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We apply positivity bounds directly to a Uð1Þ gauge theory with charged scalars and charged fermions,
i.e., QED, minimally coupled to gravity. Assuming that the massless t-channel pole may be discarded,
we show that the improved positivity bounds are violated unless new physics is introduced at the
parametrically low scale Λnew ∼ ðemMPlÞ1=2, consistent with similar results for scalar field theories, far
lower than the scale implied by the weak gravity conjecture. This is sharply contrasted with previous
treatments which focus on the application of positivity bounds to the low energy gravitational Euler-
Heisenberg effective theory only. We emphasize that the low cutoff is a consequence of applying the
positivity bounds under the assumption that the pole may be discarded. We conjecture an alternative
resolution that a small amount of negativity, consistent with decoupling limits, is allowed and is not in
conflict with standard UV completions, including weakly coupled ones.
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I. INTRODUCTION

It is now well established that for nongravitational
quantum field theories to admit a local Lorentz invariant
unitary UV completion, the low energy scattering ampli-
tude should satisfy an array of positivity bounds that
constrain the sign and magnitude of Wilson coefficients.
The simplest bounds were first noted in [1–3], and the
connection between their violation and causality was
emphasized in [3]. These original forward limit scalar
bounds have been extended to general spins [4,5] away
from the forward limit [5,6]. These bounds have proven
fruitful in placing constraints on interacting spin-2 fields
[7–14], restricting beyond standard model interactions
[15–24], and providing a new light on properties of string
amplitudes [25,26]. Most recently it has been recognized
that by using more information from crossing symmetry
and the partial wave expansion it is possible to put upper
and lower bounds on Wilson coefficients [27–31] in certain
cases ruling out classes of theories from having a standard
UV completion such as weakly broken Galileon theories

[27,28]. Similar results are arrived at within the related
S-matrix bootstrap program [32].
Given these successes, it is highly desirable to consider

the impact of these bounds for realistic effective field
theories coupled to gravity. Unfortunately, the direct
application of positivity bounds to gravitational effective
field theories is fraught with difficulties. On the one hand,
the distinctive features of gravity mean that scattering
amplitudes are permeated by massless poles and branch
points which spoil the conventional forward limit consid-
erations, and preclude an analytic continuation from the
physical region which preserves positivity even away from
the forward limit. On the other hand, causality in the
gravitational setting is more subtle, from the ambiguity of
the metric under field redefinitions and known super-
luminal speeds in well established low energy effective
field theories (EFTs) [33–36]. In a previous paper [37], we
argued that the only gravitational effective theories in
which positivity is clear-cut are those for which there is
a clean MPl → ∞ decoupling limit, for which positivity of
the nongravitational decoupling limit theory may be
assured. With this in mind, we considered several examples
of renormalizable scalar field theories coupled to gravity
for which violations of positivity are necessarily suppressed
by powers of MPl. Demanding the scattering amplitude
respects positivity with the gravitational t-channel pole
removed generically imposes the cutoff of the effective
theory to be far lower than expected, a result which
parallels conclusions from the swampland program [38,39].
In the present work we extend the results of [37] to the

more interesting case of QEDminimally coupled to gravity.
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Unlike in Ref. [37], we will not rely on the device of
introducing a spectator field, but rather consider the
improved positivity bounds [4,9,10]. In their simplest form,
the standard forward limit positivity bounds can be applied
on the pole-subtracted scattering amplitudes as [3]

d2Aiðs; 0Þ
ds2

¼ 2

π

Z
∞

4m2

dμ
ImAiðμ; 0Þ
ðμ − sÞ3

þ 2

π

Z
∞

4m2

dμ
ImAc

i ðμ; 0Þ
ðμ − uÞ3 > 0; ð1:1Þ

where the positivity of the expression (for 0 < s < 4m2,
u ¼ 4m2 − s) on the left-hand side arises due to the
analyticity properties of the S-matrix and positivity from
the optical theorem, and Ac

i is the s − u crossing exchanged
amplitude. The improved positivity bounds [4,9,10]
allow us to tighten the bound by including any additional
knowledge about our EFT. The idea behind them is
particularly transparent from the exact formulation of the
optical theorem as

ImAiðs; 0Þ ¼
1

2

X
f

Z
dΠfjAi→fj2 > 0; ð1:2Þ

where i denotes the initial and final particle content, f
stands for any intermediate state, and dΠf is the phase
space volume. The theorem then implies that, given a set
of possible intermediate states in the theory that is being
investigated, i.e., ff1; f2;…; fNg, each known contribu-
tion to the sum on the right-hand side of the above equation
can be taken to the left-hand side leading to an even tighter
constraint on the remaining amplitudes. This gives the
improved positivity bounds

d2Aiðs; 0Þ
ds2

−
1

π

X
knownf

Z
dΠf

Z
∞

4m2

dμ
jAi→fj2
ðμ − sÞ3

−
1

π

X
knownf

Z
dΠf

Z
∞

4m2

dμ
jAc

i→fj2
ðμ − uÞ3 > 0; ð1:3Þ

where overall positivity is still ensured by the sum over
“unknown” configurations f. It is in the application of
improved positivity bounds that our results will differ from
previous discussions of positivity bound for QED coupled
to gravity, notably [40], and more recently [41–43] which
have focused entirely on the gravitational Euler-Heisenberg
effective field theory that describes physics well below the
electron mass.1 The latter is sufficient to reproduce the

bounds (1.1), but by preserving information from physics at
and above the electron mass, one is able to derive a much
tighter constraint as implied by the improved bound (1.3).
Remarkably, the authors of [40] noted that if positivity

bounds were applied to four-photon (i.e., 2-2) scattering
amplitudes with the gravitational t-channel exchange
removed,2 positivity would hold if the general requirements
of the weak gravity conjecture [54] are met, namely that
there is a bound on the charge to mass ratio jej=m≳ 1=MPl.
Interestingly, at least in three dimensions (3D), this
observation is partly countered by that of [43] which uses
the extended positivity bounds of [31] to derive opposing
bounds, arguing for the need for additional light neutral
states to resolve this tension. As we discuss in Sec. IV D,
this particular “resolution” does not apply in the four-
dimensional case considered here.
Keeping in the spirit of applying positivity bounds to

the t-channel removed amplitude, we shall find a much
stronger result: Improved positivity bounds applied to QED
coupled to gravity demand the existence of new physics at
the scale Λnew ∼ ðemMPlÞ1=2. Most importantly this result
is independent of what that new physics is. For instance, it
applies equally well for the Regge-like completions con-
sidered in [41] where the photon Regge tower dominates
over the graviton tower, and it is argued that the weak
gravity conjecture from a positivity argument is robust.
That is because any Lorentz invariant UV completion will
be described at low energies as irrelevant operators cor-
recting the naive QED Lagrangian, and our consideration
only demands that some new physics comes in at the scale
Λnew ∼ ðemMPlÞ1=2, which would show up at low energies
as the need to add irrelevant operators, but makes no
demands to what its origin is.
As discussed in [37] an alternative explanation of our

results is that strict positivity of the scattering amplitude,
with the t-channel pole removed, does not apply. Indeed,
we can only be sure it applies in the decoupling limit
MPl → ∞. Rather in [37] we conjectured that in the
gravitational context, for a scattering amplitude whose
low energy expansion near t ¼ 0 takes the form3

A ∼ −
s2

M2
Plt

þ cs2 þ � � � ; ð1:4Þ

1This information is partly recovered in the 3D case considered
in [43] by focusing on the large order limit in an expansion in
s=m2. In practice, for our considerations it is better to utilize the
improved positivity bounds since the former is dominated by the
branch put at 4m2 and the latter at a much higher scale.

2These bounds can be motivated on entropic grounds [44–47]
or in other setups [48–51]. Recently, the procedure of applying
directly the positivity bounds to the t-channel removed amplitude
was argued to be justified by a compactification argument in [42].
In [37] various issues with this compactification argument were
pointed out. See also [52,53] for related discussions.

3In general graviton loops lead to branch cuts extending to
t ¼ 0; however, for the four-photon amplitude these necessarily
arise at order 1=M4

Pl and so will not affect any considerations
here. Nevertheless, they are indicative of the issues with contin-
uing the partial wave expansion past t ¼ 0.
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the standard positivity bound (1.1) is weakened to the
requirement

c > −
Oð1Þ
M2M2

Pl

; ð1:5Þ

where M is at most the cutoff Λc of the low energy
expansion M ≤ Λc. This weakening is consistent with the
known weakening of causality criteria in familiar EFTs
[33–36]. Our results for QED indicate that the improved
positivity bound (1.3) would need to be weakened to

cimp > −
e2

m2M2
Pl

×Oð1Þ; ð1:6Þ

where m is the electron mass to avoid the need to introduce
new physics at the scale Λnew ∼ ðemMPlÞ1=2. Here cimp is
the equivalent coefficient that arises in the expansion of the
improved amplitude (3.8). This is consistent with (1.5) for
M ∼m=e. While (1.6) is not in conflict with the MPl → ∞
decoupling limit, it would nevertheless indicate a signifi-
cant weakening of positivity that deserves further explan-
ation. At present there is no generally accepted proof of
positivity of c at finite MPl.
We stress again that our conclusions are valid for generic

standard UV completions and further assuming weak
coupling, by itself, would not improve the bound (1.6).
The UV completion may equally well be strongly coupled
at the scale Λnew or lead to an infinite tower of higher spin
states as is required in any tree level completion of gravity
such as string theory. We only require that QED minimally
coupled to gravity be a good description at low energies and
that the Froissart bound in the weak sense jAðs; tÞj < jsj2
is respected at sufficiently large jsj → ∞ (the fact that at
low energy another scaling in s is observed is irrelevant).
A nonlocal UV completion could in principle violate the
latter and would evade these considerations, but would in
itself be a startling conclusion.
We begin in Sec. II with a review of the standard

discussion of positivity bounds as applied to the low energy
gravitational Euler-Heisenberg Lagrangian. In Sec. III we
derive the improved positivity bounds for scalar QED, and
in Sec. IV we perform the analogous calculation for spinor
QED. Most of the calculational details are saved for the
Appendixes.

II. BOUNDS FROM EULER-HEISENBERG

In the following we consider the theory of QED
minimally coupled to gravity, which is itself a low energy
EFT. The action for the fermionic (spinor) QED reads

LQED¼
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

4
FμνFμν− ψ̄ði=∇þmÞψ −eAμψ̄γ

μψ

�
;

ð2:1Þ

where ψ is the Dirac field; ψ̄ ≡ ψ†γ0, =∇≡ γμ∇μ, and
γμ ¼ vμaγa are the gamma matrices; vaμ is the vierbein; and
∇ is the covariant derivative with the spin connection (see
Appendix B 1). We denote by m and e the electron mass
and charge, respectively. When the role of the electron is
played by a complex scalar field, the action for scalar QED
is then

LsQED ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν −DμϕDμϕ† −m2ϕϕ†

�
;

ð2:2Þ

where ϕ is the complex scalar and the gauge-covariant
derivative is defined as usual Dμ ≡ ∂μ − ieAμ. Throughout
this work we use mostly plus signature ð−;þ;þ;þÞ.

