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Abstract

T2K (from Tokai-to-Kamioka) is a long-baseline neutrino experiment using an off-axis

neutrino beam to produce a narrow neutrino energy spectrum. T2K uses a near de-

tector (ND280) to constrain the neutrino cross-section and beam flux systematics for

the neutrino oscillation analyses, and provides some of the world’s leading cross-section

measurements. The neutrino beam is directed to, and detected at, Super-Kamiokande,

a large 50 kT Water Cherenkov detector that is also being used to study atmospheric,

cosmic, supernovae neutrinos and more.

We describe the oscillation analysis for the T2K experiment that uses both near and

far detector data, using Markov Chain Monte Carlo techniques to construct the Bayesian

posterior probability distributions for the oscillation parameters. The analysis of the full

T2K run 1–9 data with the reactor constraint on sin2 θ13 show that the CP conserving

values of δCP are rejected with at least 2σ confidence and intervals between -2.95 and

-0.50 with the best fit point -1.82 rad, whereas the 3σ intervals are -π – 0.13 & 2.80 –

π. The Normal Mass hierarchy has 88.9% of the total Markov Chain Monte Carlo steps,

corresponding to the likelihood-ratio of the two hypotheses, Bayes Factor, of 8.0. This

can be considered as “substantial” on the Jeffreys scale, which is an interpretation the

strength of Bayes Factors. The best fit point of sin2 θ23 is 0.537, preferring higher octant

with 79.5% Markov Chain Monte Carlo steps. This corresponds to the Bayes Factor of

3.4, again “substantial” on the Jeffreys scale.

Neither run 1–9c nor full run 1–9d data are incompatible with the PMNS model. The

1σ intervals for P (νµ →νe ) and P (ν̄µ →ν̄e ) posterior probability distributions for both

PMNS and non-PMNS analyses comfortably overlap. Far more data from the T2K’s far

detector, Super-K, is needed to see any potential deviations; we are currently statistically

limited.

We also describe the development of a novel neutrino event reconstruction method

for large Water Cherenkov detectors using similar Bayesian methods as in the oscillation

analysis.
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Chapter 1

Neutrino Physics

1.1 Introduction

Neutrinos are neutral fermions predicted by Wolfgang Pauli in 1930 [1], and a part of the

Standard Model (SM) that could help explain some of the biggest existential questions

that physics poses. We know that as we create matter, we have to create equal amount

of antimatter through pair-production. This, however, is not what we observe from the

result of the Big Bang. We see an abundance of matter in the universe, and not much

antimatter, meaning that the universe’s current baryon number does not seem to be 0 as

expected. Have the matter and antimatter been generated in equal proportions during

the Big Bang, mass annihilation would have made the current abundance of variety in

the universe impossible. The hypothetical process by which the universe started with an

average baryon number of 0, and ended with mostly matter, is called Baryogenesis; still

unresolved, and not understood.

The Standard Model cannot fully solve the problem of baryogenesis; there must

be more physics beyond the Standard Model to explain this discrepancy. One of the

possible processes allowing this, is violation of the Charge-Parity symmetry [2] – where

the laws of physics would apply differently for particles and antiparticles. Neutrinos, in

the standard model, are massless particles. There is more than enough of experimental

evidence showing that this is not the case; neutrino flavour changes as it propagates

1
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through space, a phenomena called “neutrino oscillation”, which is a process that is

only possible if neutrinos do indeed have a mass. Since neutrinos have mass that is

linked with their flavour that oscillates, these oscillations could violate CP-symmetry,

possibly contributing to the solution of the matter-antimatter asymmetry, and maybe

even contribute - in the far future - to the development of a Grand Unified Theory

(GUT), linking the electromagnetic, weak and strong force [3].

There are more still-unanswered questions in neutrino physics, some of which this

thesis will contribute as well. Are the neutrino mass eigenstates arranged in a normal

or inverted order? Answering this question would then help us with choosing appropri-

ate Grand Unified Theory (GUT), and help with determining our current sensitivity to

answering another question; are neutrinos their own antiparticles (Majorana-like), or are

neutrinos and antineutrinos separate particles (Dirac-like)? If neutrinos are Majorana-

like, it would be potentially far more difficult to resolve the Dirac vs Majorana neutrino.

If neutrinos are, however, Majorana-like, the possibility of a fourth, heavy neutrino would

be possible through the Seesaw mechanism (which tries to explain why neutrinos are so

much lighter than the charged fermions), getting us closer to GUT [4].

Both the neutrino mass hierarchy and the CP-violating phase are some of the main

goals the T2K experiment, and are being measured through the neutrino oscillations; the

main topic of this thesis.

1.2 Discovery of neutrinos

Neutrinos were first proposed as the solution to anomalous results from β-decay experi-

ments, in the early 20th century. James Chadwick found in 1914 that the β-decay of a

nucleus does not result in fixed electron energy - as postulated given the then-agreed-upon

proton-electron nuclear model [7]. This was later confirmed by C. Ellis and W. Wooster,

who preformed more detailed experiments and confirmed that energy conservation seems

to be broken [8].

In 1930, Wolfgang Pauli proposed the “neutron”, an electrically neutral particle

with spin 1/2, and with a mass of the same order of magnitude as an electron and no
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greater than 0.01 of the proton’s mass. That particle was meant to be emitted alongside

the electron in β-decays, with the sum of energies being constant - potentially solving

problems with the violation of energy conservation [1]. In 1932, J. Chadwick performed

another β experiment, where he discovered a heavy neutral particle, which he called the

“neutron”.

This was not the light neutron Pauli had imagined, and it was not until Enrico Fermi

developed the idea further. He added the newly discovered heavy neutron1 to the nuclear

model, and renamed Pauli’s light neutron to “neutrino”[9]. He assumed the neutrino

has no mass, and that an electron and antineutrino pair was produced during β-decay,

through n → p+ e− + ν̄.

It was a long wait for the first observation of a neutrino; in 1953 F. Reines and

C.L. Cowan detected neutrinos for the first time at the Savannah River nuclear reactor2

via inverse-β decay, ν̄ + p = e+ + n. The experiment consisted of a liquid scintillator

loaded with CdCl2 as the target material, with 110 photo-multiplier tubes (PMTs) to

detect γs from positron-electron annihilation [11, 10]. The results from the Savannah

River experiment eventually got F. Reines and C. Cowan a Noble price in 1995.

The existence of the muon flavored neutrino, νµ, was confirmed with the first ever

accelerator beam neutrino experiment in 1962. L.M. Lederman, M. Schwartz, J. Stein-

berger et al. carried out an idea from B. Pontecorvo to use a beam of π+, decaying via

π+ → νµ + µ+ and π+ → νe + e+ [13]. The neutrino beam transversed heavy iron shield-

ing to stop any charged particles, and finally through a 10 ton aluminium spark chamber

where neutrino interactions produced charged particles - the designated neutrino detec-

tor. The pion decay involving electrons was expected to be heavily suppressed, and if

νe and νµ were the same, we would expect to see equal numbers of µ− and e− in the

detector. Instead, a large excess of µ− and a background-consistent number of e− was

observed, confirming that νµ exists and is a different particle from νe. These results were

later confirmed at CERN in 1964 with a greater beam intensity and lower νe contamina-

tion [14].

1The particle we still know today as the “neutron”
2Originally they wanted to use a nuclear bomb explosion as a source of neutrinos. It was only later

that it occurred to them that the already-existing nuclear reactors make for a somewhat safer experiment
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Years 1975-1977 brought another big discovery; an even heavier charged lepton,

τ , was produced using an electron-positron collider at the Stanford Linear Accelerator

Center (SLAC) laboratory [15]. Anomalous events, e+ + e− → e± +µ∓+ missing energy,

were found at the centre-of-mass energies of 4GeV and above, where the spectra of the

missing energy indicated two undetected particles. Of course, given that all the other

charged leptons had the same flavoured neutrino companion, it was expected that the

ντ must exist. This was proved to be true by the DONUT collaboration at Fermilab in

2000, where four ντ events were found by looking for τ at the interaction vertex in nuclear

emulsion.

1.3 Neutrino Mixing

Neutrino Oscillation is a phenomenon where a neutrino with a certain flavour changes

into a different flavour after propagating some distance. Neutrinos must have a non-zero

mass to oscillate. This stands against the Standard Model, which assumes neutrinos to

be Dirac-like, left-handed particles with zero mass.

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix links the three neu-

trino flavour eigenstates with three mass eigenstates, and it is the most commonly used

model in the experiments that involve neutrino oscillations [6, 40]. The historical aspects

of this matrix are discussed more in section 1.5. The formalisation starts by defining

three mass eigenstates, ν1, ν2 and ν3, where each mass eigenstate is a superposition of all

the flavour states;

|νi〉 =
∑

α

Uαi|να〉, (1.1)

where U is the PMNS mixing matrix, linking the mass and flavour states together;

U =








Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3








. (1.2)

This 3 × 3 unitary mixing matrix is often separated into three separate ones, in

terms of the mixing angles, θ13, θ23, and δCP , the Charge-Parity violating phase. The
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split matrix is:

U =








1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23








︸ ︷︷ ︸

Atmospheric, Accelerator








cos θ13 0 sin θ13e
−iδCP

0 1 0

− sin θ13e
iδCP 0 cos θ13








︸ ︷︷ ︸

Reactor, Accelerator








cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1








︸ ︷︷ ︸

Solar, Reactor

.

(1.3)

This split is done for convenience, as it shows which neutrino’s origin constrain these

parameters the best. The solar experiments, for example, measured the oscillations of

νe to νµ, which is most sensitive to θ12. Many experiments are trying to measure the

PMNS parameters with neutrinos from multiple origins, for example, Super-K measures

the solar and atmospheric neutrinos, with some potential for the reactor neutrinos [132].

A neutrino propagates through space as a superposition of the three mass eigenstates,

so eq. 1.1 can be rewritten in terms of mass states by taking the Hermitian conjugate

of the mixing matrix and propagating it with time in a form of a plane wave (in other

words, a solution to the time-dependent Schrödinger equation):

|να(t)〉 =
∑

i

U∗
αi|νi〉e−iφi . (1.4)

The neutrino now propagates through space with time, and thanks to the PMNS mixing

matrix there is a probability that it will change its flavour as it travels. The amplitude of

a neutrino with given flavour α being observed with a different flavour β after propagation

is 〈νβ|να(t)〉, and so the probability of a neutrino oscillating can be written;

P (να → νβ) =
∑

i,j

U∗
αiUβiUαjU

∗
βje

−i(φj−φi), (1.5)

where the φj − φi term is equivalent to Ejt − Eit − pjx + pix. We can assume that a

neutrino is a relativistic particle, and we approximate that

pi =
√

E2
i −m2

i ≈ Ei −
m2

i

2Ei

. (1.6)

We can make a further approximation, where the neutrino mass eigenstates are created

with the same energy (momenta), and that x = t = L (where L is the distance travelled

by the neutrino) to give

φj − φi =
∆m2

ijL

2E
. (1.7)
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Going back to eq. 1.5, we can now substitute the PMNS parameters and 1.7 and expand

all the terms to get the probability of να oscillating to νβ,

P (να → νβ) = 〈νβ|να〉 − 4
∑

i>j

IR(U∗
αiUβiUαjU

∗
βj) sin

2

(
∆m2

ijL

4E

)

(1.8)

+2
∑

i>j

II(U∗
αiUβiUαjU

∗
βj) sin

(
∆m2

ijL

4E

)

, (1.9)

for the neutrino case, and the imaginary part is taken away in the antineutrino case. The

〈νβ|να〉 term is the Kronecker delta δαβ, equal to 1 if α = β and 0 otherwise.

It is easier to derive the neutrino oscillation probability using the the two-flavour

neutrino approximation, where the unitary mixing matrix U becomes much simpler and

reduces to

U =




Uα1 Uα2

Uβ1 Uβ2



 =




cos θ sin θ

− sin θ cos θ



 , (1.10)

whereas the oscillation probability reduces to

P (να → νβ) = 2 sin2(2θ) sin2

(
1.27∆m2

ijL

E

)

, (1.11)

where L is given in km, ∆m2
ij in eV2 and E in GeV. The number 1.27 is picked up when

we take h̄ and c into the account.

Most long-baseline accelerator neutrino experiments use the full three-flavour oscil-

lation hypothesis and are concerned with two oscillation probabilities; electron neutrino

(and electron antineutrino) appearance from a νµ beam, P (νµ → νe), and the νµ survival

probability (also called “νµ disappearance”),

P (
(−)
νµ → (−)

νe ) ≃ sin2 θ23 sin
2 2θ13 sin

2 ∆m2
32L

4E
+ sin2 2θ13 cos

2 θ23 sin
∆m2

21L

4E
(+)

− cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin
∆m2

32L

4E
sin

∆m2
21L

4E
sin

∆m2
32L

4E
sin δCP

+ cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin
∆m2

32L

4E
sin

∆m2
21L

4E
cos

∆m2
32L

4E
cos δCP

+ (solar, matter effect terms), (1.12)
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and

P (
(−)
νµ → (−)

νµ ) ≃ 1− 4 sin2
23 cos

2
13 cos

2
23 sin

2 ∆m2
32L

4E

− 4 sin2
23 cos

2
13 sin

2
23 sin

2
13 sin

2 ∆m2
32L

4E

+ (solar, matter effect terms). (1.13)

Most sensitivity to δCP comes from the appearance channel that has a dependence

on sin δCP and cos δCP. The appearance channel also gives a small sensitivity to the sign

of the ∆m2
32 and the octant of θ23, whereas the disappearance channel gives a first-order

sensitivity to the magnitude of ∆m2
32 and θ23.

1.4 Interactions in matter

The oscillation probability equations 1.12 and 1.13 contain the “matter effect” terms.

The matter effect is very important as many neutrino experiments detect neutrinos that

traverse through the Earth’s soil, the Sun’s core and outer layers etc. from the beam

origin to the detector over a large distance. Figure 1.1 shows the two types of neutrino

interaction with electrons in matter, one through the charged-current W boson exchange,

and the neutral-current interaction with Z0 boson exchange.

Each interaction modifies the potential that neutrinos propagate through – and this

potential is different for electron neutrinos, since they can additionally interact via the

charged-current interaction. This additional potential is felt through the modified Hamil-

tonian, VCC = ±
√
2GFNe, where GF is the Fermi constant, and Ne is the electron den-

sity in matter. With the Earth being made of matter only, and not antimatter, an

electron neutrino that propagates through matter gets a positive sign of VCC , whereas

anti-neutrino – negative. Without taking this into the account in the 3-flavour oscillation

model, it would be easy to get a fake “CP-violation” effect.

This is called the Mikheyev–Smirnov–Wolfenstein (MSW) [128, 129] effect, and it

appears in the oscillation probability as an extra dependence on the sign of ∆m2
32 and

the distance travelled L, separate from the L/E terms from the plane wave equations.
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νe e−

e− νe

W+

(a) νe on e− charged-current

interaction

ν̄e

e−

e−

ν̄e

W−

(b) ν̄e on e− charged-current

interaction

νe,ν,τ νe,µ,τ

n, p, e n, p, e

Z0

(c) Neutral-current interaction

for neutrino of any flavour

Figure 1.1: Feynman diagrams for charged-current (a, b) and neutral-current (c) neutrino

interactions with matter

This means it is possible to gain extra sensitivity to the mass hierarchy by extending

the distance travelled in matter by neutrinos whilst fixing the L/E ratio in, say, long-

baseline accelerator experiments – even if δCP is 0. Chapter 5 will illustrate how the

matter effect affects the T2K oscillation analysis, and compare the T2K matter effect

against the NOvA experiment.

1.5 Evidence for neutrino oscillation

Ray Davis designed and started building an experiment in the depths of the South Dakota

Homestake mine, almost 1.5km underground, around 1965. The experiment was designed

to measure the solar neutrino flux, which was back then predicted by a well-established

solar model. A 380 cubic litres tank was filled with a dry cleaning liquid rich with chlorine,

and an electron neutrino would interact with that chlorine via

νe +
37 Cl →37 Ar + e−,

to produce an unstable isotope of argon. R. Davis isolated the accumulated argon isotopes

by bubbling the detector with helium gas and chemically purifying it. The isolated and

purified argon sample would then be inserted into a small gas proportional counter to

find the number of neutrino interactions. The experiment ran between 1970-1994 and
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from the early start has seen around 1/3 of the expected electron neutrino flux. The

first results, published in 1968 [20], were widely criticized. Both the calculated prediction

of the solar flux and the experiment itself were blamed for the data-model expectation

discrepancy. The calculations were checked and confirmed to be correct, whereas R. Davis

insisted that there was nothing wrong with the experiment itself.

The Homestake experiment was the first to measure the discrepancy between the

expected and measured solar neutrino flux, creating the famous “solar neutrino problem”.

Around the same time Bruno Pontecorvo predicted the oscillation of neutrinos [5, 6],

which could solve the discrepancy. This required neutrino to have a mass, and the idea

of a massless neutrino was still the dominant one in the physics community; therefore,

not much attention was paid to Pontecorvo at that time.

A new 1 kton Water-Cherenkov experiment, Kamiokande, started taking data in the

Kamioka mine in Japan around 1983, and published its own solar neutrino measurements

around one year after the Homestake experiment, in 1989 [21]. The results echoed what

the Homestake experiment has seen; there was an apparent deficit in the solar neutrino

flux.

In 2002 the SNO collaboration has confirmed the deficit in a model-independent way.

They measured the neutrino flux by using heavy water as a target material (Kamiokande

used ultra-purified water), allowing for three interactions;

νe + d → e− + p+ p, (1.14)

νx + d → νx + p+ n, (1.15)

νx + e− → νx + e−, (1.16)

meaning that SNO could measure not only the electron neutrino flux, but measure the

total neutrino flux as well. When measured the signal from interaction 1.14 alone, SNO

observed only third of the expected neutrinos. The total neutrino flux, when measured

over all the above interactions, was however consistent with the solar model expectation

for electron neutrino flux. The νe flux was measured to be 1.76+0.14
−0.14×106 cm2s−1, whereas

the νµ,τ flux was 3.41+0.93
−0.90×106 cm2s−1; the sum of which was consistent with the expected

νe-only flux under no-oscillations hypothesis, 5.21+0.35
−0.35×106 cm2s−1. The paper was titled

“Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions
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in the Sudbury Neutrino Observatory”[22], with no further comment needed.

Thus, the era of large neutrino oscillation experiments has began. The experiments

can be split into a few distinct groups, depending on the origin of the neutrinos that the

experiments are measuring, and these are; atmospheric neutrinos, reactor neutrinos and

accelerator neutrinos.

Atmospheric Neutrinos

Cosmic rays interacting with the Earth’s atmosphere cause hadronic showers, resulting in

charged pions. These pions, with energy widely peaked around 1GeV, will decay further

to muons and neutrinos via

π± → µ± +
(−)
νµ . (1.17)

Hints of νµ disappearance (νµ oscillating into different flavour) were first seen in IMB [23]

and Kamiokande-II [24] experiments, but it was Super-Kamiokande collaboration, in

1998, that found a solid evidence of atmospheric neutrino oscillation [25]. Figure 1.2

shows the deficit of muon neutrinos at high L/E, as expected under νµ → ντ prediction

shown with a dashed line. Neutrinos at low L/E had more probability to be generated

in the atmosphere above Super-Kamiokande, having less time to oscillate, whereas the

high L/E correspond to the neutrinos that travelled through the earth to reach the

Super-Kamiokande tank.

Atmospheric neutrino experiments are the most sensitive to two PMNS-model os-

cillation parameters; ∆m2
32 and sin2 θ23. It is often common to call these “atmospheric

parameters”, even though nowadays these can also be successfully probed by long-baseline

accelerator neutrino experiments. The comparison of the results between various atmo-

spheric and accelerator neutrino experiments is shown in figure 1.3, where we see an

excellent agreement between them.

Reactor neutrinos

Section 1.2 described the first neutrino discovery, which was done with a reactor exper-

iment. Reactor neutrino experiments are usually short-baseline, on the order of ∼1 km,
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Figure 1.2: Results from the SK atmospheric analysis: ratio of the fully-contained events

over the Monte-Carlo events for e-like and µ-like events for different reconstructed L/E.

The dashed lines show the predicted ratios under the νµ → ντ hypothesis. Figure taken

from [25].

Figure 1.3: The latest comparison of the 90% confidence levels for “atmospheric param-

eters”, ∆m2
32 against sin2 θ23 between various atmospheric and long-baseline accelerator

neutrino oscillation experiments. This is assuming normal mass hierarchy. Figure taken

from [48]
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and measure θ13 through ν̄e disappearance. These measurements are important for this

thesis; results from the reactor neutrino experiments are often used to enhance the sen-

sitivity of long-baseline accelerator neutrino experiments by providing an external con-

straint on θ13. The long baseline accelerator experiments currently do not have a high

sensitivity to the values of θ13, so having an external measurements is crucial — espe-

cially since θ13 has a large impact on the electron neutrino appearance in a muon neutrino

beam.

Daya Bay was the first experiment to give an over 5σ evidence of non-zero θ13 in

2012 [29], after indications from Double Chooz [28], T2K [26] and MINOS [27]. This was

confirmed later that year by the RENO collaboration with 4.9σ significance [30], and

finally by T2K with 7.3σ in 2014 [31]. The current world-leading constriants on θ13 still

come from the reactor neutrino experiments.

KamLAND is a Japanese experiment in the place of the old Kamiokande (which,

in turn, was surpassed by Super-Kamiokande), and measures reactor antineutrinos on

a long-baseline (among other sources of neutrinos). KamLAND is surrounded by ∼53

nuclear reactors with various baselines averaging to around 180 km. It consists of a balloon

filled with 1 kton of liquid scintillator, surrounded by ∼1900PMTs. The long baseline

allowed KamLAND to measure ∆m2
21 and tan2 θ12 with the data collected between 2002

and 2005 [32, 33] and shown in figure 1.4.

Figure 1.4: The reactor neutrino events seen for different L/E, with the best-fit oscillated

spectrum. Figure taken from [33]
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Accelerator neutrinos

The first long-baseline accelerator neutrino experiment was based in Japan, the KEK-

to-Kamioka (K2K) experiment. The neutrino source was somewhat similar to the at-

mospheric neutrinos; a beam of 12GeV protons from proton-synchrotron, incident on a

beam-dump, would produce predominantly charged pions which would decay producing

mostly muon neutrinos. Path of the positively and negatively charged pions could be di-

verted with magnetic horns. The magnetic horns generate a toroid-shaped magnetic field,

which focus the right-sign and deflect the wrong-sign mesons – the focused π+(π−) then

decay into νµ(ν̄µ) [130]. The neutrino beam would pass through a set of near detectors

(including a 1 kton Water-Cherenkov tank) around 300m away from the beam target, and

finally reach the far detector, Super-Kamiokande, 250 km away from the KEK facility. A

schematic diagram showing the experimental setup is shown in figure 1.5.

Figure 1.5: A bird’s-eye view drawing showing K2K experimental setup. KEK facility

was in Tsukuba city, Ibaraki prefecture, where the neutrinos were generated from pion

decay with use of proton synchrotron. The neutrinos would travel ∼250 km through soil

to finally reach Super-Kamiokande near Kamioka town in Gifu prefecture. Figure taken

from [50].

The K2K experiment collected data from 1999 to 2004, detecting 112 accelerator

neutrinos with 158+9.2
−8.6 expected under the no-oscillations hypothesis, rejecting it at 4.3σ

and confirming the results from atmospheric neutrino experiments [34]. Figure 1.6 shows

the data; the number of detected neutrinos per energy bin, with red and blue lines showing

the best-fit spectrum to the data and the unoscillated expectation, respectively.
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Figure 1.6: Results from the K2K experiment; best fit spectrum (red) on top of the data,

together with the unoscillated expectation (blue). Figure taken from [34].

Many accelerator neutrino experiments followed K2K, and all of them had a similar

setup; a proton beam incident on a target, generating mesons that would decay into

mostly muon neutrinos. One example is MINOS; an experiment with a muon neutrino

beam from NuMI beamline in Fermilab, 0.98 kton near detector placed ∼1 km away from

the proton beam target, and a 5.4 kton far detector placed 735 km away in northern Min-

nesota. Both detectors were magnetized, segmented steel-scintillator calorimeters. The

experiment, although with different baseline, neutrino energies and detector technology,

has also confirmed that muon neutrinos oscillate [35].

There are a few accelerator neutrino experiments currently in operation; this thesis

involves one of them, the T2K experiment, a direct successor of the K2K experiment

(although with different beamline and near detectors). NOvA is a direct successor of MI-

NOS, still using Fermilab’s NuMI beam and with the far detector sitting 810 km from the

proton beam target. These experiments, with higher statistics, improved detector tech-

nologies and knowledge from the previous experiments have broader goals; to measure

δCP , sin
2 θ23, |∆m2

32|, the mass hierarchy, and neutrino cross-sections on various targets,

and more. They not only measure muon neutrino disappearance, but also electron neu-

trino appearance in a muon neutrino beam; thanks to the higher statistics with more

intense beams and more far detector target material. These experiments will be then

succeeded by Hyper-Kamiokande and DUNE, which are both entering the construction
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stage.

Other neutrinos

Although not related much to this thesis, there are other sources of neutrinos, which are

interest mostly in astrophysics; in these cases neutrinos are usually used as a tool, rather

than a direct subject of research. A good example of this is the search for supernovae; star

cores generate an enormous burst of neutrinos as they collapse. These neutrinos can reach

the Earth before the visible light, and be detected with most large neutrino detectors in

a form of an event pileup. This gives a possibly of giving directional information to the

wider astronomical community before the event is detectable with light-based telescopes.

An example of this is Supernova SN 1978A, detected by Kamiokande-II [36]. IceCube

actively probes for very high-energy neutrino sources in a collaboration with cosmic-ray

research [37] in a neutrino energy region of many PeV. Neutrinos are also being used

for Dark-Matter detection, both as a direct and indirect signal [38]. There are possible

applications in the tomography of the Earth with geoneutrinos [39], and even profiling of

nuclear reactors [131].

1.6 The Current State of Neutrino Oscillations

Neutrino physics has come a long way since the first observation of neutrinos in 1953.

We now know that neutrinos are not massless and they change their flavour as they

propagate through space (a.k.a. “neutrino oscillation” described earlier). The evidence

comes from a large variety of experiments; ones involving nuclear reactors, huge detectors

buried under mountain peaks and Antarctic ice sheets, submerged in lakes and seas, built

from gas, solid and liquid. Although the properties of neutrinos are still being measured,

these particles are already being used as a tool to search, for example, for supernovae

and dark matter.

Although this thesis is only concerned with the neutrino oscillation phenomena via

long-baseline accelerator experiments, a large variety of neutrino experiments use neu-

trinos as a tool for discoveries, and also need to know the PMNS parameters for their
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research. Below are the current states of the PMNS parameters, θ13, θ23, θ12, ∆m2
32,

∆m2
21 and δCP, at the time of writing this thesis;

θ13θ13θ13 : Reactor experiments with a km-baseline that measure antineutrino disappearance

through P(ν̄e → ν̄e) are the most sensitive to θ13. It is also possible to measure θ13 with

accelerator neutrino experiments through P (νµ →νe ).

The most recent update on θ13 comes from the Particle Data Group (PDG) 2019,

which released the average best-fit and confidence levels from a combination of results

from three different reactor neutrino experiments: Daya Bay, Reno and Double Chooz,

most of which updated their results in 2018. The final θ13 constraint is sin2 θ13 =

0.0218+0.0007
−0.0007 [18]. This value is still to be used in the coming T2K oscillation analy-

sis, and in this thesis an older value from PDG 2018 is used: sin2 θ13 = 0.0212+0.0008
−0.0008.

θ12θ12θ12 : Often called a “solar parameter” (together with ∆m2
21), can be also measured with

reactor neutrinos with over 100 km baseline. Solar neutrino experiments have the best

sensitivity to θ12 through P(νe → νµ,τ ) over a long baseline.

The currently most up-to-date constraint on θ12 comes from a 2016 joint fit to all of

the solar data from SNO and SK collaborations, together with the measurements from

the KamLAND experiment. The value of θ13 in this joint fit is constrained with the

results from reactor neutrino experiment, described above. The θ13-constrained joint fit

gives sin2 θ12 = 0.307+0.013
−0.012 [17].

θ23θ23θ23 : This is one of the parameters that the long-baseline accelerator neutrino exper-

iments have a large sensitivity via νµ disappearance, P (νµ →νµ ), together with the

atmospheric neutrino experiments via P(νµ → ντ ).

The best constraint is currently obtained from the T2K experiment, although the

PDG does its own fit for different mass hierarchies and θ23 octants given by the T2K,

NOvA, MINOS and IceCube DeepCore experiments. The most up-to-date value of θ23

from the T2K experiment (possibly not published yet by the time of submission of this

thesis) from the Bayesian analysis is sin2 θ23 = 0.537+0.027
−0.036 with the reactor experiment

constraint on θ13, and is further described in chapter 4.
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∆m2
21∆m2
21∆m2
21 : Similarly to θ12, this parameter can be constrained via both solar and reactor

neutrino experiments via P(ν̄e → ν̄e).

The latest update of the PDG official limit on ∆m2
21 was from the 2013 paper from

KamLAND, which performed a fit with θ13 constraint from the accelerator (T2K +

MINOS) and reactor (Daya Bay, RENO, Double Chooz) neutrino experiments. The

data used included solar data and KamLAND’s geoneutrino data, to extract ∆m2
21 =

7.53+0.18
−0.18 × 10−5 eV2 [19]. The more recent analysis from the Super-Kamiokande collabo-

ration, that also included reactor, solar and KamLAND constraint, came out with similar

limits of ∆m2
21 = 7.49+0.19

−0.18 × 10−5 eV2 [17].

