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Abstract—In this paper, we address cognitive overload detec-
tion from unobtrusive physiological signals for users in dual-
tasking scenarios. Anticipating cognitive overload is a pivotal
challenge in interactive cognitive systems and could lead to
safer shared-control between users and assistance systems. OQur
framework builds on the assumption that decision mistakes on
the cognitive secondary task of dual-tasking users correspond
to cognitive overload events, wherein the cognitive resources
required to perform the task exceed the ones available to the
users. We propose DecNet, an end-to-end sequence-to-sequence
deep learning model that infers in real-time the likelihood of
user mistakes on the secondary task, i.e., the practical impact of
cognitive overload, from eye-gaze and head-pose data. We train
and test DecNet on a dataset collected in a simulated driving setup
from a cohort of 20 users on two dual-tasking decision-making
scenarios, with either visual or auditory decision stimuli. DecNet
anticipates cognitive overload events in both scenarios and can
perform in time-constrained scenarios, anticipating cognitive
overload events up to 2s before they occur. We show that DecNet’s
performance gap between audio and visual scenarios is consistent
with user perceived difficulty. This suggests that single modality
stimulation induces higher cognitive load on users, hindering
their decision-making abilities.

Index Terms—Cognitive Workload, User Monitoring, Decision
Anticipation, Simulated Driving.

I. INTRODUCTION

OGNITIVE load modeling has received significant re-
search interests in recent years thanks to its wide range
of applications spanning from human-robot interaction [1], to
human-computer interaction [2], and intelligent vehicles [3], [4],
[5]. Accurate inference of a user’s cognitive state in real-time
could lead to disruptive benefits towards optimized interface
designs and adaptive user interfaces [4], [6], more effective and
situational-aware robots [7], [8], as well as safer and smarter
vehicles [9], [10], [11]. Modeling and inferring human cognitive
states is also an inherently multidisciplinary task, where
numerous fields, such as psychology [12], neuroscience [13],
engineering and artificial intelligence [14], [15], overlap.
Despite the evident applications in human-robot interaction
and intelligent vehicles, cognitive state inference still has not
reached a level suitable for real-world applications, compared
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to other machine learning domains, e.g., computer vision [17],
[18], [19] and natural language processing [20], [21]. Also,
cognitive load inference does not provide a directly actionable
feedback signal for real-world assistance systems, as humans
may still perform well under stress [22]. Because of this, in
this paper, we propose a paradigm shift from cognitive load
inference towards cognitive overload detection. We identify
as cognitive overload the instances in which the amount of
cognitive resources required to perform a task exceed the ones
currently available to a user, therefore leading to severe decrease
in both task performance and safety.

Driving is a popular scenario for cognitive state model-
ing [10], [23], [15], as it is a highly cognitive demanding task
that requires drivers to be constantly aware of the surrounding
environment, while continuously making decisions and taking
actions [24]. Also, the possible causes of cognitive overload
and distraction in drivers are numerous [18], such as visual,
e.g., eyes off-road due to the use of mobile phones or in-
vehicle information systems, or auditory, e.g., mind off-road
due to holding hand-free cellphone conversations or even e-
mail systems. While visual distractions can have a clear and
observable effect, e.g., the driver is not looking at the road, audi-
tory/cognitive distractions have more subtle effects, e.g., driving
performance degrade and hazard perception is hindered [18].
Thus, the design of systems that can infer cognitive distraction
is critical to improve safety, albeit particularly challenging [25].

In this paper, we focus our attention on a dual-task human-in-
the-loop simulated virtual reality (VR) driving scenario. Here,
human participants are tasked to drive and avoid obstacles
(primary task), while performing a cognitively demanding “n-
back task” (secondary task) [26]. Leveraging on the known rela-
tionship between task performance and cognitive overload [27],
we assume that mistakes on the secondary task correspond
to cognitive overload instances in the participant. Differently
from previous cognitive load inference methods [15], [25],
the proposed approach provides a directly actionable and
unambiguous feedback signal for assistance systems as it
anticipates the practical effects of cognitive overload. Given the
focus on cognitive overload detection in simulated VR driving,
we use the terms user and driver interchangeably throughout
the paper.

We investigate whether we can predict the practical impacts
of cognitive overload events and distraction on secondary task
decision making from unobtrusive physiological signals from
the driver, namely eye gaze and head pose. To do this, we
exploit the widespread availability of affordable and unobtrusive
sensors and improvements in algorithms [28], [29] to collect



physiological data from drivers. Our work may be interpreted as
an extension to conventional cognitive load classification [4],
wherein we demonstrate that predicting the correctness of
cognitive state-dependent decisions is feasible.

The contributions of the paper are:

1) We present an end-to-end long short-term memory
(LSTM; [30])-based model, namely DecNet, for anticipat-
ing cognitive overload events in humans. The proposed
approach can reliably infer in real-time the likelihood of
a user’s mistake on an imminent secondary task decision;

2) We collect a dataset containing physiological and behav-
ioral data from a cohort of twenty participants in a realistic
driver-in-the-loop virtual reality simulation. Participants
were instructed to drive along the road while avoiding
obstacles (primary task) and to make cognitive-based
decisions (secondary task) in two separate scenarios with
visual and auditory decision stimuli, respectively;

3) We analyze DecNet’s performance on these scenarios and
investigate the effects that combined visual-auditory and
visual-visual stimuli have on cognitive stimulation and
decision in the driver;

4) We demonstrate that DecNet estimates that the task
difficulty in the visual-visual scenario is higher than that
of the visual-auditory scenario, which is in line with the
task’s perceived difficulty obtained from questionnaires,
as well as several models of multitasking [31], [32].