A. Gravitational Euler-Heisenberg effective
field theory

Below the electron mass, we may integrate out the
heavy electron from (2.1) and (2.2), respectively. We refer
to this as the gravitational Euler-Heisenberg effective field
theory. The resulting EFT involves higher derivative
interactions between the Maxwell field and graviton and
can be parametrized as

SEul-Heis;1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν þ a1

m4
ðFμνFμνÞ2

þ a2
m4

ðFμνF̃μνÞ2 þ b1
m2

RFμνFμν

þ b2
m2

RμνFμλFν
λ þ

b3
m2

RμνλρFμνFλρ

þ c1R2 þ c2RμνRμν þ c3RμνρσRμνρσ þ � � �
�
;

ð2:3Þ

where the ellipses designate higher order operators and
where we have defined F̃μν ≡ εμναβFαβ=2. The form of
these operators is the same independent of whether one
starts with the spinor or scalar QED; only the exact values
of the coefficients ai, bi vary. In turn, the ci couplings
appearing in front of the curvature-squared operators are
different. These arise even in the case when electron charge
e is zero and encode the backreaction of any matter fields
on the metric, more precisely the propagator of the spin-2
state. The couplings ci thus receive contributions from any
matter field coupled to gravity and are not solely deter-
mined from our QED EFT. The role of these terms is
discussed in more detail in Sec. IV D.
The coefficients for the spinor QED are known to

be [33,40]
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a1 ¼
α2

90
; a2 ¼

7α2

360
;

b1 ¼
α

144π
; b2 ¼ −

13α

360π
; b3 ¼

α

360π
; ð2:4Þ

while for scalar QED the coefficients are [40,55,56]

a1 ¼
7α2

1440
; a2 ¼

α2

1440
;

b1 ¼ −
α

288π
; b2 ¼ −

α

360π
; b3 ¼ −

α

720π
; ð2:5Þ

where α ¼ e2=ð4πÞ is the fine-structure constant. The
action (2.3) can be further simplified by expressing the
Riemann tensor in terms of the Weyl tensor C and using
the lowest order Einstein equations (i.e., performing a field
redefinition). To this order in the EFT, this leads to

LEul-Heis;2 ¼
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

4
FμνFμν þ a01

m4
ðFμνFμνÞ2

þ a02
m4

ðFμνF̃μνÞ2 þ b3
m2

FμνFρσCμνρσ

�
; ð2:6Þ

where F̃μν is the dual field strength tensor and (after setting
ci ¼ 0) the new coefficients are4

a01 ¼ a1 þ
1

4

m2

M2
Pl

b2 þ
1

2

m2

M2
Pl

b3;

a02 ¼ a2 þ
1

4

m2

M2
Pl

b2 þ
1

2

m2

M2
Pl

b3: ð2:7Þ

Notably, both couplings ai and bi contribute to the two F4

terms in the action; it is, however, important to emphasize
the difference in their physical origins. For this, let us note
that in the gravitational Euler-Heisenberg action (2.6) these
arise with different mass scalings in front of the corre-
sponding operators, so that we have

ai
m4

∼
e4

m4
;

m2

M2
Pl

bi
m4

∼
e2

m2M2
Pl

: ð2:8Þ

The appearance of the inverse powers ofMPl in the b-terms
indicate that the scattering processes leading to the low
energy F4 interactions are different in the two cases.
The couplings ai are generated by four-photon scatterings
involving only electron exchange (shown on the first line of
Fig. 2 or in the first diagram of Fig. 3). The couplings bi in

turn are generated by gravitational four-photon scattering
involving a massless graviton exchange as shown on the
second line of Fig. 2 (or in the last three diagrams of Fig. 3).

B. Positivity bounds from the Euler-Heisenberg EFT

The leading contribution to the four-photon AA → AA
scattering amplitude in the gravitational Euler-Heisenberg
theory below the electron mass (2.6) comes from the
scattering processes shown in Fig. 1. Although not explicit
in the diagrams, b3 enters through a modified graviton-
photon-photon vertex. Consistent with the previous liter-
ature, we find the following results for the various helicity
configurations of the ingoing and outgoing particles (writ-
ten in an all ingoing convention):

AEul-Heisðþ þ þþÞ ¼ AEul-Heisð− − −−Þ

¼ 8ða01 − a02Þ
m4

ðs2 þ t2 þ u2Þ;
AEul-Heisðþ þ −−Þ ¼ AEul-Heisð− −þþÞ

¼ s4

M2
Plstu

þ 8ða01 þ a02Þ
m4

s2;

AEul-Heisðþ −þ−Þ ¼ AEul-Heisð−þ −þÞ

¼ t4

M2
Plstu

þ 8ða01 þ a02Þ
m4

t2;

AEul-Heisðþ − −þÞ ¼ AEul-Heisð−þþ−Þ

¼ u4

M2
Plstu

þ 8ða01 þ a02Þ
m4

u2: ð2:9Þ

The b3 interaction vertex only contributes to the
AEul-Heisðþ þ þ−Þ, AEul-Heisð− − −þÞ, etc., amplitudes
as [40]

AEul-Heisðþ þ þ−Þ ¼ AEul-Heisð− − −þÞ

¼ b3
M2

Plm
2
ðs2 þ t2 þ u2Þ: ð2:10Þ

These amplitudes respect s − u crossing symmetry in the
sense

FIG. 1. The AA → AA t-channel scattering in the gravitational
Euler-Heisenberg theory. The wiggly line stands for the vector
field Aμ. The exchanged wavy line stands for the graviton hμν.

4Note that these relations differ slightly from those given in
Eq. (3.4) of [40]. Importantly, there is a sign difference in both b2
and b3 due to the fact that the coefficients bi change sign under
the signature change. The numerical factors coincide if one
switches the units, e.g., 1=4M2

Pl ¼ 4πG=2 ¼ 1=2, since 4πG≡ 1
in [40].
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Aðλ1λ2λ3λ4Þðs; t; uÞ ¼ Aðλ1λ4λ3λ2Þðu; t; sÞ: ð2:11Þ

As expected, the amplitudes (2.9) involve the infamous
t-channel pole diverging in the forward limit, thus formally
invalidating any analyticity arguments that would lead to
the positivity bounds. Interestingly, in [40] it was proven
that upon discarding the massless graviton pole and after
symmetrizing the scattering amplitudes above, the posi-
tivity bounds imply

a01 þ a02 > 0: ð2:12Þ

Alternatively, this result may also be obtained by analyzing
the elastic amplitude Aðþ þ −−Þ≡Aðþþ → þþÞ alone.
Inserting the expressions of the coefficients (2.7) we get

a1 þ a2 þ
m2

M2
Pl

�
b2
2
þ b3

�
> 0: ð2:13Þ

As discussed earlier, the exact values of the coefficients ai
and bi are known from the QED EFT (2.6) and are given in
Eqs. (2.4) and (2.5). For the scalar QED this implies5

e4

2880M2
Plπ

2

�
−2

m2

e2
þM2

Pl

�
> 0; ð2:14Þ

while for the spinor QED this leads to

e4

5760M2
Plπ

2

�
−24

m2

e2
þ 11M2

Pl

�
> 0: ð2:15Þ

Taking these bounds at their face value one would be
tempted to conclude that these imply the weak-gravity
type of bounds on the charge-to-mass ratio, i.e., that
e=m≳ ffiffiffi

2
p

=MPl, which was one of the remarkable points
presented in [40]. However, as we shall see below, the
previous bounds rely on known positive QED contribu-
tions, namely that from the nongravitational electron loop.
However, the raison d’être of positivity bounds is to probe
the unknown UV contributions. Any known contributions
from the EFT can and should be removed by means of the
improved positivity bounds, as we describe below, before
any physical conclusions are derived.
The bounds (2.12) are not the only bounds that may be

derived assuming the t-channel pole may be discarded; we
may also consider states of indefinite polarization which
mix in information about b3. For instance, taking the
incoming polarization state to be jþi ⊗ 1ffiffi

2
p ðjþi � j−iÞ

the positivity bound becomes 4ða01 þ a02Þ > m2jb3j=M2
Pl.

For specific indefinite polarization states corresponding to

those that are natural from compactification to 3D, we may
then recover, for example, the bounds argued for in [42]. In
our current notation these are the statements that

4a01 >
m2

M2
Pl

jb3j; a02 > 0; ð2:16Þ

which are stronger and therefore include (2.13). Once
again, taken at face value for QED minimally coupled to
gravity, we would be led to a similar conclusion about the
charge-to-mass ratio in order to satisfy them, a conclusion
that would be premature.
Before proceeding we note that the bound discussed in

[40] has been countered in the case of 3D by the discussion
of [43] which makes use of extended positivity bounds of
[31], leading to an opposing bound on the charge-to-mass
ratio. This parallels some of the discussion in what follows
for four dimensions (4D), although we shall make use of
the improved positivity bounds which allow us to infer a
bound on the cutoff of the EFT and avoid the need to focus
on the high powers of s in the expansion of the amplitude.

III. BOUNDS FROM SCALAR QED COUPLED
TO GRAVITY

Our goal is to extend the argumentation of the previous
section, whereby, instead of applying the positivity bounds
to the Euler-Heisenberg Lagrangian, we shall apply
them directly to QED minimally coupled to gravity—itself
treated as a low energy EFT. The new feature is that the
resulting EFT is valid at and above the mass of the electron
(up to the EFT cutoff Λc), and so we may use the
“knowledge” of electron loop contributions to “improve”
the positivity bounds. Before we do this we outline in
more detail the improved positivity bounds in the next
subsection.

A. Improved positivity and dispersion relations

The fixed t dispersion relation for the pole-subtracted
amplitude Ãðs; t; uÞ can be written in a maximally s-u
crossing symmetric way as

Ãðs; t; uÞ ¼ a1ðtÞ þ a2ðtÞsþ
s2

π

Z
∞

0

ds0
DiscsAðs0; t; u0Þ

s02ðs0 − sÞ

þ u2

π

Z
∞

0

du0
DiscuAðs0; t; u0Þ

u02ðu0 − uÞ ; ð3:1Þ

where s0 þ u0 þ t ¼ 0 for massless photons. Assuming
that the unknown UV completion at energies well above
the electron mass has the Froissart-like behavior
limjsj→∞AUVðs; tÞ=s2 ¼ 0, Cauchy’s theorem may be
applied to ∂2

sAðs; tÞ, with a vanishing contribution from
the contour at infinity, from which the subtraction terms
a1ðtÞ þ a2ðtÞs arise. The discontinuities in the dispersion

5The relations (2.14) and (2.15) are given for ci ¼ 0, whereas
[40] also accounts for the nonzero ci. The implications of nonzero
ci, which contribute at order 1=M4

Pl in the amplitudes, are
discussed in Sec. IV D.
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relation above are with respect to the Mandelstam variable
that corresponds to the center of mass (CoM) energy
squared of either the s or the u channel,

2iDiscsAðs;t;uÞ≡Aðsþ iϵ;t;u¼−s− t− iϵÞ
−Aðs− iϵ;t;u¼−s− tþ iϵÞ ð3:2Þ

and

2iDiscuAðs;t;uÞ≡Aðs¼−u− t− iϵ;t;uþ iϵÞ
−Aðs¼−u− tþ iϵ;t;u− iϵÞ: ð3:3Þ

Explicitly, crossing symmetry implies that

Aλ1λ2→λ3λ4ðs; 0; uÞ ¼ Aλ1−λ4→λ3−λ2ðu; 0; sÞ; ð3:4Þ

and so the left-hand u-channel discontinuity is defined
so that

DiscuAλ1λ2→λ3λ4ðs; 0; uÞ ¼ DiscuAλ1−λ4→λ3−λ2ðu; 0; sÞ
¼ ½DiscsAλ1−λ4→λ3−λ2ðs; 0; uÞ�u↔s;

