to interpretational bias. Skate were then 

released, with the exception of a subsample described in the following section.  

 

Monitoring the fate of discarded skate  

  To examine the fate of discarded thorny skate, a subset of 75 individuals (55 – 94 cm 

TL) were tagged with PSAT tags (Model: PSATLIFE, Lotek Wireless Inc., St. John’s, 

Newfoundland, Canada). These tags measured pressure (i.e., depth) and ambient water 

temperature at 10-second intervals over 14- or 28-day deployment periods. Following this 

period, the tags were programmed to detach, float to the surface, and transmit the archived 

data compiled into 5-minute bins. Higher resolution data (i.e., 10-second intervals) were only 

accessible in cases where the tag was physically recovered and directly downloaded using the 

“Tag Talk” program (Lotek Wireless Inc.). Tags were affixed near the center of one of the 

skate’s pectoral wings using a method modified from Wearmouth and Sims (2009), wherein 

a monofilament line and two pairs of 1” Petersen discs and baffles were crimped on either 

side of the skate’s wing musculature (dorsal and ventral; Fig. 1.2). To minimize the potential 

impact of sampling and tagging on post-release fate, individual skates were processed as 

quickly as possible (1 – 6 minutes). Prior to at-sea sampling, tag attachment/retention trials 

were performed at the University of New England Marine Science Center (Biddeford, ME 

USA) with captive thorny skate (55 – 65 cm TL) to confirm that our attachment technique 

resulted in no tag shedding and/or tag-induced mortality up to 28 days post-tagging. Tags 
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were not applied to skate < 55 cm TL due to concerns that the PSAT tags would compromise 

the mobility of smaller individuals and therefore potentially result in tag-induced mortality. 

PSAT tags were strategically deployed on individuals across a range of tow and air 

exposure durations, and for each injury code and handling method (i.e., hand sorting versus 

fish pick), in order to assess the impact of several variables experienced during typical 

commercial fishing conditions. Furthermore, PSAT tags (14-day deployment) were also 

deployed on dead skates (n = 2) to establish “negative control” movement signatures, which 

would be used in subsequent analyses to infer mortality events.  

 

Survival analysis  

  We utilized a longitudinal survival analysis to model the probability of survival as a 

function of time (e.g., Cox and Oakes, 1984; Benoît et al., 2012, 2015). In this analysis there 

were four primary objectives. First, PSAT tag depth time-series data were examined to 

determine the fate of our subsampled skates. Second, the fishing conditions and biological 

covariates associated with each subsampled skate were evaluated to identify which covariates 

were best able to predict survival following discard. Third, using this subset of covariates, a 

suite of survival mixture models (SMMs; developed by Benoît et al., 2012, 2015) were fitted 

to explain survival and ultimately provide DM estimates. Finally, best-practice frameworks 

were formulated based upon the subset of covariates to mitigate thorny skate mortality. All 

analyses were performed using R 3.4.5 (R-Core Team, 2017), and when applicable, statistical 

significance was accepted at p < 0.05. 
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Depth-variance survival test  

To determine the fate of individual discarded animals, we first converted pressure 

data collected by the PSAT tags to depth using the package ‘rtide’ (Thorley et al., 2017) and 

removed any tidal-noise associated with the tidal cycle of the area with the ‘oce’ package 

(Kelly and Richards, 2018). Depth time-series for each skate were then subjected to a 

modified depth-variance survival test adapted from Capizzano et al. (2016), with an 

additional clause to ensure the test was not falsely classifying extended periods of on-bottom 

(live) behavior as mortality events (details in Appendix A). If skate survived throughout the 

monitoring period they were treated as right-censored data because their fate is unknown 

following tag detachment (i.e., time of death occurs after the monitoring period). If mortality 

was confirmed (i.e., a censored event), time of death was estimated as the time bin with the 

first non-significant result in the sequence leading up to the end of the trial. One individual 

was recaptured alive ~ eight days after release, but died shortly after being released again. 

Since this mortality event could not be attributed to the original capture event, its time-series 

was truncated to the recapture event and was treated as a right-censored (i.e., alive) 

observation at the point of recapture. 

 

Assessment of fishing conditions and practices, individual biological traits, and injury 

For this step of the analysis we considered all covariates (i.e., fishing conditions and 

practices, individual biological traits, and injury scores) that could influence survivorship of 

trawl-caught thorny skate. Initial examination of correlation between covariates and relevant 

interactions (i.e., TL and catch weight, TL and air exposure, and air temperature and air 
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exposure) using a Pearson correlation revealed that interactions terms were all highly 

collinear with respect to catch weight (r = 0.97) or air exposure (r = 0.97). Therefore, 

interaction terms were not considered in the survival analysis. 

The empirical Kaplan-Meier estimator (Cox and Oakes, 1984), a non-parametric 

analysis that provides an estimate of the survival function by following the proportion of live 

skate throughout the time-at-large and in the absence of censored values, was utilized to 

generate preliminary graphical depictions of the influence of each covariate on survivorship, 

and to provide an empirical estimate of survival that can be used to assess the fit of SMMs 

developed in later steps. 

The multivariate (semi-parametric) survival analysis known as the Cox proportional-

hazards model (CPHM; Cox, 1972; Therneau and Grambsch, 2000) was then used to identify 

which covariates (i.e., tow duration, fishing depth, temperature gradient, catch weight, 

handling method, air duration, TL, sex, maturity, and injury score) predicted the survival of 

discarded thorny skate following the methodologies outlined in Knotek et al. (2018). This 

model is defined as: 

 

 ̂( )    ( )
(       )                                                                                                            (1) 

 

where  ̂( ) is the hazard function at time   (i.e., the risk of incidental morality occurring at 

time  ) determined by a non-parametric baseline hazard function   ( ), a suite of relevant 

covariates   , and a Gaussian random effect    (with tow as the subject) to account for any 

within-tow correlations (Benoît et al., 2010; Knotek et al., 2018). To estimate parameters in 
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this model we used partial maximum likelihood (Cox, 1972; Ripatti and Palmgren, 2000). 

Model building was two-fold: (1) identify whether or not the random effect was appropriate, 

and (2) find the most parsimonious set of covariates to predict survival (details in Appendix 

A; Benoît et al., 2010; Knotek et al., 2018).  

Model building revealed a fixed-effects modeling approach was appropriate (i.e., 

random effect of tow was not significant; p = 0.97) and TL was the only covariate that 

predicted survival. TL was then converted into a categorical predictor (binned every 10 cm) 

to reflect size classes used in NEFSC bottom trawl surveys, and to allow us to identify which 

of the TL-specific DM rates (generated in subsequent steps) best reflected the size-

distribution of thorny skate discards in the GOM. Log-rank tests were then performed to test 

for differences in the underlying survival function between size classes and if the resulting p-

value was not significant (p > 0.05), these classes were combined. This led to the 

consolidation of bins greater than 70 cm TL (
2
: 0.48 to 0.82) and bins less than or equal to 

70 cm TL (
2
 = 0.70). TL was therefore used as a two-level categorical covariate in 

subsequent analyses. 

 

Predicting post-release survival based upon relevant covariates 

To estimate post-release survivorship rates, we chose to use a parametric survival 

analysis modeling approach (i.e., SMMs) developed by Benoît et al. (2012, 2015). This 

approach is favorable due to its ability to explain the survivorship of thorny skate over time 

with longitudinal data, and estimate the time at which survivorship asymptotes (i.e., survival 

rate). The underlying model of the SMMs is defined as: 
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 ̂( )          (   )   (   )                                        (2) 

 

where  ̂( ) is the probability of survival at time  . The probability of a skate being adversely 

affected by capture-and-handling is denoted by   and the survival function for these skate is 

explained by       (   )   , which is assumed to follow a Weibull distribution that includes 

scale and shape parameters,   and  , respectively. The skates not adversely affected by 

capture-and-handling are assumed to have a survival probability of 1, as natural mortality 

was assumed to be negligible during the relatively short-duration of the tag monitoring 

period (14 – 28 days). In Eq. (2) the survival rate is defined as  ̂( )      because as 

t→∞,       (   )   eventually leads to nil survival for affected individuals, leaving only 

the non-affected skate alive. To incorporate the influence of TL on survivorship,   and   

parameters can be manipulated to address the effect of the covariates on the survival rate 

over time and/or the probability of a skate being adversely affected, respectively. This 

approach produces several competing models according to the different assumptions of how 

TL impacts survivorship (Table 1.2). All model variants were fit using maximum likelihood 

methodology (additional details provided in Benoît et al., 2012, 2015) and convergence and 

fit were evaluated by overlaying the 95% confidence bands from Kaplan-Meier estimates 

with the predicted survival functions. Model fits were also compared using Akaike’s 

Information Criterion corrected for small samples sizes (AICc; Burnham and Anderson, 

2002), wherein ΔAICc values (relative to lowest AICc value between models) were used to 

identify the model variant(s) most suited for predicting the survival function (details in 
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Appendix A; Burnham and Anderson, 2002). Based upon a comparison of ΔAICc (Table 1.2) 

there was similar support for several of the competing models and therefore no single-model 

could be considered a best-fit. Therefore, model averaging (of SMMs) based on Akaike 

weights (e.g., Lukacs et al., 2010; Benoît et al., 2010; details in  Appendix A) was used to 

generate a single survival rate for each size class that reflected the suite of model variants 

according to their ΔAICc values (e.g., Knotek et al., 2018).  

 

Estimation of DM on a fishery-scale 

To estimate fishery-wide DM for thorny skate in the GOM groundfish bottom trawl 

fishery, we used a modified modeling approach described by Knotek et al. (2018). Here, 

model averaged survival rates (see above) were converted into DM rates (i.e., 1 – survival 

rate), and then applied to the most recently available estimate of total annual live-discards 

(by weight) in the fishery to derive an estimate of DM (in mt). However, since recent NEFSC 

bottom trawl data suggests that ~ 95% of all thorny skate occupying the GOM are < 74 cm 

(Sosebee et al., 2016), only the DM rate associated with the smaller-size category (55 – 70 

cm TL) was used to estimate DM. Finally, to account for model variant-specific parameter 

uncertainty and variability in fishery-scale estimates of DM, Monte Carlo simulations based 

on bootstrapping (Efron and Tibshirani, 1993; details in Appendix A) were used with this 

approach to derive the final fishery-scale estimate (mean and standard deviation) of DM. 
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Results 

Fieldwork and capture characteristics 

A total of 612 thorny skate (24 – 94 cm TL; 305 male and 307 female) were captured 

and sampled after being handled by hand (n = 323) or with a fish pick (n = 289; Table 1.3). 

The majority of skates were categorized as having minor (i.e., injury code 1; 38.4%) to 

moderate (i.e., injury code 2; 44.0%) overt physical trauma with the fewest observations 

made for severely injured skate (i.e., injury code 3; 17.6%; Table 1.3). Tows that captured 

thorny skate were primarily composed of common commercial groundfish species (e.g., grey 

sole, Glyptocephalus cynoglossus; yellowtail flounder, Pleuronectes ferruginea; winter 

flounder, Pseudopleuronectes americanus; haddock, Melanogrammus aeglefinus; and 

Atlantic cod, Gadus morhua), monkfish (Lophius americanus), spiny dogfish (Squalus 

acanthias), skate (e.g., little skate, Leucoraja erinacea; winter skate, Leucoraja ocellata; and 

barndoor skate, Dipturus laevis), and to a lesser extent, invertebrates (e.g., American lobster, 

Homarus americanus; and rock crab, Cancer borealis). Total estimated catch weight per tow 

ranged from 29 to 907 kg. Bottom seawater and air temperature ranged from 6.3 to 8.3°C and 

16.5 to 26.8°C, respectively, while the temperature gradient between the two locations varied 

from 9.3 to 19.6°C (Table 1.4). 

 

Monitoring the fate of discards and negative controls 

Of the 75 PSAT tags deployed, 59 transmitted Argos data and 35 were physically 

recovered and/or returned and directly downloaded, including two tags that did not transmit. 

In total, we retrieved data from 61 of the 75 PSAT tags (81.3%) via transmission (n = 30) 
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and/or physical recovery and direct download (n = 31). Tags that only provided Argos 

transmissions, including one of the two negative controls (i.e., known dead skate), yielded an 

average of 88.7% (out of 4,032 expected observations) and 72.3% (out of 7,888 expected 

observations) of the time-series data in 5-minute resolution for 14- and 28-day deployment 

periods, respectively. In contrast, physically downloaded tags provided access to the entire 

time series in 10-second resolution for the 14- and 28-day deployment periods (i.e., 120,960 

and 236,640 observations, respectively). 

 

Depth-variance survival test 

The depth-variance survival test identified seven mortality events, with the majority 

(n = 5 individuals) of capture-related DM having occurred within 18-hours of release. 

However, two mortalities did occur at 241 and 263-hours post-release (Fig. 1.3). After 

mortality occurred, PSAT tags generally remained attached to dead-skates for 121 to 489 

hours before dislodging and floating to the surface. Surviving skates (n = 53) occupied 

depths ranging from 22.9 to 184.0 m (mean ± standard deviation: 89.8 ± 19.0 m) and 

displayed vertical movement behavior that can be broadly categorized as periods remaining 

at-depth (maximum span of 102 hours) with brief off-bottom forays (associated with diel-

cycles), and on/off shelf movement (Appendix Fig. A.2). Ultimately, these behaviors made it 

possible to characterize the status of skate (live or dead) throughout a time-series and identify 

mortality events.   
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Discard survival rates and estimates of fishery-scale DM 

Model variants (i.e., SMMs) fit the 95% confidence bands relatively well (i.e., within 

the center of the bands) with the exception of the timeframe preceding the first mortality in 

the smaller-sized category (55 to 70 cm TL). However, model fit largely improved over time 

for this category (Fig. 1.4). Individual model variants generated a range of size-specific DM 

rates according to the various model assumptions (Table 1.2). For example, Weibull 2 

assumed that all skate were adversely affected (nil survival), whereas Mixture 4 allowed the 

survival function and proportion of adversely affected skate to vary by size category (6.7 and 

22.2% mortality for large and smaller-sized skate, respectively; Table 1.2). However, 

because each variant carried different Akaike weights (Table 1.2) with no clear best-fitting 

model (according to Benoît et al., 2012), model averaging was used to generate a single 

overall DM rate for each size category that incorporated model variant DM rates based on 

their relative contribution to the survival function (i.e., Akaike weight). This approach 

estimated that larger-sized skate have a lower DM rate (16.5 ± 0.1 %) than smaller thorny 

skate (24.5 ± 0.1 %; Table 1.2). Based upon the mortality rate for the smaller-sized category 

and average annual estimates of bottom trawl thorny skate live discards (i.e., 322.8 mt in 

2014; Sosebee et al., 2016), annual DM for the GOM groundfish bottom trawl fishery is 

approximately 79.2 ± 0.2 mt.  
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Discussion 

Thorny skate DM in the GOM groundfish bottom trawl fishery 

This study demonstrated the utility of PSAT tags for assessing the long-term 

survivorship of a benthic skate species following discard from one of the GOM’s largest 

commercial fisheries. By modeling PSAT tagging data in concert with detailed observations 

collected during the capture event, a size-dependent DM rate was identified that suggested 

larger thorny skate (DM rate = 16.5%) experience lower mortality than smaller conspecifics 

(DM rate = 24.5%) when caught in bottom otter trawls under “worst-case scenario” summer 

temperature regimes (Cicia et al., 2012). Furthermore, given the average size of thorny skate 

in the GOM, the DM rate estimate for the smaller-sized category (55 – 70 cm TL) was 

determined to best reflect the size-distribution of discards and the overall DM rate in the 

bottom trawl fishery. This overall DM rate is consistent with the previous estimate (23%) 

reported by Mandelman et al. (2013) and is markedly lower than estimates for other trawl-

caught species of skate (Laptikhovsky, 2004; Enever et al., 2009; Mandelman et al., 2013; 

Saygu and Deval, 2014; Tsagarakis et al., 2015), which suggests thorny skate are fairly 

resilient to capture-and-handling in this fishery.  

