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We apply positivity bounds directly to a U(1) gauge theory with charged scalars and charged fermions,
i.e., QED, minimally coupled to gravity. Assuming that the massless z-channel pole may be discarded,
we show that the improved positivity bounds are violated unless new physics is introduced at the

parametrically low scale A, ~ (emM Pl)l/ 2, consistent with similar results for scalar field theories, far

lower than the scale implied by the weak gravity conjecture. This is sharply contrasted with previous

treatments which focus on the application of positivity bounds to the low energy gravitational Euler-

Heisenberg effective theory only. We emphasize that the low cutoff is a consequence of applying the

positivity bounds under the assumption that the pole may be discarded. We conjecture an alternative

resolution that a small amount of negativity, consistent with decoupling limits, is allowed and is not in
conflict with standard UV completions, including weakly coupled ones.

DOI: 10.1103/PhysRevD.103.125020

I. INTRODUCTION

It is now well established that for nongravitational
quantum field theories to admit a local Lorentz invariant
unitary UV completion, the low energy scattering ampli-
tude should satisfy an array of positivity bounds that
constrain the sign and magnitude of Wilson coefficients.
The simplest bounds were first noted in [1-3], and the
connection between their violation and causality was
emphasized in [3]. These original forward limit scalar
bounds have been extended to general spins [4,5] away
from the forward limit [5,6]. These bounds have proven
fruitful in placing constraints on interacting spin-2 fields
[7-14], restricting beyond standard model interactions
[15-24], and providing a new light on properties of string
amplitudes [25,26]. Most recently it has been recognized
that by using more information from crossing symmetry
and the partial wave expansion it is possible to put upper
and lower bounds on Wilson coefficients [27-31] in certain
cases ruling out classes of theories from having a standard
UV completion such as weakly broken Galileon theories
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[27,28]. Similar results are arrived at within the related
S-matrix bootstrap program [32].

Given these successes, it is highly desirable to consider
the impact of these bounds for realistic effective field
theories coupled to gravity. Unfortunately, the direct
application of positivity bounds to gravitational effective
field theories is fraught with difficulties. On the one hand,
the distinctive features of gravity mean that scattering
amplitudes are permeated by massless poles and branch
points which spoil the conventional forward limit consid-
erations, and preclude an analytic continuation from the
physical region which preserves positivity even away from
the forward limit. On the other hand, causality in the
gravitational setting is more subtle, from the ambiguity of
the metric under field redefinitions and known super-
luminal speeds in well established low energy effective
field theories (EFTs) [33-36]. In a previous paper [37], we
argued that the only gravitational effective theories in
which positivity is clear-cut are those for which there is
a clean Mp; — oo decoupling limit, for which positivity of
the nongravitational decoupling limit theory may be
assured. With this in mind, we considered several examples
of renormalizable scalar field theories coupled to gravity
for which violations of positivity are necessarily suppressed
by powers of Mp;. Demanding the scattering amplitude
respects positivity with the gravitational 7-channel pole
removed generically imposes the cutoff of the effective
theory to be far lower than expected, a result which
parallels conclusions from the swampland program [38,39].

In the present work we extend the results of [37] to the
more interesting case of QED minimally coupled to gravity.

Published by the American Physical Society
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Unlike in Ref. [37], we will not rely on the device of
introducing a spectator field, but rather consider the
improved positivity bounds [4,9,10]. In their simplest form,
the standard forward limit positivity bounds can be applied
on the pole-subtracted scattering amplitudes as [3]

d?A;(s,0) 2/00 ImA;(u,0)

A dy—20 )
ds? 7T Jam? (u—ys)3

ImAS (1, 0)

2 /00 :
+= du :
T Jam? (/" - I/t>3

where the positivity of the expression (for 0 < s < 4m?,
u=4m*—s) on the left-hand side arises due to the
analyticity properties of the S-matrix and positivity from
the optical theorem, and AS is the s — u crossing exchanged
amplitude. The improved positivity bounds [4,9,10]
allow us to tighten the bound by including any additional
knowledge about our EFT. The idea behind them is
particularly transparent from the exact formulation of the
optical theorem as

>0, (L1)

ImA; (s, 0)

Z/dnf|AHf|2 S0, (12)

where i denotes the initial and final particle content, f
stands for any intermediate state, and dIl; is the phase
space volume. The theorem then implies that, given a set
of possible intermediate states in the theory that is being
investigated, i.e., {f},f2,...,fn}, €ach known contribu-
tion to the sum on the right-hand side of the above equation
can be taken to the left-hand side leading to an even tighter
constraint on the remaining amplitudes. This gives the
improved positivity bounds

d?A,(s,0) |Az—>f|
AL fo

known f

—= Z /dnf/ |A’*f >0,
4m?

known f

(1.3)

where overall positivity is still ensured by the sum over
“unknown” configurations f. It is in the application of
improved positivity bounds that our results will differ from
previous discussions of positivity bound for QED coupled
to gravity, notably [40], and more recently [41-43] which
have focused entirely on the gravitational Euler-Heisenberg
effective field theory that describes physics well below the
electron mass.! The latter is sufficient to reproduce the

"This information is partly recovered in the 3D case considered
in [43] by focusing on the large order limit in an expansion in
s/m?. In practice, for our considerations it is better to utilize the
improved positivity bounds since the former is dominated by the
branch put at 4m? and the latter at a much higher scale.

bounds (1.1), but by preserving information from physics at
and above the electron mass, one is able to derive a much
tighter constraint as implied by the improved bound (1.3).

Remarkably, the authors of [40] noted that if positivity
bounds were applied to four-photon (i.e., 2-2) scattering
amplitudes with the gravitational f-channel exchange
removed,” positivity would hold if the general requirements
of the weak gravity conjecture [54] are met, namely that
there is a bound on the charge to mass ratio |e|/m = 1/Mp.
Interestingly, at least in three dimensions (3D), this
observation is partly countered by that of [43] which uses
the extended positivity bounds of [31] to derive opposing
bounds, arguing for the need for additional light neutral
states to resolve this tension. As we discuss in Sec. IV D,
this particular “resolution” does not apply in the four-
dimensional case considered here.

Keeping in the spirit of applying positivity bounds to
the t-channel removed amplitude, we shall find a much
stronger result: Improved positivity bounds applied to QED
coupled to gravity demand the existence of new physics at
the scale Aoy ~ (emMp;)'/>. Most importantly this result
is independent of what that new physics is. For instance, it
applies equally well for the Regge-like completions con-
sidered in [41] where the photon Regge tower dominates
over the graviton tower, and it is argued that the weak
gravity conjecture from a positivity argument is robust.
That is because any Lorentz invariant UV completion will
be described at low energies as irrelevant operators cor-
recting the naive QED Lagrangian, and our consideration
only demands that some new physics comes in at the scale
Apew ~ (emMp)'/2, which would show up at low energies
as the need to add irrelevant operators, but makes no
demands to what its origin is.

As discussed in [37] an alternative explanation of our
results is that strict positivity of the scattering amplitude,
with the 7-channel pole removed, does not apply. Indeed,
we can only be sure it applies in the decoupling limit
Mp — oco. Rather in [37] we conjectured that in the
gravitational context, for a scattering amplitude whose
low energy expansion near ¢t = ( takes the form’

2
A= et 4
MP]

(1.4)

*These bounds can be motivated on entropic grounds [44-47]
or in other setups [48-51]. Recently, the procedure of applying
directly the positivity bounds to the #-channel removed amplitude
was argued to be justified by a compactification argument in [42].
In [37] various issues with this compactification argument were
pointed out. See also [52,53] for related discussions.

In general graviton loops lead to branch cuts extending to
t = 0; however, for the four-photon amplitude these necessarily
arise at order 1/Mj, and so will not affect any considerations
here. Nevertheless, they are indicative of the issues with contin-
uing the partial wave expansion past r = 0.
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the standard positivity bound (1.1) is weakened to the
requirement

_ o)
M2M3,’

c > (1.5)

where M is at most the cutoff A, of the low energy
expansion M < A.. This weakening is consistent with the
known weakening of causality criteria in familiar EFTs
[33-36]. Our results for QED indicate that the improved
positivity bound (1.3) would need to be weakened to

€2

cimp >
242
m-Mp,

x O(1), (1.6)

where m is the electron mass to avoid the need to introduce
new physics at the scale A, ~ (emMp,)'/?. Here ¢™ is
the equivalent coefficient that arises in the expansion of the
improved amplitude (3.8). This is consistent with (1.5) for
M ~ m/e. While (1.6) is not in conflict with the Mp — oo
decoupling limit, it would nevertheless indicate a signifi-
cant weakening of positivity that deserves further explan-
ation. At present there is no generally accepted proof of
positivity of ¢ at finite Mp.

We stress again that our conclusions are valid for generic
standard UV completions and further assuming weak
coupling, by itself, would not improve the bound (1.6).
The UV completion may equally well be strongly coupled
at the scale A,,, or lead to an infinite tower of higher spin
states as is required in any tree level completion of gravity
such as string theory. We only require that QED minimally
coupled to gravity be a good description at low energies and
that the Froissart bound in the weak sense |A(s, 7)| < |s|?
is respected at sufficiently large |s| — oo (the fact that at
low energy another scaling in s is observed is irrelevant).
A nonlocal UV completion could in principle violate the
latter and would evade these considerations, but would in
itself be a startling conclusion.

We begin in Sec. II with a review of the standard
discussion of positivity bounds as applied to the low energy
gravitational Euler-Heisenberg Lagrangian. In Sec. III we
derive the improved positivity bounds for scalar QED, and
in Sec. IV we perform the analogous calculation for spinor
QED. Most of the calculational details are saved for the
Appendixes.