ð3:5Þ

which is just the standard right-hand discontinuity of
the crossed process Aþ D̄ → Cþ B̄ (associated with
Aþ B → CþD). The physical discontinuities are there-
fore positive in the forward limit for elastic scattering by
unitarity on both the right-hand and left-hand cuts, leading
to the forward limit positivity bound,

∂2
sÃð0; 0; 0Þ ¼ 2

π

Z
∞

0

ds0
DiscsAðs0; 0; u0Þ

s03

þ 2

π

Z
∞

0

du0
DiscuAðs0; 0; u0Þ

u03
> 0: ð3:6Þ

This positivity bound can be improved by then subtracting
a known positive contribution to the discontinuities from
both sides of the dispersion relation. This discontinuity can
be computed in the EFT (e.g., QED in our case), giving a
result that can be trusted well below its cutoff scale Λc;
hence the integrals over s0 and u0 must be cut off at ϵ2Λ2

c
with ϵ ≪ 1. This can then be achieved by a split

DiscsAðs0; 0; u0Þ ¼ DiscsAðs0; 0; u0Þθðϵ2Λ2
c − sÞ

þ DiscsAðs0; 0; u0Þθðs − ϵ2Λ2
cÞ;

DiscuAðs0; 0; u0Þ ¼ DiscuAðs0; 0; u0Þθðϵ2Λ2
c − uÞ

þ DiscuAðs0; 0; u0Þθðu − ϵ2Λ2
cÞ;
ð3:7Þ

where the first term on the right-hand side (RHS) is
regarded as the “known” part of the discontinuity, and

both known and unknown pieces are positive separately.
We may then define the improved scattering amplitude
Aimpðs; t; uÞ via [9,10]

Aimpðs; t; uÞ≡ Ãðs; t; uÞ − s2

π

Z
ϵ2Λ2

c

0

ds0
DiscsAðs0; t; u0Þ

s02ðs0 − sÞ

−
u2

π

Z
ϵ2Λ2

c

0

du0
DiscuAðs0; t; u0Þ

u02ðu0 − uÞ : ð3:8Þ

Crucially Aimpðs; t; uÞ has the same analytic structure as
Ãðs; t; uÞ except that by construction the branch cuts now
start at s0 ¼ ϵ2Λ2

c and u0 ¼ ϵ2Λ2
c. We may then derive

improved positivity bounds from Ãimpðs; t; uÞ in the same
manner in which they are derived from Aimpðs; t; uÞ, in
particular leading to the forward limit bound

∂2
sAimpð0; 0; 0Þ

¼ ∂2
sÃð0; 0; 0Þ − 2

π

Z
ϵ2Λ2

c

0

ds0
DiscsAðs0; 0; u0Þ

s03

−
2

π

Z
ϵ2Λ2

c

0

du0
DiscuAðs0; 0; u0Þ

u03
> 0: ð3:9Þ

To proceed we need to know not only the low energy
expansion of the amplitude but also the low energy
discontinuities. These receive contributions from both
nongravitational diagrams and gravitational ones, and we
shall deal with each of these in turn.

B. Discontinuities of nongravitational diagrams

The full set of diagrams for scalar QED that contribute to
the one-loop four-photon amplitude to order 1=M2

Pl, includ-
ing graviton exchange, are given in Fig. 2. In general the
discontinuities can be inferred by unitarity cuts; however,
we choose to derive them directly from the amplitudes
provided in Appendix A. The discontinuities are calculated
within the domain relevant to the dispersion relation,
namely the physical region which for, e.g.,
DiscsAðs0; 0; u0Þ, is s0 ≥ 0. In general it is necessary to
keep track of both the discontinuities of the original process
Aþ B → CþD and the crossed process Aþ D̄ → Cþ B̄.
We use the results and notation of Appendix A 4. Focusing
for now on the nongravitational contributions (i.e., those
with no internal graviton lines), we denote by An the
contributions to the amplitude arising from diagrams with n
internal ϕ propagators. For scalar QED the relevant dis-
continuities from individual Feynman diagrams are,
respectively,

(i) For two internal lines,

DiscsA2ðs; 0; uÞ ¼
e4

4π
ε12ε34

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
θðs − 4m2Þ;
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(ii) For three internal lines,

DiscsA3ðs; 0; uÞ ¼ −
e4

π
ε12ε34

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
þ 2m2 ln

�
2m2

s−2m2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2Þ

p
�

2s

1
CAθðs − 4m2Þ; ð3:10Þ

(iii) And finally for four internal lines,

DiscsA4ðs; 0; uÞ ¼
e4

8πs2

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
ðsþ 2m2Þ − 4sm2

 
ln 4þ 3 ln

s
m2

− 4 ln
s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
m2

!

− 2m2ðm2 þ 4sÞ ln
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r !
þ 2m4 ln

 
−3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

s

r
þ s
m2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
m2

!)

× θðs − 4m2Þ × ðε12ε34 þ ε14ε23 þ ε13ε24Þ:

In all cases the associated u-channel discontinuities can
be inferred from

DiscuAnðs; 0; uÞ ¼ ½DiscsAnðs; 0; uÞ�s↔u;2↔4: ð3:11Þ

The total amplitude is the sum of all contributions Aðs;
t;uÞ¼Z2

AAtreeðs;t;uÞþA2ðs;t;uÞþA3ðs;t;uÞþA4ðs;t;uÞ,
accounting for wave function renormalization, and so the
discontinuities combine accordingly.

C. Checking against the dispersion relation

As a simple consistency check, we can verify expression
(3.6) for the second derivative of the dispersion relation.
Direct integration of the discontinuities gives

2

π

Z
∞

0

ds0
DiscsAðs0; 0; u0Þ

s03
þ 2

π

Z
∞

0

du0
DiscuAðs0; 0; u0Þ

u03

¼ e4

240π2m4

�
ε12ε34 þ ε14ε23 þ

1

3
ε13ε24

�
; ð3:12Þ

whereas taking the derivative directly of the nongravita-
tional amplitude gives

∂2
sÃð0; 0; 0Þ ¼ e4

240π2m4

�
ε12ε34 þ ε14ε23 þ

1

3
ε13ε24

�
;

ð3:13Þ

confirming the validity of the dispersion relation with two
subtractions in the absence of gravity.

FIG. 2. The AA → AA scattering in scalar QED due to nongravitational interactions (first line) and gravitational interactions to order
1=M2

Pl (second line). The wiggly line stands for the vector field Aμ, and the solid line stands for the scalar field ϕ. The arrows depict the
direction of the charge flow. We do not show all the crossed versions of the diagrams.
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D. Discontinuities of gravitational diagrams

The gravitational diagrams for scalar QED that contrib-
ute to order 1=M2

Pl are computed in Appendix A 5 and
contain individual Feynman diagram contributions labeled
a, b, c, d in Fig. 6. We find that the type c, d diagrams do not
produce any discontinuity. This is because the denominator
of the loop integrand has a strictly positive real part. We
find the b type diagrams also have zero imaginary part, so
we can focus solely on the type a diagrams. We shall define
the following scattering configurations:

Configuration I∶þþ − −≡þþ → þþ
Configuration II∶þ − −þ≡þ− → þ−

Configuration III∶þ −þ −≡þ− → −þ

and focus only on these for illustrative purposes. The first
two configurations are elastic so positivity bounds apply
to them.

1. Configuration I

The loop diagrams with one graviton exchange have the
following discontinuities:

DiscsAIðs; 0; uÞ ¼ 0; ð3:14Þ

DiscuAIðs; 0; uÞ

¼ e2

24πM2
Plu

�
ð10m2 − uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

q

− 24m4 tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u − 4m2

u

r ��
θðu − 4m2Þ: ð3:15Þ

Note that this discontinuity is strictly negative in the
physical region. This does not contradict unitarity since
this is a perturbative gravitational correction to an already
positive nongravitational discontinuity.

2. Configuration II

DiscsAIIðs; 0; uÞ

¼ e2

24πM2
Pls

�
ð10m2 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q

− 24m4 tanh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − 4m2

s

r ��
θðs − 4m2Þ: ð3:16Þ

Note that this discontinuity is also strictly negative, while
the u-channel contribution cancels,

DiscuAIIðs; 0; uÞ ¼ 0: ð3:17Þ

3. Configuration III

The forward limit of this helicity configuration has zero
discontinuity which agrees with the gravitational Euler-
Heisenberg result as the gravitational part of the amplitude
in this configuration is zero in the forward limit.

E. Checking against the dispersion relation

If it were the case that QED coupled to gravity still
respected the Jin-Martin version of the Froissart bound to
the one-loop level, i.e., jAðs; tÞj < jsj2, then it would still be
possible to write a dispersion relation for the scattering
amplitude with two subtractions. Furthermore, if this were
the case it would be possible to use the improved positivity
bound to remove even the gravitational contributions.
Fortunately this is not the case, and it is this very fact
that will lead to our central result. For scalar QED in
configuration I the gravitational contribution to the ampli-
tude gives

A00
I ð0Þ ¼ −

e2

90π2m2M2
Pl

; ð3:18Þ

whereas the usual dispersion integrals give

2

π

Z
∞

0

ds0
DiscsAIðs0; 0; u0Þ

s03
þ ðs ↔ uÞ ¼ −

e2

180m2π2M2
Pl

:

ð3:19Þ

By contrast higher derivatives of the dispersion relation do
match, which is to be expected since we can write a
dispersion relation for the one-loop gravitational contribu-
tion with three subtractions, and for any n ≥ 3, so we do
expect the following to hold:

∂n
sAð0; 0; 0Þ ¼ n!

π

Z
∞

0

ds0
DiscsAðs0; 0; u0Þ

s0nþ1

þ ð−1Þnn!
π

Z
du0

DiscuAðs0; 0; u0Þ
u0nþ1

:

ð3:20Þ

Indeed, for configuration I the integrals on the RHS give

0þ ð−1Þnn!
π

Z
du0

DiscuAIðs0; 0; u0Þ
u0nþ1

¼ e2ð−1Þn2−2ðnþ1Þn! cscðπnÞffiffiffi
π

p
M2

Plm
2ðn−1Þðnþ 1ÞΓð2 − nÞΓðnþ 3

2
Þ ; ð3:21Þ

whereas from taking derivatives of the amplitude for the
left-hand side (LHS) we obtain
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AðnÞ
I ð0; 0; 0Þ ¼ e2ð−1Þnþ1Γðn − 1ÞΓðnþ 1ÞΓðnþ 2Þ

M2
Plm

2ðn−1Þπ2ðnþ 1ÞΓð2nþ 3Þ ;

ð3:22Þ

which is, in fact, equal to the dispersion integral result, so
the dispersion relation holds for all n ≥ 3.
It is worth stressing that the fact that the low energy

amplitude computed within the EFT does not satisfy the
Jin-Martin version of the Froissart bound at the one-loop
level does not in any way imply that the full UVamplitude
would itself need to violate Froissart. It is indeed inevitable
in an EFT that amplitudes computed to finite order in
an energy expansion grow “too fast,” indicating only the

breakdown of the effective theory. It is precisely because of
this fact that positivity bounds are so powerful.

