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Abstract—Interacting with human operators, remote envi-

ronment and communication networks, teleoperation systems

are considerably suffering from complexities and uncertainties.

Managing these is of paramount importance for safe and smooth

performance of teleoperation systems. Amongst the countless

solutions developed by researchers, type-2 fuzzy algorithms have

shown an outstanding performance in modelling complex systems

and tackling uncertainties. Moreover, artificial neural networks

are well known for their adaptive learning potentials. This

paper proposes an adaptive interval type-2 fuzzy neural-network

control scheme for teleoperation systems with time-varying delays

and uncertainties. The type-2 fuzzy models are developed based

on the experimental data collected from a teleoperation setup

over a local computer network. However, the resulted controller is

evaluated on an intercontinental communication network through

the Internet between Australia and Scotland. Moreover, the slave

robot and the remote workspace are completely different and

unforeseen. Stability and performance of the proposed control

is analysed by Lyapunov-Krasovskii method. Comprehensive

comparative studies demonstrate that the proposed controller

outperforms traditional techniques in experimental evaluations.

Index Terms—Teleoperation systems, type-2 fuzzy models,

neural-network, adaptive control, uncertainties, time-delay.

I. INTRODUCTION

T
ELEOPERATION systems have provided the humankind
with a variety of great applications, especially in space

explorations and medicine [1]–[5]. Involving various com-
plex technologies, teleoperation systems severely suffer from
uncertainties and nonlinearities [6]. Particularly, uncertainties
in communication networks, human operators’ and robots’
dynamics, and remote environment are the major concerns
in teleoperation applications. Therefore, controller design for
such systems has become a problematic task that a large
amount of research has been committed to address these
issues [7]. Amongst the proposed solutions for control of tele-
operation systems, control methods based on computational
intelligence have outperformed the traditional methodologies,
in terms of dealing with complexities and uncertainties [8].

Introduced by Lotfi Zadeh [9]–[12], fuzzy computation
approaches have undoubtedly shown a strong capability in the
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modelling of complex systems. Based on their universal ap-
proximations, fuzzy models are extremely useful in controller
design for complex and nonlinear systems [13]–[22], decision-
making and forecasting [23]–[26], and disturbance rejection
[27]–[30]. Basically, fuzzy models describe a considered sys-
tem’s dynamical behaviour as a composition of several IF-
THEN rules. Among the fuzzy modelling approaches, Takagi-
Sugeno (T-S) [27] and Mamdani [31] are the most popular
methods. Traditional fuzzy models, also known as type-1,
assign crisp fuzzy membership functions on their variables
[32]. Consequently, the system’s model and performance of
the controller designed based on this model will be vulnerable
and sensitive to uncertainties [33]. In contrast, type-2 fuzzy
(T2F) methodologies [34]–[36] have demonstrated a promising
effectiveness in dealing with uncertainties [37]–[41]. Type-2
fuzzy models may have type-2 membership functions for either
antecedents or consequents [38], [39], [42].

In the field of teleoperation systems, researchers have pro-
posed a two-layer fuzzy strategy on a remote mobile robot
to tackle the communications failures [43]. In this approach,
outputs of each fuzzy rule are input of the immediately next
rule and are called the intermediate fuzzy variables. Hence, the
resulted fuzzy controller has a network structure with a robust
performance [44]. Reference [45] has considered a multi robot
teleoperation system and proposed an adaptive fuzzy control
strategy to compensate for the communication delay modelled
by Markov process. They have considered the master and slave
robots dynamically decoupled, which reduces the applicability
of the proposed control algorithm. Combining with traditional
sliding-mode control approaches, [46] has proposed a finite-
time fuzzy controller for a teleoperation system, however,
under constant time-delay. T-S fuzzy controller proposed in
[47] is based on the systems’ parameters, and therefore, does
not cope with model uncertainties. Researchers in [48] have
developed an adaptive fuzzy solution, in which a switching
algorithm is proposed for delay considerations. However, no
uncertainty is taken into account and the resulted control
torque signals are chattering, which degrades the practicality.
The state convergent fuzzy controller in [49] is designed
based on the linear model of the teleoperation system and
constant time-delay. Although the fuzzy controller proposed
in [50], [51] have reduced the chattering in torque signals, it
is applicable only for constant delays and no uncertainty is
considered. [52] has recently proposed a fuzzy observer-based
control for teleoperation systems with time-delay.

