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Dynamically induced friction 
reduction in micro‑structured 
interfaces
N. Menga1,2*, F. Bottiglione1 & G. Carbone1,2,3

We investigate the dynamic behavior of a regular array of in-plane elastic supports interposed 
between a sliding rigid body and a rigid substrate. Each support is modelled as a mass connected to a 
fixed pivot by means of radial and tangential elastic elements. Frictional interactions are considered at 
the interface between the supports and the sliding body. Depending on the specific elastic properties 
of the supports, different dynamic regimes can be achieved, which, in turn, affect the system frictional 
behavior. Specifically, due to transverse microscopic vibration of the supports, a lower friction force 
opposing the macroscopic motion of the rigid body can be achieved compared to the case where no 
supports are present and rubbing occurs with the substrate. Furthermore, we found that the supports 
static orientation plays a key role in determining the frictional interactions, thus offering the chance to 
specifically design the array aiming at controlling the resulting interfacial friction force.

Controlling the tribological behavior of interfaces has been one of the major concerns in modern engineering. 
This is because, friction is always a primary source of energy dissipation in industrial processes, thus resulting in 
high energy loss and reduced cost-efficiency. However, since the tribological properties of the contacting surfaces 
are governed by complex phenomena occurring at the interface which, in turns, depend on several parameters 
(e.g. roughness, hardness, contact configuration, lubricating condition, contacting material pair, etc.), during the 
last decades, several research paths have been explored aiming at controlling the resulting interfacial friction. 
It is the case, for instance, of the numerous investigations involving viscoelastic energy dissipation and friction, 
which have seen an always increasing accuracy in predicting the frictional behavior of rubber-like  interfaces1–5. 
Similarly, also the case of lubricated contacts has been deeply investigated, inferring that surface micro-texturing 
is probably one of the most promising methods to reduce lubricated  friction6–9. Interestingly, in the case of soft 
wet interfaces, the effect of surface micro-texturing is to alter the elastohydrodynamic regime of the contact. 
Consequently, at low speed and low normal load, a significant friction reduction can be achieved, compared to 
the case of smooth  interfaces10,11; on the contrary, at high speed, increased friction has been reported.

Surface texturing has also been increasingly utilized to control the tribological behavior of dry interfaces. This 
mostly refers to the possibility to control the behavior of the contact interface by developing meta-materials with 
specific local material properties, such as high interfacial compliance. Such an interface specialization can be 
pursued, for instance, by micro-structuring the surfaces in micro-pillars and nanofibers with specific aspect ratio, 
size, and orientation. Recent  studies12–14 have experimentally investigated the effect of the interfacial micropillars 
geometry on dry friction between both soft and hard contact pairs (namely steel and low-density polyethylene), 
showing that specific design conditions are able to produce an effective friction reduction. Similarly, experimental 
measurements have also been performed in smaller  structures15,16, such as polymeric nano hairs and nanofibers 
opportunely machined via colloidal lithography, aiming at highlighting the effect of the micro-structures aspect 
ratio on the frictional behavior. Also, the effect of areal density of microstructures on the contact interface has 
been investigated with an application, for instance, to tongue/palate tribological  behavior17, showing that dry 
friction significantly decreases with the density increasing. Notably, similar results have also been reported in 
the case of dry contacts involving hard  interfaces18. Moreover, building on the same path, further  investigations19 
have focused on tuning the micropillar tapering to control both adhesion and friction in bio-inspired adhesive 
strips, showing that also the effective contact area reduction achieved in highly tapered structure contributes to 
the reported friction reduction. Friction reduction has also been achieved in relatively soft elastomeric contacts 
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by means of surface texturing with a hexagonal  pattern20 which induces a significant reduction of the real contact 
area via micro-structures bending, as reported also in Ref.21.