F. Improved positivity bounds

We now have all the essential ingredients needed to
derive our main result. Assuming that the improved
positivity bounds can be applied with the t-channel pole
discarded, then the fact that the nongravitational amplitudes
for QED do respect Froissart at one-loop, but the gravi-
tational corrections (as computed within the QED EFT) do
not, will enforce a nontrivial bound on the cutoff of the low
energy effective theory. Let us focus on the configuration I
amplitude which is elastic in polarizations þþ → þþ.
The s-channel integral is

2

π

Z
ϵ2Λ2

c

4m2

ds
DiscsAðs;0; uÞ

s3
¼ 2e2

π2

Z
ϵ2Λ2

c

4m2

ds
s3

2
64e2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

s

r
− e2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs− 4m2Þ

p
þ 2m2 ln

�
2m2

s−2m2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs−4m2Þ

p
�

2s

1
CA

þ e2

4s2

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs− 4m2Þ

q
ðsþ 2m2Þ− 4sm2

�
ln4þ 3 ln

s
m2

− 4 ln
s−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs− 4m2Þ

p
m2

�

− 2m2ðm2 þ 4sÞ ln
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

s

r �
þ 2m4 ln

�
−3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s− 4m2

s

r
þ s
m2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs− 4m2Þ

p
m2

�)375;
ð3:23Þ

while the u-channel integral is

2

π

Z
ϵ2Λ2

c

4m2

du
DiscuAðs;0;uÞ

u3
¼ 2e2

π2

Z
ϵ2Λ2

c

4m2

du
u3

"
e2

4u2

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu−4m2Þ

q
ðuþ2m2Þ−4um2

 
ln4þ3 ln

u
m2

−4 ln
u−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu−4m2Þ

p
m2

!

−2m2ðm2þ4uÞ ln
 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−4m2

u

r !
þ2m4 ln

 
−3−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−4m2

u

r
þ u
m2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu−4m2Þ

p
m2

!)

þ 1

24M2
Plu

 
ð10m2−uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu−4m2Þ

q
−24m4tanh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u−4m2

u

r !!#
: ð3:24Þ

Inserting the discontinuities into the improved positivity bounds and expanding the integrals given the necessary
assumption m ≪ ϵΛc lead to

0 < ∂2
sÃð0; 0; 0Þ − 2

π

Z
ϵ2Λ2

c

0

ds0
DiscsAðs0; 0; u0Þ

s03
−
2

π

Z
ϵ2Λ2

c

0

du0
DiscuAðs0; 0; u0Þ

u03
;

0 <
e4

4π2Λ4
cϵ

4
þ e2m2

2π2M2
PlΛ4

cϵ
4
−

e2

180π2m2M2
Pl

−
e2

12π2M2
PlΛ2

cϵ
2
þ � � � : ð3:25Þ

Given the assumed EFT hierarchy m ≪ ϵΛc ≪ MPl it is sufficient to approximate this as

e4

4π2ϵ4Λ4
c
−

e2

180π2m2M2
Pl

> 0: ð3:26Þ
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The first term is the contribution from nongravitational
diagrams which in the absence of gravity can be removed
by sending Λc → ∞, reflecting the statement that QED in
flat space automatically satisfies positivity bounds to one-
loop. The second term is the distinctively negative gravi-
tational contribution which arises from the non-Froissart
growth of the one-loop amplitudes.6 This positivity bound
may be most cleanly interpreted as a bound on the cutoff of
the effective theory:

ϵΛc ≲ ðemMPlÞ1=2; ð3:27Þ

which is to say that if we take the positivity bound with
t-channel pole discarded seriously, QED cannot be mini-
mally coupled to gravity without introducing new physics
at or below the scale Λnew ∼ ðemMPlÞ1=2. This is signifi-
cantly lower than the scale eMPl implied by the weak
gravity conjecture [54], and indeed by the Euler-
Heisenberg bounds derived in Sec. II B. The strength of
this result is due to the fact that we can remove the known
QED contributions to the positivity bounds from the
electron loops, up to the cutoff scale ϵΛc, giving us a
much more constraining condition. This result exactly
parallels similar conclusions derived for toy scalar field
theories coupled to gravity in a previous work [37]. The
present result is, however, cleaner since (a) we do not rely
on spectator fields, (b) the form of the QED Lagrangian is
more strongly constrained by gauge invariance, and (c) we
make no assumption on the types of operators that would
arise at the cutoff. Furthermore, if one would possess any
additional knowledge about the UV completion of QED

minimally coupled to gravity beyond the cutoff Λc up to
some higher cutoff scale Λ0

c > Λc, one could similarly
repeat the procedure of the improved positivity bounds up
to this new scale. In particular, one could calculate the
improved amplitude as in Eq. (3.8) integrating over the
discontinuities up to ϵ2Λ0

c
2 and including all the new

contributions coming from this new physics to the scatter-
ing amplitude Ãðs; t; uÞ. In the absence of any such
knowledge about the nature of the UV completion, the
bound (3.26) is, however, the most generic result. Finally,
when the inequality (3.26) comes close to being saturated,
we should also worry about higher order corrections in
1=M2

Pl. These will be considered in Sec. IV D.

IV. BOUNDS FROM SPINOR QED COUPLED
TO GRAVITY

The discussion for spinor QED closely parallels that for
the scalar QED with the only difference being numerical
factors. We sketch the essential arguments leaving the
amplitude calculation details to Appendix B. The number
of diagrams contributing to the four-photon amplitude at
one-loop level and to order 1=M2

Pl is significantly fewer as
seen in Fig. 3.

A. Discontinuities of nongravitational diagrams

As shown in Fig. 3 the only nongravitational diagram is
the “box” diagram. The relevant amplitude discontinuities
are given in Appendix B 3 in the s and u channels. For the
first two polarization configurations they are, respectively,

DiscsAI
box ¼

e4πθðs − 4m2Þðs − 2m2Þ
2π2s2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
− 2m2 log

 
s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
!!

;

DiscuAI
box ¼

e4πθðu − 4m2Þ
2π2u2

 
2ð−m2 − uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

q
þ ð4m4 − 2m2u − u2Þ log

 
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

p
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

p
!!

;

and

FIG. 3. The AA → AA scattering in spinor QED due to nongravitational interactions (first term) and gravitational interactions to order
1=M2

Pl (remaining terms). The wiggly line stands for the vector field Aμ, and the solid line stands for the fermion ψ . The arrows depict the
direction of the charge flow. We do not show all the crossed versions of the diagrams.

6We stress again that this does not imply that the UV amplitudes violate the weak Froissart bound jAðs; tÞj < jsj2.
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DiscsAII
box ¼

e4πθðs − 4m2Þ
2π2s2

 
2ð−m2 − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
þ ð4m4 − 2m2s − s2Þ log

�
s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
!!

;

DiscuAII
box ¼

e4πθðu − 4m2Þðu − 2m2Þ
2π2u2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

q
− 2m2 log

 
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

p
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

p
!!

:

All the above discontinuities are positive as required by unitarity. We may confirm the validity of the dispersion relation
with two subtractions by demonstrating that

∂2
sÃð0; 0; 0Þ ¼ 2

π

Z
∞

0

ds0
DiscsAðs0; 0; u0Þ

s03
þ 2

π

Z
∞

0

du0
DiscuAðs0; 0; u0Þ

u03
¼ 11e4

360π2m4
; ð4:1Þ

as required, confirming the discontinuities above for both chosen helicity configurations.

B. Discontinuities of gravitational diagrams

For spinor QED the only gravitational discontinuities come from the type a diagrams. The discontinuities of these
diagrams are negative and are given by

DiscuAI ¼ −
e2

6πM2
Plu

θðu − 4m2Þ
 
ð5m2 þ uÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

q
þ 3m2ð2m2 þ uÞ log

 
u −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

p
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 4m2Þ

p
!!

;

DiscsAI ¼ 0;

DiscsAII ¼ −
e2

6πM2
Pls

θðs − 4m2Þ
 
ð5m2 þ sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
þ 3m2ð2m2 þ sÞ log

 
s −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
!!

;

DiscuAII ¼ 0:

As before the negativity of these discontinuities is not in contradiction with unitarity since these are M2
Pl suppressed

corrections to the positive nongravitational discontinuities. Here again, one can explicitly check that this discontinuity is
consistent with the relation inferred from the dispersion relation with three subtractions.

C. Improved positivity bounds

Focusing now on the scattering configuration I, the improved positivity bound is [expanding the integrals to next-to-next-
to-leading order in powers of m=ðϵΛcÞ],

0 < ∂2
sÃ

Ið0; 0; 0Þ − 2

π

Z
ϵ2Λ2

c

0

ds0
DiscsAIðs0; 0; u0Þ

s03
−
2

π

Z
ϵ2Λ2

c

0

du0
DiscuAIðs0; 0; u0Þ

u03
;

0 <
11e4

360π2m4
−

11e2

180π2m2M2
Pl

−
2

π

Z
ϵ2Λ2

c

0

ds0
DiscsAIðs0; 0; u0Þ

s03
−
2

π

Z
ϵ2Λ2

c

0

du0
DiscuAIðs0; 0; u0Þ

u03
;

0 < −
11e2

360π2m2M2
Pl

−
e2

3π2Λ2M2
Pl

−
e4

4π2Λ4
−

e2m2

4π2Λ4M2
Pl

þ e4

π2Λ4
ln
Λ
m
þ e2m2

π2Λ4M2
Pl

ln
Λ
m
; ð4:2Þ

where Λ ¼ ϵΛc. Once again focusing on the EFT hierarchy
m ≪ ϵΛc ≪ MPl this is effectively

e4

π2Λ4

�
ln
Λ
m
−
1

4

�
−

11e2

360π2m2M2
Pl

> 0: ð4:3Þ

As before, without gravity the bound is trivially satisfied,
and in the presence of gravity the bound is violated if the

cutoff is taken to infinity. If, however, the cutoff scale is
taken below

ϵΛc ≲ ðemMPlÞ1=2; ð4:4Þ

positivity is respected. Up to numerical factors this is
essentially the same order as the bound derived in scalar
QED and suggests a universal result.
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D. Higher order gravitational contributions

Up to now, we have only considered the gravitational
corrections to scattering amplitudes up to order 1=M2

Pl on
the grounds that these dominate. Given the results of the
improved positivity bounds, it would be remiss not to
address whether higher order corrections, specifically the
next ones at order 1=M4

Pl, could rescue positivity without
the need for the low cutoff (4.4). Indeed, as noted already in
[40] this is in principle possible. In the context of the
improved positivity bounds derived here we can show that
this actually leads to equally strong implications. Example
Feynman diagrams at this order are given in Fig. 4.
They contain no electromagnetic vertices and therefore
do not vanish as e → 0. Indeed, any matter species, even
uncharged, will give similar contributions. Furthermore
these amplitudes are logarithmically divergent within 4D
QED minimally coupled to gravity, necessitating the need
to add curvature square operators in the actions (2.1) and
(2.2) whose coefficients can only be determined by
matching onto an unknown UV completion. When
included in the amplitude, the improved positivity bounds
for spinor QED become

e4

π2Λ4

�
ln
Λ
m
−
1

4

�
−

11e2

360π2m2M2
Pl

−
B
M4

Pl

ln

�
Λ
m

�
þ γm
M4

Pl

> 0;

ð4:5Þ

with a similar expression for scalar QED. Here B is a
known positive Oð1Þ coefficient determined from the
positive discontinuities of the diagrams in Fig. 4, and γm
is an unknown matching coefficient accounting for the
curvature square types of operators which needed to be
added to the actions (2.1) defined for convenience7 at a
fixed renormalization group (RG) scale μ ∼m. The loga-
rithmic Λ dependence of the B term arises, as in the first
term, from the application of the improved bounds which
removes the branch cut up to the scale s0 ∼ Λ2. We now see
that in principle there is another solution to maintain
positivity, other than that of (4.4). Indeed, assuming
Λ ≫ ðemMPlÞ1=2 then (4.5) effectively becomes

−
11e2

360π2m2M2
Pl

þ γΛ
M4

Pl

> 0: ð4:6Þ

Now if γΛ is order unity, then (4.6) amounts to a bound of
the form m≳ eMPl, in complete opposition to what is
anticipated from the weak gravity conjecture. This is, of
course, because we are trying to maintain positivity with
terms which are higher order in 1=MPl rather than lower
order. A similar conclusion was made in the 3D case
in [43]. Unlike the situation in 3D, however, we cannot add
additional uncharged light states to remove this tension.
That is because in 3D the R2 terms do not need renorm-
alization and any matter fields, even uncharged, contribute
to them as ΔS ∼

R
d3x

ffiffiffiffiffiffi−gp
R2=m. Thus by including

very light uncharged fields, such as the neutrino, we can
maintain overall positivity without needing to satisfy
m≳ eMPl.
Returning to four dimensions, more generally we should

account for the role of larger γΛ which cannot be deter-
mined within the QED EFT. The typical expectation for the
magnitude of γΛ is of order the number of fields N� that lie
below the Planck scale since every matter field contributes
a term of this form on integrating out. Then the improved
positivity bound (4.6) can be satisfied provided

m≳ eMPlffiffiffiffiffiffi
N�

p : ð4:7Þ

In particular, for a weakly coupled UV completion in which
new massive spin 2 and higher states arise at a scaleMs, for
which M2

Pl ¼ M2
s=g2s , then the scale expected for γUV is

γUV ∼M2
Pl=M

2
s ∼ 1=g2s ≫ 1. In this case (4.6) amounts to

m≳ eMs: ð4:8Þ

Unless e is extremely small for every charged states in the
theory, both of the bounds (4.7) and (4.8) are unreasonable
constraints on theories of interest, and so we do not consider
this “resolution” to maintain positivity as a meaningful
solution. Furthermore they stand in clear opposition to the
expectations from weak gravity conjecture [54].

