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Summary

With continuing urbanization, challenges associated with the urban environment such as air
quality, heat islands, pedestrian thermal comfort, and wind loads on tall buildings, are in-
creasingly relevant. Our ability to realistically capture processes such as the transport of heat,
moisture, momentum and pollutants, and those of radiative transfer in urban environments
is key to understanding and facing these challenges (Oke et al., 2017). The turbulent nature
of the urban flow field and the inherent heterogeneity and wide range of scales associated
with the urban environment result in a complex modelling problem. Large-eddy simulation
(LES) is an approach to turbulence modelling used in computational fluid dynamics to simu-
late turbulent flows over a wide range of spatial and temporal scales. LES is one of the most
promising tools to model the interactions typical of urban areas due to its ability to resolve the
urban flow field at resolutions of O(1 m, 0.1 s), over spatial domains of O(100 m), and time
periods of O(10 h). Although there are many scalable LES models for atmospheric flows, to
our knowledge, only few are capable of explicitly representing buildings and of modelling the
full range of urban processes (e.g. PALM-4U Resler et al. (2017); Maronga et al. (2020); or
OpenFoam Weller et al. (1998)).
uDALES (urban Dutch Atmospheric LES) is an extension of DALES (Dutch Atmospheric LES;
Heus et al. (2010), Tomas et al. (2015)). It has the additional functionality of modelling
buildings within the fluid domain and therefore the capability to model urban environments at
the microclimate scale with wet thermodynamics (Table 1). The uDALES framework includes
tools to enable users to model a wide variety of idealized and complex urban morphologies
(Sützl, 2021; Sützl et al., 2021). uDALES uses an Arakawa C-grid and typically uses second-
order central-differencing schemes. For scalar quantities, e.g. for pollution concentration, it is
possible to use a kappa-scheme for advection to ensure positivity (Hundsdorfer et al., 1995). A
third-order Runge-Kutta time integration scheme is applied. The immersed boundary method,
first introduced into DALES by Pourquie et al. (2009) and Tomas et al. (2015), is used to
represent buildings (supporting grid-conforming cuboid geometries; Pourquie et al. (2009)).
Wall functions have been added to calculate the surface scalar and momentum fluxes at the
rough immersed boundaries (Cai, 2012, 2011; Suter, 2018; Uno et al., 1995), based on a local
Richardson number. Additional factors are considered to obtain the evapotranspiration fluxes
from vegetated surfaces. The code uses fast Fourier transforms to efficiently solve the Poisson
equation for pressure and is fully parallelized using MPI (domain decomposition is performed
in the spanwise direction, thus producing slabs).
A novel surface energy balance model has been implemented in a two-way-coupled manner
(Suter, 2018) and includes the effect of turbulent exchange of heat between the surface and
the air, as well as radiation and thermal conduction within the surface. uDALES has tools
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for modelling shortwave and longwave radiative fluxes following a radiosity approach (similar
to Aoyagi & Takahashi (2011); Resler et al. (2017)), including calculation of direct solar
radiation and view factors (Rammohan Rao & Sastri, 1996), considering shading and multiple
reflections.
uDALES also has the tools necessary to study air quality within cities. Both idealized (point
and line) and realistic (street network) sources can be implemented and both passive and
reactive scalars can be modelled. The code supports null cycle chemistry (NO-NO2-O3 reac-
tions), and can be easily extended to more sophisticated schemes (Grylls et al., 2019; Grylls,
2020). The high spatial and temporal resolution enables analysis of e.g. real-time pedestrian
pollution exposure.
The modelling capabilities of uDALES outlined above, combined with the ability to devise
numerous simulation set-ups (e.g. via different lateral boundary conditions: periodic, inflow-
outflow and driver) facilitate a plethora of possible studies into the urban environment. Rele-
vant recent publications and their research applications are summarized in Table 1.

Table 1: uDALES research applications.

Research application Reference
Urban boundary layers/ boundary-layer
meteorology

Grylls et al. (2019); Sützl et al. (2021);
Sützl (2021)

Urban climate (radiation, green roofs and walls,
trees etc.)