II. BOUNDS FROM EULER-HEISENBERG

In the following we consider the theory of QED
minimally coupled to gravity, which is itself a low energy
EFT. The action for the fermionic (spinor) QED reads

M3 1 . _
Loep=+/—9 TPIR—ZFWF’““—y/(zWer)y/—eAﬂy/y”y/ ,

(2.1)

where y is the Dirac field; y =y ™", ¥ =y*V,, and
y* = vhy? are the gamma matrices; vy, is the vierbein; and
V is the covariant derivative with the spin connection (see
Appendix B 1). We denote by m and e the electron mass
and charge, respectively. When the role of the electron is
played by a complex scalar field, the action for scalar QED
is then

M3 1
'CsQED =V 9 TPIR - ZF/WFIM - Dy¢Dﬂ¢T - m2¢¢T >

(2.2)

where ¢ is the complex scalar and the gauge-covariant
derivative is defined as usual D, = 0, — ieA,,. Throughout
this work we use mostly plus signature (—, +, +, +).

A. Gravitational Euler-Heisenberg effective
field theory

Below the electron mass, we may integrate out the
heavy electron from (2.1) and (2.2), respectively. We refer
to this as the gravitational Euler-Heisenberg effective field
theory. The resulting EFT involves higher derivative
interactions between the Maxwell field and graviton and
can be parametrized as

1‘42 1 a;
SEul-Heis,] = / d*x\/—=g {TPIR - ZFWF"” +a (F, Fr)?

25 ~ 2 bl
-l—%(FWF’”“) —I—WRFWF’”

b2 g ooipe, + DR, P
+ W H A + W uvip

+ 1R 4 R, R™ 4 3R, R + - -],

HUpC

(2.3)

where the ellipses designate higher order operators and
where we have defined F,, = €,,,,F* /2. The form of
these operators is the same independent of whether one
starts with the spinor or scalar QED; only the exact values
of the coefficients a;, b; vary. In turn, the ¢; couplings
appearing in front of the curvature-squared operators are
different. These arise even in the case when electron charge
e is zero and encode the backreaction of any matter fields
on the metric, more precisely the propagator of the spin-2
state. The couplings c; thus receive contributions from any
matter field coupled to gravity and are not solely deter-
mined from our QED EFT. The role of these terms is
discussed in more detail in Sec. IV D.

The coefficients for the spinor QED are known to
be [33,40]
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a? To?
a —, a) = ——,
790 27360
a 13a a
by = ———o, =—— - 2.4
' 144x 2 3607 37 3607 (2:4)
while for scalar QED the coefficients are [40,55,56]
B To? B a?
T 1400 P T a0
a a a
by=—-——, by=———, by=——, (25
! 2887 2 3607°  ° 7207 (2:5)

where a = €?/(4r) is the fine-structure constant. The
action (2.3) can be further simplified by expressing the
Riemann tensor in terms of the Weyl tensor C and using
the lowest order Einstein equations (i.e., performing a field
redefinition). To this order in the EFT, this leads to

MI%I 1 v a’l v\2
Liuiteis2 = V=9 - R- ZFMUF” + s (F, F"™)
a’ ~ b3
(W) + S EFC7 |, (26)

where F w18 the dual field strength tensor and (after setting
¢; = 0) the new coefficients are’

1 m? 1 m?
a’l = a; +——b2 +——b3,
4 M3, 2 M3,
1 m? 1 m?
a, =ay +——5 by, +-—5bs. (2.7)
4 M3, 2 M3,

Notably, both couplings a; and b; contribute to the two F*
terms in the action; it is, however, important to emphasize
the difference in their physical origins. For this, let us note
that in the gravitational Euler-Heisenberg action (2.6) these
arise with different mass scalings in front of the corre-
sponding operators, so that we have

a; e m? b; e? (2.8)
m*  m*’ M m* mPM3 '

The appearance of the inverse powers of Mp, in the b-terms
indicate that the scattering processes leading to the low
energy F* interactions are different in the two cases.
The couplings a; are generated by four-photon scatterings
involving only electron exchange (shown on the first line of
Fig. 2 or in the first diagram of Fig. 3). The couplings b; in

“Note that these relations differ slightly from those given in
Eq. (3.4) of [40]. Importantly, there is a sign difference in both b,
and b5 due to the fact that the coefficients b; change sign under
the signature change. The numerical factors coincide if one
switches the units, e.g., 1/4M12,1 =47xG/2 = 1/2, since 472G = 1
in [40].

turn are generated by gravitational four-photon scattering
involving a massless graviton exchange as shown on the
second line of Fig. 2 (or in the last three diagrams of Fig. 3).

B. Positivity bounds from the Euler-Heisenberg EFT

The leading contribution to the four-photon AA — AA
scattering amplitude in the gravitational Euler-Heisenberg
theory below the electron mass (2.6) comes from the
scattering processes shown in Fig. 1. Although not explicit
in the diagrams, b; enters through a modified graviton-
photon-photon vertex. Consistent with the previous liter-
ature, we find the following results for the various helicity
configurations of the ingoing and outgoing particles (writ-
ten in an all ingoing convention):

Aguteis(+ + ++) = Agurpeis(— — ——)
8(a) —a5) 2.2 2
= + t s
o (s +u)
AEul—Heis(+ + __) = AEul»Heis(_ - ++)
s 8@ ta)
M3, stu m* ’
AEul—Heis(+ - +_) = AEul»Heis(_ + _+)
I AP
M3, stu m* ’
AEul—Heis(+ - _+) = AEul»Heis(_ + +_)
u* 8(a) + db)
= + 2. 2.9
M3 stu mr (29)
The b5 interaction vertex only contributes to the
AEul—Heis(+ + +_)’ AEul—Heis(_ - _+)’ etc., amplitUdeS
as [40]
AEul—Heis(+ + +_) = AEul—Heis(_ - _+)
b;
=——=(s*+22+u?). (2.10)
M3 m?

These amplitudes respect s — u crossing symmetry in the
sense

RN

FIG. 1. The AA — AA t-channel scattering in the gravitational
Euler-Heisenberg theory. The wiggly line stands for the vector
field A,. The exchanged wavy line stands for the graviton f,,.

A, Ay
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./4(/11/1213/14)(5‘, t, M) == A(11/14/13/12)(M, t, S). (21 1)
As expected, the amplitudes (2.9) involve the infamous
t-channel pole diverging in the forward limit, thus formally
invalidating any analyticity arguments that would lead to
the positivity bounds. Interestingly, in [40] it was proven
that upon discarding the massless graviton pole and after
symmetrizing the scattering amplitudes above, the posi-
tivity bounds imply

ay +a, > 0. (2.12)
Alternatively, this result may also be obtained by analyzing
the elastic amplitude A(+ + ——) = A(++ — ++) alone.
Inserting the expressions of the coefficients (2.7) we get

b
(11+(12+M2 <;+b3> > 0.
Pl

As discussed earlier, the exact values of the coefficients a;
and b; are known from the QED EFT (2.6) and are given in
Egs. (2.4) and (2.5). For the scalar QED this implies5

(2.13)

et m? 5
— (25 +My) >0, 2.14
2880M3,7° ( 7 "1> (2.14)

while for the spinor QED this leads to

et

ST60MA,7 ( 24" + 11M3 ) >0. (2.15)
Taking these bounds at their face value one would be
tempted to conclude that these imply the weak-gravity
type of bounds on the charge-to-mass ratio, i.e., that
e/m = \/2/Mp,, which was one of the remarkable points
presented in [40]. However, as we shall see below, the
previous bounds rely on known positive QED contribu-
tions, namely that from the nongravitational electron loop.
However, the raison d’étre of positivity bounds is to probe
the unknown UV contributions. Any known contributions
from the EFT can and should be removed by means of the
improved positivity bounds, as we describe below, before
any physical conclusions are derived.

The bounds (2.12) are not the only bounds that may be
derived assuming the 7-channel pole may be discarded; we
may also consider states of indefinite polarization which
mix in information about b;. For instance, taking the
incoming polarization state to be |+) ®\/%(|—I—) +|-))
the positivity bound becomes 4(d| + a,) > m?|bs|/ M3,
For specific indefinite polarization states corresponding to

The relations (2.14) and (2.15) are given for ¢; = 0, whereas
[40] also accounts for the nonzero c;. The implications of nonzero
¢;, which contribute at order 1/ Mél in the amplitudes, are
discussed in Sec. IV D.

those that are natural from compactification to 3D, we may
then recover, for example, the bounds argued for in [42]. In
our current notation these are the statements that

s > 150 2.16
‘11>M2|3’ a, >0, (2.16)

PI

which are stronger and therefore include (2.13). Once
again, taken at face value for QED minimally coupled to
gravity, we would be led to a similar conclusion about the
charge-to-mass ratio in order to satisfy them, a conclusion
that would be premature.

Before proceeding we note that the bound discussed in
[40] has been countered in the case of 3D by the discussion
of [43] which makes use of extended positivity bounds of
[31], leading to an opposing bound on the charge-to-mass
ratio. This parallels some of the discussion in what follows
for four dimensions (4D), although we shall make use of
the improved positivity bounds which allow us to infer a
bound on the cutoff of the EFT and avoid the need to focus
on the high powers of s in the expansion of the amplitude.

III. BOUNDS FROM SCALAR QED COUPLED
TO GRAVITY

Our goal is to extend the argumentation of the previous
section, whereby, instead of applying the positivity bounds
to the Euler-Heisenberg Lagrangian, we shall apply
them directly to QED minimally coupled to gravity—itself
treated as a low energy EFT. The new feature is that the
resulting EFT is valid at and above the mass of the electron
(up to the EFT cutoff A_.), and so we may use the
“knowledge” of electron loop contributions to “improve”
the positivity bounds. Before we do this we outline in
more detail the improved positivity bounds in the next
subsection.