V. DISCUSSION

In this article we have considered whether QED mini-
mally coupled to gravity respects positivity bounds applied
with the t-channel pole removed. Regardless of whether we
consider charged fermions or scalars, we find that it only
does so if the effective field theory itself breaks down at the
low scale Λnew ∼ ðemMPlÞ1=2, m being the mass of the
electron. This result was already anticipated in the renor-
malizable scalar field theories discussed in [37], and we see
that the new features of gauge invariance and spin do not
change the essential implications. Furthermore, these
results are easily generalized to Nf spinors and Ns scalars

FIG. 4. Example gravitational contributions at order 1=M4
Pl.

7More generally γðμÞ ¼ γm − B lnðμ=mÞ demonstrating the
logarithmic running of the diagrams in Fig. 4.
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given that the entire effect comes from one-loop diagrams
in which the matter (i.e., electron) is in the loop, and so the
relevant amplitude contributions are proportional to Nf

and Ns, respectively. Crucially since both scalars and
spinors give a characteristically negative contribution to
the positivity bound at order 1=M2

Pl in graviton exchange,
then no choice of Nf and Ns can be used to cancel these
contributions and affect these conclusions.
There are three possible perspectives we may take on

these results:
(i) Either consistent (local) UV completions of QED

coupled to gravity do require new physics at scale
Λnew ∼ ðemMPlÞ1=2, regardless of whether the UV
completion is weakly coupled or strongly coupled;

(ii) Or for every charged state, we must impose the
unreasonable bounds m≳ eMPl=

ffiffiffiffiffiffi
N�

p
, where N� is

the number of fields below the Planck scale, as
discussed in Sec. IV D;

(iii) Or the positivity bounds do not apply to the
t-channel pole subtracted amplitude.

The first conclusion is remarkable in that it is far more
stringent than the cutoff expected from the weak gravity
conjecture, namely ΛWG ∼ eMPl [54], and by extension it is
lower than the scale e1=3MPl [57,58] which is obtained with
assumptions on the UV completion from the species bound
and Landau pole. Thus if taken seriously, in this context
positivity bounds are far more constraining than other
“swampland” considerations. The second option while
technically valid is a rather unreasonable condition for
theories in which the electric charge of all the states is not
incredibly small, as in the case of real QED, and so we do
not consider it further. The last possibility was discussed in
more detail in [37] where we noted there are several reasons
to doubt strict positivity in the gravitational context.

A. Absence of decoupling limit

As discussed in [37], the only case in which one can be
sure that positivity holds is when there is a clear MPl → ∞
decoupling limit for which the t-channel pole drops out,
provided other terms in the amplitude do not vanish.
Interestingly, we can see that this is not possible here
without introducing other problems. For instance, for
standard QED, Nf ¼ 1, in order to take a decoupling limit
MPl → ∞ keeping the scale Λnew ∼ ðemMPlÞ1=2 at least
constant for fixed m, or indeed the weak gravity conjecture
scaleΛWG ¼ eMPl at least constant, we would need to scale
e ∼ 1=MPl, meaning we send MPl → ∞ for fixed ΛWG or
Λnew. In doing so the nongravitational part of the amplitude
which is of order e4=m4 ∼ 1=M4

Pl vanishes faster than the
M2

Pl suppressed t-channel pole, undermining the very
purpose of the decoupling limit since then clearly the
graviton exchange dominates. Similarly for the improved
amplitude (3.8) the nongravitational part scales as
e4=Λ4

new ∼ 1=M4
Pl, and we reach the same conclusion.

In many cases a better decoupling limit is obtained
by taking N ¼ Nf þ Ns species and a large N limit. For
instance, one may be tempted to consider a theory with Nf

fermions, so that the e4 suppression of the one-loop
amplitude can be compensated by scaling Nf faster than
M2

Pl. In such a limit Nfe4=m4 and the one-loop gravita-
tional corrections of the form Nfe2=ðm2M2

PlÞ dominate
over the t-channel pole, suggesting at first sight that
an appropriate MPl → ∞ decoupling limit could be
achieved while maintaining some of the relevant physical
implications. However, doing so necessarily runs into
problems with the species bound [59,60] since then
Λspecies ∼MPl=

ffiffiffiffiffiffi
Nf

p
→ 0. While not constituting a proof,

these arguments are highly suggestive that we should not
enforce strict positivity, given the absence of a clean
decoupling limit, but rather a weaker condition of the
form (1.5), or more precisely in the present context (1.6).
We are, of course, free to take the decoupling limit
MPl → ∞ for fixed e and m which in the string amplitude
context amounts to gs → 0 so that the amplitudes are
dominated by tree level contributions. However, in this
case Λnew → ∞ and no contradiction is observed from
applying positivity bounds to the tree amplitudes in the
nongravitational limit. It is clear that to make further
progress it is crucial to establish to what extent positivity
bounds apply with gravity, specifically whether it is in
the weak sense8 (1.5) or (1.6), or the stronger one c > 0
utilized here.
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APPENDIX A: SCALAR QED

1. Conventions

Before jumping into the core of the derivations, it is
useful to summarize our relevant conventions. We para-
metrize the physical momenta of the four particles as

8A related discussion is given in the arXiv:v4 version of [42],
where the weakening is attributed to a violation of Froissart on the
UV. Our perspective is that this assumption is not necessary.
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kμi ¼ ðk; k sinϑi; 0; k cos ϑiÞ; ðA1Þ

with

ϑ1¼0; ϑ2¼π; ϑ3¼θ; ϑ4¼πþθ; ðA2Þ

where the particles 1,2 are ingoing and 3,4 are outgoing.
The quantities k and θ are expressed through the
Mandelstam variables using the relations k2 ¼ s=4 and
cos θ ¼ 1þ 2t=s. Similarly, the normalized and transverse
polarization vectors are defined as

εμi ð�Þ ¼ 1ffiffiffi
2

p ð0; cosϑi;�i;− sinϑiÞ: ðA3Þ

The 2 → 2 scattering amplitude in conventions where the
momenta are associated with indices as Aμðk1Þ, Aνðk2Þ,
Aαðk3Þ, Aβðk4Þ reads

Aphysicalðh1; h2; h3; h4Þ
¼ εμ1ðh1Þεν2ðh2ÞAμναβ

physicalðk1; k2; k3; k4Þε�α3 ðh3Þε�β4 ðh4Þ;
ðA4Þ

where hi ¼ �1 are the helicities of each particle.
All-ingoing notations.—Henceforth, for computational

simplicity we treat also the particles 3,4 as ingoing by
reversing their four-momenta: kμ3 ¼ −ðk; k sin θ; 0; k cos θÞ
and kμ4 ¼ −ðk;−k sin θ; 0;−k cos θÞ. We leave the polari-
zation vectors unchanged and calculate the 2 → 2 scatter-
ing amplitude as

Aingoingðh1; h2; h3; h4Þ
¼ εμ1ðh1Þεν2ðh2ÞAμναβ

ingoingðk1; k2; k3; k4Þεα3ðh3Þεβ4ðh4Þ:
ðA5Þ

Since under complex conjugation the helicity flips
sign, i.e., ε�μi ðhiÞ ¼ εμi ð−hiÞ. then an all-ingoing
amplitude is mapped to a physical amplitude as
Aingoingðh1; h2; h3; h4Þ ¼ Aphysicalðh1; h2;−h3;−h4Þ. We
only use the all-ingoing amplitude (A5) throughout the
text and drop the subscript from now on.
We define ðkεÞij ≡ ki · εj and εij ≡ εi · εj. The inner

products between external polarizations in terms of the
Mandelstam variables are

ε12 ¼ −
1

2
−
h1h2
2

; ε13 ¼ −
h1h3
2

þ 1

2
þ t
s
;

ε14 ¼ −
h1h4
2

−
1

2
−
t
s
; ε34 ¼ −

1

2
−
h3h4
2

;

ε24 ¼ −
h2h4
2

þ 1

2
þ t
s
; ε23 ¼ −

h2h3
2

−
1

2
−
t
s
: ðA6Þ

The inner products between external momenta and polar-
izations are

ðkεÞ13 ¼ ðkεÞ24 ¼ −
ffiffiffiffiffi
tu

pffiffiffi
2

p ffiffiffi
s

p ; ðkεÞ14 ¼ ðkεÞ23 ¼
ffiffiffiffiffi
tu

pffiffiffi
2

p ffiffiffi
s

p :

ðA7Þ

These are symmetric ðkεÞij ¼ ðkεÞji. All other inner
products vanish. Note that if all helicities are flipped, all
inner products are unchanged since helicity dependence
always appears in the form hihj.