∆m2
32∆m2
32∆m2
32 : The ∆m2

32 mass-splitting term, just like θ23, is best measured with atmospheric

and accelerator neutrino experiments. The atmospheric experiments have a wide range of

L/E depending on the angle the neutrino came from, whereas the accelerator experiments

have a fixed L/E.

The T2K experiment still provides some of the best constraints on ∆m2
32, which will

continue to get better as we collect more data, especially in ν-beam mode. The most

recent constraint from the T2K Bayesian analysis (possibly still not published by the

time of submission of this thesis) is ∆m2
32 = 2.46+0.08

−0.09 × 10−3 eV2 when marginalized over

both mass hierarchies, and will be explained more in chapter 4. The PDG 2019 has done

its own joint fit by combining results from various accelerator, reactor and atmospheric

neutrino experiments to extract values of ∆m2
32 = 2.444+0.034

−0.034× 10−3 eV2 for normal mass

hierarchy and ∆m2
32 = −2.55+0.04

−0.04 × 10−3 eV2 for the inverse.

δCPδCPδCP : The CP-violating phase is negligible in the νe survival probability to the lead-

ing order [133], and is currently best probed with the νe appearance probability, P (νµ

→νe ), using atmospheric and accelerator neutrino experiments.

δCP is still largely unknown; the CP-conserving values, between 0 and π, are only

rejected with ∼2 σ intervals. Constraining the value of δCP with the T2K experiment is

the main topic of this thesis, and at the time of writing the document, the constraint is

δCP = −1.82+0.69
−0.57 rad. This is currently the world-best constraint on δCP, published in
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the journal Nature [53]. The validations, analysis and results that led to these numbers

are described in chapter 4.



Chapter 2

Tokai to Kamioka experiment

This chapter describes the Tokai to Kamioka experiment (T2K), a second-generation long

baseline accelerator neutrino experiment based in Japan. It was commissioned in 2009,

and started operations in 2010. T2K measures νµ and ν̄µ disappearance together with

νe and ν̄e appearance in νµ and ν̄µ beams, through the P (νµ →νµ ), P (ν̄µ →ν̄µ ), P (νµ →νe

) and P (ν̄µ →ν̄e ) oscillation probabilities. A proton synchrotron in the Japan Proton

Accelerator Research Center (J-PARC) in Tokai (東海村) provides a proton beam at

30GeV, which is directed onto a graphite target with five kicker magnets. The collisions

on that target result in charged mesons (predominantly pions and kaons) which produce

neutrinos as they decay whilst they propagate through a ∼96m decay volume, which

is very similar the K2K experiment described in section 1.5. As the charged mesons

leave the graphite target, a set of magnetic horns bend them to either divert positively

or negatively charged particles towards the tunnel; the so-called Forward-Horn-Current

(FHC) results in a beam dominated by ν, and the Reverse-Horn-Current (RHC) results

in a ν̄-enhanced beam. The decaying pion branching ratios strongly favour

π+ → µ+ + νµ and π− → µ− + ν̄µ,

although there is still ∼1.2% contamination of νe through

π+ → e+ + νe and π− → e−ν̄e,

and much smaller contamination from the decaying muons. Downstream from the decay

volume, the beam passes through a beam dump, muon monitors, soil, and a set of near

19
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detectors. The two main near detectors are the INGRID (Interactive Neutrino GRID),

which center is aligned with the beam center, and the ND280, which is positioned off the

beam axis center, both positioned around 280metres away from the target station. Sec-

tion 2.1.2 will discuss the off-axis effect further. The neutrino beam then travels around

295 km (and down to 1.7 km underground) before it reaches the Super-Kamiokande (SK).

SK is a 50 kton water Cherenkov detector located in the Kamioka mine with a 1 km of

a mountain overburden, shielding it from cosmic rays. A schematic drawing showing the

T2K setup is shown in figure 2.1.

Super‐Kamiokande J‐PARCNear Detectors

Neutrino Beam

295 km

Mt. Noguchi‐Goro
2,924 m

Mt. Ikeno‐Yama
1,360 m

1,700 m below sea level

Figure 2.1: A schematic showing the T2K cross-section view of the neutrino beam trav-

elling from the J-PARC laboratory through the near detectors to the Super-Kamiokande

detector.

The main goals of the T2K experiment are:

1. Search for Charge-Parity violation in the neutrino sector (δCP)

2. Measurement of ∆m2
23 and sin2 θ23 through νµ (ν̄µ) disappearance in a νµ (ν̄µ) beam

3. Measurement of sin2 θ13 through the appearance of νe (ν̄e) in a νµ (ν̄µ) beam

4. Measurement of the neutrino cross-sections with the near detectors

With the Hyper-Kamiokande proto-collaboration entering the construction stage, both

T2K and SK are also being used as a testing ground for crucial Hyper-K R&D. A few inter-

collaborations have emerged over the recent years; there is a continuous effort to produce

joint analyses using the accelerator neutrinos from T2K and atmospheric neutrinos from

SK, and another effort to produce joint results from the T2K and NOvA experiments.

Although these joint efforts can increase the sensitivity to the PMNS parameters and be
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a good validation check, they could also provide us with crucial pioneering techniques

and solutions for the future experiments like Hyper-Kamiokande (which could potentially

have atmospheric-accelerator neutrino analysis as its default), and any potential future

Hyper-Kamiokande - DUNE joint efforts.

2.1 T2K Beamline

2.1.1 Beam

The beamline, built specifically for the T2K experiment, consists of three accelerators

that together produce a high-intensity proton beam; a linear accelerator (LINAC), Rapid

Cycling Synchrotron (RCS), and the Main Ring (MR). First, a H− beam is accelerated in

the LINAC to around 400MeV. The hydrogen beam is stripped of electrons with carbon

stripping foils before entering the RCS, which further accelerates the remaining protons

to around 3GeV with a 25Hz cycle and two bunches in each cycle. The protons then

enter the last acceleration stage, the MR, where they are accelerated to ∼30GeV. A

schematic showing the MR accelerator is shown in figure 2.2.

Protons from the MR are extracted into the neutrino beamline, shown in figure 2.3,

with five kicker magnets. Each proton extraction is defined as one “spill”, with eight

proton bunches per spill separated by 500 ns. The spill information is sent via a GPS

system to the far detector to trigger the T2K data-taking window. This is very important,

helping not only with reducing, say, cosmic background in the T2K data, but also to

reduce the accelerator-neutrino background in the Super-Kamiokande atmospheric data.

Each spill extracted from the MR into the neutrino beamline is directed onto a pro-

ton target, a graphite rod that is 91.4 cm long and 2.6 cm in diameter. The graphite

rod is cooled down with gas helium to prevent overheating from the proton spills. The

high energy proton-graphite interactions result in high quantities of charged mesons,

which first pass through the three magnetic horns operating at ∼250 kA. The magnetic

horns are made of inner and outer coaxial conductors that focus either positively or nega-

tively charged mesons; Forward-Horn-Current (FHC, ν-mode) and Reverse-Horn-Current
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Figure 2.2: Birds-eye schematic view of the MR, with the proton beam shared between

various experimental areas – including to the Neutrino Beamline, used by the T2K ex-

periment. Figure taken from [134]

(a) Birds-eye view (b) Side view

Figure 2.3: Schematic drawings showing the neutrino beamline, with the target station,

magnetic horns, decay volume and the beam dump. Figure taken from [59].

(RHC, ν̄-mode), respectively. The focused mesons then travel through the 96m decay

volume, where they will decay into either neutrinos (with FHC mode) or anti-neutrinos

(when in RHC mode), via;
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π+ → µ+ + νµ,

K+ → µ+ + νµ,
(FHC)

π− → µ− + ν̄µ,

K− → µ− + ν̄µ.
(RHC)

There is a non-negligible electron-neutrino contamination in the T2K muon-neutrino

beam. The contamination at the peak energy of 0.6GeV comes mostly from muons that

decay into electrons and electron-neutrinos (before the muons reach the beam dump),

with a small contribution form mesons decaying into electron-neutrino flavoured leptons.

At energies above 1.5GeV, most of the contamination comes from charged and neutral

kaons decaying into pions and electron-flavoured leptons. These relevant decay modes

are;

K+ → π0 + e+ + νe,

K0
L → π− + e+ + νe,

and

µ+ → e+ + νe + ν̄µ.

The wrong-sign contamination is especially prominent in the RHC mode. Since the

neutrinos are produced from a proton (rather than anti-proton) beam, we expect more

positively charged mesons, resulting in more neutrinos than anti-neutrinos being created.

It therefore makes sense that there is a higher neutrino background in anti-neutrino

beam than the vice-versa. This is shown in figure 2.4, where we see the unoscillated

beam composition for FHC and RHC modes as seen at ND280.

The beam dump sits at the end of the decay volume, stopping any hadrons that

did not decay, and muons below ∼5GeV. Muons above this threshold will mostly pass

through the beam dump, and propagate through the muon monitors that were installed

just behind it, around 120m away from the carbon target. The muon monitors (MUMON)

are made of an array of ionization chambers, and arrays of silicon PIN photodiodes, as

shown in figure 2.5. Since the muons are produced alongside neutrinos from the π+

two-body decay, the muon beam center aligns together with the neutrino beam center.

Monitoring the distribution profile of the muon beam allows a better positioning and

alignment of the neutrino beam direction and intensity. The resolution of the detector is
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Figure 2.4: Neutrino beam composition before oscillations, as seen at the off-axis ND280

detector for FHC (left) and RHC (right) beam modes. The wrong-sign background

is especially prominent in the RHC mode at higher neutrino energies. Figure taken

from [49].

Figure 2.5: Muon monitors (MUMON) measures the neutrino beam profile and direction

by looking at muons with energy high enough to pass the beam dump (higher than

∼5GeV). Figure taken from [55].

around 3 cm on the muon beam profile, giving a precision on the neutrino beam direction

of less than 0.25mrad.



Chapter 2 25

2.1.2 Beam off-axis angle

T2K is the first accelerator-neutrino experiment to target the neutrino beam off-axis from

the far detector. The use of the off-axis offset for the neutrino beam to the far detector

was first proposed at the AGS in Brookhaven [56] and then for the T2K experiment

specifically [57]. The T2K far detector – beam center misalignment narrows down the

neutrino energy spectrum band around the oscillation maxima (maximizing P (νµ →νe

) and minimizing P (νµ →νµ )), and reduces backgrounds from the π0 interactions. The

off-axis angle used in the T2K beamline is 2.5◦ set in 2007 using results from other

experiments.

If we consider the two-body pion decay π+(π−) → µ+(µ−) + νµ(ν̄µ), the outgoing

neutrino energy, Eν , can be approximated in terms of the initial charged pion energy, Eπ,

pion and muon masses, mµ and mπ, and the initial pion – outgoing neutrino angle θ;

Eν =
m2

π −m2
µ

2(Eπ − pµ cos θ)
. (2.1)

If we select a specific angle θ, we will find that the neutrino energy is maximized when

the pion energy is Eπ = pπ/ cos θ, giving the maximum neutrino energy per angle;

Emax
ν =

m2
π −m2

µ

2(Eπ sin
2 θ)

, (2.2)

where the only real dependency for the neutrino energy peak is the angle between the

incoming pions and outgoing neutrino. As the angle deviates from the collinearity between

the pion and lepton, the range of neutrino energies becomes smaller and centered around

Emax
ν . With the off-axis angle of 2.5◦, the T2K neutrino energy is sharply peaked around

0.6GeV. Given that the T2K baseline is 295 km, the 0.6GeV energy peak minimizes the

muon neutrino survival, P (νµ →νµ ), whilst maximizing the electron-neutrino appearance,

P (νµ →νe ). This is also shown in figure 2.6, where the predicted neutrino energy

distribution at SK is aligned with P (νµ →νµ ) and P (νµ →νe ), calculated over a range

of neutrino energies.
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2.2 Interactive Neutrino GRID (INGRID)

The on-axis Interactive Neutrino GRID detector is designed to measure the neutrino

beam direction with a precision better than 1mrad, by measuring the νµ beam profile.

This is crucial for an off-axis experiment, where a small uncertainty on the neutrino beam

angle can result in a large systematic uncertainty. The spacial width of the neutrino beam

at 280m from the proton beam target is 5m, with the INGRID x–y dimensions being

10m × 10m [42]. The actual measured beam direction stability is well within the 1mrad

design target; ∼0.2mrad [41]. The detector is made of of 16 separate 1.2m × 1.2m ×
1.3m cubic modules. Fourteen of these modules are positioned in a cross pattern around

the beam centre, with two extra diagonal modules that are currently switched off. A

schematic model of INGRID detector is shown in figure 2.7.

Figure 2.7: The on-axis INGRID near detector, 280m from the carbon beam target. It

measures the beam direction and profile, and contributes to the cross-section measure-

ments. It is made of 16 cubic modules in a cross formation. Figure taken from [42].

Each module is made of 11 scintillator planes interleaved with 9 iron plates with

a target mass of 7.1 tonnes, enough to monitor the beam stability on day to day basis.

This is surrounded by scintillator veto plates, that help with rejection of charged particles
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originating from the outside of the modules. The scintillator planes are made of 24

vertical scintillating bars, attached to 24 horizontal scintillating bars. Figure 2.8 shows

the exploded view on INGRID module.

Figure 2.8: One INGRID module with its structure shown. It is composed of layers of

iron plates (for target material) and scintillators for tracking. 16 of these modules form

the INGRID near detector. Figure taken from [42].

2.3 ND280 detector

The primary T2K near detector, ND280, is positioned 2.5◦ off-axis, around 280m away

from the carbon target. Data from ND280 is used in the T2K Oscillation Analysis directly

to constrain the neutrino flux and cross-section uncertainties.

The neutrino flux uncertainties are constrained by measuring the νµ spectrum before

the neutrino oscillations, with the higher event rates thanks to the proximity to the carbon

target. The νe spectrum is also measured, and included in the analysis as the irreducible

background contamination in the beam coming from the kaon decay (this is especially

important in measuring the νe and ν̄e appearance in the far detector). The rates of

various neutrino interaction types are used to measure the neutrino cross-sections, for

example, the Neutral Current interactions with outgoing π0 are particularly important

νe background at Super-Kamiokande. Although neutrino cross-sections on water are
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most important for constraining interactions at Super-Kamiokande, ND280 also takes

measurements on carbon and iron.

Figure 2.9: Exploded view of the off-axis ND280 detector with all the sub-detectors

labelled. ND280 is crucial in the T2K oscillation analysis, drastically reducing the sys-

tematic uncertainties at Super-Kamiokande. Figure taken from [59].

ND280 is made of multiple sub-detectors to archive the goals above. A dedicated π0

detector, PØD, sits on the upstream side of the detector, followed by the tracker. The

tracker is made of three Time Projection Chambers and two Fine Grained Detectors.

The tracker is surrounded by a set of electromagnetic calorimeters (ECal), and finally,

by a magnet yoke, instrumented with Side Muon Range Detector (SMRD). The detector

schematic diagram is shown in figure 2.9.

2.3.1 Magnet

All the sub-detectors are surrounded by a magnet repurposed from the UA1/NOMAD

experiment at CERN, to measure the momenta of charged particles generated by the

neutrino interactions happening inside of the ND280 [44]. The magnet’s operating current
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Figure 2.10: Deep inelastic scattering event originating from FGD1. The event trans-

verses through and triggers most of the tracker, including both FGDs, two TPCs and

ECal. Figure taken from [45].

is 2900mA, generating a uniform horizontal magnetic field of 0.2T.

The Magnetic Yoke is instrumented with layers of scintillators interleaved in the

magnet air gaps, to form the SMRD. The purpose of SMRD is to measure the ranges of

muons exiting the detector, and to veto any muonic interactions originating from within

the walls of ND280. The whole magnet is made of two separate C-shaped parts, allowing

it to be opened for the inner-detector access.

2.3.2 PØD

The π0 detector (PØD), with its surrounding ECal, is the first ND280 sub-detector down-

stream from the neutrino beam. It measures the cross-sections of neutrino interactions

producing neutral pions, NC1π0, which is one of the largest background in the P (νµ →νe

) oscillation analysis at Super-Kamiokande.

PØD is a 2.5m cube that consists of panels of removable water target, needed to

constraint the interactions at Super-Kamiokande. These panels are interleaved with brass

and scintillator panes. The surrounding ECal is made of triangular scintillator plates and

lead sheets. The total PØD target mass is 15.8 tonnes, including all the water target.
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2.3.3 Fine Grained Detectors (FGDs)

The two Fine Grained Detectors, FGD1 and FGD2, are part of the tracker, which is

positioned downstream after PØD and also consists of three Time Projection Cham-

bers [45]. FGDs provide the ND280 with a target mass for neutrino interactions, and

track charged particles that come from the interaction vertex. FGD1 is made of 186.4 cm

long scintillator bars, orientated alternatingly in x and y directions perpendicular to the

neutrino beam with 192 bars in each direction making one module. FGD1 has 15 of these

modules, whereas FGD2 contains 7 modules interleaved with 6 water layers, 2.5 cm thick

(the first water layer is drained due to an accident with the water-cooling system). The

FGDs weigh 1.1 tonnes each, allowing sufficiently high neutrino interaction event rate.

The cross-sections are measured from interactions on both water (oxygen) and plastic

(carbon).

Figure 2.11: Distribution of the deposited energy along FGD1 for stopping particles, with

the MC expectation for protons, muons and pions drawn. FGDs can easily distinguish

protons from muons by looking at their energy loss distributions. Figure taken from [45].

The FGDs alone are capable of distinguishing muons from protons by looking at the

reconstructed energy from the scintillating bars along the sub-detector, and comparing

to the Monte Carlo expectation, as shown in figure 2.11. This is partially due to the fact

that the recoil protons are short-lived, and usually fully contained within the FGD. The

fine grained nature of the FGDs make it is easier to fully reconstruct such low-momentum
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fully-contained protons.

2.3.4 Time Projection Chambers (TPC)

The are three identical TPCs within the tracker, with 3D tracking and energy reconstruc-

tion capabilities. Since the sub-detectors are operating in a magnetic field, good particle

identification and momentum reconstruction are possible.

The TPCs are made of an inner and outer boxes, as shown in figure 2.12, with the

inner box forming a field cage containing argon gas. The argon gas ionizes as the charged

particles from neutrino interactions transverse through. The ionized electrons drift to-

wards the bulk micromegas detectors, which both amplify and measure the accumulated

charge. There are 24 micromegas detectors per TPC, aligned in a way to minimize the

dead-zones.

Figure 2.12: A cut schematic showing a time projection chamber for T2K. All three time

projection chambers are identical. Figure taken from [45].

TPCs, just like the FGDs, have an excellent particle identity capabilities. This is

done using the particle deposited energy per unit distance (energy loss) as a function of the

reconstructed particle momentum. This is shown on figure 2.13, where the distribution

of the energy loss is shown as a function of momenta, with MC prediction shown on top.
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The archived resolution on the energy loss is 7.8±0.2%, allowing the distinction between

electrons and muons.

Figure 2.13: Distribution of the deposited energy against the particle momenta, for one

of the TPCs, for positively charged particles from neutrino interactions. The MC ex-

pectation is drawn on top of the data. TPCs are capable of differentiating muons from

electrons. Figure taken from [45].

2.3.5 Electronic Calorimeters (ECal)

Both PØD and the tracker are surrounded by the Electronic Calorimeters, which was the

main contribution from the UK for the ND280 commissioning [46]. Each ECals module

is made of scintillator bars sandwiched between lead sheets.

ECals can be split into three groups; PØD ECal, barrel ECal (surrounding the

tracker) and the downstream ECal (positioned downstream from the tracker). ECals

complement the event reconstruction by detecting photon showers with their energies

and charged particles for their identification. One of main functions is to reconstruct

the neutral pions from neutrino interactions, with 50% of photon shower from π0 being

captured.
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2.4 Far Detector: Super-Kamiokande

Figure 2.14: Inside of the Super-Kamiokande tank during the 2018 refurbishment work,

with myself and Lauren Anthony taking PMT dynode direction measurements. Around

three-quarters of water was drained by the time of taking that picture. Photograph taken

by M. Nakahata.

Super-Kamiokande (SK) [47] is a successor of Kamiokande, previously described

in 1.5. SK is a large water-cherenkov detector, and has been an experiment in its own

right since 1996. It is being used as the far-detector for the T2K experiment since 2010,

with 50 kton of ultra-pure water (27.2 kton of fiducial volume) as the target material.

It is placed in the Kamioka mine in the Do (土) village, in the far north of the Gifu

prefecture. Being inside the base of the Ikenoyama mountain, SK has roughly about

1 km of soil overburden, shielding it from cosmic muons.

The detector is split into two optically-separated sections, shown in figure 2.15. The

outer-detector (OD) contains ∼1,900 outward-looking PMTs to veto the interactions

originating outside of the detector. The inner-detector (ID) contains ∼11,000 inward-
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looking PMTs to detect the cherenkov-light from the charged particles transferring the

inner volume. The tank is 41m tall with 39m diameter, and the inner detector is 36m

tall with the diameter of 34m. Originally built for proton-decay search, it is now used for

a variety of studies, including neutrinos originating from solar, atmospheric, geological,

reactor, dark-matter and accelerator sources.

Figure 2.15: Schematic diagram showing the Super-Kamiokande tank with the inner and

outer detectors. The inner and outer detectors are optically separated with black sheet

(inside the inner) and white (inside the outer) Tyvek material. Figure taken from [60].

Super-Kamiokande underwent a large refurbishment in the summer 2018, with the

prime goal of fixing known leaks in the tank. There is a plan for doping the SK water with

Gadolinium to tag neutrons from neutrino interactions. Given the not-fully understood

effect of Gadolinium on human body, and a large historical catastrophe related with leaks

in mines in the area, it was crucial to fully seal the leaks in SK before the doping can

start. The first tank opening since 2013 also gave an opportunity to do some general

maintenance and install new calibrations systems.
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2.4.1 Cherenkov Radiation

Super-Kamiokande detects the cherenkov light emitted by relativistic charged particles

produced by neutrino interacting with the water target. As a charged particle is traversing

with relativistic speed through a medium with refractive index n, it will emit electromag-

netic shock wave if the particle speed speed is

v >
c

n
, (2.3)

where c is the speed of light in vacuum. The light will be emitted along the particle’s

trajectory with the opening angle;

cos θC =
1

βn
, (2.4)

also referred as “cherenkov angle”, where β = v/c. Since refractive index of water n is 1.34

and β is effectively 1 at relativistic speed, the cherenkov angle in water is ∼42◦ (schematic

drawing of cherenkov radiation shown in figure 2.16). The required momentum to reach

the cherekov threshold in water medium for an electron is 0.57MeV/c, and 118MeV/c

for a muon.

Figure 2.16: Diagram showing cherenkov radiation. Particle with relativistic speed βv

propagates through with a refractive index n, emitting cherenkov light at angle θ. Figure

created by A. Horvath

Electrons, being very light, scatter as they transverse through water, and often

cause electromagnetic showers. The result of this are blurred rings, with no well-defined

contours. Muons, being much heavier, do not scatter much. They still loose energy and

therefore progressively emit lest photons as they transverse, resulting in a rather unique
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signal; muon cherenkov rings have a sharp outer edge, and blurred inside edge (due to

the energy loss). Both electron and muon signals are shown in figure 2.17.

(a) Electron-like ring (b) Muon-like ring

Figure 2.17: Super-Kamiokande unrolled event display with examples of muon and

electron-like events. The electron-like events have a more diffused signal, due to elec-

tron interacting more as it travels. Muon-like events have sharp cherenkov-ring outer

boundary, with diffused inner part due to energy loss as the particle transverses through

the detector.
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Bayesian Statistics and Markov

Chain Monte Carlo methods

This thesis describes different analyses of the ND280 and SK data using Bayesian Markov

Chain Monte Carlo (MCMC) methods. The output of these analyses are the Bayesian

posterior density distributions, which define the probability distributions across the pa-

rameter space – effectively tell us about the probability of the sampled parameters having

some specific values across the parameter’s range. The terms “posterior probability” and

“posterior density” will be used interchangeably. To get an estimate of the parameters

of interest, we need to integrate the probability distribution over all the nuisance param-

eters (i.e. the systematic parameters). This marginalization process is very commonly

used in various forms. It is common to ‘scan over’ the likelihood of some parameter of

interest, where for every ‘scan point’ we would generate many random throws of the nui-

sance parameters, and average out the likelihoods for these throws. By providing the full

posterior density over all the parameters, MCMC methods essentially marginalize over all

the parameters with respect to each other. A pedagogical description which is aligned to

the treatment used here is available in [64]. Although this is a computationally expensive

process, it allows for many additional studies, with some T2K-specific ones described in

chapters 4 and 5.

This chapter will briefly describe the Bayesian formalism in the context of the T2K

experiment, and follow up with more detailed descriptions of various MCMC algorithms

38
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used, together with their efficiency-tuning methods, and some possible improvements.

3.1 Bayes Theorem for T2K

In the Bayesian formalism, the probability is interpreted as level of our belief of a hy-

pothesis being true. This level of belief is proportional not only on the probability of

observing the data, but on our prior knowledge of the model as well (the words ‘model’

and ‘hypothesis’ will be used interchangeably). In the full Bayes theorem, the posterior

probability is written as

P (H|{D}, I) = P ({D}|H, I)× P (H|I)
P ({D}|I) , (3.1)

where P (H|{D}, I) is the posterior probability distribution; our belief that the hypothesis

H, given a dataset {D}, and any additional information I, is true. P ({D}|H, I) is the

probability of observing the data given our hypothesis, and is normally referred to as

the “likelihood”. P (H|I) is our prior information about the hypothesis H given any

extra information I, whereas P ({D}|I) is the prior probability of the dataset. The latter

is usually interpreted as the normalization term, that makes the posterior probability

distribution sum up to 1, and is often re-written as the integral of the numerator with

respect to the hypothesis. This is usually difficult to compute, and very often not useful;

from the computational point of view, the joint posterior distribution can be normalized

after the “fit”, and from the experimental point of view, the data was already observed;

it is constant, and therefore the term is 1. An additional motivation for this will be given

in section 3.2. Bayes’ theorem can therefore be rewritten simply as

P (H|{D}, I) ∝ P ({D}|H, I)× P (H|I). (3.2)

In T2K, the hypothesis H is the predicted number of neutrino events observed at the

near and far detectors. This is constructed from various parameters defining; the near/far

detector efficiencies, neutrino flux uncertainties, the probability of a neutrino interacting

(cross-sections) and finally, the oscillation probabilities given the PMNS model.

The likelihood is often simply written as exp(−χ2/2), where the T2K negative log-
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likelihood, with the ND280 and SK data split into energy bins, can be written;

− ln(L) =
ND280bins∑

i

NND,p
i −NND,d

i +NND,d
i ln[NND,d

i /NND,p
i ]

+
SKbins∑

i

NSK,p
i −NSK,d

i +NSK,d
i ln[NSK,d

i /NSK,p
i ],

(3.3)

where NND,p
i and NND,d

i are the ND280 predicted number of events and the data for the

ith energy bin, respectively, with NSK,p
i and NSK,d

i being the SK counterparts [61, 62]. The

ND280 predicted number of events per energy bin, NND,p
i , is dependent on the neutrino

flux uncertainties, the ND280 detector uncertainties and the neutrino cross-sections. The

SK prediction counterpart, NSK,p
i , is additionally dependent on the neutrino oscillation

probabilities and the SK detector uncertainties1. The correlations between ND280 and

SK data are taken into account by the fact that the predicted number of events for both

detectors are generated using shared flux and cross-section systematic parameter values.

In the T2K experiment, there are few “groups” of parameters forming the “hypothe-

sis” model. These parameters correspond to the usual formula for the observed accelerator

neutrino event rate,

N = Φ× σ × P (να → νβ)× ǫ (3.4)

where Φ is the neutrino beam flux, σ are the neutrino cross-sections, and ǫ are the detector

efficiencies. In T2K, all these sets of parameters have their own working groups that are

are responsible for developing the model, and progressing it onto the analysis - partially

in the form of covariance matrices, with the correlated uncertainties for each parameter.

These correlation matrices form Gaussian priors in equation 3.2;

• Flux: 100 parameters

• ND280 detector: 500 parameters (250 per FGD)

• Cross-section: ∼32 parameters

• SK detector: 44 parameters

1Of course, the SK prediction is not dependent on the ND280 detector uncertainties directly. These

efficiencies will, however, have an effect on the cross-section and flux uncertainties, indirectly influencing

the prediction at SK.
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Of course, the six oscillation parameters have their priors too. Although these are pro-

vided in the analysis in the form of a covariance matrix too, and the overall treatment is

the same as the nuisance parameters, δCP, sin
2 θ13, sin

2 θ23 and ∆m2
32 have flat priors (i.e.

always equal to 1). With these covariances, the negative log-prior probability is given by

− ln(P (H|I)) =
covariance∑

p

1

2

p
∑

i

p
∑

j

∆pi(V
−1
p )i,j∆pj. (3.5)

The posterior probability in T2K is therefore given by the sum of 3.3 and 3.5, and,

confusingly, is always referred to as “the likelihood”. We will assume this terminology

for the rest of this thesis.

3.2 Markov Chain Monte Carlo

There are various ways of marginalization; integrating over the systematic parameters to

obtain the parameters of interst. One of these is through Markov Chain Monte Carlo

(MCMC), which generates a distribution of “samples” across the n-dimensional param-

eter space, where the density of these samples corresponds to the posterior probability

distribution.

Sampling from the hypothesis takes the form of a guided random walk; the MCMC

algorithm “steps” around the parameter-space, with the probability of stepping in a

certain direction being dependent on the likelihoods at different points in the parameter-

space. Each step is saved in a sequence, or chain, generating the distribution of samples.