The rest of the paper is organized as follows: Section II

provides a detailed overview of related works. Section III
formalizes the problem of decision anticipation and introduces
the proposed model, DecNet, to solve it. Section IV explains in
detail both the experimental protocol and the data collection/pre-
processing procedure. Section V provides an in-depth presen-
tation of the experimental setup used to evaluate and test
DecNet performance on the collected dataset. Section VI
analyzes the results and performance achieved by DecNet
against both classic methods and comparable recurrent neural
network architectures and investigates the impact of multimodal
stimuli on driver performance. Finally, Section VII summarizes
the contributions of the paper and its main limitations, and
outlines future research directions.

II. RELATED WORKS

Our focus on cognitive overload detection during simulated
driving is closely related to cognitive load classification, human-
machine interaction, and the role of secondary tasks during
driving. This section overviews related literature.

A. Cognitive Load Classification

Cognitive load classification is inherently a very complex
task, as different cognitive load levels experienced by humans
are not directly measurable [33]. When addressing cognitive
load classification, sophisticated feature engineering is often
required to improve data quality and extract useful features from
raw sensor signals, e.g., [4], [10], [23], [25]. These studies
have proven statistical correlations between cognitive load
and physiological signals, although they can vary significantly
among experiment participants.
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Fig. 1. Block diagram of DecNet framework for decision correctness
anticipation. We frame the problem as sequence-to-sequence supervised
learning. We use a Virtual Reality (VR) headset with integrated head pose and
eye gaze tracking to monitor the user (blue). The simulated environment
prompts the user to make decisions according to a specific policy. The
correctness of the decisions identify the labels (orange), while head pose
and eye gaze data represent the inputs of DecNet. The final goal of DecNet
(green) is to anticipate the correctness likelihood of future secondary task
decisions, which is indicative of events of cognitive overload on users.

Personalized models can tackle the problem, as seen in [34],
[35], however such models may become impractical as data
collection and model training are required for every new user.
Toward this end, [15] introduced a novel end-to-end framework
for real-time cognitive load classification, where the network
is capable of learning useful feature representations directly
from data.

B. Gaze Patterns in Cognitive Human-Machine Interaction

Gaze patterns have been widely used in cognitive human-
machine interaction. For example, [36] used gaze patterns to
infer a user’s level of domain knowledge in the domain of
genomics, while [37] focused on knowledgeability prediction
using a noninvasive eye-tracking method on mobile devices
with Support Vector Machines (SVMs).

Gaze patterns also allow for the detection of cognitive-
behavioral patterns [38] and internal thought (directing attention
away from a primary visual task) [39] in intelligent user inter-
faces. Interestingly, it was also shown that a human’s gaze is a
requirement for perspective-taking in human-robot interactions,
which allows a robot to infer the world’s characteristics from
the human’s viewpoint [40], [41]. In a similar manner, studies
have shown that there are clear correlations between gaze
patterns and cognitive load [33], [42].

C. Multitasking in Driving

Multitasking scenarios have been extensively employed by
assistive and intelligent vehicles research communities [1], [43],
[44], [45], [46]. In [43], authors have investigated the impact of
secondary tasks on driving performance and showed that they
lead to clear safety-related issues, such as off-road glances
and unplanned lane deviations. Recently, [45], investigated
how engaged are drivers on secondary tasks in vehicles with
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different degrees of automation. In [46], authors investigated
the role of secondary tasks on highly automated vehicles
and studied how drivers regulate their resources to complete
primary and secondary tasks and how they react during take-
over requests. In [47], various secondary tasks were classified
based on the EEG dynamics. While very good accuracy was
achieved, EEG is intrusive and subject-dependent, whereas our
method generalizes across subjects and is based on easy-to-
access signals.

Our work is also related to that of Ersal et al. [48], who
proposed a radial-basis neural network to predict the actions
that a driver would have taken if there had not been a secondary
task present. In [49], based on the finding that secondary tasks
impact the driver’s driving abilities, the take-over readiness of
drivers was modeled by explicitly taking the secondary task
into account. Also, Engstrom et al. [50] introduced a framework
that predicts the effects of cognitive load on driver performance,
and argued that secondary tasks hinder driving tasks that rely on
cognitive control, while automatic performance is unaffected.

D. Final Remarks

In the sections above, we have shown how the proposed study
builds on past literature both for its experimental assumptions
and in its model design. We use cognitive secondary tasks
decisions as a proxy for cognitive overload instances, as
numerous studies have shown that secondary tasks have direct
effects on driver behavior, safety and cognitive states. Also, our
choice for head pose and eye gaze as input signals to DecNet is
supported by findings in cognitive human-machine interaction
studies, which have shown that gaze patterns strongly correlate
with human cognitive states.

Differently from cognitive load inference literature, we
propose a paradigm shift from cognitive load classification to-
wards cognitive overload detection via secondary task decision
correctness anticipation. The proposed paradigm shift offers
a directly actionable feedback metric that assistive systems
can use to intervene and prevent the practical impacts of
cognitive overload instances in users. Also, we propose a novel
generalized user-agnostic model that can operate in real-time
and that employs a sequence-to-sequence learning paradigm
to encourage feature extraction from early observations.

