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ABSTRACT 

 

 

 

 

OTOLITH AGE VALIDATION AND MICROCHEMICAL INVESTIGATION OF THE 
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(CENTROPRISTIS STRIATA)  

 

 

December 2020 

 

 

Elise R. Koob, B.S., University of New Hampshire Durham 

M.S., University of Massachusetts Boston 

 

 

Directed by Dr. John Mandelman 

 

 

Black sea bass (Centropristis striata) is a demersal marine species that supports 

extensive commercial and recreational fisheries along the Atlantic coast. A recent expansion 

into the Gulf of Maine raises questions about this species’ movement and population 

dynamics in the region. Additionally, the 2016 catch-at-age stock assessment model for the 

northern stock incorporated a population split at the Hudson Canyon. Though this model 

better accounts for differences in populations, several issues remain. First, validation of the 

otolith ageing technique for this stock is incomplete; and, second, the origin of fish that 

moved into the northern ranges of the Gulf of Maine (GOM) remains unclear. 

Error stemming from inaccurate age determinations can have serious effects on age-

structured calculations (e.g. growth rate) leading to stock assessments that do not correctly 

reflect the population. In this study, I validated the black sea bass otolith ageing method 
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using marginal increment analysis and young-of-year annulus measurements. Samples 

spanned the spatial distribution and age range of the northern stock. Results indicated black 

sea bass otoliths complete an annual increment, one translucent and one opaque band, in the 

late spring or early summer. Additionally, the first annulus was validated, an important step 

in verifying total age that is not present in the current literature for this species.  

The natal origin of black sea bass caught in the northern ranges of the GOM was 

assessed by otolith core trace element and stable isotope microchemistry. Analysis of 

spawning adult otoliths identified unique chemical fingerprints for the regions north and 

south of the Hudson Canyon: Southern New England (SNE) and the mid-Atlantic Bight 

(MAB), respectively. Black sea bass caught in Maine waters were assigned to a spawning 

region by matching chemical fingerprints. Overall, 87% were assigned to SNE and 13% to 

the MAB.  

This project helps to improve the accuracy and precision of black sea bass otolith 

ageing practices by validating the method used by agencies and organizations across its 

distribution. Additionally, this project confirms hypotheses that SNE spawned fish moved 

north, and further elucidates population composition of the GOM, an area where little is 

known about this species. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Fisheries management often involves a multi-disciplinary approach to the sustainable 

allocation of marine resources. Managers implement fisheries regulations using information 

from biological stock assessments, socio-economic influences, sustainability goals, and 

stakeholder inputs (Cochrane and Garcia 2009). Stock assessments evaluate the status of a 

fish stock by utilizing information gathered about a species, such as behavior, migration, and 

stock structure, as well as measured or calculated biological parameters, like age, growth, 

mortality, and maturity (Jennings et al. 2001). Changes to distributions, a misunderstanding 

of basic life history, or an overall lack of data for a species can undermine stock assessments 

and fisheries management, leading to overexploitation of a fish stock (Campana 2001; Pilling 

et al. 2008; Kleisner et al. 2017). Thus, collecting accurate information is imperative to the 

successful management of a species and its continued, sustainable exploitation. 

The black sea bass (Centropristis striata) is a demersal, marine bony fish that is 

found in the Gulf of Mexico and along the Atlantic coast, from Florida to the Gulf of Maine 

(GOM). These populations are split into three distinct stocks: Gulf of Mexico, northern 

Atlantic stock, and southern Atlantic stock; originally based on meristic, morphometric, and 

growth differences (Miller 1959; Mercer 1978) and more recently confirmed by genetics 

(Bowen and Avise 1990; Roy et al. 2012; Mccartney et al. 2013; Lewandowski 2014). The 
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Gulf of Mexico stock is a separate subspecies, Centropristis striata melana, from the Atlantic 

populations, both of which are designated Centropristis striata striata (Miller 1959). Atlantic 

black sea bass are separated into two distinct stocks north and south of Cape Hatteras, North 

Carolina based on differing behavioral and growth characteristics (Mercer 1978; Wenner et 

al. 1986). Data suggests occasional mixing from north to south during the overwintering 

period; however, Cape Hatteras largely acts as a biogeographical boundary that inhibits 

significant migration and larval transport (Roy et al. 2012; Mccartney et al. 2013). The 

northern Atlantic stock of black sea bass is the focus of this research project and the basis of 

discussion for the remainder of this work.  

Black sea bass in the north Atlantic most commonly reside in structured habitats, rock 

piles, reefs, and wrecks (Kendall 1977; Fabrizio et al. 2014; Cullen and Stevens 2017) but 

also were documented feeding in sandy habitats (Steimle et al. 1999; Cullen and Stevens 

2017).  Black sea bass are opportunistic bottom feeders consuming a large array of prey, 

though the majority of their diet is made up of crustaceans (crabs and shrimp), small fish, and 

mollusks (Bigelow and Schroeder 1953; Mercer 1989; Hood et al. 1994; Steimle et al. 1999; 

McMahan et al. 2020). This species can live to approximately 12 years of age (Mercer 1978; 

Shepherd and Lambert 1996); and reach 65cm in length (Bigelow and Schroeder 1953; 

Kendall 1977). Black sea bass not only have an important commercial fishery along the 

Atlantic coast (Musick and Mercer 1977; Able et al. 1995), but also an extremely valued 

recreational fishery that equates to about half the total annual landings of the species (Cadrin 

et al. 2016; NEFSC 2017). Inshore fisheries (primarily pots and hook-and-line) occur 
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between May and October, while the offshore trawl fishery occurs from November to March 

(Shepherd and Terceiro 1994; Miller et al. 2016b). 

Black sea bass are protogynous hermaphrodites, meaning they typically change sexes 

from female to male (Lavenda 1949; Kendall 1977). They mature between 1 to 3 years of age 

and transition between 2 to 5 years of age (Mercer 1978; O’Brien et al. 1993; Shepherd and 

Idoine 1993). Atypical reproductive characteristics are also occasionally observed in this 

species, such as prematurational transformation (Wuenschel et al. 2011), maturation as 

young, small males (Provost et al. 2017), or they forgo transition resulting in older, large 

females (Blaylock and Shepherd 2016). Transition from female to male primarily happens 

after the spawning period (Mercer 1978; Wuenschel et al. 2011; Provost et al. 2017), which 

occurs near shore from late spring through the summer. Populations in the mid-Atlantic Bight 

have a protracted spawning period from April through October and peak in July (Mercer 

1978; Able et al. 1995; Drohan et al. 2007); whereas populations north of New York 

typically spawn from May to July (Kolek 1990; Caruso 1995; Wuenschel et al. 2013; 

McBride et al. 2018).  

 The northern stock of black sea bass undergo seasonal migratory movements, 

offshore in the fall and returning inshore in the spring (Kendall 1977; Musick and Mercer 

1977; Mercer 1978; Shepherd and Lambert 1996; Moser and Shepherd 2009). Water 

temperatures trigger these movements, dropping below 10-12°C in the fall and returning to 

approximately 7°C for the spring migration (Kolek 1990; Drohan et al. 2007; Moser and 

Shepherd 2009). Fish from regions north of the Hudson Canyon tend to move south and east 

in the fall, toward the outer continental shelf; whereas individuals originating in the mid-
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Atlantic Bight tend to migrate directly east, with little to no southerly movements (Able et al. 

1995; Moser and Shepherd 2009). This difference results in disparate distances traveled to 

overwintering grounds for black sea bass originating from these two regions. Additionally, 

more northerly fish tend to begin the fall migration sooner due to an earlier decline in water 

temperatures, meaning they also spend more time offshore than their southern counterparts 

(Moser and Shepherd 2009; Miller et al. 2016a). During their first fall, young-of-year (YOY) 

black sea bass move offshore later than larger, older fish (Musick and Mercer 1977; Able et 

al. 1995; Able and Hales 1997), needing extra time for growth to survive migration and 

overwintering (Miller et al. 2016a). Temperature and salinity are importance factors for 

overwintering sites, with most fish found in areas over 8°C and with salinity between 33–35 

practical salinity units (Bigelow and Schroeder 1953; Miller et al. 2016a). This species’ 

return inshore in the spring is characterized by homing to previous spawning grounds (Kolek 

1990; Moser and Shepherd 2009; Fabrizio et al. 2013), though Moser and Shepherd (2009) 

noted that fish traveling longer distances were less likely to return to the exact inshore 

tagging location, with some individuals exhibiting “occasional straying” to the north.  

Historically, black sea bass were rarely encountered north of the Cape Cod islands 

(Bigelow and Schroeder 1953; Kendall 1977) but are now observed in much higher numbers. 

Analysis of recreational catch and fishery-independent survey data from the past 15 years 

showed increasing trends in juvenile and adult black sea bass north of the Hudson Canyon 

(Miller et al. 2016a; SARC 2016). Additionally, commercial and recreational fishermen 

reported increasing abundance and expanded distributions of this species in northern regions 

(Cadrin et al. 2016; McMahan 2017). Black sea bass larval distributions have also moved 
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northward. Able et al. (1995) found YOY off eastern Long Island, Rhode Island, and 

Massachusetts (North and South Cape Cod), areas in which YOY were not documented prior 

to 1987. McBride et al. (2018) analyzed fishery-independent survey data (1978-2016) and 

noted that YOY are now seen along the entire north Atlantic coast in the fall and that nursery 

grounds are moving northward by 0.021 degrees of latitude annually (total of 1 degree north 

over the last 40 years). They also note developing females were documented, for the first 

time, in the southern GOM (McBride et al. 2018).  

Changes observed in the northern stock of black sea bass may be in response to 

warming ocean waters. The GOM is warming faster than most places on Earth (Pershing et 

al. 2015), with an average rate of warming that increased from 0.026◦C yr-1 since the early 

1980’s to 0.26◦C yr-1 since 2004 (Mills et al. 2013). Many species along the Atlantic coast 

have exhibited poleward distribution shifts, as well as earlier and faster seasonal migrations 

due to increased ocean temperatures (Murawski 1993; Nye et al. 2009; Mills et al. 2013; 

Pinsky et al. 2013). Bell et al. (2015) and Kleisner et al. (2016) demonstrated similar 

behavior in black sea bass, observing northerly distribution trends associated with 

temperature. McBride et al. (2018) and Miller et al. (2016a) also correlated the northward 

expansion and abundance of YOY, juveniles, and adults with warmer temperatures.  

An alternative hypothesis indicates the apparent distribution shift of black sea bass 

may be a product of increased reproductive productivity in the northern region of the stock as 

opposed to fish moving from south to north in large numbers (McBride et al. 2018). As 

discussed, catches have increased north of Hudson Canyon, but have remained the same or 

slightly reduced in the mid-Atlantic Bight (Miller et al. 2016a). This increase in productivity 
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could be forcing individuals to seek alternative habitat in the GOM due to density overflow. 

Other hypotheses regarding the success of black sea bass colonization in the GOM include 

enhanced recruitment due to improved nursery conditions (Bell et al. 2015) or an open 

predator niche has allowed black sea bass to thrive (McMahan 2017). Regardless of the 

influencing factors, the GOM’s rapidly warming waters have provided a new habitat that was 

previously inaccessible or too energetically taxing for the species to survive and proliferate. 

Moser and Shepherd (2009) explained that the benefit of moving to a new habitat must be 

higher than the costs associated with the added migration or changes to life history. Thus, 

black sea bass’ movement north into the GOM indicates there must be optimal habitat, or a 

benefit to life history, now available that once was not.  

Nevertheless, little is known about this species’ movement, interactions, and potential 

for long-term success in the GOM. Distribution shifts can have cascading effects and major 

implications for management (Fogarty et al. 2007; Bell et al. 2015; Pershing et al. 2015). 

Since black sea bass were long considered “a rare stray to the north” (Bigelow and Schroeder 

1953), there is limited data available to advise management decisions in the GOM. 

The Atlantic States Marine Fisheries Commission and the mid-Atlantic Fishery 

Management Council jointly manage the northern stock of Atlantic black sea bass (NEFSC 

2004). Concerns of insufficient age data, as well as unknowns regarding spatial structure and 

population mixing, led to the rejection of a catch-at-age stock assessment model in 2012 

(NEFSC 2012; ASMFC 2013). The recommendations following this rejection prioritized the 

collection of information on growth, age, migration patterns, and stock structure and 

signified black sea bass as a species of importance (NEFSC 2012; ASMFC 2014). In 
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response, agencies along the Atlantic coast began to collect and age black sea bass samples to 

supplement data for future stock assessments (ASMFC 2013). Additionally, the investigation 

of tagging studies, fisheries independent trawl surveys, commercial and recreational fisheries 

data, and oceanographic conditions of the region provided support for a geographical 

separation of the northern stock at the Hudson Canyon (Cadrin et al. 2016; Miller et al. 

2016b; SARC 2016). As a result, an age-based statistical catch-at-age model was accepted at 

the 62nd Northeast Regional Stock Assessment Workshop in 2016 using spatial sub-units 

north and south of the Hudson Canyon (NEFSC 2017).  

Although the new stock assessment better represents the status and movement 

patterns of black sea bass in the northern stock, several issues remain. One concern involves 

the age data supplied to the stock assessment. Black sea bass age determination is 

predominantly completed using otoliths, which are often considered the most accurate ageing 

structure (Beamish and McFarlane 1983; Casselman 1983). Otoliths, or ear stones, accrete 

calcium carbonate layers daily that are visually differentiated between seasons as opaque or 

translucent bands (Pannella 1971). These bands are counted to determine age, using the 

assumption that one opaque band and one translucent band equate to one year in a fish’s life. 

This assumption, however, must be validated. Despite the increase in direct ageing effort by 

agencies across the north Atlantic coast, there has been little effort to complete a large-scale 

age validation study for black sea bass in the northern stock. Mercer (1978) included 

validation work in their study but the samples were limited in spatial area, age range, and 

sample size. Robillard et al. (2016) described an age validation study for otoliths and scales; 

however, the oxytetracycline tagging and marginal increment analysis completed on otoliths 
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involved a small sample size (n = 55) and age range (2-5 years old), and the capture location 

for otolith samples was not defined.  

Age data is vital to estimating parameters for stock assessments such as age at 

maturity, mortality, size at age, growth functions, and spawning stock biomass (Beamish and 

McFarlane 1983; Campana and Thorrold 2001; Natanson et al. 2002). Inaccurate age data 

can undermine fisheries management and lead to overexploitation (Campana 2001). 

Additionally, any shift in otolith deposition patterns or timing due to recent changes in the 

northern stock have not yet been explored. These issues highlight the need for a large-scale, 

directed age validation study for the northern stock of black sea bass to ensure that accurate 

age data are submitted to future stock assessments. 

Another issue concerning black sea bass in the north Atlantic is the unknown origin 

of fish now captured in the GOM, particularly in the northern GOM. One argument is that 

fish or larvae are transported through the Cape Cod Canal into Cape Cod Bay and advected 

north; however, there is little evidence thus far to support this hypothesis (G. Shepherd, 

personal communication, 2017; McBride et al. 2018). Alternatively, individuals could be 

migrating around Cape Cod, but there are no published tagging studies targeting fish caught 

in the GOM to confirm. Previous tagging studies show that black sea bass exhibited site 

fidelity and homing to spawning grounds when returning from seasonal migrations; however, 

individuals farther north exhibited straying behavior (Kolek 1990; Moser and Shepherd 

2009). Regardless, GOM-caught individuals are most likely fish from the southern New 

England region, rather than mass migration from the mid-Atlantic. Confirmation of this 
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hypothesis is imperative, though, as this type of migration change could greatly impact stock 

assessments and management regulations.  

Otolith microchemical analysis is an alternative to physically tagging and releasing 

live fish, which is extremely time and resource intensive. Otolith calcium carbonate layers 

used for age determinations can also be analyzed for compounds incorporated from the 

surrounding environment. Microchemical analysis is used in a variety of applications 

including: identifying separate stocks (Campana et al. 1994), discerning migration patterns 

(Elsdon et al. 2008), classifying nursery grounds (Kerr et al. 2007) and inferring 

environmental history (Thorrold et al. 1997b). Natal origin is assessed by analyzing the 

chemical composition of otolith cores (i.e. the region within the first few months of a fish’s 

life) to create unique ‘chemical fingerprints’ of natal regions (Campana and Neilsson 1985; 

Kalish 1989). Comparing the core chemical fingerprints from black sea bass caught in the 

GOM to regions of known spawning could clarify where these fish originated and provide 

novel information about the population composition in this area.  

