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Abstract

This Thesis revolves around datasets and algorithms, with a focus on generative mod-

elling. In particular, we first turn our attention to a novel, multi-attribute, 2D facial

dataset. We then present deterministic as well as probabilistic Component Analysis (CA)

techniques which can be applied to multi-attribute 2D as well as 3D data. We finally

present deep learning generative approaches specially designed to manipulate 3D facial

data.

Most 2D facial datasets that are available in the literature, are: a) automatically

or semi-automatically collected and thus contain noisy labels, hindering the benchmark-

ing and comparisons between algorithms. Moreover, they are not annotated for multiple

attributes. In the first part of the Thesis, we present the first manually collected and

annotated database, which contains labels for multiple attributes. As we demonstrate in

a series of experiments, it can be used in a number of applications ranging from image

translation to age-invariant face recognition.

Moving on, we turn our attention to CA methodologies. CA approaches, although

being able to only capture linear relationships between data, can still be proven to be

e�cient in data such as UV maps or 3D data registered in a common template, since

they are well aligned. The introduction of more complex datasets in the literature, which

contain labels for multiple attributes, naturally brought the need for novel algorithms

that can simultaneously handle multiple attributes. In this Thesis, we cover novel CA

approaches which are specifically designed to be utilised in datasets annotated with respect

to multiple attributes and can be used in a variety of tasks, such as 2D image denoising

and translation, as well as 3D data generation and identification.

Nevertheless, while CA methods are indeed e�cient when handling registered 3D facial

data, linear 3D generative models lack details when it comes to reconstructing or generating

finer facial characteristics. To alleviate this, in the final part of this Thesis we propose a

novel generative framework harnessing the power of Generative Adversarial Networks.
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1.4 Impact and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1 Relevant Publications . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.2 Other publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.1 Problem Scope

Since the dawn of civilised society, mankind has been immensely interested in figuring out

how things work. In this attempt, analytical thinking was developed and evolved throughout

the centuries. One main characteristic trait of analytical thinking that we use in order to

understand things is the process of splitting wholes in their essential parts, which is a sort

of “divide and conquer” approach. For instance, atomic energy was only discovered when we

were able to delve into the atom level and subsequently learn more about the particles it is

comprised of.
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1. Introduction

In a similar fashion, the majority of algorithms that have been utilised in the Computer

Vision field throughout the past decades, try to precisely decompose data in their essential

parts and then use these parts to conduct inferences about them. For example, when we are

given an image depicting a subject and we are trying to infer their age, we would ideally like

to extract the age component/part of the image which would give us the most meaningful

information about this task. This set of algorithms that decompose data into their distinct

parts or components comprises an area in the Computer Vision community that is called Com-

ponent Analysis (CA). Over the past decades, numerous CA algorithms have been developed

and utilised in a plethora of tasks such as 2D/3D face analysis. For instance, some of the most

notable works on face identification [1, 2, 3], facial expression recognition [4, 5, 6], and image

imputation [7, 8, 9], are based on CA.

Although CA methodologies can only capture the linear relationships between data, they

can still be proven to be very e�cient in generative tasks when handling data which are well-

aligned, such as 2D UV maps [10] or 3D data registered under a common reference template

[11, 12]. As a result, despite the progress of Deep Learning (DL) methodologies tailored

to capturing higher-order relationships between data, linear CA models are still prevalent

in the literature and provide state-of-the-art results in face analysis tasks such as 3D face

reconstruction [12].

Nevertheless, as years went by, Computer Vision tasks became more challenging as more

complex datasets appeared in the literature, providing data annotated with respect to multiple

labels as well as multiple attributes (e.g., datasets annotated with respect to attributes like age

and hair colour and various labels depending on the age-group and hair colour, respectively)

[13, 14, 15]. One major drawback of most such multi-attribute datasets is that the labels they

come with are automatically or semi-automatically assigned and are thus noisy. As a result,

the algorithms that are evaluated using such datasets are prone to error. In the first part

of this Thesis, we present the first manually collected and annotated multi-attribute dataset
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[16]. We also utilise it in the Chapters that follow to demonstrate the merits of our novel CA

methodologies. In Fig. 1.1 we showcase what the term “multi-attribute” stands for.

Age attribute

Identity attribute

Gender attribute

0, 1, 2, . . . , 21, . . . , 46, 101

Serena Williams, . . ., Chuck Norris

Female, Male

Figure 1.1: AgeDB is a dataset that includes annotations for multiple attributes (i.e., age, iden-
tity, and gender, as shown above). Moreover, each attribute is split into di↵erent classes/labels.
For example, the attribute identity includes a number of di↵erent identities, such as Serena
Williams. Each image in this multi-attribute dataset is annotated with a label/class pertain-
ing to each attribute. We use the term “multi-attribute” to distinguish it from other datasets
that may be multi-class/multi-label but are only annotated with respect to one attribute.

This introduction of more complex and multi-attribute datasets in the literature, naturally

necessitated the need to extend widely used CA approaches so that they can handle multi-

attribute data. In this Thesis, we detail a few new CA methodologies which are specifically

tailored to multi-attribute 2D/3D data and provide state-of-the-art results in tasks including

3D face recognition [11] and 2D image denoising and translation [10].

While CA methodologies have been proven to be performing extremely satisfactorily in

mainly classification tasks when applied on well aligned data, the advent of DL has brought

about a tremendous change in the world of Computer Vision [17, 18, 19, 20, 21]. The unique

capability of DL methodologies to capture higher-order relationships between data has made

them the “gold standard” especially in generative tasks, where CA methods fall short of due to

their linearity limitation discussed above. For example, DL approaches are the most prevalent
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in the task of 2D image generation [22, 23, 24, 25, 26].

Nonetheless, even though generative DL approaches are ubiquitous in 2D data manipulation,

only in the last couple of years have we begun to see works in the literature targeted to 3D

manifolds such as meshes [27, 28, 29, 30]. This is mainly attributed to the fact that 2D data are

Euclidean and thus operators such as the 2D convolution can be applied. On the other hand,

3D meshes are non-Euclidean and hence it is non-trivial to apply DL methods on such data. In

the penultimate Chapter of this Thesis, we present some novel generative DL approaches with

a focus on 3D facial data generation and showcase how we can circumvent the aforementioned

obstacles and eventually achieve state-of-the-art results.

1.2 Objectives

In this Thesis, we present a new multi-attribute dataset and explore novel algorithms in two

di↵erent areas of Machine Learning (ML), namely CA and DL. Having firstly presented our

novel, manually collected, multi-attribute dataset, we then report novel deterministic as well as

probabilistic CA methods which can be applied in multi-attribute data, including our dataset.

Finally, in the last part, we present novel DL algorithms tailored to 3D facial data which can

be used in generative tasks. In particular, we try to tackle the following problems:

1. In the last years, more and more challenging datasets have been introduced in the lit-

erature, containing labels for multiple attributes. Nevertheless, such datasets have in-

herent drawbacks as they have been annotated by either semi-automatic or completely

automatic ways. Therefore, they have noisy labels and hence they are prone to noisy

estimates when they are used as benchmarks to evaluate the performance of algorithms.

As a result, could we introduce a new multi-attribute dataset in the literature that is

manually collected, annotated, and curated in order to create a leading standard when

it comes to evaluating the performance of state-of-the-art algorithms tailored to face
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analysis applications?