Our results indicate that the majority of thorny skate DM following capture in bottom 

trawls occurred within 18-hours of discarding; however, longer-term manifestations of DM 

were also evident up to 10 days post-release. Previous studies with trawl-caught skate in the 

Bristol Channel and Gulf of St. Lawrence (Enever et al., 2009; Benoît et al, 2012) found that 

DM occurred entirely within 24-hours post-release when using monitoring periods of up to 

64 and 110 hours, respectively. In contrast, extended monitoring periods (up to 28 days) in 
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this study revealed delayed DM events, which corroborates recent observations of little and 

winter skate captured in the New England scallop dredge fishery (Knotek et al., 2018). Of 

note, most previous studies of skate DM have not been able to quantify delayed DM because 

of abbreviated monitoring periods (≤ 5 days) associated with traditional confinement 

methods (i.e., on-board holding tanks and submerged cages; Kaiser and Spencer, 1995; 

Endicott and Agnew, 2004; Laptikhovsky, 2004; Enever et al., 2009; Benoît et al., 2012; 

Mandelman et al., 2013; Depestele et al., 2014; Saygu and Deval, 2014; Tsagarakis et al., 

2015; Sulikowski et al., 2018), thereby making our PSAT tag-derived results more reliable 

and robust to both short and delayed DM events. Nonetheless, the occurrence of delayed DM 

for thorny skate in this study was relatively low, which confirms that the 54% (7-day) DM 

rates reported by Mandelman et al. (2013) were more likely an artifact of confinement stress 

than a result of capture-and-handling (Portz et al., 2006). 

 

The impact of capture-related and biological factors on DM rates 

All of the mortalities documented in this study can be attributed to the effects of 

capture-and-handling in the GOM groundfish bottom trawl fishery, and are not considered a 

reflection of natural mortality. Natural mortality in these types of studies (e.g., Benoît et al., 

2012; Mandelman et al., 2013; Depestele et al., 2014; Knotek et al., 2018) is considered 

negligible because the monitoring period is relatively short compared to the life-span of 

elasmobranchs (e.g., ~ 16 years for thorny skate in the GOM; Sulikowski et al., 2005), and 

any predation within this timeframe would have likely been due to decreased predator 

avoidance abilities from the effects of the capture event (Raby et al., 2014). Therefore, DM 
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rates for trawl-caught thorny skate were driven by capture-related factors that included the 

size of the animal, the degree of incurred physical trauma, thermal stress and stressors 

associated with air exposure during the capture-and-handling process.  

TL was identified with our modeling approach as the most influential factor affecting 

trawl-caught thorny skate DM. In this size-dependent relationship, smaller thorny skate 

displayed a higher degree of DM than larger conspecifics, which has similarly been reported 

for skate discarded from beam trawls in the North Sea (Depestele et al., 2014), and 

speculated for thornback skate, Raja clavata, and brown skate, Raja miraletus, captured in 

bottom trawls in the eastern Mediterranean (Saygu and Deval, 2014). In addition, size has 

also been shown to influence at-vessel mortality (i.e., mortality occurring at or prior to 

landing) for ray species (family Dasyatidae and Myliobatidae) captured in the prawn trawl 

fishery off of Northern Australia (Stobutzki et al., 2002). In all of these scenarios, increased 

survivorship of larger-sized individuals may be the result of a thicker integument providing 

added protection (Mandelman et al., 2013; Depestele et al., 2014), having a larger body mass 

and core body temperature that is less sensitive to ambient temperature changes (Spigarelli et 

al., 1977), and/or having more energetic reserves to cope and recover from the capture-and-

handling process. This size-dependent relationship may have also been an artifact of tag-

induced mortality wherein individuals in the smaller-sized category (55 – 70 cm TL) were 

more susceptible to the adverse effects associated with carrying PSAT tags. However, there 

was no relationship between smaller size and increased mortality within this size category, 

and no mortality was observed during the initial 28-day retention trials that were conducted 

on skates measuring 55 – 65 cm TL (i.e., the smallest tagged in the field study). As such, 
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there is no evidence to suggest that our results were greatly confounded by tag-induced 

mortality.  

Thorny skate DM rates were also influenced by the degree of physical trauma 

incurred during the capture event in this study. For example, the DM rate (based on live-dead 

proportion) increased by 25% across injury scores (code 1 = 6%; code 2 = 9%; code 3 = 

31%). Injury is a well-documented factor impacting DM in skates (e.g., Depestele et al., 

2014; Knotek et al., 2018; Sulikowski et al., 2018) and has been previously shown to 

influence DM for trawl-caught thorny skate in the Gulf of St. Lawrence (Benoît et al., 2012). 

Furthermore, higher degrees of physical trauma (injury codes 2 and 3) were likely the 

underlying driver for longer-term (delayed) manifestations of thorny skate mortality; wherein 

sublethal injuries (e.g., puncture wounds and lacerations) could have compromised the 

skate’s integument and epidermal mucus layer, and led to osmoregulatory dysfunction, 

secondary infections, and/or susceptibility to disease (Luer, 2014; Cook et al., 2018). 

Though there was evidence that injury influenced DM, higher incidental PSAT tag 

non-reporting rates for skate that incurred more severe physical trauma (injury codes 2 and 3) 

limited our ability to comprehensively evaluate the effect of injury on mortality. For 

example, while all tags reported from animals with no to minor injuries (code 1), non-

reporting rates rose to 14.3% (n = 4) and 34.6% (n = 9) for skate that suffered moderate 

(code 2) to more severe injuries (code 3), respectively. This trend becomes particularly 

relevant to the study if we consider the scenario of non-reporting rates as an artifact of DM 

events; wherein tags were either damaged during a scavenging event or inhibited from 

transmitting following premature detachment from the dead skate (via 
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decomposition/scavenging) and the tag washing ashore and/or being covered by debris 

before the pre-programmed transmission at 14 or 28 days after deployment. Had more tags 

reported for the higher injury codes, it is likely that additional mortality events would have 

been documented and the degree of physical trauma would have had a more pronounced role 

in establishing DM rates. Therefore, the estimated mortality rates for skates with injury codes 

2 and 3 should be considered minimums.   

Despite the effect of TL and injury on thorny skate DM, this species seems capable of 

surviving extended tow durations of up to 3.9 hours, prolonged bouts of air exposure up to 70 

min, and large-scale temperature gradients up to 19.6°C, to which many skate species have 

previously shown susceptibility. For example, mortality increased with tow duration for 

trawl-caught cuckoo skate, Leucoraja naevus, small-eyed skate, Raja microocellata, blonde 

skate, Raja brachyura, and thornback skate in the Bristol Channel (Enever et al., 2009) and 

smooth skate, Malacoraja senta, in the GOM (Mandelman et al., 2013). Though there are 

inherent limitations in evaluating tow duration (i.e., inability to pinpoint the exact time skate 

entered the codend; Neilson et al., 1989), thorny skate are likely more resilient to longer 

periods of compaction in the codend because of their larger size and more rigid morphology 

that provides added physical protection (Sulikowski et al., 2005; Natanson et al., 2007). To 

this end, Mandelman et al. (2013) reported that trawl-caught smooth skate were 10.9% more 

likely to incur severe injuries than thorny skate in the GOM, which is further substantiated by 

the nearly 82% of trawl-caught thorny skate sustaining only minor to moderate injuries in the 

present study. 



 

35 

 

Individual and cumulative effects of prolonged bouts of air exposure and abrupt 

changes in bottom seawater to air temperature did not appear to result in high levels of thorny 

skate DM. Previous studies have demonstrated that both the individual (e.g., 30-minute air 

exposure or 18.1°C temperature gradient; Knotek et al., 2018) and cumulative (e.g., 

interaction of 50-minute air exposure and 9.1°C temperature gradient; Cicia et al., 2012) 

impacts of these factors have resulted in increased DM for little and winter skate. However, 

in this study trawl-caught thorny skate were capable of surviving both the individual and 

cumulative effects of more pronounced exposure events (up to 20 minutes longer) and abrupt 

temperature gradients (up to a 10.5°C larger gradient) than was reported as being lethal in 

little and winter skates (Cicia et al., 2012; Knotek et al., 2018). The reasons for this resiliency 

are unknown, but nonetheless, it suggests that thorny skate may be tolerant of acute hypoxia 

and thermal stress.  

 

Management implications and conclusions 

This study confirms that thorny skate are relatively resilient to bottom trawl fishing 

practices in the GOM, with annual DM accounting for less than one percent of the existing 

stock biomass in the region (Sosebee et al., 2016; NMFS, 2017). This suggests that factors 

other than DM (e.g., environmentally-driven change; Di Santo, 2015) may be contributing to 

the impaired recovery of this species that has been evident in the 15 years since its 

prohibition. However, given that thorny skate biomass is currently at only 2.3% of its highest 

historical level (i.e., 364 million mt in 1966; Sosebee et al., 2016) the population is likely 

highly sensitive to even small-scale sources of mortality, such as DM.  Furthermore, the 
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impact of DM on thorny skate population recovery is further elevated if extensive fishing 

effort occurs within areas of high thorny skate biomass (Knotek et al., in prep.). Therefore, 

best-practices aimed at reducing mortality in this fishery should still be taken into 

consideration in fisheries management, especially when providing collateral benefits to other 

non-target species/size-classes. This could include best-practice handling methods such as 

prioritizing the immediate release of skates to reduce time on-deck and air exposure and 

encouraging fishermen to avoid picking skate in areas of vital organs (i.e., cranial, 

pericardial, and abdominal cavities). Other factors to consider include mitigation measures 

that address animal size; however, traditional best-practices such as size limitations are not 

applicable for this species given its prohibited status. Bycatch avoidance strategies are 

therefore a likely more appropriate option, particularly the avoidance of areas where smaller-

sized skate are found in abundance. Lastly, given the gear-specific nature of DM, future 

research efforts should be directed towards evaluating mortality in the other major gear-types 

responsible for thorny skate discarding, including scallop dredge, sink gillnet, and bottom 

longline gears. 
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Table 1.1. Injury code classification. Individual classes based on overt physical trauma 

adapted from Mandelman et al. (2013) that were used to evaluate the condition of trawl-

caught thorny skate. All skates were evaluated by a single researcher to avoid any 

subjectivity in scoring.  

 

Code Description 

1 
None to minor physical trauma (< 10 mm lacerations, no hemorrhaging or 

internal bleeding) and normal coloration 

2 

Moderate physical trauma (11-20 mm lacerations, slight to moderate 

hemorrhaging or internal bleeding) and may or may not show signs of 

discoloration 

3 
Severe physical trauma (> 20 mm lacerations, extensive hemorrhaging or 

internal bleeding) and body discoloration 
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Table 1.2. Survival mixture model results. Model variants for survival mixture models 

(SMMs) modeled thorny skate survival as a function of total length (TL) that was treated as a 

two-level categorical covariate. TL’s effect on survivorship was modeled under different 

assumptions of model parameters α and π, which were treated either as fixed (equal to 1), 

constant (estimated) or as a function of TL categories, f(size). Model variant fit is represented 

by the change in Akaike’s Information Criterion corrected for small sample sizes (ΔAICc) 

relative to the lowest AICc value (indicated with a dash “-”). Model averaged discard 

mortality rates (in %; derived from survival rates generated by SMMs) are presented as the 

mean [standard error] from Monte Carlo simulations (n = 5,000) with parametric 

bootstrapping to simulate model uncertainty. Further description of model variant 

interpretation is provided in table footnotes. 

 

Model variant  Parameters  Model fitting  Discard mortality rates 

  α π  ΔAICc  55 - 70 cm TL > 70 cm TL 

Weibull 2
a 

  (    ) 1  5.195  100 100 

Mixture 2
b 

  (    ) Constant  -  21.63 [0.11] 21.63 [0.11] 

Mixture 3
c 

 Constant  (    )  2.540  21.98 [0.11] 5.13 [0.08] 

Mixture 4
d 

  (    )  (    )  0.370  22.16 [0.11] 6.67 [0.13] 

 Model average
 24.53 [0.06] 16.50 [0.07] 

a 
Common survival function for each total length category 

b 
Common survival function within each total length category for a fixed proportion of 

affected individuals 
c 
Common survival function for affected individuals, with the proportion affected dependent 

on total length category 
d 

Common survival function within each total length category, where the proportion of 

affected individuals also depends on total length category 
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Table 1.3. Thorny skate sample sizes. Number of trawl-caught thorny skate sampled as 

either observational samples or tagged with pop-up satellite archival transmitting (PSAT) 

tags broken down for each category of handling method, sex, and injury code. Negative 

control PSAT-tagged skate (n = 2) are not included in this table. 

 

 Handling method  Sex  Injury code 

Sample Hand Fish pick  Male Female  Code 1 Code 2 Code 3 

Observation 323 289  305 307  235 269 108 

PSAT 39 34  40 33  19 28 26 
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Table 1.4. Fishing conditions, practices, and biological characteristics. Mean [minimum, 

maximum] values are provided for thorny skate released as either observational samples or 

with pop-off satellite archival tags (PSAT).  

 

Variable Observational PSAT 

Tow duration (min) 141  [37, 236] 137  [40, 236] 

Depth (m) 101  [55, 161] 99  [75, 161] 

Temperature (°C)     

Bottom seawater 7.2  [6.3, 8.3] 7.1  [6.4, 8.3] 

Air (on-deck) 20.8  [16.5, 26.8] 19.6  [16.5, 26.9] 

Gradient 13.6  [9.3, 19.6] 12.5  [9.9, 19.6] 

Catch weight (kg) 354  [29, 907] 468  [29, 907] 

Air exposure (min) 30.7  [3.7, 76.7] 30.2  [5.8, 69.5] 

Total length (cm) 46.9  [24.0, 94.0] 70.6  [55.5, 94.0] 
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Figure 1.1. Tow locations. Individual locations (n = 27; depicted as light green points) 
are shown from the fieldwork conducted in August and September (2016-2017) aboard 
the F/V Mystique Lady in the Gulf of Maine. 
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Figure 1.2. Pop-up satellite archival transmitting tag attachment method. Tags 
(Lotek LIFE LAT3500) were attached using monofilament line and two pairs of 1” 
Petersen discs and baffles secured on either side of the skate (dorsal and ventral). 
Image in the lower-left corner displays the Petersen disc/baffle/crimp pair on the 
ventral side of the skate. Image on the top-left corner displays the Floy® dart tag that 
was inserted at the base of the tail for all skates ≥ 30 cm total length.   
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Figure 1.3. Depth time-series of two mortality events. Depth time-series (black line) 
were tide-adjusted and obtained from pop-up satellite archival transmitting tags (10-
second resolution). Mortalities were either immediate (top panel) or delayed (~ 10 
days; bottom panel). Transmission characteristics are provided in the upper left 
corners of the figures. Time of death derived from the depth-variance survival test is 
indicated with a red dot/circle and annotated with text. Time of tag detachment (i.e., 
pop-up) is shown with a blue dot/circle respectively. 
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Figure 1.4. Probability of survival over time for thorny skate with respect to size-
category. Size-categories are shown in varying colors for each model variant (indicated 
in the bottom-left corner of each panel). Dashed lines and shaded areas represent 
Kaplan-Meier estimates and 95% confidence bands up until the last observation for 
each size-category. Censored observations are indicated with “+” along the Kaplan-
Meier estimate (i.e., dashed line). Solid lines show the model variant prediction. 
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CHAPTER 2 

 

A SPATIOTEMPORAL BYCATCH “HOTSPOT” AVOIDANCE TOOL AND ITS 

APPLICATION TO THORNY SKATE, AMBLYRAJA RADIATA, IN THE U.S. 