Interestingly, only recent studies have focused on possible dynamic effects on friction reduction in micro-/
nano-textured interfaces. Indeed, it is well known that, even in the exemplar case of rough interfaces, vibra-
tions can significantly reduce interfacial friction in sliding contact  mechanics22,23. This can be ascribed to the 
emergence of non-negligible reciprocating microscopic motion superimposed to the macroscopic sliding which, 
depending on the relative angle, may lead to a non-vanishing transverse component of the friction force which 
results in a reduction of the friction component opposing the macroscopic  sliding24,25. Further studies on the 
same topic have shown that the interface stiffness plays a key role in determining the amount of friction reduction 
achievable when transverse vibration is superimposed to  sliding26. Similarly, in the assumption of microscopic 
constant Coulomb friction and normal oscillations, it has been shown that a characteristic velocity can be found 
above which the oscillations do not affect the macroscopic friction  coefficient27. In this regard, micro-structured 
surfaces offer the opportunity to tailor the stiffness and the dynamic properties of the interface to achieve a 
stronger friction control. Indeed, dynamic models based on lumped-elements description of the micro-structured 
interface can be used to opportunely tune the microstructure geometry. It is the case, for instance, of Ref.28, where 
sliding friction measurements on soft micropillars have been compared to a simple dynamic model, showing a 
good result agreement. Similarly, in a series of  paper29, 30, the dynamic effects of hierarchical and anisotropic inter-
facial microstructures on 2-D problems have been numerically investigated by relying on mass-spring models, 
showing that the resulting friction strongly depends on the size, shape and orientation of the micro-structures.

In this view, building on several investigations dealing with bristle-like31 and mushrooms-like32 interfacial 
microstructures, here we focus on a micro-structured 2D surface made of curved micropillars with random 
orientation, such as that shown in Fig. 1. The micropillars in-plane elastic behavior can be modelled by means 
of the combination of radial and torsional elastic elements, whose equivalent stiffness can be calculated in the 
framework of linear elastic beam theory as kr ≈ ED4/h3 and kθ ≈ GD4/h (with D and h being the micropillar 
diameter and height, and E and G being the Young and shear elastic moduli). The system also consists of a rigid 
block sliding on the bristle array in the presence of interfacial friction. The resulting model provides insight into 
the in-plane dynamic response of the micro-structured interface during sliding, thus allowing to predict the 
effect of the dynamic parameters on the resulting in-plane tangential force opposing the macroscopic sliding of 
the rigid block.

Formulation
In Fig. 2a we show the functional scheme of the system under investigation. A rigid slab is sliding at a velocity 
V0 in the x-direction under the action of a normal load FN and an in-plane driving force FT . The slab is borne, 
under dry conditions, by an array of elastic supports with spacing length dx and dy . Each support is composed of 
a mass m connected to a pivot by a radial spring (with stiffness kr and equilibrium length r0 ) and a torsion spring 
(with stiffness kθ and equilibrium orientation θ0 ). Moreover, the distribution of the supports’ static orientations 
θ0 is homogeneous within the array.

Since in this study we are interested in investigating the in-plane dynamics of the bristle-like elements (see 
Fig. 1) whose tips do not directly contact with the underneath substrate, we consider pure normal interactions 
between the supports and the underlying ground (i.e. frictionless conditions), as those achievable by interposing 
castor wheels. On the contrary, frictional interactions occur at the interface between the elastic supports and the 
slab (see Fig. 2c). Furthermore, we neglect any interaction between the supports.

The dynamics of the elastic supports. With reference to Fig. 2b, the in-plane momentum balance of a 
generic elastic support gives

where x(t) = xı̂ + ŷ  is the mass position vector with ı̂  and ̂  unit vectors along x- and y-axis respectively (see 
Fig. 2a), Ff = Ff êf  is the friction force acting on the support, r = |x| =