A. Improved positivity and dispersion relations

The fixed ¢ dispersion relation for the pole-subtracted

amplitude .Zl(s t,u) can be written in a maximally s-u
crossing symmetric way as

,Disc, A(s",t,u')
/2(s _ S)

~ 2 o0
A(s,t,u) = a,(t) + ax(1)s —|—S—/
0

_/ D1scuA st u)

(u' - u)
where s’ + u' + =0 for massless photons. Assuming
that the unknown UV completion at energies well above
the electron mass has the Froissart-like behavior
limyg|, o, Ayy(s. 1)/s* = 0, Cauchy’s theorem may be
applied to 92A(s,t), with a vanishing contribution from
the contour at infinity, from which the subtraction terms
a,(t) 4+ a,(t)s arise. The discontinuities in the dispersion

, (3.1)
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relation above are with respect to the Mandelstam variable
that corresponds to the center of mass (CoM) energy
squared of either the s or the u channel,

2iDiscy A(s,t,u) = A(s+ie,t,u=—s—t—ie)

—A(s—ie,t,tu=—-s—t+ie) (3.2)
and
2iDisc, A(s,t,u) = A(s =—u—t—ie,t,u+ic)
—A(s=—-u—t+iet,u—ic). (3.3)
Explicitly, crossing symmetry implies that
A/hh—»h/h (5.0,u) = A/Il—/14—>/13—/12 (u,0,5), (3.4)

and so the left-hand u-channel discontinuity is defined
so that

DiSCuAilﬂz—MgM (S, O, M) = DiSC”Aﬂl_M—)%_AZ (14, 0, S)

= [DiSCA'A/Il—24—>i3—22 (S’ 0’ u)]ues’
(3.5)

which is just the standard right-hand discontinuity of
the crossed process A+ D — C+ B (associated with
A+ B — C+ D). The physical discontinuities are there-
fore positive in the forward limit for elastic scattering by
unitarity on both the right-hand and left-hand cuts, leading
to the forward limit positivity bound,

~ 2 (o Di S
%Amﬁn>:_/ gy Dises AW 0.u0)
0 s

T

+=
T u/3

2 [~  Di "0, u
/‘Muﬁzﬁigd>0 (3.6)
0

This positivity bound can be improved by then subtracting
a known positive contribution to the discontinuities from
both sides of the dispersion relation. This discontinuity can
be computed in the EFT (e.g., QED in our case), giving a
result that can be trusted well below its cutoff scale A,;
hence the integrals over s’ and u’' must be cut off at e?A2
with € < 1. This can then be achieved by a split

Disc, A(s, 0, ') = Disc, A(s', 0, u')0(e* A2 — )

(e°A
+ Disc, A(s', 0, u')0(s — €2A2),
Disc, A(s",0, u')0(e* A2 — u)
+ Disc, A(s",0, u’ 6’(u —e?A2),

Disc, A(s",0,u') = (e*A
)
(3.7)

where the first term on the right-hand side (RHS) is
regarded as the “known” part of the discontinuity, and

both known and unknown pieces are positive separately.
We may then define the improved scattering amplitude
A™P (s, ¢, u) via [9,10]

2 1 / !
A (s 1 u) = A(s, t,u) — > / —DISCQA(S L)
0 (s" =)

__/ DISC AES ;)u) (3.8)

Crucially A™P(s,¢,u) has the same analytic structure as
.Zl(s, t, u) except that by construction the branch cuts now
start at s’ = €*A? and u’' = ¢*A2. We may then derive
improved positivity bounds from A™ (s, 7, 1) in the same
manner in which they are derived from A™P(s,t,u), in
particular leading to the forward limit bound

PAM(0,0,0)

~ 2 [N Di "0, u
:@A@Qm__/ g Dises AW 0.1
T Jo

s/3

e2A2
_?/ i Eif%__l>0 (3.9)
7 Jo

To proceed we need to know not only the low energy
expansion of the amplitude but also the low energy
discontinuities. These receive contributions from both
nongravitational diagrams and gravitational ones, and we
shall deal with each of these in turn.

B. Discontinuities of nongravitational diagrams

The full set of diagrams for scalar QED that contribute to
the one-loop four-photon amplitude to order 1/M3,, includ-
ing graviton exchange, are given in Fig. 2. In general the
discontinuities can be inferred by unitarity cuts; however,
we choose to derive them directly from the amplitudes
provided in Appendix A. The discontinuities are calculated
within the domain relevant to the dispersion relation,
namely the physical region which for, e.g.,
Discy A(s',0,u’), is s’ > 0. In general it is necessary to
keep track of both the discontinuities of the original process
A + B — C + D and the crossed process A +D — C + B.
We use the results and notation of Appendix A 4. Focusing
for now on the nongravitational contributions (i.e., those
with no internal graviton lines), we denote by A, the
contributions to the amplitude arising from diagrams with n
internal ¢ propagators. For scalar QED the relevant dis-
continuities from individual Feynman diagrams are,
respectively,

(i) For two internal lines,

4
Discy A, (5,0, u) = s = dm’

—812834 (s — 4m*);
4n

125020-6
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YX X,

A

Bl
»
|

\4

FIG. 2. The AA — AA scattering in scalar QED due to nongravitational interactions (first line) and gravitational interactions to order

1/M3, (second line). The wiggly line stands for the vector field A, and the solid line stands for the scalar field ¢. The arrows depict the
direction of the charge flow. We do not show all the crossed versions of the diagrams.

(i) For three internal lines,

o4 \/s(s—4m2)—|—2m21n( — 2 y 2)
Disc, A3 (s,0,u) = ——¢epp634 5 ) O(s — 4m?); (3.10)
s

(iii) And finally for four internal lines,

4

— — 4m?
Disc, Ay (s,0,u) = 8;2 { s(s —4m?)(s + 2m?) — dsm? <1n4 +3 ln% — 41’ $(s = 4m )>

m2

—4 2 —4 2 —4 2
—2m(m? + 4s) In (1 Y ) +2m*In (-3— &+%+7M>}
s s m m
X O(s — 4m?) X (e1p€34 + €14823 + €1304).
|
In all cases the associated u-channel discontinuities can 2 [ d Disc, A(s",0,u’) 2 [ d ,Disc, A(s",0,u’)
be inferred from 7 Jo § §3 T 7 Jo u u
et 1
= 3402 | E12634 + €463 T+ i€ ) (3.12)
Disc, A, (s,0,u) = [Disc; A, (5,0, 1) pr0s.  (3.11)

whereas taking the derivative directly of the nongravita-
The total amplitude is the sum of all contributions A(s,  tional amplitude gives

1) =73 Ayee (5, 1,u) + Ao (5, 8,u) + Az (s, 2,u) + Ay (s, 1,u),

accounting for wave function renormalization, and so the

discontinuities combine accordingly.

4
~ e 1
97.A(0,0,0) = 402t <€12€34 T+ €483 + 5813824>’
(3.13)
As a simple consistency check, we can verify expression
(3.6) for the second derivative of the dispersion relation.
Direct integration of the discontinuities gives

C. Checking against the dispersion relation

confirming the validity of the dispersion relation with two
subtractions in the absence of gravity.
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D. Discontinuities of gravitational diagrams

The gravitational diagrams for scalar QED that contrib-
ute to order 1/M3, are computed in Appendix A5 and
contain individual Feynman diagram contributions labeled
a, b, ¢, din Fig. 6. We find that the type ¢, d diagrams do not
produce any discontinuity. This is because the denominator
of the loop integrand has a strictly positive real part. We
find the b type diagrams also have zero imaginary part, so
we can focus solely on the type a diagrams. We shall define
the following scattering configurations:

ConfigurationI: + + — — =44 — ++
ConfigurationIl: + — — + = +— - +-—
ConfigurationIll: + -4+ —-=+4+— - —+

and focus only on these for illustrative purposes. The first
two configurations are elastic so positivity bounds apply
to them.

1. Configuration I

The loop diagrams with one graviton exchange have the
following discontinuities:

Disc, A (5,0, u) = 0, (3.14)

Disc, A;(s,0, u)

2

- ((om>- —4m?
24ﬂM1%1u<( = u)yfuu = 4m’)

u — 4m?

— 24m* tanh™! <
u

>)9(u —4m?).  (3.15)

Note that this discontinuity is strictly negative in the
physical region. This does not contradict unitarity since
this is a perturbative gravitational correction to an already
positive nongravitational discontinuity.

2. Configuration 11

Disc, Ay(s, 0, u)

e’ <
=———— | (10m? = s5)y/s(s —4m?)
24xM3s

s —4m?

— 24m* tanh™"! ( ))9(5 —4m?).  (3.16)

N

Note that this discontinuity is also strictly negative, while
the u-channel contribution cancels,

Disc, Ay (s, 0, u) = 0. (3.17)

3. Configuration II1

The forward limit of this helicity configuration has zero
discontinuity which agrees with the gravitational Euler-
Heisenberg result as the gravitational part of the amplitude
in this configuration is zero in the forward limit.

E. Checking against the dispersion relation

If it were the case that QED coupled to gravity still
respected the Jin-Martin version of the Froissart bound to
the one-loop level, i.e., |A(s, )| < |s|?, then it would still be
possible to write a dispersion relation for the scattering
amplitude with two subtractions. Furthermore, if this were
the case it would be possible to use the improved positivity
bound to remove even the gravitational contributions.
Fortunately this is not the case, and it is this very fact
that will lead to our central result. For scalar QED in
configuration I the gravitational contribution to the ampli-
tude gives

2

e
A/(0) = —————, 3.18
(0) 907> m> M3, (3.18)
whereas the usual dispersion integrals give
2 [ DiscyA(s',0,u) e?
2 gy 22 ) .
7 /0 g 57 o) = o,
(3.19)

By contrast higher derivatives of the dispersion relation do
match, which is to be expected since we can write a
dispersion relation for the one-loop gravitational contribu-
tion with three subtractions, and for any n > 3, so we do
expect the following to hold:

L[/ Disc A 0.1
8?./4(0,0,0) :n;/ dslw
0

s/n+1

+(—1)”n!/du,DiscuA(s’,O,u’).
n

u/n-H

(3.20)

Indeed, for configuration I the integrals on the RHS give

(=1)"n! Disc, A;(s",0,u’)
0 + P dul u/n+1
- e?(=1)"272+ D p ) cse(zn)
VaAMEm* "D (n + L2 = n)T(n +3)

(3.21)

whereas from taking derivatives of the amplitude for the
left-hand side (LHS) we obtain
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E(=1)""T(n—1)I(n+ 1(n+2)
Mym*" Vg2 (n + 1)0(2n + 3)
(3.22)

A"(0,0,0) =

which is, in fact, equal to the dispersion integral result, so
the dispersion relation holds for all n > 3.