NORTHWEST ATLANTIC OCEAN 

 

 

Abstract 

Fishing mortality associated with incidentally-captured and discarded fish can have 

population-level impacts that require attention from managers and members of the fishing 

industry. Attention can include avoiding areas where capture is most likely to occur (i.e., 

hotspots) as a direct mechanism for mitigating fishing mortality. Here, we developed a 

spatiotemporal bycatch avoidance tool that utilized fishing effort and species 

distribution/abundance data to provide a comprehensive assessment of hotspots throughout a 

fishery. Key components of the tool included (1) an adaptable framework to incorporate 

various sources of distribution or abundance data, (2) the estimation of fishery-interaction 

potential (FIP) based on the degree of overlap between fishing effort and species abundance, 

(3) the use of spatial statistics to identify areas of highest FIP as hotspots, and (4) the 

flexibility to further refine hotspots to account for animals that are particularly susceptible to 
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the stressors of capture in a given fishery. To demonstrate our method, multiple forms of data 

on fishing effort and species distribution were used to identify spatiotemporal bycatch 

hotspots for thorny skate, Amblyraja radiata, in three fisheries in the U.S. Northwest Atlantic 

Ocean. Reported size-specific discard mortality was also integrated to illustrate how hotspots 

can be refined with external information. Hotspots identified by this tool can assist with the 

development of bycatch reduction/mitigation measures.  

 

Introduction 

Fish have been an important food resource for humans throughout history (Bardey, 

2019), but with increasing demand (FAO, 2018), many fish stocks have become overfished 

(Hall and Mainprize, 2005). Fisheries management has traditionally addressed overfishing by 

establishing regulations to reduce the directed fishing mortality associated with harvesting 

(Ward-Paige et al., 2012). However, such measures often do not mitigate fishing mortality of 

non-target species that are captured incidentally and discarded (as bycatch) due to regulatory 

measures or economic incentives (e.g., catch quotas or high-grading; Alverson et al., 1994). 

In many instances, incidental mortality can have a large impact on bycatch species, 

particularly those that have high discard rates and/or are susceptible to the stressors of 

capture (reviewed by Ellis et al., 2017; Veldhuizen et al., 2018), and impede the recovery of 

overfished stocks. Because of these negative impacts, additional management measures 

focused on reducing fisheries-interactions with bycatch species are often warranted to 

comprehensively mitigate the various sources of fishing mortality that can influence a 

population or stock.  
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There are several strategies managers can use to reduce fisheries-interactions with 

bycatch. For example, output controls (e.g., annual catch limits) can be set with 

accountability measures that restrict fishing effort after a certain of level of bycatch is 

exceeded (e.g., windowpane flounder, Scophthalmus aquosus, in the Atlantic Sea Scallop 

fishery; 50 C.F.R. §648.64). Gear-modifications can also be required to improve selectivity 

towards target species (e.g., square mesh panels and sorting grids with trawl gear; Beutel et 

al., 2016; Lomeli et al., 2017). Or, fisheries-interactions can be reduced or avoided altogether 

with spatiotemporal management measures that regulate fishing in defined areas. 

In particular, avoiding areas with high fisheries-interactions (i.e., bycatch hotspots) 

has continued to gain traction with researchers, management bodies, and members of the 

fishing industry because it provides a clear and direct mechanism for reducing incidental 

mortality while maintaining fishing opportunity in other areas where bycatch is less of a 

concern. Hotspots can be identified in near real-time via communication with fishers (e.g., 50 

C.F.R. §635.21; Bethoney et al., 2017), or, forecasted off past spatiotemporal trends in 

fishing effort and/or species abundance (e.g., Cortes and Waessel, 2017; Hurley et al., 2018). 

Real-time hotspots have been used to effectively mitigate bycatch interactions (Bethoney et 

al., 2017), but tend to only perform well in restricted access fisheries with complete industry 

support and engagement (Little et al., 2014). Alternatively, forecasted hotspots can be used to 

proactively establish avoidance measures in instances where real-time communication would 

be logistically challenging, such as in larger, open access fisheries (Little et al., 2014). 

However, in order for forecasted hotspots to be effective, multiple sources of data are needed 
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to assess overlap in fishing effort and species abundance and comprehensively characterize 

hotspots throughout the spatial and temporal footprint of a fishery.  

  The objective of this study was to develop a spatiotemporal bycatch avoidance tool to 

identify practical hotspots on a case-by-case basis using the most relevant species abundance 

data and fishing effort within a region. To build and demonstrate the functionality of our tool, 

we used thorny skate, Amblyraja radiata, as our case study species. Thorny skate are 

overfished (NMFS, 2017) in the U.S. Northwest Atlantic Ocean (NWAO) and highly-

susceptible to capture by demersal fishing gear (e.g., bottom otter trawl, sink gillnet, and 

scallop dredge; Sosebee et al., 2016). The New England Fishery Management Council 

(NEFMC) has prohibited their retention (i.e. mandated discard) for the past 17 years to 

reduce fishing mortality and promote stock recovery (NEFMC, 2003). However, the stock 

remains at only 4.3% of its target biomass and there is limited evidence of it rebuilding under 

the current prohibited measures (NEFMC, 2020). Therefore, our secondary objective was to 

investigate how spatiotemporal bycatch avoidance strategies may be used to complement 

existing measures and further reduce incidental mortality for this species in the U.S. NWAO. 

 

Methods 

The function of our spatiotemporal bycatch avoidance tool is to compare the 

distributions of fishing effort and species abundance within a region and determine areas of 

overlap where incidental capture would be most likely to occur (i.e., “hotspots”). To describe 

the analytics of this tool and demonstrate its implementation, we focused on identifying areas 

where thorny skate overlapped with the Northeast multispecies (NMS), monkfish (MNK), 
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and Atlantic sea scallop (SES) fisheries, which account for nearly 99% of annual thorny 

skate discards in the U.S. NWAO (Sosebee et al., 2016). Each fishery was analyzed 

separately to provide hotspots specific to each. The avoidance tool itself follows a sequence 

of steps that generally involved (1) joining fishing effort with species abundance data on a 

fixed-resolution grid, (2) evaluating cells where data overlap as fishery-interaction potential 

(FIP), and (3) identifying cells where FIP was the highest, as hotspots, in both space and time 

(Fig. 2.1). All analyses were performed using ArcGIS 10.7.1 (ESRI, 2019). 

 

Data compilation 

Commercial fishing effort 

NOAA Fisheries Vessel Monitoring System (VMS) reports were used to quantify the 

distribution of commercial fishing effort for NMS, MNK, and SES fisheries. Fishing vessels 

operating in these industries are required to report once (i.e., NMS and MNK) or twice (i.e., 

SES) per hour when fishing seaward of the VMS Demarcation Line (50 CFR § 648.10). Each 

report consists of a Declaration Code that provides information about the vessel’s trip (e.g., 

the fishery plan they are operating under), the vessel speed (in knots, kts), geographic 

coordinates, and date/time of the report. The VMS reports acquired spanned from 2014 to 

2016 (NMS = 4,037,199; MNK = 525,008; SES = 12,712,041 reports) and did not include 

gear-type or permit category information. Reports were pooled across years and aggregated 

into three month bins beginning at the start of each fishery’s fishing year to incorporate inter- 

and intra-annual changes to regulations (e.g., Gulf of Maine cod protection closures in the 

NMS fishery) and target species distributions, both of which dictate fishing effort. In the 
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subsequent analyses, hotspots were identified for four, three-month periods that reflect 

interactions in each fishery.  

Because VMS reports do not specify vessel activity (e.g., on-anchor, fishing, or 

transitting), additional steps were needed to identify fishing effort. First, VMS reports were 

referenced to fishery-specific speed thresholds (Table 2.1) associated with relevant gear-

types used in the fishery (Davis et al., 2015; Palmer, 2017). Because reports did not specify 

gear-type, lower and upper speed thresholds reflected all potential gear (Table 2.1). If the 

reported vessel speed was below or above the fishery threshold, the report was classified as 

on-anchor or transit, respectively. Location-based criteria were then used to identify 

instances when the vessel may have been transitting at reduced speeds (within the threshold), 

but was not engaged in fishing activities. Reports were reclassified as transit if they fell 

within three nautical miles of a major port (O’Shea et al., 2006) or in areas where fishing was 

prohibited throughout the timeframe of the study (e.g., Western Gulf of Maine Groundfish 

Closure). Without information on gear-type and/or permit category, we could not address 

areas where fishing was more-selectively prohibited.  

Reports were also reclassified if located within “transit corridors” where transitting 

was the clear mode of activity and fishing was unlikely (i.e., between ports and/or fishing 

grounds; Watson and Haynie, 2016). However, additional steps were required to identify the 

footprint of fishery-specific transit corridors. Identifying these areas began with joining 

fishing effort and transit activity observations on a fixed 5 x 5 km grid. In each cell, activity 

overlap was calculated as the product of the total number of both activities (i.e., transit vs. 

fishing activity) within the cell’s extent. The Hot Spot analysis tool (Getis Ord    statistic; 
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further explained in a later section; Getis and Ord, 1992) was then used to identify and 

remove cells where significant overlap occurred between activities, such as the fishing 

grounds of Massachusetts Bay. Even if transitting occurred more frequently in these cells, 

they were not identified as corridors because of the significant overlap with fishing effort that 

suggested both activities existed. In the remaining cells where overlap was not a concern, 

total transit activity was evaluated (with the Getis Ord    statistic) to identify areas where 

transitting most frequently occurred (i.e., transit corridors), and any fishing effort 

observations within these cells were reclassified as transit at lower speeds.  

 

Species distribution and relative abundance 

To quantify the distribution and relative abundance of thorny skate throughout the 

study region, NOAA Northeast Fisheries Science Center bottom trawl (BTS) and bottom 

longline (LLS) survey data were compiled. The geographic extent of surveys overlapped in 

the Gulf of Maine (GOM; McElroy et al., 2019); however, BTS data had a larger extent that 

ranged from Cape Hatteras to the Canadian border (Politis et al., 2014; Fig. 2.2). Detailed 

descriptions of survey design and protocol can be found in Politis et al. (2014; BTS) and 

McElroy et al. (2019; LLS). Surveys provided the number and size (total length, TL) of 

thorny skate sampled at each station and a pair of geographic coordinates associated with 

either the deployment/haul-back of trawl gear (BTS), or terminal positions of a longline set 

(LLS). Midpoints were calculated between paired coordinates as the representative location 

of each station. Both surveys also provided a measure of effort, which included the minimum 

straight line distance for BTS (in km) or soak time (in hours) for LLS.  
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BTS and LLS data were acquired from 2009 to 2015 (n = 4,731 trawls) and 2014 to 

2017 (n = 449 longline sets), respectively. Data were then pooled across years within each 

survey to achieve a more complete spatiotemporal representation of thorny skate throughout 

their U.S. geographic range. This approach was supported by the limited (< ~50 km) 

horizontal movement of thorny skate, both in the short- (monthly) and long-term (annual), 

and the lack of extensive seasonal movements in the GOM (Kneebone et al., 2020). Due to 

inherent differences in gear selectivity and catchability in surveys (e.g., less complex, softer 

bottom habitats, such as sand and mud, are sampled effectively by BTS gear, whereas LLS 

gear is more suited for complex, rock-bottom habitats; McElroy et al., 2019), data could not 

be combined into a single index of relative abundance over all substrates on which thorny 

skate occur. Therefore, BTS and LLS data were used separately to identify two sets of 

hotspots in each fishery/period that would reflect the distribution/abundance of thorny skate 

from the respective survey.  

 

Calculating fishery-interaction potential (FIP) 

FIP was estimated as the product of thorny skate per-unit effort (TPUE) and overall 

fishing activity (OFE). This value represented the relative likelihood of thorny skate 

interacting with a fishery inside the extent of a cell, with higher FIP values (FIP  1) 

representing an increased interaction potential. Prior to calculating FIP, fishing effort and 

thorny skate relative abundance were initially joined onto a fixed-resolution grid (10 x 10 km 

cells) that extended from North Carolina to the Canadian border (bounded by the U.S. 

Economic Exclusive Zone) to cover for the purported distribution of thorny skate (Fig. 2.2; 
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Sosebee et al., 2016). Because we were only concerned with areas where interaction potential 

existed, the grid was then refined to only include cells that contained fishing effort and 

thorny skate in survey data. TPUE was then calculated for each cell as the total number of 

skate divided by the total amount of sampling effort, while OFE was quantified as the total 

number of fishing effort observations. Both metrics were then normalized to avoid biasing 

FIP towards larger OFE values, which would have had a greater influence on our estimate of 

interaction potential relative to TPUE, using the following equation: 

 

   
     

         

           
                                                                                                             (1) 

 

where    
     is the normalized value of   (i.e. TPUE or OFE) from 0 to 1 of the  th 

observation that was calculated using the minimum and maximum values of the entire   

dataset. Normalized TPUE and OFE were then used to calculate FIP.  

 

Hotspot analysis  

To identify cells where thorny skate would be expected to have the highest risk of 

fishery-specific interaction, FIP was evaluated using with the Hot Spot Analysis tool (Spatial 

Statistics, ArcGIS 10.7.1), which calculates the Getis-Ord    statistic for each cell (Getis and 

Ord, 1992). This calculation proportionally compares the FIP of a given cell, within the 

context of its neighborhood (i.e., all cells that fall within a user-defined distance band), to the 

global sum of FIP for the respective period. The     statistic is calculated as: 
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where    is the FIP value for grid cell  ,      is the spatial weight between grid cells   and  ,   

is the total number of grid cells, and   ̅ and   are the mean and standard deviation of all FIP 

values within the grid, respectively. The resulting      statistic is a z-score (standard 

deviation) that is based on the Randomization Null Hypothesis computation. Z-scores were 

then converted into p-values using a one-tailed test to identify statistically significant areas of 

FIP at varying α-levels (0.01, 0.05, and 0.1). Hotspots were defined as cells with high z-

scores and significant p-values and were displayed in figures at the highest confidence level 

they were detected (i.e., α-level = confidence level; 0.01 = 99%, 0.05 = 95%, 0.1 = 90%). For 

example, hotspots detected at all α-levels were assigned a 99% confidence level when 

displayed. 

