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Triangulating Molecular Evidence to
Prioritize Candidate Causal Genes at
Established Atopic Dermatitis Loci

Maria K. Sobczyk1, Tom G. Richardson1, Verena Zuber2,3, Josine L. Min1, Tom R. Gaunt1 and
Lavinia Paternoster1, eQTLGen Consortium, BIOS Consortium, GoDMC
GWASs for atopic dermatitis have identified 25 reproducible loci. We attempt to prioritize the candidate causal
genes at these loci using extensive molecular resources compiled into a bioinformatics pipeline. We identified
a list of 103 molecular resources for atopic dermatitis etiology, including expression, protein, and DNA
methylation quantitative trait loci datasets in the skin or immune-relevant tissues, which were tested for overlap
with GWAS signals. This was combined with functional annotation using regulatory variant prediction and
features such as promoter‒enhancer interactions, expression studies, and variant fine mapping. For each gene
at each locus, we condensed the evidence into a prioritization score. Across the investigated loci, we detected
significant enrichment of genes with adaptive immune regulatory function and epidermal barrier formation
among the top-prioritized genes. At eight loci, we were able to prioritize a single candidate gene (IL6R, ADO,
PRR5L, IL7R, ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less familiar
candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). Our analysis provides support for previously impli-
cated genes at several atopic dermatitis GWAS loci as well as evidence for plausible additional candidates at
others, which may represent potential targets for drug discovery.
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INTRODUCTION
Defined by inflamed dry, hyperplastic eczematous skin and
pruritus, atopic dermatitis (AD) is among the world’s top 50
common diseases, with prevalence in 2010 estimated at
close to 230 million cases and increasing (Hay et al., 2014).
AD is highly heritable, with estimates of up to 75% in twin
studies (Elmose and Thomsen, 2015). The largest and most
recent GWAS of AD undertaken by the EAGLE (EArly Ge-
netics and Lifecourse Epidemiology) consortium in 2015
identified 25 loci associated with AD in individuals of Eu-
ropean descent (Paternoster et al., 2015). Majority of the
disease-associated variants are located in noncoding regions,
implying that they have a regulatory role rather than affecting
protein function. Thus, integrating various biological data
resources can provide complementary evidence about
GWAS causal genes (Hormozdiari et al., 2018).

Since the publication of the AD EAGLE GWAS, there has
been an explosion of new datasets from many cell types and
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new methods that offer an opportunity to refine the prioriti-
zation of genes at the GWAS loci. In this paper, we aim to
comprehensively dissect AD GWAS loci by prioritizing
candidate causal genes and illuminating biological mecha-
nisms through which candidate genes can impact AD risk.
We integrate several established fine-mapping and gene pri-
oritization methods in a unique AD-focused gene prioritiza-
tion pipeline to comprehensively evaluate the causal genetic
evidence at each locus and utilize an exhaustive set of 103
molecular datasets in AD-relevant tissues to best support
these methods. We explicitly model our assumptions about
the importance of different types of evidence as well as the
strength of the associations relating the features to genes and
variants. In combining these methods, our pipeline generates
a score for each gene used to assess the magnitude of evi-
dence of each tested gene at a locus of being causal. Such a
score can serve as a metric that allows rapid gene prioriti-
zation by molecular biologists and other interested parties,
such as pharmaceutical companies.

RESULTS
Identification of key tissues and cell types in AD GWAS loci

To determine which tissues and cell types should be part of
the pipeline, we tested for enrichment of expression at our
GWAS loci across a wide range of tissues and cell types (53
tissues from Genotype-Tissue Expression [GTEx], version 7,
and 79,249,533 cell types from the Gene Atlas, Immuno-
logical Genomics, and FANTOM CAGE [Functional Anno-
tation of the Mouse/Mammalian Genome Cap Analysis of
Gene Expression]) and determined that all immune cell, skin
(including fibroblast), spleen, and whole-blood datasets
should be included (Supplementary Results). We reviewed
s. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. This is
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the literature to identify 103 separate datasets from these
tissue types with relevant data (Supplementary Figures S1 and
S2).

