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Abstract. We present a simulation-based approach to capture the in-
teractions between train operations and passenger behavior during dis-
ruptions in urban rail transit systems. The simulation models the full
disruption and recovery cycle. It is based on a discrete-event simula-
tion framework to model the network vehicles movement. It is paired
with an agent-based model to replicate passenger route choices and de-
cisions during both the undisrupted and disrupted state of the system.
We demonstrate that optimizing and flexibly changing the train dispatch
schedules on specific routes reduces the impact of disruptions. Moreover,
we show that demand uncertainty considerably changes the measures of
performance during the disruption. However, the optimized schedule still
outperforms the non-optimized schedule even under demand uncertainty.
This work ties into our ongoing project to find flexible strategies to en-
hance the system resilience by explicitly incorporating uncertainties into
the design of rail system architectures and operational strategies.

Keywords: Urban Rail · Disruption Simulation · Dynamic Transit As-
signment.

1 Introduction

Many cities rely on large-scale metropolitan rail networks to transport millions
of passengers each day. However, expanding complexity is taking its toll on their
resilience to disruptions. Despite many operational and technological improve-
ments, disruptions remain inevitable and are potentially more catastrophic to
the ever-growing urban population. Moreover, the uncertainties associated with
the system operations and passengers behavior during both undisrupted and
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especially disrupted conditions make it ever more complex to understand the
impact of disruptions. In designing pre-emptive and immediate disruption recov-
ery control strategies, it is therefore imperative to consider the effects of control
actions on passenger flows and assess how demand uncertainty propagates into
the performance of the system during disruptions.

A large body of literature has been devoted to modeling passenger flows,
train operations, their interactions, as well as schedule optimizations. To name
a few, Cats [1] developed an agent-based dynamic transit assignment model and
simulation platform known as BusMezzo that explicitly models public vehicles,
passengers behavior, and specifically their interactions. Much work has followed,
that builds on this simulation platform to assess the effects of real-time transit
information [2, 3], or the planning of excess system capacity to reduce the im-
pact of disruptions and congestion in [4] and [5], respectively. Moreover, other
works have demonstrated the use of agent-based models for dynamic passenger
assignment modelling of congestion dynamics [6] and station closures [7]. At the
same time, other research has looked at schedule optimization during disrup-
tions, focusing on system-wide rolling stock rescheduling [8] and the effects of
passenger advice [9], train trip short-turning based on estimating the duration
of a disruption [10], or train trip re-timing and changing stop sequences [11]. For
further work on schedule optimization, we refer to the review on rail schedule
optimization in [12].

Despite the exhaustive list of work, the effects of passenger demand uncer-
tainty, together with controller action uncertainty, and imperfect vehicle opera-
tions, has found little attention. The overarching aim of our ongoing work is to
find flexible strategies that can enhance the resilience of urban rail systems by
explicitly accounting for the uncertainties in the system. Here, we present our
initial stages of developing a simulation test bed and testing control strategies
for disruption recovery. Moreover, we present the effects of demand uncertainty
on the system performance.

2 Simulation-based disruption analysis

The starting point is an urban rail simulation testbed consisting of a network
with station nodes and line links. In what follows, we describe the basic structure
of the simulation, the measure of performance, and a more detailed description
of the simulation inputs and optimization approach.

2.1 Urban Transit System Model

Every line of the rail network has varying routes that define the exact stop
sequence that a train follows when dispatched into the network. Trains operate
along their routes according to their assigned trip schedule information, defining
the time of first dispatch at their starting station, travel times between stations,
as well as dwell times at stations.
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Passenger inflow is controlled according to a specified access rate per ori-
gin station. The passenger origin-destination (OD)-matrix consists of the choice
probabilities for a particular destination given an origin. When accessing a sta-
tion, every passenger chooses a destination according to a categorical choice
model that incorporates the OD-matrix probabilities. Passenger route choice
assumes the shortest-travel-time path between the origin and destination.