In calculating the     statistic, the spatial extent of the neighborhood should bear 

relevance to the context of the data (Getis and Ord 1992), which here should represent the 

potential interaction area for a single fishing event (e.g., distance trawled or length of gillnet). 

Therefore we chose to use neighborhood distance bands that reflected maximum distances 

covered by the relevant gear-types used in each respective fishery. In NMS and MNK 

fisheries, where bottom otter trawls and sink gillnets (primarily MNK) are used, the distance 

was set based on a single four-hour trawl at four kts (maximum duration and speed; 29.6 km; 

Palmer, 2017). This distance subsumed the smaller footprint of gillnet gear, which has 
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regulatory constraints on the number of nets that can be fished at once [i.e., maximum of 160 

nets (91.4 m each); 50 § 648.92]. In the SES fishery, the distance band reflected the primary 

gear-type, a scallop dredge, towed for a maximum of 90 minutes at six kts (16.7 km; Palmer, 

2017; Knotek et al., 2018).  

Lastly, total hotspot area (in km
2
) at the each confidence level was calculated within 

each period/fishery to qualitatively compare the risk of fisheries-interaction both within and 

between fisheries. If a hotspot transected areas where fishing was prohibited (e.g., Cashes 

Ledge Closure Area), that portion of the grid cell was not included in the total area.  

 

Informed bycatch hotspot analysis 

Hotspots identified by this tool can also be refined to account for relevant information 

about bycatch, such as considerations towards animals that are more susceptible to the 

stressors of capture. To illustrate this functionality, thorny skate distribution/abundance data 

were modified to reflect a defined size range (55 – 70 cm TL) that Knotek et al. (2019) 

identified as has having higher discard mortality rates than larger conspecifics in the NMS 

fishery (bottom otter-trawl). Note that size resolution in BTS data (10 cm bins) required 

slightly smaller animals to also be included (i.e., 51 – 54 cm TL). These data were then used 

in another iteration of the tool to calculate FIP and identify hotspots solely within the NMS 

fishery. The resulting hotspots therefore reflected areas where the most susceptible-sized 

thorny skate (Knotek et al., 2019) were most likely to interact with this fishery.  
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Results 

Spatiotemporal bycatch avoidance tool 

Fishing effort was identified in 21.7 (NMS), 15.7 (MNK), and 16.9% (SES) of the 

original VMS reports. Incorporating BTS and LLS surveys increased the spatial extent of our 

evaluation to 175,104 km
2
 (1,764 cells), including 14,596 km

2
 (147 cells) where surveys 

coincided and 154,937 km
2 

(1,560 cells) and 5,570 km
2
 (57 cells) that were covered solely by 

the BTS or LLS, respectively (Fig. 2.2). FIP was calculated for a total of 2,722 cells [NMS = 

1,099; NMS (size-specific) = 652; MNK = 209; SES = 762; Table 2.2]. Of these, 127 

hotspots, 52 identified from LLS and 75 from BTS data (9 concurrent hotspots), were 

identified at the 90, 95, and 99% confidence levels (Table 2.2). 

 

Thorny skate hotspots  

In the NMS fishery, the most hotspots were identified between the months of May 

and July (hotspot area = 1,427 km
2
) and least from February to April (hotspot area = 848 

km
2
; Table 2.2). The location of hotspots varied between period and survey; however, 

consistently occurred within Massachusetts Bay and off of the Southwest edge of the 

Western Gulf of Maine Closure Area (Fig. 2.3). Hotspots associated with LLS data were also 

consistently identified throughout the year off the Southeast edge of the Cashes Ledge 

Closure Area, whereas hotspots derived with BTS were clustered off Cape Cod between the 

months of November and January (Fig. 2.3). Informed NMS hotspots for thorny skate from 

51 to 70 cm TL had a more concentrated spatial extent than what was identified for thorny 

skate of all sizes (i.e., 21.2% reduction in total hotspot area throughout the year; Table 2.2). 
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However, hotspots displayed similar spatiotemporal trends, with an additional hotspot 

revealed further offshore on Georges Bank between February and April (Fig. 2.4). 

The MNK fishery had the fewest number of hotspots throughout the year (hotspot 

area = 100 to 341 km
2
; Fig. 2.3), relative to NMS and SES, and data from both surveys 

pointed to Platts Bank and the Southeast edge of the Cashes Ledge Closure Area as being the 

locations with the most potential for interaction (Fig. 2.3). The LLS data also suggested that 

Southern Jeffrey’s Ledge may present a risk to thorny skate interacting with this fishery 

throughout most of the year (Fig. 2.5).   

The highest number of hotspots in the SES fishery was identified between the period 

of March to May (hotspot area = 703 km
2
) and December to February (hotspot area = 770 

km
2
), with the fewest hotspots from June to August (hotspot area = 281 km

2
; Table 2.2). 

Hotspots were regularly identified throughout the year off the Southeast edge of the Western 

Gulf of Maine Closure Area (Fig. 2.6). Hotspots associated with BTS data also occurred off 

Cape Cod throughout the year, with the winter months of December to February presenting 

the greatest interaction risk and occasional hotspots in the Great South Channel (Fig. 2.6).   

 

Discussion 

The spatiotemporal bycatch avoidance tool described uses overlap between fishing 

effort and species abundance to estimate the relative likelihood of interaction and identifies 

hotspots where interaction potential is the highest in both space and time. This method also 

allows users to choose input data that best-reflects the focal fishery and species, with 

adjustable parameters to control the spatiotemporal resolution of the analysis. The outputs of 
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this tool can be used to evaluate bycatch risk of a species (or group of species) in multiple 

fisheries and used to develop practical bycatch avoidance strategies for reducing fisheries-

interactions and incidental mortality in a given fishery or region. Identified hotspots can be 

considered by fishery managers when developing bycatch mitigation strategies tailored at 

rebuilding the severely depleted thorny skate population in the U.S. NWAO. 

 

Bycatch avoidance tool advantages, successes, and technical considerations 

The easily adjustable framework of this tool allows users to modify the analysis to 

meet the specific needs of a species and/or fishery. Of potentially the greatest utility is the 

ability to specify the spatiotemporal resolution of hotspots to best describe the resolution of 

the (abundance) data and the nature of a fishery and its regulations. For example, in our case 

study we chose to generate thorny skate hotspots using three-month periods to incorporate 

seasonal shifts in fishing effort and changes to regulations that would produce the most 

applicable results for fishery managers in New England. However, temporal resolution could 

be easily increased to a month-to-month basis to cater towards more mobile species that 

display more rapid changes to their distribution (e.g., spiny dogfish, Squalus acanthias; 

Sulikowski et al., 2010). Alternatively, temporal resolution could be adjusted to reflect 

specific changes in regulations that prohibit fishing effort and alter FIP (e.g., Sea Scallop 

Rotational Areas). In addition, while 10 x 10 km grid cells were appropriate for capturing 

small-scale seasonal horizontal movements of thorny skate (Kneebone et al., 2020), increased 

spatial resolution would benefit species with high site-fidelity to complex habitat (e.g., cusk 

or wolfish, Anarhichas lupus; Davies and Jonsen, 2011, Simpson et al., 2015). Conversely, a 
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coarser resolution would be suitable for species exhibiting more pronounced movement 

behavior (e.g., spiny dogfish; Sulikowski et al., 2010).  

Nested into the tool is also a simple, step-wise method for differentiating fishing and 

non-fishing activity in NOAA Fisheries VMS data. Previous studies have identified fishing 

effort in VMS data using fishery-specific speed-based thresholds (Lee et al., 2010; Gerritsen 

and Lordan, 2011) and sophisticated statistical modeling that incorporates information not 

available in U.S. VMS data (e.g., vessel heading; Bez et al., 2001; Guillot et al., 2017). The 

sole use of speed thresholds likely resulted in the overestimation of fishing effort due to 

scenarios of reduced transitting speeds by vessels to, among other reasons, avoid pot buoys 

and/or other boats while transiting near-shore and in/out of ports (Mills et al., 2007). 

Therefore, to minimize the risk of falsely classifying VMS reports and consequently bias in 

FIP, we chose to integrate our fishery-specific fishing speed thresholds (Davies et al., 2015; 

Palmer, 2017) with location-based criteria that focused on observations associated with areas 

of reduced transitting speeds. Location-based criteria included port-distance and prohibited 

area restrictions, as well as an overlay approach that reclassified fishing effort as transitting 

when located within transit corridors. Ultimately, we believe our integrated approach will 

provide users with a more realistic depiction of fishing effort based on VMS data.  

Hotspots are also provided at varying levels of confidence (i.e., 90, 95 and 99%) to 

allow managers and other end-users the flexibility to select the level of confidence that 

matches the management or conservation need. The 90% confidence level is the most 

conservative approach for identifying hotspots and results in the largest area for mitigation 

consideration (Table 2.2), whereas the 99% confidence level is a more focused approach 
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where hotspots are only identified in areas with highest FIP. Bycatch mitigation measures 

afforded under the conservative approach (90% confidence level) provide the most 

comprehensive strategy for addressing fisheries-interactions and overall fishing mortality, 

which may be required for overfished species that have heightened management concerns 

(e.g., thorny skate or Atlantic cod, Gadus morhua; NMFS 2017; NEFSC 2017), high discard 

rates, moderate-to-high discard mortality, and/or limited mechanisms for reducing the 

adverse impacts of incidental capture-and-handling. Taking a conservative approach may 

also be warranted for ecologically important areas where aggregations of key life-history 

stages are vulnerable to fishing effort, such as nursery grounds or migration pathways (Dunn 

et al., 2011; Suuronen and Gilman, 2019). In contrast, more resilient species that are less of a 

management concern might only require mitigation measures focused on areas with the 

highest likelihood of fisheries-interactions (99% confidence level). Hotspots identified at 

varying confidence levels can also be addressed in concert with each other, wherein 

regulations become more stringent as the likelihood of fisheries-interaction increases. For 

example, managers could prohibit fishing in hotspots detected at the 99% confidence level, 

and require best fishing practices and/or gear-modifications in the remaining hotspots to 

promote survivability and lower interaction rates (Beutel et al., 2016; Lomeli et al., 2017; 

reviewed by Cook et al., 2019).  

This tool can also be informed by other capture-related information (e.g., factors 

driving discard mortality rates) to further increase the potential impact of avoiding hotspots. 

In the NMS fishery, hotspots were isolated for thorny skate within a given size range shown 

to be more susceptible to the impacts of capture (Knotek et al., 2019). Therefore, avoiding 
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these particular locations represents a targeted means for reducing incidental fishing 

mortality for this species. As such, we strongly suggest that relevant biological factors 

driving discard mortality (e.g., fish size, sex, and life-stage) are taken into consideration 

when addressing prohibited bycatch species. For example, fish size has been shown to dictate 

the impacts of capture-and-handling in several studies (e.g., Benoît, 2006; Mandelman et al., 

2013; Depestele et al., 2014; Ellis et al., 2018) and is typically available in survey datasets. 

The inclusion of sex-specific information may also be particularly useful for elasmobranchs 

with sex-specific discard mortality rates (e.g., Coehlo et al., 2012; Campbell et al., 2018; 

Sulikowski et al., 2018), because of easily identifiable male reproductive organs (i.e., 

claspers) that can be recorded during surveys.  

Hotspot applicability (i.e., relevance to actual fisheries-interactions) hinges upon how 

well fishing effort and species abundance data reflects the true distribution and overlap of 

these metrics. In this study, NOAA Fisheries Vessel Monitoring Systems thoroughly 

characterized fishing effort of the focal industries due to mandated reporting requirements 

(50 CFR § 648.10); however, not all fisheries are monitored with this level of detail. Other 

sources that could be used to address fishing effort include logbooks, observer programs, or 

Automatic Identification Systems (AIS) that operate similarly to VMS data (Kroodsma et al., 

2018). Recent studies have demonstrated the utility of AIS data as a measure of fishing 

effort, particularly on a global-scale where it is the most widely-implemented form of vessel 

monitoring (Kroodsma et al., 2018; White et al., 2019). Fishery-independent surveys can be 

used as a reliable source of species distribution and relative abundance (Politis et al., 2014). 



 

68 

 

But, they may be less applicable or effective for species that inhabit areas not accessible to 

the gear and/or whose distributions extend outside of the surveying extent.  

Here, we demonstrated how multiple surveys can be combined to comprehensively 

evaluate the relative abundance of thorny skate in the U.S. NWAO (i.e., NEFSC bottom 

trawl and bottom longline surveys; Sosebee et al., 2016; McElroy et al., 2019). Multiple 

sources of data with different structures (e.g., different metrics of sampling effort) can be 

incorporated without altering the functionality or end-product of this tool because of the 

normalization step that transforms data onto the same scale (i.e., 0 to 1; Eq. 1). As such, 

probability density functions (e.g., kernel density estimator; NEFSC 2019) or species 

distribution models (e.g., flapper skate, Dipturus cf. intermedia; Pinto et al., 2016) can be 

used to describe the distribution and abundance of a species. Distribution models in particular 

may also provide a mechanism for forecasting shifts in fisheries-interactions if climate 

change alters future species’ distributions (e.g., Kleisner et al., 2017).  

The hotspots identified by this tool are reliable predictions of FIP when the 

distribution of species abundance and fishing effort remain relatively constant from year-to-

year. In the thorny skate case study, hotspot predictions are reliable because of the restricted 

movement ecology of thorny skate (Kneebone et al., 2020) and regulatory prohibitions that 

are reflected in the data and expected to perpetuate (e.g., Sea Scallop Rotational Areas and 

Open Access Areas). However, careful attention must be paid towards future changes to 

regulations that prohibit fishing in locations not accounted for in the current data, which can 

ultimately displace fishing effort and change the dynamics of FIP. Predictions may also be 

less relevant when considering more active schooling species whose distributions can change 
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rapidly (e.g., river herring and American shad; Alosa sapidissima) and alter FIP outside of 

what this tool is capable of accounting for (Little et al., 2014). In those scenarios, real-time 

bycatch avoidance programs are likely the more suitable approach given their ability to adapt 

to dynamic fluctuations in FIP (Little et al., 2014; Bethoney et al., 2017).   

 

Thorny skate hotspots in U.S. NWAO 

Hotspots from our case study suggest the NMS had the highest likelihood of 

interacting with thorny skate throughout timeframe of the study (58.9% of all hotspots), 

followed by SES (28.9% of all hotspots) and MNK (12.2% of all hotspots; Table 2.2). These 

findings were consistent with thorny skate discards by gear type reported from the same 

timeframe, which indicate otter-trawls account for nearly three-quarters (73.0%) of all 

discards (Sosebee et al., 2016). Fisheries managers (i.e., NEFMC) can pair these practical 

hotspots with bycatch avoidance strategies to complement pre-existing prohibited measures 

and more comprehensively address fishing mortality for this overfished species. For 

example, managers could consider avoiding/reducing interactions in hotspots within 

Massachusetts Bay for the NMS fishery (Figs. 2.3 and 2.4), Platts Bank in the MNK fishery 

(Fig. 2.5), and off of Cape Cod in the SES fishery (Fig. 2.6), all of which present the highest 

risk of incidental capture to thorny skate within each fishery. Or, mitigation efforts could be 

targeted toward the NMS fishery that was most likely to interact with thorny skate 

throughout the year (Table 2.2), with an additional emphasis placed on avoiding/reducing 

capture of the size-class found to be more susceptible to the stressors of capture (Knotek et 

al., 2019; Fig. 2.3). Lastly, providing fishing industries with hotspot locations can serve as a 
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voluntary avoidance method for reducing interactions; however, the efficacy of this method 

would likely require additional output controls for thorny skate (i.e., bycatch limits; Reid et 

al., 2019) to further incentivize fishers to avoid their capture.   