2. Recently, more and more complex 2D/3D facial datasets appear in the literature annot-

ated with respect to multiple attributes. Although there exist many CA algorithms in

the literature that can be used in data annotated with respect to only one attribute,

there are not many approaches that can be utilised under the multi-attribute scenario

by simultaneously exploiting all the available information with respect to the various

attributes. As a result, could we create novel CA algorithms that exploit all of the at-

tribute information at the same time and thus improve the performance in a variety of

tasks, including but not limited to 3D face identification or 2D facial image denoising?

3. DL methodologies have revolutionised the field of Computer Vision especially in 2D

generative tasks, by exploiting the power of Generative Adversarial Networks (GANs).

However, even though GANs are widely used in 2D data, GAN approaches in 3D mani-

folds are still in their infancy mainly because the 3D data are non-Euclidean and hence

very useful operators such as the 2D convolution cannot be used. As a result, could we

introduce novel GAN approaches that are able to work well with complex 3D meshes?

Objective 1 Based on the plethora of publicly available facial images of celebrities on-line,

we can manually collect a large pool of such data. Moreover, based on the meta-info of the

images, we can label them according to the identity of the celebrity, gender, and age (which

can be accurate to the year). By doing so, we will have manually collected and annotated

a dataset which carries labels of multiple attributes such as identity, gender, and age. We

can then benchmark this dataset on a variety of tasks such as age-invariant face recognition,

age estimation and age progression “in-the-wild” utilising state-of-the-art algorithms and thus

make it the standard benchmark for these tasks.

Objective 2 Most widely used CA approaches in the literature work under the single

attribute assumption. We can extend them so that they can be used in multiple attribute
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scenarios. In particular, we turn our attention to deterministic as well as probabilistic formu-

lations of known CA methods. We apply the said methods in well-aligned data such as 2D

facial UV maps or 3D facial data registered in a common reference template and showcase

their superiority against their counterparts in classification as well as generation tasks.

Objective 3 Even though 2D convolutions cannot be directly applied on 3D data due to

their non-Euclidean structure, if we managed to transfer the 3D data in the 2D space, we

could still apply the 2D convolutions on them. A computationally cheap and e�cient way to

do that on registered 3D facial data is to use a fixed UV map topology and then apply this

pre-determined 3D to 2D transformation to all data. Having achieved this, we can harness

the power of GANs (including the usage of the convolution operator) and create novel GAN

losses and architectures tailored to such data. As we demonstrate, such GAN frameworks

outperform approaches based on geometric DL.

1.3 Contributions — Thesis Overview

In this Section, we provide a succinct overview of the Chapters this Thesis is split into and

also give some more information with respect to the Objectives described in Section 1.2. In

particular:

• In Chapter 2, we provide to the reader all the necessary background knowledge that is

of paramount importance to understand the Chapters that follow. More specifically, we

begin with a brief introduction to CA techniques with a focus on deterministic (such

as Principal Component Analysis (PCA) [31], Linear Discriminant Analysis (LDA) [32]

and robust PCA [33]) as well as probabilistic approaches (such as Probabilistic LDA

(PLDA) [8, 9]). Moreover, we introduce the concept of GANs [20] and detail the GAN

methodologies that are closely related to our work, such as the conditional GAN vari-

ations [34, 35, 25] and various GAN loss/architectures such as Wasserstein GAN with
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Gradient Penalty (WGAN-GP) [36, 37].

• In Chapter 3, we present our work “AgeDB: the first manually collected, in-the-wild

age database”, which constitutes the first introduced dataset in the literature that is

annotated for multiple attributes such as identity, gender, and accurate to the year age

of each person depicted in the image. The fact that AgeDB contains accurate to the

year age labels which are manually annotated, makes it a very valuable benchmark for

age estimation applications. Moreover, apart from the fact that AgeDB is manually

collected, it contains images of the same celebrities depicted at di↵erent ages and it can

thus be used in an extended range of age related experiments, such as age progression

“in-the-wild” or age-invariant face recognition. As we also show, the fact that we have

annotations for multiple attributes proves beneficial in the task of age progression: by

exploiting all of the available attribute information, we can extract more meaningful

subspaces to describe the di↵erent age groups. As we demonstrate in an extensive

number of quantitative as well as qualitative experiments, AgeDB can indeed become

the leading benchmark dataset for face analysis applications.

• In Chapter 4, we present our work “Multi-Attribute Robust Component Analysis for

Facial UV Maps” [10], dubbed MARCA, which is a deterministic CA method, able to

work in multi-attribute 2D facial data. As already mentioned, CA techniques are very

e�cient for very well aligned data. Therefore, in MARCA, we take advantage of the

latest 3D face alignment methods to project the 2D facial images on 2D facial UV maps.

Such UV data, as we showcase later in the Chapter, prove to be very suitable for CA

methods. In MARCA, we introduce the first robust CA method in the literature that is

able to exploit all of the label information during training, even in the scenario where the

dataset is annotated for multiple attributes. To achieve that, we adopt ideas of earlier

works in the literature such as the ones stemming from robust PCA [33] and provide

all the closed form solutions and mathematical proofs. Finally, we demonstrate the
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e�cacy of MARCA against widely used CA counterparts in a wide range of experiments,

including, but not limited to, synthetic experiments and image denoising when data are

contaminated with di↵erent types of noise as well as facial image translation.

• In Chapter 5, we present our work “Multi-Attribute Probabilistic Linear Discriminant

Analysis for 3D Facial Shapes” [11], dubbed MAPLDA, which is a probabilistic CA

method, able to work with multi-attribute 3D facial data. 3D facial data/meshes can

easily be registered using algorithms such as non-rigid ICP [38] under a common refer-

ence template. After the registration process is complete, all the 3D facial meshes are

well aligned with each other and can thus be utilised by CA methods. In MAPLDA, we

detail the first probabilistic CA framework that is able to operate in data annotated with

respect to multiple attributes. In particular, MAPLDA exploits all attribute informa-

tion during training, can conduct inferences about any subset of available attributes

during testing, and can be e�ciently used in a large battery of classification as well as

generation tasks. More specifically, we showcase how MAPLDA can be used to enhance

3D face recognition with respect to the identity, age-group, weight-group or ethnicity

attributes as well as demonstrate how we can use MAPLDA to generate new 3D facial

data conditioned on any subset of the aforementioned categories.

• In Chapter 6, we present our work “3DFaceGAN: Adversarial Networks for 3D Face

Representation and Translation”, which is a deep learning framework especially tailored

to 3D facial data/meshes. As briefly discussed before, 3D mesh data in general are

notoriously di�cult to be used by DL techniques because they are non-Euclidean and

thus the 2D convolutional operator cannot be directly used on them. Recently, due to the

advances in Geometric Deep Learning [27], some deep learning works have appeared in

the literature that use mesh convolutions in order to be used in 3D data [29]. Nonetheless,

the results in such works lack in detail. To alleviate that, instead of working directly

on the registered meshes, in 3DFaceGAN, we first transform the 3D facial meshes into
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2D facial UV maps. Having these 2D representations of the 3D facial data, we can use

all the prevalent deep learning techniques utilised in 2D image generative tasks. More

specifically, in 3DFaceGAN, we introduce a GAN methodology with a novel adversarial

loss designed for 3D facial data generation/reconstruction. As we demonstrate in a series

of experiments, 3DFaceGAN improves upon the state-of-the-art by a significant margin.