III. PROPOSED SOLUTION

We frame cognitive overload detection as a supervised
classification problem where the correctness of secondary task
decisions is used as a label, as shown in Fig. 2. Specifically,
we consider a dataset

N

D {(Xpu) )

j=1

6]

where X; is a temporal sequence of size Nieps, 15 represents
the corresponding label, and N identifies the total number of
samples. We omit time dependency on X; to simplify notation.
In our study, X; denotes a sequence of physiological signals,
and y; the correctness of the secondary task decision, as a proxy
to cognitive overload events. Our supervised classification
problem uses binary labels, which are derived by evaluating
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Fig. 2. Overview of DecNet for secondary task decision correctness anticipation
during training (left) and inference (right). Sequential sensor readings from
the driver s(¢) are collected by a sliding window of length ¢, to extract
the sequence input to DecNet, X ;. The RNN stage first processes the input
into a sequence of features/hidden states lit via Eq. (3), which is then used
as input to the LSTM stage according to Eq. (4). Finally, the hidden states of
the LSTM are projected to decision correctness likelihood via Eq. (9).

whether the secondary task decision performed by the driver
is correct (y; = 1) or wrong (y; = 0). Please see Section IV
for a detailed presentation on experimental procedure and data
collection.

Since we framed cognitive overload detection as a classifi-
cation problem, the final goal is to identify a model py that
minimizes the cross-entropy loss L as

N
L=>Y —logps(y;|X;).

J=1

2

In this paper, we parametrize pg with DecNet, which
comprises of a cascade of two sequential models: a recurrent
neural network (RNN) and a long short-term memory network
(LSTM) [30].

A. Decision Anticipation Network (DecNet)

DecNet is a two-stage end-to-end sequential model that
jointly learns to extract the most relevant features via an RNN
module and to exploit them via an LSTM network in order to
infer cognitive overload events by anticipating the correctness
likelihood of an imminent decision, as shown in Fig. 2. In other
words, the hidden states of the RNN, see Eq. (3), are used
as input to the LSTM module. Finally, we project the hidden
states of the LSTM stage with a multilayer perceptron (MLP)
with a Rectified Linear Unit(ReLU) nonlinearity, followed by
a softmax layer to predict the decision correctness probability.

Given a sequence of observations X = (x1,X2, ..., XN,,.)

where x; € RV= V¢, the initial RNN stage operates as
ht — tanh(wrnnxt + Hrl’tht,l + b'rvm)’ (3)

where ht € RN identifies the hidden state/feature vector at
the time step ¢ and tanh(-) represents the hyperbolic tangent



function. The output of the RNN stage is a sequence of
hidden states/feature vectors (hy, hs, ..., thps), which is used
as input to the LSTM network for cognitive overload detection
via secondary task decision correctness anticipation. The
parameters to be learned at this stage are W™ € RNrnnXNe |
H™" ¢ RNrnnXNmn and b™" ¢ RN”’””.

The LSTM network stage operates on the sequence of feature
vectors and outputs a sequence of hidden states h, € RNstm |
as follows:

i, = 0o(W'hy_1 + I'h, +b;) @)
f, = o(W/h,_; + I'h; + by) (5)
oy = 0(W°h;_; + I°h; + b,) (6)
c; =f, ®ci_q +iy ©tanh(Wehy_1 +I°hy +b.)  (7)
h; = o; ® tanh(cy), ¥

where i;, f;, o4, and c; identify input gate, forget gate, output
gate, and memory cell, respectively. The parameters to be
learned are W* € RMstmXNistm % ¢ RNstmXNenn gpd
b* € RNistm  where * is used to represent {i, f,0}.

Finally, after computing the hidden states of the LSTM stage,
DecNet performs a probability projection via a fully connected
layer followed by a softmax activation, as

¥+ = softmax(W?h, + b¥), )

where WY € R2XNistm and bY € R? are the parameters to be
learned for the projection stage.

B. Model Training

When training DecNet, we employ a sequence-to-sequence
learning paradigm, similar to [15], [9], [16]. For the training
process, we adopt a label smoothing technique [51] by replacing
the binary labels of decision correctness, i.e., correct (y; = 1)
and wrong (y; = 0), with soft labels, i.e., correct (y; = 0.9)
and wrong (y; = 0.1), as they have shown to be a particularly
effective strategy to improve learning stabilization and model
generalization. We assume a weighted cross-entropy loss across
each input sequence X;:

N Nyeps

loss =Y Y —e=Ner)log p(y;[x14),

j=1 t=1

(10)

where x1_,; = (X1, Xa, ..., X;) identifies the sub-sequence of
observations until timestamp ¢.

Eq. (10) defines a weighted loss across the entire sequence
and builds on the assumption that longer sequences contain
extra information for correct inference. It may also be inter-
preted as a form of auxiliary loss similar to [52], whereby the
network is encouraged to extract relevant features from early
observations, increase the gradient signal that gets propagated
back, and provide additional regularization.

The exponential weights in the loss, i.e., e(t=Nsews) reduce
the impact of earlier decisions over performance, as they are
made when less context is available for error anticipation [9],
and incentivize the role of latter decisions. Also, this loss was
shown to have positive effects as a regularizer to prevent early
overfitting [15].
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IV. EXPERIMENTS

In this section, we introduce the experimental protocol
adopted, the simulated scenarios, the dataset collection proce-
dure and data pre-processing. During each recording session,
we collected both physiological signals and behavioral data
from the driver in two separate simulated scenarios, i.e., one
where decision stimuli are provided via audio cues and one
where they are visually presented. For physiological signals,
we collect gaze and head pose, due to their unobtrusive nature
and their known correlation with human cognitive states [15].
While driving, participants were given a series of instructions
to follow to complete a cognitive secondary task, and their
decisions were recorded as behavioral data.

A. Participants

Twenty participants (mean age 26.4, standard deviation
3.3) with normal or corrected to normal vision consented
to participate in our experiments. Before beginning, each
participant was introduced to sensors and experimental protocol.
Participants were given a chance to do a test drive with
the simulator. This allowed them to familiarize themselves
with the driving task and the simulated environment, and
to reduce learning factors on data collection. During each
participant’s drive, an observer monitored physiological signals
and behavioral data integrity. This study has been approved
by the Ministry of Defence Research Ethics Committee
(MoDREC).