Meanwhile, control solutions developed based on type-2
fuzzy models are more reliable and effective. For example,



[53]�has�proposed� a� type-2� fuzzy� controller� combined�with� a�
wavelet�neural-network� (NN).�However,� they�have�considered�
type-2� fuzzy�membership� functions� only� for� the� antecedents,�
but� crisp� functions� for� the� consequents,�which� decreases� the�
robustness� of� the� controller� when� facing� uncertainties� and�
time-delays.�Researchers� in� [54]� proposed� a� controller� based�
on�a�data-driven�type-2�fuzzy�model�of�a�teleoperation�system�
to�deal�with� time-delay�and�uncertainties.�They�have�also�ap-
plied�Markov�technique�to�model�the�network�delay.�Although�
closed-loop� stability� of� the� proposed� control� is� proved� by�
Lyapunov-Krasovskii�and�Linear�Matrix� Inequality� (LMI),� its�
performance� and� error� convergence� depends� on� the� systems’�
parameters�and� time-derivatives�of� the�delay� functions,�which�
are�not�necessarily�available.�A�similar�methodology�has�also�
been� applied� in� [55].� Moreover,� the� experimental� evaluation�
carried� out� in� [53]� and� [54]� was� on� two� simple� and� similar�
devices.�However,� in� real-world� applications,� the�master� and�
slave�robots�are�generally�dissimilar�with�completely�different�
workspace� and� dynamics.�This� dissimilarity� introduces� addi-
tional�uncertainties� to� teleoperation� systems,� and� complicates�
the� control� design� for� each� robot.� Additionally,� they� have�
not�considered�human�operator’s�and�environment’s�dynamics�
that� involve�much� uncertainties� in� the� teleoperation� dynamic�
analyses�and�performance� [56]–[58].

On� the� other� side,� learning� capabilities�of� neural�networks�
further�empowers� type-2� fuzzy�NN-based�controllers� to�adap-
tively�deal�with�external�disturbances�and�internal�uncertainties�
[59]–[67].� Many� research� studies� have� validated� the� func-
tionality� of� adaptive� NN-based� control� algorithms� in� com-
plex� real-world� applications,� including� teleoperation� systems�
[68]–[71].� Unknown� remote� workspace� and� communication�
characteristics�are� treated�as� the�main�sources�of�uncertainties�
in� teleoperation� systems.�Hence,� an� adaptive� control� strategy�
with� the� ability� of� learning� unknown� dynamics,� and� also,�
dealing� with� uncertainties� is� required� to� protect� the� stability�
and�performance�of� a� teleoperation� system.�Therefore,� inves-
tigation� for� an� effective� controller� ensuring� a� teleoperation�
performance� while� confronting� uncertainties� and� latencies� is�
the�main�motivation� for� the�current�article.�Considering�diffi-
culties� encountered� in� teleoperation� systems,� this� paper� aims�
to�develop�an�efficient�control�solution�applicable�to�real-world�
applications.

This�study�proposes�a�control�methodology�for�teleoperation�
systems� that� not� only� accomplishes� the� desired� task� in� the�
remote�workspace,�it�also�prevents�instability�and�failures.�The�
proposed�controller�takes�the�advantages�of�T2F�techniques�to�
deal�with� time-varying�delays�and�uncertainties.�Moreover,�an�
NN-based�online�adaptation�algorithm� is�developed� to� simul-
taneously�tune�the�T2F�models.�Chiefly,�main�contributions�of�
this� study�are:
● Interval type-2 fuzzy (IT2F) modelling for Internet-based

teleoperation systems. A real-world experimental teleop-
eration system has been considered for data collection.
The collected data is then used for derivation of T2F
models for increasing the fuzziness in antecedents and
consequents. This way enables the controller to handle
further uncertainties.

● It is worth to mention that this study considers two

different teleoperation configurations for each data col-
lection and validation purposes. The main reason for this
consideration is two folded: first, for an efficient way for
collecting experimental data; and second, validation of
the proposed controller in a more realistic application
that involves an intercontinental Internet communication
and unforeseen workspace. This incurs uncertainties and
time-delays that a real-world teleoperation experiences.
Furthermore, the results demonstrate the effectiveness
and practicality of the proposed control in real-world
applications.