It is worth stressing that the fact that the low energy
amplitude computed within the EFT does not satisfy the
Jin-Martin version of the Froissart bound at the one-loop
level does not in any way imply that the full UV amplitude
would itself need to violate Froissart. It is indeed inevitable
in an EFT that amplitudes computed to finite order in
an energy expansion grow “too fast,” indicating only the
|

2 [l d Disc, A(s,0,u) 2e> [€Aids [ [s—4m?
— §—— — ——— — | — —_— e
T Jap? $3 72 Jae 50 |4 s

62

+ -
45

—4m? 2
_2m2(m2+4s)ln<1—\/s sm>+2m4ln<—3— : +%+

while the u-channel integral is

m

—2m*(m? +4u)In <1—\/u dm ) +2m* ln( 3—\/
<(10m2 —u)\/u(u—4m?) —24m*tanh™! (\/u—Télmz>>1 .

+ 24M1231u

{ s(s —4m?)(s +2m?) — 4sm? <ln4—|— 3lniz—4ln
m

breakdown of the effective theory. It is precisely because of
this fact that positivity bounds are so powerful.

F. Improved positivity bounds

We now have all the essential ingredients needed to
derive our main result. Assuming that the improved
positivity bounds can be applied with the ¢-channel pole
discarded, then the fact that the nongravitational amplitudes
for QED do respect Froissart at one-loop, but the gravi-
tational corrections (as computed within the QED EFT) do
not, will enforce a nontrivial bound on the cutoff of the low
energy effective theory. Let us focus on the configuration I
amplitude which is elastic in polarizations ++ — ++.

The s-channel integral is

\ S S —4m + 2m2 In (—>
s=2m>++/s(s—4m?)

2s

s— s(s—4m2)>

m2

s—4m

2 (€A Di ,0, 202 [eAr(d 2 _ P
—/ duw—%/ —l: le—z u(u—4m?)(u+2m?) — 4um? 1n4+31ni2—41nu u("; )
)4 u = Jam2 uw |4u m m

)

(3.24)

Inserting the discontinuities into the improved positivity bounds and expanding the integrals given the necessary

assumption m < €A, lead to

2/62/\3d ,Disc  A(s",0,u) 2/62/\3d ,Disc, A(s",0,u)
0

0 < 93.A(0,0,0) o 7 - e :
64 e2m2 62 62
0< - - R 3.25
47> Nfet * 2P M3 Ade*  180n*m> M3, 127° M3 A2e? * (3.25)

Given the assumed EFT hierarchy m < eA,. < Mp, it is sufficient to approximate this as

64

2

e

42t A

180m*m> M2,

> 0. (3.26)
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FIG. 3.

DO

The AA — AA scattering in spinor QED due to nongravitational interactions (first term) and gravitational interactions to order

/M 12,1 (remaining terms). The wiggly line stands for the vector field A, and the solid line stands for the fermion y. The arrows depict the
direction of the charge flow. We do not show all the crossed versions of the diagrams.

The first term is the contribution from nongravitational
diagrams which in the absence of gravity can be removed
by sending A, — o0, reflecting the statement that QED in
flat space automatically satisfies positivity bounds to one-
loop. The second term is the distinctively negative gravi-
tational contribution which arises from the non-Froissart
growth of the one-loop amplitudes.6 This positivity bound
may be most cleanly interpreted as a bound on the cutoff of
the effective theory:
eA, < (emMpy)'/?, (3.27)
which is to say that if we take the positivity bound with
t-channel pole discarded seriously, QED cannot be mini-
mally coupled to gravity without introducing new physics
at or below the scale A, ~ (emMp)'/?. This is signifi-
cantly lower than the scale eMp, implied by the weak
gravity conjecture [54], and indeed by the FEuler-
Heisenberg bounds derived in Sec. II B. The strength of
this result is due to the fact that we can remove the known
QED contributions to the positivity bounds from the
electron loops, up to the cutoff scale eA., giving us a
much more constraining condition. This result exactly
parallels similar conclusions derived for toy scalar field
theories coupled to gravity in a previous work [37]. The
present result is, however, cleaner since (a) we do not rely
on spectator fields, (b) the form of the QED Lagrangian is
more strongly constrained by gauge invariance, and (c) we
make no assumption on the types of operators that would
arise at the cutoff. Furthermore, if one would possess any
additional knowledge about the UV completion of QED
|

minimally coupled to gravity beyond the cutoff A, up to
some higher cutoff scale Al > A,, one could similarly
repeat the procedure of the improved positivity bounds up
to this new scale. In particular, one could calculate the
improved amplitude as in Eq. (3.8) integrating over the
discontinuities up to €*A.L? and including all the new
contributions coming from this new physics to the scatter-
ing amplitude A(s,7,u). In the absence of any such
knowledge about the nature of the UV completion, the
bound (3.26) is, however, the most generic result. Finally,
when the inequality (3.26) comes close to being saturated,
we should also worry about higher order corrections in
1/M3,. These will be considered in Sec. IV D.

IV. BOUNDS FROM SPINOR QED COUPLED
TO GRAVITY

The discussion for spinor QED closely parallels that for
the scalar QED with the only difference being numerical
factors. We sketch the essential arguments leaving the
amplitude calculation details to Appendix B. The number
of diagrams contributing to the four-photon amplitude at
one-loop level and to order 1/M3, is significantly fewer as
seen in Fig. 3.

A. Discontinuities of nongravitational diagrams

As shown in Fig. 3 the only nongravitational diagram is
the “box” diagram. The relevant amplitude discontinuities
are given in Appendix B 3 in the s and u channels. For the
first two polarization configurations they are, respectively,

4 O(s — 4 2 -2 2 _ —4 2
Disc, AL, — PO =am) (s =2m) ([ [0 ) — o og SV 4m) ) )
s+ +/s(s —4m?)

27252

e*nf(u — 4m?) / u—+/u(u—4m?)
DiSCM.AI =" | 2(=m? = u)\/ulu—4m?) + (4m* = 2m2u — u*) 1o s
box 27 u? ( Jyul )+ Jlog u~+ /u(u —4m?)

and

®We stress again that this does not imply that the UV amplitudes violate the weak Froissart bound |.A(s, 1)| < |s|2.
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Disc, Ao, = % (2("”2 —s)\/s(s —4m?) + (4m* —2m*s — sz)log<s = )>>
VA

s+ +/s(s — 4m?)
4 —4 2 -2 2 _ —4 2
Disc, Al = idC n; )2(14 m) \/u(u —4m?) —2m?log - ulu - 4m’) .
2ru u+/u(u—4m?)

All the above discontinuities are positive as required by unitarity. We may confirm the validity of the dispersion relation
with two subtractions by demonstrating that

2 /00 ds’ Disc, A(s', 0, u') _’_g/m duf Disc, A(s",0,u') 11e* (4.1)
0 0

92A4(0,0,0) == = ,
Al ) 7 s s u” 36072m*

as required, confirming the discontinuities above for both chosen helicity configurations.

B. Discontinuities of gravitational diagrams

For spinor QED the only gravitational discontinuities come from the type a diagrams. The discontinuities of these
diagrams are negative and are given by

Disc, A' = — 671';42]23114 O(u — 4m?) <(5m2 + u)y/u(u —4m?) + 3m*(2m?* + u) log (: _7_ Z((’: :iZi;) ) ,

Disc, Al = 0,

Disc, AT = — 22 O(s —4m?) ((sz +5)1/s(s —4m?) + 3m?>(2m?* + s) log (S = vsls = 4m2)> ) .
6rMp,s s+ /5(s — 4m?)

Disc, A" = 0.

As before the negativity of these discontinuities is not in contradiction with unitarity since these are M12>1 suppressed
corrections to the positive nongravitational discontinuities. Here again, one can explicitly check that this discontinuity is
consistent with the relation inferred from the dispersion relation with three subtractions.

C. Improved positivity bounds

Focusing now on the scattering configuration I, the improved positivity bound is [expanding the integrals to next-to-next-
to-leading order in powers of m/(eA.)],

0 < 92A4%0,0,0) — = 3 3 ;

2 [ gDl 2 N D0,
0 0

z s /2 u
11e* 11e? 2 (€A Disc Al(s',0,u') 2 (€A Di (s, 0,u
0< 62 . 262 i __/ iy isc, A gs u)__/ ' isc,. A €3s u)
3607°m* 180w m~Mp, 7 Jo s 7 Jo u
11 2 2 4 2.2 4 A 2,2 A
0 < e e e e m e m etm” A (42)

- - - - — 5 1n
360m°m* M3 3n’A*M3 4nPAt AnPACME, TR mAME m

|
where A = €A,. Once again focusing on the EFT hierarchy  cutoff is taken to infinity. If, however, the cutoff scale is

m <K e\, <« Mp this is effectively taken below
4 A1 11e? < 12
e (0 3) s 7O @) A 5 (emMp)'P% (44
T m T m Pl

positivity is respected. Up to numerical factors this is
As before, without gravity the bound is trivially satisfied,  essentially the same order as the bound derived in scalar
and in the presence of gravity the bound is violated if the =~ QED and suggests a universal result.
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o

FIG. 4. Example gravitational contributions at order 1/Mj,.