Prioritization of candidate genes

Gene prioritization scores ranged from 0 to 1,405 (SNP
scores ranged from 0.5 to 968) (Dataset S1). For eight loci, the
top-prioritized SNP was not the index SNP, and for 10 loci,
the closest gene did not score best (Table 1). In detailing the
results, we focus on genes ranked in the top 3 and SNPs
ranked in the top 10 at each locus because this limit agrees
with the sharp score decay observed in the scores
(Supplementary Figures S3 and S4; Dataset S2).

Excluding the complex major histocompatibility complex
locus, the highest gene scores were seen for genes at five loci:
IL18R1 (score ¼ 1,384) and IL18RAP (score ¼ 1,341) at
2q12.1 locus, PPP2R3C (score ¼ 996) at 14q13.2 locus, IL7R
(score ¼ 965) at 5p13.2 locus, TRAF3 (score ¼ 848) at
14q32.32 locus, and IL6R (score ¼ 743) at 1q21.3 locus
(Table 1 and Figure 1; Dataset S3 for all loci). Assuming that
the true model is one of a single causal gene at each locus,
prioritization can also be evaluated by comparing the score
of the top-prioritized gene at a locus with all other genes at
that locus. Eight loci (1q21.3-IL6R, 10q21.2-ADO, 11p13-
PRR5L, 5p13.2-IL7R, 11q24.3-ETS1, 2q37.1-INPP5D,
12q15-MDM1, 14q32.32-TRAF3) (Table 1) have a single
stand-out candidate causal gene, with the top gene contrib-
uting >50% of the total score of the top 10 ranked genes. The
top candidate by that metric is PRR5L (79% of top 10 genes at
11p13 locus), with a score of 598 compared with a score of
65 for the second-ranked gene at this locus. Most top-
prioritized genes by the total score are also prioritized by
this metric. Two further loci show good evidence (>75%
cumulative score) shared across two candidate genes (IL18R1
and IL18RAP at 2q12.1 and EMSY and LRRC32 at 11q13.5,
which share 77% and 84% of the cumulative score, respec-
tively). At 2q12.1 (where IL18R1 and IL18RAP reside), there
is evidence for two independent genetic signals, and these
may affect each of the prioritized genes.

For five loci, the pipeline prioritizes the genes in the top
position (and with a score >300) that were not considered in
the original GWAS annotation (Paternoster et al., 2015):
MDM1 at 12q15 (score ¼ 728), ADO at 10q21.2 (score ¼
615), STMN3 at 20q13.33 (score ¼ 608), SLC22A5 at 5q31.1
(score ¼ 461), and DEXI at 16p13.13 (score ¼ 376). Some in
this list (such as SLC22A5) represent promising candidates.

For each locus as well as evaluating the overall prioriti-
zation scores of each gene, we present a summary figure that
shows how different evidence sources have contributed to
the overall score (Supplementary Figure S5); the loci with the
most compelling evidence are displayed in Figure 2. In
addition, the individual results from each source are also
available for deeper evaluation (Dataset S4). A full discussion
of each locus in Table 1 integrating evidence from the pipe-
line with knowledge from literature is available in
Supplementary Results.

Validation of gene prioritization

In the absence of gold-standard true positive genes with
which we could compare our prioritization of candidate
genes at GWAS loci, we evaluated our results in two indirect
ways. First, we tested whether our top three prioritized genes
across all loci are enriched in any gene sets using enrichr
(Kuleshov et al., 2016) and compared those with the cate-
gories enriched among previously implicated AD genes
(Supplementary Table S1). We found that both lists are
significantly enriched for immune system‒related genes
(Figure 3) but often with stronger evidence in our prioritized
gene sets. In particular, cytokine categories were over-
represented, for example, Gene Ontology cytokine‒medi-
ated signaling pathway (adjusted P-value for our prioritized
genes ¼ 1 � 10�9 vs. 0.004 for other previously implicated
AD genes). The genes in the cytokine pathways identified by
the pipeline include IL6R, IL22, INPP5D, IL2RA, IFNG,
IL18R1, IL18RAP, IL1RL1, and IL7R. Signaling involving the
regulation of response to IFN-g (Gene Ontology, P ¼ 0.039
vs. 0.043), Jak1/ Jak2/signal transducer and activator of
transcription (STAT) 3‒interacting genes, and Jak‒STAT
signaling pathway in general (Kyoto Encyclopedia of Genes
and Genomes, P ¼ 4 � 10�5 vs. 2 � 10�4), also overlapped
between the two gene sets, as did terms relating to T-cell
differentiation. We did not find enrichment of genes in any
specific type of immunity, including in all of T helper (Th)1,
Th2, Th17, and Th22 represented and previously shown to
play a role in certain subsets of patients with AD, despite the
overall particular importance of Th2 and Th22 (Esaki et al.,
2016; Leung and Guttman-Yassky, 2014; Suárez-Fariñas
et al., 2013). Genes concerned with the establishment of
the skin barrier were marginally enriched for in the pipeline
(owing to the prioritization of cornified envelope genes
HRNR and RPTN) but less than the previously reported AD
genes (Gene Ontology, P ¼ 0.045 vs. 8 � 10�8)
(Supplementary Table S2).