Suter (2018); Suter et al. (2021); Grylls
& van Reeuwijk (2021)

Pollution dispersion/ urban air quality Grylls et al. (2019); Grylls (2020)
Buoyancy/ convective and stable conditions Suter (2018); Grylls et al. (2020); Grylls

(2020); Grylls & van Reeuwijk (2021)

Here we present uDALES, a free and open-source large-eddy-simulation software for urban
flow, dispersion, and microclimate modelling. In the current platform on GitHub we include:
(i) cross-platform support for GNU, Intel, and Cray compilers on Windows and macOS sys-
tems, (ii) continuous integration with build and regression tests to check for compilation
and simulation errors respectively (Riechert & Meyer, 2019), and (iii) several pre- and post-
processing scripts in MATLAB as well as Singularity (Kurtzer et al., 2017) scripts to address
issues of scientific reproducibility (e.g. Meyer et al. (2020)). Current developments include
the role of urban trees (Grylls & van Reeuwijk, 2021) and future releases may include the use
of PsychroLib (Meyer & Thevenard, 2019) to improve the calculation of psychrometric prop-
erties of air, and the ability to simulate the diurnal cycle of the urban microclimate in response
to solar radiation (Suter, 2018). A detailed description of the model, including a validation
study and an example of the surface energy balance is provided in Suter et al. (2021).

References

Aoyagi, T., & Takahashi, S. (2011). Development of an urban multilayer radiation scheme
and its application to the urban surface warming potential. Boundary-Layer Meteorology,
142(2), 305–328. https://doi.org/10.1007/s10546-011-9679-0

Cai, X.-M. (2012). Effects of differential wall heating in street canyons on dispersion and
ventilation characteristics of a passive scalar. Atmospheric Environment, 51, 268–277.
https://doi.org/10.1016/j.atmosenv.2012.01.010

Cai, X.-M. (2011). Effects of wall heating on flow characteristics in a street canyon. Boundary-
Layer Meteorology, 142(3), 443–467. https://doi.org/10.1007/s10546-011-9681-6

Grylls, T. (2020). Simulating air pollution in the urban microclimate [PhD thesis].

Grylls et al., (2021). uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling. Journal of Open Source
Software, 6(63), 3055. https://doi.org/10.21105/joss.03055

2

https://doi.org/10.1007/s10546-011-9679-0
https://doi.org/10.1016/j.atmosenv.2012.01.010
https://doi.org/10.1007/s10546-011-9681-6
https://doi.org/10.21105/joss.03055


Grylls, T., Cornec, C. M. A. L., Salizzoni, P., Soulhac, L., Stettler, M. E. J., & van Reeuwijk,
M. (2019). Evaluation of an operational air quality model using large-eddy simulation.
Atmospheric Environment: X, 3, 100041. https://doi.org/10.1016/j.aeaoa.2019.100041

Grylls, T., Suter, I., & van Reeuwijk, M. (2020). Steady-state large-eddy simulations of
convective and stable urban boundary layers. Boundary-Layer Meteorology, 175(3), 309–
341. https://doi.org/10.1007/s10546-020-00508-x

Grylls, T., & van Reeuwijk, M. (2021). Tree model with drag, transpiration, shading and
deposition: Identification of cooling regimes and large-eddy simulation. Agricultural and
Forest Meteorology, 298-299, 108288. https://doi.org/10.1016/j.agrformet.2020.108288

Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Siebesma, A. P., Axelsen, S., van den
Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., & de Arellano, J.
V.-G. (2010). Formulation of the dutch atmospheric large-eddy simulation (DALES) and
overview of its applications. Geoscientific Model Development, 3(2), 415–444. https:
//doi.org/10.5194/gmd-3-415-2010

Hundsdorfer, W., Koren, B., Verwer, J., & others. (1995). A positive finite-difference ad-
vection scheme. Journal of Computational Physics, 117(1), 35–46. https://doi.org/10.
1006/jcph.1995.1042

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PLOS ONE, 12(5), e0177459. https://doi.org/10.1371/journal.
pone.0177459

Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V.,
Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten,
A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., … Raasch,
S. (2020). Overview of the PALM model system 6.0. Geoscientific Model Development,
13(3), 1335–1372. https://doi.org/10.5194/gmd-13-1335-2020

Meyer, D., Schoetter, R., Riechert, M., Verrelle, A., Tewari, M., Dudhia, J., Masson, V.,
van Reeuwijk, M., & Grimmond, S. (2020). WRF-TEB: Implementation and evaluation
of the coupled weather research and forecasting (WRF) and town energy balance (TEB)
model. Journal of Advances in Modeling Earth Systems, 12(8). https://doi.org/10.1029/
2019ms001961

Meyer, D., & Thevenard, D. (2019). PsychroLib: A library of psychrometric functions to
calculate thermodynamic properties of air. Journal of Open Source Software, 4(33), 1137.
https://doi.org/10.21105/joss.01137

Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge
University Press. https://doi.org/10.1017/9781139016476