• Finally, in Chapter 7, we summarise the contents and draw conclusions. Moreover,

we report limitations of the discussed works, propose possible extensions, as well as

succinctly report future research avenues which can be based on the methods we detailed

in the previous Chapters.

1.4 Impact and Applications

CA methods, although they can only capture linear correlations between data, prove to be

very e�cient in small sample size (SSS) problems. On the other hand, DL approaches can

capture higher order correlations between data, but in order to be e�cient, they need large

quantities of data. Focusing on the advantages of both worlds, our methods can be used in

large variety of both generative and recognition tasks, such as:

• Biometrics. All of the CA and DL methods we propose can be used to enhance the

accuracy and performance of biometrics applications. In particular, as we also discuss

later, our methods can be used for example to improve the Face ID applications on

mobile phones and thus make them more secure or utilised in CCTV applications to

enhance the quality of the captured images.

• Computer Graphics. The proposed DL methods can be used to improve the 3D face

models of AR/VR applications or computer games, generate more detailed emojis on

mobile devices, etc.
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• Health and Safety. Modern applications in cars monitor the physical condition of the

drivers and can detect signs of tiredness. The proposed CA algorithms can be used to

detect such changes in the face and can thus be integrated in such frameworks.

• Finance. The prices of financial commodities such as stocks are dependent on multiple

factors/attributes. PCA has long been used in finance as a tool to clean noisy data. The

introduction of the deterministic or probabilistic formulations under the multi-attribute

scenario, could also be deemed beneficial when cleaning such noisy, multi-attribute data.

• Robotics. As robots become increasingly involved in our lives and day-to-day activities,

the proposed methods can be used to recognise people and/or facial expressions and,

based on this, take decisions tailored to each individual.

1.5 Publications

In this Section, I provide the list of the publications I either authored or co-authored during

the years I have been working as a PhD student at Imperial College London. In particular,

I split the publications in two parts: a) the publications which are directly relevant to the

Chapters of this Thesis, and b) the publications that I was involved in and are not covered in

detail in this Thesis.

1.5.1 Relevant Publications

• Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng,

Irene Kotsia, Stefanos Zafeiriou. AgeDB: the first manually collected, in-the-wild age

database. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPR-W), 2017.

• Stylianos Moschoglou, Stylianos Ploumpis, Mihalis Nicolaou, Stefanos Zafeiriou. Multi-

Attribute Probabilistic Linear Discriminant Analysis for 3D Facial Shapes. Proceedings
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of the Asian Conference on Computer Vision (ACCV), 2018.

• Stylianos Moschoglou, Evangelos Ververas, Yannis Panagakis, Mihalis Nicolaou, Stefanos

Zafeiriou. Multi-Attribute Robust Component Analysis for Facial UV Maps. IEEE

Journal of Selected Topics in Signal Processing (STSP), 2018.

• Stylianos Moschoglou, Stylianos Ploumpis, Mihalis Nicolaou, Athanasios Papaioan-

nou, Stefanos Zafeiriou. 3DFaceGAN: Adversarial Nets for 3D Face Representation,

Generation, and Translation. International Journal of Computer Vision (IJCV), 2020.

1.5.2 Other publications

• Stylianos Moschoglou, Mihalis Nicolaou, Yannis Panagakis, Stefanos Zafeiriou. Ini-

tializing Probabilistic Linear Discriminant Analysis. Proceedings of the European Signal

Processing Conference (EUSIPCO), 2017.

• Stylianos Ploumpis, Stylianos Moschoglou, Vasilios Triantafyllou, Stefanos Zafeiriou.

3D human tongue reconstruction from single “in-the-wild” images. to be submitted.

• Grigorios Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Ji-

ankang Deng, Stefanos Zafeiriou. P-Nets: Polynomial Neural Networks. Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

• Alexandros Lattas, Stylianos Moschoglou, Baris Gecer, Stylianos Ploumpis, Vasilios

Triantafyllou, Abijeet Ghosh, Stefanos Zafeiriou. AvatarMe: Realistically Renderable

3D Facial Reconstruction. Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

• Grigorios Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Ji-

ankang Deng, Stefanos Zafeiriou. Deep Polynomial Neural Networks. Published on

Arxiv, submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence

(T-PAMI), 2020.
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• Grigorios Chrysos, Stylianos Moschoglou, Yannis Panagakis, Stefanos Zafeiriou. Poly-

GAN: High-order Polynomial Generators. Published on Arxiv, 2019.

• Stylianos Ploumpis, Evangelos Ververas, Eimear O’ Sullivan, Stylianos Moschoglou,

Haoyang Wang, Nick Pears, William Smith, Baris Gecer, Stefanos Zafeiriou. Towards

a complete 3D morphable model of the human head. IEEE Transactions on Pattern

Analysis and Machine Intelligence (T-PAMI), 2020.

• Baris Gecer, Alexandros Lattas, Stylianos Ploumpis, Jiankang Deng, Athanasios Papaioan-

nou, Stylianos Moschoglou, Stefanos Zafeiriou. Synthesizing coupled 3d face mod-

alities by trunk-branch generative adversarial networks. Proceedings of the European

Conference on Computer Vision (ECCV), 2020.
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In the first Section of this Chapter, we present the UV unwrapping process of textures and

shapes of 3D data, a projection mechanism which is important for Chapters 4 and 6. In the

next four Sections we cover all the necessary material around CA algorithms which is essential

in order to introduce later our contributions to the literature. From Section five onwards, we

detail all the DL algorithms which lay the ground for our own work in the relevant literature

and which we introduce in the following Chapters.

2.1 UV map unwrapping of textures and shapes of 3D meshes

UV maps are the most common way to store the texture information that belongs to a 3D

mesh. The letter “U” stands for the horizontal axis while the letter “V” for the vertical

one. More precisely, let us consider a 3D mesh with n vertices, x1,x2, . . . ,xn, such that

xi 2 R3
, 8i 2 {1, . . . , n}. The topology of the 3D mesh is represented by an ordered triangle

list, t1, t2, . . . , tm, such that every triangle is defined by three distinct mesh vertices. These

triangles make up the so called mesh “faces”. The texture information is stored in a UV

map, where every vertex xi, i 2 {1, . . . , n}, of the 3D mesh is mapped to a specific location

ci =
⇥
c
i
u, c

i
v

⇤
2 R2 on the UV map. For the texture values of each 3D mesh triangle that

belong to inter-vertex locations, a linear interpolation of the texture coordinates across the

triangle is applied [39]. A graphical representation of this procedure is shown in Fig. 2.1.

Apart from storing the texture information of a 3D mesh, UV maps can also store the actual

3D shape information. In order to achieve this, instead of storing the RGB texture information

in each UV coordinate, we store the XYZ coordinates of the vertices. By projecting the

3D shape information of the 3D mesh on a UV map, we can use operators such as the 2D

convolution. In this way, as we show later in Chapter 6, we can achieve state-of-the-art results

in 3D mesh representation tasks.
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Figure 2.1: Texture mapping using UV maps. For each triangle in the 3D model, a corres-
ponding set of UV coordinates is allocated. The figure has been adopted from the lectures of
Dr Berhard Kainz’ course “Computer Graphics” at Imperial College London. Dr Kainz has
kindly provided his permission to reproduce it here.