There are many different types of MCMC, but they all have shared properties once enough

steps have been made such that the likelihood is well-represented by the distribution;

1. Stationarity: the samples’ density distribution must be stationary. This means,

after some number of MCMC steps, the produced posterior density does not change

with subsequent MCMC steps. We say that the outcome posterior distribution is

stationary (or in equilibrium). In practice, it means a MCMC chain has reached the

favourable part of the phase-space, and generated enough MCMC samples across

it.
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2. Reversibility: The MCMC chain is reversible in time, meaning the probability of

obtaining certain density distribution at time t is the same as at time t′. This is

only possible if the stationary state has been reached.

The above conditions imply that once the MCMC chain has reached the proximity of

the underlying stationary distribution (see “Burn-in”, section 3.2.2), all the subsequent

steps sample from the same posterior distribution. Great care must be taken to satisfy

this “detailed balance” when implementing a MCMC algorithm.

3.2.1 Metropolis-Hastings MCMC

The T2K Bayesian analysis framework uses the Metropolis-Hastings MCMC [65] algo-

rithm, which is initialized by arbitrarily choosing an initial point on the parameter-space

as the first step in the Markov Chain. The algorithm then loops over a few operations,

with the number of iterations corresponding to the desired length of the Markov Chain.

The following tasks are performed at each iteration (MCMC step):

1. Propose a new step on the parameter space. If this is the first step, parameters

can be randomized or thrown from their priors. Otherwise, each parameter pi is

deviated from its current value;

pi(t+ 1) = pi(t) + f(pi), (3.6)

where is f(pi) the step-size, usually a function of the parameter itself, for example,

a random Gaussian number taken from the parameter’s prior uncertainty, multi-

plied by user-determined scaling constant. This is done sequentially for all the

parameters.

2. Evaluate the likelihoods for both the current, ~p(t), and the proposed, ~p(t + 1),

parameter vectors. We will call them ln(Lold) and ln(Lnew).

3. Compare the likelihoods against each other. This is done differently in various

MCMC algorithms. In Metropolis-Hastings it is

A = min[1, exp{ln(Lold)− ln(Lnew)}] (3.7)
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where A is the probability of accepting the step, which is always between 0 and 1.

4. Accept or reject the step, based on the probability A. This is done by throwing

a random number, R, to see what the next MCMC step will be.

• If A ≥ R, the proposed step, pi(t+ 1), is appended to the end of the chain.

• If A < R, the current step, pi(t), is appended to the end of the chain.

This means that the chain, whether the new step is accepted or not, is always

getting longer; when the proposed step is rejected, the old parameter values are

repeated and appended to the end of the chain.

This has a few interesting implications on how the MCMC works. Since we calculate

the probability of accepting the new parameter values based on the ln(L) difference (L
ratio), it means there is a chance of accepting a step that is in a less-favourable area

of parameter-space. This is very important; MCMC is not a minimizer, it is a sampler

that steps around the parameter-space, reconstructing the underlying posterior density;

whether likely or unlikely.

Furthermore, when MCMC steps are rejected, the parameter values are repeated in

the chain; so in a way, the parameter-space is not being-explored at that instance. On

the other end of the extreme, if we accept all the steps, the MCMC sampler performs a

true random-walk, which is highly inefficient. There is a certain balance needed for the

optimal phase-space exploration. The larger the step-size, the larger the ln(L) difference
in equation 3.15, rejecting more steps. The smaller the step-size, the smaller the ln(L)
difference, accepting more steps. There are a lot of debates in the literature about the

perfect acceptance ratio for the most efficient phase-space exploration, with the most

widely accepted described in [63].

As the number of dimensions (parameters free in the sampler/fit) is approaching

infinity, the perfect acceptance ratio is found to be 0.234. Although this number is the

asymptotic limit, it is close even down to 5 dimensions (for a hypothesis with 1 dimension,

the perfect acceptance ratio is 0.44) [64].

An example from a toy study is shown on the next page. Chains that are well

mixing, with step-sizes that are too small and too large are shown in figures 3.1, 3.2 and
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Figure 3.1: Trace (left) and the binned posterior density (right) from a well-mixing

MCMC chain, with acceptance ratio ∼0.23.

Figure 3.2: Trace (left) and the binned posterior density (right) from a badly-mixing

MCMC chain, with too small step-sizes and a high acceptance ratio.

Figure 3.3: Trace (left) and the binned posterior density (right) from a badly-mixing

MCMC chain, with too high step-sizes and a low acceptance ratio.

3.3, respectively. The parameter values from each point on these chains are binned to

get the posterior densities (left hand side on each plot). It is easy to see that the chain

with an acceptance ratio of ∼0.23 produces the best results. Crucially, this only affects

the efficiency of the sampler; if we were to run each one of them sufficiently long time,
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the posteriors from all three chains would converge to a satisfactory, stationary posterior

distributions.

We can now also see why the denominator in the equation 3.1 is not important;

first, we can easily normalize the posterior after the sampling (simply divide each bin by

the total area of the posterior), and, since our prior knowledge on the dataset does not

change step-to-step (i.e. the data is fixed), this term would cancel-out in equation 3.15

anyway.

3.2.2 Burn-in

When the MCMC sampling begins, the initial parameter values are usually far from

optimal, and often far from the true stationary posterior distribution. As the MCMC

sampling progresses, the produced steps are first slowly moving towards the high-density

area, before the stationary distribution can be sampled effectively. This stage of chain-

converging is called burn-in, where the initial MCMC steps are often discarded; they do

not become part of the posterior distribution.

Figure 3.4 shows parameter variation per step (trace) in 3.4a, where it can be clearly

seen that the burn-in lasts around ∼30,000 MCMC steps. The sub-figure 3.4b shows two

parameters projected onto each other, where the burn-in seems to be different for each

parameter. This poses an interesting challenge; since the selected burn-in means removing

the initial steps in all dimensions, a burn-in value that works for all the parameters needs

to be chosen. In practice a few methods are commonly used; manually scan through all

the parameters and select the worst-case burn-in, use log-likelihood traces for selecting

the burn-in, automatically discarding, say, 50% of the chain regardless of its length, or

manual check if the resultant posterior distribution is stable when adding more steps.

3.2.3 Autocorrelations

The derivation of the optimal acceptance ratio in [63] has two important assumptions;

first, the stationary distribution is a multivariate Gaussian. This is not always true;
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(a) MCMC traces for some parameter, from

100 chains with a burn-in included. We

see that the chain is converging in the

stationary-distribution area after ∼30,000

MCMC steps.

(b) MCMC traces for two parameters pro-

jected onto each other, with the burn-in in-

cluded. It is interesting to note that both

parameters do not have the same burn-ins

Figure 3.4: Parameter traces produced from 100 MCMC chains in a toy framework, with

the burn-in included. A special care has to be taken when when selecting the burn-in to

make sure no steps from outside of the stationary distribution are included; usually it is

better to over-estimate the burn-in.

some of the T2K cross-section parameters are very non-Gaussian, are not symmetric and

have local maxima in the posterior. The second assumption is that the step-sizes for all

the parameters are proportional to the variance of the full stationary distribution. The

second assumption has large implications for complex models with many parameters, like

in the T2K likelihood.

It is rare to have the full knowledge of the stationary distribution before running the

MCMC analysis (if that was the case, we would not need to analyse anything to start

with). Optimizing step-sizes for models with many correlated parameters, with respect

to each other, is usually very difficult, and often based on trial-and-error. One important
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metric to make this job easier is called “autocorrelation”:

Ak =

∑N−k
i=1 (Xi − X̄)(Xi+k − X̄)

∑N
i=1(Xi − X̄)2

, (3.8)

which measures how correlated parameter X is with the delayed copy of itself, Xk. This,

calculated as a function of delay itself, tells us of how correlated the consecutive MCMC

steps are with each other, and effectively how many MCMC steps we need to take to

draw a random sample from the posterior. Even with the perfect acceptance ratio of

0.234, if the autocorrelations for various model parameters are very different from each

other, then they will not explore the phase-space with the same efficiency.

Figure 3.5 shows the autocorrelation dropping to 0 after a lag of 500. That means we

can obtain a fully independent random value for that parameter, drawn from the station-

ary posterior distribution, every 500 MCMC steps. This can also help us to determine the

number of MCMC steps needed for a satisfactory stationary posterior distribution. Let us

say we want at least 10,000 fully independent samples distributed across the parameter-

space, with the density of samples representing the posterior distribution. With a lag of

500 from figure 3.5, we know that we need the MCMC chain to be at least five million

steps long.

Figure 3.5: Example of an autocorrelation plot. It shows how many MCMC steps we

need to effectively draw a random sample from the stationary posterior distribution; value

called “lag”. In this example, autocorrelation is 0 at lag ∼ 500, so we draw a completely

random value from the posterior distribution every 500 MCMC steps.

When tuning the step-sizes for each parameter, the most efficient method is often
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to first ensure that the autocorrelations are the same (or, more realistically, as similar to

each other as possible), before moving onto trying to get the perfect acceptance ratio by

tweaking all step-sizes equally with one multiplier.

3.2.4 Credible Intervals

Credible intervals are bounds on parameters which reflect our level of belief in their values.

For example, 1σ credible interval interval on some parameter means that we have 68.23%

belief that the parameter is within those bounds. It is rather easy to place such bounds

given the binned posterior distribution; we sequentially add the contents of each posterior

bin from the most to the least populous, until the integral of the selected bins, divided

by the total integral, reaches the 1σ level. The principle is exactly the same with the 2D

intervals, with the progression of creating the credible intervals shown in figure 3.6.

The Frequentist confidence intervals have a different construction; a χ2 distribution

for a parameter of interest is obtained through marginalization, and the intervals are

selected by drawing a line across, for example, χ2 = 1 for 1σ given one degree of free-

dom. The confidence intervals are then the two points where that line crosses the χ2

distribution. The exact χ2 levels for different degrees of freedom per confidence interval

are provided by the PDG in Table 39.2 of the Statistics section [18].

The interpretation of the confidence intervals is very different from the Bayesian cred-

ible intervals; it is, however, possible to convert the Bayesian intervals into Frequentist,

if extra validations and checks are needed.
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(a) Example of MCMC steps

for two parameters projected

onto each other. The density

of the samples corresponds to

the posterior density.

(b) The projected steps are

binned to produce the binned

posterior density - which is far

easier to interpret than 3.6a.

(c) Credible intervals are made

when the integral of progres-

sively selected bins, divided by

the total integral, reaches the

desired interval.

Figure 3.6: The progress of making 2D credible intervals from a MCMC chain. Steps

from two parameters are projected onto each other first, as in 3.6a, and then binned,

showed in 3.6b, to produce the binned posterior density. The 68% Credible Intervals,

shown in 3.6c, are produced by iterating from the highest bin to the lowest, halting when

the integral between the selected bins and full posterior reaches the required interval (for

example, 1σ).
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3.3 Markov Chains for 3 flavour analysis (MaCh3)

T2K has three far-detector neutrino oscillation analysis groups; two of them, VALOR

(named after the neutrino groups that created it, Valencia-Lancaster-Oxford-Rutheford)

and P-Theta (named after the kinematic parameter the fit is done in), use a combina-

tion of Frequentist and Bayesian approaches, whereas the third group, MaCh3, is fully

Bayesian and uses MCMC to sample both ND280 and the SK data simultaneously. There

is a fourth group, BANFF (Beam and ND280 flux extrapolation task force), which per-

forms a Minuit fit to the ND280 data to constrain the neutrino cross-sections and flux.

Results from BANFF are then propagated to VALOR and P-Theta in a form of covariance

matrix, to be used in their fits for marginalization over the systematic parameters.

Work for this thesis was done using the Bayesian package, MaCh3. The principles

of how it works are described in 3.2, with a few nuances specific to the T2K analysis

described in this section, in 4.4.3 and 4.4.6.

3.3.1 Step-sizes

MaCh3 deals with both ND280 and SK data; meaning that both detectors’ systematics

have to be taken into the account, resulting in ∼750 parameters in the model predicting

the neutrino event rates at SK. Some of these parameters are highly correlated (for

example, the normalization flux parameters, anti-correlations between flux and cross-

section parameters), and some of these parameters are not very well-predicted prior to

the fit (i.e. the data has a big impact on these, say, the cross-section parameters).

Although this usually poses a challenge when it comes to tuning the MCMC chain,

the flux and SK detector systematics are well modelled prior to the fit (for example,

through calibration data), and we therefore have strong priors - in the form of covariance

matrices per detector. These matrices are - very successfully - used for making sure all the

parameters have good step-sizes with respect to each other. This cannot be said about

the cross-section parameters; although they have physics-motivated priors and step-sizes,

the data pulls them far away from their nominals and constrain them differently from

each other. This makes the tuning difficult, and the “covariance” trick is not sufficient.
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All the cross-section parameters therefore have their own own step-size dials, that are

tuned with preliminary MCMC runs and autocorrelation checks.

It is quite similar for the oscillation parameters. Although some (for example, ∆m2
21,

sin2 θ12) have strong priors that the data does not alter, others often need tuning on a

parameter-by-parameter base.

Since many parameters are well-described by their priors in the form of a correlation

matrix, it is possible to further optimize the step-sizes with Cholesky decomposition.

Decomposing the matrix allows more efficient exploration exploration of the phase-space,

by transforming in into an uncorrelated space. This is done by splitting the matrix

M = LLT , (3.9)

where the lower triangular matrix, L, multiplied by its transpose, returns the original

matrix M .

3.3.2 Model Selection, ∆m2
32 and sin2 θ23

The T2K experiment has some sensitivity to the mass hierarchy (the sign of ∆m2
32)

and the octant of sin2 θ23 (below or above 0.5) through the P (νµ →νe ) and P (ν̄µ →ν̄e

) detection channels. It is therefore interesting to look at methods of Model Selection; to

see which hypothesis is more probable. The Bayesian formalism and the nature of how

MCMC works make it rather easy.

Bayesian formalism defines the Bayes Factors, which tell us how many times one

model is more probable than the other. Using equaton 3.2, we can write

P (H1|{D}, I)
P (H2|{D}, I) =

P ({D}|H1, I)

P ({D}|H2, I)
× P (H1|I)

P (H2|I)
, (3.10)

where the middle term defines the Bayes Factor (with the other ones usually called

“posterior odds” and “prior odds”). The Bayes Factor, is therefore the ratio of the

likelihood densities for both hypotheses, if the full posterior is marginalized over all these

hypotheses.

In MaCh3, the marginalization over both mass hierarchies (positive and negative

values of ∆m2
32) is done by placing a 50% chance for proposing a step with the opposite
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sign on ∆m2
32. The value of 50%, is not a prior; it just defines the probability of throwing

the “mass hierarchy” step, and is chosen arbitrarily. If the probabilities of proposing

negative from positive, and from positive to negative ∆m2
32 are equal, whether 20, 50 or

80%, then the prior is non-informative.

Given the proper marginalization over all the values of ∆m2
32, calculating the Bayes

Factors is a post-sampling task. We can simply count the number of MCMC steps in the

normal hierarchy, and divide by the number of steps in the inverted hierarchy to get the

Bayes Factor for NH/IH. Likewise for the octant of sin2 θ23; count the number of steps

where sin2
23 > 0.5 and divide by the number of steps in sin2

23 < 0.5 to get a Bayes Factor

for Upper/Lower octant.

3.4 Alternative MCMC algorithms for MaCh3

The Metropolis-Hastings algorithm works in T2K very well indeed; the analyses described

in chapters 4 and 5 are both completed using the MaCh3 framework. The analysis

described in chapter 4 required MCMC chains long enough to achieve contour stability at

the 3σ level; resulting in an MCMC chain with 100million steps. Each step requires a new

ln(L) evaluation, which involves reweighing the ND280 and SK Monte Carlo prediction

to the new parametrization, taking anywhere between 0.6–2 seconds per reweight. The

analysis was running on roughly 50 NVIDIA graphic cards, 600CPU cores and 800Gb

RAM for around one month.

As T2K adds more parameters to the hypothesis, and collects more data (and data

samples) to analyse, the computing burden will only become larger. There are a few ways

of speeding things up from the MaCh3 side, including;

1. Optimize the step-sizes better; reduce the autocorrelations and therefore the num-

ber of MCMC steps required.

2. Code optimization; speeding up the MC reweight via more optimized code.

3. Algorithmically; change, or update the MCMC sampler algorithm
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This section will briefly describe the search for a better MCMC algorithm in the context

of the T2K experiment, and the results of that search.

A small framework was written to test various MCMC algorithms for a T2K-like

problem. The framework was capable of generating a large covariance matrix with any

user-provided number of parameters, where one parameter was bi-modal (∆m2
32 central

values and their uncertainties for both NH and IH were taken from the 2016 T2K analysis

described in [41]). The two main goals were to find an algorithm that would result in a

stationary distribution at lesser computational expense, and to remove the 50% chance

on switching the sign of ∆m2
32 that is hard-coded in the current MaCh3 implementation

- it would be more robust if the algorithm itself were capable of finding the other mass

hierarchy. A few algorithms that were initially showing the most interesting results are

described below.

3.4.1 Parallel Tempered MCMC

Parallel Tempered MCMC (PTMCMC) [66, 67] is an interesting algorithm that in princi-

ple results in a fast-mixing chain that is capable of marginalizing over separated posterior

modes. This is done by running multiple chains in parallel, and proposing position swaps

between them, where only one chain is actually used to build the posterior. Further-

more, some of these chains are tempered (the terms “tempering” and “annealing” will

be used interchangeably from now); the likelihood function has an extra term that effec-

tively spreads the sampled posterior density. In general, the likelihood exp(−χ2/2) can

be re-written as

e−
χ2

2kT , (3.11)

where k is an arbitrarily chosen constant (say, 1), and T is the “temperature” of the

chain, responsible for spreading the underlying posterior density. As we increase the

temperature, the MCMC chain explores a wider area of phase-space, with the modified

acceptance probability;

A = min[1, exp{β × (lnLold − lnLnew)}], (3.12)

where β = 1/kT . With β < 1 for the annealed chains, the log-likelihood difference seen

by the MCMC chain per step should be smaller, and the probability of accepting the
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step higher. With this modified phase-space exploration, it may be possible to probe

separated posterior modes (if β is small enough).

Of course, we still want to recreate the unmodified posterior density. Parallel Tem-

pering runs multiple MCMC chains in parallel, with progressively higher temperature,

starting from the unmodified MCMC chain. These chains are allowed to swap positions

with each other, with the swap acceptance probability being;

A = min[1, exp{(β1 − β2)× (lnL2 − lnL1)}], (3.13)

where the 1 and 2 subscripts represent two random chains (with different temperatures)

selected during the MCMC step. This probability ensures that as chains with various

underlying likelihood distributions are swapping, none of them will end up in an area of

phase-space that is not likely enough given their temperatures.

With PTMCMC, the chain that is not annealed mixes with the annealed chains; mak-

ing its parameter-space exploration faster, and potentially discovering separated posterior

density modes via the annealed chains. Unfortunately, as tests in a testing framework

progressed, it became clear very quickly that this method is only efficient if the hypothesis

has a low number of dimensions. After ∼20 parameters, hundreds of parallel chains are

needed for convergence, making this method computationally worse for T2K.

3.4.2 Ensemble sampling with affine invariance

J. Goodman and J. Weare proposed a new type of ensemble samplers, with their efficien-

cies that are unaffected by the correlations between the sampled parameters (i.e. affine

invariant) [68, 69]. Instead of building a single chain, the ensemble samplers are initialized

with already pre-existing distribution of samples (in this case, often called “walkers”).

These samples are usually initially distributed uniformly across the parameters’ priors,

and each MCMC step involves a linear transformation between the samples, moving the

ensemble closer to the stationary distribution.

A few separate methods are available here; we can either start with a small amount

of “walkers”, each one of them developing a MCMC chain via linear transformations, or

start with a large ensemble, where the last MCMC step from each walker is used to build
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the final posterior density. The latter is, in many ways, similar to the Genetic algorithms,

Differential Evolution, Nested Sampling and so on (differential evolution was tested for

T2K too, with similar results to section 3.4.1).

For every MCMC step, each walker is updated via a linear transformation called

“stretch”, given a secondary randomly-chosen walker that we can call “donor”;

pi(t+ 1) = pi(t) + Z[pi(t)− pj(t)], (3.14)

where the subscript i, j represent ith and jth walker, pj(t) is a randomly chosen donor for

each step, and Z is a random variable; either fixed step-size, or randomly drawn from

some symmetric distribution (for example, Gaussian). This is repeated for all the walkers,

and each stretch is accepted with the probability;

A = min[1, ZN−1 exp{ln(Li, old)− ln(Li, new)}], (3.15)

where N is the number of parameters (dimensions).

(a) Log likelihood trace. There are 10,000

walkers, with 1,000 evolutions each.

(b) Trace for a parameter imitating ∆m2
32. As

the ensemble is converging after 1,000 evolu-

tions, it recreates the expected posterior den-

sity.

Figure 3.7: Traces from the ensemble MCMC sampler, with 10,000 walkers and 1,000

evolutions. At the beginning the ensemble is spread uniformly across the parameter

space, slowly converging to the stationary distribution after each evolution.

At the start of testing with a lower number of parameters, the performance of the

ensemble sampler was rather impressive. It managed to generate many samples across
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the parameter-space, more than enough for high-statistics analysis. Furthermore, the

autocorrelations were always negligible, with very minimal tuning.

One of the main issues with the algorithm was that although it could find both

modes of ∆m2
32-like parameter given the sufficient distribution of initial samples, it did

not marginalize properly over the mass hierarchy. This means the 50% swap proposal

would still need to be in place. The fact that this algorithm did not perform well when

it was sampling from more than 50 parameters was the final nail in the coffin. This,

unfortunately, held true for the Differential Evolution algorithm too. Ensemble samplers,

although very-well performing in highly non-linear problems, do not seem to be efficient

in high dimensionality.

3.4.3 Hamiltonian MCMC

The Hamiltonian MCMC (HMCMC) algorithm has a potential to solve the dimension-

ality and autocorrelation problems by generating posterior samples that are fully uncor-

related, whilst having a high optimal acceptance ratio. This means it can draw fully

random samples from the stationary posterior dirstribution, and it does so by utilizing

the Hamiltonian dynamics to both propose a new step, and to calculate the acceptance

probability [72].

HMCMC proposes new steps not by randomly choosing a direction with fixed step-

sizes, but by giving the current sample some ‘kinetic energy’ in a random direction, and

letting it evolve using Hamiltonian dynamics. The evolution is stopped at some time

(t+ ǫ), giving the evolved position (parameter values) to the newly generated step.

In Hamiltonian MCMC the total energy of the system is conserved by trying making

sure that the Hamiltonian stays constant throughout the evolution;

H = U(xxx) +K(ppp), (3.16)

where U(xxx) is the potential energy — the log(L) — given some some parameter values xxx,

and K(ppp) is the kinetic energy — |ppp|2/(2m) — with a new set of momentum parameters

that are being evolved along the positions (parameter values). From that, we can write
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simple equations of motion in the form of partial derivatives, to see how xxx and ppp behave

over time;

dxi

dt
=

∂H

∂pi
, (3.17)

dpi
dt

= −∂H

∂xi

. (3.18)

The symbol i represents the dimension (i.e. the selected parameter), and H is the stan-

dard Hamiltonian from equation 3.16. With the previously defined kinetic and potential

energies, we can rewrite equations 3.17 and 3.19 as

dxi

dt
=

pi
mi

, (3.19)

dpi
dt

= −∂U

∂xi

, (3.20)

where the potential U(xxx) is the negative log likelihood at xxx and mi is the “mass term”.

Partial derivatives must be computed for all the sampled parameters, which is a compu-

tationally expensive process. The mass term can be chosen arbitrarily to be, say, 1, or

based on some prior to speed up the mixing, by taking the parameters’ correlations into

account. These equations of motion define the mapping from a state (x, px, px, p)t at time t to

a new state at time t+ ǫ, (x, px, px, p)t+ǫ; a new MCMC step.

In practice we have to discretize the Hamiltonian equations of motion by discretizing

the time, using a number L of small steps of size ε. We then iterate through ε1, ε2, ..., εL,

updating xxx and ppp at each step to evolve the Hamiltonian trajectory. There are many

methods of discretization, with the most widely used being the “leapfrog” method shown

below;

pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂xi

(x(t)), (3.21)

xi(t+ ε) = xi(t) + ε
pi(t+ ε/2)

mi

, (3.22)

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂xi

(x(t+ ε)), (3.23)

where the Hamiltonian equations of motion are of the same form as in equations 3.17

and 3.19. We can therefore get from t(0) to t(ǫ) by iterating through a number of t(ǫ/L)

steps. Since the trajectory is based on small discrete steps, the Hamiltonian value in
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practice does not stay perfectly constant; it fluctuates, and the discrerization step-size, ǫ,

and the number of discretizations need to be tweaked to ensure similar Hamiltonian value

at each end of the trajectory. Since the discretization cannot be perfect, a Metropolis-

like probability is used to determine whether to accept or reject the HMCMC step, by

computing the difference in the Hamiltonians.

It it quite easy to visualize how this works in practice. Figure 3.8 shows the progres-

sion of both parameter values (left) and momenta (middle) for one Hamiltonian trajec-

tory (one HMCMC step), whilst the total energy of the system remains relatively stable

(right), for two parameters against each other. Only the beginning and the end of the

trajectory are valid MCMC steps (current and proposed steps, respectively). The actual

values of the parameters’ momenta are not interpretable, i.e. we cannot use them to

extract more information from the fit.

Figure 3.8: Visualization of how HMCMC works, with one trajectory on 2D parameter-

space shown on the left, their corresponding momentum trajectory in the middle, and

the evolution of the total Hamiltonian value on the right. We can see that within one

trajectory, the sample’s position transverses across the parameters’ entire error band,

generating a fully independent point at the end of it. In other words, the information

about the original position is lost, meaning the autocorrelation at lag 1 is zero. Figure

taken from [70].

The number of discriminations, L, and the discretization size, ε, are the two main

parameters to be tuned. Luckily this can be done somewhat separately; ǫ should be small

enough not to vary the Hamiltonian value too much, and L should be large enough for

one trajectory to cover entire phase-space, producing fully uncorrelated MCMC samples.
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The mass term can be provided in a form of a correlated matrix, allowing HMCMC

evolution in a fully uncorrelated phase-space for extra efficiency.

At the beginning of testing the HMCMC algorithm in the toy framework imitating a

T2K-like model with variable number of model parameters, it showed far better efficiency

scalability in comparison to the PTMCMC and ensemble MCMC samplers described in

sections 3.4.1 and 3.4.2. As the number of sampled parameters was raised, the HMCMC

efficiency was decreasing linearly; this was a huge improvement over the Metropolis-

Hastings algorithm, which scales exponentially — making efficiency difference larger as

the number of parameters is increasing.

(a) Metropolis-Hastings against HMCMC com-

parison of the number of log(L) evaluations

needed for stationary posterior density, with

10 leapfrogs per Hamiltonian evolution.

(b) Metropolis-Hastings against HMCMC com-

parison of the number of log(L) evaluations

needed for stationary posterior density, with 5

leapfrogs per Hamiltonian evolution.

Figure 3.9: Metropolis-Hastings against HMCMC comparison of the number of log(L)
evaluations needed for stationary posterior density. Although larger number of leapfrog

steps per trajectory are more computationally expensive, they produce a far less auto-

correlated chain, reducing its needed total length.

This is shown in figure 3.9, where the number of needed log(L) evaluations for

a stationary distribution (10,000 fully uncorrelated MCMC steps) was compared for

Metropolis-Hastings against HMCMC, for an increasing number of parameters. In 3.9a

we can see that HMCMC, although less efficient in lower numbers of dimensions, scales

linearly when it comes to the required computational burden, causing it to perform better

in a higher number of dimensions. This is only with the sufficient number of leapfrog
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steps, which raises an interesting conclusion.

HMCMC is only more efficient if the number of leapfrog discretizations is high enough

to generate fully uncorrelated steps (i.e. autocorrelation is ∼0 at lag ∼1). This is

somewhat counter-intuitive; when we decrease number of leapfrog discretizations, the

computing time per HMCMC step (trajectory) decreases significantly, but the result-

ing autocorrelation makes it far less efficient. When the Hamiltonian tracks are longer,

however, the autocorrelations become negligible and this outweighs the extra computa-

tional time per-track because far less MCMC steps are needed to sufficiently sample the

parameter-space.

The toy framework, in which these MCMC studies were performed, made it easy to

optimize the discretization length ε and the number of discretizations L; the covariance

matrix, from which all the algorithms were sampling, was also used for optimizing the

step-sizes. This means the comparison is for well-optimized algorithms, which is usually

difficult in practice due to the not-perfectly-known effect of the data pulling the model

parameters.

3.4.4 HMCMC implementation in MaCh3

The HMCMC algorithm was implemented in the MaCh3 framework, with full tuning

for systematic parameters left for future analysers. The implementation of the gradient

calculator was a rather simple one; the parameter values are slightly deviated, and the

differences between their likelihoods and their parameter values were used to obtain

gradients for each parameter. An example of a gradient and log(L) scan over one of the

T2K flux parameters is shown in figure 3.10.

The HMCMC algorithm was tested on the oscillation parameters first, with all the

nuisance parameters fixed to their pre-data-fit nominal predictions. A fake dataset called

“Asimov A”, generated with the nominal T2K MC tuned to oscillation parameterd from

older analyses, was used for the first HMCMC runs. Figure 3.11a shows five HMCMC

trajectories, each with a different colour, together with the trajectories’ leapfrog points,

on top of the posterior probability obtained from sampling with the standard Metropolis-
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Figure 3.10: Gradient scan on top of a log(L) scan for one of the T2K flux parameters,

with the “Asimov A” fake dataset described in chapter 4. The gradients match the

expectation from the log(L) scan. These gradient scans were completed for all the 750

T2K parameters.