All system elements are implemented as agents One agent for every train
and passenger, and a single agent for the system controller. The passenger and
train agents are able to interact with each other, such that passenger in-vehicle
travel times are governed by the train operations (i.e., a train delay will also
result in an arrival delay of on-board and waiting passengers). Moreover, the
simulation incorporates a disruption generator, that triggers station closures or
track disruptions. Station closures do not allow any passenger ingress, egress,
or transfer, and trains pass through the station without alighting or boarding
passengers. Directional track disruptions cause impassable tracks either along
links or at stations, such that any train upstream of the disruption location
cannot traverse and pass through, whereas trains downstream of the location
can continue to travel.

Incident reports about the location of these disruptions are relayed to the
system controller, who makes decisions on ensuing system alerts (i.e., passen-
ger announcements) as well as control actions. The passenger announcements
include information on which stations or which lines have been closed. Line
closure information includes all routes affected by the track disruptions. The
controller can react with control actions. In this analysis, the possible control
actions are restricted to adjusting the train headway (i.e., the time interval be-
tween consecutive trains) the control parameters are the train dispatch headway
and the duration of the schedule adjustment window during which to adjust the
headway.

The passengers process the information they receive from the system con-
troller and decide if they either stick with their current itineraries or re-route.
These decisions depend on whether a passenger is affected by a disruption and
whether re- routing the itinerary is possible. If the passenger is unaffected by a
disruption, they will proceed with their current itinerary as planned. However,
if the disruption does affect the passenger, one of three options exist: (1) re-
plan their itinerary; (2) proceed to the furthest possible station on the current
itinerary; (3) or exit the system at the next possible station. If the original des-
tination or a destination within its vicinity is reachable, the affected passenger
will always choose to re-route their itinerary. Only if the destination station is
unreachable, the passenger will decide to continue until the furthest reachable
station on the current itinerary. If the passenger cannot reach any further on the
current itinerary, they will exit the system at the next possible station. Passen-
gers are also able to observe disruptions if they are immediately affected, even
if the system controller has not announced any alerts for the particular station
or line. For instance, a passenger transferring to a station that just closed, will
recognize that the station is closed and will find a different journey itinerary
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according to the same decision criteria mentioned above under items (1) to (3).
All other passengers will be unaware of the station closure until the controller
announces an alert.

Passengers make egotistic re-routing decisions, that is, re-routing decisions
of individual passengers are not influenced by the decisions of other nearby
passengers and vice versa. Future and extended work could consider interactions
between passengers and how the decision of one passenger affects “neighboring”
passengers’ decisions.

2.2 The objective function – Minimization of aggregated delays

The system level of service is measured as an aggregate travel delay penalty
summed over all passengers. The total travel delay penalty Ψt, normalized by
the total number of simulated passengers P , is computed at the end of the
simulation run according to

Ψt =
1

P

(∑
Pc

ψc +
∑
Pi

ψi

)
, (1)

where Pc is the set of passengers, who have completed their trip by the end
of the , simulation run time, and Pi is the set of passengers, who have not
reached their destination by the end of the simulation run time. Respectively, ψc

is the travel delay penalty due to completed passenger trips, and ψi is the travel
delay penalty due to incomplete passenger trips. Since passengers re-route their
itineraries according to the disruption information they receive, they may choose
to find a new destination d∗ that is located within a specified radius from the
original destination d We thus distinguish between passengers who have reached
or are on their way to their original destination and those who have re-routed
to a new destination. The contribution to the total travel delay penalty from a
completed passenger trip is defined as

ψc =

{
(tod∗ − t′od) , if d∗ = d,

|tod∗ − t′od|, if d∗ 6= d,
(2)

where tod∗ denotes the actual travel time between origin o and the completed
journey destination d∗, and t′od denotes the expected travel time between the
origin and the originally planned destination d. If a passenger exits a station
that is not the originally planned destination, it can happen that the travel
time to the re-routed destination is shorter than the expected. In this case, we
assume that the remaining time (i.e., penalty) to get to the originally planned
destination is at least the difference between the expected travel time and actual
travel time. Hence, we use the absolute value in Eq. (2).