D. Higher order gravitational contributions

Up to now, we have only considered the gravitational
corrections to scattering amplitudes up to order 1/M3, on
the grounds that these dominate. Given the results of the
improved positivity bounds, it would be remiss not to
address whether higher order corrections, specifically the
next ones at order 1/Mjp, could rescue positivity without
the need for the low cutoff (4.4). Indeed, as noted already in
[40] this is in principle possible. In the context of the
improved positivity bounds derived here we can show that
this actually leads to equally strong implications. Example
Feynman diagrams at this order are given in Fig. 4.
They contain no electromagnetic vertices and therefore
do not vanish as e — 0. Indeed, any matter species, even
uncharged, will give similar contributions. Furthermore
these amplitudes are logarithmically divergent within 4D
QED minimally coupled to gravity, necessitating the need
to add curvature square operators in the actions (2.1) and
(2.2) whose coefficients can only be determined by
matching onto an unknown UV completion. When
included in the amplitude, the improved positivity bounds
for spinor QED become

e lnA 1 11e? B In A +ym -0
oA\ m 4) 360n*mPME My \m) My~

(4.5)

with a similar expression for scalar QED. Here B is a
known positive O(1) coefficient determined from the
positive discontinuities of the diagrams in Fig. 4, and y,,
is an unknown matching coefficient accounting for the
curvature square types of operators which needed to be
added to the actions (2.1) defined for convenience’ at a
fixed renormalization group (RG) scale u ~ m. The loga-
rithmic A dependence of the B term arises, as in the first
term, from the application of the improved bounds which
removes the branch cut up to the scale s’ ~ A>. We now see
that in principle there is another solution to maintain
positivity, other than that of (4.4). Indeed, assuming
A > (emMyp))'/? then (4.5) effectively becomes

"More generally y(u) =7, — Bln(u/m) demonstrating the
logarithmic running of the diagrams in Fig. 4.

11e? YA

3607°m>M3, My, (4.6)
Now if y, is order unity, then (4.6) amounts to a bound of
the form m 2 eMp,, in complete opposition to what is
anticipated from the weak gravity conjecture. This is, of
course, because we are trying to maintain positivity with
terms which are higher order in 1/Mp, rather than lower
order. A similar conclusion was made in the 3D case
in [43]. Unlike the situation in 3D, however, we cannot add
additional uncharged light states to remove this tension.
That is because in 3D the R” terms do not need renorm-
alization and any matter fields, even uncharged, contribute
to them as AS~ [d’x,/=gR*/m. Thus by including
very light uncharged fields, such as the neutrino, we can
maintain overall positivity without needing to satisfy
m 2 eM PI-

Returning to four dimensions, more generally we should
account for the role of larger y, which cannot be deter-
mined within the QED EFT. The typical expectation for the
magnitude of y, is of order the number of fields N, that lie
below the Planck scale since every matter field contributes
a term of this form on integrating out. Then the improved
positivity bound (4.6) can be satisfied provided

eM
> Pl

mm\/m.

In particular, for a weakly coupled UV completion in which
new massive spin 2 and higher states arise at a scale M, for
which M3 = M?/g2, then the scale expected for yyy is
yuv ~ M3 /M? ~1/g2 > 1. In this case (4.6) amounts to

(4.7)

mz eM,.

~

(4.8)

Unless e is extremely small for every charged states in the
theory, both of the bounds (4.7) and (4.8) are unreasonable
constraints on theories of interest, and so we do not consider
this “resolution” to maintain positivity as a meaningful
solution. Furthermore they stand in clear opposition to the
expectations from weak gravity conjecture [54].

V. DISCUSSION

In this article we have considered whether QED mini-
mally coupled to gravity respects positivity bounds applied
with the 7-channel pole removed. Regardless of whether we
consider charged fermions or scalars, we find that it only
does so if the effective field theory itself breaks down at the
low scale Ay, ~ (emMp)'/?, m being the mass of the
electron. This result was already anticipated in the renor-
malizable scalar field theories discussed in [37], and we see
that the new features of gauge invariance and spin do not
change the essential implications. Furthermore, these
results are easily generalized to N spinors and N scalars
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given that the entire effect comes from one-loop diagrams
in which the matter (i.e., electron) is in the loop, and so the
relevant amplitude contributions are proportional to N
and Ny, respectively. Crucially since both scalars and
spinors give a characteristically negative contribution to
the positivity bound at order 1/M3, in graviton exchange,
then no choice of N, and N, can be used to cancel these
contributions and affect these conclusions.
There are three possible perspectives we may take on
these results:
(1) Either consistent (local) UV completions of QED
coupled to gravity do require new physics at scale
Apew ~ (emMp))'/?, regardless of whether the UV
completion is weakly coupled or strongly coupled;
(i) Or for every charged state, we must impose the
unreasonable bounds m > eMp/+/N,, where N, is
the number of fields below the Planck scale, as
discussed in Sec. IV D;
(iii) Or the positivity bounds do not apply to the
t-channel pole subtracted amplitude.
The first conclusion is remarkable in that it is far more
stringent than the cutoff expected from the weak gravity
conjecture, namely Awg ~ eMp; [54], and by extension it is
lower than the scale e'/3Mp, [57,58] which is obtained with
assumptions on the UV completion from the species bound
and Landau pole. Thus if taken seriously, in this context
positivity bounds are far more constraining than other
“swampland” considerations. The second option while
technically valid is a rather unreasonable condition for
theories in which the electric charge of all the states is not
incredibly small, as in the case of real QED, and so we do
not consider it further. The last possibility was discussed in
more detail in [37] where we noted there are several reasons
to doubt strict positivity in the gravitational context.

A. Absence of decoupling limit

As discussed in [37], the only case in which one can be
sure that positivity holds is when there is a clear Mp; — o
decoupling limit for which the 7-channel pole drops out,
provided other terms in the amplitude do not vanish.
Interestingly, we can see that this is not possible here
without introducing other problems. For instance, for
standard QED, N, = 1, in order to take a decoupling limit
Mp, — oo keeping the scale Ape, ~ (emMp)'/? at least
constant for fixed m, or indeed the weak gravity conjecture
scale Aywg = eMp at least constant, we would need to scale
e ~ 1/Mp;, meaning we send Mp, — oo for fixed Ayg or
Apew- In doing so the nongravitational part of the amplitude
which is of order e*/m* ~ 1/M3, vanishes faster than the
M3, suppressed f-channel pole, undermining the very
purpose of the decoupling limit since then clearly the
graviton exchange dominates. Similarly for the improved
amplitude (3.8) the nongravitational part scales as
e*/Apew ~ 1/M3,, and we reach the same conclusion.

In many cases a better decoupling limit is obtained
by taking N = Ny + N, species and a large N limit. For
instance, one may be tempted to consider a theory with N,
fermions, so that the e* suppression of the one-loop
amplitude can be compensated by scaling N, faster than
M3,. In such a limit N e*/m* and the one-loop gravita-
tional corrections of the form Nye?/(m?M3) dominate
over the r-channel pole, suggesting at first sight that
an appropriate Mp — oo decoupling limit could be
achieved while maintaining some of the relevant physical
implications. However, doing so necessarily runs into
problems with the species bound [59,60] since then
Agpecies ~ Mp1/ /Ny = 0. While not constituting a proof,
these arguments are highly suggestive that we should not
enforce strict positivity, given the absence of a clean
decoupling limit, but rather a weaker condition of the
form (1.5), or more precisely in the present context (1.6).
We are, of course, free to take the decoupling limit
Mp — oo for fixed e and m which in the string amplitude
context amounts to g, — 0 so that the amplitudes are
dominated by tree level contributions. However, in this
case Ay, — o0 and no contradiction is observed from
applying positivity bounds to the tree amplitudes in the
nongravitational limit. It is clear that to make further
progress it is crucial to establish to what extent positivity
bounds apply with gravity, specifically whether it is in
the weak sense® (1.5) or (1.6), or the stronger one ¢ > 0
utilized here.
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APPENDIX A: SCALAR QED

1. Conventions

Before jumping into the core of the derivations, it is
useful to summarize our relevant conventions. We para-
metrize the physical momenta of the four particles as

8A related discussion is given in the arXiv:v4 version of [42],
where the weakening is attributed to a violation of Froissart on the
UV. Our perspective is that this assumption is not necessary.
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K= (k, ksin8;,0, kcos 9;), (A1)

with

191:0, 192:71', 193:6, 194:7T+9, (AZ)
where the particles 1,2 are ingoing and 3,4 are outgoing.
The quantities k& and 6 are expressed through the
Mandelstam variables using the relations k*> = s/4 and
cos@ = 1 + 2t/s. Similarly, the normalized and transverse

polarization vectors are defined as

1
—(0,cos &;, £i,
V2 (

The 2 — 2 scattering amplitude in conventions where the
momenta are associated with indices as A*(k;), A¥(k,),
A%(k3), AP(ky) reads

e(£) = —sind;). (A3)

Aphysical(hl ’ h2’ h3v h4)

= &l(h)ey (hy) Ay

*a
hysu:al(kl ’ k2, k37 k4)€3

(h3)ey (hy).
(A4)

where h; = 41 are the helicities of each particle.

All-ingoing notations.—Henceforth, for computational
simplicity we treat also the particles 3,4 as ingoing by
reversing their four-momenta: k5 = —(k, ksin, 0, k cos 0)
and Kk = —(k, —ksin 6,0, —k cos #). We leave the polari-
zation vectors unchanged and calculate the 2 — 2 scatter-
ing amplitude as

Aingoing(hl ’ h2’ h3’ h4)
=€\ (h )82(h2)"4{4:;)[fng(kl’ ka. ks, ky)eS (h3) €l (hy).
(A5)

Since under complex conjugation the helicity flips
sign, ie., ¢&"(h;)=¢€/(=h;). then an all-ingoing
amplitude is mapped to a physical amplitude as
Aingoing(hlv h2v h3v h4) = Aphysical(hla h27 _h3v _h4)' We
only use the all-ingoing amplitude (AS) throughout the
text and drop the subscript from now on.
We define (ke);; =k;-¢e; and ¢;; =¢;-¢;. The inner
products between external polarizatlons in terms of the

Mandelstam variables are

1 hihy h]h3+1+t
fMmTTH Ty T Ty T

hyhy 1 t 1 hsyhy
814:—7—5—*, 834——5—7,

hyh 1 ¢ hyh 1 ¢
824:—%4‘54‘ s 823:—%—5—3 (A6)

The inner products between external momenta and polar-
izations are

e A
(ke)3 = (ke)yy = \/5\/5 (ke)yy = (k )23*\/5\/5-
(A7)

These are symmetric (ke);; = (ke);;. All other inner
products vanish. Note that if all helicities are flipped, all
inner products are unchanged since helicity dependence
always appears in the form h;h;.