The second way we validated our results was to test
whether our candidates interacted with each other and with
the genes with established roles in AD pathogenesis using
STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) (Szklarczyk et al., 2019) to visualize the highest-
confidence interactions. The analysis revealed an extensive
network that included 25 prioritized genes, centered on key
immune regulators (Supplementary Results and
Supplementary Figure S6).
DISCUSSION
Previous annotations of AD GWAS loci have been limited in
their ability to identify likely causal genes (Paternoster et al.,
2015). In this paper, we provide a thorough investigation of
the 25 European AD loci by integrating all relevant available
data that can be used to provide evidence for hypothesizing
causal genes and combine these data in such a way as to
produce a ranking for every gene at each locus.

Because there are a vast number of methods that can be
employed to attempt to establish the causal genes for GWAS
signals, we integrate several of these, which represent the
most useful and robust approaches that span experimentally
generated functional annotations, predictions for regulatory
impact generated by machine learning models, as well as
linking back to AD physiology through the evaluation of
differential gene expression and DNA methylation studies
and proteome comparisons involving patients with eczema.
www.jidonline.org 2621
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Table 1. Genes Prioritized at Atopic Dermatitis GWAS Loci

Locus GWAS Index Variant Nearest Genes Top-Ranked Gene Second-Ranked Gene Third-Ranked Gene

1q21.3 - a rs61813875 CRCT1/LCE3E HRNR (464, 28%) RPTN (285, 17%) CRNN (249, 15%)

1q21.3 - b rs12730935 IL-6R IL-6R (743, 62%)1 UBE2Q1 (93, 8%) ADAR (61, 5%)

2p13.3 rs112111458 CD207/VAX2 CD207 (272, 45%)1 CLEC4F (62, 10%) VAX2 (56, 9%)

2q12.1 rs6419573/rs39172652 IL-18R1/IL-18RAP IL-18R1 (1,384, 39%)1 IL-18RAP (1,341, 38%)1 IL1RL1 (224, 6%)

2q37.1 rs1057258 INPP5D INPP5D (296, 57%)1 ATG16L1 (106, 20%) RN7SL32P (29, 6%)

4q27 rs6827756/rs131523622 KIAA1109 KIAA1109 (220, 35%)1 BBS12 (112, 18%) TRPC3 (100, 16%)

5p13.2 rs10214237 IL-7R/CAPSL IL-7R (965, 65%)1 SPEF2 (203, 14%) UGT3A2 (89, 6%)

5q31.1 - a rs12188917 TH2LCRR SLC22A5 (461, 35%) IRF1 (303, 23%) RAD50 (122, 9%)

5q31.1 - b rs47059622 KIF3A KIF3A (249, 23%)1 SLC22A5 (247, 23%) PDLIM4 (142, 13%)

6p21.32 rs4713555 STAT3 HLA-DRA (1,405, 30%) HLA-DQB1 (689, 15%) HLA-DRB1 (566, 12%)1

6p21.33 rs41293864 MICB HSPA1B (173, 15%) HCG27 (165, 14%) CSNK2B (152, 13%)

8q21.13 rs6473227 MIR5708/ZBTB10 ZBTB10 (192, 41%)1 TPD52 (70, 15%) PAG1 (69, 15%)

10p15.1 rs6602364 IL2RA/IL15RA IL-2RA (333, 45%)1 RBM17 (111, 15%) PFKFB3 (51, 7%)

10q21.2 rs2944542 ZNF365 ADO (615, 61%) ZNF365 (101, 10%)1 EGR2 (90, 9%)

11p13 rs2592555/rs122955352 PRR5L PRR5L (598, 79%)1 TRAF6 (65, 9%) COMMD9 (34, 5%)