B. Setup

We setup a realistic dual-tasking driver-in-the-loop virtual
reality (VR) simulation for the experiment (see Fig. 3). The
setup included: a physical simulator, a VR headset, and a screen
for monitoring purposes. The VR headset has integrated eye
gaze and head pose tracking, and requires an infra-red camera
mounted above the steering wheel to operate. We developed
and designed the simulated driving environments using the
Unreal Engine (https://www.unrealengine.com/). The use of a
simulated environment allows to have complete control on both
on the environment, i.e., driving maneuvers and speed, and
the tasks that participants experience during the experiment,
i.e., the frequency and the number of decisions, in addition to
providing a safe environment to the participants.

C. Experimental Protocol

During each drive, participants were instructed to jointly
perform two tasks. The primary task was to drive along a
straight highway and avoid stationary rectangular obstacles. The
secondary task is an “n-back” [26] based task which required
participants to perform a cognitive-based decision when the
simulator prompted them to do so. Since the cognitive load is
inherently not a measurable metric, this task has often been
used in the literature as a proxy to modulate different levels
of cognitive load on the driver [23], [25], [24]. The paradigm
builds on the core assumption that a participant’s cognitive
load while performing a task is strongly correlated with the
working memory required to perform such a task [26]. The task
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Fig. 3. Driver-in-the-loop simulation. Top: The two simulated scenarios. For
the audio stimuli scenario, obstacles are simple boxes, while in the visual
stimuli case, numbers are displayed directly on the obstacles. Bottom: The
participant wears a VR headset with integrated eye gaze tracker and head
pose estimation. The screen displays the scene observed by the participant
and sensor readings in real-time for monitoring during the trial.

allows to easily to modulate different levels of cognitive load
by increasing/decreasing the “n”, and it also has been shown
to be an effective tool to predict individual fluid intelligence
and higher cognitive functions, especially when used to induce
higher levels of load, such as 3-back [53].

We designed the simulator to prompt the secondary task
numbers to the participants at regular intervals. Participants
were instructed that each number corresponded to a specific
category and that their task was to iteratively remember
the category of the number they were presented three steps
before. The numbers spanned from 1 to 12 and corresponding
categories were as follows: category a corresponded to the set
of numbers {1,2,3}, category b corresponded to the set of
numbers {4,5,6} and so on. Participants were instructed that
four buttons on the steering wheel were dedicated to the task,
with each button corresponding to a different category.

To illustrate the experiment condition, let us consider a
participant in the audio stimuli scenario, presented with the
sequence of numbers 3,5,8,7,6,9,10. Given a 3-back task
the participant would not be required to perform any decision
until prompted the number 7. In fact, when provided with the
number 7, the participant is storing 3 numbers in their memory,
i.e., 3,5, 8 and is therefore required to “make a decision” based
on the number they were presented 3-steps before, i.e., 3, and
press the button that corresponds to the category a. From this
moment on, every time the participant is presented with a new
number, the participant is asked to decide/remember to which
category the last number in their memory buffer corresponded
to.

Secondary tasks can have disruptive effects on the primary
task performance [54], [55]. To avoid this, when describing

the secondary task, participants were informed that, although it
was important for them to correctly perform the secondary task,
their main focus must always be to safely perform the primary
task, i.e., driving and avoiding obstacles. We enforced this, by
reminding the participants before each drive that driving safety
was of utmost importance. Their compliance was reflected
in the fact that not a single crash was recorded amongst all
participants and all driving scenarios.

The experimental protocol required each participant to drive
the simulator on two separate scenarios of 180s. In each
scenario, a different modality of stimuli for the secondary task
was in place: one auditory and one visual. For the visual stimuli,
numbers were displayed on the obstacles, as shown in Fig. 3
middle. In the scenario with the auditory stimuli, numbers were
announced to the participants at every obstacle, as shown in
Fig. 3 top. The two scenarios are designed to induce a constant
level of cognitive load by prompting constant decisions in the
participant. The 3-back task was also chosen for the secondary
task to be challenging and cognitively demanding to perform.
In fact, since we build on the assumption that decision mistakes
from drivers are indicative of cognitive overload occurrences,
the secondary task needed to be complex enough to induce
events of cognitive overload in the participants.

Collecting the data on these two scenarios opens to the
possibility to investigate two separate cognitively demanding
cases: one where multiple modalities are stimulated and one
where a single modality is engaged. Also, we can investigate
whether a single modality engaging task could lead to sensory
overload, as numerous works have shown that concurrent tasks
using the same modality lead to performance decrease [31],
[32]; and whether cognitive load and its effects on driver
decisions can be distributed with different stimuli.

D. Simulated Environment

The two simulated environments, as shown in Fig. 3 top
and middle, both assumed a daylight scenario in good weather
conditions. This ensured that obstacles were clearly visible
to the participants and also limited the possible sources of
distractions during the experiment. We designed the road to
be 10m wide, enough to be divided into three 3.3m wide
virtual lanes, and the obstacles to be 3.5m wide in order to
entirely block a virtual lane and to ensure that drivers had to
steer to avoid them. Before each drive, obstacles are randomly
placed along one of three lanes and 100 meters apart. We
implemented a proportional-integral-derivative controller on
the simulator to have a consistent cruise speed of 120 km/h.
This helps ensure a consistent cognitive load throughout the
experiment, an equal number of decisions for all participants
and a consistent driving scenario. More specifically, participants
were prompted to make a decision approximately every 3
seconds and for a total of 55 decisions per drive in both
scenarios. We also designed the obstacles so that they did not
exert any effects on the vehicle upon contact, while sending a
notification to the monitoring researcher. This allows reducing
the potential loss of focus on the primary and secondary tasks
from the participant caused by a crash with the obstacle, while
still tracking their performance. All participants successfully
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complied with instructions on safety, as not a single crash was
recorded amongst all participants and all driving scenarios.
Finally, to ensure that no memory effect could occur between
trials, numbers used for the secondary task were automatically
regenerated for each drive.