√

x2 + y2 , θ is the support dynamic 
orientation, and

(1)mẍ = −[kr(r − r0)− φ(r)]êr −
kθ

r
(θ − θ0)êθ + Ff ,

Figure 1.  Left side: an example of micro-structured surface with bristle-like micropillars. Right side: a SEM 
image of ordered low-density polyethylene (LDPE) nanofiber arrays adapted with permission from Ref.12. 
Copyright 2011 American Chemical Society.
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with vR = ẋ − V0 ı̂  being the relative velocity between the elastic support and the rigid slab. Moreover, in Eq. 
(1) the function

represents a short-range repulsive term which, by opportunely tuning the range parameter � , simulates the 
physical requirement of a non-vanishing radial spring length, also avoiding the singular behavior of Eq. (1) in 
x = (0, 0) . Furthermore, a sensitivity analysis on the effect of the parameter α on the numerical stability of the 
solution has been performed, eventually indicating that α = 1 is well-suited for the case at hand. Regarding the 
normal load fN acting on each support, here we assume the total normal load FN acting on the slab to uniformly 
distribute over the effective number Nc of supports in contact with the slab, therefore fN = FN/Nc . Finally, the 
modulus of the friction force acting on a single support is given by Ff = −fNµ(vR) , with µ(vR = |vR|) being 
the friction coefficient.

Since we expect that the supports dynamics leads to non-steady frictional interactions during the slab sliding, 
we adopt a velocity-based friction model whose non-monotonic trend, in agreement with Refs.33,34, represents 
a good approximation of the real rubber-like materials interfacial frictional  behavior35. The friction coefficient 
is shown in Fig. 3 and is given by

where A, B and ζ are empirical coefficients, and µs represent the “static” friction coefficient occurring at the veloc-
ity Vs = 1/ζ.

Dimensionless quantities. For the sake of simplicity, it is convenient to rewrite Eqs. (1) – (3) in a dimensionless 
form, so the following dimensionless parameters are adopted: x̃ = x/r0 , r̃ = r/r0 , �̃ = �/r0 , k̃r = r20kr/

(

mV2
0

)

 , 
k̃θ = kθ /

(

mV2
0

)

 , and F̃f = r0Ff /
(

mV2
0

)

 . The dimensionless time is τ = tV0/r0 , so that the dimensionless veloc-
ity and acceleration take the forms ṽ = dx̃/dτ = ẋ/V0 and ã = dṽ/dτ = ẍr0/V

2
0  , respectively. Finally, we have

where φ̃(r̃) =
(

2�̃

)−1

e−r̃/�̃ . Moreover, we define F̃N = r0FN/
(

Nc,0mV2
0

)

 , so that F̃f = −βF̃Nµ(vR) with 
β = Nc,0/Nc.

(2)

êr =
(x

r
,
y

r

)

,

êθ =
(

−
y

r
,
x

r

)

,

êf =
vR

|vR|
,

(3)φ(r) =
α

2

mV2
0

�
e−r/�

(4)µ(vR) = µs sin
(

A tan−1
{

ζvR − B
[

ζvR − tan−1(ζvR)
]})

,

(5)ã = −
[

k̃r(r̃ − 1)− φ̃(r̃)
]

êr −
k̃θ

r̃
(θ − θ0)êθ + F̃f êf ,

Figure 2.  The functional scheme of the system at hand: a rigid sliding slab is borne by an array of in-plane 
elastic supports. (a) is a top view of the whole system; whereas (b) is a close-up to a generic support of mass m, 
radial and torsional stiffness kr and kθ , static length r0 and static orientation θ0 . (c) is a side view of the contact 
between the slab and a generic support. Notably, FT ,x = FT · ı̂  , and Ff ,x = Ff · ı̂ .
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Equation (5) represents a set of nonlinear differential equations describing the in-plane motion of each sup-
port, however an addition equation in θ(t) is needed to mathematically define the problem. This is provided in 
term of a linear first-order ODE as

The slab main quantities. The in-plane dynamics of each elastic support is defined through Eqs. (5) – (6). 
In this section, we focus on the main forces acting on the rigid slab due to the relative motion, and the resulting 
friction, occurring between the latter and the elastic supports, as indeed shown in Fig. 4.