11q13.1 rs10791824 OVOL1 CTSW (336, 23%) OVOL1 (236, 16%)1 EFEMP2 (168, 11%)

11q13.5 rs2212434 C11orf30/LRRC32 LRRC32 (545, 43%)1 EMSY (521, 41%)1 THAP12 (47, 4%)

11q24.3 rs7127307 e/ETS1 ETS1 (298, 75%)1 FLII (35, 9%) APLP2 (18, 5%)

12q15 rs2227483 IL22 MDM1 (728, 70%) IL-22 (99, 10%)1 IFNG (57, 5%)

14q13.2 rs2038255 PPP2R3C PPP2R3C (996, 31%)1 KIAA0391 (814, 25%) SRP54 (433, 13%)

14q32.32 rs7146581 TRAF3 TRAF3 (848, 55%)1 AMN (281, 18%) CDC42BPB (186, 12%)

16p13.13 rs2041733 CLEC16A DEXI (376, 34%) CLEC16A (364, 33%)1 RMI2 (108, 10%)

17q21.2 rs12951971 STAT3 DHX58 (254, 32%) STAT3 (101, 13%)1 RAB5C (100, 13%)

17q25.3 rs11657987 PGS1 PGS1 (205, 46%)1 DNAH17 (73, 16%) SOCS3 (52, 12%)

19p13.2 rs2918307 ADAMTS10/ACTL9 ACTL9 (115, 41%)1 ADAMTS10 (57, 20%)1 MAP2K7 (34, 12%)

20q13.33 rs4809219 RTEL1/TNFRSF6B STMN3 (608, 27%) LIME1 (473, 21%) ARFRP1 (257, 12%)

Abbreviation: STAT, signal transducer and activator of transcription.

The two values given in parentheses in the top three ranked gene columns correspond to the gene prioritization score and the percentage of the total score
for locus top 10 genes.
1The closest genes to the index variant (in either direction).
2Index SNP for secondary signal, where the pipeline did not give different gene prioritizations for the two signals; these are presented on one row.
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We employed the most robust methods where possible; for
example, statistical methods (coloc and transcriptome-wide
association study [TWAS]) were used to formally compare
the association patterns in quantitative trait loci (QTL) studies
with those in GWAS when full summary statistics were
available because w50% of common variants are associated
with one expression QTL (eQTL) or more across 53 tissues in
GTEx (Liu et al., 2019), so simple lookups for variant overlap
alone will result in many false positives. Where full summary
statistics were not available, we still included such lookups
but gave such evidence much lower weight in the overall
score (weight adjustment of 2 compared with that of 20 for
colocalization).

For 10 loci, the top-ranked gene is not the gene closest to
the index GWAS SNP. Eight loci have a single stand-out
candidate causal gene (score >50% of the top 10 gene cu-
mulative scores), and seven genes score particularly high
(>700) and/or have a particular stand-out score (>75%).
Although our analysis strengthens the evidence for existing
candidate causal genes at these loci in many cases, at six
loci, our score ranks alternative candidates as the most likely
causal gene.

One of these six loci can be considered an interesting
validation of our approach. IL15RA was previously consid-
ered the most plausible candidate gene at the 10p15.1 locus
Journal of Investigative Dermatology (2021), Volume 141
owing to the limited eQTL evidence that was available at the
time. Our approach however prioritized IL2RA over IL15RA.
Since the publication of the GWAS in 2015, this locus has
been followed up with CRISPR experiments, which reported
that the T-allele at rs61839660 downregulates IL2RA
expression (Simeonov et al., 2017), suggesting that our pri-
oritization at this locus is correct.

At another locus—11q13.5—experimental evidence has
emerged, supporting the candidate role of the top two
prioritized genes—LRRC32 (encoding the GARP receptor)
and EMSY. Rare missense mutations found in LRRC32 in
patients with eczema decrease GARP expression on the
activated T-regulatory cell surface and reduce the conversion
of naive T cells into T-regulatory cells (Manz et al., 2016). In
contrast, EMSY has been characterized as a potent regulator
of skin barrier formation (Elias et al., 2019). Another top-
prioritized gene with recent evidence for a role in skin bar-
rier formation is KIF3A (locus 5q31.1b) (Stevens et al., 2020);
further details are provided in Supplementary Results.