 

Future applications  

The bycatch avoidance hotspot tool described herein can be broadly used to address 

any fisheries-interaction wherein both fishing effort and species distribution/abundance data 

are available. In particular, data sources collected here can be directly applied to other 

prohibited and/or overfished species incidentally captured by demersal fisheries in the U.S. 

NWAO (e.g., Atlantic cod; yellowtail flounder, Limanda ferruginea; winter flounder, 

Pseudopleuronectes americanus; witch flounder, Glyptocephalus cynoglossus; windowpane 

flounder, Scophthalamus aquosus; halibut, Hippoglossus stenolepis; and white hake, 

Urophycis tenuis; NMFS 2017; NEFSC 2019). It may also be possible to merge hotspots 

from species within the same region (i.e., U.S. NWAO) to identify areas where mitigation 

efforts could target fisheries-interactions for multiple species. Furthermore, this tool may 

prove useful for pelagic species that are overfished (e.g., porbeagle shark, Lamna nasus, and 

shortfin mako shark, Isurus oxyrinchus; Curtis et al., 2016; ICCAT 2017); however, 

additional modifications may be required to incorporate data (e.g., utilization distributions 

derived from satellite tag data; Vaudo et al., 2017) from more migratory species that are not 

adequately addressed by traditional surveys. 
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Table 2.1. Vessel-speed thresholds. Speeds (knots; kts) were used to distinguish fishery-
specific fishing effort from on-anchor or transit activity in NOAA Vessel Monitoring Systems 
reports.  
 

Fishing industry On-anchor (kts) Fishing (kts)a Transit (kts) 

Northeast multispecies < 0.1 0.1 – 4.0 4.0 – 20.0 

Monkfish < 0.1 0.1 – 4.0 4.0 – 20.0 

Sea scallop < 0.1 0.1 – 6.0 6.0 – 20.0 

a Fishing speeds reflected standard commercial practices of relevant gear types according to 
Davis et al. (2015) and Palmer (2017). 
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Table 2.2. Hotspot characteristics by evaluation period for each fishery examined in the 
U.S. Northwest Atlantic Ocean. The number of grid cells identified as hotspots at varying 
confidence levels (90% | 95% | 99%) and the number of cells identified with interaction 
potential (italicized) based on Northeast Fisheries Science Center bottom trawl and bottom 
longline surveys are presented. Total hotspot area (km2) at varying confidence levels (90% | 
95% | 99%) is provided based on cells where hotspots were identified. The total number of 
grids cells and hotspot area over all periods for each fishery are shown in bold. Note that 
the months included in each period differ by fishery. 
 

Fishery Trawl survey Longline survey Hotspot (km2) 

Northeast multispecies (NMS) 

May-July 10 7 5 176 7 7 5 105 1427 1127 741 
Aug-Oct 9 8 6 180 4 4 3 104 1219 1119 838 
Nov-Jan 7 7 4 172 5 5 3 99 982 982 688 
Feb-Apr 4 3 3 164 7 6 4 99 848 658 493 

 30 25 18 692 24 23 15 407 4476 3886 2761 

Northeast multispecies (NMS) (51-70 cm TL)a 

May-July 4 4 3 85 7 5 2 80 1021 867 482 
Aug-Oct 6 6 2 91 6 5 2 79 1067 867 367 
Nov-Jan 2 2 2 88 5 3 2 74 586 400 300 
Feb-Apr 7 5 2 80 5 4 3 75 855 665 486 

 19 17 9 344 23 17 9 308 3529 2800 1634 

Monkfish (MNK) 

May-July 1 1 1 31 3 2 2 35 341 241 241 
Aug-Oct 1 1 1 31 2 2 0 19 300 100 100 
Nov-Jan 1 1 1 31 1 1 1 24 200 200 200 
Feb-Apr 1 1 1 17 1 1 1 21 100 100 100 

 4 4 4 110 7 6 4 99 941 641 541 

Sea Scallop (SES) 

Mar-May 6 6 5 126 2 2 2 89 703 703 615 
June-Aug 1 1 1 97 2 2 1 56 281 281 181 
Sept-Nov 4 4 4 137 3 3 1 68 581 581 500 
Dec-Feb 7 5 5 123 1 1 1 66 770 588 588 

 18 16 15 483 8 8 5 279 2335 2154 1884 

a Northeast Fisheries Science Center bottom trawl and bottom longline survey data subset 
for thorny skate ranging from 51 to 70 cm total length (TL). 
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Figure 2.1. Diagram of the bycatch hotspot avoidance tool workflow. Key steps are 
provided along with the data sources used to identify thorny skate fisheries-interaction 
potential hotspots. 
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Figure 2.2. Relevant spatial extent of potential fisheries-interactions. Fisheries-interactions 
were between thorny skate and the Northeast multispecies, monkfish, and Atlantic sea 
scallop fisheries. Management areas where all fishing effort was prohibited throughout the 
duration of the study are illustrated with transparent red (i.e., Essential Fish Habitat areas) 
and pink (i.e., Groundfish Closures Areas) polygons. Major bathymetric features are 
denoted with text and depth contours shaded in blue. Inset map (upper-right corner) 
displays the overall spatial extent of 10km x 10km grid (shown with grey fill), with cells that 
contained Northeast Fisheries Science Center (NEFSC) bottom trawl and bottom longline 
surveys highlighted in shades of green. Bathymetry sourced from Esri, GEBCO, NOAA, 
National Geographic, DeLorme, HERE, Geonames.org, and other contributors. 
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Figure 2.3. Thorny skate fishery-interaction potential hotspots in the Northeast 
multispecies fishing industry. Hotspots are provided in three-month windows (beginning at 
the start of the fishing year in May; A-D) and in 10 x 10 km resolution. Hotspots are shown 
at varying confidence levels (90, 95, and 99%) for the bottom trawl (in squares; i.e., grid 
cells) and bottom longline (circles within cells) surveys. In addition, grid cells where surveys 
occurred are provided (bottom trawl and/or bottom longline), along with cells where 
fishery-interaction potential existed when considering either bottom trawl and/or bottom 
longline survey data.  
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Figure 2.4. Thorny skate (51 to 70 cm total length) fishery-interaction potential hotspots 
in the Northeast multispecies fishing industry. Hotspots are provided three-month 
windows (beginning at the start of the fishing year in May; A-D) and in 10 x 10 km 
resolution. Hotspots are shown at varying confidence levels (90, 95, and 99%) for the 
bottom trawl (in squares; i.e., grid cells) and bottom longline (circles within cells) surveys. In 
addition, grid cells where surveys occurred are provided (bottom trawl and/or bottom 
longline), along with cells where fishery-interaction potential existed when considering 
either bottom trawl and/or bottom longline survey data. 
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Figure 2.5. Thorny skate fishery-interaction potential hotspots in the monkfish fishing 
industry. Hotspots are provided in three-month windows (beginning at the start of the 
fishing year in May; A-D) and in 10 x 10 km resolution. Hotspots are shown at varying 
confidence levels (90, 95, and 99%) for the bottom trawl (in squares; i.e., grid cells) and 
bottom longline (circles within cells) surveys. In addition, grid cells where surveys occurred 
are provided (bottom trawl and/or bottom longline), along with cells where fishery-
interaction potential existed when considering either bottom trawl and/or bottom longline 
survey data. 
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Figure 2.6. Thorny skate fishery-interaction potential hotspots in the Atlantic sea scallop 
fishing industry. Hotspots are provided in three-month windows (beginning at the start of 
the fishing year in March; A-D) and in 10 x 10 km resolution. Hotspots are shown at varying 
confidence levels (90, 95, and 99%) for the bottom trawl (in squares; i.e., grid cells) and 
bottom longline (circles within cells) surveys. In addition, grid cells where surveys occurred 
are provided (bottom trawl and/or bottom longline), along with cells where fishery-
interaction potential existed when considering either bottom trawl and/or bottom longline 
survey data. 
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CHAPTER 3 

 

MERGING TECHNOLOGIES AND SUPERVISED CLASSIFICATION METHODS TO 

QUANTIFY CAPTURE BEHAVIOR ON HOOK-AND-LINE 

 

 

Abstract 

Behavior in response to capture varies between species/fisheries and may be 

contributing to incidental mortality given the physiological ramifications tied its expression. 

However, the relationship between capture behavior, animal health, and discard mortality is 

poorly understood, and it remains a logistical challenge to address behavior over all 

conditions evident in a fishery. Here, we describe a technique that uses practical 

experimental gear to characterize capture behavior in hook-and-line fisheries and provides an 

avenue for predicting behaviors from acceleration data, which are often used to quantify 

animal movement and energy expenditure. The main components of the technique included 

(1) simultaneously monitoring the behavioral response to capture with accelerometers and 

cameras, (2) characterizing behavior from video footage and linking discrete behaviors to 

acceleration data, and (3) predicting behavior based solely on acceleration data using an 

ensemble of supervised classification methods. To develop and demonstrate our technique, 
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we collected observations from oceanic whitetip sharks, Carcharhinus longimanus, caught 

with experimental (hook-and-line) gear. The output of our technique provides not only a 

better understanding of the behavioral response to capture on hook-and-line fishing gear, but 

can be paired with physical or physiological assessments of animal health and/or fate to 

better understand the extent to which capture behavior influences mortality. Such information 

will assist in both the understanding of how species respond to capture on hook-and-line gear 

and in the formulation of species and fishery-specific strategies for mitigating mortality. 

 

Introduction 

The physiological and physical stressors incurred throughout capture can have lethal 

repercussions for incidentally caught and discarded fish, and population-level affects when 

discard mortality (DM) rates are high (Davis, 2002). DM has subsequently been a focal point 

of research (reviewed by Ellis et al., 2017; Veldhuizen et al., 2018), with estimated rates 

being used to inform stock assessments and management frameworks (e.g., establishing total 

allowable catch; Benaka et al., 2016). Studies have identified clear trends in DM (i.e., 

mortality connected to elevated stress and physical trauma; reviewed by Cook et al., 2019), 

but also that there is a great deal of variability between species and fisheries. High-variability 

in DM rates between species/fisheries has created challenges for managing individual stocks 

and stock complexes (e.g., shallow-water grouper or large coastal sharks; SAFMC, 1983; 

NMFS, 2006) that can require different management frameworks to control fishing morality. 

This variability has also made it challenging to accurately approximate DM for data-poor 

species/fisheries (Benaka et al., 2014).   
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An animal’s behavioral response to capture on fishing gear may lead to mortality if 

certain behaviors associated with the “fight or flight” response result in severe physiological 

disruptions tied to their expression (Skomal and Bernal, 2010). The relationship between 

behavior and an animal’s welfare has been well studied for free-swimming fish (reviewed by 

Wood et al., 1991), but only a handful of studies have addressed this relationship with respect 

to capture, most of which having dealt with elasmobranchs. Studies have shown that 

behavioral expression is species-specific (Gallagher et al., 2017; Bouyoucos et al., 2018; 

Talwar et al., 2020) and that higher-intensity capture behaviors (e.g., burst-swimming) are 

connected to elevated physiological stress. In contrast, tempered behaviors (e.g., steady 

swimming) have been linked to a muted physiological response and/or recovery (Frick et al., 

2009, 2010; Brooks et al., 2012; Gallagher et al., 2017; Bouyoucos et al., 2018). Based on 

these findings it appears that species-specific behaviors and their physiological consequences 

can be (in part) responsible for the variability in DM rates. Indeed, it has been speculated that 

certain species with notoriously pronounced fighting behaviors are subject to high DM rates 

as a result of these behaviors (Gallagher et al., 2014). However, the connection between 

capture behavior, physiology, and mortality has yet to be confirmed, partially due to an 

incomplete understanding of how individuals (or species) respond to capture on different 

fishing gears.   

Capture behavior can be visually assessed by monitoring animals throughout a 

capture event either in-person or with cameras (reviewed by Graham et al., 2004), but visual 

monitoring can be challenging under certain conditions (e.g., low-visibility) and is not 

always feasible, particularly in large, high-seas fisheries (Guida et al., 2017). Instead, many 
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studies have turned to accelerometers that measure movement (tri-axial acceleration) 

throughout capture to gain insight to an animal’s activity levels and energy expenditure 

(Wilson et al., 2020) in response to struggle on fishing gear. Accelerometers archive high-

resolution data and are easier to deploy and operate under a wide-range of fishery conditions. 

However, they cannot identify the actual behavior that an animal is exhibiting at any point 

during the capture event. Discrete behaviors (e.g., burst swimming or lack of swimming) are 

often correlated with the physiological stress response, energy expenditure, and fate (Guida 

et al., 2016; Gallagher et al., 2014, 2017; Bouyoucos et al., 2018). Thus, a comprehensive 

understanding of capture behavior requires the characterization of specific behaviors and 

empirical data on animal physiology or movement kinematics associated with those 

behaviors. To characterize behavior from acceleration data it must be linked with visual 

observations of behavior (Nathan et al., 2012). Supervised classification methods (SCMs) 

can establish this linkage and also be used to predict behavior from movement alone 

(reviewed by Valetta et al., 2018).  

Here we develop a technique to monitor capture behavior in hook-and-line fisheries 

(e.g., longlines, handlines, and rod-and-reel) and link acceleration data to visual observations 

of behavior. Using observations from oceanic whitetip sharks, Carcharhinus longimanus, 

caught with experimental hook-and-line gear, we applied an ensemble of SCMs to predict 

behavior from acceleration data, and demonstrate a mechanism for addressing behavior in 

more applied fishery settings where only accelerometers are needed. Experimental gear has 

been widely used as a proxy for characterizing behavior in response to capture in a given 

fishery, because it provides a semi-controlled platform for monitoring animals, and is often 
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more practical than working in concert with large-scale fishing operations (Guida et al., 

2017). However, it does not obviate the need for fishery-scale observations of behavior 

where expression is expected vary to under the range authentic conditions and practices 

(reviewed by He 2006; Guida et al., 2017). Because behaviors are tied to a range of sublethal 

and lethal consequences, understanding behavioral expression on a fishery-scale will help in 

addressing the cause of species/fishery-specific DM rates. 

 

Methods 

Experimental fishing gear and shark capture 

To observe the capture behavior of oceanic whitetip sharks on experimental hook-

and-line gear, we captured sharks over a over a three year span off of Cat Island (2017 – 

2019) and Mayaguana Island (2019), The Bahamas. Fishing was conducted with a modified 

handline constructed of two large polyballs (37 mm maximum diameter) that were attached 

to 8 – 9 m (6 mm diameter) of nylon line, which connected to four 1.2 m strands of 181.4 kg 

monofilament leader with an 18/0 non-offset carbon circle hook (Fig. 2.1). This gear served 

as a proxy for commercial pelagic longline gear because it similarly restricted the movement 

of sharks to a hemispherical area around a point that is relatively fixed (i.e., polyballs or 

mainline with handline or longline, respectively). To account for some of the range in capture 

duration expected in longline fisheries, we varied the amount of time sharks were left on-

hook up to 60 minutes. Extended capture durations beyond 60 minutes could not be observed 

due to the limitations of concurrent research objectives.  