2.2 Principal Component Analysis

Undoubtedly, the most widely used technique for dimensionality reduction in all sorts of data

is the so-called Principal Component Analysis (PCA) [40, 41, 42]. By applying PCA on our

data, we can extract from them the most essential information and thus by doing so we will

hopefully eliminate all the unnecessary bits of information which are not useful for the problem

at-hand. To achieve this, we try to find a subspace of lower dimensionality and on which when

we project our data, most of the information or otherwise the maximum variance between

them will be retained.

To structure the problem in the mathematical parlance, suppose we have a collection of

N samples, i.e., x1,x2, . . . ,xN , and that each of which lies in RF . PCA tries to find an

orthogonal subspace of rank D, where D < F , and where the variance between the data

is maximised. Suppose this orthogonal subspace is comprised of a set of projections that is
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denoted as W =


w1 w2 . . . wD

�
2 RF⇥D. Then, each of the N samples can be projected

as yi = WTxi, 8i 2 {1, . . . , N}, such that yi 2 RD.

In order to find the optimal set of orthogonal projections W, we need to solve:

Wo = argmax
W

tr
⇥
WTSW

⇤
, (2.1)

subject to WTW = I,

where S is the covariance matrix defined by the samples provided. The constraint in (2.1)

was put as otherwise the trivial solution to the problem would be 1. By formulating the

Lagrangian and solving it, we get:

SW = W⇤ (2.2)

Looking at (2.2), we can see that the optimal set of projections W 2 RF⇥D is given by the

eigenvectors of S that correspond to the largest D non-zero eigenvalues. A visual illustration

of PCA in 3D data is shown in Fig. 2.2, while the exact PCA steps are reported in Algorithm

1.

2.3 Robust Principal Component Analysis

Although PCA [40] which we described in the previous Section is very good and popular as a

dimensionality reduction technique, it is not very robust when the data we have at our disposal

have outliers and sparsities (some samples of such data are presented in Fig. 2.3). To address

this, robust PCA [33, 43] was introduced in the literature, which is able to successfully handle

such data.
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1st component

x

y

z

Figure 2.2: Visualisation of the first Principal Component when applying PCA on this 3D
dataset. The Principal Component points in such direction that when the 3D data are pro-
jected on it, the variance among the data is maximised.

Algorithm 1 PCA algorithm

Input: A set of N data samples X =
⇥
x1 x2 . . . xN

⇤
, with xi 2 RF

, 8i 2 {1, . . . , N}.
Output: A matrix W 2 RF⇥D which contains the first D Principal Components.

1. Center the data row-rise and denote the new matrix as X.

2. Calculate the covariance matrix S = 1
NXX

T
.

3. Perform eigen-analysis on S and sort the eigenvectors in a decreasing fashion by looking
at the corresponding eigenvalues.

4. Pick the first D eigenvectors and define a new matrix W =
⇥
w1 w2 . . . wD

⇤
.

5. Bonus step: to perform PCA on a random sample xt, we need to calculate yt = WTxt,
where yt is the projection we wanted to find.

Suppose that we have a data matrix X =


x1 x2 . . . xN

�
, which we already know it

is comprised of data that are sparse, perturbed with non-Gaussian noise, etc. Our aim is to

extract a low-rank component L0, which contains the most useful information. As a result,

let us assume the following decomposition:

X = Lo + So, (2.3)
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a) b)

Figure 2.3: When working with data that have missing values, such as the one presented in
a) or noisy data in which the noise is non-Gaussian, such as the one presented in b), PCA
[40] would fail to work properly as it is sensitive to outliers. Under these scenarios, i.e., when
we are dealing with sparsities in the data, approaches such as Robust PCA [33, 43] should be
considered. The samples have been taken from our work MARCA [10].

where L0 is the row-rank component and S0 is the sparse one. Moreover, we do not possess

a priori any knowledge about the row-space of L0 or the positions of the non-zero elements in

S0 or even how many they are. The task of robust PCA [33] is to extract as accurately and

e�ciently as possible this low-rank component. To achieve this, let us consider the following

problem:

minimise kLk+ � kSk , (2.4)

subject to L+ S = X.

To solve (2.4), we employ the Alternating Direction Method of Multipliers (ADMM) [44, 45]

algorithm. After formulating the Augmented Lagrangian and solving individually for the

updates of the parameters, we get the final solution according to Algorithm 2.

In Algorithm 2, SVT (Singular Value Thresholding) is defined as follows:

SVT� (M) = UD� (⌃)VT
, D� (�) = diag (sgn(�) ·max(k�k � �)) , (2.5)
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Algorithm 2 ADMM solver for robust PCA

Input: The data matrix X which is comprised of the input data.
Initialisations: Random initialisations for S, the Lagrangian ⇤. Set the initial time step t = 1
and the penalty parameter at a random positive value � > 0.
Output: The optimal low-rank component Lo and optimal sparse component So.
while convergence criterion not met do

1. Lt  SVT� (X� St�1 +⇤t�1)

2. St  ET�� (X� Lt +⇤t�1)

3. ⇤t  ⇤t�1 +
1
� (X� Lt � St)

4. t t+ 1

end

where M = U⌃VT is the Singular Value Decomposition (SVD) of matrix M. Also, ET

(Entry-wise soft Thresholding) is defined as follows:

(ET�� (M))ij =

8
>>>>>><

>>>>>>:

Mij � �� if Mij � ��,

0 if � ��  kMijk  ��,

Mij + �� if Mij  ���.

(2.6)

Finally, in Fig. 2.4, we demonstrate a typical application of robust PCA [33].

2.4 Linear Discriminant Analysis

The CA algorithms that we have presented thus far like PCA [40] and robust PCA [33] are

all unsupervised, meaning that they do not take into consideration any label information

that might exist during the training process. Nevertheless, there is a significant number of

applications where it is important to take into account the label information, as we might for

example want to extract information only about a certain class of data and not statistics about

the dataset in its entirety. Moreover, as we will also show later, by taking into consideration
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Figure 2.4: Example of a typical robust PCA [33] denoising application, utilising a variant of
robust PCA [46]. As can be seen, robust PCA [46] is able to successfully extract the denoised
component of interest (the low-rank) and eliminate the redundant information (i.e., the noise).
The figure is taken from our work MARCA [10].

the information provided by the labels, we can increase the performance of the algorithms in

the tasks such as 2D image translation and 3D face identification.

Adamantly, the most widely used supervised CA algorithm is Linear Discriminant Analysis

(LDA) [32, 47]. In particular, when we apply LDA on our labelled dataset, we try to make the

data that belong in each class to look as similar as possible, whereas the data that belong in

di↵erent classes to look as dissimilar as possible. To achieve that, we: a) try to minimise the

variability (i.e., the variance) in each class, and b) maximise the distance between the data

that belong in di↵erent classes (by increasing the distance of the classes’ means).

In the mathematical parlance, suppose we have a collection ofN samples, i.e., x1,x2, . . . ,xN ,

and that each of which lies in RF . Suppose also that our data are annotated and split into a

total of C classes. In order to solve the optimisation problem, we need to define two matrices,

the so-called within-class scatter matrix, which measures the variability within each class, and

the so-called between-class scatter matrix, which measures the distance between the classes.