In order to calculate these forces, we should consider the effect of each single support in contact underneath 
the slab, with its own dynamic properties, location and local sliding condition. However, all the supports share the 
same elastic and frictional properties, and the distribution of the static orientations θ0 is homogeneous within the 
array. Consequently, since we are interested in the steady sliding response, we can simplify the problem consider-
ing, as representative of the whole array frictional behavior, the average friction arising from the dynamic evolu-
tions of a sufficiently large number n ≫ Nc,0 (notably, Nc,0 = LxLy/dxdy ) of supports each of which is calculated 
from the time ( t = 0 ) at which the support is approached by the slab to when ( t = tout ) it is released from the 
contact. Therefore, according to Fig. 4, under steady sliding conditions, the in-plane rigid slab equilibrium gives

where 
(

F̄f

)

η
 represents the mean friction force associated with the η-th support in contact with the slab so that, 

per each value of η = 1, 2, . . . , n , we have

The value of tout of each contact can be numerically calculated as

The in-plane averaged normalized friction force components acting on the slab can then be calculated as ensemble 
average among the n considered supports as

where FT ,x = FT ,x · ı̂  , and FT ,y = FT · ̂
It is worth observing that the resulting value of FT ,x/FN and FT ,y/FN still slightly oscillate even under steady 

sliding conditions. This mainly depends on the fact that the new supports getting into contact with the slab as 

(6)
dθ

dτ
=

x̃ṽy − ỹṽx

r̃2
.

(7)FT = −

n
∑

η=1

(

F̄f

)

η
,

(8)F̄f =
1

tout

∫ tout

0

Ff

(

t ′
)

dt′.

(9)L0 = −

∫ tout

0

vR · ı̂ .

(10)
FT ,x

FN
=

〈

F̄f · ı̂

fN

〉

,

(11)
FT ,y

FN
=

〈

F̄f · ̂

fN

〉

,

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

v Vs

Figure 3.  The friction coefficient as a function of the ratio v/Vs , with Vs being the static velocity tolerance. 
Parameters are µs = 1.3 , A = 1.44 , B = −20.
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this advances have a static orientation θ0 , resulting in different dynamic behavior. However, in the limit of suf-
ficiently large values of n, the oscillation asymptotically vanishes.

Moreover, due to the frictional interaction between the slab and the elastic supports, a significant part of the 
work per unit time Ẇs done by the force driving FT is dissipated. Indeed, the energy balance per unit time of 
the whole system gives

where

In Eq. (12), the term Ḋx + Ḋy is the energy dissipated per unit time by the frictional interactions between the slab 
and the supports, whereas U̇el is the outflow of elastic energy associated with the residual elastic deformation of 
the supports leaving the contact, and U̇k is the variation per unit time of the supports kinetic energy.

Results
In this section, we present the main results in terms of the frictional and dynamic behavior of the system. In our 
calculations, we set n =200 and dx = dy = r0 . Furthermore, we assume the slab size Lx = 2Ly = 10 r0 , so that 
Nc,0 = 50 . With reference to Eq. (4), friction parameters have been set to µs = 1.3 , ζ = 2.22 , A = 1.44 , B = −20 , 
whereas the slab sliding velocity is V0 ≈ 10Vs.

In order to explore the frictional behavior of the slab-supports system, in what follows we assume a uniform 
distribution for θ0 within the interval [0, 2π) . Such an assumption leads to an in-plane isotropic response of 
the elastic support array, which is therefore preferred in applications where the slab sliding direction is not 
known a priori. Results are presented in terms of the normalized apparent friction force FT ,x/µ0FN opposing 

(12)Ẇs = FT ,xV0 = Ḋx + Ḋy + U̇el + U̇k ,

(13)
Ḋx = −

〈
∫ tout

0

[

Ff

(

t′
)

· ı̂
][

vR

(

t′
)

· ı̂
]

dt′
〉

,

Ḋy = −

〈
∫ tout

0

[

Ff

(

t ′
)

· ̂
][

vR

(

t ′
)

· ̂
]

dt′
〉

.