Other validations of our approach are provided by tests of
enrichment of ontology terms and evidence of protein‒pro-
tein interactions among the top-ranked genes across all loci.
Enrichment was found for ontology terms associated with
skin barrier integrity, Th cell polarization, cytokine signaling,
and Jak‒STAT signaling. The importance of Jak‒STAT
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signaling has recently been highlighted by its enrichment
among genes prioritized for inflammatory skin diseases
(including AD) with Hi-chromatin immunoprecipitation‒
derived T-cell enhancer connectome (Jeng et al., 2019) and
over-representation of rare coding variants in Jak1 and/or Jak2
in a new AD study (Mucha et al., 2020). In investigating
protein‒protein interactions with the STRING database
among our prioritized candidate genes and other established
candidates, interactions between genes with immune regu-
latory (but not with skin barrier) functions were found among
the established AD players: TSLP and its receptor, TLR2,
STAT6, IL4, and IFNGR. STRING data are not entirely
comprehensive and omits other functional relationships be-
tween prioritized genes, described in Supplementary Results.

In general, the results of our GWAS prioritization analysis
remind us that interpretation of a GWAS locus is complicated
owing to varying regulation between cell types and wide-
spread coregulation that makes identification of the true
causal gene difficult. Indeed, recent GWAS research reveals
that on top of each locus being able to contain multiple
www.jidonline.org 2623
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signals (Mahajan et al., 2018), each signal can influence
multiple coregulated genes (Cannon and Mohlke, 2018).
Associations with molecular phenotypes follow the same
pattern, with at least 9% of human eQTLs quantified to
contain secondary signals (Wood et al., 2011) and multiple
genes implicated for 50% of human eQTLs (Gamazon et al.,
2018). According to the multiple enhancer variant hypothe-
sis, several variants in linkage disequilibrium can influence
multiple enhancers and cooperatively affect the expression of
target gene(s). Corradin et al. (2014) provide evidence for it in
six autoimmune diseases, including rheumatoid arthritis,
Crohn’s disease, and systemic lupus erythematosus. There-
fore, it is not surprising that many of our loci showed multiple
colocalizations for different genes and tissues, especially in
gene-dense regions, with the caveat that not all may be
causal. A recent analysis of the TWAS colocalization method
claims that around 75% of hits will be noncausal in the
instance of correlated gene expression at the locus (Wainberg
et al., 2019), and we hypothesize that that may be the case at
loci 11q13.1, 14q13.2, and 20q13.33, where the expression
of as many as 4‒6 genes colocalizes with AD GWAS signal in
the TWAS results. Still, owing to a distinct possibility of
detection of multiple target genes and variants at a locus, we
do not focus only on the top-rated hits in our gene and variant
ranking. AD GWAS loci that we believe should be further
experimentally investigated in that regard include 2q12.1
(IL18R1, IL18RAP, IL1R1), 5q31.1 (KIF3A, PDLIM4,
SLC22A4, IRF1), and 20q13.33 (STMN3, LIME1, ARFRP1),
Journal of Investigative Dermatology (2021), Volume 141
especially the first two because they contain at least two in-
dependent signals in the GWAS analysis.

Most of the genes with eQTL colocalization across tissues
exhibit the same direction of effect, for example, PRR5L (at
11p13), where the protective allele is associated with
increased expression in the skin, whole-blood, and immune
cell subsets. However, at three loci (2q12.1, 14q13.2, and
20q13.33), there may be tissue-dependent effects on
expression, with opposite directions of effect on STMN3,
LIME1, APFRP1, IL18RAP, and PP2R3C. This indicates that
causal variants potentially reside in tissue type‒specific reg-
ulatory regions and that the context-dependent effect of these
genes could impact AD phenotype.