 



 

90 

 

Monitoring capture behavior 

Capture behavior of oceanic whitetip sharks was monitored during 38 capture events 

using single accelerometers attached to the handline roughly 1 m from the hook. 

Accelerometers measured tri-axial acceleration (in g’s) of the gear, which by extension 

registered the movement of sharks during capture (Gallagher et al., 2017; Bouyoucos et al., 

2018; Talwar et al., 2020). HOBO Pendant G accelerometers were used from 2017 to 2018 

(Onset Computer Corp., Bourne, MA, USA) and MDL-x16+p14 accelerometers in 2019 

(Gulf Coast Data Concept, LLC, Waveland, MS, USA). Because MDLs sampled at a higher 

resolution and range (100 Hz and ± 16 g’s), these data were down-sampled to match the 

configuration of Pendant Gs (1 Hz and ± 3 g’s) using methods described by Hounslow et al. 

(2019). For a subsample of 10 capture events, GoFish cameras (GoFish Cam, Inc., Austin, 

Texas, USA) were attached to handlines to collect video at 1080p and 60 frames-per-second 

(FPS), or 720p and 30 FPS when observing events longer than one hour (i.e., due to battery 

consumption restrictions; Fig. 3.1). Initial exploratory trials revealed that a single camera did 

not provide enough viewing angle to keep the shark within frame throughout capture, 

regardless of where the camera was positioned on the line (Supplemental Video S1). Two 

individual cameras were therefore used and placed at ~ 3 and 6 m from the hook, with both 

placements determined as being the best combination of viewing angles to ensure the shark 

remained in frame during capture (Supplemental Video S1). This sampling design resulted in 

10 capture events that were simultaneously-monitored by line-borne accelerometers and 

video cameras, and 28 events that were solely monitored by accelerometers. 
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Data analysis 

To establish a link between acceleration data and videoed observations of behavior, 

an ensemble of SCMs (referred to collectively as the “ensemble”) was optimized to predict 

behaviors according the spectral characteristics of acceleration data. Our analytical approach 

progressed in three phases: (I) an ethographic analysis to characterize behavior in the 

subsample of individuals monitored with accelerometers and cameras, (II) feature 

construction from raw acceleration data for all animals, and (III) the prediction of capture 

behavior in animals solely monitored with acceleration data based on features identified in 

(II) (Fig. 3.2). All analyses were performed using R 3.6.2 (R Core Team 2019) unless 

otherwise stated.  

 

Phase I: Ethographic analysis 

GoFish camera video footage of the 10 dually-monitored capture events was visually-

reviewed to characterize discrete behaviors with a semi-qualitative approach. A total of 6.4 

hours of footage was reviewed, representing capture events spanning from 7.2 to 36.6 min 

(mean ± standard deviation: 19.1 ± 9.0 minutes). Four behaviors were identified including 

steady swimming, thrashing, burst-swimming, and motionless behavior. The most frequently 

observed behavior was sustained, “steady swimming”, which resembled kinematics of free-

swimming oceanic whitetip sharks and included occasional gliding and no visual indications 

of struggling (Fig. 3.3b; Supplemental Video S2). Brief, erratic thrashing and burst-

swimming were the next most common behaviors displayed. Thrashing was characterized by 

sequences of head-shaking/body contortions and burst-swimming by an increase in tailbeat 
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frequency and amplitude (Supplemental Video S3). Both behaviors were also associated with 

several instances of regurgitation (n = 15 events from five individuals; Supplemental Video 

S4). A priori visual comparisons of acceleration data between instances of thrashing and 

burst swimming revealed that our relatively coarse sampling resolution (1 Hz) was unable to 

discern acceleration signatures between the two. Thus, both behaviors were reclassified as 

“high-energy” response to capture (Fig. 3.3d; Talwar et al., 2020). The most infrequent 

capture behavior was hanging from the hook vertically in the water column with no apparent 

signs of movement, which was only documented in one individual (referred to herein as 

“motionless behavior”; Fig. 3.3f; Supplemental Video S3).  

The expressions of behaviors during a capture event were tracked using the 

Behavioral Observation Research Interactive Software (BORIS Version 7.9.7; Friard and 

Gamba, 2016; Andrzejaczek et al., 2018, 2019), which creates an output time-series file with 

behavioral observations. Observed behavior was then matched to the corresponding 

acceleration data using timestamps, which will be referred to herein as “labeled” data. 

“Unlabeled” data will refer to capture events that were monitored solely with accelerometers 

and are described further in subsequent sections.  

 

Phase II: Acceleration features 

Features were derived from raw-acceleration data to further describe movement in a 

variety of ways (e.g., instantaneous or over-time), adding more context to behavior-specific 

acceleration signals, and improving behavioral recognition (Kleanthous et al., 2019). 

Frequentist features (n = 102) were calculated including static and dynamic acceleration 
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(Yoda et al., 1999; Shepard et al., 2008), vectorial and overall dynamic body acceleration 

(Gleiss et al., 2011; Qasem et al., 2012), and time-domain statistics (e.g., mean, median, 

standard deviation, skewness, etc.) using a three-second moving window (Appendix Table 

B.1). The ReliefF algorithm (Kononenko, 1994) feature selection method in the 

“CORElearn” package (Robnik-Sikonja and Savicky, 2020) was then used to identify 

irrelevant and redundant features that lead to overfitting and reduced classification 

performance, if included (Tang et al., 2014). Irrelevant features (n = 13) were removed from 

our labeled and unlabeled datasets, leaving 89 features of acceleration by which to describe 

oceanic whitetip capture behavior. 

 

Phase III: Behavior classification and prediction 

To predict capture behavior, our ensemble was trained using labeled data with 

acceleration features. SCMs used in the ensemble have been frequently used predict animal 

behaviors and included multinomial logistic regressions (MLR), K-nearest neighbors (KNN), 

support vector machines (SVM), multilayer perceptron neural networks (MLP), random 

forests (RF), and extreme gradient boosted decision trees (XGBoost; Nathan et al., 2012; 

Rescheff et al., 2014; Ladds et al., 2016, 2017; Brewster at al., 2018; Benaissa et al., 2019; 

Hounslow et al., 2019; additional details provided in Appendix B). Relevant hyperparameters 

for each SCM were optimized during training to maximize prediction performance to the 

structure of the data (Appendix Table B.2 and Fig. B.1). Each SCM was used to 

independently predict the probability of an observation belonging to each of the three 

behaviors (i.e., steady swimming, high-energy, and motionless behaviors). This array of 
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behavioral probabilities was subject to an ensembling approach the calculated the weighted-

average of each behavior’s probabilities for a given observation, with the highest probability 

assigned as the final behavior prediction. Ensembling was incorporated because it is known 

to improve overall classification performance relative to any of the constituent SCMs 

(Schapire et al., 1998; Catal et al., 2015; Brewster et al., 2018). SCM behavioral prediction 

weights were determined using a brute-force grid search that varied the weights of 

constituent SCMs in 0.05 increments (summing to one between all SCMs; n = 49,854 

combinations). After the ensemble was optimized and informed by labeled data and 

acceleration features, it was used to make behavioral predications for unlabeled data.  

Behavior predictions made for unlabeled data were also subjected to series of 

additional criteria designed a posteriori to address instances where our ensemble was not 

able to predict behavior with a high degree of certainty. Most notably, additional noise 

observed in acceleration data (e.g., rougher sea conditions) led to several bouts of steady 

swimming that contained individual observations of high-energy behavior that were only 

marginally more probable. To account for noise potentially conflating high-energy 

predictions, we reclassified any observation of this behavior if the ensemble did not provide a 

definitive prediction (i.e., 90% or higher probability). In addition, because accelerometers 

sampled at a relatively coarse sampling frequency (1 Hz) it was possible that the acceleration 

signature of more rapid high-energy responses (e.g., thrashing) went undetected. To account 

for this potential shortcoming, any single observation between bouts of high-energy behavior 

was reclassified as a continuous bout. Lastly, sequences of motionless behaviors were revised 

as steady swimming if the bouts were shorter than the minimum duration observed in the 
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labeled data (4 seconds), which serves as an additional buffer against any 

mischaracterizations of movement signatures due to sampling frequencies.  

 

SCM performance evaluation 

Prediction performance of behaviors by the ensemble was evaluated using a stratified 

5-fold cross-validation approach that partitioned labeled data into 80% training and 20% 

testing within each fold, while retaining the proportion of observations across behaviors. 

Steady-swimming observations (92.2% of total observations) were then down-sampled by 

10-fold to avoid biasing predictions towards the most frequent behavior (Japkowicz and 

Stephan, 2002). In each fold, SCMs were supplied with training data and used to predict 

behavior in testing data, construct confusion matrices (i.e., predicted versus known 

behaviors), and evaluate prediction performance. True positive (TP) and true negative (TN) 

observations represented instances where behaviors were predicted correctly, whereas false 

positives (FP) and false negatives (FN) reflected incorrect predictions. The following 

performance metrics were then calculated: 
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Recall measures the proportion of observations for a given capture behavior that were 

correctly identified, whereas precision reflects the proportion of predictions for a given 
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capture behavior that were relevant (i.e., correct). Both metrics were calculated for each 

capture behavior and incorporated into these additional   -measure metrics: 
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   represents the harmonic mean of precision and recall and was calculated for each capture 

behavior, while          was the average    measure across all capture behaviors ( ) 

when each behavior was weighted equally. As    measures  1 the prediction performance 

based on a balance between precision and recall improved. 

 

Results 

Hyperparameter optimization was successful and resulted in marginal (1.7 – 4.2%; 

KNN, MLP, RF, and XGBoost) to major (256.9%; SVM) improvements in the overall 

predictive performance (0.0138 – 0.6170 increase in         ) of SCMs (Appendix Fig. 

B.1). SCMs predicted the three capture behaviors with varying degrees of success (Table 

3.2). Collectively, steady swimming was the most reliably-predicted capture behavior 

(       = 0.906 ± 0.029) followed by high-energy (              = 0.863 ± 0.028), while 

motionless behavior was consistently predicted with the least accuracy (             = 0.809 

± 0.180; Table 3.2). The overall predictive performance of SCMs varied when taking into 

account all capture behaviors (         = 0.877 ± 0.040), with MLR identified as the 
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poorest performing and XGBoost the best (         = 0.819 and 0.926, respectively; 

Table 3.2; Fig. 3.4). 

The optimal ensemble omitted behavior predictions (i.e., assigned a weight of zero) 

for MLR, while XGBoost contributed the majority of predictive information (70%) and KNN 

the second most information (19%; Table 3.1). The remaining SCMs individually contributed 

to no more than 8% of the final prediction probabilities (8%). The ensemble achieved the 

highest performance (         = 0.927; Table 3.2) and was marginally better (increase 

of 0.17% in         ) than the best performing SCM (XGBoost; Table 3.2). This 

improvement was mostly due to prediction performance of the motionless behavior 

(             = 0.951), though performance was boosted in the other behaviors as well 

(Table 3.2). Individual behaviors were correctly identified by the ensemble in 94.2 ± 0.3% of 

steady swimming observations, 88.2 ± 0.3% of high-energy observations, and 95.2 ± 0.6% of 

observations for the motionless behavior. 

 

Discussion 

Behavior in response to capture may have repercussions on an animal’s health and 

fate, but this connection is poorly understood and remains difficult to address in applied 

settings. Our technique provides researchers a more practical approach to collecting basic 

behavioral information without the logistical challenges of monitoring capture in a fishery. 

Behavioral information collected by our technique can be paired with health/fate assessments 

to better understand the mechanistic relationship between behavior and mortality (Guida et 

al., 2016; Gallagher et al., 2017a; Bouyoucos et al., 2018), which up until now has been 
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largely speculative. If the link between behavior and discard mortality becomes more clearly 

defined, behavioral expressions throughout a fishery will help to explain the variability being 

reported in mortality. Behavior on a fishery-scale can be addressed using our ensemble that is 

capable of predicting behavior from acceleration data, which can be more feasibly collected 

across the range of fishing conditions and practices of a fishery. Having a more 

comprehensive understanding of what is driving variability in DM will better inform 

managers when formulating species and fishery-specific strategies for mitigating mortality. 

 

Technique performance and considerations 

The ensemble used by our technique identified discrete behaviors exhibited during a 

capture event with a level high level of accuracy and balance between recall and precision 

(Table 3.2; Appendix Fig. B.2). In addition to outperforming any of the SCMs (Table 3.2), 

the level of performance achieved by our ensemble matched or exceeded what has been 

reported in the larger body of free-ranging animal behavior studies (McClune et al., 2014; 

Dutta et al., 2015; Hammond et al., 2016; Ladds et al., 2017; Barker et al., 2018; Benaissa et 

al., 2019; Studd et al., 2019; Jeantet et al., 2018, 2020). However, because performance is 

also subject to inherent differences in data structuring, comparing our ensemble to other 

animal behavior studies should only be treated as context to what level of performance is 

considered acceptable in this field. That said, ensemble frameworks can account for various 

data structures (i.e., acceleration signals from different species/fisheries) while maintaining a 

high level of performance (Dutta et al., 2015; Brewster et al., 2018). Because SCMs operated 

independently in our ensemble when evaluating acceleration data, performance can be 
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optimized on a case-by-case basis by weighting constituents differently to achieve the best-

overall performance, relative to the structure of acceleration data (Dutta et al., 2015; 

Brewster et al., 2018). For instance, while XGBoost and KNN contributed the majority of 

information to oceanic whitetip shark behavior predictions (Table 3.1), other studies will 

require different combinations of constituent SCMs that our ensemble can easily adapt to.  

The sampling frequency used to record acceleration will dictate your ability to 

identify discrete behaviors (Hounslow et al., 2019). Relatively coarse acceleration data (1 

Hz) led to signal aliasing of higher kinematic burst-swimming and thrashing of oceanic 

whitetip sharks that would have hindered the ability of our ensemble to confidently predict 

each behavior. But by merging both behaviors we were able to maintain a high level of 

prediction performance and still address these two behaviors (grouped together) that are 

expected to have comparable physiological implications tied to higher-energy expenditure 

(Skomal and Bernal, 2010; Wilson et al., 2020). This simpler approach of lower resolution 

acceleration data and grouping like behaviors, with similar impacts on animal welfare, will 

be a useful avenue for addressing capture behavior moving forward. For example, in addition 

to bolstering prediction performance, lower resolution data will extend the monitoring period 

of accelerometers (i.e., memory space not as quickly exhausted) to better match authentic 

fishing practices needed to address behavior on a fishery-scale. However, if your goal is to 

identify all discrete behaviors, consider sampling at a frequency that is twice the resolution of 

the most rapid behavior you expect to observe (i.e., the Nyquist criterion; Weik, 2001). 