Figure 4.  A scheme of the time evolution of the relative sliding between the rigid slab and a single elastic 
support. Contact starts at time t = 0 and ends at time t = tout . Moreover, FT is the constant driving force 
acting on the slab, whereas Ff (t) is the istantaneous friction force experienced by the support. Top view shows 
the angular oscillation and radial elongation of the supports, and side view allows to appreciate the supports 
longitudinal dynamics.
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the macroscopic sliding of the slab in the x-direction, where µ0 = µ(vR = V0) is the friction coefficient that 
would be experienced in the case of rigid contact. Moreover, also the apparent friction force occurring in the 
transverse direction to the slab sliding direction is investigated by means of the normalized quantity FT ,y/µ0FN.

In Fig. 5a, we show the benefit, in terms of reduction of the normalized friction force FT ,x/µ0FN achievable 
by interposing elastic supports between the slab and the underlying rigid substrate. We observe that four differ-
ent regions can be identified, each one associated with a qualitatively different dynamic regime of the supports: 
the soft regime, corresponding to low values of both k̃r and k̃θ , is governed by large elastic deformation of the 
supports, and low apparent friction is observed; the pendulum regime, at large k̃r and low k̃θ , where the dynamics 
of the supports mainly refers to rigid rotations around the fixed pivot (see Fig. 5c), and a moderate reduction 
of apparent friction is achieved; the slider regime, at low k̃r and large k̃θ , with supports experiencing significant 
radial deformations with almost constant orientation (see Fig. 5c), again leading to a moderate apparent fric-
tion reduction; and the stiff regime, with large values for both k̃r and k̃θ , where no significant apparent friction 
reduction occurs. Figure 5b, instead, shows the ratio Ḋy/Ḋx highlighting that both the soft and stiff regimes are 
associated with vanishing Ḋy , thus indicating that in these regimes almost unidimensional dynamic behavior 
along the x-direction is experienced. On the contrary, both pendulum and slider regime involve Ḋy/Ḋx ≈ 0.1 , 
which indicates that in these cases the microscopic slab sliding is superimposed to microscopic transverse 
vibration (i.e. along the y-direction) whose effect is to locally modify the relative velocity direction between the 
supports and the slab, and in turn to reduce the effective friction force opposing the macroscopic slab sliding.

Figure 6 shows the effect of the dimensionless normal load F̃N acting on the slab on the normalized apparent 
friction force FT ,x/µ0FN associated with each of the above mentioned dynamic regimes. With this regard, we 
observe that, since the friction force acting on a single support can be conveniently rewritten as Ff ∝ −FNµs/Nc , 
both FN and µs have the same effect on the overall system dynamics. Interestingly, Fig. 6 shows that, regardless of 
the specific supports dynamic regime (i.e. the value of kr and kθ ), increasing F̃N leads to a more dramatic reduc-
tion of the normalized apparent friction force opposing the slab sliding. Indeed, we observe that the supports 
are at rest before any interaction with the slab and, once in contact with the slab, interfacial friction is the only 
source of supports excitation (i.e. Ff  is the only active term in Eq. (1); therefore, given the values of k̃r and k̃θ , 
increasing F̃N (as well as µs ) leads to higher frictional interactions and, in turn, to a stronger dynamic response, 
which eventually exacerbates the mechanics of apparent friction reduction described above.

Figure 7 refer to a single support dynamics and show the comparison between the normalized friction forces 
Ff ,x/fN,Ff ,y/fN and Ff /fN during the whole sliding against the rigid slab (i.e. for t ∈ [0, tout ] ). From these figures, 
we can better understand the different mechanisms of friction reduction involved in the previously defined 
dynamic regimes. In particular, Fig. 7a shows the behavior associated with elastic conditions belonging to the 
pendulum regime (notably, similar conclusions can be drawn for the slider regime). As suggested by Fig. 5b, the 
main mechanism here involved in the friction reduction is related to the supports oscillation along the transverse 
direction (see Fig. 5c) which, indeed, leads to Ff ,x < Ff  during part of the sliding process. Interestingly, due to 
the emerging oscillation in the transverse direction, when Ff ,x < Ff  we have that Ff ,y  = 0 . On the contrary, in 
the case of soft elastic supports (see Fig. 7b), we have that Ff ,x ≈ Ff  (and Ff ,y ≈ 0 ), thus no friction reduction 