2. Tree-level photon-graviton contributions

Irrespective of whether we are interested in the scalar
QED Lagrangian (2.2) or the spinor one (2.1), the tree-level
photon-graviton contributions are the same. Writing the
metric as g, = 1, + h,, /Mp, the photon-photon-graviton
interactions are

1
L = T WY\ F o F*
han = 2M Pl WM Pl < e

1 aff
_ZF Faﬁ'l/w ’

(A8)

where all indices are raised/lowered with the Minkowski
metric 7,,. The Feynman rule for the h%A#(k;)A"(k,)
vertex is then

. i i
Vrviaf = Ekl ko (P — 2,7v(ﬂ,7a)ﬂ) — En“”kﬁk’é

— i kK + iRk + kS peky). (A9)

The d-dimensional graviton propagator is (in harmonic/de
Donder gauge)

Daﬂ;}/é(kz) =

2i 2Maptys
k (”aé”]ﬂy =+ 770:;/’7,55 d— 5 . (AIO)

At tree level we are free to set d =4. Then the
s-diagram gives
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2 — 3 N2
MP]‘AS = —lé'llgzk-VIK aﬂDaﬂ;}/é(_s)Vﬂl/}/ 83ﬂ841/

2 u? 1( n ) +tu( +es)
=gyl s ———— | —=(e4€ £13694)5 +— (& £
12634 25 2 5 \E14é3 13624 5\ 34

= T (0 sy iy -y = i) = ol ) s+ 1)
+ u?(hy(hahshy = hy = hy + hy) = hy(hy + h3) + hyhs 4 1)). (A1)
The #z-diagram gives
M3 A, = —ie, e300 D s(—1) V10 4,
= _8_: (u? (hy(hahshy = hy = hs 4 hy) = ha(hy + h3) + hyhs + 1)
+ 52 (hy (hphshy + hy = hy = hy) = Iy (hs 4 hy) 4 hshy + 1)), (A12)
and the u-diagram gives
M} A, = —iey e4 VISP D g s(—u) V10,85,
= ;—i (£ (hy (hahshy = hy + hs = hy) + hy(hy — h3) = h3hy + 1)
+ 52 (hy (hahshy + hy = hs = hy) = hay(hs + hy) + hshy + 1)). (A13)

Combining those three channels together we have

-1

1
M5t (=1 + hyhy) (=1 + hshy)(t* + u* —Z(Sz + 7 +u?))

Atree.O(hl’th hs, h4) =

1
+ (=1 Ihs) (=1 + hohy)(s* +ut =2 (8% + 22+ u?)?)

1
= (=1 + hah3) (=1 + hyhy) (u* ~ 1 (s> + 2 +u*)) |, (A14)
|
which give the familiar results for example processes kaP"(kz) = 0 implying that the self-energy is proportional
A+ ++4) =0 = A(+ + +-). to the projector onto the subspace transverse to k*,
1 4 o o 1
A+ +——) = _zs_, 7 (k%) = (K2nP° — kPko)II(K2). (A16)
M5, stu
1 The two diagrams give
My, stu
1 ut
——t)=——. AlS
Al ==+ M3, stu (AL5)

3. Photon wave function renormalization ) )
(a) Specific to scalar QED. (b) For both scalar and spinor QED.

At one-loop there are two diagrams contributing to
the quantum photon propagator given in Fig. 5. The  FIG.5. One-loop self-energy contribution for scalar and spinor
self-energy of the photon I1°?(k?) obeys the Ward identity =~ QED.
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dp  (Q2p—-k)PQ2p—k)”

H/m(k2) — 62/45/

(27)4 (p* +m?)((p = k)* +m

dp 1
— 2o -
T /(27r)dp2+m2

207 ((p = k)* + m?)

_ oy [ 4P 2p—k)(2p k) -
—CH /(27[)

(p* +m*)((p—k)* +m

k> + m? + k222

?)
—2k2x) + kPke(1 — 4x + 4x2)

:eZﬂe/ d’1 /ldx(ﬁ—z)ﬂ””lz—%’”’(
(27)* Jo

ie? (%
=—— /dyy (k*n° — kk?) In—;
4n?

m_

where in the last step the Feynman parameter is redefined
by y=x-— % By resumming the series of one-particle
irreducible (1PI) diagrams contributing to the quantum
propagator, one can show that the wave function renorm-
alization is

1

Zy=—.
()

(A18)

The scalar part of the self-energy can be found from the
expression above to be

) 1 2
o o le 2 > H
H<k)__4—ﬂ,'2_/_ldyy lnmz_kz(yz_‘lt)a

so that

64

AZ—s

64

-9’

(2 +m? +xk*(1 —x))?

(A17)
I
ie? 2

0)=-— 1 , A20
0)=-Zg2m2 (A20)

and thus

22 ,

Zy=1 —48ﬂ21nW+ O(e”). (A21)

4. Nongravitational contributions

By nongravitational contributions, we refer to the
Feynman diagrams with no graviton lines, shown in the
first line of Fig. 2. There are no nongravitational tree
diagrams so we start at one-loop. From diagrams with two
internal propagators we get three crossing related diagrams
giving the familiar expressions

1 - ﬂ2
ir 2(6‘1 52)(53-54)/0 dx(MS+1n2— ,

m* + sx(x — 1)
2

1 —
Ayy = ar 2(51 83)(82'84)/ dX<MS—|—1n'“—>’
0

€4

4n?

Az—u =

(&, .64)(82.63)/01dx<m+1n2"2>.

m* + tx(x — 1)

m* + ux(x —1) (A22)

Next we have diagrams that have three internal ¢ propagators in the loop which give (including a factor of 2 for charge flow

reversal)

ia €12834 —

(ke) 12(k£)21834xy

<k€)34(k€)438123€y

d?]
A_Y:'324€/ dxdd
3 l e'u (277:)

(12 +m? — sxy)?

4 2
e H
= ——z/dxdy <812€34 In—
/s m- — sxy

4 2
e H
=~ / dXdy (812834 11'127 .
T m- — sxy

The other channels are given by

o4 2
Az, = ——2/ dxdy (813824 In— -
V4 m- — Ixy

4 2 t
./43_“ = —%/ dxdy <8|4€23 In 3 K - ad u(€23 * 814)) .

xy((ke) s (ke)y €34 + (k8)34(k€)43812)>

(m? — sxy)

(A23)
xytu(ex + €13)
2s(m?* — txy)
A24
m? —uxy  2s(m® — uxy) (A24)
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Finally there are three diagrams (in addition to their charge reversal) with four internal ¢) propagators, i.e., the box diagram,
as the last diagram on the first line of Fig. 2,

1Ay = 1664/‘6/ &p (per)(pes) (pes + (Ke)sy)(pes — (ke)2)

Qr)? (p* +m*)(p +k3)* + m*)((p = ki)> + m?)((p + (ks + ky))* + m?)”

(A25)

Shifting the loop momentum, [ = p + xksz — yk; + z(k3 + k4) and including the factors of 2 from charge reversal,

a4 Al*+ B>+ C
(Ay_y =2 x 3! 1646/ dxdyd , A26
M X2 1bep (27z)dxyZ(lz+m2+sz(x+z+y—1)—tyx)4 (A26)
where
A = E12En + €136 + E14€x3
d(d+?2) '
B— —tu(e34” + (£13 — €23 — €14 + £24)XY + £12)°)
2ds '
Putx2y?
C= 152 (A27)
The other diagrams are computed similarly,
d?1 Al*+DP> +E
Ay, =2 % 3! 1645/—dxdd , A28
A b (2r)4 yZ(lz+m2+uz(x+z+y—1)—tyx)4 (A28)
where
tu
D = Wf({hi}’s’ 1),
Pul(x+z-DE+29)+z2- D0 +2)
E= 15 , (A29)
where f is linear in s and ¢ (with no terms such as s¢). Finally the 7-channel contribution gives
d?1 AP+ FP+C
Ay =2 x 3! 1646/ dxdyd , A30
Wl T L AREH (2r)4 y1(12+m2+sz(x+z+y—1)—uyx)4 (A30)
where
F— —tu(e34x” — (e13 — €23 — €14 + €24)XY + £12)°) . (A31)

2ds

The full expression for D is

_ hlhztuyz h1h2tl/£y2 hlhztuy hlhztuzz hlhztuz 4 h1h3tuxy 4 h1h3tuxz h1h3tux 4 h1h3tuyz h1h3tl/£y

2ds 4ds 4ds 4ds 4ds 4ds 4ds 4ds 4ds 4ds
hyhstuz®>  hyhstuz  hyhstu  hyhgtuxy  hyhgtuxz  hyhgtuyz  hyhgtuy — hyhgtuz  hyhgtuz?
4ds  2ds 4ds ~ 4ds  4ds  4ds 4ds 4ds  4ds
hyhstuxy —hohstuxz — hyhstux  hyhstuyz — hohstuz  hyhstuz®  hohgtuxy — hyhgtuxz — hyohgtuyz
© 4ds  4ds dds  4ds | dds  dds | ads 4ds 4ds
hyhgtuz®  hyhgtuxz — hyhgtux®  hyhgtux — hyhgtuz>  hyhgtuz  22uxy  tuxy 2t02uxz  tuxz  tfux
4ds 2ds 4ds  4ds 4ds  4ds  ds° ds  ds® 2ds = ds®

2

tux?  tux  2fPuyz tuyz fu tu tu 202uz  2Puz?  tuz  tuz
Y J Y Y Y e —- - (A32)

T ads Tads T a2 2ds s dds Tads T ds  ds? | 2ds  2ds  2ds®  Ads’
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RE

FIG. 6. Four classes of gravitational diagrams contributing at one-loop and to order 1/M3,. The arrows depict the direction of the
charge flow. We do not show all the crossed versions of the diagrams.