As a result, we have:
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Labelled dataset PCA projection LDA projection

Figure 2.5: LDA [32] vs PCA [40]. As evinced in the graph, PCA does not take into account
the label information and merely tries to maximise the variance of the data on the projected
subspace. On the other hand, LDA does take into consideration the labels and thus: a)
maximises the distance among the data that belong in di↵erent classes, b) brings the data
that belong in the same class closer to each other.

Sw =
CX

j=1

1

Ncj

X

xi2cj

�
xi � µcj

� �
xi � µcj

�T
, (2.7)

Sb =
CX

j=1

�
µcj � µ

� �
µcj � µ

�T
, (2.8)

where Ncj , 8j 2 {1, . . . , C}, denotes the number of data in each class j, µcj the mean of the

data that belong in class j, and µ the global mean of the dataset in its entirety.

Having defined the helper matrices, the optimisation problem can be constructed as follows:

Wo = argmax
W

tr
⇥
WTSbW

⇤
, (2.9)

subject to WTSwW = I.

In other words, 2.9 tries to maximise the distance between the classes subject to the con-

straint that the variability between the data is not distorted. By formulating the Lagrangian

and solving it, we get:
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SbW = SwW⇤ (2.10)

Looking at (2.10), we can see that the optimal set of projections W 2 RF⇥D
, D < C is

given by the eigenvectors of S�1
w Sb that correspond to the largest D non-zero eigenvalues. A

visual illustration of LDA in 3D data is shown in Fig. 2.5, while the exact LDA steps are

reported in Algorithm 3.

Algorithm 3 LDA algorithm

Input: A set of N data samples X =
⇥
x1 x2 . . . xN

⇤
, with xi 2 RF

, 8i 2 {1, . . . , N}, where
each datum is annotated with a class label c, c 2 {1, . . . , C}.
Output: A matrix W 2 RF⇥D which contains the first D LDA components.

1. Compute the within-class scatter matrix Sw as defined in (2.7).

2. Compute the between-class scatter matrix Sb as defined in (2.8).

3. Perform eigen-analysis on S�1
w Sb and sort the eigenvectors in a decreasing fashion by

looking at the corresponding eigenvalues.

4. Pick the first D eigenvectors and define a new matrix W =
⇥
w1 w2 . . . wD

⇤
.

2.5 Probabilistic Linear Discriminant Analysis

Although LDA [32] is a broadly used technique in discriminative tasks when we have labelled

data at our disposal, it does not behave well in certain tasks such as face recognition of

subjects whose pictures may vary in pose or lighting [9]. Moreover, LDA is a deterministic

CA algorithm and, compared to probabilistic CA approaches, it is not as flexible to take into

consideration uncertainty factors.

To alleviate all the aforementioned limitations, Prince et al. introduced Probablistic LDA

(PLDA) [9, 48] in the literature. PLDA can be considered as a probabilistic variant of LDA,

as it is a CA algorithm that can work with labelled data and has the probabilistic element at

its core.
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To put the words into a mathematical context, PLDA carries the assumption that data are

generated by two di↵erent subspaces: one that depends on the class and one that depends on

the sample. That is, assuming we have a total of I classes, with each class i containing a total

of J samples, then the j-th datum of the i-th class is defined as:

xij = µ+ Fhi +Gwij + ✏ij , (2.11)

where µ denotes the global mean of the training set and F defines the subspace capturing the

classes of the data, with hi being the latent variable representing the specific position in the

particular subspace. As a result, term Fhi in its entirely provides the specific class in which

datum xij belongs. Furthermore, G defines the subspace modelling variations among data

of the same class, with wij being the associated latent variable for the specific datum. As

a result, term Gwij in its entirely provides the specific variations that characterise the said

datum. Finally, ✏ij denotes a residual noise term which is Gaussian with diagonal covariance

⌃ and is used to explain the rest of the information which can not be captured by the other

two components.

Assuming zero-mean observations, the model in (2.11) can be described as:

P (xij |hi,wij ,✓) = Nx (Fhi +Gwij ,⌃) , (2.12)

P (hi) = Nh (0, I) , (2.13)

P (wij) = Nw (0, I) , (2.14)

where the set of parameters ✓ = {F,G,⌃} is optimised during training via the EM algorithm

[49, 50]. After the training process is complete (e.g., when a number of iterations has finished

or when a certain threshold in the error of the validation set has been met), the optimal set of

parameters ✓ = {F,G,⌃} is found. During the testing process, the optimal subspaces derived

in the training process are utilised in order to extract the most probable class in which the

datum belongs. In Fig. 2.6, we demonstrate an application of PLDA in the task of 3D face
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ethnicity recognition, where visualisations of the components of the various ethnicities are

provided.

Figure 2.6: Ethnicity components of PLDA model in a 3D face ethnicity recognition applic-
ation. In this task, we utilise PLDA to learn the subspace that pertains to the ethnicity
attribute (i.e., White, Black, and Chinese in our case) and the corresponding ethnicity latent
variables that produce the ethnicity components depicted above. By using PLDA, we are able
to learn the subspace of interest (i.e., the ethnicity one) and use only this during testing (thus
e↵ectively avoiding to take into account information that is not needed during inference, such
as the individual characteristics of the person depicted in 3D). The figure has been taken from
our work MAPLDA [11].

2.6 Autoencoders

As we have previously pointed out, PCA [40] is a popular dimensionality reduction technique

but one of its main drawbacks is that it can only capture linear relationships between data,

failing to take into consideration higher order relationships. However, with the introduction

of DL and the increasing availability of computational resources, it was possible to create DL

architectures that can capture higher order relationships between data.

One of the most popular DL approaches that are used for dimensionality reduction as well

as data reconstruction is a type of Artificial Neural Networks (ANN) called AutoEncoders

(AEs) [51, 52]. In particular, an AE typically consists of three parts, namely:

• the encoder, which is the one that receives the input datum. The encoder is comprised

of a number of layers whose main purpose is to gradually reduce the dimensionality of

the input datum.

46



2.6. Autoencoders

• the latent embedding, which is the encoded version of the input datum. The latent em-

bedding is typically a 1D vector and it is the output of the encoder. The dimensionality

of the latent embedding is significantly reduced compared to the one of the input datum.

• the decoder, which receives as input the latent embedding and is comprised of a number

of layers which gradually increase the dimensionality of its input till it is exactly the

same as the one of the original datum.

Depending on the task the AE is asked to carry out, various names and implementations exist

in the literature, such as denoising AE [52], variational AE [53], sparse AE [54], contractive

AE [55], convolutional mesh AE [29], etc. A graphical illustration of the di↵erent parts of an

AE is shown in Fig. 2.7.

Figure 2.7: Typical structure of an AE [51]. The encoder receives the input datum (denoted
as x) and encodes it into a latent embedding denoted as h (referred to also as “code” in the
figure). The decoder receives as input the latent embedding h and tries to reconstruct the
original datum as accurately as possible (the output of the decoder is denoted as x0). The
figure has been taken from Wikipedia and was created by Michela Massi. It is provided under
CC BY-SA 4.0 license and thus can be replicated here (https://bit.ly/31Mfe2T).