The travel delay penalty due to a passenger trip that has not completed by
the end of the simulation run time is defined as

ψi =

{
(to• + t•d∗ − t′od) , if d∗ = d,

|to• + t•d∗ − t′od|, if d∗ 6= d,
(3)
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where to• is the current travel time of the passenger when the simulation ends,
and t•d∗ is the expected remaining travel time from the current location to either
the re- routed or original destination d∗

The objective is to minimize the total travel delay penalty by informing
passengers about station or line closures so they can re-route their itineraries
and implementing control strategies such as adjusting the train headway on
selected lines to increase passenger throughput.

2.3 The simulation inputs and optimization framework

The simulation builds on the discrete-event simulation library SimPy [13] and is
programmed in Python 3.6. The simulation reads in train schedule information
from GTFS (General Transit Feed Specification) schedule data [14]. Additionally,
station-level passenger inflow data needs to be defined according to the desired
time granularity and inflow rate. Similarly, the simulation requires a pre-defined
OD- matrix to generate a destination choice for every passenger entering at
a specified origin. The route choice model implements the RAPTOR (Round-
based Public Transit Optimized Router) algorithm [15] to generate the shortest
travel path between every OD-pair at a given departure time. We modify the
RAPTOR algorithm to include station or route-closure information.

The aim of this analysis is to find the optimal parameter values for the
train headways to minimize the total time penalty of completed and incomplete
trips in the event of a disruption. The optimization process is carried out via
a metamodel- based bayesian optimization approach [16]. The metamodel is a
multi-dimensional Gaussian Process (GP) regression model [17], with multiple
input features and a single output variable. The input features are parameter
values for the train headway and control window duration for each of the consid-
ered routes. The output is the total time penalty at the end of the simulation run.
The Gaussian Process prior covariance is a multi-dimensional Matern kernel [17].

The metamodel-based optimization starts with a defined number of pre-
sample points of the parameter values, generated from a Latin-Hypercube design
and maxi- min Monte Carlo optimization of the distance between sample points.
The simulation is run on these pre-sample points and the GP model is fit to the
output. To find the next sample point of parameter values, the method uses an
acquisition function that measures the utility of a new sample point by trading
off exploring the parameter space with finding the optimal values. In this anal-
ysis we define the acquisition function in terms of the expected improvement.
The new-found sample point is put through the simulation to generate the next
output to be appended to the ensemble of previously determined samples. The
optimization process then repeats.

3 The test network and test cases

The test network is a reduced set of lines belonging to the New York City (NYC)
subway system [18]. The reduced network layout is shown in Fig. 1a. Trains
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(a) (b)

Fig. 1: Test network consisting of 4 lines and 104 stations. The map in (a) shows
the full network layout; (b) shows the boxed frame in (a), indicating the disrup-
tion locations and timings.

operate according to the openly accessible trip schedule information provided
by the Metropolitan Transport Authority (MTA) of NYC [18]. Some of the trip
schedules are modified to be less frequent and account for the reduced set of lines
as well as to demonstrate more succinctly the effects of disruption mitigation
measures. Passenger inflow data is gathered and processed from the published
turnstile counts at every station of the NYC subway system [19]. The actual
entry count data are scaled by a factor of 10−2 to reduce the number of passenger
agents and keep computational cost in check. Consequently, train capacities are
also reduced by a factor of 10−2, i.e., from 1500 to 15 passengers. The passenger
origin- destination (OD) matrix is based on an estimation model that maps
between the historical entry and exit counts to find an estimate for every OD
probability coefficient.

The simulation runs a two-hour window, starting at 8:00 am on a typical
weekday. During the simulation run time, we trigger an arbitrary unplanned
disruption scenario predominantly affecting the southbound direction of line F
in Fig. 1. Namely, a station disruption (i.e., the station is inaccessible by passen-
gers) is reported at 8:30am at station D15 (47-50 Streets - Rockefeller Centre),
along with a southbound track disruption (i.e., a disrupted track does not allow
any trains to pass through the link) between stations G14 (Jackson Heights -
Roosevelt A venue) and B04 (21st Street - Queensbridge). The link disruption is
unidirectional; that is, the northbound tracks from station B04 to G14 remain in
service. Both the station closure and track disruption last for one hour. Fig. 1b
shows the locations of the disruptions and their timings.