Figure 5.  The 3D representations of (a) the apparent normalized friction force FT ,x/µ0FN and (b) the ratio 
Ḋy/Ḋx as functions of the radial k̃r and torsional k̃θ stiffness. (c) shows a schematic of the qualitative behavior of 
pendulum and slider dynamic regimes. Results are for F̃N = 1 . Notably µ0 = µ(V0).
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occurs due to transverse oscillations. This time, a different mechanism is responsible for the lower frictional force 
opposing the slab sliding: since the elastic support is very compliant, a long-lasting “sticky” phase is experienced 
(i.e. vR ≈ 0 ), during which low re-centering elastic force occurs and, in turn, low “static” friction force results. Of 
course, once the elastic deformation reaches a critical value, the elastic force saturates the “static” friction, and 
gross sliding occurs with Ff ,x/fN = µ0 . Similar behavior has also been experimentally observed in Refs.12,16 for 
regular arrays of polymeric nanofibers with high aspect-ratio, thus resulting in very compliant behavior. Interest-
ingly, in both cases also Ff /fN > µ0 is shortly experienced due to the specific friction law adopted (see Fig. 3).

Figure 8a shows the normalized number Nc/Nc,0 of active elastic supports in effective contact with the sliding 
slab, where Nc,0 = LxLy/dxdy is the number of supports underneath the static projection of the slab. Indeed, due 
to the elastic deformation of the supports caused by the frictional interactions with the slab, we have that �s � L0 
and Nc � Nc,0 (see Fig. 4). Consequently, we observe that, regardless of the value of the tangential stiffness k̃θ , 
the lower k̃r , the larger Nc/Nc,0 is. Interestingly, in the investigated range of radial stiffness, at very low values 
of k̃r , we observe that Nc/Nc,0 � 2 , which means that very elongated supports are still in contact with the slab, 
thus entailing x(tout)/L0 � 1 . Of course, the effect of increasing k̃θ is to globally stiffen the system response, so 
large values of k̃θ usually lead to smaller deformations and, in turn, lower values of Nc/Nc,0.

In Fig. 8b, we report the breakdown of the utilization of the work per unit time Ẇs done by the in-plane driv-
ing force FT acting on the slab, as indicated in Eq. (12). Indeed, at large k̃r the dynamic conditions belong to the 
pendulum regime, thus most of the energy is dissipated by frictional interactions, as Ḋx + Ḋy ≈ Ẇs . Moreover, 
in agreement with Fig. 5, the occurring friction reduction mechanism involves oscillations along the transverse 
direction, thus the ratio Ḋy/Ḋx is nonvanishing. A different scenario is observed for small values of k̃r , where 
a huge reduction of the friction coefficient is reported even when Ḋy/Ḋx ≈ 0 . This is the so-called soft regime, 
where most of Ẇs goes in elastic supports deformation, thus resulting in large φel/Ẇs ≈ 0.7.

Figure 6.  The normalized apparent friction force FT ,x/µ0FN as a function of the dimensionless normal load F̃N 
acting on the rigid slab. The elastic properties corresponding to the qualitative dynamic regimes are: pendulum, 
kr = 3 and kθ = 0.01 ; slider, kr = 0.01 and kθ = 3 ; stiff, kr = 3 and kθ = 3 ; soft, kr = 0.03 and kθ = 0.03 . 
Notably µ0 = µ(V0).
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Figure 7.  The friction time-history during sliding of a single elastic support with θ0 = π/2 . Results are for 
(a) pendulum regime with k̃r = 3 and k̃θ = 0.01 and (b) soft regime with k̃r = 0.03 and k̃θ = 0.03 . Moreover, 
F̃N = 1.
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Effect of supports static orientation. In the previous section, we assumed a uniform distribution of θ0 , 
which is a good approximation to model generic arrays whose static orientation depends on random phenomena 
such as micropillars buckling or ad hoc production  procedures36. However, since the system dynamics is strongly 
nonlinear, we expect the specific value of θ0 to significantly affect the behavior of the system.