In the mathematical parlance, without loss of generality, let us consider an AE that is

comprised of one layer in the encoder and another one in the decoder parts, respectively. If we

denote with x the input datum, W the weights matrix and b the biases of the encoder, W0
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the weights matrix and b0 the biases of the decoder, � the activation function, h the latent

embedding, and x0 the output of the decoder (or the reconstructed datum), the whole process

can be described as:

h = � (Wx+ b) , (2.15)

x0 = �
�
W0h+ b

�0
. (2.16)

Combining (2.15) and (2.16), we get:

x0 = �
�
W0 (� (Wx+ b)) + b0�

. (2.17)

Since the goal of an AE is to successfully reconstruct the input data, the standard loss to

be optimised during the training is the least-squares one, which is defined as follows:

L
�
x,x0� =

��x� x0��2 , (2.18)

where the total set of parameters ✓ = {W,W0
,b,b0} (implicitly included in the term x0 as

shown in (2.17)) is optimised during training via back-propagation [21], as normally happens

in a typical ANN. Having found the optimal set of parameters, the latent embedding is given

by (2.15), whereas the reconstruction is provided by (2.17). In Fig. 2.8, we show some

reconstructions of MNIST [56] digits when we utilise a standard convolutional AE. We should

point out that depending on the application, the loss function that is to be optimised can

change and include other terms as well such as regularisers [54], etc.
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Figure 2.8: Reconstruction of MNIST digits [56], utilising a standard convolutional AE trained
with TensorFlow [57]. As evinced, the AE is able to capture non-linear relationships between
the data and thus the reconstructions look quite sharp, with an increasing level of detail.
However, they are still not completely realistic (we refer the reader to the next Section which
explains how we can further improve the generated image quality). The figure has been taken
from Keras blog and was created by Francois Chollet. Keras is under MIT license and thus
the figure can be reproduced here (https://bit.ly/3lOWPKO).

2.6.1 Convolutional Mesh AE

AEs have been broadly used in 2D image data because, as we have mentioned, operators such

as the convolution work well in Euclidean data. Nevertheless, since 3D data are not Euclidean,

the current implementations of AEs cannot work “as-is” on 3D data.

To alleviate this, Ranjan et al. introduced the Convolutional Mesh Autoencoder [29],

dubbed as CoMA, which is the first AE in the literature that is able to work on 3D data,

exploiting recently introduced techniques in the field of Geometric Deep Learning [27], such

as spectral convolutions [58].

More specifically and without delving too much into the mathematical details, the authors

do mesh filtering using the idea of recursive Chebyshev polynomials [58] in the Fourier domain.

Moreover, to keep the local as well as the global structure of the 3D data, the authors do a

hierarchical down/up sampling of the resolution of the mesh utilising quadric matrices [59].

During training, the parameters of the Chebyshev polynomials are optimised via back-

propagation [21]. The preferred loss function which is used to minimise the error between the

input and reconstructed 3D data is the L1 loss one. Reconstructed samples utilising CoMA
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Figure 2.9: Reconstructions of 3D data utilising CoMA. As can be seen, although CoMA
can capture higher-order relationships between the data, it still lacks in capturing finer facial
details. The figure have been taken from our work 3DFaceGAN [30].

are presented in Fig. 2.9.

2.7 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [20] have undoubtedly revolutionised the whole field

of Computer Vision, especially in the generative tasks, whose performance reached unpreced-

ented levels over the last couple of years. The main advantage of GANs compared to their

counterparts is that they can approximate the underlying distribution of the dataset upon

which are trained in a very accurate way.

Figure 2.10: A standard GAN architecture that depicts the tasks of the generator as well as
the discriminator. The figure have been taken from Google developers platform. It is under
under CC BY-SA 4.0 license and thus it can be reproduced here (https://bit.ly/2EM5dKn).
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GANs normally consist of two deep networks [20], namely the generator or G that generates

the data and the discriminator or D that tries to understand whether the data that is fed

with are either real (i.e., coming from the actual distribution) or generated (i.e., the ones that

are produced from the generator). As the training procedure progresses, the samples that are

produced from the generator are of increasing quality and it becomes harder and harder for

the discriminator to discriminate the real from the fake (i.e., generated) data. By the end of

the training session, the discriminator is ideally totally incapable of distinguishing the data

and thus the generator is able to produce diverse data which look very realistic and with an

increasing level of detail.

The huge success of GANs is attributed to the fact that the discriminator acts as a “teacher”,

so during back-propagation, the updates of the weights of the generator are adjusted according

to the outputs of the discriminator. Moreover, since the discriminator itself is a deep network

and determines the behaviour of the whole training process, we can avoid using “hand-crafted”

loss functions and let the deep network do this for us. The whole procedure is called adversarial

because the generator and the discriminator have competing goals: on the hand, the generator

is trying to “fool” the discriminator by producing more realistic data and on the other, the

discriminator tries to distinguish the real from the fake data.

Putting the words in a mathematical context, let us the denote the distribution of the real

data as pdata and the distribution of the generated data as pg. Furthermore, we define a

prior pz on the input noise z that is fed to the generator. We also denote the output of the

generator as G (z;✓g). In general, the generator G is a di↵erentiable function that is comprised

of a number of layers and activation functions, the parameters of which (containing all the

weights and biases) are denoted as ✓g. Moreover, we denote the output of the discriminator

as D (x;✓d). The discriminator is also a di↵erential function that is comprised of a number of

layers and activation functions, the parameters of which (containg all the weights and biases)

are denoted as ✓d. We should also note that D (x;✓d) refers to the output of the discriminator
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Algorithm 4 Training a GAN [20].

Input: The training data x1,x2, . . . ,xN .
Initialisations: Random initialisations of the parameters of both G andD following e.g., the
method by He et al. [60]. k is a hyperparameter that refers to the number of steps we train D

before continuing with G. m is a hyperparameter that refers to the total number of iterations
during training. b is a hyperparameter that denotes the batch-size during training.
Output: The optimalD andG so thatG is able to generate data thatD can longer distinguish
from the real ones.

for m steps do
for k steps do
• Sample b noise inputs {z(1)

, . . . , z(b)} from pg(z).
• Sample b examples {x(1)

, . . . ,x(b)} from pdata(x).
• Update the discriminator according to (2.19):

r✓d
1

b

bX

i=1

h
logD

⇣
x(i)
⌘
+ log

⇣
1�D

⇣
G

⇣
z(i)
⌘⌘⌘i

.

end for
• Sample b noise inputs {z(1)

, . . . , z(b)} from pg(z).
• Update the generator according to (2.19):

r✓g
1

b

bX

i=1

log
⇣
1�D

⇣
G

⇣
z(i)
⌘⌘⌘

.

end for

when it is fed with a real datum x.

As we described before, the discriminator D tries to maximise the probability that the

correct label (real/fake) is assigned to the data that is fed with, whereas the generator G tries

to make this impossible by constantly improving the quality of the generated/fake data. This

can be mathematically formulated as:

min
G

max
D

V (G,D) = Ex⇠pdata(x) [logD (x)] + Ez⇠pz(z) [log (1�D (G (z)))] . (2.19)

By looking at (2.19), we can see the competition between the generator and the discriminator

as the one is trying to minimise the objective whereas the other one tries to maximise it. The
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Figure 2.11: MNIST digits generated by a GAN [61]. As can be seen, the GAN is able to
generate very realistic images which is hard to distinguish from the real data. The figure has
been taken from our work PolyGAN [61].

algorithm for training the GAN is presented in Algorithm 4. A standard GAN architecture is

shown in Fig. 2.10, whereas some samples generated by a GAN are depicted in Fig. 2.11.