The controller alerts passengers about the station and line closures 400 sec-
onds after the first incident report is collected, whereas control actions are ex-
ecuted instantaneously when disruptions occur. The particular control actions
enforced in this test network involve the train dispatch headway on lines G and
7, and the duration of the schedule adjustment.
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Fig. 2: Southbound link flow lev-
els in the undisrupted network. The
circular arrow indicates the south-
bound flow directions. The indi-
cated numbers are the flow levels
(passengers/2-hours) on selected link
segments of the F, 7, G, and L line,
respectively.

The reduced sub-network and disruption scenario are hypothetical. Simula-
tion results were not validated against a real-world scenario, as reliable real-world
data is only available for the full-scale network and slicing count data as well
as timetable information corresponding to the sub-component disregards process
interactions across the entire full-scale network. Nonetheless, this test case serves
to demonstrate the approach and informs scaleable strategies to implement into
to the full-scale network.

4 Results and discussion

The proceeding results analysis considers four cases. In all cases, the station-level
passenger inflow rates are time dependent. The rates vary in 5-minute intervals
according to the measured and processed count data at each station.

Case 1 defines the baseline result. It models the undisrupted network and
resulting passenger flow, to gain an understanding of the “typical” operations of
the network.

Case 2 assesses the impact of the disruption on the passenger link flow levels
under two different passenger behavior assumptions: (i) in the first instance,
passengers are unaware of any disruptions in the network, and proceed along
their itineraries as planned, waiting and travelling on trains as they arrive; (ii) in
the second instance, passengers re-plan their itineraries once they either observe
a disruption or they receive an alert announcement.

Case 3 uses the passenger re-planning assumption in Case 2 (ii). Additionally,
Case 3 assesses how train headway adjustment on selected routes can improve the
passenger service level during the disruption, given that passengers will re-route
through those routes that are unaffected by the disruption.

Case 4 discusses the effect of passenger demand uncertainty on the system
performance. The system is analyzed under the same disruption scenario as in
Case 1 through to 3. However, Case 4 places a negative binomial distribution over
the time-dependent station-level inflow rates to introduce an additional noise
component. The inflow rates are taken as the mean parameter of the negative
binomial distribution. The negative binomial dispersion parameter is fixed to
φ = 0.01. Another source of demand uncertainty arises from the destination
choice model. Every passenger chooses a destination according to a categorical
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distribution, given their origin station and corresponding probabilities in the OD-
matrix - In Case 1 through to 3 the random seed for the destination choice model
is fixed to produce repeatable samples. Other sources of demand uncertainty,
such as the possibility to choose from different route options, or operational
uncertainties such as train travel times between stations, are not considered in
this analysis.

4.1 Case 1: The undisrupted network

The simulated two-hour window results in 1632 passengers trips. Fig. 2 shows the
total southbound link flow levels summed over the two-hour simulation window
under undisrupted conditions. Under the normal undisrupted operations, the
travel delay penalty Ψt is 54 s per passenger.

4.2 Case 2: Link flow and travel delay under disruptions

When modelling the effect of a disruption on the transit system performance, the
assumed travel behavior of passengers has significant influence on the resulting
aggregate passenger flows and performance metrics. The diagrams in Fig. 3a
and 3b illustrate the consequences of the two different assumption scenarios
during disrupted conditions. Northbound flows are not shown as they are only
marginally affected by the disruptions.

By assuming that passengers will not re-plan their itineraries, the southbound
link flow on line F in Fig. 3a noticeably reduces under disrupted conditions.
This is owed to the fact that the southbound tracks on line F are disrupted
for an hour, hence not allowing any trains to move southbound upstream of the
disrupted link. Since passengers do not re-plan their itineraries, fewer passengers
travel through the affected location during the simulated time window. The total
travel delay penalty is Ψt = 775 s per passenger under no-re-planning.

Conversely, under the assumption that passengers can re-plan their itineraries,
the passenger flow re-distributes considerably. Particularly, the total link flow on
the green G line in southbound direction in Fig. 3b noticeably increases. More-
over, the southbound flow on line 7 on link sections parallel to the disrupted
section of line F reduces. Overall, the total travel delay penalty increases to
Ψt = 810 s per passenger, if passenger re-plan their itineraries.