The location of the obstacles on the lanes is implemented
according to a custom-defined discrete distribution, which
allows us to reduce the probability of cases where a virtual
lane is free of obstacles for extended periods. Assuming c;
as the distance between the current obstacle location and the
previous obstacle location in lane 7. We then define the obstacle
placement probability distribution in lane ¢ as

eCi /IntervalSize

Z . eCi /IntervalSize ’
1

p(i) = an
where IntervalSize represents the distance between two adjacent
obstacles. For instance, consider a case where the i-th lane
has not been blocked for the past 5 obstacles, the custom
distribution ensures that the probability for that lane to be
blocked is e times higher than the one of the most recently
blocked lane.

E. Dataset Collection

During each drive, we collect: 1) instantaneous two-
dimensional gaze locations for left and right eye at 60 Hz,
2) three-dimensional head pose at 60 Hz, and 3) driver decisions.
At time ¢, the integrated eye-tracker in the VR headset provides
two-dimensional vectors with the gaze position on the screens,
as seen through the headset lenses for both eyes as follows

e (t) = le; (t),¢, (W], e () =[en (), ey ()], (12)

where superscripts [ and r differentiate between left and right
eye, respectively, and subscripts specify the axis of the data.
Vectors are normalized in the range [—1,1] along both x-
axis and y-axis, so that the center is (0,0), bottom-left is
(=1,-1) and top-right is (1,1). Head pose information is
directly inferred from position and rotation of the headset,
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with position and rotation during calibration being considered
as reference. The headset position is specified in Cartesian
coordinates, and the rotation is described in Euler angles (roll-
pitch-yaw notation):

h(t) = [he (), hy () bz (£) o () o (2) 5 P (2)],

where subscripts ¢, 6 and v specify yaw, pitch and roll data,
respectively. All the physiological data was collected in a vector
§(t) as follows:

é(t) = [e;7er el efgahmahy7h27h¢7h97h’¢)]a

YT

(13)

(14)

where time dependency on the single elements of §(¢) has been
omitted to simplify notation.
The secondary task decisions were recorded in a vector u:

u(tyq) = [ns, id, rt], (15)

where t4 identifies the time at which occurred the decision, ng
the number that was provided as stimulus, id the category
chosen by the participant and r¢ the reaction-time of the
participant.

F. Pre-processing and Dataset Split

After data collection, each gaze pattern data sample was
processed to provide distance J from the previous sample on
both axes and the absolute distance from the center of the field
of view (dfoy). This procedure ensures that the network does not
learn to associate mistakes and correct decisions with specific
gaze locations, but on the dynamics of the eye movements. For
the head pose, we keep the absolute values of position and
rotation, as head movements are characterized by slower shifts
than eye gaze. This led to a sample for each time step with 11
raw features, as follows:

s(t) = [o7, 8y, %, 6,

dfovvhxahy7hzvh¢ah9,hw} . (16)

We process the dataset for classification by splitting each
participant’s data into decision instances of variable length
tinstance- Secondary task decision instances are bounded by the
timestamp at which the driver made a decision ¢; and the
timestamp immediately after the previous decision t4_1, as
shown in Fig. 4.

Dataset splitting into train, validation and test set is only
performed after processing the data into a sequence of decision
instances. This procedure ensures that data from decisions in
the train set and the validation/test sets are entirely separated
and not correlated. In other words, we always perform training,
validation and testing on separate decisions.

We pre-process the data within each decision instance j with
a sliding window approach. We extract the input sequences
for our models from sequences of raw sensor data of length
Lrame. The window of raw data is processed into a Nyeps-long
sequence X (t) of fixed-size feature vectors x; ;:

Xj (t) = [Xj,t*Nslepw ceny Xj,t]~ (17)

We compute each feature vector x; ; from a sliding window
of length i, as follows

Xjt = f[S(t - tWin)a ceey S(t)]a (18)
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where the operator f(-) computes mean, standard deviation,
median, 25th and 75th percentiles, maximum, minimum and
range of its argument. We chose this set of features to
capture central tendencies, variability, and extremes of each
physiological signal. For non-sequential models, i.e., logistic
regression and SVM, we directly compute the aforementioned
statistical features over data windows of length #fme.

We normalize the features to have zero-mean and unit
variance, and we uniformly sample the input sequences trame
via a sliding window approach with overlap toveriap = & - trame-
The parameter ¢ represents the overlap ratio, which is fixed to
95% for all the models considered in the paper.

As we frame the problem as supervised learning, we need
to identify the binary labels for the cognitive overload events.
Our main assumption is that mistakes on the secondary task
are representative of cognitive overload events, therefore we
assign labels according to the following policy:

0 if id # category(ns)

Yj = 19)

1 if 4d = category(ns),

where category(+) is the operator that extracts the category of
the number that was given as stimulus. In other words, if the
participant could not recall the correct category to the number
stored in their memory, the data corresponding to that decision
is assigned to an event of cognitive overload, i.e., y; = 0. On
the other hand, correct decision corresponded to a level of
cognitive workload that the participant could sustain.

V. EXPERIMENTAL SETUP

In this section, we present the experimental setup we assumed
to address the following research questions:

1) Do gaze patterns and head movements correlate with
driver secondary task decision-making processes?

2) Can these correlations be exploited to anticipate the
likelihood of making a mistake on the secondary task, i.e.,
a cognitive overload event?