Hastings MCMC. Figure 3.11b shows the autocorrelation from 1000 HMCMC steps,

where the autocorrelation seems to drop to ∼0 when the lag is ∼1.

Although HMCMC seems to be working well for the oscillation parameters, more

work needs to be done for the nuisance parameters. The parametrization changes between

the analyses as more data is added, and HMCMC is particularly sensitive to the step size

(ε, L, mass matrix) tuning. One way to make the optimization easier is through some

form of adaptive step-size tuning. For example, a short Metropolis-Hastings chain could

be run to find the preliminary 1σ contours for each parameter. The resultant preliminary

posterior distribution could be used as a mass-matrix in HMCMC. If the parameters follow

perfect Gaussian distributions, such tuning would be maximally optimal. In reality, even

a rough estimation of the matrix for non-Gaussian parameters can help significantly with

the step-size tuning and the sampler’s efficiency.

Furthermore, more issues might arise if some parameters have non-linear likelihood

surfaces; the discretization length ε will have to be small enough so that the trajectory
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(a) (b)

Figure 3.11: HMCMC evolutions on δCP vs sin2 θ23 space, with all the oscillation pa-

rameters free in the model, and nuisance parameters fixed to their pre-data-fit nominal

expectations. The algorithm does produce HMCMC tracks, with five tracks shown in (a)

with the underlying binned posterior produced using standard Metropolis-Hastings. The

autocorrelation values drops to ∼0 after only one HMCMC step, shown for δCP in (b),

producing fully uncorrelated samples with each HMCMC step.

can reconstruct such irregularities well. Consequently, the number of leapfrog-steps L

would have to be raised to ensure un-autocorrelated chain progression. Finally, the mass

hierarchy will have to be dealt with in exactly the same way as it is currently; with

the proposed step of swapping the sign of ∆m2
32, with a standard Metropolis-Hastings

acceptance update.

The main outcome of this analysis is in figure 3.11. HMCMC is a promising algorithm

in a high-dimensional space, that could reduce the computational burden. This could

be especially important for producing highly significant results (for example, with 3σ

intervals), or if the number of systematic parameters is raised.
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T2K Bayesian Oscillation Analysis

The T2K neutrino oscillation analysis involves inputs from various internal working

groups, whether it is cross-section or detector systematics modelling, often using ex-

ternal data. These inputs go into four main analysis teams; BANFF, VALOR, P-Theta

and MaCh3 (all first mentioned in section 3.3). Although this thesis describes the results

using MaCh3, the frameworks were validated between each other before the main data

fits and the final results compared against each other, with some of these validations and

comparisons shown in this thesis.

At the beginning of the analysis, both BANFF and MaCh3 perform a fit to the

ND280 data, given inputs from the flux, cross-section and near-detector groups. The

results from BANFF then become inputs for P-Theta and VALOR, whereas the MaCh3

ND results are used for validations and additional studies. These inputs help constrain the

systematics at SK for the oscillation analysis, since the ND280 sits in the same neutrino

beam, collecting higher-statistics data. The effect of the ND280 data constraining the

systematic errors on the SK data samples is shown in table 4.1, taken from [73].

The neutrino flux and cross section systematic uncertainties are described in 4.1.1

and 4.1.2 respectively. The ND280 data samples are described in section 4.2.1, and the

SK data samples mentioned in table 4.1 are described in section 4.2.2, both with their

detector uncertainties.

63
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FHC 1Rµ RHC 1Rµ FHC 1Re RHC 1Re FHC CC1π

No ND280 15.0% 13.0% 15.0% 13.7% 20.1%

With ND280 5.5% 4.4% 8.8% 7.3% 17.8%

Table 4.1: Effect of the ND280 data on the event rate systematic uncertainty constraints

of the three Forward-Horn-Current (FHC) and two Reverse-Horn-Current (RHC) data

samples. Numbers in the table taken from [73].

4.1 Systematic uncertainties

The systematics for the T2K oscillation analysis are split into the SK and ND280 detector

efficiencies, neutrino flux uncertainties and the neutrino-matter cross-section uncertain-

ties. Additionally, there are uncertainties on oscillation parameters that the T2K experi-

ment is not sensitive to, namely, sin2 θ12 and ∆m2
12. Each parameter (systematic or not)

needs to have a prior distribution in Bayesian analyses, as described in chapter 3. Most

of these priors are correlated Gaussian that come in the form of covariance matrices, sep-

arate for each group of systematics. This means there are no prior correlations between

separate systematic groups, for example, between cross-section and flux uncertainties.

Most covariance-based priors give a penalty to the T2K likelihood function, varying the

penalty as the parameter is deviated. The parameters with non-informative, flat priors

do not change the likelihood-penalty depending in its value.

4.1.1 Neutrino beam flux

The neutrino flux at T2K is simulated by modelling the proton beam interacting with

the graphite target. These simulations are tuned using external data from the hadron

production experiment, NA61/SHINE (SPS Heavy Ion Neutrino Physics Experiment) at

CERN [74, 75], which uses a 30GeV proton beam incident on a thin1 T2K target replica.

The FLUKA [77] software is used to simulate the hadronic interactions on the carbon

target (tuned with the above NA61/SHINE data) producing the charged mesons. The

surrounding geometry is simulated with GEANT3 [78], with the secondary interactions

1A full T2K target replica, described in [76], will be used for the next analyses
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outside of the target simulated in GCALOR [79], and tuned to the experimental data.

The secondary particles are tracked in the simulation through the decay tunnel as they

decay into neutrinos and antineutrinos.

The flux systematic errors are a result of uncertainties in the hadron production

model, the secondary interactions outside of the carbon target, beam profile and align-

ment, the magnetic horn current and field, uncertainties in the geometrical and material

modelling, and the amount of data collected, in units of protons-on-target (POT). The

flux uncertainties are around 10% at the flux peak, with the main contribution coming

from the hadron production model, and at low energies the uncertainties coming from the

modelling of both the pion production and secondary interactions outside of the target.

The neutrino flux uncertainties consist of one hundred parameters, split equally be-

tween flux uncertainties at ND280 and SK. For each detector the flux uncertainties are

further split into FHC and RHC modes, and each mode for each detector contains uncer-

tainties for all four neutrino species, νµ, ν̄µ, νe and ν̄e. Every detector-beam mode-species

uncertainty is binned in the true neutrino energy. The number of energy bins is chosen

to be broadly proportional to the magnitude of the flux per group itself, meaning that,

say, FHC-νµ will have the same number of energy bins as RHC-ν̄µ. Both are defined as

right-sign, since the neutrino flavour corresponds to its neutrino beam mode. The wrong-

sign would be defined as, for example, ν̄µ in FHC mode, and the wrong-sign background

having less bins. The energy bin width is smaller at the neutrino oscillation maxima,

around 0.6GeV, and courser away from this maxima. With this in mind, table 4.2 shows

the neutrino flux energy binning for right-sign and wrong-sign flavours.

Neutrino flavour Sign Neutrino energy binning boundaries [GeV] No◦ of bins

µ right 0, 0.4, 0.5, 0.6, 0.7, 1, 1.5, 2.5, 3.5, 5, 7, 30 11

µ wrong 0, 0.7, 1, 1.5, 2.5, 30 5

e right 0, 0.5, 0.7, 0.8, 1.5, 2.5, 4, 30 7

e wrong 0, 2.5, 30 2

Table 4.2: Neutrino flux energy binning (in GeV) for right-sign and wrong-sign neutrino

flavours. All the bin numbers and widths are the same for FHC and RHC modes, and

for ND280 and SK detectors.
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All the 100 flux parameters in MaCh3 have Gaussian priors, with mean of 1 and

widths corresponding the parameter’s deviation from its covariance. These uncertainties

are applied in a form of normalization, which scales the number of MC events. The flux

parameters are all highly correlated, with the fractional covariance shown in figure 4.1,

produced by the T2K beam group.

Figure 4.1: The beam flux fractional covariance matrix, binned in the neutrino energy

for all the both ND280 and SK data samples (and detailed in table 4.2). The matrix is

used as Gaussian priors in the joint MaCh3 fit.

4.1.2 Neutrino cross-sections

The neutrino interaction cross-sections on water are the dominant systematic uncertainty

in most long-baseline accelerator neutrino experiments, and T2K is not an exception.
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The neutrino-matter parametrization in T2K is updated regularly, and changes for the

analysis in this chapter too. The NEUT neutrino event generator is used to simulate the

neutrino interactions in the T2K detectors [81, 80].

Since in T2K the neutrino interactions take place in complex nuclei, interactions

with multiple nucleons must be taken into account. The nucleus is modelled with the

Relativistic Fermi Gas approximation (RFG), modified with the Random Phase Approx-

imation (RPA) to take long-distance correlations into the consideration [83]. Neutrino

interactions with multiple nucleons is included in the two-particle two-hole (2p2h) model,

also called Meson Exchange Currents (MEC) [84, 82]. The 2p2h interactions can be eas-

ily misidentified as CCQE biasing the reconstructed neutrino energy [137], it is therefore

important to include them in the T2K cross-section model. An example of a 2p2h interac-

tion is shown in figure 4.2. The default T2K MC generated with NEUT is modelled with

the Spectral Function (SF) model, meaning it needs to be reweighted to RFG and then

again the relativistic RPA (MEC is already included in the pre-fit MC). External data

from the MiniBoonNE [85, 86] and MINERvA [87] experiments was used by the T2K

Neutrino Interaction Working Group (NIWG) [88] to tune the CCQE nuclear model pa-

rameters. The resonant pion interaction (RES) parameters were tuned using data from

the ANL and BNLexperiments [89].

νl l−

n p

p p

W+

π0

Figure 4.2: Example of a Feynman diagram for l-flavoured neutrino interacting with a

pair of nucleons via the 2p2h process.

The binding energy of a nucleon that exits the nucleus, Eb,must be subtracted in the

simulation. It is tuned using external electron scattering data [90]. After the first neutrino

interaction with the nucleus, the secondary hadrons propagate through the rest of the

nucleus, interacting on their way out. This effect is called the Final State Interactions
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(FSI), and it is simulated through a cascade model where the hadrons are interacting

with the nuclear medium classically, altering its final state momentum and energy. A

free-particle path that is dependent on the nuclear density is taken into account, and

constrained using particle-nucleon scattering data.

The interactions in T2K around the 0.6GeV neutrino energy are dominated by

charged-current quasielastic (CCQE) interactions, which are the most-well predicted by

the current T2K cross-section model. NEUT also includes the 2p2h interactions, CC reso-

nant pion production and deep inelastic scattering. The cross sections for each interaction

type are shown in figure 4.3, for νµ and ν̄µ separately.

(a) Muon neutrino interaction mode cross-

sections across the T2K neutrino energy

range.

(b) Muon antineutrino interaction mode cross-

sections across T2K neutrino energy range.

Figure 4.3: Muon neutrino (left) and antineutrino (right) interaction mode cross-sections

across neutrino energy range, overlaid on the T2K beam flux energy distribution.

The parameters describing these interactions are defined as either “normalization”

or “shape” parameters. The normalization parameters are simple multipliers that weight

all the events, regardless of the neutrino energy involved. The shape parameters are

multipliers that are dependent on on the neutrino energies; either only affecting certain

energies, or affecting different energies with different weights, modifying the resultant

neutrino energy spectra shape. The shape parameters are implemented in a form of

response functions implemented as splines, where a spline corresponding to a given energy

will return a weight corresponding to the parameter value.

A total of 32 shape and normalization parameters were used in this analysis, tuning
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the cross-sections for the above cross-section systematics. Most of the parameters have

correlated Gaussian priors, derived either from theory [91], or from fits to external data, as

described before. All the cross-section systematics are listed in table 4.3 with their pre-fit

central values, prior errors, prior types and the parameter type (shape or normalization).

Table 4.4 shows the cross-section pre-fit correlation matrix used as a multivariate prior.

Figure 4.4: The cross-section pre-fit correlation matrix showing all the cross-section sys-

tematic parameters. Correlations between the parameters are mostly taken from theory

and fits to external data, with most correlations unknown prior to the fit.

4.1.3 The ND280 Detector

The ND280 detector has 556 systematic normalization parameters binned in the outgoing

muon momentum and angle, pµ and cos(θµ). They are all are included in the joint-detector
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Parameter name Nominal value Prior Type Prior error Parameter type

MQE
A 1.2 Flat prior — Shape

pF
12C 217 Flat prior — Shape

pF
16O 225 Flat prior — Shape

2p2h ν norm 1 Flat prior — Normalization

2p2h ν̄ norm 1 Flat prior — Normalization

2p2h 12Cto16O norm 1 Gaussian 0.2 Normalization

2p2h 12C norm 1 Gaussian 3.0 Shape

2p2h 16O norm 1 Gaussian 3.0 Shape

BeRPA A 0.59 Gaussian 0.118 Shape

BeRPA B 1.05 Gaussian 0.210 Shape

BeRPA D 1.13 Gaussian 0.170 Shape

BeRPA E 0.88 Gaussian 0.352 Shape

BeRPA U 1.2 — — Fixed

C5
A 1.01 Gaussian 0.15 Shape

MRES
A 0.95 Gaussian 0.15 Shape

Isospin1
2
Back. 1.3 Gaussian 0.40 Shape

CC νe/νµ 1 Gaussian 0.03 Normalization

CC ν̄e/ν̄µ 1 Gaussian 0.03 Normalization

CC DIS 1 Gaussian 0.4 Shape

CC Coherent 12C 1 Gaussian 0.3 Normalization

CC Coherent 16O 1 Gaussian 0.3 Normalization

NC Coherent 1 Gaussian 0.3 Normalization

NC 1 γ 1 Gaussian 1.0 Normalization

NC Other Near 1 Gaussian 0.3 Normalization

NC Other Far 1 Gaussian 0.3 Normalization

FSI Inelastic Low E. 0 Gaussian 0.41 Shape

FSI Inelastic High E. 0 Gaussian 0.34 Shape

FSI Pion Production 0 Gaussian 0.50 Shape

FSI Pion Absorption 0 Gaussian 0.41 Shape

FSI Ch. Exchange Low E. 0 Gaussian 0.57 Shape

FSI Ch. Exchange High E. 0 Gaussian 0.28 Shape

Eb dial 0 Gaussian 2.0 Shape

Table 4.3: Cross-section systematic parameters used for all the oscillation analyses pre-

sented in this thesis, showing the nominal value, the type of prior, the prior error, and

type of the parameter.
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(ND280 + SK) data analysis, similarly to the flux parameters, after optimization, cross-

validations and fits to ND280-only data together with the BANFF group (first described

in section 3.3).

The true systematic parameters for each sample, for example, TPC Charge ID Ef-

ficiency, are varied systematically and statistically to produce 2000 random variations.

These randomly fluctuated samples are then selected according to their priors. The pre-

dicted number of events rates from each fluctuated sample are binned in the outgoing

muon momentum and angle, for each FGD separately. The binning of these pµ–cos(θµ)

parameters is shown in table 4.4.

Binning in these variables allows high correlations between FGD1 and FGD2, and

between the adjacent bins through a covariance matrix. The MC uncertainty is accounted

for by adding statistical MC and MC-shifting covariance matrices. The statistical MC

matrix is generated including Poisson fluctuations in the MC event weights, and adding

these to the detector covariance martix. The MC-shifting covariance matrix tries to solve

the Martini and Nieves 1p-1h interaction model difference, which results in a shift in

the reconstructed lepton momentum in CCQE interactions [138]. The two near detector

fitters mentioned in section 3.3, BANFF and MaCh3, are used for independent valida-

tions [94]. The ND280 covariance matrix with all the ND280 systematic parameters,

produced from the 2000 fluctuated samples and the two above matrices, and used as

prior in the T2K oscillation analysis, is shown in figure 4.6.

As a part of further ND280 analysis, BANFF and MaCh3 both output the covari-

ance matrix from the full ND280 data analysis together with the constrained neutrino

flux and cross-section uncertainties, which are being used for the two hybrid-Frequentist

far-detector neutrino oscillation analysis groups. The Mach3 group does not use these

matrices; the data analysis is re-done with the use of matrix in 4.6 as a prior, and the

addition of the SK data, SK systematic uncertainties and extra SK-only cross-section

parameters in a joint ND280-SK T2K data analysis.

Figure 4.5 shows example comparisons of the cross-section parameters between MaCh3

and BANFF fits to the ND280 data. There is an overall good, but not perfect agreement

between the two fitters. The visible differences in, for example, the 2p2h parameters, were
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Systematic sample pµ bins (MeV) cos(θµ) bins

FHC νµ CC 0
0, 1000, 1250, 2000,

3000, 5000, 30000
-1, 0.6, 0.7, 0.8, 0.94, 0.96, 1

FHC νµ CC 1 π
0, 300, 1250, 1500,

5000, 30000
-1, 0.7, 0.85, 0.9, 0.92, 0.96, 0.98, 0.99, 1

FHC νµ CC N π
0, 1500, 2000, 3000,

5000, 30000
-1, 0.8, 0.85, 0.9, 0.92, 0.96, 0.98, 0.99, 1

RHC ν̄µ CC 1 track
0, 400, 900, 1100,

2000, 10000
-1, 0.6, 0.7, 0.88, 0.95, 0.97, 0.98, 0.99, 1

RHC ν̄µ CC N track
0, 700, 1200, 1500,

2000, 3000, 10000
-1, 0.85, 0.88, 0.93, 0.98, 0.99, 1

RHC νµ CC 1 track
0, 400, 800, 1100,

2000, 10000
-1, 0.7, 0.85, 0.90, 0.93, 0.96, 0.98, 0.99, 1

RHC νµ CC N track
0, 1000, 1500, 2000,

3000, 10000
-1, 0.80, 0.90, 0.93, 0.95, 0.96, 0.97, 0.99, 1

Table 4.4: ND280 systematic uncertainties split per sample, pµ and cos(θµ), making all

the 556 uncertainties. These systematic uncertainties are duplicated, corresponding to

FGD1 and FGD2.
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attributed to marginalization effects near the parameters’ physical constraints. Various

validations (for example, studying systematic pulls and log-likelihood scans) have found

that both fitters are behaving as expected [93].
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Figure 4.5: Comparison between BANFF (blue error bars) and MaCh3 (red blocks) for

the FSI parameters (left) and the rest of the cross-section parameters (right). There is a

good agreement between the fitters, with the differences (for example, the 2p2h parame-

ters) attributed to the marginalization effects near the parameters’ physical constraints.

Figures taken from [93].
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Figure 4.6: ND280 pre-fit correlation matrix showing all the ND280 detector systematic

parameters binned in pµ–cos(θµ). The matrix was produced by fluctuating the ND280

parameters, and recording the resultant event numbers in each bin from table 4.4
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4.1.4 The Super-Kamiokande Detector

The SK detector systematic parameters are parametrized in a very similar way to the Flux

and ND280 detector systematics; they are normalization parameters correlated between

the various Super-K data samples. There are total of 45 parameters, with 44 of them split

into ν and ν̄ for 1 ring e (1Re) and 1 ring µ (1Rµ), and ν 1Re-CC1π+ samples. The last

parameter, the SK Energy Scale, is applied to the MC reconstructed energy before the

sample binning binning, taking the differences between the reconstructed energy between

MC and Data into account. The SK Energy Scale is computed using SK control samples,

covering a range between 30MeV and 10GeV [99].

The binning is listed in table 4.5, and the full covariance matrix is shown in figure 4.7.

The final matrix contains extra uncertainties due to the FSI interactions the secondary

interactions (SI) in the detector, as well as the photon-nucleon (PN) interactions. The

errors from the detector-only and FSI+SI+PN matrices are summed in quadrature to

give the final matrix.

The detector systematics are estimated by the SK group by performing a fit to the

atmospheric2, cosmic, and hybrid π0 data samples [96, 98, 97], and the FSI+SI+PN

matrix is generated by looking at the MC predictions with different deviations of FSI, SI

and PN.

2The first investigation of a joint atmospheric and beam data oscillation analysis is described in a

thesis by Xiaoyue Li, in [95].
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Systematic sample Mode Bin edges (GeV)

1Re Osc. νe CCQE 0, 0.35, 0.8, 1.25

νµ/ν̄µ CCQE

Intrinsic νe CCQE

All NC

1Rµ νµ/ν̄µ CCQE 0, 0.4, 1.1, 30

νµ/ν̄µ CCnQE All

Intrinsic and Osc. νe CCQE All

All NC All

1Re CC1π+ Osc. νe CCQE 0.3, 0.8, 1.25

νµ/ν̄µ CCQE

Intrinsic νe CCQE

All NC

Table 4.5: Super-K systematic uncertainties split per sample, mode and energy bins,

making 44 out of the 45 systematic parameters. The last parameter, the SK energy

scale, is derived from SK control samples. The 1Re and 1Rµ systematic uncertainties are

duplicated, corresponding to FHC and RHC, with 1Re CC1π+ sample only being present

in FHC beam mode.
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Figure 4.7: SK correlation matrix showing all the SK detector systematic parameters

binned in the reconstructed ν energy.
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4.2 Data

The data accumulated, measured in proton-on-target (POT), collected over the T2K

running period up to this chapter’s analysis is shown in figure 4.8, with 1.51× 1021 POT

in the FHC mode and 1.65×1021 POT in the RHC mode. This corresponds to the POT as

seen by SK, which has almost 100% uptime, but with ND280 being exposed to less POT

due to various detector troubles resulting in around 30% downtime. The neutrino beam

is on even when ND280 experiences troubles during run-time, allowing SK to collect more

data. The impact of this ND280 downtime on the analysis is small, but non-negligible

nevertheless. T2K is still a statistically limited experiment, so collecting the neutrino data

at SK is most important for the oscillation analysis. At the same time, extra data at

ND280 would further constrain the systematic uncertainties, and help reducing potential

biases from the neutrino cross-sections. This will become even more important as T2K

gets closer to the precision-measurements era.

The ND280 data used for this analysis only include the beam runs 2–6, corresponding

to 5.82× 1020 POT in FHC mode, and 2.84× 1020 in RHC mode, , all collected between

2010 and 2015. The SK data contains all the data spanning runs 1–9, with 14.94× 1020

POT in the FHC mode and 16.35× 1020 POT in the RHC mode. The differences in the

SK POT and the total POT in figure 4.8 are due to the SK downtime.

4.2.1 ND280 event selections

The analysis described in this chapter involves fourteen ND280 data samples, seven per

FGD, since each FGD has different target material — FGD1 mostly carbon, and FGD2

carbon and water — and because FGD1 has more recorded muon track information

available for reconstruction, since it is more massive than FGD2. Each FGD has three

samples in FHC and four samples in the RHC modes. The binning in the outgoing muon’s

pµ–cos(θµ) for these samples is the same as for the ND systematics binning, described

in 4.1.3. The correlated FGD1 and FGD2 samples are being fit simultaneously in the

near detector fit, allowing for some sensitivity to both oxygen and carbon interactions

individually, constraining oxygen interactions at SK. Each FGD has its own separate set
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Figure 4.8: The accumulated total (blue line), FHC (red line) and RHC (violet line) POT,

together with the beam power, on a timeline over the beam runs 1–9, corresponding to

the years 2010–2018.

of selections due to the different target, and systematics and reconstruction [100, 101,

102].

FHC CC samples

There are three CC samples per FGD, named after the number of reconstructed pions:

CC0π, CC1π and CCOther. The events reconstructed as CC0π have no secondary tracks

recognized as charged pions, protons or positrons in a TPC, and no Michel electrons in

the FGD. CC1π sample contains events that have either one charged pion in a TPC and

one Michel electron, or one charged pion in a TPC and in an FGD. The events that

do not satisfy the other two samples’ criteria are tagged as CCOther. They all have to

first undergo the same set of cuts to select CC-inclusive samples, before splitting further.
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These cuts select a negatively-charged muon track that originated in one of the FGDs, and

passed through a neighbouring TPC. It is only after these selections that additional cuts

are being applied to separate the CC-inclusive samples into the three sub-samples [100].

The cuts are;

1. Data Quality: The event must originate within the correct time-window, inside

the beam spill timing, and the whole spill must be within good ND280 data quality

flag. Each bunch within a spill is treated independently to avoid pile-up.

2. Total Multiplicity: The reconstructed track must pass through at least one TPC.

3. Quality and Fiducial Volume: There must be at least one reconstructed track

inside the FGD1 or FGD2 fiducial volumes. The track must have originated inside

the FGD and passed through a TPC. The FGDs’ fiducial volume cuts are listed

in [100]. The TPCs is less reliable, and the particles needs to pass at least 18 layers

of a TPC to reject short tracks.

4. Upstream Background Veto: Events are vetoed where the second-highest mo-

mentum track starts less than 150mm upstream of the reconstructed muon, and if

the secondary track originates in FGD2 when the primary track starts in FGD1.

This is due to reconstruction failures where an event where the real muon originates

far upstream the detector has its reconstructed vertex in one of the FGDs.

5. Broken Track: The reconstructed muon vertex must be less than 425mm from

the FGD’s upstream edge, if there is a FGD-only track present. This is to reject

candidates where the mis-reconstructed track is broken into two, where there should

be only one.

6. Muon PID: The events that pass the above selections are considered as muon

candidates. To be considered as muon, an additional PID selection is applied,

based on the measured dE/dx in a TPC, where the deposited energy is compared

against the expectation to distinguish between muons, electrons and protons.

When all the CC-inclusive cuts are satisfied, further selections can be applied to split

the FHC data into CC0π, CC1π and CCOther samples. As the samples’ names suggest,
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these selections are based on the number of the reconstructed pions in the detector.The

following cuts are applied to identify secondary tracks;

• PID: The reconstructed PID must be different from muon from the CC-inclusive

cuts.

• Time Bunching: The secondary tracks must be in the same spill and beam bunch

as the reconstructed muon.

• Quality and Fiducial Volume: The secondary track must originate inside the

same FGD’s fiducial volume as the reconstructed muon, and enter the downstream

TPC. As with muons, at least 18 layers of the TPC must be triggered.

After passing the above criteria, the secondary track is identified as either a proton

for the positive tracks, and pion or an electron for the negative tracks, using the energy

deposited in the TPC. These events can be then split into the three samples, CC0π,

CC1π and CCOther.

The wrong-sign background data is not included in the FHC samples. As shown in

figure 2.4, the wrong-sign background in FHC mode is much smaller than in RHC mode,

with a negligible contribution to the analysis.

RHC CC samples

The RHC mode has two signal samples, ν̄µ CC1-Track and ν̄µ CCN-Track, and two

background samples, νµ CC1Track and νµ CCNTrack, per FGD. The RHC ν̄µ samples

have different CC-inclusive selections than the FHC samples because of the higher wrong-

sign background, requiring different cuts to separate between ν̄µ and νµ interactions [101,

102]. The “Data Quality” and the “Quality and Fiducial Volume” cuts are the same,

whereas the “Total Multiplicity” cut requires that at least one track has to pass through

TPC2. Additionally, the following cuts are included in the RHC ν̄µ CC-inclusive samples:

• Positive Multiplicity: The track with the highest momentum must be positive,

to reduce mis-identifying the wrong-sign background interactions as ν̄µ.
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• TPC1 Veto: Reject events entering FGD1 coming from the upstream direction -

PØD or the magnet.

• TPC PID: The energy deposited as the particle travels in the TPCs, dE/dx, is

used to select a µ+ track.

With the CC-inclusive selection passed, the ν̄µ candidates are split into CC1Track

and CCNTrack. The ν̄µ CC1Track selections requires one positive muon final state,

and no reconstructed pions. The ν̄µ CCNTrack sample requires the event to have the

reconstructed muon to have any number tracks, with at least one reconstructed pion.

The same initial CC-inclusive selection criteria are used for the wrong-sign back-

ground, RHC νµ CC interactions, with the negative multiplicity (meaning the highest

momentum track must have negative charge) and µ− TPC PID required. The split-

ting into CC1Track and CCNTrack is then the same as for the RHC ν̄µ samples. The

wrong-sign background selections are important because the SK detector does not have a

charge-discriminating magnet, so it will not distinguish between positively and negatively

charged leptons.

4.2.2 Super-K event selections

The analyses in this thesis are done using the SK data corresponding to runs 1–9. Com-

parisons against older analyses with less data are also shown, but they all have the same

SK event selections applied. All the SK MC and data preparation, including making the

data sample selections, is done by the T2K-SK group on T2K. This group consists of

people that are mostly members of both the T2K and SK collaborations.

There are three distinct SK data samples; one-ring electron-like (1Re), one-ring

muon-like (1Rµ) and one-ring electron CC1π+-like (1ReCC1π+). The examples of 1Re

and 1Rµ events are shown in figure 2.17, with the 1ReCC1π+ events often looking like

1Re to human eye, and are reconstructed by searching for PMT hits clustered in time

(more on the reconstruction in chapter 6). The FHC mode contains all the three samples,

and the RHC mode only contains the 1Re and 1Rµ samples, giving a total of five effective
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SK data samples. Before the data is split into samples, it must pass through a series of

general cuts that are based on the selected good beam spills, beam spill timing window,

SK data quality and so on [104, 99].

All the events must be fully contained (FC) within the fiducial volume (FV). To be

classified as FC, the event must have less than 16 hits in the outer detector. Furthermore,

there are cuts on the minimum distance between the reconstructed vertex and the inner

detector. wall (dwall) and the minimum distance between the vertex and the wall in

the momentum direction (towall). These distances are different for the electron-like and

muon-like rings. The event reconstruction at SK is done with the fiTQun software, and

is described further in chapter 6.

1Reee selection

To be classified as 1Re, the event must pass the following selection criteria:

1. Fiducial Volume: The event must satisfy the FC cut, have dwall above 60 cm,

and towall above 170 cm.