 The purpose of this thesis is to validate the otolith age determination methods used 

for black sea bass and employ otolith microchemical analyses to answer questions about this 

species’ movement into the GOM. In Chapter 2, I use marginal increment analysis to identify 

the timing of annulus deposition and confirm they occur once per year. In addition, I verify 

the location of the first annulus with YOY measurements and modal length frequency 

analysis. In Chapter 3, I analyze otolith cores from black sea bass caught in three regions: 

GOM (Maine), southern New England (SNE; northern Massachusetts to the Hudson Canyon) 

and the mid-Atlantic Bight (MAB; Hudson Canyon to Cape Hatteras, North Carolina) to 
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glean natal origin information for GOM caught samples. My hypotheses are that (1) black 

sea bass complete an annual increment, one translucent and one opaque band, in the late 

spring or early summer, (2) YOY black sea bass measurements and modal length frequency 

will verify identification of the first annulus, (3) the otolith core elemental fingerprints 

between SNE and MAB will be significantly different, and (4) classification of GOM black 

sea bass will result in samples matching the core fingerprint of SNE and not MAB. 
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CHAPTER 2 

 

AGE VALIDATION OF THE NORTHERN STOCK OF ATLANTIC BLACK SEA BASS 

USING MARGINAL INCREMENT ANALYSIS AND FIRST ANNULUS VALIDATION 

 

Introduction 

The northern Atlantic stock of black sea bass (Centropristis striata) extends from 

Cape Hatteras, North Carolina to the Gulf of Maine (GOM; Mercer 1978). This species can 

live approximately 12 years of age (Mercer 1978; Shepherd and Lambert 1996) and reach 

65cm in length (Bigelow and Schroeder 1953; Kendall 1977). Black sea bass support an 

important commercial fishery (Musick and Mercer 1977; Able et al. 1995), as well as a 

valued recreational fishery that equates to about half the total annual landings (Cadrin et al. 

2016; NEFSC 2017). This stock experienced a recent range expansion into Maine waters, a 

region in which this species was rarely seen historically (Bigelow and Schroeder 1953; 

Kendall 1977), and has been linked to warming ocean trends (Bell et al. 2015; Kleisner et al. 

2016; Miller et al. 2016a; McBride et al. 2018). Reliance on this fishery, combined with data 

gaps regarding growth, age, migration patterns, and stock structure, led to the designation of 

black sea bass as a species of importance and a push for additional research (ASMFC 2014).  

A catch-at-age stock assessment model for the north Atlantic stock of black sea bass 

was rejected in 2012, in part due to insufficient age data (NEFSC 2012; ASMFC 2013). Age 

data are used to calculate a variety of parameters, such as age at recruitment, age at maturity, 
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growth rates, age structure, productivity estimations, and mortality rates (Beamish and 

McFarlane 1983; Penttila and Dery 1988; Natanson et al. 2002). In response, agencies along 

the Atlantic coast began to collect and age black sea bass samples and a statistical catch-at-

age model was accepted in 2016 (NEFSC 2017).  Despite the increase in direct ageing, there 

has been little effort to complete a large-scale age validation study for this stock.  

Current black sea bass age determinations are primarily completed using otoliths, or 

ear stones, which are considered the most accurate ageing structure in many species 

(Beamish and McFarlane 1983; Casselman 1983). Calcium carbonate layers are accreted 

onto otoliths daily and a seasonal banding pattern is formed, differentiated as opaque or 

translucent (Campana and Thorrold 2001). Age is determined by counting paired bands from 

otolith core (birth) to otolith edge (capture), making the assumption that one opaque band 

and one translucent band equals one year in a fish’s life (Beamish and McFarlane 1983). 

Error occurs when growth layers identified as annuli (yearly growth bands) do not truly 

correspond to one year of growth and can lead to fisheries overexploitation (Campana 2001; 

McBride 2015). Validation of an ageing method is a process that verifies assumed annuli 

occur once per year. These studies also help identify checks, or false annuli, which are 

regions of growth that can be difficult to differentiate from a true annulus (Penttila and Dery 

1988). Though there have been several attempts to validate black sea bass otolith ageing 

methods, these studies have been limited by small spatial ranges, few age classes, and/or 

modest sample sizes (Mercer 1978; Robillard et al. 2016). Thus far, there has not been a 

large-scale age validation study for the northern Atlantic stock of black sea bass, using 
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samples representative of those included in the stock assessment process, i.e. from a variety 

of gear types, locations, sources, and age classes.  

The most common method of age validation is marginal increment analysis (MIA), 

which measures growth from the last fully completed annulus to the edge of the ageing 

structure (i.e. the marginal increment) at different times throughout the year (Campana 

2001). Marginal increments are then expressed as a proportion of the previous year’s growth 

and plotted as means by month (Hood et al. 1994; Fowler and Short 1998; Franks et al. 1999; 

Winner et al. 2017). If annuli are formed once per year and growth continues throughout the 

year, these plots should form a sinusoidal pattern with only one minimum per year (when 

annulus formation is complete and new growth begins), confirming the annual periodicity of 

the growth band (Mercer 1978; Wenner et al. 1986; Fowler 1990; Lehodey and Grandperrin 

1996; Vilizzi and Walker 1999; Pilling et al. 2000). Additionally, marginal increment 

measurements help to determine the timing of annulus formation which can then clarify 

many ageing errors (VanderKooy et al. n.d.).  

Verifying the location of the first annulus is also an imperative step in validating 

ageing methods, otherwise, age estimates could err by a consistent amount (Campana 2001). 

Assessment of the first annulus can be completed by (1) measuring the completed first 

annulus of young-of-year (YOY) in the season of annulus formation, and (2) tracking the 

modal length frequency of the smallest fish in the population to confirm that measured 

samples are YOY (Campana 2001; Carvalho et al. 2017b). 

The lack of a comprehensive age validation study, recent implementation of an age-

based stock assessment model, and issues identifying the first annulus (Dery and Mayo 1988; 
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ASMFC 2013; Robillard et al. 2016) highlight the need to conduct a large-scale otolith age 

validation study for this stock. The goal of this study was to identify the timing of annulus 

deposition and validate the current otolith ageing method for the entire spatial range and 

observed age classes of the northern Atlantic stock of black sea bass, using MIA and first 

annulus validation of YOY. I hypothesized that (1) black sea bass complete an annual 

increment, one translucent and one opaque band, in the late spring or early summer, and (2) 

YOY black sea bass measurements and modal length frequency analysis will verify 

identification of the first annulus. 

 

Methodology 

Sample Collection and Selection 

MIA requires samples to be collected across an entire year, preferably monthly, as 

well as across the observed age-range of the selected species (Beamish and McFarlane 1983; 

Campana 2001). Black sea bass samples in this study were split up into three age bins: ages 

1-2 (AB 1), ages 3-4 (AB 2) and ages 5 and older (AB 3), to account for growth differences. 

These bins were chosen based on a combination of visual differences in growth across this 

species’ lifetime and sampling likelihood. For example, AB 3 was chosen to encompass ages 

5 and above due to a slowed growth pattern and similarity in band widths at these ages. 

Additionally, obtaining the goal sample size at the largest ages in order to constitute a 

separate bin would be difficult. Likewise, obtaining enough samples for ages 1 and 2 to be 

separate bins was unlikely; therefore, these were binned together despite rapid growth within 

each age. To capture potential growth variability among regions due to the large spatial scale 
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covered (i.e. Cape Hatteras to Maine), a goal of 40 samples per age bin was chosen. Black 

sea bass sagittal otolith samples were acquired from collaborators across the northeastern 

United States from both fishery dependent and independent sources (Table 2.1).  

Age determinations supplied by collaborative institutions were used to bin samples to 

begin processing. Otoliths without age estimates were binned based on an age-length key 

created from previously aged samples. An initial subsample (n = 1008) was created with 

available otoliths by randomly selecting approximately 30 samples within each age bin and 

month. A second subsample (n = 432) was taken after remaining otoliths were received from 

collaborators to fill the 40 samples per age bin per month goal. 

Samples for the first annulus validation measurements required YOY sample 

collection from the MA-DMF fall Resource Assessment Survey (2017; n = 30), as well as 

YOY from the NEFSC Winter Bottom Trawl Survey archive (2016; n = 3). Age 1 samples 

that had growth at the edge of the otolith, i.e. new translucent growth deposited after the first 

annulus, were also needed for comparison. Age 1+ otolith selection was completed after this 

information was acquired from the MIA. Subsequently, age 1+ otoliths selected for first 

annulus measurements were from July-August in Massachusetts waters (2015-2016; n = 36). 

A reference collection (n = 100) spanning ages 0 to 10 was also created using MA-

DMF archived otoliths. These samples were used to assess reader error before and after 

completing otolith ageing for this project and were independent of the samples used in MIA. 

Sample Preparation 

Sectioned otoliths were used in this study. Whole otoliths tend to underestimate fish 

age and sectioning results in higher accuracy (Mercer 1978; Hyndes et al. 1992; Fowler and 
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Short 1998). Additionally, completing marginal increment measurements on whole otoliths is 

difficult due to their curvature and presence of broad, diffuse bands; whereas, sectioned 

otoliths have a crisp line at the edge of an annulus from which to measure. Left-sided otoliths 

were selected preferentially for consistency in subsequent microchemistry studies. All otolith 

preparation followed these methods including those samples for the MIA, first annulus 

analysis, and reference collection. 

Prior to sectioning, black sea bass whole otoliths were photographed under reflected 

light at 1.42x magnification using a camera-microscope system and Image Pro® Premier 

software V9.1 (Media Cybernetics, Inc., Rockville, MD). Otoliths not previously sectioned 

(n = 1,365) were embedded using West System® epoxy resin and hardener in silicone molds. 

Transverse sections (0.5mm) along the dorsoventral plane, containing the otolith core (Figure 

2.1) were removed using a low speed Buehler® Iso-MetTM diamond blade saw and stored in 

labeled Fisherbrand® 1.5 mL plastic vials.  

Otolith Ageing and Measurements 

Black sea bass annuli are considered to be the winter growth zone (opaque band) and 

a date of January 1 was used for year class advancement (Dery and Mayo 1988). Age 

determinations were made under a compound microscope (100x) by placing sectioned 

samples on a glass slide with mineral oil. Each sample was aged by two independent readers 

without knowledge of fish size, capture location, or any previous age interpretations. Ages 

that differed between readers required a third, consensus, determination before analyses were 

performed. These ages were used to group samples into the three age bins for analysis, in lieu 

of the initial determination used to bin samples during the sample selection. Age 
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determinations for the reference collection samples were made following these methods. 

Each reader completed the reference collection (randomized prior to each reading) before and 

after MIA samples were read.  

Annulus measurements were made using Image Pro® Premier and a compound 

microscope-camera system. A straight line was drawn along the dorsal side of the sulcal 

groove, from the otolith core to otolith edge (radius), and the distal edge of each opaque band 

was marked (Figure 2.2). Margin codes were also assigned for use in an accompanying 

analysis to confirm the timing of annulus deposition (Supplemental Materials).  

Statistical Analysis  

All analyses and visualizations for this project were run using R software version 

3.6.1 (R Core Team 2019). Black sea bass otolith paired ages were evaluated for precision 

and ageing bias using Chang’s coefficient of variation (CV; Chang 1982) and a modification 

of the Bland-Altman bias plot (BAbble plot; Mcbride 2015). Additionally, within-reader 

precision was assessed by comparing each reader’s reference collection session and the 

agreed reference collection ages. CV statistics were produced using the ‘FSA’ package, 

version 0.8.26 (Ogle et al. 2019). 

The marginal increment ratio (MIR) was used in the MIA to assess otolith growth 

throughout the year (Hood et al. 1994; Morales-Nin et al. 1998; Vilizzi and Walker 1999; 

Zlokovitz et al. 2003). The MIR was calculated by dividing the marginal increment 

(completed edge growth) by the distance between the distal edges of the two previous opaque 

bands (presumed penultimate annulus):  

MIR = (Rt − Rt−1) / (Rt−1 − Rt−2) (Condini et al. 2014) 
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Where Rt was the otolith radius (core to edge); Rt−1 was the measurement from otolith core to 

the distal edge of the last opaque band; and, Rt−2 was the measurement from otolith core to 

the distal edge of the penultimate opaque band (Figure 2.2). 

A two-way analysis of variance (ANOVA) was used to assess average MIRs between 

different times of year and among age bins, as recommended by Campana (2001). Akaike’s 

information criteria (AIC) was used to identify the best model for analysis, varying predictors 

(Month Bin, Age Bin, Region), additivity, and interactions. Month bins (e.g. January-

February, March-April, etc.) were used instead of individual months because of missing data 

that would preclude interactive models from running. Missing data was also the reason that 

region (i.e. capture location) could only be included as an additive predictor and not 

interactive. Regions designated for this analysis were north and south of the Hudson Canyon, 

the recent population split as described in NEFSC (2017). Additionally, monthly MIR 

averages were used to visually assess the timing of annulus formation for each age bin.  

Although not the direct purpose of this study, the possibility of growth differences 

between regions (Dery and Mayo 1988), as well as the recent separation of the northern stock 

into two sub-units, motivated an analysis to include Region as an interactive predictor 

variable. A three-way ANOVA used seasons instead of month bins due to missing data. 

Season groupings were chosen based on information available about black sea bass migration 

(arrive inshore by April and leave by October/November; Drohan et al. 2007), and were as 

follows: Winter = January, February, March; Spring = April, May, June; Summer = July, 

August, September; Fall = October, November, December.  
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Assumptions for each of the above models were checked by visual inspection of 

diagnostic plots. Type III sums of squares were used for both ANOVA’s due to the 

unbalanced data. Post-hoc multiple comparison analyses were conducted using Tukey’s 

Honestly Significant Differences (HSD; alpha = 0.05) and estimated marginal means 

(emmeans) due to unbalanced sample sizes among factor levels (Mangiafico 2016; Lenth 

2019). Model selection, ANOVA’s, post-hoc analyses, and visualizations were conducted 

using base R, as well as the following packages: ‘car’ version 3.0-3 (Fox and Weisberg 

2019), ‘emmeans’ version 1.4.1 (Lenth 2019), ‘multcomp’ version 1.4-10 (Hothorn et al. 

2008), and ‘ggplot2’ version 3.2.1 (Wickham 2016). 

An ANOVA does not account for the cyclical nature of MIR data and is a noted 

source of concern for MIA studies based solely on this statistical test (Okamura et al. 2013). 

A circular-linear model proposed by Okamura et al. (2013) was applied to the data from this 

study to analyze how many cycles (i.e. annuli) exist in a one-year timespan. This method 

assesses AIC values for three models: whether no cycle (model N), one cycle (model A), or 

two cycles (model B) are present in the MIR data. This method was used for each age bin 

separately and for separate regions (age bins combined). This analysis was completed in R, 

using code included in the supplemental material (SIII) of Okamura et al. (2013). 

Measurements of fall age 0 (September-October; n = 33) and summer age 1+ (July-

August; n = 36) black sea bass otoliths were compared using Welch’s two sample t-test for 

first annulus validation. Summer age 1+ measurements were also compared to the first 

annulus measurements of all MIA samples to confirm proper identification in the study 

samples. MA-DMF fall Resource Assessment Survey (September, 2015-2017) and summer 
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Massachusetts Ventless Trap Survey (July-August, 2015-2017) length-frequency plots of the 

smallest fish captured (first two length modes) were evaluated to confirm identification of the 

fall age 0 and summer age 1+ samples as YOY. Diagnostics to evaluate test assumptions 

were assessed visually.  

 

Results 

Ageing Precision  

A total of 1,440 black sea bass otoliths were initially subsampled for this study. 

Forty-nine of those samples were excluded due to issues with broken or poorly sectioned 

otoliths and could not be reliably aged or measured for MIA. Additionally, MIRs could not 

be calculated for fish that were age 1 prior to annulus formation (as a result of using the 

January 1 advancement date) and were removed from analysis (n = 23).  