Hounslow et al. (2019) also recommended a 5 Hz acceleration threshold for behavioral 

classification of free-swimming sharks (based on juvenile lemon sharks, Negaprion 
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brevirostris) and several other studies have used 20 Hz or more (Nakamura et al., 2011; Lear 

et al., 2017, 2019; Whitney et al., 2017; Brewster et al., 2018; Karan et al., 2019; Coffey et 

al., 2020). But ultimately sampling frequency should be tailored to specific study objectives 

on a case-by-case basis, taking into account the level of behavioral detail required, while also 

keeping in mind that higher resolutions will limit monitoring durations. 

Essential to our technique and the construction of SCMs was the collection of 

behavioral information from experimental gear that served as a proxy for capture in a fishery. 

In this study, experimental hook-and-line gear was considered an acceptable proxy for 

pelagic longlines based on similar behaviors observed between oceanic whitetip sharks and 

other congeneric species caught with modified longlines (Bouyoucos et al., 2018; Talwar et 

al., 2020). By using experimental gear, monitoring capture events with cameras and 

accelerometers becomes more feasible (relative to an applied setting) and makes it possible 

to characterize discrete behaviors and establish the definitive link between behavior and 

acceleration for a focal species. This linkage informs our ensemble to predict behavior based 

on acceleration data, which can be more easily collected on a larger, fishery-scale, across a 

wide-range of conditions and practices that are not addressed with experimental gear. For 

instance, accelerometers are more equipped to monitor pelagic longlines (relative to cameras) 

because of having greater depth-ratings and longer battery-lives (days-weeks) that are better 

suited to fishing operations (e.g., Axy5depth; TechnoSmArt, Rome, Italy). In addition, 

experimental gear in a semi-controlled setting can be matched with post-capture 

physiological assessments and/or post-release monitoring (e.g., pop-up satellite archival 

transmitting tags) to examine the relationship between behavior and animal welfare (Guida et 
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al., 2016; Gallagher et al., 2017; Bouyoucos et al., 2018). Having a firmer understanding of 

the relationship between behavior and animal welfare is needed to interpret the results of 

behavioral expression on a fishery-scale and determine whether or not behaviors are 

contributing to variable DM rates. 

Lastly, performance of our technique hinges heavily on the ability of cameras to 

collect visual observations of behavior. While cameras perform well in clear, well-lit waters, 

inhabited by oceanic whitetip shark, they can become less effective in low-visibility 

conditions associated with turbid environments or fishing at night and/or depth (Guida et al., 

2017). Battery life can also restrict the length of the capture event you are able to film and 

therefore limit the amount of behavioral information you are able to collect. Pressure at depth 

can also damage cameras (i.e., specified as a depth rating) and vertically confine monitoring 

to portions of the water column above where fishing occurs. For GoFish cameras, operating 

at the highest resolution (i.e., 1080p and 60 FPS) constrained capture events to less than an 

hour, but by reducing video quality to 720p and 30 FPS we were able to extend monitoring 

periods while still maintaining enough resolution to observe behaviors clearly. Other cameras 

may better address the monitoring challenges mentioned above (O’Shea et al., 2015; 

Bouyoucos et al., 2018; Talwar et al., 2020), but we opted for GoFish cameras because of 

their unique design specific to in-line attachment (Fig. 3.1) and ability to capture quality 

footage at an affordable price ($150 USD). Regardless of the cameras being used, it is 

important to optimize their placement on the gear to ensure the animal’s movements remain 

in frame throughout capture (Supplemental Video S1)  
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Future applications and conclusion 

If the relationship between behavior and animal welfare becomes more clearly 

defined, our technique can be used to help (in part) identify or address the efficacy of certain 

best-practices and gear-modifications. For example, reducing soak times has often been 

touted as an approach for mitigating mortality (Diaz and Serafy, 2005; Campana et al., 2009; 

Morgan and Carlson, 2010; Gallagher et al., 2014). However, this best-practice may be less 

effective if the focal species completely exhausts itself shortly after being hooked and acute 

physiological stress leads to DM (Gallagher et al., 2014). Our technique can provide 

behavioral information to confirm this type of response to capture and can be used to 

interpret the efficacy of the practice, if behaviors are also linked to animal health. In addition, 

our technique can be used to address the efficacy of extending gangions to increase motility, 

by quantifying the expression of steady swimming behavior at various gangion lengths. If 

paired with confirmation that steady swimming promotes survivability, we could identify an 

appropriate gangion length as an effective mitigation strategy. (Gulak et al., 2015; Musyl and 

Gilman, 2019) 

In addition, the application of our technique to other teleost (e.g., Atlantic cod, Gadus 

morhua, Pacific halibut, Hippoglossus stenolepis; swordfish, Xiphias gladius; and several 

Thunnus spp.) and elasmobranch (e.g., blacknose shark, C. acronotus; blue shark, Prionace 

gluaca; porbeagle shark, Lamna nasus; sandbar shark, C. plumbeus; shortfin mako shark; 

Isurus oxyrinchus; silky shark, C. falciformis) species that commonly interact with hook-and-

line fisheries is warranted, especially for those with highly variable discard mortality rates 

that remain unexplained. Handlines were used as a proxy for pelagic longline gear; however, 
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our technique could easily be adapted to other hook-and-line fisheries, such as such as 

bottom longlines (e.g., using drumlines as a proxy; Gallagher et al., 2014, 2017a) or rod-and-

reel. It may be possible to use a similar monitoring approach with gillnet gear as well, using 

appropriately placed accelerometers and cameras (e.g., attached to floatlines). But additional 

validation studies would be required to confirm this approach. 
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Table 3.1. Final ensemble weights assigned to predictions from each supervised 

classification method. Supervised classification methods included multinomial logistic 

regressions (MLR), k-nearest neighbors (KNN), support vector machines (SVM), multilayer 

perceptron neural network (MLP), random forests (RF), and extreme gradient boosted 

decision tress (XGBoost). Weights were identified using a brute-force grid search (resolution 

of 0.05) and cross-validation to find the optimal combination of weights for maximizing 

predictive performance without overfitting. Weights are presented as the mean ± standard 

deviation, with the mean value used as the ensemble weight.  

 

MLR KNN SVM MLP RF XGBoost 

0.00  0.19 ± 0.07 0.08 ± 0.08 0.02 ± 0.04 0.01 ± 0.02 0.70 ± 0.09 
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Table 3.2. F1-measure performances. Performances (behavior-specific and macro; (mean ± 

standard deviation) are from cross-validation of optimized supervised classification methods 

(multiple logistic regression, MLR; k-nearest neighbors, KNN; support vector machines, 

SVM; multilayer perceptron neural network, MLP; random forests, RF; extreme gradient 

boosted decision trees; XGBoost) and the final ensemble. Best and worst performing 

classification methods are identified with bold and italicized lettering, respectively.  

 

Method F1high-energy F1motionless F1steady swimming Macro-F1 

MLR 0.819 ± 0.004 0.458 ± 0.009 0.856 ± 0.002 0.819 ± 0.004 

KNN 0.844 ± 0.002 0.799 ± 0.003 0.896 ± 0.002 0.846 ± 0.002 

SVM 0.863 ± 0.003 0.839 ± 0.007 0.905 ± 0.002 0.869 ± 0.003 

MLP 0.872 ± 0.002 0.890 ± 0.005 0.916 ± 0.001 0.893 ± 0.001 

RF 0.886 ± 0.003 0.921 ± 0.006 0.927 ± 0.002 0.911 ± 0.003 

XGBoost
a
 0.895 ± 0.002 0.947 ± 0.003 0.935 ± 0.001 0.926 ± 0.002 

Ensemble
b 

0.895 ± 0.003 0.951 ± 0.004 0.936 ± 0.002 0.927 ± 0.002 

a
 Extreme gradient boosting decision trees were the best performing supervised classification method 

b
 The ensemble displayed the best overall performance and was the final method used for predictions 
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Figure 3.1. Diagram of the modified handline. Handlines were equipped with line-borne 
GoFish cameras and an accelerometer, used to capture oceanic whitetip shark and monitor 
and quantify their behavior. 
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Figure 3.2. Framework of the phased-workflow in the capture behavior analysis.  
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Figure 3.3. Raw tri-axial acceleration data and capture behaviors. Acceleration data (A, C, 
and E) are shown throughout a 24-minute capture event of an individual oceanic whitetip 
shark (185 cm fork length; female) with observations categorized by behaviors (red = high-
energy; blue = motionless; and green = steady swimming) that were identified from 
simultaneously collected GoFish video footage. Screenshots of each behavior are provided 
in right-hand panels (B, D, and F). 
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SYNTHESIS AND FUTURE DIRECTIONS 

 

 

The novel tools and techniques presented in this dissertation contribute to the 

“toolbox” researchers have when investigating capture-and-handling and its impact on 

incidentally caught and discarded (as bycatch) fish. Integral to this toolbox are tools for 

monitoring the fate of discarded animals, with pop-up satellite archival transmitting (PSAT) 

tags being one of the more popular monitoring tools (Fig. 4.1). Chapter I demonstrated how 

PSAT tags can be used to deduce fate in rajids for the first time, improving our ability to 

address discard mortality (DM) for these species that are often discarded at high rates. But 

these tags are not without shortcomings that need to be addressed moving forward. Namely, 

tag size precludes monitoring of smaller animals, and reduced resolution in transmitted data 

can make it difficult to identify mortalities via movement alone. The latter is particularly 

relevant for more sedentary demersal species (e.g., families Dasyatidae, Rajidae, 

Pleuronectidae, and Lophiidae) that exhibit intermittent, brief off-bottom forays that may go 

undetected at lower resolutions. 

Pairing fate monitoring with tools and techniques that quantify factors related to 

capture-and-handling can also shed light on what is causing mortality (e.g., temperature and 
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air exposure; Fig. 4.1). However, underlying mechanisms that are more challenging to 

examine are often left to speculation, leaving a major gap in our understanding of DM. The 

technique developed in Chapter III improves our ability to evaluate one of these underlying 

mechanisms, capture behavior, in hook-and-line fisheries. But other gear-types where 

behavior has not yet been addressed and remains difficult to quantify (e.g., gillnet) require 

future directed research efforts. In addition, we need to continue exploring ways of better 

addressing other underlying mechanisms that are still poorly understood, but likely play a 

role in mortality. For example, chronic stressors of climate change and repeated capture 

events in areas of high fishing effort, may exacerbate acute stressors of capture-and-handling. 

  Moreover, when monitoring animals with electronic tags we should pay closer 

attention to whether the tag (application/bearing) leads to health consequences that contribute 

to mortality. Typically, minimally stressed captive animals tagged in laboratory trials are 

used to assess the impact of tags on health. But future studies might consider integrating 

laboratory trials with simulated capture to account for animals whose health has already been 

compromised due to capture, which may make them more susceptible to health consequences 

associated with these tags. In addition, we need to more clearly understand how electronic 

tags affect the cryptic abilities of species that rely upon being hidden for feeding and/or 

predator avoidance, both of which could contribute or result in mortality.  

Tools and techniques from the toolbox provide information for fishery managers and 

other end-users that can be used mitigate the impact of capture-and-handling on bycatch 

species using a variety of strategies (Fig. 4.1). If addressing overfished bycatch species, more 

stringent strategies that reduce fisheries-interactions may be required to mitigate fishing 
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mortality. This can be accomplished with the help of the tool developed in Chapter II, which 

forecasts where fisheries-interactions are most likely to occur (i.e. hotspots). Time-area 

closures or other mitigation strategies (e.g., bycatch reduction devices) can be afforded to 

these hotspots as an effective strategy for reducing DM in larger, open access fisheries. 

Moving forward, resources should be put into developing a more dynamic forecasting 

approach and/or near real-time hotspot identification systems for these open-access fisheries, 

to better account for changes to fishing regulations and species distribution that displace 

fisheries-interactions.  

The other objective of this dissertation was to provide capture-related information for two 

elasmobranch species that are often discarded by commercial fisheries. Thorny skate in the 

U.S. Northwest Atlantic Ocean (NWAO) have been overfished for nearly 20 years despite 

their prohibited status, with little to no signs of recovery up until this point. In Chapters I & 

II, DM was addressed as a mechanism precluding this species recovery, with a focus on the 

Northeast (NE) multispecies fishery that is primarily responsible for discarding of thorny 

skate. But because DM in this fishery only accounted for ~ 1% of existing stock biomass, 

other factors are likely contributing to the status of this stock. In particular, recruitment may 

be a concern for this oviparous species whose embryos require extended incubation periods 

within egg cases deposited on the seafloor. Throughout this incubation period, egg cases are 

susceptible to damage from mobile demersal gear and subject to pronounced effects of 

climate change in the region (e.g., elevated seawater temperature and ocean acidification) 

that can impair embryonic develop and reduce hatching success. However, it is not yet 

understood how this may be impacting recruitment for thorny skate and other oviparous 
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species (e.g., families Heterodontidae, Rajidae, Scyliorhinidae) and will require further 

research.  

In addition, reduced recruitment could exacerbate DM’s impact on a population and 

warrant additional bycatch mitigation measures even when mortality is low. The New 

England Fishery Management Council should therefore consider reducing fisheries-

interactions for thorny skate to promote recovery by lowering DM and potentially, mitigating 

damage to egg cases (i.e., promoting recovery). Interactions can be reduced by using hotspots 

(Chapter II) as time-area closures or establishing bycatch limits and accountability measures 

that incentivize voluntary avoidance of these hotspots. Recent 100% monitoring 

requirements for the NE multispecies fishery may also permit near real-time hotspot 

identification as another strategy.  

Oceanic whitetip shark populations have been severely depleted on a global-scale due to 

commercial fishing, which has resulted in widely-implemented prohibited measures on an 

international stage (e.g., Regional Fishery Management Organizations). However, without a 

clear understanding of how capture-and-handling impacts the welfare of this species, it is 

difficult to assess retention ban efficacy and formulate bycatch mitigation strategies. This 

dissertation (Chapter III) contributes to our knowledge of how this species interacts with 

pelagic longline fisheries, but ultimately, estimates of DM are required for this and the other 

fisheries that discard oceanic whitetip sharks. Moreover, additional bycatch mitigation 

strategies should be implemented by relevant management bodies (e.g., RFMOs) to promote 

the recovery of this species. In particular, time-area closures could be considered for 

ecologically important areas, while real-time communication between fishers (e.g., 
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Amendment 5b to the Consolidated Atlantic Highly Migratory Species Fishery Management 

Plan) may provide an avenue for dynamic identification of hotspots for this highly migratory 

species. However, because of the transient nature of oceanic whitetip sharks, implementation 

and enforcement of any mitigation measures will be a challenge and ultimately require 

cooperation across multiple jurisdictions.  
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Figure 4.1. Key components in the “toolbox” researchers have when addressing the 

impact of capture-and-handling on bycatch species. Biological characteristics and fishing 

conditions/practices (relative to gear-types mentioned in this dissertation) that could impact 

animal welfare are listed, as well as the various tools and techniques that can quantify animal 

health/fate. The primary forms of bycatch mitigation strategies are also provided. Lastly, 

areas of the toolbox that this dissertation contributed to are highlighted with colors coded to 

each chapter, with a summary of the work provided at the bottom of the diagram. 
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APPENDIX A 

CHAPTER 1 SUPPLEMENTARY MATERIAL 

 

 

Description of depth-variance survival test 

The following steps of the depth-variance survival test were adapted from Capizzano 

et al. (2016) and modified to reflect thorny skate behavior. 