2. Ring Count: The most likely number of rings reconstructed by the fiTQun multi

ring fitter must be one.

3. Ring ID: The most likely PID of the ring reconstructed by the fiTQun single-ring

fitter must be e.

4. Evis: The visible energy must be above 100MeV (in practice, one-ring electron

momentum is used as the visible energy).

5. Michel e: No detected Michel electrons, by looking at separate PMT hit clusters

spaced in time.

6. Erec

ν : The reconstructed neutrino energy must be below 1250MeV

7. π0 Rejection: The log likelihood ratio between π0 and e hypotheses, ln(Lπ0/Le),

must be below 175− 0.875×mγγ.
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The dwall, towall and the π0 rejection cuts were empirically derived from the fits to

the SK atmospheric data and the T2K MC separately, and optimized for the δCP mea-

surements [98, 105]. The π0 events can be easily mis-reconstructed as 1Re, especially at

lower momenta, making the π0 cut necessary. The 1Re selection sequence with the Erec
ν

distribution post-selections are shown in figure 4.9 for the FHC events.

(a) 1Re sample selections sequence with data

overlaid against the MC.

(b) 1Re reconstructed energy for the events

that passed all the selection criteria, with the

data overlaid against the MC.

Figure 4.9: The 1Re selection sequence one the left, with the reconstructed ν energy

spectrum for the events that passed all the selections on the right. The MC and data are

from the FHC mode.

1Rµµµ selection

The 1Rµ sample selection criteria are quite similar to the 1Re sample, but without the

upper limit on the muon reconstructed energy, and cuts on the momentum rather than

the visible energy (which in practice is the same, since electron momentum is used as the

visible energy in 1Re hypothesis):

1. Fiducial Volume: The event must satisfy the FC cut, have dwall above 50 cm,

and towall above 250 cm.
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2. Ring Count: The most likely number of rings reconstructed by the fiTQun multi

ring fitter must be one.

3. Ring ID: The most likely PID of the ring reconstructed by the fiTQun single-ring

fitter must be µ.

4. Momentum Cut: The reconstructed µmomentummust be larger than 200MeV/c.

5. Michel e: Less than two Michel electrons.

6. π+ Rejection: The event must pass a linear 2D cut in ln(Lπ+/Lµ) (based on MC-

derived cuts on the log-likeligood difference between the two hypotheses, which will

be described further in section 6.2.2) and the reconstructed muon momentum.

Figure 4.10 shows the 1Rµ selection sequence and the reconstructed ν energy after

the selections, for the FHC mode only.

(a) 1Rµ sample selections sequence with data

overlaid against the MC.

(b) 1Rµ reconstructed energy for the events

that passed all the selection criteria, with the

data overlaid against the MC.

Figure 4.10: The 1Rµ selection sequence one the left, with the reconstructed ν energy

spectrum for the events that passed all the selections on the right. The MC and data are

from the FHC mode.
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1Reee CC1π+π+π+

The 1Re CC1π+ sample has very similar selection criteria as the 1Re sample:

1. Fiducial Volume: The event must satisfy the FC cut, have dwall above 50 cm,

and towall above 270 cm.

2. Ring Count: The most likely number of rings reconstructed by the fiTQun multi

ring fitter must be one.

3. Ring ID: The most likely PID of the ring reconstructed by the fiTQun single-ring

fitter must be e.

4. Evis: The visible energy must be above 100MeV.

5. Michel e: The event must have one decay electron.

6. Erec

ν : The reconstructed neutrino energy must be below 1250MeV

7. π0 Rejection: The log likelihood ratio between π0 and e hypotheses, ln(Lπ0/Le),

must be below 175− 0.875×mγγ.

After the event is found to have a Michel electron in cut 5, the Erec
ν reconstruction

algorithm applied in fiTQun is different from the one applied in 1Re sample. It takes into

account that CC1π+ events have an outgoing ∆++ instead of a proton [103]. Figure 4.11

shows the 1ReCC1π+ cut sequence, and the reconstructed neutrino energy spectrum after

the selections for FHC mode.
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(a) (b)

Figure 4.11: The 1ReCC1π+ selection sequence one the left, with the reconstructed ν

energy spectrum for the events that passed all the selections on the right, both with the

data overlaid against the MC. The MC and data are for the FHC beam mode.
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4.3 Validations and sensitivities

After the validations and ND280 data fits are done by MaCh3 and BANFF, and the SK

data samples are prepared by the T2K-SK group, validations and sensitivities with the

SK frameworks can be done. In MaCh3 the ND280 code and samples are progressed

to the joint-fit executables that perform the validations, checks and fits using both the

ND280 and SK data samples simultaneously. Separate pre-fit flux, cross-section matrices

are used as priors in the fits. The post-fit BANFF matrix is usually only used in MaCh3

to produce tables with the predicted event rates to be compared against the other groups

groups (and vice-versa, the other groups can use the pre-fit matrices, but only for some

validations against MaCh3). This is in contrast to VALOR and P-Theta, which use the

BANFF post-fit matrix that constrains the flux and neutrino cross-sections in all of their

fits.

4.3.1 Predicted event rates

The first validation involves producing the predicted event rates for every SK sample

using different oscillation parameters and the ND280-pre-fit – ND280-post-fit covariance

matrix combinations. This is not just a validation tool between the three fitters; it also

shows the effect of the ND280 fit on the SK samples, and shows what we should expect

to change with respect to the previous analyses per sample, before doing the fit.

Table 4.6 shows the predicted event rates for each sample, where the SK MC was

tuned to nominal parameters both before and after the ND280 fit for the oscillated

hypotheses, and to the post-ND280 fit for the unoscillated hypothesis. The selected

oscillation parameters, called Asimov A, are set to the results from the previous oscillation

analyses [106] and to the value of θ13 taken from the PDG 2018 fit to the reactor neutrino

oscillation experiments [18]. The Asimov A values are:

• sin2 θ12 = 0.304

• sin2 θ23 = 0.528

• sin2 θ13 = 0.0212
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• ∆m2
21 = 7.53×10−5 eV2

• ∆m2
32 = 2.509×10−3 eV2

• δCP = −1.601

It is clear from the table that the ND280 has a huge effect on the predicted oscillated

event rates through the tuning of the systematic parameters. This is true for all the dif-

ferent oscillation parameter sets (Asimov A, Asimov B, unoscillated), with the full tables

shown in appendix A. The predicted number of events usually match very well between

the three fitters – especially the unoscillated predictions, since the three fitters use dif-

ferent oscillation probability calculators - with MaCh3 using the Prob3++ package [108]

modified to be parallelised and to do the calculations on a GPU [107].

There are further validations between the three groups, done without the ND280

constraint, where each group sequentially deviates every systematic parameter separately

by ±1σ and ±3σ, and compares the resultant difference in the neutrino energy spectrum

for each sample separately against the nominal prediction and between the groups.
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Table 4.6: The predicted number of events for all five SK samples. The table contains the

event rates for the pre-ND280 and post-ND280 fits with the oscillated Asimov A input

parameters, and the post-ND280 fit unoscillated predictions. The neutrino event rates

per sample are split into all neutrino flavours together with the right and wrong-sign

events to show all the backgrounds. For example, the FHC 1Rµ sample’s signal are the

νµ events, with the largest background coming from the ν̄µ events, and very little from

the miss-reconstructed νe events.

Sample νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

Pre-ND280 fit, Asimov A

FHC 1Rµ 234.74727 0.23317 15.38855 0.02300 0.05847 0.00028 250.45072

FHC 1Re 4.71632 7.78573 0.22836 0.35524 50.73694 0.34333 64.16593

FHC 1ReCC1π+ 0.51896 1.06192 0.02443 0.00970 6.17675 0.00685 7.79861

RHC 1Rµ 49.90198 0.08557 80.47949 0.05620 0.00325 0.00441 130.53090

RHC 1Re 0.92420 1.43065 1.56390 2.27242 2.57289 6.97070 15.73475

Post-ND280 fit, Asimov A

FHC 1Rµ 255.98572 0.20220 16.08909 0.02094 0.07116 0.00027 272.36939

FHC 1Re 3.98182 9.19099 0.20280 0.38955 58.66736 0.36161 72.79413

FHC 1ReCC1π+ 0.48109 0.96424 0.02416 0.01074 5.38527 0.00739 6.87289

RHC 1Rµ 55.17938 0.07670 84.10914 0.04984 0.00379 0.00471 139.42356

RHC 1Re 0.81559 1.71799 1.37963 2.45093 2.97063 7.43509 16.76987

Post-BANFF fit, Unoscillated

FHC 1Rµ 1193.75076 0.20262 31.18278 0.02095 0.00000 0.00000 1225.15712

FHC 1Re 5.08870 9.85319 0.22136 0.41113 0.00000 0.00000 15.57439

FHC 1ReCC1π+ 1.49812 1.03277 0.03689 0.01120 0.00000 0.00000 2.57898

RHC 1Rµ 114.79849 0.07686 343.46537 0.04998 0.00000 0.00000 458.39070

RHC 1Re 0.90775 1.83306 1.66775 2.59852 0.00000 0.00000 2.57898
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4.3.2 Sensitivity fits

The sensitivity fits (called Asimov fits or Asimov sensitivity from here) were done to the

run 1–9 SK MC to see what differences we should expect with respect to the previous

analysis, and to further validate the three fitters before progressing to the data fits. The

SK MC is reweighted to the correct POT, the nominal systematic parameter values, and a

set of oscillation parameters – in this case only shown for Asimov A. This reweighted MC

is then used as the data – meaning that we effectively fit the MC to a fixed representation

of itself [109].

The Asimov fits were done both with and without the external constraint on θ13 from

the short-baseline reactor neurino experiments (see section 1.5), using the Metropolis-

Hastings MCMC algorithm described in chapter 3. Although the data fits are expected

to look similar to the Asimov fits, the last update of the Asimov values was in 2016 for

the θ13 and 2015 for the rest of the oscillation parameters – the T2K data without the

reactor constraint also produces different result than the reactor experiments, furthering

the difference between the Asimov and data fits.

T2K data only

Figure 4.12 shows the confidence interval contour comparisons between the three fitters

for the paired atmospheric and appearance oscillations parameters, using the T2K Asimov

data only – without the reactor constraint on θ13. The agreement between the three anal-

yses is relatively good, with the largest differences coming from MaCh3. It is not easy to

pinpoint the source of these deviations, due to the number of differences between MaCh3

and the other two fitters. MaCh3 performs a fit simultaneously to all the oscillation and

systematic parameters, including all of ND280. This allows for a non-Gaussian treat-

ment of the systematics, which can then translate into interesting marginalization effects

when only plotting, say, two parameters against each other. Furthermore, there is a large

difference in the interpretation between the Frequentist best-fit-point and the Bayesian

highest-posterior. The best-fit points defines the point of the highest likelihood, whereas

the “highest-posterior” used in MCMC is based on the density of the MCMC steps on the

parameter space, not the actual posterior probability for each MCMC step. This means
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that the “highest-posterior” might change for a parameter when ploted against another,

and is a subject to marginalization effects.
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Figure 4.12: Three-fitter comparisons of the confidence levels for the normal mass hier-

archy sin2 θ23–∆m2
32 and sin2 θ13–δCP. All the intervals are from the run 1–9 Asimov A

fit, without the reactor constraint on θ13. There is a good agreement between the fitters,

with the largest differences coming from MaCh3.

With the reactor constraint on θ13

Figure 4.13 shows the comparisons of the confidence intervals between the three groups,

extracted from the Asimov fits with the reactor constraint on θ13 – shown for normal

hierarchy only. The agreement between the three fitters is better with the external

constraint, with some small differences remaining in the muon neutrino disappearance

channel (figure 4.13a).

It is interesting to note that we can use the fit without the reactor constraint, and

reweight the posterior probability used to make figure 4.12 (where we see slightly worse

agreement between MaCh3 and the rest of the fitters) from a prior flat in θ13 to the reactor

constraint prior, and still obtain the contours the same as in the figure 4.13b (where we

see a good agreement between all the three fitters). This gives an extra confidence that

both contours are correct. More discussions about prior-reweighting in section 4.4.3.
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(b) Asimov A 68% and 95% confidence-

level comparisons with the reactor con-

straint on θ13: NH sin2 θ13 –δCP

Figure 4.13: Three-fitter comparison of the confidence levels for the normal mass hierarchy

sin2 θ23–∆m2
32 and sin2 θ13–δCP. All the intervals are from the run 1–9 Asimov A fit, with

the constraint on θ13 from the reactor neutrino experiments, taken from PDG 2018. There

is a good agreement between the three fitters, with the largest differences coming from

MaCh3 in the disappearance channel.

4.4 Joint detector run 1–9 oscillation analysis

4.4.1 Changes in the analysis

The run 1–9 data analysis was originally planned to have larger changes to the cross-

section treatment and extra ND280 data up to run 8. Although the new cross-section

changes were implemented and validated based on work described in [114], all these

changes were retracted due to bugs in the ND280 code. These changes were progressed to

the 2020 analysis instead (with the run 1–10 data, not described in this thesis), presented

at Neutrino 2020 conference.

The only difference to the systematic treatment in the run 1–9 oscillation analysis

was an addition of a post-fit smearing procedure on the contours of the ∆m2
32 parameter,

and an addition of an effective binding energy (Eb)parameter, both based on the biases

found in a fake-data studies done by the P-Theta group, described further below.
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The reactor constraint was updated from the 2016 PDG [111] values to the new 2018

PDG [18], which has seen a shift in the best fit point in sin2 θ13 and considerably tighter

constraints. MaCh3, along with the other OA groups, has originally produced fit results

1–9d SK data with the old reactor constraint, which allowed for direct comparisons be-

tween the two reactor constraints. The posterior probability distribution was reweighted

to new 2018 reactor constraint for sin2 θ13. The validations and plots showing the effect

of the new reactor constraint on the T2K results are described in section 4.4.3.

4.4.2 Biases in sin2
θ23 and ∆m2

32

A study involving fake data generated from the T2K Monte Carlo with an alternative

cross-section model was done by the P-Theta group, together with the near-detector

fitting groups, BANFF and MaCh3, to evaluate the effect of different cross-section models

on the SK fit [115]. With fifteen different models, fake data can be generated and studied

with the fitters to see whether there are any biases with respect to the standard Asimov

(unfluctuated MC) fit. For the 2016–2019 analyses, large biases in sin2 θ23 and ∆m2
32 were

found with the fake dataset containing the nucleon binding energy needed to remove a

nucleon from the nucleus, parametrized as Eb. This removal energy shifts the expected

final lepton energy seen in the detector.

Biases in sin2
θ23

The sin2 θ23 parameter is non-Gaussian, mainly due to the degeneracy of the upper and

lower octant (which will be shown later in figure 4.25), and mapping of the biases in

different parts of phase-space for this parameter is non-trivial, making any fast or simple

solution impossible. At the same time, the full Eb treatment, based on shifting the lepton

momenta in respect to the nucleon binding energy for different nuclei (for example Oxygen

and Carbon), for different values of Eb, was too difficult to implement and validate on a

short time-scale. The Eb parameter was therefore derived from the differences between

the Eb fake data and Asimov data, implemented in a form of a response function binned

in the interaction mode and the fitting variables.
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Biases in ∆m2

32

The 1D ∆m2
32 distribution is very close to a Gaussian, and the bias is easier to map

in different parts of the phase-space. The solution to tackle this bias was to perform a

post-fit smearing of the parameter contours, assuming the parameter’s Gaussianity. In

case of MaCh3, the smearing procedure involves adding a random Gaussian number to

the value of ∆m2
32 for each MCMC step separately after the fit. The random Gaussian

value is centered at 0 and with a width of the overall bias on ∆m2
32 extracted from the

fake data studies. This was calculated by summing in quadrature all the biases between

the nominal Asimov fit and the different fake data fits produced with the alternative

cross-section models. The total bias (and therefore the width of the smearing Gaussian

applied in MaCh3) came to be 3.92× 10−5 eV2

4.4.3 New constraint on sin2
θ13 from the reactor experiments

The Particle Data Group released a new constraint on sin2 θ13 given by combining the

results from three reactor experiments; Double Chooz, Daya Bay and RENO. It was

decided that the T2K reactor constraint that was used was going to be updated to the new

2018 value, and the decision was made half-way through the already-running analysis.

One of the advantages of using a Bayesian framework that returns the full posterior

density, is that it enables easy manipulation of the phase-space after the sampling is

finished. In this case, it was possible to reweight the already-running fits (and do extra

studies in the process) to the new reactor constraint.

The Bayes theorem dictates that the posterior probability distribution is propor-

tional to the likelihood distribution multiplied by the prior distribution. It is therefore

possible to divide-out the used posterior distribution by re-weighting any binned parame-

ter histograms, recreating the without-reactor constraint fit. We can then reweight again

using the new reactor prior, giving us fully marginalized posterior distribution with a

new prior on sin2 θ13.

Figure 4.14 shows the plots (all normal MH) produced during the reweigting pro-

cedure that illustrate — in a more intuitive way — how the method was validated.
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Plot 4.14a shows a fit without the reactor constraint on θ13 reweighted to the PDG 2016

reactor constraint, compared against the actual reactor-constrained fit done with PDG

2016. Given that these contours (and the intervals for all the other parameter combi-

nations) match, reweighting from a prior flat in θ13 to any reactor constraint work. In

this case we can, as it is done in figure 4.14b, easily reweight no-reactor-constraint fits

to the new PDG 2018 and see the differences. As expected, the best fit point moved

to lower values of sin2 θ13 and has tighter intervals. We can use these contours to vali-

date reweighting from non-flat reactor constraint (PDG 2016) to another (PDG 2018),

which is what was needed for the already-long-running data fits with the older reactor

constraint as the prior on sin2 θ13. Figure 4.14c shows reactor-constrained PDG 2016 fit

reweighted to the PDG 2018 constraint against the already-validated fit with a prior flat

in sin2 θ13 reweighted to PDG 2018. Given these match for all the parameters and mass

hierarchies, it is feasible to reweight the data-fits from the PDG 2016 reactor constraint

to PDG 2018. Figure 4.14d shows that the effect of the new reactor constraint on δCP

(red) is relatively small with respect to the old constraint (blue).

This procedure does allow for reweighing the fits if new constraints appear, or to

test completely different constraints on any other parameters, but there are limitations

to what can be treated this way. We need to have a substantial number of MCMC steps

in the region of the new constraint that we are reweighing to, otherwise the reweighting

procedure could result in contours in regions were we do not have enough statistics to

make any meaningful conclusions.
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Figure 4.14: Validation plots showing posterior probabilities for appearance parameters

from Asimov A run 1–9 fit reweighted to different PDG reactor constraints on sin2 θ13.
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The new PDF 2018 reactor constraint on sin θ23 comes from the weighted least square

of the results from the Daya Bay, Reno and Double Chooz experiments. The Double

Chooz experiment has two separate results from different target materials; Gadolinium

and Hydrogen, with the results on Hydrogen that seemed to be quite different from all

the other reactor experiments. This prompted a further study, where the δCP and sin2 θ23

vs ∆m2
32 posteriors were produced with various reactor constraints to see how different

reactor experiments and total constraints from the PDG compare against each other.

This study was done using the same prior-reweighting procedure described earlier

in this section, with the results shown in figure 4.15a — where we see the δCP posterior

probabilities against each other produced using different reactor constraints. We can

see that Reno and Daya Bay alone produce contours similar to the joint PDG values,

whereas Double Chooz constraints have a very small impact. Figure 4.15b provides the

same conclusions from the disappearance contours. We can see that the contours in

sin2 θ23 prefer the higher octant (so the higher values of sin2 θ23) with stronger sin2 θ13

constraint, which makes sense. These two parameters can have a similar effect on the

predicted number of νe and ν̄e events, meaning that if, for example, sin2 θ13 decreases,

sin2 θ23 should increase (if all the other parameters are fixed). The new reactor constraint

prefers lower values of sin2 θ13, so our preference towards the higher octant of sin2 θ23 gets

stronger. Given that both RENO and Daya Bay agree with each other, whereas Double

Chooz agrees with the T2K-only data, there are no discrepancies or reasons to change

the reactor constraint to values different than the ones provided by the PDG group.
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4.4.4 Results with T2K-only data; without the reactor sin2
θ13

constraint

The data samples were first fit with the T2K-only data, so without the reactor constraint

on sin2 θ23. The Markov Chain to produce the posterior probability density contains ∼22

million MCMC steps with an autocorrelation of 20,000, providing about 1,100 indepen-

dent samples.Although this is not enough for stable 3σ credible intervals, the expected

variations are small. The best-fit PMNS-model parameters together with their 1, 2 and

3σ intervals, marginalized over both mass hierarchies, are shown in Table 4.7. Given these

are not the main output from the T2K experiment, not all the without-reactor-constraint

results are presented here.

sin2 θ23 ∆m2
32 (× 10−3eV2) sin2 θ13 δCP (rad.)

2D best fit 0.507 2.46 0.0256 −1.93

68.27% C.I. (1σ) range 0.473 – 0.547 2.35 – 2.58 0.0233 – 0.0334 −2.70 – -0.94

95.45% C.I. (2σ) range 0.447 – 0.580 2.30 – 2.63 & -2.64 – -2.34 0.0192 – 0.0399 −π – −0.06 & 2.76 – π

99.73% C.I. (3σ) range 0.423 – 0.600 2.24 – 2.70 & −2.71 – −2.30 0.0159 – 0.0476 −π – 1.01 & 1.70 – π

Table 4.7: Best-fit values with 1, 2 and 3σ 1D credible interval ranges for oscillation

parameters for the data fit without reactor constraint. The 2D best-fit values are taken

from the mode of the 2D marginal posterior distributions in sin2 θ23 –∆m2
32 and sin2 θ13

–δCP. All these values are marginalized over both mass hierarchies.

Figure 4.16 shows the binned posterior probability density for δCP marginalized over

both MH (top), NH (left) and IH (right), with 1, 2 and 3σ credible intervals marked.

Interestingly, the CP conserving value of π/2 is rejected with 3σ credible intervals when

marginalized over both MH or IH but not when marginalized over NH-only. The 3σ

contours are however closed in all the cases, which is different from all the previous

analyses. It seems like T2K-data is becoming “competitive” against the fits with the

reactor constraint, and has enough “strength” to start drawing strong conclusions about

δCP by itself.

Figure 4.17 shows the 2D credible intervals for the appearance parameters; sin2 θ13

against δCP . Interestingly enough, the 3σ contours are not closed anymore when marginal-

ized over both MH or NH - as was the case with 1D δCP posterior. The rejected area is

still far larger than in the run 1–8 analysis, which is promising.
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(a) Posterior probability for δCP marginalized over both mass hierarchies. A large

phase-space of the CP conversation rejected at 2σ, although there is no full 0–π

excluded yet
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Figure 4.16: Posterior probability on log axis for δCP marginalized over both NH and IH

with 1, 2 and 3σ credible intervals from 1–9d SK data fits.

Figure 4.18 shows the remaining oscillation parameters of T2K interest against each

other. The best-fit value of sin2 θ23 is in the higher-octant, which now contains most of

the posterior probability. This, again, is different from the run 1–8 analysis, where most

of the posterior probability was in the lower octant. This is a positive change: T2K data-
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Figure 4.17: 2D Credible Intervals for sin2 θ13 against δCP marginalized over both, normal

and inverse mass hierarchies, respectively.

MC agreement and with-without reactor constraint fits agreement are becoming better

with more data. The 1σ contours of ∆m2
32 now cover less space in the IH than before,

giving us more preference towards the NH. This is more visible in the fits with the reactor

constraint, described in the next section.
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Figure 4.18: Credible intervals for sin2 θ23 against δCP (left) and the disappearance (right),

both marginalized over both mass hierarchies.
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4.4.5 Results with the sin2
θ13 constraint from the reactor ex-

periments

The main T2K results are from the fit to the data samples with a prior constraint on

sin2 θ13 taken from the joint results from the reactor neutrino experiments, provided by

the PDG group. The MCMC sampler was run to produce 102million MCMC steps

across the T2K parameter space. Given the autocorrelation of ∼30,000 MCMC steps,

this produced 3400 independent MCMC samples; enough to produce the first 3σ credible

intervals with enough fitting statistical certainty to be able to draw strong conclusions

from them. Table 4.8 shows the highest-posterior oscillation parameters values with 1, 2

and 3σ credible intervals, all marginalized over both mass hierarchies of ∆m2
32.

sin2 θ23 ∆m2
32 (× 10−3 eV2) sin2 θ13 δCP

2D best fit 0.537 2.46 0.0214 -1.82

68.27% C.I. (1σ) range 0.501 – 0.564 2.37 – 2.54 0.0206 – 0.0222 -2.39 – -1.13

95.45% C.I. (2σ) range 0.466 – 0.587 -2.58 – -2.41 & 2.28 – 2.63 0.0199 – 0.0230 -2.95 – -0.50

99.73% C.I. (3σ) range 0.438 – 0.606 -2.68 – -2.32 & 2.22 – 2.70 0.0191 – 0.0238 -π – 0.13 & 2.80 – π

Table 4.8: Highest-posterior values and 1, 2 and 3σ 1D credible interval ranges for

oscillation parameters for the run 1–9d data fit with reactor constraint. The highest-

posterior values are taken from the mode of the 2D marginal posterior distributions

in sin2 θ23–∆m2
32 and sin2 θ13–δCP. All these values are marginalized over both mass

hierarchies.

New constraint on δCP

Figure 4.19 shows the binned log posterior probability density for all the values of δCP

marginalized over both mass hierarchies, with 1, 2 and 3 σ credible intervals marked,

with the normal and inverted mass hierarchies shown in 4.20 and 4.21, respectively. We

can see that a large portion of the CP-conserving δCP phase-space is rejected with at

least 3 σ Credible Interval, whereas the highest posterior area is still very compatible

with maximal CP violating value of δCP = −π/2. In the inverse hierarchy we are close

to rejecting CP conservation at 3 σ, with π already rejected.

This is the first 3 σ result for δCP in the T2K experiment, and world first for fully
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closed δCP interval. The Credible Intervals from this analysis are part of the main result

in the Nature paper [53].

Since the Bayesian analysis is capable of reweighting the posterior probability given

various priors, we can easily see the effect of a prior on the δCP intervals. The framework

is sampling the parameter space using a prior that is flat in δCP , however, the oscillation

probability takes values of sin δCP and cos δCP , so it is interesting to see the effect of a

prior flat in one of these phase-spaces.

Figure 4.22 shows another posterior-probability plot for δCP marginalized over both

mass hierarchies, but this time with an extra set of credible intervals (marked with

arrows) from the same posterior but reweighted to a δCP prior flat in sin δCP phase-

space. Although we are less sensitive with such a prior, the interpretation of the results

for this analysis remain unchanged. The slight change of results upon changing the prior

for δCP is expected; T2K data still constrains this parameter rather weakly, so changing

priors on δCP does have a visible effect.
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Figure 4.19: Posterior probability for δCP marginalized over both mass hierarchies, from

the run 1–9d SK data fit with the reactor constraint. The CP conversation is rejected at

2σ, with the highest posterior density area still being compatible with δCP =−π/2.
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Figure 4.20: Posterior probability for δCP for NH, from the run 1–9d S data fit with the

reactor constraint. Similar to the plot marginalized over both hierarchies due to high

preference towards NH.
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Figure 4.21: Posterior probability for δCP for IH, from the run 1–9d SK data fir with the

reactor constraint. CP conserving values for IH δCP are almost rejected with 3σ Credible

Interval.
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Figure 4.22: Posterior probability for δCP marginalized over both mass hierarchies, with

an extra set of credible intervals from the posterior reweighted to a prior flat in sin δCP .

Electron neutrino appearance parameters

Figure 4.23 shows the credible intervals for sin2 θ13 against δCP, marginalized over both

mass orderings, and separately for each mass ordering. Apart from the extra 3σ intervals

and the distribution shifting towards lower values of sin2 θ13 due the new reactor con-

straint, these distributions did not change much since the analysis. Assuming the new

data would have the same proportions as before, the expectation was that the constraint

on δCP would get much stronger, especially given the new reactor constraint. Although

the intervals on δCP did get tighter, the difference is relatively small. This can be ex-

plained by the new data itself; up to run 9, the data contained far fewer ν̄e events than

expected, although still well within the statistical uncertainty. That however meant that

the electron neutrino appearance probability, P(ν̄µ → ν̄e), was lowered, corresponding to

low values of δCP .

With the data being slightly beyond the PMNS constraint, the MCMC steps were

tightly-squeezed on the δCP space against the value of −π/2. The new data contained

more ν̄e - more than expected, but also within statistical uncertainty. The overall uncer-

tainty on P(ν̄µ → ν̄e) got tighter because of more available data, constraining δCP more,
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but the large statistical fluctuation on the number of νe somewhat disappeared, causing

a weaker constraint. All these effects added together contributed to only slightly better

constraint on δCP than in the previous analysis [54].
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Figure 4.23: 2D Credible Intervals for sin2 θ13 against δCP marginalized over both, normal

and inverse mass hierarchies, respectively.
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Muon neutrino disappearance parameters

Figure 4.24 shows the disappearance contours marginalized over both mass hierarchies

(4.24a), and both mass hierarchies separately (4.24b and 4.24c). Just as with the 1D

plots, the 1σ contours are only present in the NH, and the sin2 θ23 has most of its poste-

rior probability in the upper octant.

Table 4.9 shows the posterior probabilities separated by the mass hierarchy of ∆m2
32

and the octant of sin2 θ23. The normal hierarchy contains 88.9% of posterior probability

(marginalized over octant with a flat prior in sin2 θ23) and the upper octant contains

79.5% of the posterior probability (marginalized over hierarchy).