Otoliths used in MIA and first annulus identification (n = 1,368) were from black sea 

bass captured across the north Atlantic stock (Figure 2.3). These samples were collected from 

every month of the year, ranging from 35mm to 605mm in total length (TL) and 0 to 12 years 

in age (Table 2.2; Figure 2.4). Sex data was available for 856 of the aged samples: 491 

females (TL = 100mm to 500mm) and 365 males (TL = 80mm to 546mm). Age 

determinations were agreed upon for 1,222 otoliths (89.33%) between two independent 

readers; the remaining samples required a third, consensus, reading. A CV below 5% is 

recommended for precision among readers for age determinations (Campana 2001; McBride 

2015). Examination of a BAbble plot of age differences between readers (Figure 2.5) as well 

as a low CV (2.20%) revealed low bias and high precision for age determinations between 
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readers. Additionally, there was high within reader precision for both individuals from the 

reference collection, before and after study samples were examined (CVs < 2%).  

Marginal Increment Analysis  

Measurements of 1,335 otoliths were used for MIA. The Month Bin model with the 

lowest AIC value was selected for further analysis (model 4; Table 2.3). Diagnostic plots 

conformed to model assumptions of normality and heteroskedasticity. The two-way ANOVA 

indicated a statistically significant interaction between Month Bin and Age Bin on the MIR 

(F = 13.795, df = 10, p < 0.0001). Tukey’s HSD post hoc analysis shows that the ratio of 

growth at the edge of an otolith for a particular month bin differs between age bins (Figure 

2.6). Month bins Jan-Feb, Mar-Apr and May-Jun show a pattern of the lowest mean MIR 

occurring in AB 1, followed by AB 2, and lastly AB 3 (p < 0.01); however, the remaining 

month bins show slightly different patterns. AB 1 and AB 2 were not significantly different 

in Jul-Aug (p = 0.3143) and Nov-Dec (p = 0.3178) but were significantly different from AB 

3 (p < 0.001). Also, AB 2 and AB 3 were not significantly different in Sep-Oct (p = 0.8206) 

but were significantly different from AB 1 (p < 0.001).  

Campana (2001) noted that a minimum in the MIR should occur once per year and be 

significantly different from other times of the year. Figure 2.7 shows the minimum mean 

MIR in each age bin (letter ‘a’) occurred once per year and was significantly different from 

other month bins (p < 0.0001). The only exception was for AB 3, which appeared to have a 

minimum that extended from Jul-Aug to Sep-Oct (p = 0.9849); whereas, the minimums for 

AB 1 and AB 2 were both in Jul-Aug only. Plotting raw data showed the monthly mean MIR 

for AB 3 declined in July prior to a minimum in August (Figure 2.12). Similarly, this 
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occurred in May-Jun of AB 1, where a depression in mean MIR was observed (Figures 2.7 

and 2.12). All age bins exhibit a gradual increase in mean MIR throughout the year following 

the minimum.  

A two-way interaction model between Age Bin, Season, and Region had the lowest 

AIC value and was selected for further analysis (Model 8; Table 2.4). A three-way 

interaction model was included in the AIC test (model 9); however, the only difference 

between this model and model 8 were three data points and resulted in a non-significant 

three-way interaction when testing with an ANOVA (F = 1.801, df = 6, p = 0.0954). 

Therefore, the difference between the two models was negligible and the two-way interaction 

model was analyzed further. ANOVA results indicated no significant interaction between 

Age Bin and Region (F = 1.717, df = 2, p = 0.1800); however, there was a significant 

interaction between Season and Region (F = 3.593, df = 3, p = 0.0132). Tukey’s HSD results 

indicated that there was a higher mean MIR in the winter, spring, and fall in the south (p < 

0.01, p < 0.05, and p < 0.0001, respectively), but regions were not significantly different in 

the summer (p = 0.4486; Figure 2.8). 

Figure 2.9 shows that there was one minimum in mean MIR per year for each region, 

which occurred in the summer and was significantly different from all other seasons (p < 

0.0001). Figure 2.12 shows that annulus deposition completion occurred in June in the north, 

prior to the minimum mean MIR in July and August. Missing data for the southern region in 

May-Jun precludes a thorough comparison of the timing of annulus deposition between 

regions; however, a MIR peak occurred in April and a minimum in July (the next available 

month of data).  
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A significant interaction was also detected between Season and Age Bin (F = 16.602, 

df = 6, p < 0.0001) which corroborated results from the first model analyzed. Tukey’s HSD 

indicated significant differences between age bins in each season (p < 0.01; Figure 2.10). The 

only variant was that AB 1 and AB 2 in Summer were not significantly different (p = 

0.4830), which was also seen in the previous model (Jun-Jul in Figure 2.6). Additionally, one 

minimum in mean MIR (Summer) was observed per year for each age bin increase growth 

throughout the year (Figure 2.11). 

AIC results from the Okamura et al. (2013) circular-linear models (hereinafter 

referred to as the Okamura analysis) showed that one cycle was completed within a one-year 

timespan for all age bins and each region (Model A; Table 2.5). This confirmed previous 

results of one minimum in mean MIR per year (Tukey’s HSD), as well as visual inspection 

of monthly mean MIRs (Figure 2.12).  

YOY Measurements & Length-Frequency Analysis 

Welch’s two sample t-test between otolith radius measurements of fall age 0+ 

samples compared to the first annulus measurements of age 1+ samples were significantly 

different (t = -11.923, df = 67, p = < 0.0001). Age 0+ radii were smaller than the annulus 

counted in age 1+ samples (Figure 2.13). This indicated first annulus deposition in age 1+ 

samples that was not present in the age 0+ fish. Welch’s two sample t-test between first 

annulus measurements of summer age 1+ samples compared to the first annulus 

measurements from all MIA samples (n = 1,299) was not significantly different (t = 1.007, df 

= 37, p = 0.3205; Figure 2.14), indicating that the first annulus in the MIA study was 

identified correctly. Measurements of the first annulus (all MIA samples) ranged from 
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0.41mm to 0.92mm with a mean of 0.61mm. First annulus measurements were similar 

between regions and were within the upper and lower 95% confidence intervals of the mean 

(0.62mm and 0.61mm, respectively). 

Modal length frequency analysis using MA-DMF Resource Assessment Survey and 

Ventless Trap Survey data confirmed samples used for first annulus validation were YOY 

(Figures 2.15 and 2.16). A distinct modal separation between ages was apparent in the MIA 

samples and overlapping length modes with the smallest fish in each survey was observed. 

Measured fall age 0+ fish lengths in this study were from 35mm to 120mm (TL), which was 

comparable to length ranges from the first mode of captured fish in fall Resource Assessment 

survey data of 20mm to approximately 125mm. Measured summer age 1+ fish lengths in this 

study ranged from 110mm to 207mm; whereas, survey lengths of the smallest mode of black 

sea bass in the summer Ventless Survey data were 60mm to approximately 180mm. 

 

Discussion 

Annulus Periodicity 

This study verified that one opaque and one translucent band were deposited per year 

for each age bin. One clear minimum in mean MIR was observed in each age bin and otolith 

growth continued throughout the year (Figures 2.7 and 2.12). This sinusoidal pattern is 

indicative of MIA studies confirming one annulus deposited per year (Mercer 1978; Wenner 

et al. 1986; Fowler 1990; Lehodey and Grandperrin 1996; Vilizzi and Walker 1999; Pilling et 

al. 2000). Additionally, the Okamura analysis used in this study confirmed these results, 

indicating one cycle occurred per year for each age group (Table 2.5).  
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Timing of Annulus Deposition 

Annulus deposition is considered finished when new translucent growth is observed 

at the otolith edge. In other words, the opaque annulus is being completed when mean MIR 

values are at a maximum before dropping to a minimum, which indicates new growth. The 

timing of annulus deposition in this study was dependent on age. Maximum mean MIR for 

AB 1 was observed in March-April; however, a decline in the mean in May-June (prior to the 

minimum in July-August) indicated some fish were completing the annulus in these months 

(Figures 2.7 and 2.12). Thus, annulus completion occurred between April and June for this 

age group. This variability was not surprising given the extensive spatial range from which 

these samples were collected (Maine to Virginia). Miller et al. (2016a) showed that over-

wintering adult black sea bass gathered along a defined shelf contour, whereas juveniles were 

scattered across the shelf and experienced a wider range of temperatures and salinities. 

Individual variation in this youngest age group, therefore, may be magnified by the 

environmental conditions experienced while over-wintering. 

Maximum mean MIR for AB 2 was observed in June, followed by a stark decline to a 

minimum in July and August, and a continuation of growth thereafter (Figures 2.7 and 2.12). 

Annulus completion clearly occurred in June for this age bin. Reduced variability in the 

timing of annulus deposition in this age group, compared to AB 1, was likely due to a more 

consistent growth rate between ages and regions.  

Maximum and minimum mean MIRs for AB 3 occurred in June and August, 

respectively (Figure 2.12). The mean MIR in July fell between these extremes, like the 

pattern observed in May-June in AB 1. This indicated that some otoliths exhibited new, 
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translucent growth in July (small amount of growth at the otolith margin); whereas, others 

were still depositing the opaque annulus (large amount of growth at the otolith margin). The 

delay in annulus deposition for some samples in this age group (August minimum as 

compared to July for AB 1 and AB 2) could be related to energy allocated to spawning rather 

than growth during this period. Morales-Nin and Ralston (1990) observed a decline in otolith 

growth as spawning season progressed and stated, “during the maturity period the metabolic 

energy seems to be diverted from growth, causing the formation of thin increments [as] 

seasonal growth rings.” The northern stock of black sea bass typically spawns between April 

and October, peaking in June-July (Mercer 1978; Wuenschel et al. 2013; McBride et al. 

2018). Of the forty-four fish measured in July for AB 3, twenty-five were classified as 

spawning condition fish (i.e. ‘ripe’ or ‘ripe and running’). Other studies of black sea bass in 

the northern stock have noted that annulus formation appears to be associated with spawning 

period  (Mercer 1978; Alexander 1981; Caruso 1995); however, this connection may be 

coincidental (Beckman and Wilson 1995). Instead annulus deposition timing is likely the 

result of a combination of environmental and physiological processes (Fowler and Short 

1998). Additionally, black sea bass exhibit a variety of reproductive strategies, including 

maturation as young, small males (Provost et al. 2017), that could also impact otolith growth 

in younger age groups. Instead, the variability in annulus deposition for AB 3 could be due to 

the difficulty of accurately measuring growth at the otolith edge of older fish. The decline in 

otolith growth with increasing age made it challenging to discern the start of translucent edge 

growth; therefore, an apparent delay in annulus deposition could be an artifact of the 

measurement methodology. 
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Age Bin Separation 

This study confirmed that separate age bins were necessary for accurate validation of 

this species because of differences in otolith deposition rates with age. As a fish ages, 

somatic growth slows and otolith growth bands become closer together (Beamish and 

McFarlane 1983). Otolith growth in the fish’s first year is expected to be larger than growth 

in the second year, which will be larger than the third, and so on until a certain size or age 

where otolith growth will become more consistent. Significant differences in mean MIR 

between age bins throughout the year demonstrated this variance in the otolith deposition 

with age. For example, AB 1 had the lowest overall mean MIR throughout the year (Figure 

2.6) and did not come close to approaching 1.0 (Figure 2.7). Mean MIR values that approach 

1.0 would indicate the completed edge growth on an otolith equals the growth of the 

penultimate annulus. The patterns observed in AB 1 confirmed there was rapid growth in the 

first years of life followed by a slight decline in growth the following year. AB 3 has the 

highest mean MIR values throughout the year and comes closer to approaching 1.0 at the 

time of annulus completion (emmean MIR = 0.78 in May-June). Otoliths in this age bin have 

a higher proportion of edge growth compared to the penultimate annulus, because growth has 

slowed, and annuli measurements were more consistent. As expected, overall mean MIR 

values for AB 2 fall between the values of AB 1 and AB 3 throughout the year. 

First Annulus Validation 

First annulus validation must be completed in conjunction with MIA to validate 

absolute age (Campana 2001). MIA verifies annual banding deposition patterns in an ageing 

structure; however, if the first annulus was not validated, ageing methods could be incorrect 
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by a consistent amount. Additionally, the identification of the first annulus is often a primary 

source of error in ageing practices (Penttila and Dery 1988; Campana 2001). This is 

particularly important for black sea bass due to reported discrepancies between identification 

of age 0 versus age 1 fish in the fall months that contributed to the exclusion of these indices 

in the latest stock assessment (ASMFC 2016).  

This study validated the location of the first annulus by measuring YOY, age 0 fish in 

the fall and age 1+ fish shortly after the time of annulus formation (spring/early summer as 

indicated above). Figure 2.13 shows the disparate measurements between each age. Although 

there was slight overlap in the extremes, the first annulus in most age 1+ samples was 

significantly larger than the expected total radius of an age 0 fish in the previous fall. 

Additionally, no significant differences were found between the first annulus measurements 

from age 1+ fish and the first annulus measured on all MIA samples, indicating it was 

identified correctly in this study (Figure 2.14). The first annulus for all MIA samples 

occurred between 0.41mm and 0.92mm from the core, with a mean measurement of 0.61mm.  

The samples used for age 0 and age 1+ fish were confirmed as YOY by comparing 

their modal length frequencies to the length frequencies of the smallest black sea bass caught 

in the MA-DMF Resource Assessment (fall survey) and Ventless Trap surveys (summer 

survey; Figures 2.15 and 2.16). The similarities between the length frequencies was clear, 

and the designation of the samples in this study as YOY was appropriate. It should be noted 

that the samples measured for first annulus validation were all from Massachusetts waters. 

The similarity in first annulus size of these samples compared to all MIA samples (Figure 

2.14), as well as the previously mentioned similarity in mean first annulus measurements 
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between regions north and south of the Hudson Canyon, suggest that these results are 

applicable to the whole northern stock.  

Regional Differences 

The documented variability of black sea bass otolith growth by location (Dery and 

Mayo 1988), as well as the recent separation of the northern stock into two sub-units, 

motivated an analysis of possible differences between these regions. The interaction between 

Age Bin and Season corroborated findings from the Month Bin model in that: (1) differences 

between age bins by season supported the separation of the black sea bass age range for 

validation (Figure 2.10), and (2) there appeared to be one minimum per year in mean MIR 

for each age bin (Figure 2.11). Additionally, no significant interaction between Age Bin and 

Region revealed no significant regional difference in otolith edge growth within age bins.  

The significant interaction between Season and Region in this model indicated that 

there were some differences in edge growth between regions throughout the year. The non-

significant difference in mean MIR values in the summer was not surprising because otolith 

growth is minimal following annulus deposition (Mercer 1978; Robillard et al. 2016; Figure 

2.8). Higher mean MIRs for the south in the winter, spring, and fall indicated that fish from 

this region were depositing more material at these times than fish from the north. A large 

amount of otolith edge growth for both regions occurred in the fall months (Figures 2.8 and 

2.9); however, there was also a large amount of edge growth in the northern region from fall 

to winter that was not as apparent in the southern region. MIR emmeans in fall and winter in 

the north were 0.42 and 0.54, respectively, versus 0.54 and 0.60 in the south. The finding that 

fish from the north achieved a large proportion of their otolith edge growth from January 
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through March is in line with previous research, but additional work is needed. Several 

studies report that black sea bass were larger and had faster growth rates throughout the year 

in higher latitudes (Alexander 1981; Dery and Mayo 1988; Kolek 1990; Caruso 1995; 

McMahan et al. 2020). McMahan et al. (2020) postulated that more northerly black sea bass 

may be adapted to grow in lower temperatures or that they exhibit countergradient variation, 

with more growth achieved in the shorter growing season. This could explain the results 

observed in this study; however, a closer look at growth is needed to address this topic, 

which was outside the purview of this project. 

Though there were slight differences in otolith deposition rates between regions at 

certain times of the year, one mean MIR minimum is observed for each region (summer) 

with growth continuing throughout the year (Figure 2.9). Additionally, the Okamura analysis 

confirmed that one MIR cycle occurred each year for both regions (Table 2.5). Deposition 

was completed in June for the northern region, with some fish lagging into July (Figure 

2.12). Missing data prevented a full comparison of timing between regions; however, annulus 

deposition for the south was completed on or after April but before July, suggesting a similar 

timing of late spring or early summer for this region.  

Differences in sample size between regions should also be noted. A larger proportion 

of samples were captured from north of the Hudson Canyon, in part due to the number of 

collaborators and projects from which samples were collected in this region, but also due to 

the subsampling procedure used in this study. An initial subsample (n = 1,008) was taken to 

begin processing before all samples were acquired from collaborators, and many of the 

samples captured south of the Hudson Canyon were received after this initial subsample. The 
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objective of this study was not to analyze regional differences; however, due to the recent 

sub-unit distinction and expanse of samples used in this study, exploring differences that 

could impact the validation between regions was warranted. The slight differences in mean 

MIR values observed between regions do not impact the validation of annuli in this study and 

the otolith ageing method for black sea bass was validated for both regions.  