● The considered teleoperation system for experimental
data collection consists of two Phantom Omni Haptic
devices on two different desktop computers connected
through a Local Area Network (LAN), Figure 1. No-
tably, this teleoperation setup is only used in the data
collection phase for T2F modelling purposes. But the
proposed control algorithm is then evaluated on a differ-
ent teleoperation configuration. Slave robot of the target
teleoperation system is a virtual dynamic model of the
UR5 manipulator. The slave system is located in Scotland
receiving commands from the master system in Australia
(Figure 7). The master system communicates over a 4G
mobile network, while the slave system is connected to
the cable Internet.

● The proposed controller is empowered by an adaptive
NN that concurrently updates the parameters of the T2F
model. To not getting stuck in local optima, the online
adaptation laws are derived by Lyapunov-Krasovskii ap-
proach. This also justifies the performance of the pro-
posed Type-2 fuzzy neural network (T2FNN) controller
under time-varying delays and uncertainties.

Furthermore, to illustrate the superiority of the proposed
control solution over the previous similar studies, experimental
evaluations are also executed and compared with the control
algorithms developed in [53] and [54].

This paper is organised as follows: Section II describes
the T2F modelling process of the Internet-based teleoperation
system. Section III explains the derivation of the proposed
adaptive T2FNN control algorithm for the teleoperation sys-
tem. Performance of the proposed control methodology is
experimentally evaluated in Section IV, followed by conclusion
remarks and discussions in Section V.

II. TYPE-2 FUZZY MODELLING OF INTERNET-BASED
TELEOPERATION SYSTEMS

Dynamics of a master/slave robotic teleoperation system has
the following general form (Figure 2):

Mi(qi)q̈i +Ci(qi, q̇i) + gi(qi) + µi(q̇i, qi)
= ⌧i + JT

i (qi)(fj) + �j(t) (1)

where, i ∈ {m,s} indicates the master and slave systems,
respectively. j ∈ {h, e} refers to the human operator and
remote environment. qi ∈ Rn, q̇i and q̈i denote the joints’
angular position, velocity and acceleration of the correspond-
ing robot, respectively. Mi ∈ Rn×n is the inertia matrix,
Ci ∈ Rn×n the Coriolis and centripetal terms, and gi ∈ Rn the



Fig. 1. The teleoperation setup with two Phantom Omni Haptic devices used
for data collection. It should be mentioned that the sampling time of the whole
experiment, including data collection and control implementation is 0.001
second (1 kHz). A very similar setup has been used in [54] for both modelling
and evaluations. In this study, experimental evaluations are implemented and
executed on a different and more complicated setup with a real intercontinental
communication (Figure 7).

gravitational vector of the corresponding robot, respectively.
µi ∈ Rn stands for the unknown viscous and Coulomb friction
vector. ⌧i ∈ Rn is the input torques of the robots. fj ∈ R6

is the force imposed by either the human operator or remote
environment. �j ∈ Rn is the external disturbances. Noticeably,
n ∈ N indicates the corresponding robot’s degree of freedom
(DoF). Ji is the Jacobian matrix of the robots that relates
the Cartesian and joint space variables of each robot [72],
[73]. Jacobian calculations is one of the major uncertain and
challenging concerns in robots’ dynamic modelling. Moreover,
dissimilarity between the master and slave robots introduces
further difficulties [74]. However, in [54] the master and
slave robots are identical. In this study, we considered the
similar teleoperation setup as [54] for data collection (Figure
1). But the outcome will be evaluated on a more realistic
teleoperation configuration (Figure 7). Moreover, the human
operator and remote workspace are generally modelled as non-
homogeneous mass-spring-damper forces [56]:

fj = fj0 +Mj ẍi +Bj ẋi +Kjxi (2)

in which, j = h when i = m, and j = e when i = s.
fj0 ∈ R6 is the non-homogeneous term, and Mj , Bj and
Kj are inertia, damping and stiffness coefficient matrices,
respectively. It should be mentioned that all the matrices,
vectors and coefficients in equations (1) and (2) are unknown
and uncertain. Moreover, xi = pi(qi),pi(.) ∶ Rn → R6,
ẋ = Ji(qi)q̇i and ẍ = Ji(qi)q̈i+J̇i(qi)q̇i are the Cartesian posi-
tion (pi(qi) is forward kinematics), velocity and acceleration
of each robot in its workspace, respectively. More details of
the totally uncertain dynamics of the teleoperation system (1)
coupled with (2) is found in [56]. Here, the coupled dynamics
of (1) and (2) for each sides of the teleoperation system is
being expressed as:

Miẍi + Ci(xi, ẋi) + Gi(xi) = ⌧i + fj + �j(t) (3)

Fig. 2. The considered teleoperation configuration for data collection.

in which

Mi =MiJ
†
i − JT

i Mj

Ci(xi, ẋi) =Ci + µi − (MiJ
†
i J̇iJ

†
i + JT

i Bj)ẋi

Gi(xi) =gi − JT
i Kjxi

fj =JT
i fj

J†
i =(JT

i Ji)−1JT
i

(4)

It should be noted that all the matrices and coefficients above
are uncertain and partially unknown. However, due to physical
limitations and structures, there are upper and lower bounds for
every unknown parameter considered as uncertainty intervals,
including [Mi,Mi], [Ci,Ci], [Gi,Gi], and [�j ,�j].

In most of the real-world teleoperation applications, the
slave robot is desired to track the master’s position (xm) and
velocity (vm), and the master device should reflect the force
imposed on the slave robot while interacting with the remote
environment (fe). To this end, the required Cartesian and haptic
information are being transmitted through the communication
channel during the teleoperation process. Consequently, laten-
cies and uncertainties induced by the communication network
will delay the transmission procedure. In other words, desired
signals x∗s , v∗s and f∗h are considered as:

x∗s(t) = xm(t − df(t))
v∗s(t) = vm(t − df(t))
f∗h(t) = fe(t − db(t))

where, df(t) and db(t) are time-varying delays through the
forward and backward communication channels, respectively.

To tackle these uncertainties, we utilise Interval Type-2
Fuzzy (IT2F) modelling approach. A sufficiently large number
of input-output pairs are collected from the teleoperation setup
in Figure 1. At the master side, f∗h(kT ) is considered as
the input and fh(kT ) as the output. Whereas, x∗s(kT ) and



Fig. 3. The uncertain Gaussian function considered for every T2F membership
function.

v∗s(kT ) = ẋ∗s(kT ) are treated as the inputs, and xs(kT ) and
vs(kT ) = ẋs(kT ) as the outputs of the slave system, with the
sampling period T = 1ms and k ∈ N. Hereafter, we drop the
sampling argument (kT ) and denote the input-output pairs
by �s = [xT

s ,v
T
s ]T and �∗s = [x∗Ts ,v∗Ts ]T , for simplicity

and saving space. IT2F approach is applied on every input-
output pair to derive the mapping model between the position-
velocity/force reference and output signals.

Considering the delayed reference signal f∗h and the haptic
output fh for the master system, the desired and actual
position-velocity �∗s and �s for the slave system, IT2F model
describes the teleoperation system in the form of several IF-
THEN rules like:

Rule rs ∶IF x∗s ∈ Sr
x, and v∗s ∈ Sr

v

THEN ∶ �̂r
s = ârs0 + Âr

xx
∗
s + Âr

vv
∗
s

(5)

for the slave system, and

Rule rm ∶IF f∗h ∈ Sr
f

THEN ∶ f̂rh = ârm0 + Âr
f f
∗
h

(6)

for the master system, where ri = 1, . . . ,Ri, Ri is the total
number of rules for each system. Âr

⇠, ⇠ ∈ {x, v, f} are diagonal
matrices of [âr⇠1, . . . , âr⇠6]T and âr⇠n ⊆ [ar⇠n, ar⇠n], n = 1, . . . ,6
and âri0 ⊆ [ari0, ari0] are uncertain interval coefficients. These
parameters are basically related to the dynamics characteristics
of the robots. The upper and lower bounds of these parame-
ters indicates the range of the uncertainties in the dynamics
of the systems. In this study, we applied the mathematical
modelling tools and knowledges developed in [72], [73] to
derive numerical estimations of those parameters. Accordingly,
�̂r
s ⊆ [�r

s
,�r

s] and f̂rh ⊆ [frh, frh] in which:

�r
s
= ars0 +Ar

xx
∗
s , �r

s = ars0 +Ar
xx
∗
s

frh = arm0 +Ar
f f
∗
h , f

r

h = arm0 +Ar
f f
∗
h

(7)

Sr
x, Sr

v and Sr
f are the IT2F sets with IT2F mem-

bership functions respectively denoted by ⌫̂rx(xs) =[⌫rx(xs), ⌫rx(xs)], ⌫̂rv(vs) = [⌫rv(vs), ⌫rv(vs)]and ⌫̂rf(fh) =[⌫rf(fh), ⌫rf(fh)]. Illustrated in Figure 3, Gaussian functions
with uncertain standard deviation and mean are considered