The statistical significance of these numbers is still too low to exclude either of the

alternate models. The Bayes factor for the normal hierarchy over the inverted hierarchy

is 8.0, where the simplest way to interpret the Bayes factor is the number of times that

one model is preferred over the alternative one. In a more formal definition, a Bayes

factor between 101/2 = 3.16 and 10 can be classified as “substantial” according to the

Jeffreys’ scale [112] or “positive” according to the Kass and Rafferty scale [113]). The

significance of this result, however, has been steadily increasing from the run 1–6 analysis

onwards. This can cause issues in future analyses (especially if MaCh3 will be used in,

say, DUNE or Hyper-Kamiokande) where one hierarchy might be much more preferred

over the other; the MCMC sampler might not be able to accept a step between the mass

hierarchies, and therefore not being able to marginalize over the mass hierarchy properly.

As a result, it could be more difficult to perform the mass hierarchy hypothesis testing,

as there would not be enough fitting statistics (trans-hierarchy MCMC steps) to do so.

This problem is further explored in section 4.4.6, with possible solutions proposed.



Chapter 4 110

23
θ2

sin

0.4 0.45 0.5 0.55 0.6 0.65

)
2

 (
eV

3
2

2
 m

∆

3−

2−

1−

0

1

2

3
3−

10×

 credible intervalσ1
 credible intervalσ2
 credible intervalσ3

Highest posterior

(a) Both mass hierarchies

23
θ2

sin

0.4 0.45 0.5 0.55 0.6 0.65

)
2

 (
eV

3
2

2
 m

∆

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1
3−

10×

 credible intervalσ1
 credible intervalσ2
 credible intervalσ3

Highest posterior

(b) Normal hierarchy

23
θ2

sin

0.4 0.45 0.5 0.55 0.6 0.65

)
2

 (
eV

3
2

2
 m

∆

2.9−

2.8−

2.7−

2.6−

2.5−

2.4−

2.3−

2.2−

2.1−

2−

1.9−
3−

10×

 credible intervalσ1
 credible intervalσ2
 credible intervalσ3

Highest posterior

(c) Inverse hierarchy

Figure 4.24: 2D Credible Intervals for sin2 θ13 against δCP marginalized over both, normal

and inverse mass hierarchies, respectively.
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sin2 θ23 < 0.5 sin2 θ23 > 0.5 Sum

NH (∆m2
32 > 0) 0.184 0.705 0.889

IH (∆m2
32 < 0) 0.021 0.090 0.111

Sum 0.205 0.795 1

Table 4.9: Model comparison probabilities for normal and inverted hierarchies, as well as

upper and lower octants, for the run 1–9d data fit with the reactor constraint on sin2 θ13.
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Correlations between neutrino oscillation parameters

Figure 4.25 shows the posterior probabilities (both 2D parameter-pairs and 1D) for all

the parameters of interest. Although difficult to see by eye, sin2 θ23 and sin2 θ13 have a

small anti-correlation. Given that these parameters are multiplied by each other in the

oscillation formula, an anti-correlation is not unexpected; these parameters have a similar

effect on the predicted number of νe and ν̄e. This is normally more visible without the

reactor constraint, and is expected to disappear as we get more data at SK. Interestingly,

marginalization effects can be seen when comparing the 1D against 2D posterior distribu-

tions and the credible intervals; the 1D intervals are tighter than the 2D intervals. Since

marginalization, which is based on the probability densities, is used instead of profiling,

which is based on the best-fit values, this is not unexpected, and unsurprisingly, the effect

is most significant in parameters that are more strongly correlated with each other, for

example, ∆m2
32–sin

2 θ23. Since the profiled contours would be based on the critical χ2

values, they would be the same whether looking at the one parameter alone or coupled in

2D. For marginalization, however, converging the probability densities is dependent on

the number of dimensions — therefore, the 1D and 2D contours should not be expected

to converge around the same parameter values.
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Figure 4.25: 2D posterior probabilities for all the oscillation parameters of interest plotted

against each other and separately on 1D posterior plots. Each posterior has 1, 2 and 3 σ

credible intervals. All the plots are marginalized over both mass hierarchies. Although

the plots with ∆m2
32 in its axis are also marginalized over both mass hierarchies, the plot

boundaries are chosen to show the normal mass hierarchy only.
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4.4.6 Importance Sampling: Future speed upgrade through Markov

Chain reweighting

As described in 4.4.3, it is possible to run the MCMC sampler with one set of priors, and

then reweight some parameters to different priors as desired. This creates an interesting

opportunity for faster exploration of less-likely phase-spaces. In the simplest example

that relates to T2K, we could, in principle, run the MCMC sampler with a strong prior

on δCP centered around π/2, currently rejected well beyond 3σ CL. The likelihood surface

would not change, since in the Bayesian formalism the likelihood and prior are separate

from each other, and one can change independently of the other. This means we can

re-weight such an MCMC sampler back to a prior flat in δCP , and we will end up with

high-statistics-MCMC in the less likely regions of δCP , possibly giving us more reliable

constraints in these regions.

A simple toy study shows exactly this: N random numbers generated uniformly

between −10 and 10, reweighted to a Gaussian centered at 0 with a width of of 2, gave

more statistics in its 3σ region than randomly generated N numbers directly from a

Gaussian(0,2). This is illustrated in figure 4.26, where the tails of a flat distribution

reweighted to a Gaussian (in red) are more stable than the distribution obtained from a

real Gaussian number generator (in blue).

In this section we will describe the studies done on a reweighted chain without the

reactor constraint on θ13, to see if we can use it to improve the MCMC-statisticsin 3σ

region of the with-the-reactor-constraint phase-space and reduce the number of MCMC

steps needed for convergence.

We start by reweighting an MCMC chain with a prior flat in sin2 θ13 to a reactor-

constrained phase-space with code written and validated for the reasons described in

4.4.3. We can then look at the number of independent MCMC steps outside of 3σ

credible intervals. Independent samples are defined here as the number of steps divided

by the autocorrelation, approximated to 30,000 for chains with both and without the

reactor constraint.

Table 4.10 shows the results of such a reweighting, for 1, 2 and 3σ. We also see the
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Figure 4.26: Binned (and normalized) random numbers distributed uniformly between

-10 and 10 in black, reweighted to a Gaussian centered around 0 with uncertainty of 2 in

red, and random numbers obtained from a Gaussian generator in blue. The tails of the

reweighted Gaussian distribution have less variance bin-to-bin than the random numbers

obtained from a Gaussian generator.

integrals, where our expectation is 0.6827, 0.9545 and 0.9973 for 1, 2 and 3σ, respectively.

From this it is clear that there are more MCMC-statistics outside of the 3σ CLs. This,

however, is expected, given that the sampler without the reactor constraint explores larger

areas of the T2K phase-space that the reactor-constrained sampler does not.

It is difficult to find a relevant metric good enough to judge the convergence (or

the “quality”) of an MCMC chain in specific regions of phase-space. Perhaps a better

(and in this case, final) metric would be the number of independent steps inside of the

3σ but outside of the 2σ intervals. This will return the MCMC-statistics measure that

is only relevant to the phase-space important for the interesting regions of the reactor-

constrained fit.

Table 4.11 shows that, with the new metric, we find fewer MCMC steps (about

2/3) in the relevant region with the reweighted chain than with the reactor-constrained

chain. The originally-unconstrained chain, however, contains only 22million MCMC
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22Million steps, no reactor constraint

Interval Integral Samples
√

(Samples)

1σ 0.686084 351 19

2σ 0.954506 116 11

3σ 0.997335 27 5

100Million steps, with reactor constraint

Interval Integral Samples
√

(Samples)

1σ 0.684689 1083 33

2σ 0.957021 152 12

3σ 0.997422 10 4

Table 4.10: The number of independent MCMC samples in outside of 1, 2 and 3σ CLs

with their integrals, for 100M-step chain with the reactor constrain and 22M-step chain

with flat prior in sin2 θ13, reweighted to the PDG 2018 reactor constraint. The number of

independent samples in the 3σ interval of the 22M-step reweighted chain is higher than

that of 100M-step chain with the reactor constraint, even when including the Poisson
√
N error, despite the lower number of MCMC steps.

22Million steps, no reactor constraint

Interval Integral Samples
√

(Samples)

3σ 0.997335 89 10

100Million steps, with reactor constraint

Interval Integral Samples
√

(Samples)

3σ 0.997422 142 12

Table 4.11: The number of independent MCMC samples inside of 3σ, but inside of 2σ

CLs with their integrals, for 100M-step chain with the reactor constrain and 22M-step

chain reweighted from a prior flat in sin2 θ13 to the reactor constraint.

steps, whereas the constrained chain contains over 100million steps. This means that we

could still run, for example, ∼30–35million steps without the reactor constraint MCMC,

reweight it to the reactor constraint from PDG, and obtain a similar amount of MCMC

statistics in the 3σ region than with 100 million chain ran with the reactor constraint

alone.

This was presented and approved at a T2K Oscillation Analysis meeting. Instead

of running ∼20M steps without, and ∼100M steps with the reactor constraint for the

2020 3σ results, the MaCh3 group can run ∼30M without first, then 30M with the

reactor constraint for validations (and to fill the 1σ region, which would still have less

statistics with the reweighting scheme). The analysers could then continue running the

chain without the reactor constraint and obtain 150-200M steps for the first-ever 4σ

results, which are now possible in the Bayesian framework due to this study.

Although too late for the running 2020 T2K data analysis, further improvements
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will be made in the future using the reweighting scheme. Instead of the standard running

reactor-constrained chain, it should be possible to run it with an extra prior on δCP that

biases the chain towards, for example, π/2. With the data likelihood (hopefully) still

preferring −π/2 and strong enough prior around π/2, the chain could explore all the δCP

phase-space more uniformly, possibly enabling 5σ results.

There is another method to explore, closely linked to the Parallel-Tempered MCMC

described in chapter 3.4.1; through the likelihood tempering, which is also used in

Simulated-Annealed MCMC methods. The likelihood function gets an additional “tem-

perature” term (resembling the Boltzmann distribution), that effectively spreads the sam-

pled posterior distribution in all dimensions, allowing for more samples in the less likely

regions and expanding the MCMC coverage. This can be reweighted post-fit to obtain

the distribution without the likelihood heating element.

This is great news not only for the T2K experiment, but even better for the future

experiments like Hyper-K and DUNE. These experiments will struggle with running

MCMC samplers that marginalize over both mass hierarchies at the same time; with

rejection at 5σ, the MCMC chain might not be able to easily (or at all) accept steps

in the IH. Furthermore, it will take exponentially more time to achieve the MCMC

convergence at 5σ level for all the parameters. It should, however, be possible to bias

a chain with a strong prior on IH to allow the chain explore it for marginalization, and

re-weight back to a flat prior after the fit, giving the analysts the confidence that both

MH were explored, and the rejection is real. Tempering can be used at the same time

to ensure fast MCMC stationary distribution at 5σ level without worrying about the

correct coverage.
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4.5 Summary

Table 4.8 shows the credible intervals for each oscillation parameter of interest, obtained

from the T2K joint ND280-SK data. The fit was done using 5 SK and 17 ND280 data

samples, both with the reactor constraint on θ13 and without. As expected, the T2K

sensitivity to δCP without the reactor constraint is much lower, and far more data is

needed for T2K to be able to produce competitive results without external constraints.

The results were validated by comparing them against the two hybrid-Frequentist analysis

groups: VALOR and P-Theta. All the comparison plots, for both data and sensitivity

studies, are shown in appendix B.

T2K presented the world’s first closed 3σ intervals for δCP, which is beyond the

expected sensitivity, and could be explained with a statistical fluctuation in the data

itself; this will be explored more in the next chapter.

A new prior-reweighting scheme was studied and used in this analysis to speed up the

MCMC chain convergence to a stationary distribution. Such prior-reweighting scheme,

alongside likelihood-tempering, could be used by the future T2K analyses and future

long-baseline experiments to achieve stable intervals at lower computational costs, and

to explore very unlikely regions of phase-space, for example, the inverse mass hierarchy.
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Bi-Probability Oscillation Fits

The T2K data is often shown in one plot with the number of νe and ν̄e candidates, against

the PMNS-like prediction produced by varying the values of δCP with other oscillation

parameters fixed. This creates the so-called bi-event plots, shown in 5.1, and it is a stan-

dard procedure amongst various long-baseline neutrino experiments to compare these

against each other (for example, in [135]). These plots can be used not only to show the

T2K data in a form of a point, but also to show where the data should be, given a set

of oscillation parameters, and how far the real T2K data deviates from our prediction.

Although these plots are very useful internally, theorists and other long-baseline exper-

iments are unable to easily compare their expectations against our results with these

plots alone. The number of νe and ν̄e events shown on these plots are very dependent on

the experimental setup, i.e the full knowledge of T2K’s flux, cross-sections and detector

efficiencies would have to be known externally to make any independent neutrino event

rate predictions for the T2K experiment.

Another way of showing the T2K sensitivities is through a bi-probability plot, where

P (νµ →νe ) and P (ν̄µ →ν̄e ) predictions are shown against each other, akin to the bi-event

plot. Although it is possible to show the predictions in a more mode-independent way

(in other words, the knowledge of the cross-sections, detector efficiencies and so on is not

needed), it is rather difficult to show the P (νµ →νe ) and P (ν̄µ →ν̄e ) predictions from

the data fit with the full systematic and statistical errors, without a dedicated analysis

framework.

119
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It is, however, possible to exploit the MCMC framework described before to make it

possible. This chapter will describe an analysis with MaCh3 to produce the T2K data-

prediction on the bi-probability phase-space, and introduce an extra parameter, β, to

break the unitary of the PMNS model and produce a model-independent prediction. The

results described in this chapter are published in [136].

Figure 5.1: Bi-Event plot, showing the number of νe and ν̄e events with the statistical

errors on top, together with the PMNS oval expectations. The expectations are made by

fixing all the systematic and oscillation parameters, and only varying one parameter (in

this case δCP) at a time.

5.1 Bi-Probability plots

As described in the chapter’s introduction, instead of showing the number of neutrino

and anti-neutrino events, we can show the P (νµ →νe ) and P (ν̄µ →ν̄e ) oscillation prob-

abilities and expectations with bi-probability plots. Just like the bi-event plots, they

give a clear sense of how δCP and the neutrino oscillation parameters together with mass

hierarchy will affect the oscillation probabilities, and therefore how the predicted event

rates for νe and νµ at Super-K should change with the extra data.
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Figure 5.2 shows the predicted probabilities for the T2K experiment in fig. 5.2a and

for NOvA in fig. 5.2b. Both plots were generated with an open-source neutrino oscillation

calculator, Prob3++ [108], using the T2K’s Asimov oscillation parameter values (listed in

appendix A, table A.1) and publicly available information about both experiments’ peak

neutrino energy, experiment baseline length and the density of matter. The values of δCP

are iterated to draw the oval-shaped predictions, separately for the inverse and normal

mass hierarchies. These ovals are also affected by the values of sin2 θ23 and sin2 θ13; they

both shift them along the line of unity. High values of sin2 θ23 will also separate the mass

hierarchies further, meaning the higher the sin2 θ23, the easier the prediction of the mass

hierarchy (and vice-versa, the lower the sin2 θ23, the lower the sensitivity to the mass

hierarchy).

Comparisons to external predictions, whether from other experiments or theorists,

are much easier with the bi-probability plots than with the bi-event plots. Indeed, we

can now easily understand the experiment’s characteristics and differences against NOvA

as seen in fig. 5.2. NOvA has a wider separation between the NH and IH, thanks to

its longer baseline. At the same time, they would find it easier to distinguish between

δCP = 0 and π, if nature chose these values.

These bi-probability plots are made for a monochromatic neutrino energy; in our

case it is 0.6GeV for T2K (figure 5.2a) and 1.9GeV for NOvA (figure 5.2b). These plots

do not change much, as long as the neutrino energy is not deviated far into the tails of

the experiment’s neutrino beam energy distribution.

It is possible to display the T2K data fit results on this phase-space by using the

output MCMC chain from one of the standard T2K Bayesian analyses, explained in

Chapter 4. Since each MCMC step contains values for every oscillation and systematic

parameter, it is possible to convert these back into P (νµ →νe ) and P (ν̄µ →ν̄e ) with

the standard oscillation formula. This results in an MCMC chain that now consists of

P (νµ →νe ) and P (ν̄µ →ν̄e ) values, marginalized over all the oscillation and systematic

parameters.

Fig. 5.3 shows an example of such posterior probability densities, separately for

the NH (5.3a) and for the IH (5.3b). We can see that most of the posterior density is
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(a) T2K bi-probability ovals for NH and IH,
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δCP. The other oscillation parameters are

kept at the Asimov A values (Appendix A).
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(b) NOvA bi-probability ovals for NH and

IH produced by drawing over all the values

of δCP. The other oscillation parameters are

kept at the Asimov A values (Appendix A).

Assuming monochromatic neutrino beam of

1.9 GeV, and slightly higher earth density

than T2K.

Figure 5.2: T2K and NOvA bi-probability predictions for different values of δCP and

mass hierarchies. NOvA has better sensitivity for the mass hierarchy (larger separation

in NH and IH bi-probabilities) due to the longer baseline, but clearly has lower sensitivity

to δCP for the extreme values of ±π/2 - it will however have better sensitivity to the

δCP values of 0 and ±π.
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Figure 5.3: Posterior probability from the woRC Asimov A fit with run 1–9d data on

the bi-probability space marginalized over NH and IH. The dual peak at each end of the

superimposed prediction is due to the prior of δCP being flat in δCP, with the oscillation

formula taking values of sin δ.
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concentrated around δCP = −π/2, as expected, but we see a faint higher-density area

around π/2. This is due to the choice of the prior: The T2K experiment fits with a prior

flat in δCP , whereas the oscillation formula takes the values of cos δCP and sin δCP . We

can also see that the posterior density is spread roughly along the line of unity; this is

due to the uncertainty on sin2 θ23 and sin2 θ13 and the systematic parameters.

5.2 Beyond the PMNS parametrisation

As seen in figure-5.1, the T2K data does not agree very well with the PMNS prediction

(but is still well within the expected statistical fluctuations). The bi-probability plots are

also constrained by the PMNS, and do not allow one to to easily overlay a data point.

A new parameter was added, β, to decouple the two oscillation probabilities from each

other and allow the fitter to explore the area preferred by the data, unconstrained by the

unitary of the PMNS model;

P (ν̄µ → ν̄e) = β × PPMNS (ν̄µ → ν̄e) , (5.1)

P (νµ → νe) = 1/β × PPMNS (νµ → νe) . (5.2)

This new parametrisation was found to not only decouple the two probabilities from

each other, but it also makes all the oscillation parameters difficult to interpret; what

is the meaning of δCP when β = 0.1? Although this is non-interpretable, the resultant

oscillation probabilities are still easy to understand, and were found to move in the

direction preferred by the data on the bi-event plots.

The standard T2K oscillation analysis usually involves the reactor constraint on θ13

giving us a better sensitivity to δCP and the mass hierarchy. This constraint is driven

by PMNS-like results, so it does not make any sense to include it in the bi-probability

analysis which is trying to break the unitarity of the PMNS model. All the bi-probability

Asimov and data fits are therefore done with a prior that is flat in sin2 θ13, constrained

between 0 and 1.
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5.3 Validations and sensitivities

5.3.1 Asimov fits

Oscillation parameter comparisons

Standard checks described in 4.3 were done for these analyses prior to running any fits,

with the predicted event rates and 1σ systematic variations agreeing with the standard

output in 4.3.1.

As mentioned before, the standard oscillation parameters in the free-beta fits become

effective parameters and are not to be interpreted. It is, however, still easy to compare

these to the standard PMNS-like fit; we can simply constrain the MCMC chain to only

use the MCMC steps with the values of β close to 1, effectively re-creating the standard

PMNS-like analysis. If the framework works correctly, the constrained-β contours should

match the standard analysis, whereas the unconstrained contours should explore wider

area.

Figure 5.4 shows such comparisons for appearance (top) and disappearance param-

eters. We can see that the constrained-β plots clearly re-create the standard analysis,

indicating that the new framework is working correctly. The disappearance contours do

not change - unsurprisingly, since the P (νµ →νe ) and the P (ν̄µ →ν̄e ) probabilities only

really affect the appearance parameters. Such plots were generated for Asimov B fake

dataset too, for both run 1–9c and run 1–9d analyses.

Fixed vs free βββ comparisons

Since the main goal of this analysis is to compare fixed (PMNS-like) and free (unitarity-

breaking) β fits on the bi-probability phase-space, it is appropriate to generate such plots

using fake MC-data tuned to the Asimov A values, just as in the standard analysis.

Figure 5.5 shows the free (top) and fixed (bottom) β fits on the left pane, with the

credible interval contour comparison on the right hand side pane. We can see that the free
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Figure 5.4: Appearance (top) and disappearance (bottom) contour comparison between

the standard Asimov A fit, the free β fit and the free β with only values of β between

0.9 and 1.1 to re-create the standard fit for validation purposes. Given the relatively low

number of MCMC steps, the best-fit values are not expected to converge well.
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β fit explores a wider area that is not permitted by the unitarity-conserving PMNS model.

We lose the sensitivity to the mass hierarchy, with the probabilities (and contours) being

equally distributed between both mass hierarchies. Although very different, it is clear

that the free β fit is not in any tensions with the PMNS model. Indeed, both contours

overlap comfortably at all σ levels.
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Figure 5.5: Appearance (upper) and disappearance (lower) contour comparison between

the standard Asimov A fit, the free β fit and the free β with only values of β between 0.9

and 1.1 to re-create the standard fit.

5.3.2 Priors

The most important oscillation parameter prior in T2K from external experimentsis that

on θ13, as it has a large effect on δCP . This constraint is taken from reactor experiments

that assume the PMNS model when providing their central values and errors. In this

analysis we are trying to break the unitarity of the PMNS model, so it would be counter-
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intuitive to use such external priors.

Although all the relevant priors are flat, it is still very important to consider the

space they are flat in, for example, the prior on δCP can be flat either in δCP or sin δCP .

Figure 5.6 shows the comparisons between the run 1–9 data fit results with priors for δCP ,

θ23 and θ13 flat in different spaces. The effect of priors on the bi-probability contours is

very small. Although δCP plots do show a visible difference, this is expected given the

parametrisation and is still far smaller than the statistical fluctuations from the data.
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Figure 5.6: The effect of priors flat in different spaces on the fixed-β contours from the

run 1–9 analysis. The largest effect is from the δCP prior, since the fit is done with a prior

flat in δCP, and the oscillation probability takes the values of sin(δCP) and cos(δCP) (see

section 4.4.5). The effect of these priors is still far smaller than even a small increase in

the POT, re-confirming that the T2K experiment is still very much statistically limited.
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5.4 Results for run 1–9

5.4.1 Bi-probability and bi-event plots

The bi-event plots showing the number of νe and ν̄e candidates are the most common way

of displaying the appearance data in one plot. Given that the Bayesian analysis (including

the bi-probability with free-β) outputs not only the oscillation probabilities in every

MCMC step, but also all the systematic parameters, it is easy (however computationally

expensive) with the currently-existing frameworks to convert these into νe and ν̄e event

rates to plot against each other.
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Figure 5.7: Bi-probability Bayesian credible inteval comparison (left pane) between the

standard PMNS-constrained fit (β = 1) and the non-PMNS fit (free β). The right

pane shows the predicted number of evnts distribution comparison, given the uncertainty

in the oscillation and systematic parameters, with Poisson fluctuations applied to both

PMNS-constrained and non-PMNS contours. Analysis done with the run 1–9d data and

published in [136].

Figure 5.7 shows such a plot together with the data point from the run 1–9d, next to the

standard bi-probability plot. We can easily see that the unitary constraint of the PMNS

model does not allow for the probabilities - and therefore the event rates - to perfectly

match the data point. Given the large statistical uncertainty on the data point itself,
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such a deviation is still well within the statistical limits.

5.4.2 Comparisons against previous results

One of the original motivations behind the bi-probability analysis was the discrepancy

between the T2K data and the model. With far fewer ν̄e events seen at SK than expected

under the oscillation hypothesis, it was interesting to see whether the ν̄e appearance is

real, and whether T2K actually has the sensitivity to see it if the PMNS model is not

fully correct. The deviation has largely disappeared with the new data, but this analysis

was also done previously with older data that still contained the apparent fluctuation.

)eν → µνP(

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

) e
ν 

→ 
µ

ν
P

(

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

90% credible interval

68% credible interval

β1--9d free 

β1--9c free 

)eν → µνP(

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

) e
ν 

→ 
µ

ν
P

(

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

90% credible interval

68% credible interval

1--9c Data

1--9c Asimov A

)eν → µνP(

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

) e
ν 

→ 
µ

ν
P

(

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

90% credible interval

68% credible interval

1--9d Data

1--9d Asimov A

Figure 5.8: The free β bi-probability comparisons between the run 1–9d and run 1–9c

data fits (top), run 1–9d Asimov vs data fits (bottom right), and run 1–9d Asimov vs

data fits (bottom right).

Figure 5.8 shows various comparisons against the older fit, done with the run 1–9c

data, together with the data vs Asimov comparisons. The old data clearly prefers the no
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ν̄e appearance area, but with the statistical uncertainty that still covers the T2K phase-

space, whereas the fits with the new data have moved away and are now closer to the

Asimov expectation. This suggests the following; first, T2K currently really does not have

the sensitivity to probe beyond-the-PMNS physics to a significant level. Secondly, the

fluctuations in the T2K data year-to-year can have large impact on the T2K parameter

space.

In many ways, this agrees with an interesting effect from the previous chapter. Al-

though a lot more data was added, the T2K contours did not move much in the run 1–9d

analysis. This can be explained by the T2K data moving closer to the expectation from

the PMNS model, reducing T2K’s sensitivity to δCP and the mass hierarchy. At the same

time, more statistics do increase this sensitivity, and there is an interplay between these

two effects that reduces the year-to-year changes in the contours.

5.5 Summary

The bi-probability plots are now a new T2K result that can be used by the theorists

and other experiments to compare their predictions against the T2K data-driven results.

The free β analysis breaks the PMNS unitarity and allows for oscillation parameter

combinations that are not normally allowed. This formulation was used to show that the

T2K data is still in a good agreement with the PMNS model and more data needs to be

taken to have enough statistical significance to see any discrepancies. Furthermore, these

studies have re-confirmed that the addition of new data can still significantly change the

T2K phase-space, partially because of limited statistics, and partially because of the large

deviation in the number of νe and ν̄e data events from the T2K MC. This analysis was

peer reviewed and published in [136].
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Bayesian Neutrino Event

Reconstruction for Water-Cherenkov

detectors

This chapter describes a Water-Cherenkov event reconstruction software package used

by Super-Kamiokande, fiTQun, and work to implement a new, Bayesian MCMC sampler

into the package. The work described in this chapter involves predominantly studies of

ideas and concepts, with more concentrated work required to develop the framework to

become usable in physics analysis. Description of the standard functionality of fiTQun

is described in 6.1, with the following sections describing the Reversible-Jump MCMC

algorithm, and its implementation and tunings in fiTQun.

133



Chapter 6 134

6.1 Neutrino event reconstruction at Super-Kamiokande

A neutrino interaction above the Cherenkov threshold at SK will provide two pieces of

information at every PMT: the accumulated charge, and the hit time. Figure 6.1 shows

example events, with their charge shown per PMT in colour. The charge and hit time per

PMT are the only “signal data” recorded for each event that can be used for modelling

of a neutrino inside of the detector. The reconstructed kinematic parameters are needed

for any oscillation analysis, whether for atmospheric or beam neutrinos. These kinematic

parameters are the charged particle’s origin vertex in the 3D space of the detector x,

interaction time t, charged particle trajectory angles θ and φ, the visible energy based on

the accumulated charge in the PMTs Evis, and the particle identity, PID.

(a) Electron-like ring, with the hit color indi-

cating the accumulated charge per PMT.

(b) Muon-like ring, with the hit color indicat-

ing the accumulated charge per PMT.

Figure 6.1: Two SK unrolled event displays with an electron-like (left) event and muon-

like (right) event. The display pixel color represents the accumulated charge for each

PMT separately, with the more red color indicating more accumulate charge. The Outer

Detector displays are shown on top right of each plot, with very few OD hits.
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6.2 fiTQun

The current state-of-the-art neutrino event reconstruction software for SK, fiTQun, uses

the likelihood method to extract the charged particle’s kinematics, and was originally de-

veloped for the MiniBooNE experiment [118]. It constructs the joint likelihood using the

available charge and timing data from each PMT, and minimizes it using MINUIT [116,

117]. The likelihood calculation at fiTQun uses information from all the PMTs, whether

hit or “unhit”;

L(x) =
unhit∏

j

Pj(unhit|µj)
hit∏

i

{1− Pi(unhit|µi)}fq(qi|µi)ft(ti|x) , (6.1)

where fq(qi|µi) is the charge likelihood given the predicted charge per PMT, µi, and

ft(ti|x) is the time likelihood. The probability of a PMT not being triggered, Pj(unhit|µj),

given that the µ charge distribution follows the Poisson distribution, is simply propor-

tional to e−µ with additional MC-derived correction terms to account for the PMT thresh-

old. Finally, the predicted charge per PMT, µi, is defined as the mean number of liberated

photoelectrons.

The time likelihood, ft(ti|x), has contributions from the direct light, assumed to be

a Gaussian PDF fitted to an MC simulation of various PIDs at different momenta and

predicted charges, and the indirect light PDF (scattered and reflected) is included in a

form of a simple function that is not dependent on the momenta or predicted charges.