Literature Comparison 

Annulus deposition in previous black sea bass otolith age validation studies is slightly 

inconsistent. Mercer (1978) concluded that opaque deposition occurred in April and May for 

black sea bass in the mid-Atlantic Bight (MAB). This was, however, highly variable for the 

ages examined (1 through 5). Mercer (1978) states “the mean marginal increment should 

drop to near zero at the time of annulus formation…this occurs from March through June.” 

These results can only be clearly seen for the ages 1 through 3. Age 4 shows a very slight 

depression in marginal increment during these months, and age 5 samples appeared to have a 

minimum in July and August, though sample sizes were low. Additionally, in-depth 

comparisons between this study and the current work were difficult to make because Mercer 

(1978) measured whole otoliths. The accretion of growth on whole otoliths is much more 

difficult to distinguish than it is for sectioned otoliths. Annuli on whole otoliths appear 

broader and more diffuse, making measurements less precise; whereas, a crisp line at the 

distal edge of annuli on otolith sections makes measurements easier and more consistent. 

Additionally, the curvature of whole otoliths could impact increment measurements and 

likely contributed to the variability observed between age groups. The timing of deposition 

between these two studies was expected to be slightly different due to these disparities; 
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however, both studies reported annulus deposition in late spring or early summer, with a 

possible delay for older age groups.   

Alexander (1981) conducted marginal increment analysis on black sea bass whole 

otoliths from the New York Bight. Though each age group was analyzed separately (ages 2-

5), only the months of June, July, August, and October were represented. In addition to the 

difficulty of measuring whole otoliths mentioned above, conclusions made from these 

measurements were questionable. Alexander notes that “because the marginal 

increments…indicate little increase until after August, I suspect that annulus formation 

probably occurs during August.” An increase in the marginal increment, though, does not 

necessarily indicate annulus formation. There was no mention of opaque material observed at 

the otolith edge; however, if it was present, this would indicate the start of annulus formation, 

not completion. Dery and Mayo (1988) note that annulus completion occurs in May or June, 

though also mentions that opaque material can be present into the early autumn months. 

Robillard et al. (2016) described an oxytetracycline tagging and MIA study completed on 

black sea bass otoliths in 1990 and reported that annulus formation occurred during the 

summer. This study was completed using sectioned otoliths but was severely limited in 

sample size and sampling area was not noted.  

The timing of annulus deposition for black sea bass otoliths in this thesis appears to 

generally agree with reports from previous studies (spring or early summer). Detailed 

comparisons were difficult due to issues with sampling (limited locations, gear types, 

represented ages, and sample sizes), as well as use of whole otoliths in some studies. 

Additionally, none of the above published studies included validation of the first annulus, a 
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necessary step in validating an ageing method. Hales and Able (1995) and McBride et al. 

(2018) conducted studies to validate the daily ageing method for black sea bass otoliths; 

however, both studies used fish less than 1 year old. 

Recommendations 

Age determinations for black sea bass in the northern stock are currently supplied by 

several agencies along the northeastern Atlantic coast. Each organization has their own 

protocols for ageing methods; however, scales have largely been phased out in preference to 

otoliths. Variation between the use of whole, sectioned, or a combination of the two exists 

(ASMFC 2018). The recommendation following this study is to use sectioned otoliths for 

future black sea bass ageing. Not only has this ageing structure been validated by this study, 

but sectioned otoliths tend to be clearer, easier to interpret, and provide more accurate age 

determinations (Mercer 1978). 

 

Conclusion 

 This study demonstrated that black sea bass otoliths lay down one opaque annulus per 

year in the late spring or early summer. Younger fish completed annulus formation earlier in 

the season than older fish. It is possible that this was due to a greater amount of energy 

diverted to reproduction in older fish; however, this species exhibits a wide variety of 

reproductive strategies, where young mature fish are also common. Therefore, the apparent 

delay in opaque annulus completion could be an artifact of measuring difficulty in the older 

age groups. In all age groups, annulus formation was completed by July or August and new 

translucent material had begun. Additionally, although there were slight differences in the 



38 
 

rate of material deposition between regions, the otolith ageing method was validated for 

samples captured from both stock subunits (north and south of the Hudson Canyon). 

Accurate age data is crucial; error stemming from inaccurate age determinations can 

have critical impacts on age-structured calculations, e.g. growth rate, mortality rate, and 

productivity parameters. This is especially important due to the recent application of an age-

based stock assessment for the northern stock of black sea bass (NEFSC 2017). Furthermore, 

it was imperative to evaluate possible changes to seasonal timing or annulus formation due to 

recent changes to distribution and/or productivity of this species in the northern stock. This 

project helps ensure the accuracy and precision of black sea bass ageing practices by 

validating the otolith ageing method used by agencies and organizations across the north 

Atlantic coast. Previous attempts at otolith age validation were constrained by sample sizes, 

restricted age ranges, and/or were only applied to a small subset of the stock (Mercer 1978; 

Robillard et al. 2016). Additionally, there has been no published work up to this point 

validating the first annulus on otoliths, which was completed in this study. This project 

utilized samples representing the entire spatial range of the northern stock, included a variety 

of capture methods and fishery types, and spanned the observed age range of this species. 

Completing such a validation study representative of the stock will increase confidence in the 

quality of data used in the stock assessment. 
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Figures 

 

  
Figure 2.1: Positioning of the transverse dorsoventral section (0.5mm) taken through the core 

of a whole black sea bass otolith. 

 

 

 
 

Figure 2.2: Measurements on a sectioned black sea bass otolith for MIA. Yellow dot: otolith 

core, yellow bars: markers for annulus measurements (distal edge of each opaque band), 

black bar: Rt (radius), blue bar: Rt-1 (core to last opaque band), purple bar: Rt-2 (core to 

penultimate opaque band).   
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Figure 2.3: Map of black sea bass samples used in MIA and first annulus validation. Size of 

circle scaled to sample sizes at that location. 

 



45 
 

 
Figure 2.4: Black sea bass length frequency histograms for samples used in MIA and first 

annulus validation. 

 

 
Figure 2.5: BAbble plot (McBride 2015) of differences in age determinations (Reader 2 – 

Reader 1). Dotted black line indicates no bias (located at 0), solid black line indicates degree 

and direction of bias and the thin dashed black lines are 95% confidence limits. 
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Figure 2.6: Estimated marginal means of MIR for Age Bin by Month Bin. Letters denote 

significant differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors 

of the estimated marginal mean. 

 

  
Figure 2.7: Estimated marginal means of MIR for Month Bin by Age Bin. Letters denote 

significant differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors 

of the estimated marginal mean. 
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Figure 2.8: Estimated marginal means of MIR for Region by Season. Letters denote 

significant differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors 

of the estimated marginal mean. 

 

 
Figure 2.9: Estimated marginal means of MIR for Season by Region. Letters denote 

significant differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors 

of the estimated marginal mean. 
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Figure 2.10: Estimated marginal means of MIR for Age Bin by Season. Letters denote 

significant differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors 

of the estimated marginal mean. 

 

 
Figure 2.11: Estimated marginal means of MIR for Season by Age Bin. Letters denote 

significant differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors 

of the estimated marginal mean. 
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Figure 2.12: Monthly mean MIRs (raw data) for each age bin and region. Error bars are two 

standard errors of the mean. Numbers denote sample size.   
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Figure 2.13: Boxplot of fall (Sept/Oct) age 0 radius measurements (n = 33) and summer 

(July/Aug) age 1+ first annulus measurements (n = 36). 

 

 
Figure 2.14: Boxplot of all first annulus measurements from MIA (n = 1,299) and summer 

(July/Aug) age 1+ first annulus measurements (n = 36). 
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Figure 2.15: Length-frequency distributions of MIA data for ages 0 and 1 in the fall 

(Sept/Oct) and MA-DMF Resource Assessment Survey data for fish ≤ 220mm. Red dashed 

lines denote age 0 and age 1 means from MIA data. 

 

  
Figure 2.16: Length-frequency distributions of MIA data for ages 1 and 2 in the summer 

(July/Aug) and Ventless Trap Survey data for fish ≤ 310mm. Red dashed lines denote age 1 

and age 2 means from MIA data.  
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Tables 

 

Table 2.1: Number of samples (n), sampling years, state waters where black sea bass were 

captured, fishery type and gear type for samples contributed by each source. Sources: 

Massachusetts Division of Marine Fisheries (MA-DMF), Northeastern University, Rhode 

Island Department of Environmental Management (RI-DEM) in collaboration with the 

Commercial Fisheries Research Foundation (CFRF) and Virginia Institute of Marine Science 

(VIMS), Northeast Fisheries Science Center (NEFSC), Rutgers University, and North 

Carolina Department of Environment and Natural Resources (NC-DENR). 

 

 

Source Samples (n) Years States Fishery Gear Type 

MA-DMF 2387 2013-2017 MA Independent Trawl; trap 

Northeastern 

University 
147 2013-2016 ME, MA 

Independent; 

Dependent 

Trap; hook 

and line 

RI-DEM; 

CFRF; VIMS 
545 2017 RI Dependent 

Trap; gillnet; 

trawl 

NEFSC 483 2015-2017 MA to NC 
Independent; 

Dependent 
Trawl 

Rutgers 

University 
152 2017 NJ Independent 

Trap; hook 

and line 

NC-DENF 847 2013-2016 MA to NC Dependent Trawl 
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Table 2.2: Number of samples by month and age used for MIA and first annulus validation.  

 

  Age Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 
  0                 30 3     33 

A
B

 1
 

1       1   2 15 21 17 21 7   84 

2   13 22 24 42 43 29 23 29 32 18 6 281 

A
B

 2
 

3 15 17 20 7 24 13 21 20 22 15 10 16 200 

4 25 32 25 12 16 36 32 27 22 20 30 25 302 

A
B

 3
 

5 42 46 39 41 27 27 27 28 27 7 2 19 332 

6 1 4 9 5 16 15 12 11 10 1   4 88 

7   2 4 1 6   4 1 2     7 27 

8 1     2 1 1 1 1 1     5 13 

9 3 1   2                 6 

11                       1 1 

12     1                   1 

  Total 87 115 120 95 132 137 141 132 160 99 67 83 1368 

 

 

 

Table 2.3: AIC test of candidate Month Bin models.  

 

No. Candidate Model df AIC 

1 MIR ~ 1 (null) 2 -105.21 

2 MIR ~ Month Bin 7 -669.9 

3 MIR ~ Month Bin + Age Bin 9 -1071.92 

4 MIR ~ Month Bin * Age Bin 19 -1184.91 

5 MIR ~ Month Bin + Region 8 -667.93 

6 MIR ~ Month Bin + Age Bin + Region 10 -1076.36 
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Table 2.4: AIC test of candidate Season models.  

 

No. Candidate Model df AIC 

1 MIR ~ 1 (null) 2 -105.21 

2 MIR ~ Season 5 -601.12 

3 MIR ~ Season + Age Bin 7 -1028.26 

4 MIR ~ Season * Age Bin 13 -1106.91 

5 MIR ~ Season + Region 6 -611.89 

6 MIR ~ Season * Region 9 -637.8 

7 MIR ~ Season + Age Bin + Region 8 -1052.17 

8 MIR ~ Season:Age Bin + Season:Region + 19 -1141.43 

              Age Bin:Region     

9 MIR ~ Season * Age Bin * Region 25 -1140.39 

 

 

 

Table 2.5: Okamura model results. AIC values for each model: each age bin and separate 

regions, age bins combined. Model N = no cycle, Model A = 1 cycle, Model B = 2 cycles. 

 

 

Group Model N Model A Model B 

AB 1 -172.68 -181.71 -174.61 

AB 2 -76.94 -309.51 17.31 

AB 3 18.84 -393.42 199.00 

North -86.75 -415.07 39.80 

South -8.71 -221.74 64.89 
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Supplemental Materials 

 

Margin Code Analysis 

 

In addition to marginal increment analysis, margin codes (1-4; Table 2.6) were 

assigned to each otolith, visually interpreting the completion of otolith edge growth 

compared to the previous increment (following the guidelines of VanderKooy et al. n.d.). 

These codes were used in conjunction with plotting mean increment ratios for each month of 

the year to confirm timing of black sea bass otolith annulus deposition. 

Margin code results were calculated as a proportion of each code occurring per month 

for all age bins combined. These data were plotted overlaying MIR raw data averages per 

month (all age bins combined) to corroborate the timing of band formation (Figure 2.17). 

Marginal increment measurements in this study were made to the distal edge of the opaque 

band; therefore, annulus completion occurs just prior to the minimum in mean MIR, when 

the growth zone is fully formed (i.e. MC1). Figure 2.17 shows that MC 1 peaked in June. 

This occurred just prior to the peak in MC 2, which indicates new growth at the otolith 

margin and corresponded with a minimum in MIR values (July and August). MC 3 and MC 4 

peaks followed as growth at the otolith edge continued to accrete throughout the year.  

This margin code data corroborated results observed in monthly mean MIR values 

and confirmed that annulus formation was completed in June, just prior to the minimum in 

mean MIR, for all age bins combined. 

 

 

 

  



56 
 

Table 2.6: Margin codes for assessing completeness of growth at otolith edge (VanderKooy 

et al. n.d.). 

 

Margin 

Code 
Description of Margin Growth 

1 Annual growth zone on margin fully formed 

2 Annual growth zone on margin less than 1/3 formed 

3 Annual growth zone on margin 1/3 to 2/3 formed 

4 
Annual growth zone on margin more than 2/3 

formed, but not fully formed 

 

  
Figure 2.17: Line charts of the proportion of each margin code overlaid on monthly mean 

MIR bar charts, all age bins combined. Error bars are two standard errors of the mean. MC1 

= margin code 1; MC2 = margin code 2; MC3 = margin code 3; MC4 = margin code 4.   
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CHAPTER 3 

 

USING OTOLITH MICROCHEMISTRY TO DETERMINE NATAL ORIGIN OF BLACK 

SEA BASS IN THE GULF OF MAINE  

 

 

Introduction 

 

The northern stock of black sea bass (Centropristis striata) is an important 

commercial and recreational finfish species extending from Cape Hatteras, North Carolina to 

the Gulf of Maine (GOM; Musick and Mercer 1977; Cadrin et al. 2016). Total catch of this 

stock has exceeded 3,600 metric tons in recent years, over 70% of which is from north of the 

Hudson Canyon (NEFSC 2017). Prior to 2016, the northern stock was managed as one 

population; however, differences in catch and survey data, recruitment, and migration 

patterns between populations north and south of the Hudson Canyon (Cadrin et al. 2016; 

Miller et al. 2016a, 2016b; SARC 2016) led to the separation of this stock into two distinct 

sub-units (NEFSC 2017). Though this greater spatial detail allows for more nuanced stock 

assessment and management regulations, recent observations of black sea bass as far north as 

Maine (SARC 2016; McMahan et al. 2020) raise additional concerns about the structure and 

movement patterns of this species. 

Once rare in the GOM (Bigelow and Schroeder 1953), commercial and recreational 

fishermen (Cadrin et al. 2016; McMahan 2017), as well as fishery-independent surveys 

(Miller et al. 2016a) report an increasing abundance of black sea bass in the region. This 
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recent expansion is poorly understood, and the origin of these fish is conjecture. Black sea 

bass from Southern New England (SNE; north of the Hudson Canyon) migrate south and east 

in the fall to the outer continental shelf; whereas, fish from the mid-Atlantic Bight (MAB; 

south of the Hudson Canyon) migrate directly east (Mercer 1978; Able et al. 1995; Moser 

and Shepherd 2009). These populations return in the spring and exhibit spawning site fidelity 

(Kolek 1990; Able and Hales 1997; Moser and Shepherd 2009; Fabrizio et al. 2013). Two 

suppositions for the origin of GOM black sea bass are: (1) fish or larvae are transported 

through the Cape Cod Canal and advected north, or (2) individuals are migrating farther 

north when returning to SNE spawning grounds and traveling past Cape Cod. It is also 

important, however, to explore the possibility that fish spawned in the MAB have begun 

migrating north. Changes in migration or species distribution can have major implications on 

survivability, resource availability, and management (Fogarty et al. 2007; Kleisner et al. 

2017), and there have been no published tagging studies in the GOM to address these 

concerns.  