Although focused on the integration of AD-relevant re-
sources in this use case, our pipeline for follow-up of GWAS
signals can be adapted for other diseases or traits after the
identification of the most relevant molecular datasets. The
best evidence would come from consistent and clear priori-
tization of a single gene from multiple sources (e.g., variants
of interest at a locus showing physical interaction with en-
hancers and promoters of the same genes implicated by
eQTL and protein QTL data and validation of such genes in
differential expression analyses, all in consistent cell and/or
tissue types). However, for several reasons, this situation is
uncommon. Available datasets include evidence from limited
tissues and cell states, reflecting transcriptional dynamics,
which are often transient, and low base pair (bp) resolution
offered by high-throughput Hi-C, which results in large,
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nonspecific overlap regions (Mora et al., 2016). Ideally, data
on specific blood and skin cell types would be available
rather than those on bulk tissue, which will average out any
cell-specific signals (Cano-Gamez and Trynka, 2020).
Furthermore, available sources do not cover the full spectrum
of variants or genes and/or proteins, and so the absence of
evidence cannot be equated to evidence of absence. Pre-
dictions will improve as evidence from across more tissue
types, especially at a single-cell resolution, become avail-
able. Such rich datasets are already being generated for
related disorders, such as asthma (Vieira Braga et al., 2019),
considering trans- and isoform-level mechanisms of action
and explicitly modeling network connectivity through pro-
tein‒protein interactions and coexpression. It is also impor-
tant to note that all the methods described in the pipeline are
purely correlational and so will require experimental
manipulation for establishing causality of target genes
through, for example, CRISPR screening.

Our gene prioritization score method assigns weight to
different evidence sources, effectively upweighting evidence
with expected lower false discovery rate (such as TWAS and
coloc), which are also rarer, and downweighting weaker
evidence such as single eQTL lookups, which have been
shown to often be purely coincidental and are numerous, and
so could easily overwhelm the overall score. There is
currently no consensus on the best way to quantitatively
integrate such evidence. Previous efforts for single-trait
GWAS annotation have taken other approaches: assigning
equal weights (Schlosser et al., 2020), which has obvious
downsides, or attempting automatic weight assignment
(Schwartzentruber et al., 2021), which is essentially opti-
mized for closest genes. A promising approach uses gold-
standard gene assignments at select GWAS loci for training
(Ghoussaini et al., 2021); however, this type of method
requires a number of GWAS as input, with evidence sources
limited to those relevant to all traits and selection bias
inherent to the choice of gold-standard genes used for
training. It is of note that many different approaches all
upweight the colocalization evidence, in agreement with our
pipeline. Although there is some arbitrariness in our
weighting assumptions, we believe our score calculation
procedure has clear assumptions and justifiably balances
some of the tradeoffs.

Although there are limitations in our approach, as outlined
in earlier sections, we find it useful as an approach to easily
flag the genes where we find most evidence, which can then
be carefully evaluated and potentially characterized as future
drug targets. Loci where we are more confident in prioriti-
zation of single genes especially lend themselves to direct
experimental investigation, such as TRAF3 at the 14q32.32
locus and PRR5L at the 11p13 locus. In addition, investi-
gating the loci with clear candidate genes and association
with multiple inflammatory diseases showing a consistent
direction of effects, such as 11p13 (PRR5L—multiple scle-
rosis, asthma), 11q24 (ETS1—psoriasis, celiac disease), and
16p13.13 (DEXI and CLEC16A—type-I diabetes, multiple
sclerosis, alopecia areata, systemic lupus erythematosus,
asthma), may reveal promising targets with potential drug
repurposing future. Others with opposing direction of effect
may reveal the potential adverse side effects for consideration
in therapeutic development (e.g., with antieIL-6 biologics for
rheumatoid arthritis).
MATERIALS AND METHODS
The materials and methods discussed in this section are an abridged

version. For additional technical details, see Supplementary

Materials and Methods.
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Source GWAS

We investigate 25 loci, which either show a genome-wide signifi-

cance and are for novel loci replicated in independent European

ancestry sample (21 loci) or are significant loci prioritized by the

gene set enrichment analysis presented in the original paper

(Paternoster et al., 2015).

Bayesian fine mapping

To identify the likely causal genetic variants in the regions harboring

AD GWAS signals, we used three different Bayesian fine-mapping

methods: Finemap (Benner et al., 2016), fastPaintor (Kichaev et al.,

2017), and JAM (Newcombe et al., 2016). Each method relies on

different previous assumptions and model formulation leading to

divergent results (Cannon et al., 2017). The aim of our fine mapping

was not necessarily to identify the causal variants per se but to pri-

oritize SNPs, which in turn provide evidence for what genes in the

region are likely to be causal (further details are provided in

Supplementary Materials and Methods).