The x from the direct light can be parametrized in terms of the particle distance

from the PMT, s, and the angle between the particle and PMT, θ. This parametrization

is used for the charge from the direct light, µdir, which is constructed using the Cherenkov

emission profiles shown in figure 6.2. These emission profiles are made in the GEANT3-

based SK detector simulator, SKDETSIM, generated at different discrete momenta for

each PID. We can see from the figure that as the muon travels, the cone angle changes

— this creates the “cone collapse” effect, where the muon Cherenkov rings are sharp on

the outside, and become more fuzzy on the inside. Furthermore, although not shown

here, the Cherenkov opening angle is the same for electrons of all the momenta, and

varies for muon momenta. The predicted charge from the indirect light, µsec, is made
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(a) Electron predicted charge distribution for

selected momentum

(b) Muon predicted charge distribution for se-

lected momentum

Figure 6.2: Cherenkov emission profiles for electron (left) and muon (right) as seen by a

PMT in terms of the particle distance from the PMT, s, and the angle between the parti-

cle’s trajectory and the PMT, θ. Both shown emission profiles are for a fixed momentum

of 1000MeV/c.

by building scattering tables from simulations of 3MeV/c electrons originating from a

common vertex, with isotropic angular distribution.

6.2.1 Pre-fitting and event clustering

The − lnL from equation 6.1 is minimized using gradient descent with MINUIT, which is

sensitive to any local minima in the likelihood distribution. This poses a large challenge

for fiTQun, as many local minima can be found even in the 1-ring hypothesis likelihood

– an effect that gets worse the more Cherenkov rings we try to reconstruct. A series of

pre-fitters is run before progressing to the main fiTQun ring fitter. These pre-fitters try

to find the global minimum and split the event into sub-events when needed (for example,

when we have a muon and a Michel electron).
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Vertex pre-fitter

The vertex pre-fitter is a fast algorithm that tries to find an approximate global minimum

by only looking at the PMT hit times to find the particle’s x and time by maximizing

the “goodness” metric,

G(x, t) =
hit∑

j

exp(−(T i
res/σ)

2/2), (6.2)

where T i
res is the residual time dependent on the PMT position, particle kinematics to

be extracted and the PMT hit time. An iterative grid-search is performed, with σ being

the time-window width for each grid, and MINUIT is used for the maximization of the

equation 6.2. After the first grid-search is finished, the grid size with the time-window

of 500 ns are decreased, and grid search repeated, until the time-window is σ = 4ns to

provide the final pre-fit vertex and timing.

Sub-event clustering

An event for reconstruction at SK is recorded inside a ∼400 ns time window. These events

might contain sub-events, such as decays, scatters, and so on. There are a few sub-event

clustering algorithms that try to split an event into its sub components.

A peak-finder algorithm tries to find multiple peaks in the “goodness” distribution

using equation 6.2. The approximate vertex from the vertex pre-fitter is fixed, and the

“goodness” function is scanned over the time. For each scan point, the threshold function

for selecting a subevent (a simple function of “goodness”) is calculated and compared

against the “goodness”. Figure 6.3 shows the “goodness” for each scan point compared

against a “threshold” function, with two peaks found (red vertical lines) for an MC event

with one muon and a Michel electron, with both successfully found.

A peak is chosen by comparing the scan points against a threshold, which is optimized

using atmospheric samples to minimize MC-Data reconstructed differences.

There is another algorithm that tries to cluster hits by time, creating “time clusters”.

It first bins the event in hit-time into 10 ns bins, and finds the starting position, tstart,

where the first 7 bins contain more than 9 hits – a number determined from the simulated
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Figure 6.3: The “goodness” distribution, G(x, t) calculated for each scan point (black

squares), as a function of time for a muon-like MC event with a Michel electron. The

overlaid lines are the MC-true vertices (dashed vertical lines), “threshold” functions (blue

and green lines), and the final pre-fit vertices (solid vertical red lines). The “goodnes”

points are above the “threshold” function in two places, indicating that both subevents

were found successfully. Figure taken from [116].

MC noise – and moves the tstart backwards in time by 30 ns to catch early hits. It then

keeps moving the 70 ns window by 10 ns at a time until the number of hits is less than

9, and the difference between tstart and tend is larger than 70 ns. Finally, tend is extended

by a function of total hits in the window, to catch later hits from, say, reflections, and

lower-energy events that fall below the threshold too quickly.

A third algorithm tries to match the sub-events found by the peak-finder and the

time-clusters found by the time-clustering algorithm described above. The best-fit ver-

tices found by the peak-finder are associated with every time cluster to see how many

hits match in these time-windows, and the “goodness” is re-evaluated using these hits.

Peaks with no time-clusters associated through the “goodness”, and time-clusters with

no associated peaks, are discarded to reduce the number of fake peaks and clusters that

can happen when the vertex estimation is poor. For some events, there will be mul-

tiple peaks associated with the same time-window, called “in-gate” sub-events. When

two time-clusters are very close to each-other they can be passed through the clustering

algorithm as one. If there is one peak associated with the double-peaked time cluster,

all the hits within a cluster are used by fiTQun. If there are multiple peaks associated

with a multiple-peaked time cluster, the secondary sub-events are associated with each
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PMT separately. This is done within that window using −30 ns < T i
res < 60 ns, where

Ti
res is the residual time difference between the expected photon arrival time (assuming

it is produced from the middle of the track ), and the PMT hit-time. All the hits not

associated with secondary sub-events are assigned to the best-goodness event within the

time-window.

6.2.2 Main ring fitter

One-ring reconstruction

After the sub-events are found and matched between the peak-finder and the time-

clustering algorithms, fiTQun uses MINUIT minimizer on the likelihood function (Eq. 6.1)

to find the best-fit kinematics for each of these sub-events. First, after the seeding value

is set to the main pre-fit peak, fiTQun performs a likelihood grid-scan over the track

direction angles, with all the other kinematics fixed. A second likelihood scan is done

over different values of momentum, this time with the direction (and other kinematics)

fixed. MINUIT is then finally used, with all the kinematics seeded and free in the fit,

to minimize the negative log-likelihood function and obtain the best-fit. This is done for

the electron hypothesis first. The second fit, for the muon hypothesis, is first seeded with

the best-fit values from the electron hypothesis fit. The log-likelihood is scanned over

different values of momentum once again, before MINUIT is used once again with the

newly-seeded values, and repeated again, this time for a charged pion hypothesis.

It is not as simple as choosing the best-likelihood hypothesis to determine the par-

ticle PID – although this in principle should be true, it is dependent on the momen-

tum. Figure 6.4 shows atmospheric νe and νµ 1R CCQE events, with their lnL ratio

against the reconstructed momentum from the electron-hypothesis fit. The electrons

mis-reconstructed as muons on the left plot (above the cut line) are mainly low-energy

muons close to the Cherenkov threshold.
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Figure 6.4: The log likelihood ratio, ln(Le/Lµ), between one-ring fits to the atmospheric

νe (left) CCQE and νµ (right) CCQE samples, as a function of the electron-fit momentum.

The black line represents the cut on ln(Le/Lµ) to select the PID, obtained from the MC.

Multi-ring reconstruction

The single-ring fit is relatively easily expanded into a multi-ring fit. The likelihood

probability is expanded by adding an additional secondary-track term to the time PDF.

This is done by making the time distribution more dependent on the distance between

each track centre and the PMT for each track. The charge distribution PDF is just the

integral over all the tracks per PMT. The difficulty due to extra non-linearities in the

likelihood distribution causes the fit to assume a shared reconstructed 4-vertex between

all the tracks in the free fit.

The best one-ring hypothesis is chosen as the first ring, with the kinematic param-

eters used as the initial seed for the fit to the second ring chosen by running the angle

and momentum scans, similarly to the one-ring fit. The multi-ring fitter repeats the

fitting procedure for all the combinations of the best one-ring-hypothesis and all the

PID hypotheses for the secondary ring, with similar a log-likelihood ratio to choose the

second ring. Another log-likelihood ratio is then needed to choose the best number-of-

rings hypothesis. This is non-trivial, since the log-likelihoods with different numbers of

parameters do not map to each other in the way different PIDs (or simply different kine-

matic parameter combinations) do. MC-derived cuts are needed, with figure 6.5 showing

the ln(L) ratio between the 2-ring and 1-ring hypotheses, with an MC sample that only

contains 1 electron track. We can see far more mis-reconstructed events than for the

PID-hypothesis testing, contributing to the multi-ring samples being less efficient.
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Figure 6.5: The log likelihood ratio, ln(L2R/L1R), between one-ring and two-ring fits for

a νe CCQE-only sample, with a red line showing a cut to separate the 1R (below the

line) and 2R (above the line) hypotheses.

There is a dedicated fitter for the π0 event hypothesis that results in two gammas

with specific invariant mass. Just like in the general multi-ring fitter, the best-fit one-

ring hypothesis (in this case must be an electron) is chosen for the first ring seed, and

a log-likelihood scan is performed over the second ring’s direction. The shared vertex is

chosen to be 50 cm, which is the average photon-to-electron conversion length in water.

The momentum is then scanned over for both electron-rings, since the 1-ring fitter usually

overestimates the momentum for π0 events. The full fit with all the parameters free (aside

from the shared vertex) is performed, with similar log-likelihood ratios used to choose

between 1Re and π0 hypotheses.

6.2.3 Drawbacks

The reconstruction package works quite well for one-ring samples, although the multi-ring

fitter uses approximations, together with incremental likelihood scans and fits for different

hypotheses representing different number of rings, each of which possesses their own

PIDs. Being a fitter, fiTQun finds the best-fit kinematic parameters, without providing

uncertainties that are fundamental to the data. These uncertainties could be of use for,

say, events with a low number of PMT hits or close to the wall. Having full uncertainties

for each kinematic variable could potentially improve the selections and make cleaner

signal samples — e.g. if we choose the wall cut to be a vertex at least 1σ away from the
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fiducial volume cut.

Although the pre-fitters do a good job at trying to find the global minima and

clustering the events in time, fiTQun still can mis-reconstruct events, especially for multi-

ring hypotheses. The log-likelihood cuts need to be determined empirically from the MC,

which can be difficult and is constantly being updated and improved. This decreases the

efficiency of the multi-ring samples and even has an impact on single-ring hypotheses, as

seen in figure 6.5.

Finally, the single-vertex approximation makes it difficult for fiTQun to deal with

pileup-events, and does alter the best-fit reconstructed kinematics, however slightly.

6.3 Reversible-Jump MCMC

An MCMC algorithm, Reverse-Jump MCMC (RJMCMC), was proposed and partially

implemented to overcome the inherent difficulties faced by fiTQun. Using MCMC means

obtaining full posterior probabilities for each kinematic parameter, and being able to

construct credible intervals that could then be used for “smarter” selection cuts for various

data samples. Being a sampler, it could potentially also overcome local minima and

reconstruct each track with its own vertex – which could make the reconstructed-MC –

MC-truth differences smaller.

Reversible-Jump MCMC algorithm is a more generalized version of Metropolis-

Hastings MCMC described in chapter 3, with the capability to add and subtract compo-

nents from its sampled Mixture Model as a valid MCMC step [92, 122].

A Mixture Model could be used to sample from all the number-of-ring and PID hy-

potheses simultaneously [122]. It is defined as the total sum of all the PDF combinations,

with each combination having its own assigned weight, with all the weights summing to

one,

fmix =
∑

i=1

wif(θi), (6.3)

where θi is the parameter combination for the i’th component, in our case, a Cherenkov

ring with all its seven kinematic parameters. Since all the weights have to sum to 1, the
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total probability stays the same with a changing number of components. These weights

are free parameters in the sampler; deviating the weights from their current value is a

valid MCMC step, as long as they sum to unity.

6.3.1 Trans-dimensional step acceptance probability

The standard Metropolis-Hastings acceptance ratio must change to take the dimension-

matching into account when comparing the log-likelihoods (this is analogous to the log-

likelihood difference explained in 6.2.2). The new RJMCMC acceptance probability is

A = min

[

1,
Lnew × Pnew ×Qnew→old

Lold × Pold ×Qold→new ×∆qold→new

× |J |
]

, (6.4)

with L and P being the standard data-likelihoods and priors seen in the Metropolis-

Hastings MCMC. The new terms are; Q, which defines the probability of proposing a

new step from the previous one (or vice-versa): ∆qold→new, which is the prior difference

between the proposed and the current model in the MCMC proposal, and |J | which is

the determinant of the Jacobian matrix. The last factor is not required when we do not

transform the parameters during a trans-dimensional step proposal.

There are a few interesting points that can be made about the new acceptance

probability 6.4. The probabilities to propose a new step with a new parametrization,

Qnew→old and Qold→new, cancel each other out if the proposal is symmetric. This is not

only true for RJMCMC; it is possible to implement such terms in the Metropolis-Hastings

algorithm, and have an asymmetric step proposal function without violating the “subtle

balance”, which could have interesting applications. The ∆qold→new term matches the

two different dimensions together by padding the phase-space with extra penalties drawn

from the prior. The sign of the penalty is dependent on the direction in which the

trans-dimensional step is taken. The |J | term is usually equal to 1 depending on the

nature of the trans-dimensional proposal. If the new component’s parameters are not

chosen from the prior (i.e. are transformations of already-existing components), or, when

removing one component, other component’s parameters change, this term assures the

subtle balance is preserved.
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6.3.2 Trans-dimensional step proposal

There are various ways of proposing trans-dimensional steps in RJMCMC that are com-

monly used. One way, which is usually the least efficient in complex applications, is to

propose a new number of components directly from a prior. This means, for example,

allowing a direct jump from one component in the model to ten components in a model.

This can ensure easy handling of the Jacobian term (reduces to 1), and implementation,

whilst possibly sacrificing the efficiency.

A more commonly used method of proposing a new trans-dimensional step is via

Birth/Death and Split/Merge proposals, first described in [122]. Both moves only change

the number of model components by one, and are meant to be symmetrical in nature,

with use of weak priors.

Split/Merge

The Split/Merge move usually has a probability bold to split one component into two,

and dold = 1 − bold probability to merge two components together. The bold probability

can be set to be 0.5 at all times, except for when at a boundary (for example, when we

have 1 component in the model), or set to be a function of the number of components

depending on the prior. When merging, two model components are chosen at random,

and their component parameters are combined using a weighted sum – with the weights

corresponding to the ones in the equation 6.3.

Consequently, the “Split” proposal is performed by choosing a random component,

splitting its weight, ensuring all the model weights still sum up to 1, and then using the

two new weights to split the component’s parameters into two.

Birth/Death

The Birth/Death proposals either add a new component to the model, or remove a ran-

dom component. These proposals are simpler in principle, but can be very difficult to

implement effectively in practice. The choice between Birth and Death is made prob-
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abilistically; bold and dold are used, just like in the Split/Merge move. For a birth, a

new weight wnew is chosen for the new component, and other weights are re-scaled with

wi′ = wi(1 − wnew) first. New parameters are chosen from priors, which significantly

reduces the complexity; the Jacobian does not have to be calculated.

For the Death move, a component is simply removed from the Mixture Model, and

the weights renormalized so that they add up to one. This is all simple in principle; in

reality choosing new component parameters directly from priors often makes for a very

inefficient algorithm. Indeed, it is a common issue with RJMCMC; the Birth proposal

function is often the most challenging, and consequently, inefficient part of the imple-

mentation [123].

6.4 fiTQun-RJMCMC

There are six MCMC proposals implemented in fiTQun; Split/Merge, UpdateParameters,

UpdatePID, UpdateEvis, UpdateEloss and BirthDeath. Every time a new MCMC step

is proposed, one of these proposals is chosen at random, with equal probabilities for being

picked for each. It is good to note that only Split/Merge and Birth/Death proposals are

the ones that require the additional terms in the acceptance probability for dimension-

matching – the remaining proposals are basically the same as in the standard Metropolis-

Hastings MCMC. Figure 6.6 shows what may happen for each RJMCMC step in fiTQun.

6.4.1 Update proposals

All the proposals with “Update” in their name in figure 6.6 are from within the currently-

sampled model, i.e. the number of rings does not change. The step proposal functions are

a random Gaussian number centered at 0, that are added to each variable being updated,

with the Gaussian width being tunable from configuration files.

The UpdateEloss proposal updates the Eloss variable, which is only relevant for a

charged pion hypothesis. Pions, having a similar mass to muons, should deposit similar
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Figure 6.6: A box diagram showing how an example RJMCMC step is executed. Every

step there is an equal probability of choosing one of the proposals (orange boxes). Some

proposals are split into two with an equal chance of choosing either (yellow).

amounts of charge in the detector. They do, however, undergo hadronic interactions that

might suddenly stop the particle. There were a few implementations the UpdateEloss

proposal considered when we have a non-pion hypothesis – the final implementation was

to repeat the same Eloss for non-pions when UpdateEloss is called, and only vary Eloss

for rings that correspond to pion PID.

The UpdateEvis proposal updates the total reconstructed visible energy in the de-

tector. This visible energy is being split by model-component weights between the rings,

and is being used, together with the PID and its Cherenkov threshold, to calculate the

particle’s momentum.

The UpdatePars proposal simply updates the remaining kinematic variables, to-

gether with the model components’ weights (and therefore, momenta for each ring, with-

out altering the total visible energy). This, it turned out, is difficult to tune; since events
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are often very different from each other when trying to reconstruct, their posterior distri-

butions can be very different, and consequently, the optimal step-sizes. In fact, switching

between the number-of-rings hypotheses might already be difficult; a very-well localized

muon ring might require far smaller step-sizes than a low-energy, “fuzzy” Michel elec-

tron. This created a problem where step-sizes that work for one event are completely

failing for another. Furthermore, the more rings (and therefore parameters) we add to

the model, the more we should reduce the step-sizes as the autocorrelations increase with

the dimensionality.

A new “AutoTune” function was implemented, which tries to tune the step-sizes

for each separate MC event during the MCMC burn-in (the case of fiTQun, 50–75% of

the chain). For each update-style proposal (apart from UpdatePID), it calculates the

acceptance ratios in a 500-step window for every number-of-rings hypothesis. If that

acceptance ratio is lower than 0.2 in this hypothesis, the step-sizes are reduced, and if

the ratio is above 0.3 – increased. Figure 6.7 shows the parameter traces before and after

the implementation of automatic step-size tuning.

6.4.2 Update PID

The proposal updating PID, UpdatePID, went through a few implementations in fiTQun

— it turned out to be one of the more challenging proposals to tune, with the full

implementation still to be finished. The “Default” way of switching the PID, by simply

changing it, results in a large jump in the likelihood, causing a very low acceptance ratio

and almost all the PID-swap proposals being rejected. Figure 6.8 shows the log-likelihood

difference when throwing an electron → muon proposal. It is clear that a simple PID

switch results in a large step in the log-likelihood, which turns out to be true for most

MC events that the framework was tested on. To understand this further, we need to

look at the differences between how an electron and muon signal are seen by the detector.

The best-fit vertex (and consequently, the reconstructed interaction time) for a muon and

electron hypothesis can be very different for the same event, whether the true PID is one

or another. Furthermore, the best-fit momenta should differ too, although that will be

taken care of by the Evis-to-momentum calculator.
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(a) Without autotuning: sampler stops mov-

ing after ∼ 20,000 steps

(b) With autotuning: sampler explores the

one-ring hypothesis

Figure 6.7: MCMC traces showing the evolution of the horizontal X position with the

number of MCMC steps for an example MC event without autotuning (left) and after

autotuning (right). The first 50-75% of the chain is considered a burn-in, so the final

posterior will only contain the one-ring hypothesis. We can see that without autotuning

the MCMC is not changing the parameter value once converged to ∼ 1400 cm.

Originally there was an option to use PID transition tables of a somewhat unknown

origin – they could have been derived from the MC, whether SK atmospheric or T2K.

An example PID transition table for the muon to electron hypothesis is shown in fig-

ure 6.9, where a random sample from this table is taken for every µ → e transition. The

sample’s time is added to the ring’s reconstructed time, and the distance is added to the

reconstructed vertex in the upstream direction.

There were two other PID-transition methods implemented and tested with atmo-

spheric MC sample; one involved using a random Gaussian to vary the vertex position,

and another involved an MC-derived table (of a known origin this time, using SK at-

mospheric MC). The random Gaussian implementation, in various tests, was centered

at −200, −100, −50, 0, 50, 100 and 200 cm, with widths of 50, 100, 200 cm. For every

transition a random Gaussian number was drawn and added to the reconstructed vertex

in the upstream direction. The reconstructed time was re-calculated using the distance
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(a) Log-likelihood difference between electron

and muon hypotheses during the e → µ

MCMC proposal

(b) PID trace, with no MCMC steps accepted

from the electron hypothesis (PID = 1).

Figure 6.8: The log-likelihood difference between electron and muon hypotheses when

proposing an e → µ PID step (left), and the PID trace with no accepted PID transitions,

with where 1 = e and 2 = µ (right).

Figure 6.9: PID transition table for µ → e proposal. A random sample from this table is

taken for each proposal, and its distance added to the reconstructed vertex in the track’s

upstream direction, together with the time.
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difference in the resultant reconstructed vertex. No tests of the Gaussian transition with

the central positions and widths above resulted in any better performance or different

log-likelihood difference between the proposals.

The method using MC-derived tables implementation involved producing a large

n-tuple using SK atmospheric samples containing the differences between best-fit PID

hypothesis – in a similar way to how the PID transition tables were made. The standard

fiTQun saves all of its fits (described in 6.2.2), including all the nring and PID combi-

nations. Fully reconstructed SK Atmospheric MC was used to find the differences in the

reconstructed vertex position and time between various best-fit PID hypotheses. This

was done for every event, and saved in a form of n-tuple, with an example for 1Rµ–1Re

difference shown in 6.10.

Figure 6.10: PID transition tree for µ → e proposal, produced from the SK atmospheric

MC. A sample from this distribution is drawn for each µ → e step, and the time/towall

difference added to the proposed ring parameters.

The example in figure 6.10 is very similar to the one from the PID transition table

shown in figure 6.9 – with a very similar effect. The log-likelihood differences using the

full transition n-tuple were still too large to have any UpdatePID proposal accepted in

MCMC run tests.

More investigation is needed to make the PID transition smooth, resulting in lower
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log-likelihood differences between the current and proposed MCMC steps. For example,

it would interesting to look into the Evis/momenta differences between the different PID

hypotheses – since fiTQun uses different predicted-charge distribution tables. Another

way to force a smoother transition is through the likelihood-tempering method described

in the chapter 3, which involves adding a “temperature” term to the likeligood, effectively

broadening the posterior distribution. It would ensure lower log-likelihood differences

between the PID hypotheses, allowing for movement between the two minima. The

tempering would have to be implemented for all the proposal-types, however, reducing

the efficiency and requiring longer MCMC chains together with a post-fit procedure to

reweight the posterior probability distributions back to normal “temperature”.

6.4.3 Split/Merge

The Split/Merge proposal has a 50% chance of either splitting a ring into two, or merge

two rings into one. For the splitting, a random ring is chosen first. The ring’s weight is

split into two random halves. When splitting the vertex, angles and the reconstructed

time, the splitting magnitudes are thrown from user-defined priors. These magnitudes

are then modified by both the weights, so that the newly split-ring with a higher weight

(and therefore momentum) is deviated less than the one with lower weight. The PIDs

for both rings are the same as for the parent ring. The log-likelihood is then weighted by

evaluating the splitting-proposal PDFs for each variable – as requested by the ∆qold→new

term in the acceptance ratio from equation 6.4.

The Merge move is the opposite; two random rings are chosen, and their weights

used to determine the mid-point for the vertex, time, and the two angles. The PID from

the ring with higher weight is used for the newly merged ring. The difference between

the two rings is taken to calculate split-prior PDF satisfying ∆qold→new in equation 6.4.

With the splitting priors being Gaussian distributions centred at 0 and with widths

of 50 cm, 20 ns and 0.02 rad for the vertex, time and angle respectively, no Split or Merge

steps were accepted in any of the RJMCMC runs. This is not surprising; if we have a

two-ring hypothesis that matches with the data well, and we merge them to become one

ring positioned in the middle, this proposal will be rejected. The same will be true for the
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opposite scenario, where we have a one-ring hypothesis that converged to where the data

suggests, and we try splitting it into two rings with diverged angles. The Split/Merge

move could work well for some boosted-π0 events where there are two rings that are

strongly overlapping with each other.

6.4.4 Birth/Death

As mentioned in 6.3.2, the Birth proposal is usually the most problematic to implement in

RJMCMC. In many cases, high dimensionality makes the random prior throw inefficient,

especially when the minima in the likelihood are very localized. With seven kinematic

parameters, it is difficult to randomly create a ring that hits a high-likelihood area.

Figure 6.11 shows example 2D posterior distributions and the variations of the number

of rings with time for an example MC event. It is clear that the posterior distributions

are very localized – the probability of throwing a new ring randomly, that is close to such

a localized area, is very low.

AddOnEnd

There were a few alternative methods already implemented, with varying success. One

already-existing method, “AddOnEnd”, tries to exploit the physical geometry of inter-

actions in the SK tank; secondary particles’ vertices are correlated in space with the

primary particle track. The method works by choosing a random ring first, and creating

a new vertex in the direction of the first ring’s motion, with a random direction using

a uniform spherical prior. In various implementations, the new ring’s time was either

thrown from a prior (uniform with hard limits), randomly deviated from its parent ring,

or extrapolated from its parent vertex by adding the time-of-flight difference.

Although this method seemed to work better, the chain would still converge on one

number-of-rings hypothesis and be unable to either remove and add a new ring. The

hypothesis it would converge on would usually not be the right one either: MCMC finds

a minimum, and is unable to escape it – whether it is a global or local minimum in the

likelihood. Various modifications were tested by changing the ring’s weights (i.e. the
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momenta) and the reconstructed time, but the results never improved.

LocalPrior

The “LocalPrior” method generates a prior for newly-proposed ring’s vertex based on

the positions of the already-existing rings. Very similarly to the “AddOnEnd” method,

a random ring is chosen first. The ring’s vertex is used as a central position for a vertex

Gaussian prior, with a user-adjustable width (50–200 cm tested). Variants with a random

Gaussian added in the towall direction and added in all three directions were tested,

together with all the reconstructed-time deviations from “AddOnEnd”. The results were

similar those previous; each time the MCMC was run, it would converge on different local

minimum, unable to remove or add a ring.

AddGhost

The “AddGhost” was an idea to add a very low-energy ring that would most likely be

accepted, and allowing it converge to some minimum. A few variants were tested with

different energies (starting from 5MeV), drawn either from a uniform prior in the detector

phase-space or a local prior described above. In this implementation, a new ring would

be successfully added for each proposal, but not removed during the “Death” move. This

resulted in the maximum allowed number of rings limit (set to 32) being hit quite early

in the chain, some of them slowly converging to have similar energy to each other.

SmartProposal

The “SmartProposal” method generates distinct prior distributions for each event sep-

arately, using a low-energy vertex fitting method implemented in the BONSAI (Branch

Optimization Navigating Successive Annealing Iterations) fitter in SK [124]. Four ran-

dom hit PMTs are selected, with the lowest hit-time used as “event origin”. Using the

PMTs positions, hit times and the time-of-flight, a vertex is reconstructed using these

four hits. This reconstructed vertex represents one “sample”, with 10,000 samples taken

with random 4-hit PMTs used for each sample.
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Figure 6.13 shows a vertex distribution on the X vs Y SK space, together with the

angular distribution – obtained from the BONSAI-like vertex pre-fitter. These distri-

butions were used as priors for a new-ring proposal. Unfortunately, this method had a

similar performance to using a ring drawn with random initial parameters – the chain

would converge on a local minimum early in the run, and stop accepting any proposals,

Outlook for the future

Trying to find a method that allows movement between the local minima in the likelihood,

but at the same time not resulting in a negligible probability to accept a new ring, is a

challenging task for fiTQun-RJMCMC.

One way to ensure the phase-space is explored, would be – just like in the UpdatePID

case – to use likelihood tempering. It would effectively “relax” the likelihood, merging

local minima and allowing for the parameter exploration, whilst reducing the MCMC

efficiency; the MCMC chains would have to be longer.

Clearly, exploiting known geometries of the particle behaviour and interactions in

the SK tank should be beneficial. The AddOnEnd method (perhaps together with local

prior) is worth exploring further. With its – geometrically correct – way of proposing a

new vertex, it could be used together with “SmartPrior”, which would propose the new

ring’s direction in a more informed way.

Lastly, the phase-space could be reduced to simplify the log-likelihood, which would

also undermine some of the original motivations behind fiTQun-RJMCMC. It is possible

that the between-model exploration could be possible with a single-vertex approximation,

however, it would not reduce the issue of the θ and φ angles’ posteriors being very localized

and apart from each other.
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(a) 2D posterior density for X vs Y positions in

the SK tank

(b) 2D posterior density for X vs Z positions in

the SK tank

(c) 2D posterior density for θ angle vs recon-

structed time in the SK tank

(d) Trace showing the variation of the recon-

structed number of rings as the MCMC is pro-

gressing

Figure 6.11: 2D posterior densities for a number of reconstructed parameters against

each other, and a trace plot showing the variation of the sampled number of rings as

the MCMC chain is progressing. It is clear that the posteriors are very localized in the

parameter space – if there is a third ring present that is similarly localized, the probability

of randomly creating a new ring in its vicinity is very low.
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Figure 6.12: A diagram showing how “AddOnEnd” proposal works. A new vertex is

thrown by extrapolating from an already-existing vertex in its towall direction, and a

new direction is thrown from a uniform spherical prior.

(a) The X vs Y position vertex distribution ob-

tained from a method similar to 4-hit fitter from

BONSAI

(b) The θ vs φ angular distribution obtained

from a method similar to 4-hit fitter from BON-

SAI

Figure 6.13: The X vs Y and θ vs φ distributions obtained from the 4-vertex pre-fitter

similar to the one used in BONSAI [124]. These distributions can be produced before

sampling each MC/Data event, and used as priors for new ring proposals.
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6.5 Summary

The new mechanism for neutrino event reconstruction using Bayesian method was pro-

posed for Water-Cherenkov detectors, using an already existing fiTQun framework for

likelihood calculations. With the method implementation underway, there are still many

obstacles to overcome before large validations or full analyses using this framework can

take place.