Otolith microchemical analyses can help answer questions that would otherwise often 

require extensive amounts of time and money, such as tagging (Elsdon et al. 2008). Otoliths 

accrete calcium carbonate layers daily, incorporating elements from the environment into the 

carbonate matrix (Campana 1999). They are metabolically inert (Campana and Neilsson 

1985); therefore, the layers are never absorbed, and elemental compositions are retained 

throughout a fish’s life. Uptake and assimilation of elements into new otolith material can be 

influenced by environmental concentrations (Farrell and Campana 1996), water temperature 

or salinity (Radtke 1989; Townsend et al. 1992; Hoff and Fuiman 1995; Thorrold et al. 



59 
 

1997a), growth rate (Sadovy and Severin 1992, 1994; Fowler et al. 1995b), physiological 

regulation (Kalish 1989; Campana 1999), and diet (Farrell and Campana 1996). 

Consequently, fish encountering different environments will produce unique ‘elemental 

fingerprints’ (Campana et al. 2000; Campana and Thorrold 2001). These fingerprints can be 

used to distinguish between populations, examine environmental history, categorize nursery 

grounds, track migration, and determine natal origins (Edmonds et al. 1989; Kalish 1990, 

1991; Campana et al. 1994, 2000; Townsend et al. 1995; Thorrold et al. 1997a, 1997b, 1998; 

Campana 1999, 2005; Gillanders 2002; Tanner et al. 2012, 2016). These techniques have 

never been used on black sea bass otoliths and provide an opportunity to elucidate this 

species’ movement into the GOM.   

Determining if GOM fish are originating from a single stock unit, or a combination of 

the two, is important for management and conservation practices (Steer et al. 2009; Loewen 

et al. 2015; Tanner et al. 2016). The natal origin of a group of fish is analyzed by targeting 

the otolith core, i.e. the time after hatch (Campana 1999, 2005; Arslan and Secor 2008), and 

matching the elemental fingerprint to those of known spawning regions (Thresher 1999; Kerr 

et al. 2020). McBride et al. (2018, Supplemental Material) noted spawning condition females 

occur along the Atlantic coast from Cape Hatteras through Massachusetts, but there is no 

evidence of spawning north of 43⁰N. SNE and MAB populations of black sea bass should 

have unique otolith core elemental fingerprints due to differences in spawning behavior and 

migration (Campana et al. 1994, 2000). Thus, natal origin determination of GOM caught fish 

can occur by matching the elemental fingerprints to those from SNE or MAB. 
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Information gathered from otolith microchemistry enhances the understanding of a 

species’ population dynamics, which is imperative to the successful management of an 

exploited stock (Secor 1999; Artetxe-Arrate et al. 2019). Black sea bass movement into the 

GOM is poorly understood and the resulting changes to their migration could impact 

allocation of proper management units and regulations. The goal of this study was to identify 

core elemental fingerprints of black sea bass spawning regions (SNE and MAB) and use 

these to classify natal origin of GOM caught fish. I hypothesized that (1) the otolith core 

elemental fingerprints between SNE and MAB would be significantly different; and, (2) 

classification of GOM black sea bass would result in samples matching the core fingerprint 

of SNE and not MAB. 

 

Methodology 

Sample Selection 

Otoliths for microchemical analyses were selected from collaborative samples 

acquired for the study in Chapter 2. Samples were split into three regions based on capture 

location: upper GOM (Maine), SNE (Massachusetts to the Hudson Canyon), and MAB 

(Hudson Canyon to Cape Hatteras; Figure 3.1). The separation of SNE and MAB follows the 

recent partition of the stock into two populations at the Hudson Canyon, as described by 

SARC (2016). SNE and MAB samples were selected from fish with maturity codes of ‘ripe’ 

or ‘ripe and running’ at the time of capture. Fabrizio et al. (2014) observed that black sea 

bass exhibit home-ranges 0.05-2.8 square miles in size between feeding and spawning 

grounds. The relative limited movement of spawning condition fish (compared to size of 



61 
 

allocated regions) ensures that these samples represent black sea bass spawning locations for 

this study (Campana 1999; Campana et al. 2000). The criteria used between collaborators for 

maturity staging were comparable; all based off of standards set by Burnett et al. (1989).  

Forty to fifty otoliths from each region were selected for analysis; sample sizes were 

limited by fish that included prerequisite maturity data. Collection of SNE and MAB young-

of-year (YOY; age 0 juveniles) was intended to confirm natal elemental fingerprints and 

contribute to baseline data for classification analysis; however, these samples were not 

acquired from the MAB. Elemental comparisons between SNE YOY and SNE spawning 

adults were examined in the Supplemental Material. The SNE YOY collected represented 

years not accounted for in the other regions and, thus, were excluded from the mixed stock 

classification analysis. 

Left side otoliths were selected when feasible, though some right-side otoliths were 

used (n = 20). This combination was not concerning as variation in otolith microchemistry 

between regions was expected to be greater than any noise created from differences between 

left and right side otoliths. Additionally, some studies have shown there were no significant 

differences between otoliths of the same fish (Thorrold et al. 1997b; Campana et al. 2000; 

Javor and Dorval 2014). All samples were randomized across sex and year class. 

Otolith Preparation and Microchemical Analysis 

Black sea bass otoliths have a central opaque region that Wenner et al. (1986) noted 

represents the first 1-4 months of life. Age 0 juveniles display a high degree of site fidelity 

(Able and Hales 1997), remaining in natal regions from 1 to 6 months until fall migration 

(Fabrizio et al. 2013). The central opaque region was targeted for analysis as it was believed 
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to represent the period prior to fall migration and avoids incorporating material associated 

with time spent outside natal regions, which could dilute the core chemical signature.  

Otoliths (previously sectioned for analysis in Chapter 2) were mounted to standard 

glass slides using a small amount of Crystal Bond® adhesive. Eight samples were mounted 

to each slide to optimize space. Photographs of sections (100x) and measurements of the 

otolith core (opaque region only) prior to microchemical analyses were taken using a camera-

microscope system and imaging software (Image Pro® Premier). 

Trace elements are often seen as the most useful markers for elemental fingerprints in 

otoliths (Campana et al. 1997; Hamer and Jenkins 2007); however, adding stable isotope 

measurements produce more robust classification models (Thorrold et al. 1998; Tanner et al. 

2016). Laser ablation inductively coupled mass spectrometry (LA-ICPMS) and gas bench 

isotope ratio mass spectrometry (GB-IRMS) were used in this study to measure trace 

elements and stable isotopes, respectively. These two methods allow for directed sampling of 

a small region of interest, versus analyzing whole otoliths in solution-based assays (Kalish 

1989; Radtke 1989; Gallahar and Kingsford 1992; Fowler et al. 1995b, 1995a). 

Trace Element Analysis: LA-ICPMS 

 

Samples were analyzed using a PerkinElmer NexION 2000C Inductively Coupled 

Plasma Mass Spectrometer (ICPMS) with CETAC 213 G2+ (213 nm Nd:YAG) equipped 

with the HelEX II sample cell for solid sampling at the Environmental Analytical Facility 

(EAF) at the University of Massachusetts Boston. Samples were viewed under reflected light, 

and transect lines were drawn across the opaque core of the otoliths for analysis (Figure 3.2). 

A pre-ablation transect was run prior to elemental assay to remove any surface contaminants 
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(Campana et al. 1994; Thresher 1999). Otolith material along the drawn transect was 

vaporized by the laser and transported by argon gas to the ICPMS for isotopic composition 

analysis (Denoyer et al. 1991).  

Laboratory recommendations for instrument specifications were used as follows: pre-

ablation transect spot size of 50µm and a speed of 50 µms-1; sampling transect spot size at 

30µm and a speed of 15µms-1; laser output at 20%. Three transects of MACS-3 pressed 

carbonate disc standard (US Geological Survey, Reston, VA) were run before and after each 

slide (eight samples). The isotopes analyzed were: Ca48, Mg24, Mg25, Mg26, Mn55, Cu63, Cu65, 

Zn64, Zn66, Zn68, Sr86, Sr87, Sr88, Cd112, Cd114, Ba136, Ba137 and Ba138. Additionally, Si28 was 

monitored to confirm the laser was not ablating the glass slide below the sample section. 

Data reduction and processing were completed using Igor Pro 7® (WaveMetrics, Inc., 

Portland, OR) and Iolite® software (Iolite Software, University of Melbourne, AU) to correct 

for instrument drift and standardize to MACS-3. Isotopic abundances were converted to parts 

per million (ppm), reported relative to Ca48, and averaged across the entire transect. Cd112, 

Cd114, and Zn68 were removed from further analysis due to a large proportion of erroneous 

values produced during LA-ICPMS analysis. Limit of detection values (ppm) for each 

isotope, averaged across all samples were: Mg24 = 0.041, Mg25 = 0.130, Mg26 = 0.770, Mn55 

= 0.195, Cu63 = 0.274, Cu65 = 0.425, Zn64 = 0.326, Zn66 = 0.473, Sr86 = 1.543, Sr87 = 0.373, 

Sr88 = 0.089, Ba136 = 1.458, Ba137 = 0.057, Ba138 = 0.018. All isotope measurements were 

consistently above the corresponding average limits of detection. 
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Stable Isotope Analysis: GB-IRMS 

 

 Following LA-ICPMS analysis, otolith cores were milled using a New WaveTM 

Research MicroMill (Electro Scientific Industries, Portland, OR) at the Gulf of Maine 

Research Institute in Portland, Maine. Micromill specifications were set to laboratory 

recommendations, as follows: scan speed of 55 µms-1, 9 passes/sample, depth/pass at 55µm, 

and drill speed at 100%. The diameter of the carbide drill bit was 300µm. The entire opaque 

region of the otolith core was sampled for analysis (Figure 3.2). Milled sample material was 

collected onto weighing paper, folded, and placed in Fisherbrand® 1.5mL plastic vials. The 

micromill, drill bit, and sample slides were cleaned with pressurized air and 95% ethanol 

between each sample to prevent cross-contamination.  

Milled otolith material was weighed using a microbalance and placed in clean glass 

instrument tubes at the EAF. Laboratory standards NBS-19, IA-R022, and CaCO3 were 

weighed to match sample weights for each run (0.2-0.3mg) and placed in clean glass 

instrument tubes. Air was removed from sample and standards tubes by injecting helium gas, 

and powdered material was reacted with 100µl of 100% phosphoric acid and allowed to 

digest at 25 ⁰C for 24 hours. Sample tubes, now containing CO2 gas, were analyzed 

for d13C and d18O using a Thermo ScientificTM Gas Bench II Isotope Ratio Mass 

Spectrometer (IRMS) for gas chromatography at the EAF. The CaCO3 standard was run at 

the start of each analysis day; whereas, NBS-19 and IA-R022 standards were run at the start, 

after every 9-12 samples, and at the end of each analysis day. Isotope ratio measurements 

were calibrated based on repeated measurements of the standards and reported relative to the 

Vienna Pee Dee Belemnite standard for carbonate materials.  
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Statistical Analysis 

 

Using the opaque region of otolith cores instead of a distinct measurement for each 

sample increases the likelihood of variation in the amount of material analyzed. Otolith core 

transect measurements were compared between regions using one-way analysis of variance 

(ANOVA) followed by Tukey’s Honestly Significant Differences (Tukey’s HSD). 

Additionally, due to a significant ANOVA result, Pearson’s correlation coefficients were 

used to look at the effect of core measurements on isotope values in each region (Thorrold et 

al. 1998). The significance value for all test conducted in this study was alpha = 0.05. 

Pearson’s correlation coefficients between isotopes of the same element were also 

used to confirm relative abundance of those elements (Campana et al. 1994). All within-

element correlations were high (r ≥ 0.79; Table 3.1); therefore, the following isotopes were 

used in subsequent analyses: Mg24, Mn55, Cu63, Zn64, Sr86, Ba137, as well as d18O and d13C. 

All trace elements were expressed as element:Ca ratios. Data transformations were necessary 

for element:Ca distributions to satisfy normality assumptions. Mg:Ca, Mn:Ca, and Ba:Ca 

were log10 transformed (log10(1+X)); while, Cu:Ca and Zn:Ca required inverse 

transformations (1/(X+1)). Sr:Ca, d18O, and d13C were not transformed. Normality and 

homogeneity of variance and covariance were assessed using diagnostic plots, the Shapiro-

Wilk test, and Levene’s test. Values five standard deviations from the mean were removed as 

outliers (Campana 2005).   

 Multivariate analysis of variance (MANOVA) with Pillai’s trace (robust to deviations 

in normality; Ateş et al. 2019) was used to identify significant differences in core chemical 

fingerprints between regions (Campana et al. 2000). Individual one-way ANOVA tests were 
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conducted for each significant isotope identified in the MANOVA with Region as the 

independent variable. Post-hoc analyses of isotopes with significant ANOVA results were 

followed with Tukey’s HSD. Plots between regions were produced for each isotope using 

estimated marginal means (Lenth 2019) to help visualize regional differences.  

Discrimination and classification of samples in this study were conducted using two 

supervised learning approaches: linear discriminant function analysis (LDFA) and random 

forest approach (RF). In each of these methods, discrimination functions for groups of known 

origin (i.e. SNE and MAB) were built using isotopic concentrations as discriminatory 

variables (James et al. 2013). These functions were then used to classify samples with 

unknown group membership (i.e. GOM) to the population with the highest probability of 

origin (Manel et al. 2005). LDFA creates a linear function from the supplied variables that 

best separates each group (Manel et al. 2005); whereas, RF uses bootstrap resampling with 

replacement to build classification trees for group prediction (Breiman 2001). LDFA can 

provide powerful discrimination between groups (Jones et al. 2017) and is the most 

frequently used method (Mercier et al. 2011). It can, however, be limited by assumptions of 

normality (Mercier et al. 2011), and its application to classify samples of unknown origins 

has been questioned (Campana 2005). RF is not limited by assumptions of normality 

(Mercier et al. 2011) and had the best performance among classification methods in otolith 

elemental fingerprint analyses (Mercier et al. 2011; Tournois et al. 2013; Artetxe-Arrate et al. 

2019; Maguffee et al. 2019).  

LDFA classification accuracy for SNE and MAB discrimination function was 

measured using leave-one-out cross-validation with equal prior probabilities (Venables and 
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Ripley 2002). Variable importance was evaluated based on the weight of standardized linear 

discriminant coefficients (Thomas and Zumbo 1996). Final variable selection was completed 

by comparing the accuracies of eight models: (1) all isotopes, (2) isotopes with significant 

differences between regions (ANOVA), (3-8) addition and subtraction of non-significant 

isotopes to model 2. The model with the highest accuracy was chosen for classification of 

unknown origin GOM samples.  

RF classification error was assessed using the average ‘out-of-bag’ (OOB) error rate 

from the built in cross-validation procedure (Breiman 2001). The mean decrease in Gini 

coefficient was used as a proxy for variable importance (Breiman 2001) and final variable 

selection was completed by assessing the OOB error rate among models 1-8, as described 

above. The model with the lowest error rate was chosen for classification of unknown GOM 

samples. To avoid losing data due to low sample sizes, the probability threshold used for RF 

was 0.50 (the same as the default value for LDFA). Analysis of additional RF threshold 

levels is available in the Supplemental Materials. Functions to optimize RF parameters of 

mtry and ntree indicated that the default values produced the lowest error, as is described 

elsewhere (Liaw and Wiener 2002; Díaz-Uriarte and Alvarez de Andrés 2006).  

Analyses and visualizations were conducted using base R (version 3.6.1; R Core 

Team, 2019), as well as the following packages: ‘car’ version 3.0-3 (Fox and Weisberg 

2019), ‘emmeans’ version 1.4.1 (Lenth 2019), ‘multcomp’ version 1.4-10 (Hothorn et al. 

2008), ‘ggplot2’ version 3.2.1 (Wickham 2016), ‘MASS’ version 7.3-51.1 (Venables and 

Ripley 2002), and ‘randomForest’ version 4.6-14 (Liaw and Wiener 2002). 
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Results 

 

A total of 156 black sea bass otoliths were selected for microchemical analysis. 

Fifteen samples were removed due to issues of broken otolith sections, contamination, or 

instrumentation error. Three samples in New York waters were also removed due to their 

proximity to the MAB (Figure 3.1). These samples were assigned to SNE based on the 

NMFS statistical area Hudson Canyon separation described in SARC (2016); however, it is 

noted that this partition is not precise and there is overlap between groups. Consequently, 

these samples could obscure elemental contrasts between the two populations. Descriptive 

details for the final samples used for this study (n = 141) are in Table 3.2.  