2. Tree-level photon-graviton contributions

Irrespective of whether we are interested in the scalar
QED Lagrangian (2.2) or the spinor one (2.1), the tree-level
photon-graviton contributions are the same. Writing the
metric as gμν ¼ ημν þ hμν=MPl, the photon-photon-graviton
interactions are

LhAA ¼
1

2MPl
hμνTμν ¼

1

2MPl
hμν
�
FμαFν

α −
1

4
FαβFαβημν

�
;

ðA8Þ

where all indices are raised/lowered with the Minkowski
metric ημν. The Feynman rule for the hαβAμðk1ÞAνðk2Þ
vertex is then

Vμν;αβ ≡ i
2
k1 · k2ðηαβημν − 2ηνðβηαÞμÞ − i

2
ηαβkν1k

μ
2

− iημνkðα1 k
βÞ
2 þ iðkμ2ηνðαkβÞ1 þ kðβ2 η

αÞμkν1Þ: ðA9Þ

The d-dimensional graviton propagator is (in harmonic/de
Donder gauge)

Dαβ;γδðk2Þ ¼ −
2i
k2

�
ηαδηβγ þ ηαγηβδ −

2ηαβηγδ
d − 2

�
: ðA10Þ

At tree level we are free to set d ¼ 4. Then the
s-diagram gives
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M2
PlAs ¼ −iε1χε2κVχκ;αβDαβ;γδð−sÞVμν;γδε3με4ν

¼ ε12ε34

�
s −

t2

2s
−
u2

2s

�
−
1

2
ðε14ε23 þ ε13ε24Þsþ

tu
s
ðε12 þ ε34Þ

¼ −1
8s

ðt2ðh1ðh2h3h4 − h2 þ h3 − h4Þ − h2ðh3 − h4Þ − h3h4 þ 1Þ
þ u2ðh1ðh2h3h4 − h2 − h3 þ h4Þ − h4ðh2 þ h3Þ þ h2h3 þ 1ÞÞ: ðA11Þ

The t-diagram gives

M2
PlAt ¼ −iε1χε3κVχκ;αβDαβ;γδð−tÞVμν;γδε2με4ν

¼ −1
8t

ðu2ðh1ðh2h3h4 − h2 − h3 þ h4Þ − h4ðh2 þ h3Þ þ h2h3 þ 1Þ
þ s2ðh1ðh2h3h4 þ h2 − h3 − h4Þ − h2ðh3 þ h4Þ þ h3h4 þ 1ÞÞ; ðA12Þ

and the u-diagram gives

M2
PlAu ¼ −iε1χε4κVχκ;αβDαβ;γδð−uÞVμν;γδε2με3ν

¼ −1
8u

ðt2ðh1ðh2h3h4 − h2 þ h3 − h4Þ þ h2ðh4 − h3Þ − h3h4 þ 1Þ
þ s2ðh1ðh2h3h4 þ h2 − h3 − h4Þ − h2ðh3 þ h4Þ þ h3h4 þ 1ÞÞ: ðA13Þ

Combining those three channels together we have

Atree;0ðh1; h2; h3; h4Þ ¼
−1

4M2
Plstu

�
ð−1þ h1h2Þð−1þ h3h4Þðt4 þ u4 −

1

4
ðs2 þ t2 þ u2Þ2Þ

þ ð−1þ h1h3Þð−1þ h2h4Þðs4 þ u4 −
1

4
ðs2 þ t2 þ u2Þ2Þ

− ð−1þ h2h3Þð−1þ h1h4Þðu4 −
1

4
ðs2 þ t2 þ u2Þ2Þ

�
; ðA14Þ

which give the familiar results for example processes

Aðþ þ þþÞ ¼ 0 ¼ Aðþ þ þ−Þ;

Aðþ þ −−Þ ¼ 1

M2
Pl

s4

stu
;

Aðþ −þ−Þ ¼ 1

M2
Pl

t4

stu
;

Aðþ − −þÞ ¼ 1

M2
Pl

u4

stu
: ðA15Þ

3. Photon wave function renormalization

At one-loop there are two diagrams contributing to
the quantum photon propagator given in Fig. 5. The
self-energy of the photon Πρσðk2Þ obeys the Ward identity

kρΠρσðk2Þ ¼ 0 implying that the self-energy is proportional
to the projector onto the subspace transverse to kμ,

Πρσðk2Þ ¼ ðk2ηρσ − kρkσÞΠðk2Þ: ðA16Þ

The two diagrams give

FIG. 5. One-loop self-energy contribution for scalar and spinor
QED.
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Πρσðk2Þ ¼ e2μϵ
Z

ddp
ð2πÞd

ð2p − kÞρð2p − kÞσ
ðp2 þm2Þððp − kÞ2 þm2Þ − 2e2ηρσ

Z
ddp
ð2πÞd

1

p2 þm2

¼ e2μϵ
Z

ddp
ð2πÞd

ð2p − kÞρð2p − kÞσ − 2ηρσððp − kÞ2 þm2Þ
ðp2 þm2Þððp − kÞ2 þm2Þ

¼ e2μϵ
Z

ddl
ð2πÞd

Z
1

0

dx
ð4d − 2Þηρσl2 − 2ηρσðk2 þm2 þ k2x2 − 2k2xÞ þ kρkσð1 − 4xþ 4x2Þ

ðl2 þm2 þ xk2ð1 − xÞÞ2

¼ −
ie2

4π2

Z 1
2

−1
2

dyy2ðk2ηρσ − kρkσÞ ln μ2

m2 − k2ðy2 − 1
4
Þ ; ðA17Þ

where in the last step the Feynman parameter is redefined
by y ¼ x − 1

2
. By resumming the series of one-particle

irreducible (1PI) diagrams contributing to the quantum
propagator, one can show that the wave function renorm-
alization is

ZA ¼ 1

1þ iΠð0Þ : ðA18Þ

The scalar part of the self-energy can be found from the
expression above to be

Πðk2Þ ¼ −
ie2

4π2

Z
1
2

−1
2

dyy2 ln
μ2

m2 − k2ðy2 − 1
4
Þ ; ðA19Þ

so that

Πð0Þ ¼ −
ie2

48π2
ln

μ2

m2
; ðA20Þ

and thus

ZA ¼ 1 −
e2

48π2
ln

μ2

m2
þOðe4Þ: ðA21Þ

4. Nongravitational contributions

By nongravitational contributions, we refer to the
Feynman diagrams with no graviton lines, shown in the
first line of Fig. 2. There are no nongravitational tree
diagrams so we start at one-loop. From diagrams with two
internal propagators we get three crossing related diagrams
giving the familiar expressions

A2−s ¼
e4

4π2
ðε1 · ε2Þðε3 · ε4Þ

Z
1

0

dx

�
MSþ ln

μ2

m2 þ sxðx − 1Þ
�
;

A2−t ¼
e4

4π2
ðε1 · ε3Þðε2 · ε4Þ

Z
1

0

dx

�
MSþ ln

μ2

m2 þ txðx − 1Þ
�
;

A2−u ¼
e4

4π2
ðε1 · ε4Þðε2 · ε3Þ

Z
1

0

dx

�
MSþ ln

μ2

m2 þ uxðx − 1Þ
�
: ðA22Þ

Next we have diagrams that have three internal ϕ propagators in the loop which give (including a factor of 2 for charge flow
reversal)

A3−s ¼ i32e4μϵ
Z

ddl
ð2πÞd dxdy

2
d l

2ε12ε34 − ðkεÞ12ðkεÞ21ε34xy − ðkεÞ34ðkεÞ43ε12xy
ðl2 þm2 − sxyÞ3

¼ −
e4

π2

Z
dxdy

�
ε12ε34 ln

μ2

m2 − sxy
−
xyððkεÞ12ðkεÞ21ε34 þ ðkεÞ34ðkεÞ43ε12Þ

ðm2 − sxyÞ
�

¼ −
e4

π2

Z
dxdy

�
ε12ε34 ln

μ2

m2 − sxy

�
: ðA23Þ

The other channels are given by

A3−t ¼ −
e4

π2

Z
dxdy

�
ε13ε24 ln

μ2

m2 − txy
−
xytuðε24 þ ε13Þ
2sðm2 − txyÞ

�
;

A3−u ¼ −
e4

π2

Z
dxdy

�
ε14ε23 ln

μ2

m2 − uxy
−
xytuðε23 þ ε14Þ
2sðm2 − uxyÞ

�
: ðA24Þ
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Finally there are three diagrams (in addition to their charge reversal) with four internal ϕ propagators, i.e., the box diagram,
as the last diagram on the first line of Fig. 2,

iA4−s ¼ 16e4μϵ
Z

ddp
ð2πÞd

ðpε1Þðpε3Þðpε4 þ ðkεÞ34Þðpε2 − ðkεÞ12Þ
ðp2 þm2Þððpþ k3Þ2 þm2Þððp − k1Þ2 þm2Þððpþ ðk3 þ k4ÞÞ2 þm2Þ : ðA25Þ

Shifting the loop momentum, l ¼ pþ xk3 − yk1 þ zðk3 þ k4Þ and including the factors of 2 from charge reversal,

iA4−s ¼ 2 × 3! × 16e4μϵ
Z

ddl
ð2πÞd dxdydz

Al4 þ Bl2 þ C
ðl2 þm2 þ szðxþ zþ y − 1Þ − tyxÞ4 ; ðA26Þ

where

A ¼ ε12ε34 þ ε13ε24 þ ε14ε23
dðdþ 2Þ ;

B ¼ −tuðε34x2 þ ðε13 − ε23 − ε14 þ ε24Þxyþ ε12y2Þ
2ds

;

C ¼ t2u2x2y2

4s2
: ðA27Þ

The other diagrams are computed similarly,

iA4−u ¼ 2 × 3! × 16e4μϵ
Z

ddl
ð2πÞd dxdydz

Al4 þDl2 þ E
ðl2 þm2 þ uzðxþ zþ y − 1Þ − tyxÞ4 ; ðA28Þ

where

D ¼ tu
2ds2

fðfhig; s; tÞ;

E ¼ t2u2ðxþ z − 1Þðxþ zÞðyþ z − 1Þðyþ zÞ
4s2

; ðA29Þ

where f is linear in s and t (with no terms such as st). Finally the t-channel contribution gives

iA4−t ¼ 2 × 3! × 16e4μϵ
Z

ddl
ð2πÞd dxdydz

Al4 þ Fl2 þ C
ðl2 þm2 þ szðxþ zþ y − 1Þ − uyxÞ4 ; ðA30Þ

where

F ¼ −tuðε34x2 − ðε13 − ε23 − ε14 þ ε24Þxyþ ε12y2Þ
2ds

: ðA31Þ

The full expression for D is

D ¼ h1h2tuyz
2ds

þ h1h2tuy2

4ds
−
h1h2tuy
4ds

þ h1h2tuz2

4ds
−
h1h2tuz
4ds

þ h1h3tuxy
4ds

þ h1h3tuxz
4ds

−
h1h3tux
4ds

þ h1h3tuyz
4ds

−
h1h3tuy
4ds

þ h1h3tuz2

4ds
−
h1h3tuz
2ds

þ h1h3tu
4ds

−
h1h4tuxy

4ds
−
h1h4tuxz

4ds
−
h1h4tuyz

4ds
þ h1h4tuy

4ds
þ h1h4tuz

4ds
−
h1h4tuz2

4ds

−
h2h3tuxy

4ds
−
h2h3tuxz

4ds
þ h2h3tux

4ds
−
h2h3tuyz

4ds
þ h2h3tuz

4ds
−
h2h3tuz2

4ds
þ h2h4tuxy

4ds
þ h2h4tuxz

4ds
þ h2h4tuyz

4ds

þ h2h4tuz2

4ds
þ h3h4tuxz

2ds
þ h3h4tux2

4ds
−
h3h4tux
4ds

þ h3h4tuz2

4ds
−
h3h4tuz
4ds

−
2t2uxy
ds2

−
tuxy
ds

−
2t2uxz
ds2

−
tuxz
2ds

þ t2ux
ds2

þ tux2

4ds
þ tux
4ds

−
2t2uyz
ds2

−
tuyz
2ds

þ t2uy
ds2

þ tuy2

4ds
þ tuy
4ds

þ 2t2uz
ds2

−
2t2uz2

ds2
þ tuz
2ds

−
tuz2

2ds
−

t2u
2ds2

−
tu
4ds

: ðA32Þ
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RG scale independence of nongravitational contribu-
tions.—A consistency check of numerical factors is to see
that all dependence on the scale μ drops out of the total
amplitude. The two-propagator loop diagrams give the μ
dependent term,

e4

4π2
ðε12ε34 þ ε13ε24 þ ε14ε23Þ ln

μ2

m2
; ðA33Þ

from the three-propagator diagrams we have

−
1

2
×
e4

π2
ðε12ε34 þ ε13ε24 þ ε14ε23Þ ln

μ2

m2
; ðA34Þ

and from the four-propagator diagrams we have

3 × 2 × 3! × 16 ×
1

6

×
1

384π2
ðε12ε34 þ ε13ε24 þ ε14ε23Þ ln

μ2

m2
: ðA35Þ

Summing these terms gives zero so there is no μ
dependence.