We note that the travel delay penalty is larger if passengers change their
itineraries (Ψt = 810 s), versus holding on to their original itineraries and waiting
for the disruption to cease (Ψt = 775 s). On the one hand, this reflects the
effects of the model assumptions by virtue of the longer the travel durations
along re-planned paths versus the longer wait times at stations. On the other
hand, it informs the design of control strategies regarding how to react during
the disruption scenario. In fact, these results suggest that recommending to
passengers to re-plan their itineraries will result in an overall larger travel delay
penalty with the current system schedule and disruption scenario in effect. This
is in line with other work which showed that real-time information provision in
disrupted networks can result in negative effects on passenger welfare [3].
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(a) Disrupted network, No re-planning (b) Disrupted network, Re-planning

Fig. 3: Southbound link flow levels under disrupted conditions. Pane (a) shows
the link flow under the assumption that passengers stick to their itineraries; Pane
(b) assumes that passengers re-plan their itineraries when receiving a disruption
alert.

4.3 Case 3: Optimizing the train headway

In Case 3, passengers re-plan their itineraries as a result of the controller de-
cision to close line F in southbound direction and the station closure at 47-50
Streets Rockefeller Centre. We observe that these disruptions along line F cause
significant changes in link flow levels along southbound G and 7 trains, due to
passengers re-routing their journeys. Moreover, re-routing passenger itineraries
result in an increase in the overall travel delay penalty as seen in Section 4.2.

Consequently, our objective is to test whether adjusting the train headway
on lines G and 7 can reduce the travel delay penalty, given that passengers re-
plan their itineraries along these routes. We devise an optimization procedure
that aims to minimize the total travel delay penalty per passenger, by finding
the optimal adjustment of the train headways on lines G and 7. The headway
is adjusted in both north- and southbound direction, minding that a limited
number of trains are available per line and dispatching trains in one direction
from a terminal that is not connected to a depot requires that trains arrive in
time from the other direction.

We follow the Bayesian simulation-based optimization approach described in
Section 2.3. First, we create 5 Latin-Hypercube pre-samples and run the Bayesian
optimization routine runs for 100 iterations. The headways can vary between 2
to 20 min. The duration of the schedule adjustment per line and direction is
constrained between 0 min to 1 h.

The optimized schedules are illustrated in Fig. 4. It shows the original and
new dispatch times of trains in north- and southbound directions along lines G
and 7. For line G, the optimized headways are 2 min over a window of approx-
imately 6 min in both directions. The adjusted headway on line 7 is approxi-
mately 5 min over a 30-min window in northbound direction, and 10 minutes
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Fig. 4: The optimized train dispatch schedule for lines G and 7 in both north-
and southbound direction. Route identifiers indicate the line, direction, and ad-
ditional route stop sequence specification (e.g., “7N2” stands for line 7, north-
bound, stop sequence 2). For line 7, the headway is adjusted to the same interval
on all routes that go in the same direction. Blue squares mark the pre-disruption
scheduled dispatch times; magenta circles mark additionally injected trains rec-
ommended by the optimization for obtaining the desired headway; red crosses
represent trains in the original schedule that are cancelled by the optimization;
finally, green triangles mark the actual dispatch times the actual dispatch times
can be different from the scheduled or injected dispatch times, given the headway
adjustment and possible unavailability of trains at depots; here, all scheduled and
injected trains are dispatched as planned, except the first scheduled trains dur-
ing the disruption window. Vertical dashed lines indicate the start and end of
the disruptions on line F.

over a 40-min window in southbound direction. Therefore, the original schedule
is restored 40 mins after the disruption. The optimized schedule reduces the
total travel delay penalty to Ψt = 695 s. The optimized schedule and passenger
re-planning out-performs the strategy of not recommending to passengers to re-
route (Ψt = 770 s with the adjusted schedule), as well as reduces the travel delay
penalty with respect to the original schedule (Ψt = 810 s).