Measurements of otolith cores ranged from 0.48 mm to 1.02 mm, which were slightly 

smaller, though comparable, to measurements taken by Wenner et al. (1986) for black sea 

bass in the southern stock (0.56 mm to 1.54 mm). Core measurements differed significantly 

across regions (F = 4.36, df = 2, p = 0.0148). Tukey’s HSD indicated the mean GOM core 

measurement was fairly similar to MAB (p = 0.05), but significantly smaller than SNE (p< 

0.05). Mean core lengths for GOM, SNE, and MAB were 0.70 mm, 0.77 mm, and 0.76 mm, 

respectively. It is unlikely these differences between regions were contributing to systemic 

effects on isotope concentrations; however, additional analyses were examined to confirm. 

Pearson’s correlation coefficients between core measurements and isotope values for each 

region were low, ranging between -0.33 to 0.36 (Figure 3.3). Additional plots used to assess 

any relationship between isotopes and core measurements for each region are available in the 

Supplemental Materials (Figure 3.5). No clear patterns were evident between measurements 

and isotope values. The ANOVA results preclude correcting for differences in core 
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measurements by using an analysis of covariance; however, there was very little correlation 

between these variables, and the differences seen in the ANOVA may not be biologically 

meaningful (i.e. a difference of 0.1mm between MAB and SNE that lead to statistical 

significance for GOM).  

All elements passed Levene’s test for homogeneity (p < 0.05). Shapiro-Wilk’s test for 

normality was passed by all elements (p < 0.05) except d13C (p = 0.0017). Inspection of 

d13C diagnostic plots showed a very slight left-skewed distribution, not a large departure 

from normality; therefore, parametric tests were considered suitable for this isotope. Only 

one outlier from Mg:Ca was removed for MANOVA and ANOVA analyses (approximately 

5 standard deviations above the mean). 

Results of the MANOVA indicated statistically significant differences in core 

elemental fingerprints between regions: Pillai’s Trace = 0.73, F = 9.44, df = 2, p < 0.0001. 

Individual element one-way ANOVA results are shown in Table 3.3. Levels of d18O, 

Mg:Ca, Mn:Ca, Cu:Ca, and Ba:Ca. differed significantly across regions; whereas, Sr:Ca and 

d13C did not. ANOVA results for Zn:Ca were unclear (p = 0.0467), but post-hoc analysis 

using Tukey’s HSD indicated no significant differences (p > 0.05). Visual inspection of these 

results revealed regional variation, even though it was not statistically significant (Figure 

3.4). Mean Zn:Ca concentrations were elevated in SNE, as compared to GOM and MAB. 

The remaining non-significant isotopes also displayed a slight pattern, where levels of d13C 

and Sr:Ca were higher in GOM and SNE than in MAB. Additional isotopes showing this 

pattern included, Mg:Ca and Ba:Ca, where mean MAB concentrations were significantly 

lower than GOM and SNE (p < 0.01). GOM and SNE were not significantly different for 
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these isotopes (p = 0.107 and p = 0.9969, respectively), though GOM had a higher 

concentration of Mg:Ca. Among the three regions, MAB had the highest means for d18O, 

Mn:Ca, and Cu:Ca. Mean d18O in the MAB was significantly higher than the GOM and 

SNE (p < 0.001), which were not significantly different from each other (p = 0.3999). Mn:Ca 

and Cu:Ca followed similar patterns for each region, where GOM had the lowest mean 

concentration, followed by SNE, then MAB as the highest. Post-hoc analysis indicated that 

GOM and SNE were not significantly different for Mn:Ca (p = 0.1745), and SNE and MAB 

were not significantly different for Cu:Ca (p = 0.1962).  

The most influential elemental variables for discriminating SNE and MAB regions in 

the leave-one-out cross validation LDFA (full model) were Ba:Ca, d18O, d13C, Mn:Ca, 

Mg:Ca, and Cu:Ca (Table 3.4). Except for d13C, these were also the isotopes that varied 

significantly with location in the ANOVA analyses above (Table 3.3). Zn:Ca and Sr:Ca were 

not included in the LDFA coefficient output due to low contribution in separating these 

populations. Classification accuracies for each of the eight models analyzed using leave-one-

out cross-validation LDFA are in Table 3.5. The model using significant isotopes plus d13C 

(model 4) resulted in the highest overall classification success (85%) and had regional 

classification accuracies of 88% and 82% for SNE and MAB, respectively. Assignment of 

GOM samples to a region of origin using this LDFA model resulted in 41 samples (87%) 

assigned to SNE and 6 samples (13%) assigned to MAB.  

 Variable importance for the RF analysis differed slightly from the LDFA (Table 3.6). 

The mean decrease in Gini coefficients showed that Ba:Ca remained the most influential 

variable, followed by d18O, for population discrimination of SNE and MAB. Mg:Ca, Cu:Ca, 
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and Mn:Ca all remained in the top five variables of importance, Zn:Ca was higher than d13C, 

and Sr:Ca contributed the least to classification. OOB error rates for each of the eight models 

analyzed using RF are in Table 3.7. The model using all isotopes except Sr:Ca (model 6) 

resulted in the lowest error rate (13%) and was used to assign samples of unknown origin 

(GOM). Default values for ntree and mtry were 500 and 2, respectively. At a classification 

threshold of 0.50 (i.e. 50% chance that a sample belongs to a certain region), 41 GOM 

samples (87%) were classified to SNE and 6 (13%) to MAB. For samples assigned to SNE, 

there was a maximum probability of 0.98, an overall average probability of 0.83, and three-

quarters had a probability of 0.80 or above. The maximum probability of samples assigned to 

MAB was 0.75, with an overall average probability of 0.66.  

 The LDFA and RF assigned the same number of GOM samples to each region (41 to 

SNE and 6 to MAB); however, two samples switched regions between models, i.e. one 

sample assigned to MAB in the LDFA was assigned to SNE in the RF analysis, and the 

opposite for the other sample. The probabilities of assignment reported in the RF analysis 

were near the 0.50 cutoff for both samples.  

 

Discussion 

Otolith Core Chemistry 

This was the first study to use otolith microchemistry as an approach to study black 

sea bass. The results of this work provide insight on the population composition in the upper 

GOM, a region to which this species recently expanded (McMahan et al. 2020). Elements are 

indicators of different processes and their abundance in the environment can be influenced by 
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many factors. Incorporation of elements into otolith material is shown to vary with 

exogenous and endogenous processes, many times interactively, and they differ between 

element, location, and fish species (Kalish 1989; Fowler et al. 1995a, 1995b; Thorrold et al. 

1997b; Hamer and Jenkins 2007; Barnes and Gillanders 2013; Sturrock et al. 2015). Despite 

the uncertainty in the mechanism of incorporation, these elements are useful in 

discrimination studies because they differ among groups of fish (Campana et al. 2000). 

Microchemical analyses revealed significant differences in the otolith core chemical 

signatures between SNE and MAB, indicating that these spawning populations present 

unique core signatures. Discrimination models were largely driven by elements that were 

statistically significantly different between regions, i.e. Ba:Ca, Mg:Ca, Mn:Ca, Cu:Ca, and 

d18O (Table 3.3). Although the results of each classification method were the same (i.e. 41 

GOM samples assigned to SNE and 6 to MAB), variable importance differed between each 

analysis (Tables 3.4 and 3.6). For example, Ba:Ca and Mg:Ca exhibited similar patterns 

between regions, but Mg:Ca was the fifth most important variable in the LDFA and third in 

the RF. Post-hoc analyses of these elements among regions showed that SNE had 

significantly higher concentrations of Ba:Ca and Mg:Ca in otolith cores than MAB (Figure 

3.4). Additionally, the GOM samples were not significantly different from SNE for either of 

these ratios, suggesting they may have been spawned in the same environment.  

Water temperature could explain the differences in Ba:Ca and Mg:Ca concentrations 

observed between SNE and MAB. An inverse relationship between temperature and 

incorporation of Ba and Mg into otoliths is described in several studies (Fowler et al. 1995b, 

1995a; Sturrock et al. 2015; Régnier et al. 2017; Moreira et al. 2018). The lower levels of 
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Ba:Ca and Mg:Ca observed in the cores of fish from MAB, which typically has warmer 

water than SNE, would follow this trend. The exact mechanism of regional differentiation 

was difficult to ascertain due to a variety of other factors that can cause these elements to 

vary in the environment. For instance, temperature’s relationship to Ba and Mg incorporation 

into otoliths is inconsistent (Fowler et al. 1995a; Hoff and Fuiman 1995; Bath et al. 2000; 

Elsdon and Gillanders 2002; Barnes and Gillanders 2013). These elements can also vary with 

salinity (Fowler et al. 1995a; Sturrock et al. 2015; Moreira et al. 2018), overall environmental 

availability (Bath et al. 2000; Campana et al. 2000; Elsdon and Gillanders 2002; Hamer and 

Jenkins 2007), and, in the case of Mg, physiological regulation (Hamer and Jenkins 2007; 

Barnes and Gillanders 2013).  

Discrimination between SNE and MAB in the models was heavily influenced by 

d18O. Average d18O values were highest in MAB, significantly different from GOM and 

SNE. SNE had the lowest values but was not significantly different from GOM. Oxygen 

isotopes are deposited in otoliths directly proportional to its abundance in the surrounding 

water (Kalish 1991; Thorrold et al. 1997a) and, thus, are influenced by environmental 

availability. Temperature has a well-documented, negative relationship with d18O in otoliths 

(Kalish 1991; Thorrold et al. 1997a; Elsdon and Gillanders 2002; Dorval et al. 2011; 

Carvalho et al. 2017a). The expectation was that d18O levels in MAB would be more 

depleted (generally higher temperatures) and higher in SNE (generally lower temperatures); 

however, the opposite was observed in this study. There did not appear to be any impact of 

sample source influencing extreme values in any region; samples at the lowest and highest 
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ends of each region were from different collaborative sources/states and caught using a 

variety of capture methods.  

Compiled bottom temperature data from collaborative black sea bass sampling 

(acquired in Chapter 2) shows considerable overlap in temperature regimes between regions 

(Supplemental Materials, Table 3.8). The temperature range at sites from May to September 

in SNE was between 7.0⁰C to 22.3⁰C with an overall average of 15.3⁰C. MAB ranged from 

9.1⁰C to 22.5⁰C with an overall average of 16.6⁰C, though data were limited for some months 

and statistical areas. Caruso (1995) noted spawning in Nantucket Sound peaked as water 

temperatures approached  20⁰C in 1993 and 18⁰C in 1994. McBride et al.'s (2018) collection 

of age 0 black sea bass in 2006-2007 reported bottom temperatures ranging from 6⁰C to 20⁰C 

in Nantucket Sound, as well as surface temperatures in Buzzards Bay from 14⁰C to 23⁰C. 

This information demonstrates the large amount of variability in temperature between black 

sea bass spawning areas within each region, as well as high recorded temperatures in 

Massachusetts waters. Additionally, Able et al. (1995) noted higher water temperatures at 

stations in Massachusetts than in the MAB where age 0 black sea bass were captured. A high 

number of SNE spawning adults in this study were sampled from Buzzards Bay and 

Nantucket Sound, where temperatures can be over 20⁰C, and may explain the unexpected 

results for d18O observed in this study. Additionally, half of the MAB samples in this study 

came from statistical area 614 in July, where the average temperature was 16⁰C. Thus, it is 

possible SNE caught black sea bass were spawned in warmer waters than MAB caught fish, 

which would support the observed d18O results.  
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 Mn:Ca and Cu:Ca were also important variables used to discriminate regions in this 

study. Factors that influence Mn and Cu incorporation into otoliths include temperature, 

salinity, and environmental availability (Fowler et al. 1995a; Sturrock et al. 2015). 

Additionally, these elements are biologically important (Kremling 1985; Hamer and Jenkins 

2007) and physiologically regulated (Thorrold et al. 1998). The average concentrations for 

both ratios were highest in MAB and lowest in GOM, with SNE falling between the two 

(Figure 3.4). Though GOM concentrations for these elements were not as similar to SNE, 

they were clearly more closely related to SNE than MAB.   

The main sources for Mn and Cu in marine environments are river outflow, 

anthropogenic runoff, and sediment disturbance (Kremling 1985; Shiller 1997; Van Hulten et 

al. 2017). Many of the fish captured in MAB were located near the Hudson and Delaware 

river outflows during the spawning season (Figure 3.1). The expectation was that these rivers 

contributed to high levels of these elements in the samples studied; however, the direction of 

the Hudson River outflow changes seasonally. Chant (2008) models how oceanographic 

conditions in the winter allow for the expected river outflow transport along the New Jersey 

coast; but, during the summer months, a freshwater bulge is created and forced north along 

the Long Island coast. If this is the case, black sea bass larvae off the coast of New Jersey in 

the summer were unlikely to experience an influx of elemental compounds from the Hudson 

River outflow. Still, physiological regulation, uptake, and incorporation of these elements 

into otolith material remains unclear (Hamer and Jenkins 2007; Loewen et al. 2015); and, an 

in-depth analysis of why elemental concentrations differed between regions in this study was 

not possible.  
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 Though there were no statistically significant differences within otolith cores, average 

values for d13C and Sr:Ca in MAB were slightly lower than SNE (Figure 3.4). GOM and 

SNE averages for both these elements were almost identical, adding to the similarity between 

these two regions observed in these analyses. The inclusion of d13C in the RF analysis 

reduced error and it was the third most important variable in the LDFA; however, the same 

was not true for Sr:Ca (Tables 3.4 and 3.6). Sr:Ca did not change the LDFA model’s 

accuracy (Table 3.5) and inclusion in the RF analysis raised the OOB error rate (Table 3.7). 

Though these elements followed similar patterns, the reason d13C had a bigger impact on the 

discrimination of these regions was unclear. 

Despite the diverging impacts on error rates, the lack of significant differences 

between SNE and MAB for d13C and Sr:Ca were not surprising. Dissolved inorganic carbon 

(DIC) in the surrounding environment is the main source of carbon incorporation into the 

otolith structure; however, carbon incorporation is also heavily influenced by dietary sources 

(Kalish 1991; Thorrold et al. 1997a). Black sea bass are opportunistic omnivores (Mercer 

1989; Steimle et al. 1999; McMahan et al. 2020); therefore, similar d13C values between 

regions were expected. However, the slight difference in d13C in the MAB samples could be 

due to prey type available in one region and not in the other (McMahan et al. 2020). 

Temperature and salinity influences on d13C incorporation into otoliths are inconsistent 

(Kalish 1991; Elsdon and Gillanders 2002; Carvalho et al. 2017a); and, as a result, it was 

difficult to postulate whether temperature differences between SNE and MAB impacted 

d13C values in these otoliths.  
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The concentration of Sr in the marine environment remains relatively constant 

(Thorrold et al. 1997b; Elsdon et al. 2008); therefore, a significant difference between 

regions for Sr:Ca in otoliths was not expected. The slight depression in Sr:Ca values in MAB 

may be related to the freshwater outputs near those sampling regions, as seen in other studies 

(Carvalho et al. 2017a; Moreira et al. 2018). Salinity (and temperature) effects on the 

incorporation of Sr into otoliths are inconsistent (Townsend et al. 1995; Kalish 1989, 1990; 

Townsend et al. 1989, 1992; Sadovy and Severin 1992; Fowler et al. 1995a; Hoff and 

Fuiman 1995; Bath et al. 2000; Elsdon and Gillanders 2002; Sturrock et al. 2015); thus, it 

was unclear whether the magnitude of the Hudson and Delaware River outflows impacted 

Sr:Ca ratios in these samples. Additionally, the summer freshwater bulge pushed north into 

the Long Island coast from the Hudson Canyon discussed above would reduce expected 

impacts to salinity along the mid-Atlantic coast (Chant et al. 2008).   

Zn incorporation into otoliths is impacted by temperature (Fowler et al. 1995b, 1995a; 

Sturrock et al. 2015); however, as a biologically important element (Conway and John 2014; 

Middag et al. 2019) its uptake, regulation, and incorporation into otolith material is less 

understood (Loewen et al. 2015). Similar to Mn and Cu, riverine input and anthropogenic 

activities are important sources of Zn in the marine environment (Thorrold et al. 1997b; 

Conway and John 2014). A slightly higher mean value of Zn:Ca was observed in SNE 

(Figure 3.4), though inspection of raw data better displays the dispersion and lack of 

significant difference between regions (Supplemental Material, Figure 3.6). Including this 

variable resulted in lower accuracy for the LDFA model (Table 3.5), but, conversely, it 

lowered OOB error rate in the RF model (Table 3.7). Zn:Ca was included in the RF model; 
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however, since the final assignment of GOM samples was the same for both models (i.e. 41 

samples assigned to SNE, 6 to MAB), Zn:Ca was likely not essential in delineating the GOM 

samples.   