Fig. 4. Structure of the IT2FNN models.

for every IT2F membership function 0 ≤ ⌫r⇠i(⇠i) ≤ ⌫r⇠i(⇠i) ≤
1, ⇠i ∈ {xs,vs, fh}:

⌫r⇠i(⇠i) = exp� − 1

2
�⇠i − cr⇠i

!r
1⇠i

�2� (8a)

⌫r⇠i(⇠i) = exp� − 1

2
�⇠i − cr⇠i

!r
2⇠i

�2� (8b)

As depicted in Figure 3, !r
1⇠i

and !r
2⇠i

are the uncertain
standard deviations of the lower and upper Gaussian mem-
bership functions ⌫r⇠i(⇠i) and ⌫r⇠i(⇠i), respectively, with the
uncertain means cr⇠i . Noticeably, these parameters are being
updated by the adaptive NN-based algorithm that will be
developed in the next section.

Applying the product operator, the lower and upper func-
tions of each rule in (5) are derived:

⌘r
s
(�s) = ⌫rx(xs) × ⌫rv(vs)

⌘rs(�s) = ⌫rx(xs) × ⌫rv(vs) (9)

Combining the Ri IT2F rules and applying the type reduc-
tion method proposed in [75], outputs of the rules are derived
as:

�̂s = 1

2
�

Rs∑
r=1⌘

r
s
(�s)�r

s

Rs∑
r=1⌘

r
s
(�s)

+
Rs∑
r=1⌘

r
s(�s)�r

s

Rs∑
r=1⌘

r
s(�s)

� (10a)

f̂h = 1

2
�
Rm∑
r=1 ⌫

r
f(fh)frh

Rm∑
r=1 ⌫

r
f(fh)

+
Rm∑
r=1 ⌫

r
f(fh)frh

Rm∑
r=1 ⌫

r
f(fh)

� (10b)

Structure of the resulted IT2FNN is shown in Figure 4. The
initial values for the parameters and above, especially the
mean of the Gaussian membership function, have been set
by the previous calculations and tools developed in [72].
Moreover, in the next section, an adaptive algorithm is pro-
posed for updating the network parameters of the IT2FNN
model, including uncertain standard deviations and means



Fig. 5. The considered teleoperation configuration for development and
evaluation of the adaptive T2FNN controller.

of the IT2F membership functions. The adaptation laws are
based on gradient descent method, however, to prevent from
getting stuck in local optima, the updating rules are derived
by Lyapunov-Krasovskii functional. In addition, this derivation
also guarantees the stability and convergent performance of the
proposed controller in the presence of time-delays.

III. ADAPTIVE T2FNN CONTROLLER

The teleoperation configuration for development and evalu-
ation of the adaptive T2FNN controller is shown in Figure 5.
Illustrating the overall design process, Figure 6 also depicts the
flowchart of the proposed adaptive T2FNN control algorithm.

The main goal of this study is to develop a control strategy
that robustly minimises the teleoperation errors:

ex = x∗s − x̂s , ef = f∗h − f̂h (11)

To achieve this goal, a cost function is considered for each the
master and slave subsystems:

Em = 1

2
eTf ef = 1

2
�ef �2 , Es = 1

2
eTx ex = 1

2
�ex�2 (12)

Adaptation laws for adjustable parameters of the T2FNN con-
trollers should be derived in order to minimise these objective
function. This section explains online learning algorithms for
the T2FNN controllers for the master and slave systems. We
use the subscription i ∈ {m,s} and the notations ⇠ ∈ {xs, fh}
for simplification. Update laws are proposed as follows:

cr⇠(k + 1) = ↵ic
r
⇠(k) + �i(k)@Ei(k)

@cr⇠(k)
!r
1⇠(k + 1) = ↵i!

r
1⇠(k) + �i(k) @Ei(k)

@!r
1⇠(k)

!r
2⇠(k + 1) = ↵i!

r
2⇠(k) + �i(k) @Ei(k)

@!r
2⇠(k)

(13)

↵i and �i are learning rates. To avoid getting stuck in local
minima and to increase the efficiency in adaptation [76], the
learning rate �i is also considered adaptive:

�̇i = (1 + �e⇠�)�e⇠� (14)