3) How far in advance can we anticipate a cognitive over-
load event so that a closed-loop assistance system can
intervene?

4) What is the impact of different stimuli on cognitive
stimulation and decision on the driver?

To answer these questions, we evaluate the performance of
DecNet on the collected dataset and compare it with various
models.

A. Classification Scenarios

For critical safety applications, we focus on the model’s
ability to anticipate the likelihood of future secondary task
decision mistakes of the driver (wrong decision classification),
as they relate to cognitive overload events which might lead to
dangerous maneuvers. However, it is not advisable for a model
to be unable to robustly infer the likelihood of future correct
decisions (correct decision classification). If the assistance
system takes over too often, even when it would not have been
necessary, it may cause discomfort and distrust on the driver.

Consequently, we evaluate DecNet performance on three
separate classification scenarios: correct decision, wrong de-
cision, and normalized decision classification. Correct and
wrong decision classification scenarios focus on evaluating
whether the model can anticipate correct or wrong decisions,
respectively. Instead, the normalized classification scenario
evaluates DecNet’s ability to anticipate the general correctness
of the next decision. In this scenario, we first compute
performance metrics for both correct and wrong decisions.
Then, their average is weighted according to the support, i.e.,
the number of true instances for each decision label.

B. Evaluation Setup

We evaluate classification performance in terms of precision,
recall, and F}-score:

P-R

tp tp =-92.
P+R’

P=—"_ R=—%"_
tp+ fp tp+ fn

where tp, fp and fn identify true positives, false positives and
false negatives, respectively.

While we focus on the classification performance of DecNet
in terms of precision, recall, and F}-score, it is important to
stress that the output of the proposed model is the correctness
likelihood of the next secondary/cognitive task decision. We
map the likelihood value to a binary class, i.e., correct or wrong
decision, via a classification threshold 7. In other words, if
the correctness likelihood is above the threshold 7, we classify
the next decision as correct, while if the value falls below, we
classify it as a wrong decision.

Classification performance are computed in an offline test
setting, where we use 80% of data for training, 10% of data for
validation, and the remaining 10% for testing. When comparing
model performances, we report the mean and standard deviation
of each metric for all algorithms using 5-fold cross-validation.

All models were implemented in Python on Keras (https:
/fkeras.io/) and trained with Adam optimizer [56]. For the
training of the networks, we set the learning rate to 0.0001,
the total number of epochs to 100 and we performed early
stopping on the validation set. Model training and testing
were deployed on an Intel Core i7-6800K 3.40GHz CPU and
NVIDIA GeForce GTX 1080 8GB GPU.

(20)

VI. RESULTS

In this section, we compare DecNet performance with our
previous sequence-to-sequence model (Seq2Seq; [16]) and with
two sequential neural network model baselines, i.e., standard
recurrent neural network (RNN) and long short-term memory
(LSTM). In addition to these, we also compare against non-
sequential baselines, i.e., Logistic Regression (LogReg) and
Support Vector Machines (SVMs). The above baseline models
are in line with cognitive load classification literature [15],
[25], [57], [2], which have focused on sequential modeling,
e.g., as LSTMs and RNNs [15], Hidden Markov Models
(HMM) [25], Logistic Regression and SVM [57] and Naive
Bayes classifier [2].



TABLE 1
AUDIO TASK: CLASSIFICATION PERFORMANCE.
ttrame = 0.5s ttrame = 1s ttrame = 1.5s
Method F-Score F-Score F1-Score
Normalized Decision Classification

LogReg 0.60+0.02 0.60+0.03 0.624+0.02
SVM 0.70+0.02 0.6940.03 0.68+0.02
RNN 0.7540.03 0.70+0.02 0.6940.03
LSTM 0.73+0.03 0.71+0.03 0.704+0.04
Seq2Seq 0.74+0.01 0.75+0.02 0.731+0.03
DecNet 0.75+0.01 0.75+0.02 0.78+0.01

Wrong Decision Classification
LogReg 0.50+0.03 0.50+0.03 0.514+0.03
SVM 0.5940.03 0.5740.03 0.54+0.03
RNN 0.6040.03 0.61+0.03 0.60+0.03
LSTM 0.62+0.02 0.62+0.02 0.61+0.04
Seq2Seq 0.64+0.02 0.64+0.02 0.631+0.03
DecNet 0.65+0.01 0.67+0.02 0.68+0.02

Correct Decision Classification
LogReg 0.64+0.02 0.64+0.03 0.68+0.03
SVM 0.75+0.02 0.7540.02 0.75+0.02
RNN 0.7540.04 0.7440.02 0.734+0.02
LSTM 0.77+0.04 0.75+0.03 0.75+0.03
Seq2Seq 0.83+0.02 0.83+0.02 0.7740.02
DecNet 0.8440.01 0.8240.01 0.84+0.01

A. Classification Performance

In this section, we list the classification performance as a
function of the length of the input ¢¢.me used for training and
testing for both the audio and the visual stimuli experiment.

In Table I and Table II, we report F}-scores under the three
classification settings, i.e., normalized classification, correct and
wrong decision discovery, for the audio and the visual stimuli
experiment, respectively. For each classification scenario, we
compute the classification threshold 7 according to the best F
performance achieved in the validation set.

DecNet outperforms all other models on all classification
tasks. The performance gap with other models becomes
more accentuated when longer inputs are provided to the
models. On frame length t¢.4me = 1.5 for the audio stimuli
experiment, DecNet shows an overall Fj-score performance
improvement of 8%, more specifically of ~ 0.05, ~ 0.05,
and ~ 0.07, for the normalized, wrong and correct decision
classification, respectively. A similar behavior appears on the
visual task on the wrong classification scenario, where DecNet
has 5% performance increase over the second best performing
model, Seq2Seq. In general, we can see that sequence models
better capture the secondary task decision-making process
than simpler non-sequential models, with DecNet providing
a performance increase especially on the wrong decision
classification scenario.