Variant filtering

In subsequent gene analyses (described later), we limited ourselves

to the SNPs within the region in significant linkage disequilibrium

with the index SNP in 1000 Genomes European population, which

is referred to as the GWAS locus interval in the remaining part of this

paper. The region in each case was defined by the positions of the

furthest-away 50 and 30 SNPs with r2 � 0.2 relative to those of the

index SNP (limited to a maximum of 500 kilobases in either direc-

tion). All the SNPs within that boundary were then considered

(further details are provided in Supplementary Materials and

Methods).

Identification of key tissues and cell types

To focus on the key tissues and/or cell types associated with eczema

variants, first, we used gene set enrichment in SNPSea (Slowikowski

et al., 2014) with the supplied gene expression datasets: Gene Atlas

Affymetrix expression in 79 human tissues (Su et al., 2004), Immu-

nological Genome Project (Heng et al., 2008) Affymetrix expression

in 249 murine blood cell types, and FANTOM CAGE (Kawaji et al.,

2014) in 533 human cell types.

Second, we used MAGMA (de Leeuw et al., 2015) gene enrich-

ment analysis on GTEx 7.0 (GTEx Consortium et al., 2017) data as

carried out by FUMA (Watanabe et al., 2017) (further details are

provided in Supplementary Materials and Methods).

eQTL identification

We used genotype array data and RPKM (reads per kilobase of

transcripts per million mapped reads), normalized expression in

lymphoblastoid cell line, and skin tissue from the TwinsUK cohort

(Buil et al., 2015). cis-eQTLs 1.5 mega bp upstream and downstream

of transcriptional start site were identified using linear mixed model

implemented in GEMMA (Genome-wide Efficient Mixed Model

Association) (Zhou and Stephens, 2012). eQTL associations were

identified using the Wald test.

In the analysis involving the CEDAR (Center for Diet and Activity

Research) cohort (Momozawa et al., 2018), we used the publicly

available data: imputed genotypes and normalized gene expression

values from blood and intestinal cell types (CD4þ T lymphocytes,

CD8þ T lymphocytes, CD19þ B lymphocytes, CD14þ monocytes,

CD15þ granulocytes, platelets, ileum, colon, rectum). We used

GEMMA’s linear mixed model and Wald test to reidentify cis-eQTLs

within 1.5 mega bp upstream and downstream of transcriptional
Journal of Investigative Dermatology (2021), Volume 141
start site (further details are provided in Supplementary Materials and

Methods).

Colocalization with coloc and TWAS

We obtained full summary statistic results for cis-eQTLs detected

in whole blood in the eQTLGen dataset (Võsa et al., 20181)

(accessed on 8 August 2018); eQTLs from GTEx, version 7,

dataset identified in the following tissues: whole blood, spleen,

sun-exposed and -unexposed skin, transformed fibroblasts, and

Epstein‒Barr virus‒transformed lymphocytes; eQTLs published

from the study investigating monocyte response to microbe-

associated molecular patterns (Kim-Hellmuth et al., 2017);

eQTLs in the monocytes, neutrophils, and CD4þ T cells from the

BLUEPRINT project (Chen et al., 2016); and protein QTLs from

whole blood in the Sun et al. (2018) dataset as well as TwinsUK

and The Center for Diet and Activity Research eQTLs identified

earlier (Dataset S5). Subsequently, the colocalization signal be-

tween betas from GWAS and eQTLs and/or protein QTLs for

genes within 1.5 mega bp upstream and downstream of index

SNP was evaluated with the coloc (Giambartolomei et al., 2014)

R package. In coloc analysis, we considered the loci with a

posterior probability of hypothesis 4 (H4) > 0.5 as informative

enough to be included (Supplementary Table S3), as done pre-

viously (Kim-Hellmuth et al., 2020); with H4 stating the hy-

pothesis of both traits being associated and sharing a single

causal variant.

We also carried out a TWAS (Gusev et al., 2016) analysis, where

reference datasets with gene expression and genotype data (GTEx,

version7.0; CEDAR; and TwinsUK) were used to predict the gene

expression in our target GWAS. The analysis pipeline for the

Summary-based Mendelian Randomization analysis has been

described previously (Richardson et al., 2020) (further details are

provided in Supplementary Materials and Methods).