Since the introduction of the first GAN [20], a myriad of di↵erent variations have been

introduced in the literature. Some of those approaches have focused on the GAN architectures

[62, 63, 22, 23, 24] and others on the loss function [36, 37, 64, 65]. In what follows, we will

briefly report some of the GAN variations that are most relevant to our work.

2.7.1 Wasserstein GAN

Although the original GAN [20] was proven to be very good in generating realistic and sharp

images, it did come with some flaws. One main problem is that quite frequently the generator’s

behaviour would lead to mode collapse (i.e., the generator being able to only generate a certain

type (mode) of images and thus not providing diverse enough images). Another problem is

that quite often the generator fails to learn any meaningful distributions and generates random

noise throughout the whole training process. This set of drawbacks is primarily attributed to
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the choice of the loss function, i.e., the Jensen-Shannon (JS) one [20], while fails to converge

under certain scenarios [36].

To remedy the aforementioned shortcomings, Arjovsky et al. proposed the Wasserstein GAN

[36], where the main contribution is that instead of utilising the Jensen-Shannon divergence as

a loss function, they utilised the Earth Mover’s (EM) distance. In layman’s terms, supposing

we have two distributions q and p, EM distance refers to the minimum or optimal “transport

cost” so that q and p are alike. Using EM distance instead of the JS divergence stabilises

the training and significantly reduces the occurrence of mode collapse during the training of

a GAN, as EM distance is able to converge where JS fails to do so [36].

In mathematical terms, supposing that the distribution of the generator is denoted as Pg

and the distribution of the real data as Pr, the EM distance is defined as:

W (Pr,Pg) = inf�2⇧(Pr,Pg)E(x,y)⇠� [kx� yk] , (2.20)

where ⇧ (Pr,Pg) denotes the set that contains all the joint distributions � (x, y), the mar-

ginals of which are Pr and Pg, respectively.

The main issue with (2.20) is that the infimum is highly intractable. Nevertheless, the

Kantorovich-Rubinstein duality [66], states that:

W (Pr,P✓) = supkfkL1Ex⇠Pr [f (x)]� Ex⇠P✓ [f (x)] . (2.21)

We should note that the supremum in (2.21) is over every 1-Lipschitz function. If we had

kfkL  K (K-Lipschitz continuity) in (2.21), we would have K ·W (Pr,P✓). Therefore, for a

parametrisable function fw that is K-Lipschitz for some K, we could solve the following:
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max
w

Ex⇠Pr [fw (x)]� Ez⇠p(z) [fw (g✓ (z))] . (2.22)

In order to solve the maximisation problem of (2.21), we can a employ a neural network

(GAN) with weights w, as the authors showcase in [36]. In order to make sure that the

functions fw are K-Lipschitz for some K, we have to make sure the weights w are compact so

we need to clip them after each gradient update. The Wasserstein GAN method is compactly

presented in Algorithm 5.

Algorithm 5 Training WGAN [36]

Input: The training data x1,x2, . . . ,xN .
Initialisations: �, the learning rate. k, the clipping parameter. b, the batch size. m, the
number of iterations of the critic per generator iteration. w0, initial critic parameters. ✓0,
initial generator’s parameters, t the total number of iterations.
Output: The optimal parametersw and ✓.

for t steps do
for m steps do
Sample {x(i)}bi=1 ⇠ Pr a batch from the real data.
Sample {z(i)}bi=1 ⇠ p(z) a batch of prior samples.

gw  rw

h
1
b

Pb
i=1 fw(x

(i))� 1
b

Pb
i=1 fw(g✓(z

(i)))
i

w w + � · backprop(w, gw)

w clip(w,�k, k) element-wise clipping
end for
Sample {z(i)}bi=1 ⇠ p(z) a batch of prior samples.

g✓  �r✓
1
b

Pb
i=1 fw(g✓(z

(i)))
✓  ✓ � � · backprop(✓, g✓)

end for

2.7.2 Wasserstein GAN with Gradient Penalty

One of the main problems of the Wasserstein GAN [36] is the clipping of the weights, which is

used to make sure the function that is optimised is a K-Lipschitz one. This introduces several

problems such as failure to converge in certain cases and a laborious e↵ort to correctly identify

the right clipping threshold [37].
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In a sense, the weight clipping introduces some regularisation in the network so that the

network weights adhere to a certain window. In [37], instead of using weight clipping, the

authors introduce the concept of gradient penalty in the weights. In particular, it can be

shown that a di↵erentiable function f is 1-Lipschitz if and only if it has gradients with norm

at most 1 everywhere [37]. As a result, in [37], the authors penalise the model if the norm of

the gradients exceeds the value of 1:

L = Ex̃⇠Pg [D (x̃)]� Ex⇠Pr [D (x)]
| {z }

original Wasserstein loss

+� · Ex̂⇠Px̂

h
(krx̂D (x̂)k2 � 1)2

i

| {z }
gradient penalty

. (2.23)

In (2.23), x̂ is sampled between x and x̃ such that:

x̂ = tx̃+ (1� t)x, (2.24)

where t 2 [0, 1] and is sampled uniformly.

2.7.3 Boundary Equilibrium GAN

Despite the improvements and stabilisations in GAN training that were introduced and we

reported in the previous Sections, GANs were not able to produce realistic images when

trained in more complex datasets that contain images of higher resolution. The first work in

the literature that proved to be able to generate images of higher resolution with an increasing

level of detail was the Boundary Equilibrium GAN (BEGAN) [63].

The main characteristic of BEGAN is that it introduces the equilibrium concept, where the

behaviour of the discriminator is balanced against the behaviour of the generator (so that the

training process is kept under control and the discriminator does not “win” relatively easily

and thus hindering the performance of the generator). Moreover, based on the idea of EBGAN
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[67], the discriminator in BEGAN has the form of an autoencoder. By utilising an autoencoder

in the discriminator, we are able to match the (reconstruction) losses between the samples and

not the samples themselves, which, as shown experimentally, improves the performance [63].

Overall, the objective that is optimised is as follows:

LD = L (x)� kt · L (G (z)) , (2.25)

LG = L (G (z)) , (2.26)

kt+1 = kt + �k (�L (x)� L (G (z))) , (2.27)

where (2.25) is the discriminator objective and (2.26) is the generator objective. The loss

L refers to the L1 loss between the input and the output of the discriminator. As the au-

thors show in [63], the losses introduced in (2.25) and (2.26) are similar to the Wasserstein

GAN objective [36], the main di↵erence being that we do not have to explicitly employ the

Kantorovich-Rubinstein duality theorem [66]. Finally, the equilibrium constraint is introduced

via the hyper-parameter � 2 [0, 1] in (2.27), which controls how much emphasis should be put

on the discriminator during training. In order to control the equilibrium, the authors in [63]

use concepts of Proportional Control Theory. More specifically, they use a variable kt 2 [0, 1]

in (2.27), which keeps under control how much power is given on L (G (z)) during the gradient

descent. �k is the “learning rate” for the variable kt. The authors initiliase k0 = 0 and as

far as the learning rate �k is concerned, this depends on the dataset but the value is always

relatively small (such as 10e� 3).