RG scale independence of nongravitational contribu-
tions.—A consistency check of numerical factors is to see
that all dependence on the scale y drops out of the total
amplitude. The two-propagator loop diagrams give the u
dependent term,

oA 12
o) (12834 + €13824 + €14€23) IHW’ (A33)
from the three-propagator diagrams we have
€ (eren + ersem + ene) Ints,  (A34)
—— _— n_
22 €12€34 T €13E24 T €14823 m2’
and from the four-propagator diagrams we have
1
3x2x3!x16x 6
1 u?
x 38472 (€12834 + €13824 + €14823) an. (A35)

Summing these terms gives zero so there is no u
dependence.

5. One-loop graviton exchange

The diagrams relevant for the one-loop graviton
exchange are given in Fig. 6. It is understood that each
type of diagrams should also include flipped versions, with
loops on the other end of the graviton line or on different
photon lines as well as the crossed versions of each
diagram. We now proceed with deriving the contributions
to the discontinuity from each of these types of diagrams.

a. Type a diagrams

Summing the diagrams of type a and their flipped
version we obtain for the #-channel amplitude

d?i A*+BP+C

i =(=i)’ x2! x2 x4e? .
oy = (=) x 21 x2x e (2r)4 y(lz—i—mz—xyt)3
(A36)

The factor of 2! is due to combining propagators, the factor
of 2 is due to doubling of the term by a loop charge
direction reversal, and the factor of 4 just comes from
the two QED-like vertices. If we call the (+,+,—,—),
(+,—,—,+), (+,—, +,—) configurations I, II, III, respec-
tively, then the numerator coefficients are

A 2i(2(d - 2)st+dsu+ (d—4)s* + (d —4)1(t +u)) 8i
' d(d +2)s*
A= 2ild=4)(s+t)(s+1t+u) 0.

d(d+2)s*
C2i(d=-M(t+u)  2i(d—-4)  ite

A = - _ e
m d(d +2)s> dd+2)s 12s

T Tdd+2) 3 36

+ O(e?),

(s + 1)ty = s+ y—1) + 3t(x+y) — 1)

B =
I ar ;
2i(s +1)*(x+y—1)°
B =- dt ’
B i(d—4)t((d—=2)xy(s +t) +2m?)  ite(m* + sxy + txy)
m= - =

(d—2)ds

Cy = —ixyu’(x +y—1)2,

Cy = —ixyu’(x +y—1)2,

2
1 + O(e?),

i(d—4)ym*txyu

Cm = d-2ys O(e).

(A37)

125020-18



QED POSITIVITY BOUNDS

PHYS. REV. D 103, 125020 (2021)

Note that for the C coefficients, if they are of order e they
can be set to zero as the dim-reg integrals do not produce
1/e terms that would combine with them to make them
finite. Moving on to the s-channel of diagram a we have

iAgy = (—i)® x2!x2

d?i DI*+EP +F
X 4e2/ —dxdy — +2 i =, (A38)
(27) (I + m* — xys)
2i(d-4) i€
_ _ 19) 2 ,
= qat2) - o)
b 8iu*  Siute i’
"7 dd+2)s2 T 3657 357
Do i  Sire it
U d(d+2)s T 3652 3%
2i(d — 4)m? im%e
E = =-=°  E =0
'™ @-2)d 4 1
EIH — O, FI — 0, FII - 0, FIH — 0 (A39)
Finally, the u-channel gives
iAg, = (—i) x2!x2
d 4 2
x4e2J/ P ey GETHETT 0 p 40
(2r)4 (12 + m? — xyu)?
with
8i Sie i
Gi=————=———-+0(),
'S Taas) 36 379
2i(d—Mu  ieu
Gy=——F——="—7-, Gy =0,
. d(d+2)s 12s =
I{:_2mx+y—w@mx+w+4@4+3x+$m
! du ’
i(d—4)u((d—2)txy — 2m?)
HH = )
(d—2)ds
2it*(x +y— 1)
Hy = Aty - 1) p y=1) ;
u

I = —iftxy(x +y—1)2,

i(d — 4)m*tuxy
(d=2)s

Iy = —it’xy(x +y — 1),

III:

(A41)

b. Type b diagrams

For type b diagrams (including their version flipped
up-down) we find the general expression

d41 JP +K
A e A3 2 2/ )
e = ()26 | i B e 21 = 1)
(A42)
2i(d —Mt(t +u
‘]I:JH:O’ JHI: ( d)z( )7
s
2i(d — 4)m?t
Ki=Ki=0.  Kuy=-" g (A)
The s-channel has the expressions
d?i L +M
Ay = (i)} x 2 2/ ,
oy = (=07 X267 | O e — 2l =05
(A44)
2i(d —4
LI - %v LII - O’ LIII = Ov
2i(d — 4)m?
M] == u, MH == 0, MHI == O, (A45)
d-2
while the u-channel leads to
d?1 NP+ 0
= e ,
Mg = (=) 2 | i G T — o)
(A46)
=2i(d—4)u
Ny=0, NH:%, Nyp=0,
S
—2i(d—4)m*u
0,=0, Ouzﬁ, O =0. (A47)

c. Type ¢ diagrams

This type of diagrams relies on the quartic gz’)qb*haﬁAy
interactions that arise from the following terms in the
action:

ie/=99" A, ($0,¢" — 0,0¢7)
> —ieh™A,(¢p0,¢" — 0,997

1
S iehA($O,0" — DpgT).  (A48)
This leads to the rule (momenta ingoing)
) i
Vygina = —ieny@(ky —ka)p, +§€77aﬂ(k1 —ky),.  (A49)
Summing the diagrams gives
d?i PP
A, =203 2/, AS0
T | ) (B4 w2 (A30)
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16i 16i 16iu>
Pi=—+0+ Pr=0+—+0
p + R I + U2 + 0,
16i?
PHI = O + dsQ + 0 (ASI)

Since the denominator of the loop integral is the same for
all channels, we may simply sum them up and each term
in the previous Py sums denotes the ¢, s, u-channel
contributions, respectively.

d. Type d diagrams

There is a new interaction vertex ¢¢ThaﬂAyA5 from the
terms

. h
—w/—gg"”ezAﬂquﬁcﬁ' D —En””ezAﬂA,, + h"”ezAﬂAD,

(AS52)
with rule
Viginan = 1€ (~Tapltys + 2aiMs)p)-  (AS3)
Summing the diagrams gives
d?1 0
Ay = — v, A54
o = e /(2ﬂ)d(12+m2) (A34)
8iu?
Q;=-8i+0-28i, Qu=0—7+0,
8ir?
Om = 0—s—2+0. (AS5)

Again the terms denote the ¢, s, u-channel contributions,
respectively.

6. Consistency checks
a. Pole cancellations

The previous derivations present poles for various types
of diagrams at s = 0 and ¢ = O (for configuration II) and at
u = 0 (for configuration III). In what follows we shall see
that these pole contributions precisely cancel out when
accounting for the wave function renormalization.

1. Pole cancellation for configuration I1

The sum of all a,b,¢,d diagrams for configuration II
contains a pole at s = 0 and at = 0 and no pole at u = 0.
The t = 0 pole is

M2 A® > ey (x+ —1)2111”—2
Pl 27t Y Y m?

2wt P

T (A56)

directly canceling the correction from wave function
renormalization. The s = 0 pole arises in the s-channel
diagram giving the coefficient Dy and is

2 2 2 2 2

2 4 l-loop u H o e u H
My Ay ™" D - —?/dxdyxyln—m2 = ——24ﬂ2?ln—m2,
(A57)

canceling the wave function renormalization piece.

2. Pole cancellation for configuration 111

The sum of all a,b, ¢, d diagrams for configuration I1I
contains a pole at u = 0,

MEA > —e—zﬁ dxdy(x +y — 1)2 /"
27° u m?
222
= - —In—;, A58
2w (A38)

canceling the wave function renormalization piece. The
s =0 pole arises in the s-channel diagram giving the
coefficient Dy and is

22 2 2 .2 2
e t e” u M
2 41 loop _ dxd 1 ,
M Ay — | dxdyxy n T2 s a2
(A59)

canceling the wave function renormalization piece.

b. RG scale independence

Again as a sanity check, we can verify that all depend-
ence on the renormalization scale u drops out of the total
amplitude from this gravitational exchange. We can check
this explicitly for the various configurations.

1. Configuration 1

Considering the type a diagrams we get the u dependence,
s34 24m’tu 2l ,uz

247 tu m?
1 s4 m2 2
=|l5—+—5]& ln'u—z.
24n° stu &« m
The first term here cancels against the wave function
renormalization correction to the tree amplitude. The type b
diagrams do not give any u dependent terms as all loop

integrands are proportional to d —4. The remaining dia-
grams give an RG dependence,

M3, A; D

(A60)

2 2

,m
M3 A D —e —lnﬂ—
n?

- (A61)

so the total y dependence cancels.
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2. Configuration 11

Considering the type a diagrams we get the u dependence,

su + 12m?tu? u?
M3 A D ———F5—e*In‘
P 2475t m?
1wt mu? u?
_ 2
B (247[2 stu * 27r2s2> e’ln m*’ (462)

The first term here cancels against the wave function
renormalization correction to the tree amplitude. The type b
diagrams do not give any p dependent terms as all loop
integrands are proportional to d — 4. The remaining dia-
grams give an RG dependence,

mi?