 Despite the limitations surrounding the understanding of otolith element regulation 

and incorporation, otolith microchemistry is useful to infer population structure (Elsdon et al. 

2008; Steer et al. 2009) and to identify natal origin (Campana et al. 1994, 2000). The exact 

mechanisms driving the chemical differences observed in otoliths between SNE and MAB in 

this study remain unclear; however, classification of unknown origin fish (GOM) was 

possible using these unique fingerprints.  

Hypotheses and Classification 

The hypothesis that the GOM otolith core chemical signatures would match with 

SNE’s was based on the proximity of these two regions, as well as on colloquial theories and 

tagging studies. One theory is that fish or larvae are transported through the Cape Cod Canal, 

from spawning activity in Buzzards Bay, and advected north. McBride et al. (2018), 

however, notes that there are no ichthyoplankton data to support this idea. Alternatively, it is 

thought that fish in the GOM could be SNE spawned individuals that strayed north when 

migrating back from offshore overwintering grounds. Moser and Shepherd (2009) tagged 

black sea bass from Massachusetts to North Carolina and found that black sea bass returned 

to previous spawning areas. The high percentage of tag returns to each spawning region can 

be seen in the Supplementary Materials, Table 3.9 (Table 2 from SARC 2016); however, 

Moser and Shepherd (2009) observed straying behavior more prevalent in fish tagged north 

of the Hudson Canyon. Six percent of the fish from north of the Hudson Canyon were 
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captured 1 degree square from the release location, versus 0.005% of fish from south of the 

Hudson Canyon exhibiting the same behavior (Moser and Shepherd 2009). This, in addition 

to a low rate of fish tagged in the south but recovered in the north (0.70%; Supplementary 

Materials, Table 3.9), supports the theory that SNE fish may have strayed to the GOM. 

Though there are few documented occurrences of MAB fish straying north, this study 

aimed to look at the possibility of GOM fish originating from this region. A change in 

migration pattern or behavior could have major implications for the management of this 

species, thus highlighting the importance of exploring this possibility. Also, there are no 

published tagging studies completed in recent years to track these fish or record any changes. 

LDFA and RF analyses both assigned 41 (87%) of the GOM samples to SNE and 6 (13%) to 

MAB. The overall average probability of samples assigned to MAB from the RF model was 

0.60, with a maximum probability of 0.75. These values were lower than those for fish 

assigned to SNE, which had an overall probability of 0.83 and a maximum probability of 

0.98. This indicates that there was less certainty that the samples assigned to MAB truly 

originated from this region, compared to the samples assigned to SNE. Additionally, there 

were two GOM samples that were assigned to different regions in each model (i.e. one 

sample assigned to MAB in the LDFA was assigned to SNE in the RF analysis, and vice 

versa). Both GOM samples had assignment probabilities very close to 0.50; therefore, it was 

not surprising that there was a difference in these samples between models. 

Overall, most of the GOM samples were assigned to SNE with a high probability of 

origin from that region. This confirmed the pattern observed in individual isotope ANOVA’s; 

where, for most elements, GOM otolith chemical concentrations aligned more closely to the 



80 
 

concentrations measured in SNE samples. Based on these results, future stock assessments 

could assume life history traits of GOM fish align with those of the SNE sub-stock; however, 

recent work by McMahan et al. (2020) suggests differently. Their work found that black sea 

bass caught in Maine waters grew faster and reached maturity at a younger age than those 

caught in northern and southern Massachusetts. This finding as well as the assignment of 

several samples to the MAB in the current study, highlight the need for more research on 

black sea bass movement and possible residency in the upper GOM.  

Assumptions and Other Considerations 

 No Spawning in GOM 

 The aim of this study was to determine the source of fish caught in the upper GOM to 

assess the possibility of unexpected MAB contribution to this region. This objective assumed 

no black sea bass spawn within the GOM, particularly in Maine where these samples were 

captured. Although there is evidence of YOY, juveniles, and mature adults present within the 

lower GOM, the assumption that spawning was not occurring appears to be sound given the 

current information available. McBride et al.'s (2018) analysis of bottom-trawl survey data 

from the Northeast Fisheries Science Center (NEFSC) and Massachusetts Division of Marine 

Fisheries indicated that nursery grounds, YOY, and spawning adults have moved northward 

over the last 40 years. YOY black sea bass were more abundant in Cape Cod and 

Massachusetts Bay waters from 2008-2016 (n = 1,233) than from 1978-1987 (n = 121; 

McBride et al. 2018). However, few spawning condition (or spent) females were found in 

these areas, which “would provide the most direct evidence of spawning” in the GOM 

(McBride et al. 2018). Additionally, the NEFSC survey extends to mid-coast Maine (~44⁰N), 
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but the northernmost occurrence of black sea bass YOY or developing females was 42⁰N (off 

Gloucester, MA). McMahan (2017) also observed black sea bass YOY in Massachusetts 

waters, though they were significantly more abundant south of Cape Cod, and no YOY were 

found in Maine. Conversely, 10 out of the 47 GOM black sea bass used in the current study 

were in ‘ripe’ spawning condition. This information, McMahan’s observations, and 

McBride’s prediction that spawning will eventually be seen in the GOM highlights the 

possibility that spawning within this region is beginning to occur or will in the future. The 

ripe GOM samples in this study were from year classes 2011-2014; thus, based on the 

information available, it is unlikely that spawning in the GOM, especially in the upper GOM, 

was occurring during these years.  

Representative Spawning Regions 

 In natal origin studies, acquiring fish from all spawning or larval sources to represent 

each natal region can be difficult (Miller et al. 2005; Gibb et al. 2017). Black sea bass exhibit 

a general continuum of spawning activity along the Atlantic coast versus discrete locations 

(G. Shepherd, personal communication, 2017), which can be represented by age-0 black sea 

bass fall distributions seen in the Supplemental Materials, Figure 3.7 (Supplemental Figure 4 

from McBride et al. 2018). The objective of this study was formulated considering this 

behavior and used the recent spatial population split at the Hudson Canyon (NEFSC 2017) to 

discern regions; looking at a wide spatial range versus attempting to split the populations 

further into arbitrary segments.  

Spawning condition black sea bass from SNE and MAB were selected based on the 

assumption that this species returns to natal regions for spawning and would, therefore, 
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characterize these regions. A violation of this assumption would mean, for example, that the 

fish used to represent SNE actually represented MAB (Campana et al. 1994). Natal homing 

and spawning site fidelity are well documented for black sea bass. As previously discussed, 

the Moser and Shepherd (2009) tagging study observed a high rate of return to spawning 

locations the following spring (>90%; Supplementary Materials, Table 3.9). Kolek (1990) 

and Fabrizio et al. (2013) also observed returning fish to tagged locations the year following 

release, indicating homing behavior. Additionally, the distinct regional differences observed 

in otolith core elemental concentrations and overall chemical signatures in this study support 

the assumption that these fish represented separate regions.  

Interannual Variation 

 Microchemical studies often aim to match exact year classes for comparison to avoid 

the assumption of non-significant interannual variation in chemical fingerprints. Data 

limitations for the black sea bass samples acquired for this study (i.e. availability of maturity 

data) led to the use of a range of year classes (Table 3.2). Though most of the year classes 

overlap, there was one year (2016) represented in the GOM samples that was not available 

for SNE and MAB. Annual variation in elemental concentrations, or misrepresentation of a 

year class, can impact the accuracy of classification models (Tanner et al. 2012; Maguffee et 

al. 2019). Figure 3.8 (Supplemental Materials) shows each element concentration by year 

class and region. Not only was the 2016 GOM year class only one sample, it appeared to lie 

within normal ranges for all elements. These plots show some interannual variation among 

elemental concentrations within regions, which was expected; however, no major trends or 

outliers appear to influence the overall chemical signature in each region. A possible 
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exception may include d13C for the GOM, but factors influencing this element in otoliths 

was discussed above and described that variability is common. 

 Analysis of multiple year classes and identification of multi-year regional chemical 

fingerprints in this study may give the opportunity for further use in the future. Several 

studies showed good classification and re-assignment accuracies when using multi-annual 

signatures (Brown 2006; Tournois et al. 2013). The work in this study may be possible to use 

as baseline data for future microchemical analyses; however, Tournois et al. (2013) suggests 

connectivity studies should be completed annually to track any deviations in elemental 

concentrations. 

 Maternal Elemental Transfer 

Microchemistry studies show there can be an elevated concentration of certain 

elements in the otolith primordium (Laugier et al. 2015; Artetxe-Arrate et al. 2019; Maguffee 

et al. 2019), often attributed to maternal transfer during egg development (Ruttenberg et al. 

2005). There is concern that primordia concentrations do not accurately reflect the natal 

region and instead represent the water chemistry surrounding the female during gonadal 

development (Ben-Tzvi et al. 2007; Artetxe-Arrate et al. 2019). Black sea bass begin inshore 

migration to spawning locations from offshore overwintering grounds by April, when water 

temperatures begin to warm (Drohan et al. 2007). Wilk et al. (1990) found that peak GSI 

occurs in July (only 4% ripe in May) in the New York Bight, and Wuenschel et al. (2011) 

found that peak GSI occurred in May and June in Massachusetts and Rhode Island. Yet, this 

work does not portray when development of ovaries and eggs begin. Mercer's (1978) 

histological work showed that stage 3 of oogenesis, representing the start of ovarian activity, 
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began in May for black sea bass in the MAB. This suggests that ovary development does not 

occur until after the spring migration inshore has begun.  

Compiled fish maturity information (females only) for otolith samples collected for 

work described in Chapter 1 is shown in the Supplemental Material (Table 3.10). In SNE, 

developing females were present starting in April, though data were limited for this month 

and months prior. MAB data show a few developing females in February and March, though 

most were identified as resting in those months. Even though there were black sea bass in the 

developing stage before April in the MAB, these fish were caught inshore; therefore, any 

maternal elemental influence caused by incorporation from the surrounding environment 

would be from the region of interest.  

Maguffee et al. (2019) measured otoliths starting 100 microns from the primordia, 

estimating the timing of exogenous feeding. Identification of the primordia within the opaque 

core of black sea bass otoliths was difficult with the camera resolution and lighting options 

on the LA-ICPMS; therefore, it was not feasible to follow a similar method accurately. 

Despite this, the information presented above suggests that ovary development does not 

begin to occur until inshore migration has begun. This would mean that elemental 

incorporation from the environment by the female would occur within the spawning regions 

identified in this study. If future microchemical studies are conducted to look at finer spatial 

detail, however, a method avoiding the primordium should be considered.  

Opaque Core Size Variability 

 Otolith core measurements (opaque region only) in this study were slightly smaller 

than those measured by Wenner et al. (1986) for the southern stock of black sea bass. Growth 
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rates for fish in the northern stock are faster than farther south (Mercer 1978; Kolek 1990), 

though Mercer (1978) does note that growth for ages 1 and 2 is faster in the south. Variability 

in the size of the opaque region of the otolith core was likely an artifact of spawning date 

(Wenner et al. 1986; Laugier et al. 2015). Black sea bass in the northern stock spawn from 

April through October, peaking in June-July (Mercer 1978; Kolek 1990; Wuenschel et al. 

2013; McBride et al. 2018). A fish spawned earlier in the season has a longer time to grow 

before migrating in the fall; therefore, the core measurement for that fish would be larger.  

Otolith microchemistry studies often use a fixed transect length for all samples; 

however, the aim of this study was to target the area prior to fall migration out of natal 

regions. Thus, the difference in spawning dates influences the amount of time fish spend in 

these areas. Important chemical data could be missed if the transect was too short for some 

samples, or material associated with regions outside the natal area could be included if the 

transect was too long. Wenner et al. (1986) notes that the central opaque region in black sea 

bass otoliths represents the first 1-4 months of life. Age 0 juveniles display a high degree of 

site fidelity (Able and Hales 1997), remaining in natal regions from 1 to 6 months until fall 

migration (Fabrizio et al. 2013). Therefore, the central opaque region was targeted for 

analysis as it was believed to represent the period prior to fall migration.  

Not using a fixed transect length questions whether this variability impacts elemental 

concentrations due to the amount of material analyzed per sample. Although there was a 

significant effect of core measurement by region, there was very low correlation and no 

patterns observed for isotope values (Figures 3.3 and A.1). Therefore, even though the use of 
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a standardized transect length is recommended, there was little concern of systematic effects 

on chemical concentrations attributable to this factor in this study.  

Recommendations 

The population separation at the Hudson Canyon was a result of observed differences 

between MAB and SNE populations from tagging studies, fisheries independent trawl 

surveys, commercial and recreational fisheries data, and oceanographic conditions between 

each region (Cadrin et al. 2016; Miller et al. 2016b; SARC 2016). Based on results from this 

study, in conjunction with these differences, a substantial number of black sea bass spawned 

in the MAB and traveling to the GOM is unlikely. Nonetheless, the MAB natal origin 

assignment of several GOM individuals in this study highlights the need for additional 

research. These fish are possible strays, or were misclassified (lower associated assignment 

probabilities), but additional research is required to answer this question. Black sea bass 

tagging studies are limited to Cape Cod and farther south (Kolek 1990; Able et al. 1995; 

Able and Hales 1997; Moser and Shepherd 2009; Fabrizio et al. 2014); therefore, a GOM 

tagging study is prudent and overdue.  

Additional otolith microchemistry studies are also warranted. A natal origin analysis 

with finer spatial detail could help elucidate how black sea bass are moving from SNE into 

the GOM. This was the first otolith microchemistry study completed for this species, thus, 

there is a wide range of opportunities to use this technique to learn more about black sea bass 

stock structure and migration patterns. Supplementing this work with genetic analyses would 

also contribute more detailed information about population structure in this region. 
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Conclusion 

 

This study identified unique core elemental fingerprints for SNE and MAB that were 

used to successfully discriminate known samples between these regions. Statistically 

significant variations in Ba:Ca, Mg:Ca, Mn:Ca, Cu:Ca, and d18O contributed most to 

discrimination models; though, d13C was also an important variable in both LDFA and RF 

models. Zn:Ca and Sr:Ca were less important for discrimination, although, Zn:Ca reduced 

error in the RF model. GOM classification analyses resulted in 41 samples assigned to SNE 

as the region of natal origin and 6 to MAB. These results were largely as expected (i.e. most 

samples were assigned to SNE); however, the few samples assigned to MAB may highlight a 

need for further research or continued monitoring.  

 Not much is known about black sea bass’ movement, interactions, or potential for 

long-term success in the GOM. Distribution shifts of a species into a new region can have 

cascading effects and major implications for management (Fogarty et al. 2007; Bell et al. 

2015; Pershing et al. 2015). Differences in life history characteristics, e.g. growth rates 

(Kolek 1990; Caruso 1995; McMahan et al. 2020), between the populations north and south 

of the Hudson Canyon could influence proliferation in this new region or response to 

exploitation. Identifying the natal origin of individuals caught in the upper GOM gives 

insight on their movement into this region and indicates what life history characteristics they 

may possess. This study confirms hypotheses that the black sea bass observed in the GOM 

largely come from SNE; however, additional research is needed to determine whether the 

evidence of MAB individuals in the GOM is a rare occurrence, or if there are changes in this 

species’ migratory behavior occurring.  
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 This work supplies information to managers for use in future stock assessments. The 

data suggested that most of the fish from GOM are of SNE origin and, until further work is 

completed on this species, life history traits of these fish are more likely similar to those of 

fish from SNE, rather than MAB. Recent trends show black sea bass continuing to propagate 

into the GOM and additional work should be completed to learn more about this species’ 

movement, residency, and potential for spawning in this new region.  
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Figures 

 

 
Figure 3.1: Map of samples used for LA-ICPMS and GB-IRMS. Triangles represent GOM, 

circles are SNE, and squares are MAB. Size of symbols are weighted by sample size. Dark 

circle represents samples (n = 3) designated to SNE (based on the Northeast Statistical Area 

separation in SARC 2016) removed from analyses because of proximity to MAB.  
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Figure 3.2: Sectioned black sea bass otolith with core transect for microchemical analyses. 