The standard Metropolis-Hastings method was improved to allow within-model phase-

space exploration for different MC events, using automatic step-size tuning. All explored

methods for the PID update and new ring proposals result in fiTQun-RJMCMC being

stuck in different local minima with each MCMC run.

More investigation is needed into various PID differences using MC, together with

improving the ways to propose new rings. The PID transition must must change the

kinematic parameters like Evis/momenta and the vertex position to produce smaller

log-likelihood difference between the current and the proposed step. For the trans-

dimensional step, a mixture between AddOnEnd and SmartPrior proposals could be

explored, as it joins the knowledge of the physical processes in the detector and reduces

the issue with an unknown angle by pre-sampling the detector phase-space. Both the

PID transition and the trans-dimensional steps could be further explored with likelihood

tempering described in section 3.4.1 to further reduce the different in the log-likelihoods

between the proposals.
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Conclusions

This thesis describes two distinct analyses of the joint ND280 and SK data, together with

a continuation of an effort to implement a Bayesian method of neutrino event reconstruc-

tion at SK.

Both oscillation analysis used the same five data samples at SK and fourteen data

samples at ND280, constraining all the systematic parameters simultaneously. The anal-

yses were done with the beam exposure of 5.82× 1020 POT in the neutrino mode (FHC)

and 2.84× 1020 POT in the anti-neutrino mode (RHC) at ND280, and with 14.94× 1020

POT in the FHC mode and 16.35× 1020 POT in the RHC mode at SK. This corresponds

to 1% increase in the FHC and 116% increase in the FHC SK data since the results from

the 2017 data-taking, published in [119]. With 90 νe, 15 ν̄e, 243 νµ and 140 ν̄µ beam neu-

trino events seen at SK, the CP violation is preferred with at least 2σ credible interval,

with the highest posterior at δCP = −1.82. This oscillation analysis also marked the first

closed 3σ intervals for δCP, published in Nature [53].

All the oscillation parameters’ highest-posterior densities with their credible intervals

are shown in table 7.1.

This result was produced under the PMNS-model constraint. Over the period of

work, the T2K result moved closer to the “Asimov” sensitivity prediction – made by

fitting to the Monte-Carlo with the same PMNS model constraint.

158
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sin2 θ23 ∆m2
32 (× 10−3 eV2) sin2 θ13 δCP

2D best fit 0.537 2.46 0.0214 -1.82

68.27% C.I. (1σ) range 0.501 – 0.564 2.37 – 2.54 0.0206 – 0.0222 -2.39 – -1.13

95.45% C.I. (2σ) range 0.466 – 0.587 -2.58 – -2.41 & 2.28 – 2.63 0.0199 – 0.0230 -2.95 – -0.50

99.73% C.I. (3σ) range 0.438 – 0.606 -2.68 – -2.32 & 2.22 – 2.70 0.0191 – 0.0238 -π – 0.13 & 2.80 – π

Table 7.1: Best-fit values with 1, 2 and 3σ credible interval ranges for oscillation parame-

ters for the run 1–9 data fit with constraint on θ13 from the reactor neutrino experiments.

In a separate analysis, a fit was done with an extra degree of freedom, decoupling

the P (νµ →νe ) and P (ν̄µ →ν̄e ) oscillation probabilities from each other and allowing

them to take any non-PMNS values preferred by the data. A fit without the (PMNS-like)

constraint on θ13 from the reactor experiment has shown no tensions between the T2K

data and the PMNS model, a result that was published in the PRL journal [136].

Finally, the implementation of a novel Bayesian method for neutrino event recon-

struction in Super-Kamiokande was continued, using the proficiency with MCMC meth-

ods gained from the oscillation analysis, with many obstacles found towards completing

it. More work on the framework needs to be done for it to be used in the analysis, with

possible solutions found and explained.

The T2K experiment will continue to take more data, with planned ND280 up-

grades [126] for the T2K-II phase. The planned T2K-SK and T2K-NOvA analyses will

provide interesting ways of testing the cross-section model, and show interesting neutrino

oscillation results before the next-generation experiments start. The PMNS model will

be sampled to far higher significance by the Hyper-Kamiokande and DUNE experiments,

possibly obtaining the world’s first 5σ intervals for the δCP, and with the JUNO [127]

experiment resolving the neutrino mass hierarchy problem.
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Appendix A

Predicted SK event rates for run

1–9d

The predicted SK event rates are produced prior to the far detector (or joint) fits, partially

to initially assess the sensitivities and changes with respect to the previous analyses, and

partially to ensure that each of the analysis groups is in agreement before starting the

Asimov (and later, data) fits. The event rates are produced by selecting some oscillation

and systematic parameter values, reweighing the MC to these values, and looking at the

predicted event rates split by interaction mode. This is done for three sets of oscillation

parameters, unoscillated, Asimov A and Asimov B, listed in table A.1, and using the

systematic parameter values before the ND280 fit (so taken from prior) and after the

ND280 fit (where the best-fit values are used). The tables following table A.1 show the

nominal event rates at SK, produced using the nominal systematic parameters’ values

taken from the BAFF ND280 fit.
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Table A.1: Three sets of the neutrino oscillation parameter values used when producing

the predicted event rates at SK

Unoscillated Asimov A Asimov B

sin2 θ12 0.0 0.304

sin2 θ13 0.00 0.0212

sin2 θ23 0.0 0.528 0.45

∆m2
21(×10−5 eV2) 7.53

∆m2
32(×10−3 eV2) 2.509

δCP 0 -1.601 0

Table A.2: Nominal post-ND280 fit event rate prediction for FHC 1Rµ sample:

14.9380×1020 POT, unoscillated

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 965.66282 0.00436 23.40636 0.00020 0.00000 0.00000 989.07374

CC1π 77.79879 0.00215 4.18909 0.00009 0.00000 0.00000 81.99012

CC coherent 0.76614 0.00000 0.17503 0.00000 0.00000 0.00000 0.94117

CCnπ 6.18317 0.00047 0.45082 0.00008 0.00000 0.00000 6.63454

CC other 0.82883 0.00043 0.05326 0.00000 0.00000 0.00000 0.88253

NCπ0 0.62495 0.01869 0.02138 0.00143 0.00000 0.00000 0.66646

NCπ+/− 4.99423 0.09960 0.17726 0.00980 0.00000 0.00000 5.28090

NC coherent 0.00000 0.00000 0.00044 0.00003 0.00000 0.00000 0.00048

NC other 2.10279 0.07529 0.13268 0.00923 0.00000 0.00000 2.31998

2p-2h 134.78903 0.00163 2.57646 0.00008 0.00000 0.00000 137.36720

NC 1γ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sample totals 1193.75076 0.20262 31.18278 0.02095 0.00000 0.00000

Total 1225.15712
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Table A.3: Nominal post-ND280 fit event rate prediction for FHC 1Re sample:

14.9380×1020 POT, unoscillated

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 1.01072 6.89531 0.02101 0.27029 0.00000 0.00000 8.19734

CC1π 0.18445 1.01319 0.00522 0.07092 0.00000 0.00000 1.27378

CC coherent 0.00077 0.00896 0.00031 0.00416 0.00000 0.00000 0.01421

CCnπ 0.01783 0.11418 0.00057 0.00865 0.00000 0.00000 0.14123

CC other 0.01042 0.01870 0.00000 0.00093 0.00000 0.00000 0.03005

NCπ0 1.72930 0.03761 0.06069 0.00357 0.00000 0.00000 1.83117

NCπ+/− 0.17178 0.00480 0.01033 0.00057 0.00000 0.00000 0.18749

NC coherent 0.53883 0.00729 0.04868 0.00296 0.00000 0.00000 0.59776

NC other 0.32454 0.01730 0.02153 0.00129 0.00000 0.00000 0.36467

2p-2h 0.13769 1.71864 0.00241 0.04543 0.00000 0.00000 1.90416

NC 1γ 0.96236 0.01722 0.05061 0.00235 0.00000 0.00000 1.03254

Sample totals 5.08870 9.85319 0.22136 0.41113 0.00000 0.00000

Total 15.57439

Table A.4: Nominal post-ND280 fit event rate prediction for RHC 1Rµ sample :

16.3456×1020 POT, unoscillated

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 78.48710 0.00191 289.84935 0.00207 0.00000 0.00000 368.34042

CC1π 14.17658 0.00076 25.18321 0.00056 0.00000 0.00000 39.36111

CC coherent 0.15038 0.00000 1.63684 0.00011 0.00000 0.00000 1.78733

CCnπ 2.26618 0.00012 1.47460 0.00000 0.00000 0.00000 3.74091

CC other 0.29672 0.00013 0.16638 0.00000 0.00000 0.00000 0.46323

NCπ0 0.13032 0.00479 0.13243 0.00358 0.00000 0.00000 0.27112

NCπ+/− 0.78284 0.03295 0.99469 0.02624 0.00000 0.00000 1.83671

NC coherent 0.00000 0.00000 0.00439 0.00000 0.00000 0.00000 0.00439

NC other 0.69330 0.03560 0.43187 0.01681 0.00000 0.00000 1.17759

2p-2h 17.81507 0.00061 23.59162 0.00061 0.00000 0.00000 41.40790

NC 1γ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sample totals 114.79849 0.07686 343.46537 0.04998 0.00000 0.00000

Total 458.39070
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Table A.5: Nominal post-ND280 fit event rate prediction for RHC 1Re sample:

16.3456×1020 POT, unoscillated

nue no osc

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.08897 1.19030 0.30234 1.93411 0.00000 0.00000 3.51572

CC1π 0.03616 0.23231 0.03905 0.32695 0.00000 0.00000 0.63447

CC coherent 0.00014 0.00226 0.00310 0.02415 0.00000 0.00000 0.02965

CCnπ 0.00842 0.04172 0.00227 0.02338 0.00000 0.00000 0.07579

CC other 0.00372 0.00477 0.00262 0.00162 0.00000 0.00000 0.01273

NCπ0 0.30059 0.01164 0.38057 0.00988 0.00000 0.00000 0.70269

NCπ+/− 0.05384 0.00275 0.04314 0.00171 0.00000 0.00000 0.10143

NC coherent 0.10435 0.00481 0.44089 0.00678 0.00000 0.00000 0.55682

NC other 0.12374 0.00477 0.05756 0.00212 0.00000 0.00000 0.18819

2p-2h 0.01398 0.32814 0.01537 0.25961 0.00000 0.00000 0.61710

NC 1γ 0.17384 0.00959 0.38085 0.00822 0.00000 0.00000 0.57250

Sample totals 0.90775 1.83306 1.66775 2.59852 0.00000 0.00000

Total 7.00709

Table A.6: Nominal post-ND280 fit event rate prediction for FHC CC-1π+ sample:

14.9380×1020 POT, unoscillated

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.35021 0.02687 0.00619 0.00185 0.00000 0.00000 0.38512

CC1π 0.55706 0.83485 0.00721 0.00403 0.00000 0.00000 1.40315

CC coherent 0.00368 0.01928 0.00021 0.00008 0.00000 0.00000 0.02325

CCnπ 0.04411 0.10623 0.00210 0.00264 0.00000 0.00000 0.15509

CC other 0.13342 0.01095 0.00074 0.00021 0.00000 0.00000 0.14532

NCπ0 0.02080 0.00077 0.00084 0.00008 0.00000 0.00000 0.02249

NCπ+/− 0.06592 0.00167 0.00387 0.00033 0.00000 0.00000 0.07179

NC coherent 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

NC other 0.21033 0.00847 0.01326 0.00090 0.00000 0.00000 0.23296

2p-2h 0.08352 0.02367 0.00179 0.00101 0.00000 0.00000 0.10998

NC 1γ 0.02908 0.00000 0.00068 0.00007 0.00000 0.00000 0.02983

Sample totals 1.49812 1.03277 0.03689 0.01120 0.00000 0.00000

Total 2.57898
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Table A.7: Nominal post-ND280 fit event rate prediction for FHC 1Rµ sample:

14.9380×1020 POT, oscillated with oscillation parameters set A

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 178.42434 0.00419 11.15508 0.00019 0.02257 0.00015 189.60652

CC1π 28.22707 0.00203 2.65499 0.00009 0.02377 0.00007 30.90802

CC coherent 0.29208 0.00000 0.09287 0.00000 0.00000 0.00000 0.38495

CCnπ 4.81427 0.00044 0.36286 0.00008 0.00000 0.00001 5.17765

CC other 0.70680 0.00042 0.04543 0.00000 0.00011 0.00000 0.75276

NCπ0 0.62495 0.01869 0.02138 0.00143 0.00000 0.00000 0.66646

NCπ+/− 4.99423 0.09960 0.17726 0.00980 0.00000 0.00000 5.28090

NC coherent 0.00000 0.00000 0.00044 0.00003 0.00000 0.00000 0.00048

NC other 2.10279 0.07529 0.13268 0.00923 0.00000 0.00000 2.31998

2p-2h 35.79919 0.00154 1.44610 0.00008 0.02472 0.00004 37.27167

NC 1γ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sample totals 255.98572 0.20220 16.08909 0.02094 0.07116 0.00027

Total 272.36939

Table A.8: Nominal post-ND280 fit event rate prediction for FHC 1Re sample:

14.9380×1020 POT, oscillated with oscillation parameters set A

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.16326 6.41268 0.00638 0.25474 45.63934 0.27065 52.74705

CC1π 0.04800 0.95056 0.00286 0.06769 4.44467 0.04638 5.56016

CC coherent 0.00011 0.00842 0.00018 0.00394 0.03386 0.00317 0.04969

CCnπ 0.01267 0.11032 0.00034 0.00839 0.07763 0.00292 0.21227

CC other 0.00068 0.01817 0.00000 0.00091 0.00839 0.00022 0.02836

NCπ0 1.72930 0.03761 0.06069 0.00357 0.00000 0.00000 1.83117

NCπ+/− 0.17178 0.00480 0.01033 0.00057 0.00000 0.00000 0.18749

NC coherent 0.53883 0.00729 0.04868 0.00296 0.00000 0.00000 0.59776

NC other 0.32454 0.01730 0.02153 0.00129 0.00000 0.00000 0.36467

2p-2h 0.03028 1.60663 0.00119 0.04313 8.46347 0.03828 10.18298

NC 1γ 0.96236 0.01722 0.05061 0.00235 0.00000 0.00000 1.03254

Sample totals 3.98182 9.19099 0.20280 0.38955 58.66736 0.36161

Total 72.79413
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Table A.9: Nominal post-ND280 fit event rate prediction for RHC 1Rµ sample:

16.3456×1020 POT, oscillated with oscillation parameters set A

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 33.19935 0.00183 64.81563 0.00199 0.00183 0.00286 98.02348

CC1π 8.61403 0.00072 9.82402 0.00054 0.00127 0.00129 18.44187

CC coherent 0.10168 0.00000 0.37866 0.00010 0.00000 0.00014 0.48058

CCnπ 1.78891 0.00012 1.14781 0.00000 0.00000 0.00000 2.93684

CC other 0.24670 0.00013 0.13957 0.00000 0.00000 0.00000 0.38639

NCπ0 0.13032 0.00479 0.13243 0.00358 0.00000 0.00000 0.27112

NCπ+/− 0.78284 0.03295 0.99469 0.02624 0.00000 0.00000 1.83671

NC coherent 0.00000 0.00000 0.00439 0.00000 0.00000 0.00000 0.00439

NC other 0.69330 0.03560 0.43187 0.01681 0.00000 0.00000 1.17759

2p-2h 9.62226 0.00056 6.24008 0.00058 0.00069 0.00043 15.86460

NC 1γ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sample totals 55.17938 0.07670 84.10914 0.04984 0.00379 0.00471

Total 139.42356

Table A.10: Nominal post-ND280 fit event rate prediction for RHC 1Re sample:

16.3456×1020 POT, oscillated with oscillation parameters set A

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.02799 1.10913 0.05225 1.82035 2.15891 5.95579 11.12442

CC1π 0.01655 0.21958 0.01605 0.30983 0.30267 0.70350 1.56818

CC coherent 0.00005 0.00214 0.00090 0.02278 0.00241 0.06511 0.09339

CCnπ 0.00623 0.04044 0.00151 0.02263 0.01914 0.01292 0.10285

CC other 0.00212 0.00465 0.00100 0.00158 0.00253 0.00091 0.01279

NCπ0 0.30059 0.01164 0.38057 0.00988 0.00000 0.00000 0.70269

NCπ+/− 0.05384 0.00275 0.04314 0.00171 0.00000 0.00000 0.10143

NC coherent 0.10435 0.00481 0.44089 0.00678 0.00000 0.00000 0.55682

NC other 0.12374 0.00477 0.05756 0.00212 0.00000 0.00000 0.18819

2p-2h 0.00630 0.30851 0.00491 0.24506 0.48497 0.69685 1.74660

NC 1γ 0.17384 0.00959 0.38085 0.00822 0.00000 0.00000 0.57250

Sample totals 0.81559 1.71799 1.37963 2.45093 2.97063 7.43509

Total 16.76987
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Table A.11: Nominal post-ND280 fit event rate prediction for FHC CC-1π+ sample:

14.9380×1020 POT, oscillated with oscillation parameters set A

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.02911 0.02487 0.00118 0.00173 0.20772 0.00259 0.26720

CC1π 0.07759 0.77591 0.00260 0.00385 4.79591 0.00222 5.65807

CC coherent 0.00029 0.01791 0.00008 0.00007 0.10924 0.00010 0.12770

CCnπ 0.01937 0.10193 0.00108 0.00255 0.11477 0.00137 0.24107

CC other 0.01868 0.01062 0.00007 0.00020 0.00206 0.00007 0.03170

NCπ0 0.02080 0.00077 0.00084 0.00008 0.00000 0.00000 0.02249

NCπ+/− 0.06592 0.00167 0.00387 0.00033 0.00000 0.00000 0.07179

NC coherent 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

NC other 0.21033 0.00847 0.01326 0.00090 0.00000 0.00000 0.23296

2p-2h 0.00994 0.02210 0.00050 0.00096 0.15555 0.00103 0.19007

NC 1γ 0.02908 0.00000 0.00068 0.00007 0.00000 0.00000 0.02983

Sample totals 0.48109 0.96424 0.02416 0.01074 5.38527 0.00739

Total 6.87289

Table A.12: Nominal post-ND280 fit event rate prediction for FHC 1Rµ sample:

14.9380×1020 POT, oscillated with oscillation parameters set B

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 189.17456 0.00419 11.27825 0.00019 0.01524 0.00022 200.47266

CC1π 28.73398 0.00203 2.66702 0.00009 0.01627 0.00008 31.41947

CC coherent 0.29753 0.00000 0.09361 0.00000 0.00000 0.00001 0.39115

CCnπ 4.82414 0.00044 0.36345 0.00008 0.00000 0.00001 5.18811

CC other 0.70763 0.00042 0.04548 0.00000 0.00011 0.00000 0.75364

NCπ0 0.62495 0.01869 0.02138 0.00143 0.00000 0.00000 0.66646

NCπ+/− 4.99423 0.09960 0.17726 0.00980 0.00000 0.00000 5.28090

NC coherent 0.00000 0.00000 0.00044 0.00003 0.00000 0.00000 0.00048

NC other 2.10279 0.07529 0.13268 0.00923 0.00000 0.00000 2.31998

2p-2h 36.93442 0.00154 1.45567 0.00008 0.01631 0.00005 38.40807

NC 1γ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sample totals 268.39423 0.20220 16.23526 0.02094 0.04793 0.00036

Total 284.90092
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Table A.13: Nominal post-ND280 fit event rate prediction for FHC 1Re sample:

14.9380×1020 POT, oscillated with oscillation parameters set B

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.17385 6.41268 0.00651 0.25474 30.69151 0.33017 37.86945

CC1π 0.04945 0.95056 0.00288 0.06769 3.24038 0.05466 4.36561

CC coherent 0.00012 0.00842 0.00018 0.00394 0.02469 0.00371 0.04107

CCnπ 0.01271 0.11032 0.00035 0.00839 0.06532 0.00336 0.20045

CC other 0.00081 0.01817 0.00000 0.00091 0.00740 0.00025 0.02754

NCπ0 1.72930 0.03761 0.06069 0.00357 0.00000 0.00000 1.83117

NCπ+/− 0.17178 0.00480 0.01033 0.00057 0.00000 0.00000 0.18749

NC coherent 0.53883 0.00729 0.04868 0.00296 0.00000 0.00000 0.59776

NC other 0.32454 0.01730 0.02153 0.00129 0.00000 0.00000 0.36467

2p-2h 0.03138 1.60663 0.00120 0.04313 5.91439 0.04587 7.64260

NC 1γ 0.96236 0.01722 0.05061 0.00235 0.00000 0.00000 1.03254

Sample totals 3.99513 9.19099 0.20296 0.38955 39.94369 0.43802

Total 54.16034

Table A.14: Nominal post-ND280 fit event rate prediction for RHC 1Rµ sample:

16.3456×1020 POT, oscillated with oscillation parameters set B

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 33.72265 0.00183 67.51569 0.00199 0.00143 0.00378 101.24737

CC1π 8.66063 0.00072 9.96922 0.00054 0.00092 0.00153 18.63356

CC coherent 0.10209 0.00000 0.39261 0.00010 0.00000 0.00015 0.49495

CCnπ 1.79220 0.00012 1.15008 0.00000 0.00000 0.00000 2.94240

CC other 0.24704 0.00013 0.13974 0.00000 0.00000 0.00000 0.38691

NCπ0 0.13032 0.00479 0.13243 0.00358 0.00000 0.00000 0.27112

NCπ+/− 0.78284 0.03295 0.99469 0.02624 0.00000 0.00000 1.83671

NC coherent 0.00000 0.00000 0.00439 0.00000 0.00000 0.00000 0.00439

NC other 0.69330 0.03560 0.43187 0.01681 0.00000 0.00000 1.17759

2p-2h 9.69609 0.00056 6.42560 0.00058 0.00051 0.00052 16.12385

NC 1γ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Sample totals 55.82716 0.07670 87.15632 0.04984 0.00286 0.00598

Total 143.11885
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Table A.15: Nominal post-ND280 fit event rate prediction for RHC 1Re sample:

16.3456×1020 POT, oscillated with oscillation parameters set B

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.02862 1.10913 0.05492 1.82035 1.52181 7.11449 11.64931

CC1π 0.01672 0.21958 0.01626 0.30983 0.23935 0.83862 1.64036

CC coherent 0.00005 0.00214 0.00092 0.02278 0.00189 0.07699 0.10477

CCnπ 0.00624 0.04044 0.00151 0.02263 0.01687 0.01511 0.10280

CC other 0.00214 0.00465 0.00102 0.00158 0.00226 0.00105 0.01270

NCπ0 0.30059 0.01164 0.38057 0.00988 0.00000 0.00000 0.70269

NCπ+/− 0.05384 0.00275 0.04314 0.00171 0.00000 0.00000 0.10143

NC coherent 0.10435 0.00481 0.44089 0.00678 0.00000 0.00000 0.55682

NC other 0.12374 0.00477 0.05756 0.00212 0.00000 0.00000 0.18819

2p-2h 0.00636 0.30851 0.00501 0.24506 0.36272 0.82948 1.75714

NC 1γ 0.17384 0.00959 0.38085 0.00822 0.00000 0.00000 0.57250

Sample totals 0.81649 1.71799 1.38266 2.45093 2.14490 8.87574

Total 17.38872

Table A.16: Nominal post-ND280 fit event rate prediction for FHC CC-1π+ sample:

14.9380×1020 POT, oscillated with oscillation parameters set B

νµ νe ν̄µ ν̄e νe signal ν̄e signal Total

CCQE 0.03352 0.02487 0.00124 0.00173 0.14230 0.00335 0.20700

CC1π 0.08327 0.77591 0.00264 0.00385 3.42831 0.00262 4.29659

CC coherent 0.00033 0.01791 0.00008 0.00007 0.07474 0.00012 0.09325

CCnπ 0.01957 0.10193 0.00109 0.00255 0.09283 0.00160 0.21957

CC other 0.02019 0.01062 0.00008 0.00020 0.00185 0.00008 0.03302

NCπ0 0.02080 0.00077 0.00084 0.00008 0.00000 0.00000 0.02249

NCπ+/− 0.06592 0.00167 0.00387 0.00033 0.00000 0.00000 0.07179

NC coherent 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

NC other 0.21033 0.00847 0.01326 0.00090 0.00000 0.00000 0.23296

2p-2h 0.01081 0.02210 0.00051 0.00096 0.11297 0.00124 0.14858

NC 1γ 0.02908 0.00000 0.00068 0.00007 0.00000 0.00000 0.02983

Sample totals 0.49380 0.96424 0.02430 0.01074 3.85300 0.00901

Total 5.35509
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Comparisons involving run 1–9

analysis

This appendix will list various oscillation parameter interval comparisons made that

involve the run 1–9 analysis. The comparisons are made for the with against without the

reactor constraint on sin2 θ13, the full run 1–9 (here called 1–9d) against the older 1–9c,

and, finally, the Asimov A against the data fits.

B.1 With vs without the reactor constraint on sin2 θ13

B.1.1 Data
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.1: Comparisons of the δCP results from the run 1–9 data fit with a prior on

sin2 θ13 (woRC), against fit with a prior from the reactor neutrino experiments (wRC).

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.2: Comparisons of the appearance results from the run 1–9 data fit with a prior

on sin2 θ13 (woRC), against fit with a prior from the reactor neutrino experiments (wRC).
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.3: Comparisons of the disappearance results from the run 1–9 data fit with a

prior on sin2 θ13 (woRC), against fit with a prior from the reactor neutrino experiments

(wRC).
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B.1.2 Asimov A

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.4: Comparisons of the δCP results from the run 1–9 Asimov A fit with a prior on

sin2 θ13 (woRC), against fit with a prior from the reactor neutrino experiments (wRC).

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.5: Comparisons of the appearance results from the run 1–9 Asimov A fit with a

prior on sin2 θ13 (woRC), against fit with a prior from the reactor neutrino experiments

(wRC).
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.6: Comparisons of the disappearance results from the run 1–9 Asimov A fit with

a prior on sin2 θ13 (woRC), against fit with a prior from the reactor neutrino experiments

(wRC).

B.2 Run 1–9d vs run 1–9c

Run 1–9c analysis was presented during the Neutrino 2018 conference [54], with 1.49×1021

FHC POT and 1.12 × 1021 RHC POT, with run 1–9d representing the main analysis

described in this thesis.

B.2.1 Data, with the sin2 θ13 constraint

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.7: Comparisons of the δCP results from the run 1–9d data fit against fit from

the run 1–9c, with the reactor constraint on sin2 θ13.
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.8: Comparisons of the appearance results from the run 1–9d data fit against fit

from the run 1–9c, with the reactor constraint on sin2 θ13.

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.9: Comparisons of the disappearance results from the run 1–9d data fit against

fit from the run 1–9c, with the reactor constraint on sin2 θ13.
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B.2.2 Data, with a flat prior on sin2 θ13

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.10: Comparisons of the δCP results from the run 1–9d data fit against fit from

the run 1–9c, without the reactor constraint on sin2 θ13.

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.11: Comparisons of the appearance results from the run 1–9d data fit against

fit from the run 1–9c, without the reactor constraint on sin2 θ13.



Chapter B 192

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.12: Comparisons of the disappearance results from the run 1–9d data fit against

fit from the run 1–9c, without the reactor constraint on sin2 θ13.
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B.2.3 Asimov A, with the sin2 θ13 constraint

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.13: Comparisons of the δCP results from the run 1–9d Asimov A fit against fit

from the run 1–9c, with the reactor constraint on sin2 θ13.

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.14: Comparisons of the appearance results from the run 1–9d Asimov A fit

against fit from the run 1–9c, with the reactor constraint on sin2 θ13.
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.15: Comparisons of the disappearance results from the run 1–9d Asimov A fit

against fit from the run 1–9c, with the reactor constraint on sin2 θ13.
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B.2.4 Asimov A, with a flat prior on sin2 θ13

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.16: Comparisons of the δCP results from the run 1–9d Asimov A fit against fit

from the run 1–9c, without the reactor constraint on sin2 θ13.

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.17: Comparisons of the appearance results from the run 1–9d Asimov A fit

against fit from the run 1–9c, without the reactor constraint on sin2 θ13.
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.18: Comparisons of the disappearance results from the run 1–9d Asimov A fit

against fit from the run 1–9c, without the reactor constraint on sin2 θ13.

B.3 Data vs Asimov A

B.3.1 With the sin2 θ13 constraint

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.19: Comparisons of the δCP results from the run 1–9 Asimov A fit against the

data fit, with the reactor constraint on sin2 θ13.
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.20: Comparisons of the appearance results from the run 1–9 Asimov A fit

against the data fit, with the reactor constraint on sin2 θ13.

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.21: Comparisons of the disappearance results from the run 1–9 Asimov A fit

against the data fit, with the reactor constraint on sin2 θ13.
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B.3.2 With a flat prior on sin2 θ13

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.22: Comparisons of the δCP results from the run 1–9 Asimov A fit against the

data fit, without the reactor constraint on sin2 θ13.

(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.23: Comparisons of the appearance results from the run 1–9 Asimov A fit

against the data fit, without the reactor constraint on sin2 θ13.
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(a) Normal mass hierarchy (b) Inverse mass hierarchy

Figure B.24: Comparisons of the disappearance results from the run 1–9 Asimov A fit

against the data fit, without the reactor constraint on sin2 θ13.