 

(i) Each candidate skates’ time-series were parsed into bins of equal size with respect to 

the resolution of the data (10-second = one hour bins; 5-minute = 6 hour bins) to 

ensure equal sensitivity of the test and provide a temporal component. 

(ii) Depth variance from each bin of a candidate skate was sequentially compared to the 

depth variance of the negative control (i.e., known dead skate) using a one-tailed t-

test of the absolute difference from the median (i.e., modified Browne-Forsythe-

Levene test for homogeneity of population variance; Ott, 2010).  

(iii)  Mortality was inferred from this test if there were no significant differences (p ≥ 

0.05) in depth variance between the candidate skate and negative control for a period 

of 102 hours from the final observation. This timeframe reflected the maximum 

duration between off-seafloor movements in live skate (characterized a priori using 

higher resolution data from recovered tags, see Results) and was used to identify 

cases where the animal was exhibiting on-bottom (live) behavior at the end of 

deployment, which would otherwise be falsely characterized as a mortality event. 
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Description of model building for the Cox proportional-hazards model  

Part I 

Determine if a random effect (i.e., mixed-effect CPHM) is appropriate for the data 

using the following steps: 

 

(i) Fit a fully-saturated (i.e., all fishing conditions and practices, biological traits, and 

injury scores) mixed-effects CPHM. 

(ii) Compute the likelihood ratio-statistic against a Chi-squared distribution and correct 

the resulting p-value for boundary testing (Knotek et al., 2018). 

(iii) If the p-value was significant (p ≤ 0.05) = retain the random effect and proceed with a 

mixed-effect modeling approach. Or, if the p-value was not significant (p > 0.05) = 

discard the random effect and utilize a fixed-effects modeling approach for the 

remainder of the analysis. 

 

Part II  

Find the most parsimonious set of covariates to explain survivorship using a forward 

selection process outlined in the following steps: 

 

(i) Incrementally add covariates to the intercept-only model and compare these candidate 

models with Akaike’s Information Criterion corrected for small sample sizes (AICc; 

Burnham and Anderson, 2002).  
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(ii) If the candidate model (i.e., additional covariate) resulted in a reduction of three or 

more units in AICc (relative to intercept-only model), the covariate is retained. 

(iii) Repeat these steps until additional covariates no longer reduce the AICc by more than 

three units. If models are produced with an equal number of covariates and have 

AICc values within three units of each other, these models were considered equally 

plausible and retained.  

 

Model fit comparison of Survival Mixture Models 

Model fits were compared via Akaike’s Information Criterion corrected for small 

sample sizes (AICc) with support for each model evaluated under the following ΔAICc 

(relative to the lowest AICc value) guidelines: 

 

(i) If ΔAIC < 2 units, the competing model shows comparable support to the best-fit 

model 

(ii) If ΔAIC is between 3 to 7 units, the competing models shows less support to the best-

fit model 

(iii) If ΔAIC > 10 units, the competing model is not supported  

 

Model averaging of Survival Mixture Models 

Model averaging is appropriate when no single model-variant explains the data (i.e., 

survivorship) better than others. In this case a single estimate of survivorship is estimated 

from all model-variants using the following equation:   
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 ̅̃  ∑    ̂ 
 
                                            (A1) 

 

where  ̅̃ is the model-averaged post-release survival for all model-variants,  ̂  is the model 

variant-specific survival estimate for model  , and    is the Akaike weight (Akaike, 1978, 

1979) for model i (i.e., the probability of model i providing the best fit amongst the several 

competing models R; Tables 1.2). The Akaike weight is defined as: 

 

   
    (  

 
      )

∑     (  
 
      ) 

   
                             (A2) 

 

Monte Carlo simulations based on bootstrapping 

Monte Carlo simulations were performed to estimate the variability of fishery-scale 

discard DM using the following the steps (per iteration): 

 

(i) Random parameter values for each model variant (i.e., SMMs; Table 1.2) were drawn 

from multivariate normal distributions that were conditional on model variant-

specific maximum-likelihood values and their associated covariance matrix (i.e., size 

categories; Benoît et al., 2012). 

(ii) These parameter values were then used to calculate the size-specific probability of 

survival (i.e., survival rate) for each model variant using Eq. (2).  
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(iii) Model averaging based on Akaike weights (Eq. A1 & A2) was then performed to 

assimilate model variant size-specific survival rates into an overall estimate of 

survival for each size category.  

(iv) Size-specific survival rates were converted into a mortality rate (i.e., DM rate = 1 – 

survival rate). 

(v) The DM rate from the smaller-sized category (i.e., 55.5 – 70.0 cm TL) was applied to 

the estimate of the annual number of mortalities for discarded thorny skate. 

 

This simulation was repeated for 5,000 iterations to derive a fishery-scale estimate 

(mean and standard deviation) of DM for thorny skate captured in the GOM groundfish 

bottom trawl fishery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

131 

 

Literature cited 

 

Akaike, H. (1978). On newer statistical approaches to parameter estimation and structure 

determination. Int. Fed. Auto. Ctrl., 3, 1877-1884. 

 

Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of autoregressive 

model fitting. Biometrika, 66, 237-242.  

 

Benoît, H.P., Hurlbut, T., Chasse, J., & Jonsen, I.D. (2012). Estimating fishery-scale rates of 

discard mortality using conditional reasoning. Fish. Res., 125-126, 318-330. 

 

Burnham, K.P., & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A 

Practical Information Theoretic Approach, 2nd ed. Springer-Verlag, New York 

 

Capizzano, C.W., Mandelman, J.W., Hoffman, W.S., Dean, M.J., Zemeckis, D.R., Benoît, 

H.P., & Langan, J.A. (2016). Estimating and mitigating the discard mortality of Atlantic cod 

(Gadus morhua) in the Gulf of Maine recreational rod-and-reel fishery. ICES J. Mar. Sci.: 

Journal du Conseil, fsw058. 

 

Knotek, R. J., Rudders, D. B., Mandelman, J. W., Benoît, H. P., & Sulikowski, J. A. (2018). 

The survival of rajids discarded in the New England scallop dredge fisheries. Fish. Res., 198, 

50-62. 

 

Ott, R. (2010). Lyman and Michael Longnecker. An introduction to statistical methods and 

data analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 

 

 
Figure A.1. Examples of thorny skate assigned to each injury code. This injury code was 

adapted from Mandelman et al. (2013) and Knotek et al. (2018) and is based upon increasing 

overt physical trauma. 
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Figure A.2. Tide-adjusted depth time-series (black line) obtained from pop-up satellite 

archival transmitting tags (10-second resolution) deployed on three individual skate that 

show different vertical movement patterns including (A) on/off shelf movements and diel 

vertical migrations that occurred at both (B) high and (C) low activity levels.  
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APPENDIX B 

CHAPTER 3 SUPPLEMENTARY MATERIAL 

 

 

ReliefF algorithm 

The ReliefF algorithm is a popular filtering selection method that estimates the 

independence (i.e. weight) of the information provided by a feature, relative to its k nearest 

neighbors, to a classification problem (for more details refer to Kononenko 1994). Here, we 

chose to consider the 10-nearest neighbors based on recommendations in Urbanowicz et al., 

(2018). The advantage to this method is that the selected features are not biased to any 

induction algorithm (e.g. wrapper or embedded methods; Tibshirani et al., 1996; Bradley et 

al., 1998), which means the subset of selected features can then be used across any 

classification techniques (Urbanowicz et al., 2018). Feature weights generated from the 

ReliefF algorithm identified 13 features with markedly low weights (< 0.005) that were 

omitted from the remaining analyses. 

 

Description of supervised classification methods 

Multinomial logistic regression is one of the most fundamental and widely-used 

classification techniques in acceleration-based behavioral studies (Catal et al., 2015; Ladds et 

al., 2016, 2017; Brewster et al., 2018; Nguyen et al., 2020). Herein, MLRs were constructed 

using a “one-versus-all” scheme comprised of three binary logistic regressions (Rifkin and 

Klautau 2004). In each, the model predicts the probability of new data belonging to a given 
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class (as opposed to the remaining) using a logistic (sigmoidal) function that can be mapped 

to two discrete classes using a decision threshold. The highest class probability is then 

assigned as the final classification for a given observation (Hosmer et al., 2013). MLRs in 

this study were constructed with normalized features (zero mean, unit variance), and no 

hyperparameters were considered as this served as our most simplistic, baseline learner 

(Table B.2). 

K-nearest neighbor is an instance-based classification technique that operates much 

differently than other learners used in this study (Bidder et al., 2014; McClune et al., 2014; 

Rescheff et al., 2014; Patterson et al., 2018; Benaissa et al., 2019). This technique uses all of 

the input features directly for classification without building a model that requires learning 

(Dasarthy 1991). Classification is then simply assigned based on the majority vote of classes 

from the surrounding k neighbors, with a distance measure (e.g. Euclidean distance) 

weighting each neighbors’ vote (Dasarthy 1991). KNNs in this study were applied to 

normalized features, and the hyperparameter of k, the number of nearest neighbors 

considered when voting, was tuned to maximize predictive performance and ensure that our 

modeling was not overfitting (Table B.2).  

Support vector machines are one of the most popular classification techniques (e.g. 

Martiskainen et al., 2009; Nathan et al., 2012; Campbell et al., 2013; Escalante et al., 2013; 

Gerenscer et al., 2013; Carroll et al., 2014; Rescheff et al., 2014; Hammond et al., 2016; 

Ladds et al., 2016; Hoang et al., 2018; Benaissa et al., 2019). The objective of the SVM 

algorithm is to find the best hyperplane in N-dimensional space (N = the number of input 

features) that maximizes the margin between classes, which it then uses as a separation plane 
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for classification of new data (Cristianini and Taylor 2000). Hyperplanes can be made non-

linear in SVMs using a kernelling function, such as the radial basis function selected in this 

study (Schölkopf and Smola 2002). SVMs were constructed herein using normalized data, 

while the hyperparameters gamma and C were tuned, which control the spread of kernel and 

cost of misclassification, respectively (Table B.2; Chang and Lin 2016).  

Multilayer perceptron neural networks are one of the most widely used types of 

neural networks in classification tasks (e.g., Nathan et al., 2012; Escalante et al., 2013; 

Cerezuela-Escudero et al., 2016; Brewster et al., 2018; Patterson et al., 2019). The 

architecture of the three-layer MLP (the frequentist approach) used in this study starts with 

an input layer that consists of all candidate features that are then fully-connected, with 

weights assigned to each connection, to nodes within the hidden layer (Hornik et al., 1989). 

Each node within the hidden layer maps the sum of the connected weighted features with a 

bias term, using a non-linear activation function (i.e. rectified linear units; Glorot et al., 

2011). This produces an output value that is fed-forward to the final output layer with another 

set of weighted connections and bias term (Hornik et al., 1989). Here, multi-classification 

predictions of capture behavior are made using the softmax function (Bridle 1990). MLP 

weights and bias terms are optimized during training via the back-propagation of prediction 

errors and gradient descent (Hornik et al., 1989). MLPs were built in this study using 

normalized data and the hyperparameters of learning rate and number of hidden nodes were 

tuned to optimize its predictive performance (Bengio 2012; Table B.2). MLP training was 

terminated early if the cost-function for the training data showed no reduction within 100 
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iterations (with a maximum of 1,000 iterations), to avoid overfitting, and mini-batch gradient 

descent (n = 32; Bengio 2012) was used to reduce computational costs.  

Random forests are one of the most commonly used ensembling classification 

techniques in field of acceleration-based behavioral studies, particularly in recent years (e.g. 

Bom et al., 2010, 2014; Graf et al., 2015; Wang et al., 2015; Alvarenga et al., 2016; Ladds et 

al., 2016, 2017; Fehlman et al., 2017; Brewster et al., 2018; Jeantet et al., 2018; Hounslow et 

al., 2019; Studd et al., 2019a, 2019b). RFs assign classification based on majority class vote 

from an ensemble of decision trees that are independently grown via recursively splitting the 

data, at nodes, according to the features that lead to the greatest reduction in Gini impurity 

(i.e. a measure of a features ability to classify data; Breiman 2001). Individual decision trees 

can be prone to overfitting and high variance; however, because RFs rely upon the average of 

many trees constructed with bootstrapped samples of the data, their predictive performance is 

largely safeguarded against these pitfalls (Breiman 2001). In addition, individual nodes of 

decision trees are only supplied with a random subset of features from which to split (based 

on Gini impurity), which is an additional RF technique to reduce the overall variance 

(Breiman 2001). RFs were constructed in this study using the selected features without 

normalization, a large number of decision trees to ensure stabilization of results (n = 1,000; 

Probst and Boulesteix 2017), and tuned over a varying number of features considered at each 

node (i.e. mtry; Probst et al., 2019; Table B.2).   

Gradient boosted decision trees are another popular ensemble classification technique 

in the field of acceleration-based behavioral studies (e.g. Ladds et al., 2016, 2017; Brewster 

et al., 2018). In this technique, classification is assigned as the weighted prediction from an 
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ensemble of shallow decision trees that are iteratively built using pseudo-residual errors from 

the previous tree (Friedman 2001). This sequential approach allows the model to learn from 

misclassified predictions and reduce error in subsequent trees via gradient descent (Friedman 

2001). In this study, we utilized a specific implementation of this technique called XGBoost 

(extreme gradient boosting), characterized by a more effective approach to minimzing the 

loss function via calculating its second-order gradient (Chen and Guestrin 2016). XGBoost 

was applied to non-normalized data and the two most commonly tuned hyperparameters were 

optimized to control for overfitting and improve modeling performance. This included 

building a large number of trees (n = 1,000, similar to RFs) while varying the maximum tree 

depth (i.e. number of nodes) and learning rate to control the complexity of feature 

relationships and weight of each tree’s prediction, respectively (Table B.2; Friedman 2001, 

Chen and Guestrin, 2016). Similar to MLPs, XGBoost training was terminated early if the 

cost-function was not minimized within 100 iterations. 
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Table B.1. Descriptions of the features generated from tri-axial acceleration data that were 

used to predict capture behavior in hook-and-line caught oceanic whitetip shark. 
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Table B.2. Base learners used to predict capture behavior of hook-and-line caught oceanic 

whitetip sharks. Relevant fixed modeling parameters (i.e. selected without tuning) and 

hyperparameters are provided along with the R statistical program function and package 

(italicized) used to implement these base learners. Hyperparameters were tuned using a grid-

search across the provided range of values, respective to the hyperparameter, with a 5-fold 

stratified cross-validation approach that identified the values (shown in italics) that 

maximized overall classification performance with the macro-F1 measure.  
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Figure B.1. Overall performance measures (macro-F1) for hyperparameter values considered 

during the tuning process of each base learner. Macro-F1 measures are presented as the mean 

± standard deviation from five-fold cross-validation stratified across behavioral categories 

and majority down sampling of the steady swimming behavior. Hyperparameter values that 

best-optimized performance are provided in the top-left corner of each panel and indicated 

within the plotted data using a black circle.  
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Figure B.2. Final performance measures (recall, precision, and F1 measures) within each 

behavior for optimized base learners and ensembling techniques. Measures are presented as 

the mean ± standard deviation from five-fold cross-validation stratified across behavioral 

categories and majority down sampling of the steady swimming behavior. 
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