5. One-loop graviton exchange

The diagrams relevant for the one-loop graviton
exchange are given in Fig. 6. It is understood that each
type of diagrams should also include flipped versions, with
loops on the other end of the graviton line or on different
photon lines as well as the crossed versions of each
diagram. We now proceed with deriving the contributions
to the discontinuity from each of these types of diagrams.

a. Type a diagrams

Summing the diagrams of type a and their flipped
version we obtain for the t-channel amplitude

iAa−t¼ð−iÞ5×2!×2×4e2
Z

ddl
ð2πÞddxdy

Al4þBl2þC
ðl2þm2−xytÞ3 :

ðA36Þ

The factor of 2! is due to combining propagators, the factor
of 2 is due to doubling of the term by a loop charge
direction reversal, and the factor of 4 just comes from
the two QED-like vertices. If we call the ðþ;þ;−;−Þ;
ðþ;−;−;þÞ; ðþ;−;þ;−Þ configurations I, II, III, respec-
tively, then the numerator coefficients are

AI ¼
2ið2ðd − 2Þstþ dsuþ ðd − 4Þs2 þ ðd − 4Þtðtþ uÞÞ

dðdþ 2Þs2 ¼ −
8i

dðdþ 2Þ ¼ −
i
3
−
5iϵ
36

þOðϵ2Þ;

AII ¼
2iðd − 4Þðsþ tÞðsþ tþ uÞ

dðdþ 2Þs2 ¼ 0;

AIII ¼
2iðd − 4Þtðtþ uÞ

dðdþ 2Þs2 ¼ −
2iðd − 4Þt
dðdþ 2Þs ¼ itϵ

12s
þOðϵ2Þ;

BI ¼ −
2iðsþ tÞðxþ y − 1Þðsðxþ y − 1Þ þ 3tðxþ yÞ − tÞ

dt
;

BII ¼ −
2iðsþ tÞ2ðxþ y − 1Þ2

dt
;

BIII ¼ −
iðd − 4Þtððd − 2Þxyðsþ tÞ þ 2m2Þ

ðd − 2Þds ¼ itϵðm2 þ sxyþ txyÞ
4s

þOðϵ2Þ;

CI ¼ −ixyu2ðxþ y − 1Þ2; CII ¼ −ixyu2ðxþ y − 1Þ2; CIII ¼
iðd − 4Þm2txyu

ðd − 2Þs ¼ OðϵÞ: ðA37Þ

FIG. 6. Four classes of gravitational diagrams contributing at one-loop and to order 1=M2
Pl. The arrows depict the direction of the

charge flow. We do not show all the crossed versions of the diagrams.
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Note that for the C coefficients, if they are of order ϵ they
can be set to zero as the dim-reg integrals do not produce
1=ϵ terms that would combine with them to make them
finite. Moving on to the s-channel of diagram a we have

iAa−s ¼ ð−iÞ5 × 2! × 2

× 4e2
Z

ddl
ð2πÞd dxdy

Dl4 þ El2 þ F
ðl2 þm2 − xysÞ3 ; ðA38Þ

DI ¼
2iðd − 4Þ
dðdþ 2Þ ¼ −

iϵ
12

þOðϵ2Þ;

DII ¼ −
8iu2

dðdþ 2Þs2 ¼ −
5iu2ϵ
36s2

−
iu2

3s2
;

DIII ¼ −
8it2

dðdþ 2Þs2 ¼ −
5it2ϵ
36s2

−
it2

3s2
;

EI ¼
2iðd − 4Þm2

ðd − 2Þd ¼ −
im2ϵ

4
; EII ¼ 0;

EIII ¼ 0; FI ¼ 0; FII ¼ 0; FIII ¼ 0: ðA39Þ

Finally, the u-channel gives

iAa−u ¼ ð−iÞ5 × 2! × 2

× 4e2
Z

ddl
ð2πÞd dxdy

Gl4 þHl2 þ I
ðl2 þm2 − xyuÞ3 ; ðA40Þ

with

GI ¼ −
8i

dðdþ 2Þ ¼ −
5iϵ
36

−
i
3
þOðϵ2Þ;

GII ¼ −
2iðd − 4Þu
dðdþ 2Þs ¼ iϵu

12s
; GIII ¼ 0;

HI ¼ −
2itðxþ y − 1Þð2sðxþ yÞ þ tð−1þ 3xþ 3yÞÞ

du
;

HII ¼
iðd − 4Þuððd − 2Þtxy − 2m2Þ

ðd − 2Þds ;

HIII ¼ −
2it2ðxþ y − 1Þ2

du
;

II ¼ −it2xyðxþ y − 1Þ2;

III ¼
iðd − 4Þm2tuxy

ðd − 2Þs ;

IIII ¼ −it2xyðxþ y − 1Þ2: ðA41Þ

b. Type b diagrams

For type b diagrams (including their version flipped
up-down) we find the general expression

iAb−t ¼ ð−iÞ3 × 2e2
Z

ddl
ð2πÞd dx

Jl2 þ K
ðl2 þm2 − xð1 − xÞtÞ2 ;

ðA42Þ

JI ¼ JII ¼ 0; JIII ¼
2iðd − 4Þtðtþ uÞ

ds2
;

KI ¼ KII ¼ 0; KIII ¼ −
2iðd − 4Þm2t
ðd − 2Þs : ðA43Þ

The s-channel has the expressions

iAb−s ¼ ð−iÞ3 × 2e2
Z

ddl
ð2πÞd dx

Ll2 þM
ðl2 þm2 − xð1 − xÞsÞ2 ;

ðA44Þ

LI ¼
2iðd − 4Þ

d
; LII ¼ 0; LIII ¼ 0;

MI ¼
2iðd − 4Þm2

d − 2
; MII ¼ 0; MIII ¼ 0; ðA45Þ

while the u-channel leads to

iAb−u ¼ ð−iÞ3 × 2e2
Z

ddl
ð2πÞd dx

Nl2 þO
ðl2 þm2 − xð1 − xÞuÞ2 ;

ðA46Þ

NI¼0; NII¼
−2iðd−4Þu

ds
; NIII¼0;

OI¼0; OII¼
−2iðd−4Þm2u

ðd−2Þs ; OIII¼0: ðA47Þ

c. Type c diagrams

This type of diagrams relies on the quartic ϕϕ†hαβAγ

interactions that arise from the following terms in the
action:

ie
ffiffiffiffiffiffi
−g

p
gμνAμðϕ∂νϕ

† − ∂νϕϕ
†Þ

⊃ −iehμνAμðϕ∂νϕ
† − ∂νϕϕ

†Þ

þ 1

2
iehAνðϕ∂νϕ

† − ∂νϕϕ
†Þ: ðA48Þ

This leads to the rule (momenta ingoing)

Vϕϕ†hA ¼ −ieηγðαðk1 − k2ÞβÞ þ
i
2
eηαβðk1 − k2Þγ: ðA49Þ

Summing the diagrams gives

iAc ¼ 2i3e2
Z

ddl
ð2πÞd

Pl2

ðl2 þm2Þ2 ; ðA50Þ
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PI ¼
16i
d

þ 0þ 16i
d

; PII ¼ 0þ 16iu2

ds2
þ 0;

PIII ¼ 0þ 16it2

ds2
þ 0: ðA51Þ

Since the denominator of the loop integral is the same for
all channels, we may simply sum them up and each term
in the previous PI;II;III sums denotes the t, s, u-channel
contributions, respectively.

d. Type d diagrams

There is a new interaction vertex ϕϕ†hαβAγAδ from the
terms

−
ffiffiffiffiffiffi
−g

p
gμνe2AμAνϕϕ

† ⊃ −
h
2
ημνe2AμAν þ hμνe2AμAν;

ðA52Þ

with rule

Vϕϕ†hAA ¼ ie2ð−ηαβηγδ þ 2ηαðγηδÞβÞ: ðA53Þ

Summing the diagrams gives

iAd ¼ −ie2
Z

ddl
ð2πÞd

Q
ðl2 þm2Þ ; ðA54Þ

QI ¼ −8iþ 0 − 8i; QII ¼ 0 −
8iu2

s2
þ 0;

QIII ¼ 0 −
8it2

s2
þ 0: ðA55Þ

Again the terms denote the t, s, u-channel contributions,
respectively.

6. Consistency checks

a. Pole cancellations

The previous derivations present poles for various types
of diagrams at s ¼ 0 and t ¼ 0 (for configuration II) and at
u ¼ 0 (for configuration III). In what follows we shall see
that these pole contributions precisely cancel out when
accounting for the wave function renormalization.

1. Pole cancellation for configuration II

The sum of all a; b; c; d diagrams for configuration II
contains a pole at s ¼ 0 and at t ¼ 0 and no pole at u ¼ 0.
The t ¼ 0 pole is

M2
PlA

1-loop
II ⊃ −

e2

2π2
u2

t

Z
dxdyðxþ y − 1Þ2 ln μ2

m2

¼ −
e2

24π2
u2

t
ln

μ2

m2
; ðA56Þ

directly canceling the correction from wave function
renormalization. The s ¼ 0 pole arises in the s-channel
diagram giving the coefficient DII and is

M2
PlA

1-loop
II ⊃ −

e2

π2
u2

s

Z
dxdyxy ln

μ2

m2
¼ −

e2

24π2
u2

s
ln

μ2

m2
;

ðA57Þ

canceling the wave function renormalization piece.

2. Pole cancellation for configuration III

The sum of all a; b; c; d diagrams for configuration III
contains a pole at u ¼ 0,

M2
PlA

1-loop
III ⊃ −

e2

2π2
t2

u

Z
dxdyðxþ y − 1Þ2 ln μ2

m2

¼ −
e2

24π2
t2

u
ln

μ2

m2
; ðA58Þ

canceling the wave function renormalization piece. The
s ¼ 0 pole arises in the s-channel diagram giving the
coefficient DIII and is

M2
PlA

1-loop
III ⊃ −

e2

π2
t2

s

Z
dxdyxy ln

μ2

m2
¼ −

e2

24π2
u2

s
ln

μ2

m2
;

ðA59Þ

canceling the wave function renormalization piece.

b. RG scale independence

Again as a sanity check, we can verify that all depend-
ence on the renormalization scale μ drops out of the total
amplitude from this gravitational exchange. We can check
this explicitly for the various configurations.

1. Configuration I

Considering the type a diagrams we get the μ dependence,

M2
PlAI ⊃

s3 þ 24m2tu
24π2tu

e2 ln
μ2

m2

¼
�

1

24π2
s4

stu
þm2

π2

�
e2 ln

μ2

m2
: ðA60Þ

The first term here cancels against the wave function
renormalization correction to the tree amplitude. The type b
diagrams do not give any μ dependent terms as all loop
integrands are proportional to d − 4. The remaining dia-
grams give an RG dependence,

M2
PlAI ⊃ −e2

m2

π2
ln

μ2

m2
; ðA61Þ

so the total μ dependence cancels.
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2. Configuration II

Considering the type a diagrams we get the μ dependence,

M2
PlAII ⊃

su3 þ 12m2tu2

24π2s2t
e2 ln

μ2

m2

¼
�

1

24π2
u4

stu
þ m2u2

2π2s2

�
e2 ln

μ2

m2
: ðA62Þ

The first term here cancels against the wave function
renormalization correction to the tree amplitude. The type b
diagrams do not give any μ dependent terms as all loop
integrands are proportional to d − 4. The remaining dia-
grams give an RG dependence,

M2
PlAII ⊃ −e2

m2u2

2π2s2
ln

μ2

m2
; ðA63Þ

so the total μ dependence cancels.