Complementary gene prioritization methods

To further prioritize the GWAS gene targets, we used two gene pri-

oritization methods: regfm (Shooshtari et al., 2017) and PrixFixe

(Tas‚an et al., 2015). PrixFixe strategy relies on the prioritization of

groups of candidate genes from multiple GWAS loci on the basis of

cofunction networks. Regfm’s workflow involves the intersection of

fine-mapped credible interval SNPs with consensus DNase 1 hy-

persensitive sites and genes whose expression they control predicted

on the basis of ROADMAP (Roadmap Epigenomics Consortium

et al., 2015) chromatin accessibility and gene expression data to

prioritize target genes.

Variant functional prediction

KGGSeq (Li et al., 2016) was used to measure noncoding variant

regulatory potential and coding variant deleteriousness using func-

tional scores derived by combining the scores from seven algo-

rithms. fathmm-XF (Rogers et al., 2018), GWAS4D (Huang et al.,

2018), and fitCons (Gulko et al., 2015) were also used indepen-

dently. Overlap with chromatin immunoprecipitation sequencing‒

defined binding sites of transcriptional regulators was cross refer-

enced in the ReMap2018 database (Chèneby et al., 2018). Splicing

regulatory potential of variants was evaluated with SPIDEX (Xiong

et al., 2015).
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We also looked at variant overlap within different regulatory re-

gions: insulator (Wang et al., 2015), promoter‒enhancer interactions

(nine studies), regulatory noncoding RNAs (five studies), topologi-

cally associating domains (six studies), and CTCF binding sites

(Ziebarth et al., 2013) using giggle (Layer et al., 2018) search engine

(further details are provided in Supplementary Materials and

Methods).
Independent lookups

We have also performed gene and variant lookups among published

significant results (see Dataset S5 for references) from 29 eQTL

studies, three methylation quantitative trait locus (including GoMDC

[Genetics of DNA Methylation Consortium] results [Min et al.

20202]), two protein QTL studies, two histone QTL studies, and a

chromatin accessibility QTL study where full GWAS results were not

available as well as differential expression (five studies), DNA

methylation (two studies), and two proteome comparisons in the skin

between patients with AD and that in healthy controls. We also

interrogated the GWAS catalog (MacArthur et al., 2016) (accessed

on 11 January 11 2019) for any variants that have been identified as

genome-wide significant in previous GWASs on related inflamma-

tory conditions (further details are provided in Supplementary

Materials and Methods).
Generation of candidate gene and SNP rankings

The results of analyses and lookups listed earlier were then inte-

grated to provide two rankings of (i) all the SNPs within each GWAS

locus interval and (ii) all the genes within a 3-mega-bp window

centered around index SNP. This was achieved by assigning a score

to each piece of evidence and summing across these sources to

generate a causal prioritization score for every SNP and every gene

tested. These scores represent the strength of evidence for a causal

role of the SNP or gene in AD. The detailed method of calculation of

basic score per gene or variant in a given experiment and/or analysis

is presented in Supplementary Materials and Methods and is visu-

alized in Supplementary Figure S1. Briefly, each source of evidence

was assigned a weight on the basis of subjective strength of evi-

dence: highest (20) for results from statistical tests using a full set of

summary statistics, such as molecular QTL colocalization methods;

lowest (1) for prediction results from machine learning models, such

as variant functional prediction software; and intermediate (2) for

positional overlap with significant experimental results, such as

identified promoter‒enhancer loops. In calculating the final score,

we also considered the magnitude of the result significance or effect,

the specificity (overall number of SNPs and/or genes significant in a

given experiment), and the independence of the evidence (the

number of experiments conducted in the same study, such as

measuring both expression and DNA methylation levels). The final

score was adjusted by the heterogeneity of the evidence (i.e., genes

or variants consistently supported by a range of evidence sources—

alternative functional assays and statistical methods—were

upweighted in proportion to the square root of the mean number of

unique study types and unique study identifications) as well as by the

absolute number of studies providing supportive evidence.
2 Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, et al.

Genomic and phenomic insights from an atlas of genetic effects on DNA methyl-

ation. medRxiv 2020.
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the variants;
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ants at each locus, which can be found in https://doi.org/10.6084/

m9.figshare.12130863 for the genes and in https://doi.org/10.6

084/m9.figshare.12130878 for the variants;

3. Dataset S3. Locus Zoom‒style gene and variant score plots for

each locus, which can be can found in https://doi.org/10.6084/

m9.figshare.12221006 for the genes and in https://doi.org/10.6

084/m9.figshare.12221033 for the variants;
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