4.4 Case 4: Effects of passenger demand uncertainty

Fig. 5 plots the variation of the total travel delay penalty Ψt, due to the uncer-
tainty in passenger demand. The boxplots are based on 100 Monte Carlo runs for
each of the assumptions in Case 2, assuming either passenger re-planning (Case
2(ii)) or not (Case 2(i)), and Case 3, which assumes passenger re-planning and
the optimized schedule. The uncertainty stems from variation in passenger in-
flow at stations, and the categorical destination choice model. Fig. 5 shows that
in all cases the total travel delay considerably varies, independent of whether
we assume passenger re- planning or not, or put in effect the optimized sched-
ule. However, the optimized case that flexibly adjusts the train headway overall
reduces the total travel delay.

The variation in system performance highlights the flaw of averages [20],
and underscores that optimizing the system and schedules should consider the
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Fig. 5: Boxplots of the system performance uncertainty, measured in terms of
the variation of the total travel delay penalty Ψt. The plots differentiate be-
tween three scenarios: Case 2(i): The original default schedule and no passenger
re-planning; Case 2(ii): The original default schedule including passenger re-
planning; and Case 3: The optimized schedule including passenger re-planning.

inherent passenger demand uncertainty. Flexible strategies that adapt to the
system condition as it evolves could potentially perform better in dealing with
this uncertainty. However, this flexibility requires enablers, such as the necessary
control structures and system architectures to swiftly implement real-time con-
trol actions such as the analyzed headway adjustment or other strategies such
as short-turning, expressing, or dead-heading.

5 Conclusion

In this work, we present a simulation-based approach to model the dynamic re-
routing of passengers and train schedule adjustment during disruptions in an ur-
ban rail transport system. Based on a small-scale test network, we demonstrate
an optimization procedure to adjust train dispatch schedules and reduce the im-
pact of disruptions. We show that it is possible to reduce the total travel delay
penalty by adjusting the train headway on selected train routes. We assume that
passengers re- route due to real-time disruption alerts and information, as well as
consider rolling stock constraints regarding the available trains for dispatch and
train on-board capacities. At last, we show that demand uncertainty consider-
ably changes the resulting travel delay penalty. Nonetheless, flexible adjustment
of train headways overall reduces the travel delay even when considering uncer-
tainty. Ongoing work involves finding flexible control strategies that explicitly
include the demand uncertainty into the flexible optimization of train operations
to further reduce the performance draw-down and augment the recovery process
during disruptions.
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9. Hurk, E.v.d., Kroon, L., Maróti, G.: Passenger advice and rolling stock rescheduling
under uncertainty for disruption management. Transportation Science 52(6), 1391–
1411 (2018)

10. Ghaemi, N., Zilko, A.A., Yan, F., Cats, O., Kurowicka, D., Goverde, R.M.P.: Im-
pact of railway disruption predictions and rescheduling on passenger delays. Journal
of Rail Transport Planning & Management 8, 103–122 (2018)

11. Zhu, Y., Goverde, R.M.P.: Railway timetable rescheduling with flexible stopping
and flexible short-turning during disruptions. Transportation Research Part B 123,
149–181 (2018)

12. Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., Wa-
genaar, J.: An overview of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B 63, 15–37 (2014)

13. Scherfke, S., Lnsdorf, O., SimPy, https://bitbucket.org/simpy/simpy/src/default/.
Last accessed 23 May 2019

14. The General Transit Feed Specification, https://www.gtfs.org/. Last accessed 23
May 2019

15. Delling, D., Pajor, T., Werneck, R.F.: Round-based Public Transit Routing. Trans-
portation Science 49(3), 591–604 (2014)

16. Frazier, P.I.: A tutorial on Bayesian Optimization. arXiv 1807.02811v1, 1–22
(2018)

17. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT
Press, Cambridge MA, USA (2006)

18. Metropolitan Transport Authority, MTA Static Data Feeds,
http://web.mta.info/developers/developer-data-terms.htmldata. Last accessed
23 May 2019

19. Metropolitan Transport Authority, Turnstile Data,
http://web.mta.info/developers/turnstile.html. Last accessed 30 August 2018

20. Savage, S.: The Flaw of Averages, San Jose Mercury News (2000)