White solid line indicates the sampling transect through the opaque region of otolith core for 

LA-ICPMS and GB-IRMS. 

 

 
Figure 3.3: Correlation coefficients between core measurements and isotopic variables for 

each region (Pearson’s correlation, alpha = 0.05).  
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Figure 3.4: Estimated marginal means of each isotope by Region. Letters denote significant 

differences (Tukey’s HSD; alpha = 0.05). Error bars represent two standard errors of the 

estimated marginal mean.  
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Tables 

 

 

Table 3.1: Pearson’s correlation coefficients between isotopes (alpha = 0.05). Gray 

highlighted values are within-element correlations used for comparisons. Mn55 was removed 

from correlation analysis because no other manganese isotope was evaluated. 

 

  Mg24 Mg25 Mg26 Cu63 Cu65 Zn64 Zn66 Sr86 Sr87 Sr88 Ba136 Ba137 Ba138 

Mg24 1 0.99 0.99 0.19 0.18 0.48 0.42 0.11 0.17 0.1 0.03 0.03 0.04 

Mg25   1 0.99 0.19 0.18 0.47 0.4 0.12 0.19 0.11 0.01 0.01 0.03 

Mg26     1 0.18 0.17 0.49 0.43 0.1 0.15 0.07 0.01 0.01 0.03 

Cu63       1 0.98 0.24 0.25 0.11 0.08 0.04 -0.04 -0.01 -0.02 

Cu65         1 0.26 0.28 0.09 0.07 0.03 -0.04 -0.01 -0.01 

Zn64           1 0.89 0.08 0.07 0.04 0.04 0.09 0.16 

Zn66             1 0.05 0.07 0.01 0.03 0.08 0.13 

Sr86               1 0.86 0.79 0.22 0.23 0.21 

Sr87                 1 0.79 0.15 0.17 0.17 

Sr88                   1 0.23 0.24 0.24 

Ba136                     1 0.98 0.96 

Ba137                       1 0.98 

Ba138                         1 

 

 

 

 

 

Table 3.2: Sample data for otoliths used in microchemical analyses. F = female; M = male; 

Unk = unknown sex. 

 

Region 
Age Range 

(years) 
Year Classes F M Unk Gear Type Total 

GOM       
2 - 4 2010 - 2016 30 16 1 

Trap; Trawl; 

Hook & Line 
47 'Mixed Stock' 

SNE 

2 - 6 2010 - 2015 26 24 0 
Trap; Trawl; 

Hook & Line 
50 'Spawning Adults' 

MAB 
2 - 6 2010 - 2015 17 27 0 Trap; Trawl 44 'Spawning Adults' 
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Table 3.3: ANOVA results examining the effect of Region on each isotope. Asterisk denotes 

that one outlier was removed from analysis. 

 

Isotope F-value df p-value 

d18O 12.169 2 < 0.0001 

d13C 1.540 2 0.2180 

Mg:Ca* 18.543 2 < 0.0001 

Mn:Ca 8.474 2 < 0.001 

Cu:Ca 12.223 2 < 0.0001 

Zn:Ca 3.134 2 0.0467 

Sr:Ca 1.043 2 0.3553 

Ba:Ca 19.154 2 < 0.0001 

 

 

 

 

Table 3.4: Standardized LDFA coefficients to assess variable importance. Values are listed in 

decreasing order. Zn:Ca and Sr:Ca left out of model output due to low importance. 

  

Isotope 
 LD1 

Coefficients 

Ba:Ca -1.0109 

d18O 0.5404 

d13C -0.5124 

Mn:Ca 0.4334 

Mg:Ca -0.3564 

Cu:Ca -0.3023 
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Table 3.5: LDFA percent accuracy for candidate models. Model with highest accuracy 

chosen for analysis (Model 4). 

 

 

No. Candidate Model Accuracy 

1 Region ~ all isotopes 84.04% 

2 Region ~ significant isotopes (sig) 81.91% 

3 Region ~ sig + Zn:Ca 81.91% 

4 Region ~ sig + d13C 85.11% 

5 Region ~ sig + Sr:Ca 81.91% 

6 Region ~ sig + Zn:Ca + d13C 84.04% 

7 Region ~ sig + Zn:Ca + Sr:Ca 80.85% 

8 Region ~ sig + d13C + Sr:Ca 84.04% 

 

 

 

Table 3.6: RF mean decrease in Gini coefficient for variable importance. Values are listed in 

decreasing order of importance. 

 

Isotope 
Gini Mean 

Decrease  

Ba:Ca 10.88 

d18O 7.83 

Mg:Ca 5.70 

Cu:Ca 5.63 

Mn:Ca 4.73 

Zn:Ca 4.15 

d13C 3.85 

Sr:Ca 3.54 
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Table 3.7: RF OOB error rate for candidate models. Model with lowest error rate chosen for 

analysis (Model 6).  

 

No. Candidate Model 
OOB   

Error Rate 

1 Region ~ all isotopes 15.96% 

2 Region ~ significant isotopes (sig) 26.60% 

3 Region ~ sig + Zn:Ca 18.09% 

4 Region ~ sig + d13C 21.28% 

5 Region ~ sig + Sr:Ca 23.40% 

6 Region ~ sig + Zn:Ca + d13C 12.77% 

7 Region ~ sig + Zn:Ca + Sr:Ca 20.21% 

8 Region ~ sig + d13C + Sr:Ca 20.21% 
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Supplemental Materials 

 

Additional Figures and Tables 

 

 
 

Figure 3.5: Isotope concentration by core measurements for each region (raw data). Triangles 

represent GOM, circles SNE, and squares MAB. 
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Figure 3.6: Zn:Ca raw data by each region. Red squares are region means; red lines are 1 

standard error of the mean.  

 

 
Figure 3.7: Age 0 black sea bass (≤ 12 cm) distribution in the fall Northeast Fisheries Science 

Center bottom trawl survey from 1978-2016 (Supplemental Figure 4 from McBride et al. 

2018). The isobars are 50 and 100 m; sample sizes indicated by n.  
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Figure 3.8: Boxplots for each isotope by region and year class. Blue numbers indicate sample 

sizes and apply to all isotopes.  
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Table 3.8: Average bottom water temperature (⁰C) for SNE and MAB from collaborative 

black sea bass data (Chapter 2). SNE data was from MA-DMF Resource Assessment and 

Ventless Trap Surveys. MAB data was from NEFSC bottom trawl survey and NJ Ventless 

Trap Survey (Rutgers University). Cells highlighted in gray are the months in which 

microchemical samples were used, for each region. Northeast statistical areas are ordered 

from north to south. 

 

  

Statistical 

Area 
May Jun Jul Aug Sept 

Region 

Average 

S
N

E
 

514 7.8 7.0     19.3 

15.3 
537 9.9 17.1 14.5 16.5 17.8 

538 13.1 17.7 20.3 22.3 20.9 

539 8.3       17.3 

  

Monthly 

Average 
9.8 13.9 17.4 19.4 18.9   

                

  

Statistical 

Area 
May Jun Jul Aug Sept 

Region 

Average 

M
A

B
 

614   13.5 16.0 22.5 18.7 

16.6 

615 9.1       18.3 

621         17.6 

625         21.1 

626         12.7 

  

Monthly 

Average 
9.1 13.5 16.0 22.5 17.7   

 

 

Table 3.9: Black sea bass NEFSC tag recoveries by region, north and south of the Hudson 

Canyon from 2002-2007 (Table 2 from SARC 2016). 

 

  
Recovery 

location 

Release 

location 
North South 

North 93.1% 6.9% 

South 0.7% 99.3% 
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Table 3.10: Compiled fish maturity information (females only) for samples collected in 

Chapter 1 (n = 1,411): (a) SNE and (b) MAB. Maturity codes: T = resting; D = developing; R 

= ripe; U = running ripe; S = spent. 

 

 

(a) Month T D R U S Count 

  Jan 75%       25% 8 

  Feb           NA 

  Mar 100%         1 

  Apr   89% 11%     9 

  May 1% 84% 12% 3%   457 

  Jun 0% 70% 27% 2%   252 

  Jul 8% 38% 27% 18% 9% 179 

  Aug 12% 23% 16% 33% 17% 129 

  Sep 73% 5% 1% 1% 20% 282 

  Oct 69% 3%     28% 32 

  Nov           NA 

  Dec           NA 

                

(b) Month T D R U S Count 

  Jan           NA 

  Feb 89% 7%     4% 27 

  Mar 91% 9%       11 

  Apr   100%       6 

  May           NA 

  Jun           NA 

  Jul           NA 

  Aug       100%   2 

  Sep     100%     16 

  Oct           NA 

  Nov           NA 

  Dec           NA 
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SNE YOY and SNE Spawning Adult Comparisons 

 

YOY from SNE were collected from the Massachusetts Division of Marine Fisheries 

(MA-DMF) Fall Resource Assessment Survey in 2017 (n = 29). One additional YOY sample 

was used from the MA-DMF otolith archive from 2016. Otoliths were embedded using West 

System® epoxy resin and hardener in silicone molds. Transverse sections (0.5mm) along the 

dorsoventral plane, containing the otolith core were removed using a low speed Buehler® 

Iso-MetTM diamond blade saw. Otoliths were mounted, photographed, measured, and 

analyzed for core elemental concentrations as described in the study above. Nine samples 

were removed due to issues of broken otolith sections or instrumentation error. 

Skewed isotopic distributions required data transformations for SNE YOY and SNE 

spawning adults. Mg:Ca, Mn:Ca and Ba:Ca were log10 transformed, Cu:Ca and Zn:Ca were 

inverse transformed, and Sr:Ca, d18O, and d13C were not transformed. Normality, 

homogeneity of variance and covariance, and outliers were assessed using diagnostic plots, 

the Shapiro-Wilk test (alpha = 0.05), and Levene’s test (alpha = 0.05). Mg:Ca did not pass 

the Shapiro-Wilk test (p = 0.0055), and Cu:Ca did not pass Levene’s test (p = 0.015); 

however, inspection of diagnostic plots showed very little departure from normality and 

homogeneity, respectively, and parametric tests were considered suitable for these isotopes.  

The elemental fingerprints differed significantly between each of these groups 

(MANOVA, Pillai’s Trace = 0.77, F = 25.82, df = 8, p < 0.0001). Individual elemental 

ANOVAs showed significant differences in the estimated marginal means for d18O (F = 

34.488, df = 1, p < 0.0001), d13C (F = 14.852, df = 1, p < 0.001), Mg:Ca (F = 114.17, df = 1, 

p < 0.0001), Cu:Ca (F = 17.719, df = 1, p < 0.0001), Zn:Ca (F = 8.853, df = 1, p < 0.01), and 
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Ba:Ca (F = 14.938, df = 1, p < 0.001). No significant differences were seen in Mn:Ca (F = 

0.2432, df = 1, p = 0.6235), or Sr:Ca (F = 0.3413, df = 1, p = 0.561). These results are shown 

visually in Figure 3.9.  

The comparisons between SNE spawning adults and SNE YOY show significantly 

different core elemental compositions, except for Mn:Ca and Sr:Ca. Though the YOY 

samples were expected to corroborate the elemental fingerprint in the SNE spawning region, 

discrepancies in years and areas sampled between each group could result in the differences 

observed. The year classes sampled for SNE spawning adults were from 2010-2015 

compared to the 2016-2017 range for SNE YOY. Additionally, YOY largely came from 

Buzzards Bay and the Vineyard Sound (Figure 3.10); whereas, SNE spawning adults were 

sampled from a larger area of the region (Figure 3.1). As shown in Figure 3.8, interannual 

variation is common for elements within regions. Upon closer inspection, all the SNE YOY 

isotopes lie within the ranges of variability for SNE adults observed in this figure, except for 

Mg:Ca. The average concentration for Mg:Ca in SNE YOY is approximately five times 

higher than the average for SNE adults. The reason for this magnitude of a difference is 

unclear.  

The true source of disparity between elemental fingerprints is difficult to discern; 

however, most elemental concentrations for SNE YOY were within the interannual variation 

observed in SNE adults. Nevertheless, SNE YOY data were excluded from the mixed stock 

classification analysis because they represented years not accounted for in the other regions. 

Additionally, no YOY were collected from MAB to include in conjunction with SNE YOY. 

The use of spawning condition adults in the mixed stock classification analysis was 
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representative of all spawning locations and years and, thus, were more reliable proxies for 

regional chemical fingerprints.  

 

 
 

Figure 3.9: SNE spawning adult (n = 50) and SNE YOY (n = 21) estimated marginal means 

for each isotope. Letters denote significant differences (ANOVA; alpha = 0.05). Error bars 

represent two standard errors of the estimated marginal mean.  
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Figure 3.10: Map of SNE YOY samples used for microchemical analyses (n = 21). 

 

 

 

Additional Random Forest Probability Threshold Levels 

 

 Additional RF probability levels were analyzed to look at the effects on GOM sample 

assignment. A threshold probability level of 0.50 allowed for all samples to be assigned and 

no data were lost from the analysis; however, those samples just above the 0.50 level were 

allocated to a group despite a large amount of uncertainty. Figure 3.11 shows that increasing 

the probability threshold increased the number of samples that were not assigned to either 

group. One sample from SNE becomes unassigned at a level of 0.55, followed by the 

removal of two samples from MAB at 0.60. Ultimately, six samples were removed from SNE 
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and four samples from MAB at a probability threshold of 0.70. At this threshold, the overall 

average probability of samples assigned to SNE was 0.87 versus 0.73 for MAB. Though 

some samples were removed from each region as the threshold was increased, the pattern of 

assignment remained the same. A large percentage of the GOM samples were assigned to 

SNE and these samples had a high probability of originating from this region. Few samples 

appeared to originate from MAB and the average probability of those samples was lower.  

 

 

 
Figure 3.11: Bar chart of GOM samples assigned to each region for assignment probabilities 

between 0.50 and 0.70. Numbers above bars are the percentages of GOM samples assigned 

to each region within each probability level.  
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CHAPTER 4 

 

CONCLUSION 

 

 

 

This thesis provided important conclusions regarding the validity of the otolith ageing 

method for the northern stock of black sea bass. Further, for the first time, otolith 

microchemical analyses were used to elucidate the natal origin of black sea bass caught in the 

upper Gulf of Maine (GOM). These results contributed insights into the species’ life history 

in the northern Atlantic stock, particularly age, migration, and population structure. 

Validating the otolith ageing method for the northern stock of black sea bass 

increases the confidence in the quality and accuracy of age data used in stock assessments. 

This study demonstrated that one opaque annulus is deposited per year in late spring or early 

summer. This finding was consistent throughout the age range of this species, as well as for 

the populations north and south of the Hudson Canyon. This study also validated the location 

of the first annulus, a region that often leads to high rates of ageing error and had not 

previously been completed in the published literature. Additionally, this was the first ageing 

project for this species that utilized samples representing the entire spatial range of the 

northern stock, as well as included a variety of capture methods and fishery types. Based on 

this study, use of otoliths for future ageing is recommended, particularly for data contributed 

to upcoming stock assessments. 
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Information gathered from otolith microchemistry in this study identified unique core 

chemical signatures for the two known spawning regions of black sea bass in the northern 

stock, Southern New England (SNE) and the mid-Atlantic Bight (MAB). The differences 

between these two regions were largely driven by Ba:Ca, Mg:Ca, d18O, Mn:Ca, and Cu:Ca, 

though d13C was also useful for discrimination. Comparing otolith core chemical signatures 

of black sea bass caught in Maine waters (grouped as GOM) to these two regions showed 

that most elemental concentrations were closer to SNE than MAB. Further analyses assigned 

87% of the GOM samples to SNE as the region of natal origin and 13% to MAB. This study 

confirmed the assumption that GOM fish have travelled from SNE; however, the presence of 

possible MAB spawned black sea bass was surprising. Future stock assessments should 

presume that most fish in the GOM are of SNE origin; however, additional studies are 

needed to track and monitor migration and residency in the GOM. 

Movement of the northern stock of black sea bass into Maine waters has raised many 

questions about changes to life history, behavior, and migration. This body of work utilized 

methodology not previously employed to study this species and presented insights into 

impacts this movement has had on regional populations. Additional research on this species 

in the GOM is needed - first, to better understand the current movement of black sea bass 

into this region, but also to monitor its long-term success, formation of new potential 

spawning groups, and influences on other species.  
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