Considering �kT → T as the one step ahead, time-derivative

Fig. 6. Flowchart of the proposed adaptive T2FNN controller.

of the adaptive parameters are derived as

ċr⇠ = (↵i − 1)cr⇠ + �i @Ei

@cr⇠

!̇r
1⇠ = (↵i − 1)!r

1⇠ + �i @Ei

@!r
1⇠

!̇r
2⇠ = (↵i − 1)!r

2⇠ + �i @Ei

@!r
2⇠

(15)

Moreover, applying the chain rules:

@Ei

@cr⇠
= @Ei

@e⇠
.
@e⇠

@⇠̂
.
@⇠̂

@cr⇠
= (eT⇠ )(−1) @⇠̂@cr⇠

= −eT⇠ @⇠̂

@cr⇠

@Ei

@!r
1⇠

= @Ei

@e⇠
.
@e⇠

@⇠̂
.
@⇠̂

@!r
1⇠

= −eT⇠ @⇠̂

@!r
1⇠

@Ei

@!r
2⇠

= @Ei

@e⇠
.
@e⇠

@⇠̂
.
@⇠̂

@!r
2⇠

= −eT⇠ @⇠̂

@!r
2⇠

(16)

and
˙̂⇠ = @⇠̂

@cr⇠
ċr⇠ + @⇠̂

@!r
1⇠

!̇r
1⇠ + @⇠̂

@!r
2⇠

!̇r
2⇠ + @⇠̂

@⇠∗ ⇠̇
∗ (17)

It should be noted that although the derivative term ⇠̇∗ = ḟ∗h in
(17) is not practically available for the master system, it could
be calculated by ⇠̇∗ = (⇠∗(kT ) − ⇠∗((k − 1)T ))�T . It is also
known that every force profile should be physically limited
and cannot vary much fast due to safety considerations and
mechanical limitations [6]–[8]. Hence,

�⇠̇∗� ≤ ⌅̄ , ⌅̄ ∶ a positive constant. (18)
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However, ⇠̇∗ = ẋ∗s = v∗s is feasible. Additionally, these time-
derivative terms are not used in the design procedure, and
appear only in theoretical analyses.

Theorem: The T2FNN controller (10) with the adaptation
laws (14) and (15), where

@Ei

@cr⇠
=max(Pi1, Pi2)

@Ei

@!r
1⇠

=max(Ni1,Ni2)
@Ei

@!r
2⇠

=max(Qi1,Qi2)
(19)

in which Pi1,2,Ni1,2 and Qi1,2 are derived in the Proof below,
minimises the cost functions (12).

Proof : Considering the Lyapunov-Krasovskii functional:

Vi(t) = 1

2
eT⇠ e⇠ +

t

�
t−d�(t)

eT⇠ e⇠d✓ +
t

�
t−d�(t)

ėT⇠ ė⇠d✓

+
0

�
−D�

t

�
t+✓

eT⇠ e⇠d⇣d✓ + 1

2
(�i − �∗i )2

(20)

where �d�(t)� is the corresponding communication delay for
� ∈ {f, b}. �∗i is an arbitrary design parameter. We show
that a proper solution of (19) makes V̇i negative-definite, and
therefore, the online learning algorithm (15) guarantees the
asymptotic performance of the T2FNN controllers (10a) and
(10b). Taking time-derivatives of Vi

V̇i = eT⇠ ėT⇠ + �e⇠�2 − (1 − ḋ�(t))�e⇠(t − d�(t))�2+ �ė⇠�2 − (1 − ḋ�(t))�ė⇠(t − d�(t))�2 +D��e⇠�2
−

t

�
t+✓

eT⇠ (⇠)e⇠(⇠)d⇠ + �̇i(�i − �∗i )
(21)

where �d�(t)� ≤ D� and ḋ�(t) < 1 are practical assumptions
that are experimentally verified (Figure 8). Therefore,

V̇i < eT⇠ ė⇠ + �e⇠�2(1 +D�) + �ė⇠�2 + �̇i(�i − �∗i ) (22)

from (18) and knowing that ė⇠ = ⇠̇∗ − ˙̂⇠ ≤ ⌅̄ − ˙̂⇠, then

V̇i < ⌅̄�e⇠�− eT⇠ ˙̂⇠ + �e⇠�2(1+D�)+ �ė⇠�2 + �̇i(�i − �∗i ). (23)

Substituting (17) in (23) results in:

V̇i < ⌅̄�e⇠� + �e⇠�2(1 +D�) + �ė⇠�2 + �̇i(�i − �∗i )
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Now comparing (16) and (24) gives:
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Substituting the proposed adaptive laws (14) and (15) in (25)
and setting �∗i >max{⌅̄, (1 +D�)}
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which includes three quadratic equations:
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and makes the time-derivative of the Lyapunov-Krasovskii
functional negative (V̇i < 0). Pi, Ni and Qi are solutions of
the quadratic equations that requires

b2c − 4accc = 0
b2!1 − 4a!1c!1 = 0
b2!2 − 4a!2c!2 = 0

(27)

Solving (27) obtains two solutions for each parameter
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and therefore, calculating (−b±√b2 − 4ac)�2a for each Pi, Ni

and Qi results in
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and finally, (19) makes V̇i much negative that guarantees the
asymptotic convergence of the learning algorithms, and sub-
sequently, stability of the proposed T2FNN controller for the
both master and slave systems. �

Remark1. It should be noted that the considered control
signals are the desired position and velocity �s for the slave
robot, and the desired haptic signal fh for the master system,
respectively. This is because the considered haptic device is
capable to expose any demanded force to the human operator.
On the other side, the slave robot is able to reach any desired,
non-singular, configuration. Therefore, the teleoperation prob-
lem is providing the either systems with their corresponding
desired references.



Fig. 7. The target teleoperation consisting of a virtual dynamic model of UR5
[73] as its slave teleoperator. Notably, the sampling rate of the simulation
and control implementation is 1 kHz. This setup is used for evaluating the
proposed adaptive T2FNN controller between Australia and Scotland [56].

IV. EXPERIMENTAL COMPARISON STUDY

This section evaluates the performance of the proposed
adaptive T2FNN control strategy on the intercontinental tele-
operation setup, Figure 7. The main focus of this study
is to experimentally assess and compare the performance
of the proposed control method in this paper and those of
[53] and [54] under a realistic teleoperation configuration.
To this end, the master device is located in Australia while
the slave robot is a full-scale SimMechanics model of the
UR5 manipulator in Scotland. This model is developed based
on the dynamical parameters and features reported by the
manufacturer and previously developed in [73]. Moreover, the
learning parameters ↵i are identically considered as 10−4 for
both the master and slave controllers. However, the adaptive
learning rates �i are shown in Figure 14. The communication
between the master and slave sites are established through
the Internet. Delays between the two sites of the teleoperation
has been experimentally measured and the average experiences
are depicted in Figure 8. Figure 8a illustrates the average of
experienced delay through the forward channel and mean and
standard deviation values of its distribution is also shown.
Figure 8b presents the same information for the backward
channel.

The teleoperation task is considered in two phases including
free motion and contact modes indicated in force reflection of
the controllers (Figures 13a-13c). In the free motion genre,
the human operator freely manoeuvres the master device in
its workspace. Whilst, in the second phase, the slave robot is
desired to vertically interact with an object, that introduces
contact forces to the robot end-effector. As can be observed
in those figures, the haptic signal provided by the adaptive
T2FNN technique is much accurate than the other controllers.
Comparing the tracking performance of the controllers in Fig-
ures 9a-9c for position, 10a-10c for orientation, and 11a-11c
for velocity, the proposed adaptive T2FNN control method-
ology outperforms the other T2F based controllers. Torque
signals generated by the slave robot under the three controllers
are shown in Figures 12a-12c. Reported in Table I, values of
root mean square error (RMSE), mean absolute error (MAE),
and normalised RMSE (NRMSE) of the tracking errors of the

(a) Forward time-delay df (t).

(b) Backward time-delay db(t).
Fig. 8. Average forward and backward time-delays experimentally measured
between Australia and Scotland.

proposed adaptive T2FNN controller are significantly smaller
than those of the other T2F control algorithms. Considering
NRMSE values, the proposed adaptive T2FNN controller has
chiefly resulted in less numbers except in few cases, where
the difference is ignorable. Additionally, to the best knowledge
of the authors based on the literature, precise force reflection
and practical haptic is one of the most critical challenges and
objectives in teleoperation applications. On the other hand, it
should be noted that the physical interaction between the slave
robot and not-fully-known objects in the remote workspace
is one of the major sources of uncertainties in teleoperation
processes. Therefore, the superiority of the proposed approach
in accurate force tracking is critically advantageous that is not
achieved by many other solutions. Finally, Figure 14 illustrates
the learning trend of the T2F parameters of both the master and
slave controllers over 100 epochs considered for the training
process. It should be noted that the training time is not reported
since all the three methods took almost the same time.