Pourquie, M., Breugem, W. P., & Boersma, B. J. (2009). Some issues related to the
use of immersed boundary methods to represent square obstacles. International Jour-
nal for Multiscale Computational Engineering, 7(6), 509–522. https://doi.org/10.1615/
intjmultcompeng.v7.i6.30

Rammohan Rao, V., & Sastri, V. M. K. (1996). Efficient evaluation of diffuse view factors
for radiation. International Journal of Heat and Mass Transfer, 39(6), 1281–1286. https:
//doi.org/10.1016/0017-9310(95)00203-0

Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O.,
Damašková, D., Eben, K., Derbek, P., Maronga, B., & Kanani-Sühring, F. (2017).
PALM-USM v1.0: A new urban surface model integrated into the PALM large-
eddy simulation model. Geoscientific Model Development, 10(10), 3635–3659.
https://doi.org/10.5194/gmd-10-3635-2017

Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O.,
Damašková, D., Eben, K., Derbek, P., Maronga, B., & Kanani-Sühring, F. (2017).

Grylls et al., (2021). uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling. Journal of Open Source
Software, 6(63), 3055. https://doi.org/10.21105/joss.03055

3

https://doi.org/10.1016/j.aeaoa.2019.100041
https://doi.org/10.1007/s10546-020-00508-x
https://doi.org/10.1016/j.agrformet.2020.108288
https://doi.org/10.5194/gmd-3-415-2010
https://doi.org/10.5194/gmd-3-415-2010
https://doi.org/10.1006/jcph.1995.1042
https://doi.org/10.1006/jcph.1995.1042
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.5194/gmd-13-1335-2020
https://doi.org/10.1029/2019ms001961
https://doi.org/10.1029/2019ms001961
https://doi.org/10.21105/joss.01137
https://doi.org/10.1017/9781139016476
https://doi.org/10.1615/intjmultcompeng.v7.i6.30
https://doi.org/10.1615/intjmultcompeng.v7.i6.30
https://doi.org/10.1016/0017-9310(95)00203-0
https://doi.org/10.1016/0017-9310(95)00203-0
https://doi.org/10.5194/gmd-10-3635-2017
https://doi.org/10.21105/joss.03055


PALM-USM v1.0: A new urban surface model integrated into the PALM large-
eddy simulation model. Geoscientific Model Development, 10(10), 3635–3659.
https://doi.org/10.5194/gmd-10-3635-2017

Riechert, M., & Meyer, D. (2019). WRF-CMake: Integrating CMake support into the ad-
vanced research WRF (ARW) modelling system. Journal of Open Source Software, 4(41),
1468. https://doi.org/10.21105/joss.01468

Suter, I. (2018). Simulating the impact of blue-green infrastructure on the microclimate of
urban areas. https://doi.org/10.25560/78715

Suter, I., Grylls, T., Sützl, B. S., & van Reeuwijk, M. (2021). uDALES 1.0.0: A large-
eddy-simulation model for urban environments [In preparation]. In Geoscientific Model
Development. Copernicus GmbH.

Sützl, B. S. (2021). Rising from the ground: Distributed drag parameterization of urban
environments for numerical weather prediction [PhD thesis].

Sützl, B. S., Rooney, G. G., & van Reeuwijk, M. (2021). Drag distribution in idealized het-
erogeneous urban environments. Boundary-Layer Meteorology, 178(2), 225–248. https:
//doi.org/10.1007/s10546-020-00567-0

Tomas, J. M., Pourquie, M. J. B. M., & Jonker, H. J. J. (2015). The influence of an obstacle
on flow and pollutant dispersion in neutral and stable boundary layers. Atmospheric
Environment, 113, 236–246. https://doi.org/10.1016/j.atmosenv.2015.05.016

Uno, I., Cai, X.-M., Steyn, D. G., & Emori, S. (1995). A simple extension of the louis
method for rough surface layer modelling. Boundary-Layer Meteorology, 76(4), 395–409.
https://doi.org/10.1007/bf00709241

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to compu-
tational continuum mechanics using object-oriented techniques. Computers in Physics,
12(6), 620. https://doi.org/10.1063/1.168744

Grylls et al., (2021). uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling. Journal of Open Source
Software, 6(63), 3055. https://doi.org/10.21105/joss.03055

4

https://doi.org/10.5194/gmd-10-3635-2017
https://doi.org/10.21105/joss.01468
https://doi.org/10.25560/78715
https://doi.org/10.1007/s10546-020-00567-0
https://doi.org/10.1007/s10546-020-00567-0
https://doi.org/10.1016/j.atmosenv.2015.05.016
https://doi.org/10.1007/bf00709241
https://doi.org/10.1063/1.168744
https://doi.org/10.21105/joss.03055

	Summary
	References