In what follows we focus on the case shown in Fig. 9 of fixed-orientation arrays, i.e. arrays where all the sup-
ports have the same static orientation θ0 . Notably, in fixed-orientation arrays, all the supports share exactly the 
same dynamics during sliding against the rigid slab.

The dynamic behavior of fixed-orientation arrays is investigated in Fig. 10. Specifically, in Fig. 10a,b we show, 
respectively, the displacement and the velocity dimensionless components of three generic supports extracted 
from three corresponding fixed-orientation arrays presenting different value of θ0 in the slider regime. On the 
contrary, Fig. 10c,d show the same quantities referring to the pendulum regime. By comparing Fig. 10a,c we 
observe that the two regimes under investigation are associated with very different support displacement. Moreo-
ver, the pendulum regime displacements appear less affected by the specific value of θ0 compared to the slider 
ones. Indeed, in Fig. 10a, due to the stiffer torsional behavior associated with the slider regime, peculiarly different 
behaviors are reported between the case with θ0 ≫ π/2 and those with θ0 ≤ π/2 , as in the former case, the sup-
port dynamics tends to compress the radial spring whereas in the latter condition the radial spring is significantly 
elongated. Furthermore, Fig. 10b,d allow us to conclude that, in agreement with the discussion provided in the 
previous sections, in both regimes the maximum values of the x and y components of the support velocity are 
of the same order of magnitude, thus indicating that under these conditions the observed reduction in apparent 
friction can be associated with the effect of transverse vibration. This is peculiarly true for both θ0 = 3π/4 and 
θ0 = π/2 , whereas for θ0 = π/4 most of the support motion occurs in the x-direction.
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Figure 8.  The normalized number Nc/Nc,0 of supports in active contact with slab (a), and the breakdown of 
normalized energetic terms according to Eq. (12) (b) as a function of the radial stiffness. Data are for F̃N = 1 , 
and in (b) k̃θ = 0.03.

Figure 9.  The schematic of the fixed-orientation array case, in which all the supports share the same static 
orientation θ0 . Notably, FT ,x and FT ,y are the components of the force necessary to keep the slab in steady sliding 
against the array.
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Figure 10e,f show the peculiarity of the two dynamic regimes. Indeed, in Fig. 10e we report the time evolution 
of the dimensionless supports radial coordinate r̃ for two different values of θ0 both in the slider and pendulum 
regimes. We observe that, regardless of the specific static orientation, in the pendulum regime the support elon-
gation oscillates around the value r̃ = 1 . On the contrary, in the slider regime the value of θ0 plays a key role as 
for θ0 ≫ π/2 we have that r̃ reduces (i.e. the supports shortens), whereas for θ0 ≤ π/2 we have that r̃ ≫ 1 (i.e. 
the supports elongates). Similar considerations can be drawn from Fig. 10f, where we show, for different values 
of θ0, the values of �θrms and �r̃rms corresponding to each support dynamics. These two quantities are defined 
as the root mean square values of �θ(t) = θ(t)− θ0 and �r̃(t) = [r(t)− r0]/r0 calculated over the whole sup-
port dynamics during the contact with the sliding slab. As expected, the pendulum regime is characterized by 
vanishing values of �r̃rms as, under these conditions, kr ≫ kθ . On the other hand, the slider regime is associated 
with �θrms ≪ �r̃rms as in this case, torsional oscillations are strongly inhibited.