In Table III, we evaluate F-scores for DecNet when t¢ame =
1.5s for the three classification scenarios as a function of the
physiological signals used for training and testing. Here, F}
Gaze identifies the performance of DecNet when only gaze
information is used, 'y Head when only head pose information
is used and finally F; Comb lists the performance when both
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TABLE II
VISUAL TASK: CLASSIFICATION PERFORMANCE.

ttrame = 0.5s ttrame = 1s ttrame = 1.5s
Method F1-Score F-Score Fy-Score
Normalized Decision Classification
LogReg 0.5640.02 0.5610.03 0.56+0.01
SVM 0.6140.02 0.6140.02 0.61+0.02
RNN 0.64+0.02 0.63+0.02 0.621+0.04
LSTM 0.644+0.04 0.65+0.03 0.63+0.01
Seq2Seq 0.654+0.02 0.6440.02 0.65+0.01
DecNet 0.6610.02 0.66+0.02 0.66+0.03
Wrong Decision Classification
LogReg 0.4940.03 0.474+0.04 0.471+0.02
SVM 0.53+0.01 0.53+0.03 0.53+0.03
RNN 0.61£0.02 0.614+0.02 0.60+0.03
LSTM 0.6140.02 0.611+0.01 0.601+0.02
Seq2Seq 0.624+0.01 0.611+0.01 0.60+0.05
DecNet 0.611+0.01 0.621+0.01 0.63+0.02
Correct Decision Classification
LogReg 0.6140.02 0.6240.02 0.621+0.02
SVM 0.66+0.03 0.66+0.02 0.6740.02
RNN 0.7540.01 0.7540.01 0.75+0.01
LSTM 0.754+0.01 0.754+0.01 0.76+0.01
Seq2Seq 0.7640.02 0.754+0.01 0.75+0.01
DecNet 0.76+0.03 0.76+0.01 0.7540.01
TABLE III

DECNET: CLASSIFICATION PERFORMANCE AGAINST FEATURES.

Scenario H F1 Gaze [ I Head [ F; Comb
Audio Norm. 0.674+0.01 | 0.75+£0.01 | 0.78+0.01
Audio Wrong 0.5440.02 | 0.61£0.02 | 0.68+0.02
Audio Correct 0.81£+0.01 | 0.81+£0.02 | 0.8440.01
Visual Norm. 0.634+0.01 | 0.63+0.01 | 0.66+0.03
Visual Wrong 0.594+0.02 | 0.56+0.03 | 0.63+0.02
Visual Correct || 0.75£0.01 | 0.75+£0.02 | 0.754+0.01

gaze and head pose information are combined. As we can
see, both streams of information contribute to the performance
of DecNet Comb, with head pose data being able to achieve
better performance when considered alone. The performance
of DecNet Gaze on the audio task, however, are not surprising,
as they are comparable to previous studies on knowledgeability
anticipation from gaze information alone [37]. On the visual
task, instead, we can see that gaze data is more relevant to the
final F-Score performance of DecNet, as it identifies the main
resource used by the participants to capture the information
required to complete the task.

In Fig. 5, we collect the precision-recall curves for DecNet
when tgame = 1.5s for the audio-stimuli and visual-stimuli
tasks. The plots show the precision/recall performance curves
for both correct and wrong decision classification as a function
of the decision threshold in the audio, Fig. 5a, and visual task
scenario, Fig. 5b. We can see that in both scenarios and for
both classes the precision-recall curves are well above the
random baseline, despite the complexity of the task. The plots
indicate that DecNet can effectively separate the two classes
of correct, i.e., high load, and wrong decisions, i.e., cognitive
overload, on the secondary task as performance as a function
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(a) Audio Stimuli Experiment
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(b) Visual Stimuli Experiment

Scenario P R F1 — Score
Norm. Dec. Class. 0.67 | 0.65 0.66
Wrong Dec. Class. | 0.55 | 0.66 0.60
Correct Dec. Class. | 0.75 | 0.65 0.70

Fig. 5. Precision-recall curves for the wrong decision (solid orange line) and correct decision (dotted green line) classes. The left plot represents the audio
task, while the right plot shows the visual task. All classification curves are clearly above the random baseline. Note that the random baselines are different
depending on the task and decision class, as the decision classes are (slightly) imbalanced in our dataset. Shaded areas represent the standard deviation across
10 runs. Green and orange dots depict the best decision threshold in terms of F7 score for correct and wrong decisions respectively, while the blue dots depict
the best performance when balancing correct and wrong decisions. The table below each plot shows the performance in terms of precision, recall and F'-score
for the three classification scenarios when using the normalized classification threshold. All thresholds have been selected based on the validation set.
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(b) Visual Stimuli Experiment

Fig. 6. Performance as a function of the time available to anticipate the correctness of an incoming decision. The end ratio indicates how early DecNet is
required to anticipate the next decision. For instance, assuming a decision instance of ¢isance = 3.5, an input of ¢game = 1s and an end ratio of ER = 0.8,
DecNet would produce a prediction ER - (¢instance — trame) = 28 before such decision takes place.

of the classification threshold 7 are consistent.

B. Decision Correctness Anticipation Performance

The main goal of DecNet is to provide an actionable metric
for assistance systems to be able to intervene if the occurrence
of a mistake is detected. In this section, we evaluate how
well and how far in advance DecNet is able to anticipate the
correctness of an imminent decision. Without loss of generality,
we assume that the need for a decision has already been detected
by the assistive system, as incoming decision detection is
beyond this paper’s scope.