(a) Our proposed adaptive T2FNN controller.

(b) The proposed controller in [53].

(c) The proposed controller in [54].

Fig. 9. Position tracking of the T2F based controllers.

(a) Our proposed adaptive T2FNN controller.

(b) The proposed controller in [53].

(c) The proposed controller in [54].

Fig. 10. Orientation tracking of the T2F based controllers.



(a) Our proposed adaptive T2FNN controller.

(b) The proposed controller in [53].

(c) The proposed controller in [54].

Fig. 11. Velocity tracking of the T2F based controllers.

(a) Our proposed adaptive T2FNN controller.

(b) The proposed controller in [53].

(c) The proposed controller in [54].

Fig. 12. Slave’s torques of the T2F based controllers.



TABLE I
RMSE, MAE AND NRMSE VALUES OF THE THREE T2F-BASED CONTROLLERS. THE PROPOSED ADAPTIVE T2FNN CONTROL ALGORITHM HAS

OUTPERFORMED THE OTHER TWO APPROACHES [53] AND [54].

Metrics: RMSE MAE NRMSE

Methods: AT2FNN [53] [54] AT2FNN [53] [54] AT2FNN [53] [54]

Position
x 0.2682 0.3681 0.4864 16.0387 25.7914 34.6060 0.1299 0.1746 0.1809
y 0.2855 0.5572 0.5946 17.5992 35.5523 33.9617 0.1557 0.1569 0.1767
z 0.5158 0.6737 0.8219 23.7641 30.8428 44.6107 0.0878 0.0908 0.1047

Orientation
↵ 0.44 0.45 0.490 0.1160 0.1410 0.1963 0.1015 0.1100 0.1216
� 0.10 0.27 0.210 0.0649 0.1064 0.1413 0.1037 0.1242 0.1387
� 0.12 0.26 0.260 0.0758 0.1014 0.1632 0.1328 0.1197 0.1685

Velocity
vx 2.560 3.552 5.414 16.9884 23.0686 36.6404 0.1114 0.1037 0.1107
vy 2.875 4.942 5.910 16.3634 28.4500 32.2861 0.1071 0.1116 0.1208
vz 4.60 5.00 6.965 20.1007 22.4033 37.5394 0.0706 0.0821 0.0904

Force fz 0.2624 0.563 0.5029 0.0903 0.2767 0.2445 0.0992 0.1215 0.1349

(a) Our proposed adaptive T2FNN controller.

(b) The proposed controller in [53].

(c) The proposed controller in [54].

Fig. 13. Force reflection of the T2F based controllers.

V. CONCLUSIONS

This study addressed the problem of teleoperation un-
der time-varying delays and uncertainties. Known as one
of the strongest tools in dealing with uncertainties, Type-
2 fuzzy approach is utilised to handle this issue in tele-
operation applications. Moreover, artificial neural networks
are employed to further strengthen the nonlinear modelling
capabilities of the proposed algorithm. Additionally, error-
based adaptive laws are developed for tuning parameters of
the T2FNN controller to improve the overall performance
of the teleoperation system. Proven by Lyapunov-Krasovskii
methodology, the proposed online updating algorithm does not
get trapped in local minima. Notably, the T2FNN has learned
on the training data collected by a simple teleoperation setup
shown in Figure 1. However, the resulted control technique is
then applied and verified on a completely different and more

Fig. 14. Norm value of T2F parameters of the master and slave controllers.

complicated teleoperation configuration. Demonstrated in the
comparative experimental simulations, the proposed adaptive
T2FNN control strategy outperformed the most recent T2F
based controllers in the literature. The RMSE, MAE, and
NRMSE values of the three T2F-based controllers have been
also reported to better compare the performance the three
controllers.

In the future, further investigations on the T2FNN structures
are being considered for semi/autonomous teleoperative assis-
tance to the human operator. Moreover, considering adjustable
parameters in fuzzy rules, including arin, i ∈ {m,s} is a
future direction to further improve the performance of the
system. Another strategy might be considered as development
of nonlinear functions for the consequent parts of type-2 fuzzy
rules. Chiefly, intelligent predictive models of the teleoper-
ation system will be developed that autonomously executes
secondary tasks alongside the main teleoperation process.
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