Figure 11 show the frictional results, in terms of main quantities acting on the rigid slab under steady condi-
tions, associated with fixed-orientation arrays, where all the elastic support have the same static orientation θ0 
(see the schematic in Fig. 9). The rationale of the Figures is the following: the quantities (a) FT ,x/(µ0FN ) , (b) 
Ḋy/Ḋx and (c) FT ,y/(µ0FN ) are reported as radial coordinates of polar plots, shown as functions of θ0 , which is 
the angular coordinate in the plots. Notably, we only show results for θ0 > 0 as physical arguments show that 
FT ,x/(µ0FN ) and Ḋy/Ḋx are even functions of θ0 , and FT ,y/(µ0FN ) is an odd function of θ0 . Again, the results 
are presented under different elastic conditions (i.e. different values of kr and kθ ) belonging to the slider and 
pendulum regimes. Specifically, in Fig. 11a the quantity FT ,x/(µ0FN ) is shown, which represents the dimension-
less component along the x-direction of the external force needed to keep the rigid slab in steady sliding against 
the fixed-orientation array of supports. We observe that principal orientations can be found, depending on the 
specific dynamic regime, able to minimize FT ,x , thus associated with lower apparent friction. Moreover, Fig. 11b, 
showing the ratio Ḋy/Ḋx (see Eq. (13)), allows inferring further arguments on the specific mechanism of appar-
ent friction reduction associated with the considered elastic regimes. Indeed, in both cases, we observe that the 
ranges of θ0 in Fig. 11a where minimum FT ,x occurs correspond to the ranges of θ0 in Fig. 11b where high values 
of Ḋy/Ḋx are reported, thus clearly indicating that in both slider and pendulum regimes transverse vibrations are 
mostly responsible for the observed apparent friction reduction. Building on the same path, one can easily argue 
that fixed-orientation arrays with specific orientations does not present isotropic behavior, thus a non-vanishing 
component of the resulting force on the slab is expected in the transverse (y) direction (see also Ref.37). This is 
investigated in Fig. 11c, where the normalized apparent friction force FT ,y/(µ0FN ) is shown as a function of 
the array static orientation θ0 . As expected, for θ0 → 0,π a vanishing value of FT ,y is reported. Interestingly, we 
observe that, in the pendulum regime, FT ,y ≥ 0 regardless of the value of θ0 as the elastic supports are always 
elongated (see Fig. 10e); whereas, in the slider regime, the value of θ0 also affects the sign of FT ,y , as depending 
on θ0 the supports can be elongated or shortened during the contact with the slab.

From these results, it follows that the frictional behavior of a generic array could be interestingly tuned by 
arranging the static orientation θ0 of its supports to a proper distribution. In this view, also the resulting transverse 

Figure 10.  The dynamic behavior of elastic supports extracted from uniform arrays with different static 
orientation θ0 . Displacement (a,c) and velocity (b,d) components for supports belonging to, respectively, 
the slider (k̃r = 0.01 , k̃θ = 3 ) and pendulum  ( ̃kr = 3 , k̃θ = 0.01 ) elastic regimes. The time evolution of the 
dimensionless radial coordinate r̃ (e) for supports in the previously mentioned elastic regimes with different 
θ0 . The values of �θrms and �r̃rms associated with the dynamics of different supports during the whole sliding 
against the rigid slab under different elastic regimes. Results refer to F̃N = 1.
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friction force FT ,y can be controlled by balancing the supports with orientation θ0 with those with orientation 
−θ0 , thus leading to in-plane orthotropic array behavior.

Conclusions
In this work, we investigate the dynamic and frictional behavior of a regular array of in-plane elastic supports 
interposed between a sliding body and the underneath substrate. We show that, by introducing the elastic sup-
ports, a significant reduction of the overall friction force opposing the macroscopic sliding of the sustained 
body can be achieved compared to the case of rigid contact with the substrate. Indeed, depending on the specific 
in-plane elasticity, different dynamic regimes of the supports can be observed, each of which associated with a 
specific support frictional behavior. The friction reduction mainly occurs via two alternative mechanisms: for 
stiff supports, local microscopic transverse oscillation of the supports occurs, which deviates the effective friction 
force direction from that of the macroscopic sliding; for compliant supports, the poor elastic reaction force of 
the support lead to long-lasting local “static” friction conditions at the interface.

Interestingly, the supports static orientation plays a key role in the final dynamic behavior of the array, and in 
turn on the frictional response of the foundation. When the macroscopic sliding direction of the sustained body 
is not known a priori, random uniform distribution of the static orientations can be adopted to ensure in-plane 
isotropy; however, practical applications involving known sliding directions can benefit from a deterministic 
design of the supports orientation able to further reduce the frictional force acting on the sliding body.
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