In Fig. 6, we show the F}-score performance of DecNet as
a function of time available to the classifier before providing
the correctness likelihood of the next decision. We assume a

terame = 15 input. Performances for correctness anticipation for
the audio task are fairly stable for all the scenarios considered.

However, it is interesting to notice that DecNet appears to
be more able to identify incoming mistakes in the time frame
between 2s and 3s before the decision. This could suggest
that the features of an incoming mistake from the driver are
more robust and relevant during the moments that precede a
decision. On the other hand, the features that predict a correct
incoming decision might be more prominent after the model
has had more time to observe the driver since the past decision
has passed, i.e., when the driver has had time to switch their
attention from the past decision to the next one.

The final goal of DecNet resides in its ability to be imple-
mented and operate in real-time to provide timely assistance
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Fig. 7. Participant perceived difficulty of the task. Participants were asked to
rate the perceived complexity of each of the experiments with a value between
0, i.e., low complexity, to 8, i.e, highest complexity.

to the user. To evaluate this, we have computed the inference
time, given an input sequence of 1.5s. The total inference time
of DecNet is 8ms, which corresponds to an inference rate of
~ 125Hz. Since the data from the eye and head pose tracker
is captured at 60Hz, we conclude that the proposed DecNet is
capable of operating in real-time.

C. Effect of Stimuli Modality on Performance

Performance in Tables I and II and Fig. 5 indicate that
DecNet can better anticipate the correctness of incoming
decisions when participants were provided audio stimuli, in
comparison to decisions prompted by visual cues. To investigate
this, we asked each participant to rate the secondary task’s
perceived complexity with a value ranging between 0 to 8, with
0 identifying a low demanding task and 8 a highly demanding
one.

Responses of the participants are collected in Fig. 7, where
we can see that 85% of the participants considered the visual
task to be of higher complexity than the audio stimuli task. This
shows that DecNet performance on decision anticipation and
the human perceived complexity match in both experimental
scenarios, and suggests that single modality stimulation exerts
higher levels of cognitive load on drivers, directly affecting
their ability to make correct decisions. Overall, participants

agreed that visual scenario is more demanding than the audio.

In fact, in the audio task there are no confounding variables,
as numbers are announced every time an obstacle is passed,
while on the visual task, participants had to read the numbers
displayed on the obstacles. However, there was no evident
difference in their driving performance as no crashes were
recorded. It is also interesting to notice that drivers assigned
different levels of complexity for each scenario, showing that
drivers’ perception of cognitive load can differ also on the same
task and suggesting that they divide energies between the two
tasks using different strategies. This highlights the ambiguity of
a cognitive load-based metric, and further stresses the benefits
of a metric based on secondary task decision mistakes, which
inherently occur when drivers are overloaded.

Our results confirm the findings of numerous studies in
the multitasking theory literature, such as [31], [32]. The
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multitasking model in [31] assumes that auditory and visual
perception use different resources, therefore if two joint
tasks use different modalities their performance are expected
to improve, and worsen if they require the same modality.
Similarly, in the working memory theory by [32] it was shown
that participants experience significant performance disruption
when two or more concurrent tasks operate on the same visual
modality, which is consistent with our results on the visual
stimuli scenario.

VII. CONCLUSIONS

In this paper, we introduced DecNet, an end-to-end multi-
stage recurrent deep model that anticipates the correctness of
an imminent decision from a driver as a proxy to cognitive
overload instances. We collected a dataset from a cohort of
participants on two separate decision-making scenarios: one
where decision stimuli are presented visually and one where
they are auditory. We investigated the ability of the proposed
model to anticipate the secondary task decisions on both
scenarios from non-obtrusive physiological signals only, namely
eye gaze and head pose.

Our results showed that DecNet is high performing in the task
of decision correctness anticipation, achieving 81% precision
and 77% recall on the auditory stimuli task, and 67% precision
and 65% recall on the visual stimuli task. The proposed model
outperforms comparable models on all the scenarios considered.
We tested the real-time capabilities of DecNet and proved that
the proposed model can reliably infer the correctness likelihood
of a decision up to 2s before such a decision takes place.

We have also investigated the effects that different stimuli
modalities have on cognitive overload events of the driver, i.e.,
their decision accuracy on the secondary task, and therefore
more generally on their level of cognitive load. Our analyses
indicate that when a single modality is overloaded, as for the
visual stimuli task, both drivers and DecNet tend to be less
reliable performance-wise. This suggests that, in case of take-
over, it would be preferable to use a different modality than
the one currently used to perform such a task. While DecNet
is capable of running online in real-time, given its inference
rate of 125Hz, all shown classification performance refer to
offline testing. Therefore, it would be interesting to investigate
how DecNet performs in a closed-loop setting, where a human
driver is interacting with the simulated environment.

Our study has shown that unobtrusive physiological signals
are strongly correlated with cognitive overload events in
the driver and that DecNet can exploit such correlations to
anticipate these events. The proposed model DecNet shows
solid and reliable performance, however it represents an initial
step towards real-time cognitive overload estimation and it
would be interesting to investigate the application of more
advanced machine learning models to this problem. Also, the
proposed study focused on simulated scenarios without external
distractions, and it would be therefore worth exploring how
well we can generalize our methods to more complex scenarios,
such as real-world driving. In our study, we induced a high
level of cognitive load in the driver by means of a “3-back”
task, which is inherently artificial. Although common in driver
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cognitive states studies due to their ease of implementation,
these tasks still represent a proxy for real-life driving tasks and
may represent a limitation of the applicability of the proposed
methods to natural driving scenarios.
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