M3 .AH D —ez—ln—,
Pl 2725 m?

(A63)
so the total u dependence cancels.

3. Configuration 111

Considering the type a diagrams we get the u dependence,

st3 4+ 12mPut? U
MisA > = <12
1 ¢ m?t? u?
— R 210 1
B (247[2 stu + 27‘[2S2) ¢ In m*’ (A64)

The first term here cancels against the wave function
renormalization correction to the tree amplitude. The type b
diagrams do not give any p dependent terms as all loop
integrands are proportional to d — 4. The remaining dia-
grams give an RG dependence,

mi
55—,
2x°sc  m

M]%IAIH D —62 (A65)

so again the total x dependence cancels.

APPENDIX B: SPINOR QED

We now turn to the analogous derivation for spinor QED.
We refer to Appendix A 1 for a summary of our con-
ventions. As mentioned in Appendix A 2, the tree-level
photon-graviton contributions are exactly the same for
scalar and spinor QED, and we therefore refer to that
Appendix for those tree-level contributions. In what fol-
lows we can simply focus on deriving the one-loop
diagrams that arise in spinor QED.

1. Curved spacetime action

The action for spinor electrodynamics in flat space is

5= [ (—%F”DF,W ip - m)w), (B1)

where p) = y#(0, — ieA,). The electron is a Dirac spinor
denoted y and the Dirac adjoint is r = yw'y° (suppressing
spinor indices). The propagator for a fermion is

_=il=p+m)

Sp = :
P+ m? — e

(B2)

To minimally couple this to gravity we use a vierbein to set
up local inertial frames in which the gamma matrices take
their usual constant form,

1
S = /d4x‘/_9<_ZFMDFw
+yr v (iV, + €A, )y — mu'/lp), (B3)

_ 1 AB AB _ 1[,A B
where V, =0, —30,45J"", with J*¥ = [y, y"], and
@, 1s the spin connection. Here the inverse vierbein is
denoted ¢/;. The gamma matrices satisfy

{rorr=-20v P =-2"" (B4)
We can write the metric as a perturbation around
Minkowski space, g, = n,, + kh,,, as well as the vierbein
as a perturbation, vy, = #ga, + kCy,, Where k = Mp!. As
is shown in [61], the vierbein is not fundamentally
necessary for the purposes of perturbation theory and
can be completely eliminated in favor of the metric.
Introducing the vierbein introduces six local Lorentz
gauge-degrees-of-freedom which can be eliminated by
imposing the “Lorentz symmetric gauge,”

0= UAa’?aﬂ Npp — UBa’?aﬂ Map- (BS)

Inserting v4, = Hoae + KCaq WE have
0= CAan(l/}ﬂB/} - CBarIaﬂ Nap (B6)
= Cap — Cpa- (B7)

This implies that ¢y, is symmetric. From the definition of
the vierbein one can derive

o = 2y + O(K). (BY)

=5

The procedure is then to insert this gauge-fixed vierbein
into the above action and expand everything to leading
order in x. The main expressions are
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h
K
Wurg = 5 (Oghay — Oahpy,) + -,
K
F;/:y = E”]pl(hﬂ/l.u + hwl,y - huzx,/l) +oee (Bg)

hk
/=gy NV, p > i— 5

- l.Kl/_/}/al’]a(/) h‘/’ﬂ a,ul//

Py O + iyt 271”% oy

K. _
+ g W Ouhy v 1w
K
WA De 3
- €Kl[_/]/al7m1Aﬂl[/h’M,

_ _ K _
e/=gpy? iy Ay + e S Wy g

—my\/—quy D —mghl/_/l//. (B10)
The first operator ihxyy 0,y /2 gives rise to a term in the
Feynman rule (with all ingoing momenta and p; being
aligned with the direction of charge flow and p, being
misaligned with the direction of charge flow),

i%w Oy = — 2 11"”7/ Pu= %Kn””ﬂz, (B11)

iyt gn""hza@ﬂw - %K?’(”P;)’ (B12)

— iKY o h* D — —ixy ¥l (B13)
giv'/y"@ahﬂ,, el = —%szay(” ., (Bl4)

—ms gy - —imgnﬂv. (B15)

2

Summing up gives the graviton-fermion-fermion vertex,

i 1
Vive = 53,0 ("W 2= 1P = 3P ] - m’l"”)’
(B16)
at which point we can use the identity
P = v ™ =2ty (B17)
to give
i
V%/u? :4M1>1 (}’(”(Pl —Pz)p) (P =P, +2m)). (BI18)
The other graviton-matter interaction vertex is
i —2 i =y, (B19)

2. Photon wave function renormalization

The graviton exchange diagrams are the same as in the
scalar QED case; however, the wave function renormaliza-
tion factor is different due to the spinor-electron loop. As
there is no photon-photon-fermion-fermion vertex, the
four-point photon amplitude at one-loop involves only a
subset of diagrams that we needed in the scalar QED case.
The 1PI self-energy from the one diagram Fig. 5(b) gives
(in MS)

l€2 1 IuZ
" = —— (P k* — k*k* dxx(1 =x)In{ ————— | = (k> — K'k)1(K?),
e ) [t =) =6 ne)
= T1(0) = i€ 1k (B20)
1222 m?
As in the scalar QED case we have
1 2 2
Zy=——""= @ B21
A 1+in(0):> T2 e T O - (B21)
Then, the one-loop corrected amplitude from the tree diagrams would be
1 s 2 P 2 g2 22
I =——[|l-——Ih5=+ | =— (-l ===+ -,
e M3, stu ( o2 "2 ) M3, < t u) < o2 " T >
1 o &2 P 2w 22
= l-——hh—S+-|=—F%|-—-—||l—-—ln—5+--- ). B22
e Ml%lstu ( 6n° nm2 + ) M3, < t s) ( 67 nm2 * ) (B22)
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3. Nongravitational contributions

The only one-loop nongravitational diagrams we have are the box diagrams. The box amplitude is

dp
iApox = (= )(”3)4/ (2”)01 [Tr(¢ISIF3¢3$1374¢4S§~‘2¢2S%1) + Tf(¢15}r2¢252F4¢4S§3¢3S?)
+ Tr(¢#\ SESFLHSE Y ) + Tr(¢ SR HSY 457 ST )

+ Tr(¢ SPESELSPHSE) + Tr(d SPLSE 4 S3HSH )] (B23)

where S}/ is the Dirac fermion Feynman propagator connecting vertices with ingoing photons of momenta k; and k;.
The factor of (—1) is related to the one fermion loop. We have used the Mathematica package “Package-X" to compute the
forward limit box amplitude for helicity configurations I and II [62]. The amplitude for configuration III is zero in the
forward limit, and the other two configurations are given by

_ 4
AbOX(S’t:O)_(4ﬂ§sz>{ (s—m z>m10g<m+zm +s>

s(s —4m?) +2m? — s>
2

—2(s = 2m?)1/s(s — 4m?) 10g< 5
m

<\/ s+4m +2m +s>

+ (=4m* = 2m?s + s?)log?

+2m?(s — 2m?)log? <” s(s = 4m’) +2m _S>+6s2} (B24)
and
Abox(st0)<4;242>{ (s +m?)\/s(s — 4m?) log<" s_4m +2m _S>
—2(s 4+ 2m?)1/s(s + 4m?) log<' S+4m +2m +S)
+ (4m* = 2m?s — s%)log? <' s_4m +2m _S)
+om(s + 2m2)1 <V S+4’" e +S>—6s2}. (B25)

So as to compare with [40], we may work below the electron mass, and expanding this in powers of s/m? finally gives the
same contribution for configurations I and II to that order,

11 4.2 11 42
Ay (5.1=0) = g £ O /m®) - and - A (s5.1=0) = g o O(s* /). (B26)

4. One-loop graviton exchange

The diagrams relevant for the one-loop graviton exchange are similar to those provided in the scalar QED case (see
Appendix A 5). Referring back to Fig. 6, there is no analog to types b and b diagrams for spinor QED. In practice all type ¢
diagrams vanish for spinor QED so in what follows we can simply focus our discussion on type a diagrams, and we only
provide our results for configurations I and II.

Configurations I and II of the amplitude from type a diagrams are given by (expanded in the forward limit)

2.2 2 2.2 2 2

e°s” . U 1less e°s ,u e°s

MZAL(s,t=0) = ——>-In"— — -
pials ) 672t m? 3607r2m2+67r 2+127r2

(B27)

125020-23



ALBERTE, DE RHAM, JAITLY, and TOLLEY PHYS. REV. D 103, 125020 (2021)

and

11e*s>  e*s. u*>  é%s

6 w122

M3 AL (5,1 = 0) = =2 Sl O

B28
672t m? (B28)

For both configurations, the first term is exactly what cancels against the one-loop wave function renormalization of the tree
diagrams (i.e., the #-pole cancellation), while the third term cancels the remaining ¢ dependence from the wave function
renormalization leading to a final amplitude that is u independent as it should be. These results are consistent with [40]. The
full expressions are

o252 . e . o2
6xt m?>  1207m°m’s

/s(4 2 2 2
—120m2(s—5m2)\/s(4m2+s)ln< s(4m +2:}22+ " +s>

2
M3 AL (s, t=0) = — {120m2s2 ln% + 5(=1560m* + 410m?s — 115?%)

4 2 2 2
+180m4(2m2—s)1nz(V s(4m +2S)2+ - “)} (B29)
m
and
2 e’s? e? 2o M 4 2 2
e () —
MPlAa(s’t_ 0) = —@ HW—W{IQ,OYH S 11’1%‘*‘5(1560”” —|—410m s+ 11s )
— 4m? 2m? —
+ 120m*(5m? + s) s(s—4m2)ln< s(s m)2—|— n s)
2m
/s(s — 4m? 2m? —
+180m4(2m2+s)1n2< s(s "2’)2+ “ S)} (B30)
m
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