3. Configuration III

Considering the type a diagrams we get the μ dependence,

M2
PlAIII ⊃

st3 þ 12m2ut2

24π2s2u
e2 ln

μ2

m2

¼
�

1

24π2
t4

stu
þ m2t2

2π2s2

�
e2 ln

μ2

m2
: ðA64Þ

The first term here cancels against the wave function
renormalization correction to the tree amplitude. The type b
diagrams do not give any μ dependent terms as all loop
integrands are proportional to d − 4. The remaining dia-
grams give an RG dependence,

M2
PlAIII ⊃ −e2

m2t2

2π2s2
ln

μ2

m2
; ðA65Þ

so again the total μ dependence cancels.

APPENDIX B: SPINOR QED

We now turn to the analogous derivation for spinor QED.
We refer to Appendix A 1 for a summary of our con-
ventions. As mentioned in Appendix A 2, the tree-level
photon-graviton contributions are exactly the same for
scalar and spinor QED, and we therefore refer to that
Appendix for those tree-level contributions. In what fol-
lows we can simply focus on deriving the one-loop
diagrams that arise in spinor QED.

1. Curved spacetime action

The action for spinor electrodynamics in flat space is

S ¼
Z

d4x

�
−
1

4
FμνFμν þ ψ̄ði=D −mÞψ

�
; ðB1Þ

where =D ¼ γμð∂μ − ieAμÞ. The electron is a Dirac spinor
denoted ψ and the Dirac adjoint is ψ̄ ≡ ψ†γ0 (suppressing
spinor indices). The propagator for a fermion is

SF ¼ −ið−=pþmÞ
p2 þm2 − iϵ

: ðB2Þ

To minimally couple this to gravity we use a vierbein to set
up local inertial frames in which the gamma matrices take
their usual constant form,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
FμνFμν

þ ψ̄γAvμAði∇μ þ eAμÞψ −mψ̄ψ

�
; ðB3Þ

where ∇μ ¼ ∂μ − 1
2
ωμABJAB, with JAB ¼ 1

4
½γA; γB�, and

ωμAB is the spin connection. Here the inverse vierbein is
denoted vμA. The gamma matrices satisfy

fγμ; γνg ¼ −2gμν; fγA; γBg ¼ −2ηAB: ðB4Þ

We can write the metric as a perturbation around
Minkowski space, gμν ¼ ημν þ κhμν, as well as the vierbein
as a perturbation, vAμ ¼ η0Aμ þ κcAμ, where κ ¼ M−1

Pl . As
is shown in [61], the vierbein is not fundamentally
necessary for the purposes of perturbation theory and
can be completely eliminated in favor of the metric.
Introducing the vierbein introduces six local Lorentz
gauge-degrees-of-freedom which can be eliminated by
imposing the “Lorentz symmetric gauge,”

0 ¼ vAαηαβηBβ − vBαηαβηAβ: ðB5Þ

Inserting vAα ¼ η0Aα þ κcAα we have

0 ¼ cAαηαβηBβ − cBαηαβηAβ ðB6Þ

¼ cAB − cBA: ðB7Þ

This implies that cAα is symmetric. From the definition of
the vierbein one can derive

cμν ¼
1

2
hμν þOðκÞ: ðB8Þ

The procedure is then to insert this gauge-fixed vierbein
into the above action and expand everything to leading
order in κ. The main expressions are
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ffiffiffiffiffiffi
−g

p ¼ 1þ κh
2
þ � � � ;

ωμAB ¼ κ

2
ð∂BhAμ − ∂AhBμÞ þ � � � ;

Γρ
μν ¼ κ

2
ηρλðhμλ;ν þ hνλ;μ − hμν;λÞ þ � � � ; ðB9Þ

i
ffiffiffiffiffiffi
−g

p
ψ̄γAvμA∇μψ ⊃ i

hκ
2
ψ̄γμ∂μψ þ iψ̄γλ

κ

2
ημσhλσ∂μψ

− iκψ̄γαηαϕhϕμ∂μψ

þ κ

8
iψ̄γμ∂αhβμ½γα; γβ�ψ ;

e
ffiffiffiffiffiffi
−g

p
ψ̄γAvμAAμψ ⊃ e

κ

2
hψ̄γμAμψ þ e

κ

2
ψ̄γλημσhλσAμψ

− eκψ̄γαηαλAμψhμλ;

−m
ffiffiffiffiffiffi
−g

p
ψ̄ψ ⊃ −m

κ

2
hψ̄ψ : ðB10Þ

The first operator ihκψ̄γμ∂μψ=2 gives rise to a term in the
Feynman rule (with all ingoing momenta and p1 being
aligned with the direction of charge flow and p2 being
misaligned with the direction of charge flow),

i
hκ
2
ψ̄γμ∂μψ →

iκ
2
ημνγλp2λ ¼

iκ
2
ημν=p2; ðB11Þ

iψ̄γλ
κ

2
ημσhλσ∂μψ →

iκ
2
γðμpνÞ

2 ; ðB12Þ

−iκψ̄γαηαϕhϕμ∂μψ → −iκγðμpνÞ
2 ; ðB13Þ

κ

8
iψ̄γμ∂αhβμ½γα; γβ�ψ → −

iκ
8
p3αγ

ðμ½γνÞ; γα�; ðB14Þ

−m
κ

2
hψ̄ψ → −im

κ

2
ημν: ðB15Þ

Summing up gives the graviton-fermion-fermion vertex,

Vμν
hψψ̄ ¼ i

2MPl

�
ημν=p2 − γðμpνÞ

2 −
1

4
p3αγ

ðμ½γνÞ; γα� −mημν
�
;

ðB16Þ

at which point we can use the identity

γðμ½γνÞ; γα� ¼ γμηαν þ γνηαμ − 2ημνγα ðB17Þ

to give

Vμν
hψψ̄ ¼

i
4MPl

ðγðμðp1−p2ÞνÞ−ημνð=p1−=p2þ2mÞÞ: ðB18Þ

The other graviton-matter interaction vertex is

Vμν;α
hψψ̄A¼

ie
2MPl

ðημνγα−γðμηνÞαÞ: ðB19Þ

2. Photon wave function renormalization

The graviton exchange diagrams are the same as in the
scalar QED case; however, the wave function renormaliza-
tion factor is different due to the spinor-electron loop. As
there is no photon-photon-fermion-fermion vertex, the
four-point photon amplitude at one-loop involves only a
subset of diagrams that we needed in the scalar QED case.
The 1PI self-energy from the one diagram Fig. 5(b) gives
(in MS)

Πμν ¼ −
ie2

2π2
ðημνk2 − kμkνÞ

Z
1

0

dxxð1 − xÞ ln
�

μ2

m2 þ xð1 − xÞk2
�

¼ ðημνk2 − kμkνÞΠðk2Þ;

⇒ Πð0Þ ¼ −
ie2

12π2
ln

μ2

m2
: ðB20Þ

As in the scalar QED case we have

ZA ¼ 1

1þ iΠð0Þ ⇒ ZA ¼ 1 −
e2

12π2
ln

μ2

m2
þOðe4Þ: ðB21Þ

Then, the one-loop corrected amplitude from the tree diagrams would be

AI
tree ¼

1

M2
Pl

s4

stu

�
1 −

e2

6π2
ln

μ2

m2
þ � � �

�
¼ 1

M2
Pl

�
−
s2

t
−
s2

u

��
1 −

e2

6π2
ln

μ2

m2
þ � � �

�
;

AII
tree ¼

1

M2
Pl

u4

stu

�
1 −

e2

6π2
ln

μ2

m2
þ � � �

�
¼ 1

M2
Pl

�
−
u2

t
−
u2

s

��
1 −

e2

6π2
ln

μ2

m2
þ � � �

�
: ðB22Þ
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3. Nongravitational contributions

The only one-loop nongravitational diagrams we have are the box diagrams. The box amplitude is

iAbox ¼ ð−1ÞðieÞ4
Z

ddp
ð2πÞd ½Trð=ε1S

13
F =ε3S

34
F =ε4S

42
F =ε2S

21
F Þ þ Trð=ε1S12F =ε2S24F =ε4S43F =ε3S31F Þ

þ Trð=ε1S14F =ε4S42F =ε2S23F =ε3S31F Þ þ Trð=ε1S13F =ε3S32F =ε2S24F =ε4S41F Þ
þ Trð=ε1S14F =ε4S43F =ε3S32F =ε2S21F Þ þ Trð=ε1S12F =ε2S23F =ε3S34F =ε4S41F Þ�; ðB23Þ

where SijF is the Dirac fermion Feynman propagator connecting vertices with ingoing photons of momenta ki and kj.
The factor of (−1) is related to the one fermion loop. We have used theMathematica package “Package-X” to compute the
forward limit box amplitude for helicity configurations I and II [62]. The amplitude for configuration III is zero in the
forward limit, and the other two configurations are given by

AI
boxðs; t ¼ 0Þ ¼

�
−e4

4π2s2

�	
−4ðs −m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 4m2Þ

q
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 4m2Þ

p
þ 2m2 þ s

2m2

�

− 2ðs − 2m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
þ 2m2 − s

2m2

�

þ ð−4m4 − 2m2sþ s2Þlog2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 4m2Þ
p

þ 2m2 þ s
2m2

�

þ 2m2ðs − 2m2Þlog2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs − 4m2Þ
p

þ 2m2 − s
2m2

�
þ 6s2
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and

AII
boxðs; t ¼ 0Þ ¼

�
e4

4π2s2

�	
−4ðsþm2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

q
log
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
log
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�
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So as to compare with [40], we may work below the electron mass, and expanding this in powers of s=m2 finally gives the
same contribution for configurations I and II to that order,

AI
boxðs; t ¼ 0Þ ¼ 11e4s2

720π2m4
þOðs3=m6Þ and AII

boxðs; t ¼ 0Þ ¼ 11e4s2

720π2m4
þOðs3=m6Þ: ðB26Þ

4. One-loop graviton exchange

The diagrams relevant for the one-loop graviton exchange are similar to those provided in the scalar QED case (see
Appendix A 5). Referring back to Fig. 6, there is no analog to types b and d diagrams for spinor QED. In practice all type c
diagrams vanish for spinor QED so in what follows we can simply focus our discussion on type a diagrams, and we only
provide our results for configurations I and II.
Configurations I and II of the amplitude from type a diagrams are given by (expanded in the forward limit)

M2
PlA

I
aðs; t ¼ 0Þ ¼ −

e2s2

6π2t
ln

μ2

m2
−

11e2s2

360π2m2
þ e2s
6π2

ln
μ2

m2
þ e2s
12π2
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and

M2
PlA

II
a ðs; t ¼ 0Þ ¼ −

e2s2

6π2t
ln

μ2

m2
−

11e2s2

360π2m2
−
e2s
6π2

ln
μ2

m2
−

e2s
12π2

: ðB28Þ

For both configurations, the first term is exactly what cancels against the one-loop wave function renormalization of the tree
diagrams (i.e., the t-pole cancellation), while the third term cancels the remaining μ dependence from the wave function
renormalization leading to a final amplitude that is μ independent as it should be. These results are consistent with [40]. The
full expressions are
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and
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