2.7.4 Progressive GAN

Even though with the introduction of BEGAN [63] in the literature many problems revolving

around GANs were alleviated, especially with regards to producing images of higher quality,

BEGAN was still only able to generate images of good quality up to the size of 256 ⇥ 256.
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Further increasing the resolution of the training images would lead to problems in the training

such as frequent inability to converge, very slow behaviour in the training due to the extreme

number of parameters, etc. To remedy such problems, Progressive GAN [23] was introduced

in the literature.

Figure 2.12: Generations of facial images by using the technique of progressive growing. As
we can see, the generated images are of high quality and look very realistic. The figure has
been taken from our work P-Nets [68].

Progressive GAN [23] is able to generate images of an extreme level of detail of resolutions

up to 1024 ⇥ 1024. To achieve this, the authors in [23] proposed the gradual growing of

the resolution of the images as the training progresses. As a result, the GAN first starts to

generate images of e.g., resolution 4 ⇥ 4, then moves on to 8 ⇥ 8, and so on and so forth,

till it reaches the desired resolution. Finally, in order to stabilise the training process and

the transition between the di↵erent resolutions, the authors introduced some novel concepts

such as the equalised learning rate [23]. Some samples generated by utilising the technique of

progressive growing in GANs are shown in Fig. 2.12.

2.8 Conditional Generative Adversarial Networks

All of the GAN architectures and settings we have described thus far are unsupervised, meaning

that we cannot choose for example which class of objects to generate and hence the whole

generative process is random. Nonetheless, quite often we want to generate objects that belong

to a certain class or objects that bear characteristics belonging to a distinct combination of

classes. In order to achieve this, conditional GANs (cGANs) [34] were introduced in the
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literature.

Figure 2.13: Conditional GAN structure. We denote the latent vector as z, the label as y
and outputs of the generator and discriminator as G (z|y) and D (x|y) (in the case where the
input in the discriminator is a real datum), respectively.

In more detail, suppose we have a dataset annotated for a total of C classes (e.g., MNIST

[56] dataset contains hand-written digits so the total number of classes is 10). The conditional

GAN takes as input together with the random noise vector z the class label (which we denote as

y), which guides the generative process in order to construct a datum belonging the particular

class. The same happens in the discriminator too, where the input is consisted of a real

(x) or fake (G (z|y)) datum and their respective class y. The whole process is schematically

presented in Fig. 2.13, whereas some novel samples when the conditional GAN is trained on

MNIST [56] dataset are shown in Fig. 2.14.

2.8.1 Image-to-Image Translation with Generative Adversarial Networks

Image translation tasks refer to applications where, given an input image, we transfer it in

another setting and thus produce a new image varying in certain characteristics but without

losing the global structure of the input image. For example, image translation tasks include

but they are not limited to transferring black-and-white images to colour ones, converting

aerial views to map views, etc.
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Figure 2.14: Generations using the Conditional GAN (under the P-Nets [68] variation). As
can be seen, we are able to control the generative process and as a result, we produce a
certain digit in every row. Moreover, the di↵erences among the digits of the same class can
be explained from the fact that we use a di↵erent latent noise vector in order to generate each
one of them. The figure has been taken from our work P-Nets [68].

With the advent of GANs, the performance of image-to-image translation tasks improved

significantly, owning to the ability of the GANs to generate images of very high quality. One

of the most widely used (conditional) GANs to carry out image-to-image translation tasks is

pix2pix [35].

More specifically, in pix2pix, the generator, which has the structure of a U-Net architecture,

receives as input an image and translates it to the target domain. The discriminator then

receives as input both the generated (fake) and real images that belong to the target domain

and tries to discriminate the real from the fake ones. The objective that is optimised is as

follows:

L = Ex,y [logD (x,y)] + Ex,z [logD (x, G (x, z))] + Ex,z,y [ky �G (x, z)k1] , (2.28)
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where the L1 reconstruction loss is added to further assist the generator in its task.

2.9 Conclusions

In this Chapter, we presented the most important research works that are related to our

publications which we detail later on. In particular, we started with the most closely related

deterministic as well as probabilistic CA methodologies and we continued with the relevant

DL methodologies, giving an emphasis on GANs. Despite the popularity of the techniques

discussed in this Chapter, the CA methods fail to perform optimally on multi-attribute data,

whereas as the DL methods do not perform well when trained on 3D data. In the Chapters

that follow, we present our publications which help mitigate the aforementioned problems.
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Chapter 3

AgeDB: The first manually collected,

in-the-wild age database
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3.1 Introduction

Adamantly, one of the most challenging and important tasks in Computer Vision throughout

the years has been face recognition. This spark of interest in face recognition was firstly

attributed to security reasons, since automatic facial analysis would assist security agencies

in detection of passport frauds, identification of criminals or missing children, restriction of

identity thefts, etc. The first algorithm for face recognition was introduced in mid 1960’s [69]
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and since then numerous approaches have been proposed in the literature. Before the advent

of deep learning in 2006 [70], construction of algorithms that were used in facial analysis tasks

required huge amount of time, domain specific knowledge and a delicate engineering process

in order to transform the raw facial data in a feature space. The derived features would then

be utilised to produce the final classification result [17, 18].

Nevertheless, successful implementation of face recognition applications also requires su�-

ciently large facial datasets that will be utilised in order to train the algorithms. For decades

and prior to the proliferation of deep learning, various facial datasets were introduced in the

literature. One common feature of all these datasets was that they contained images which

were captured under controlled conditions (e.g., common background, controlled lighting set-

ting, etc.). This restriction was imposed due to the fact that the feature extractors did not

perform well on “in-the-wild” datasets (i.e., datasets that include images captured in uncon-

trolled conditions). Some of the most widely used databases which included images captured

under controlled conditions were the XM2VTS database [71], the Multi-PIE database [72, 73],

the AR face database [74], the Caltech faces database [75], the FERET database [76, 77, 78],

the Yale face database [79].

During the last few years, an explosion in scientific research with respect to the development

of deep learning architectures for face recognition has been witnessed. Deep learning comprises

a set of methods that are able to automatically discover the patterns that may exist in raw

data and, as a result, feature extractors which were utilised to transform the raw data are

no longer required [17, 18]. This competitive advantage of deep learning methods against

the conventional algorithms led to the introduction of several “in-the-wild” databases in the

literature. The term “in-the-wild” is used to refer to databases that contain images which have

been captured under completely uncontrolled conditions (e.g., varying backgrounds, existence

of noise in the pictures, existence of occlusions in the faces depicted in various images, di↵erent

types of cameras used to capture the images, etc.).
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Over the past decade, various “in-the-wild” facial databases became publicly available. More

specifically, in 2007 the Labeled Faces “in-the-wild” (LFW) database [80, 81] was introduced.

LFW contains 13,233 images of 5,749 individuals, where 1,680 subjects are depicted in two

or more images and the rest appear only in one image. In 2009, PubFig database [82] was

introduced. PubFig is an “in-the-wild” database, containing 58,797 images of 200 subjects.

In 2011, YouTube Faces (YTF) database [83] was introduced. YTF contains 3,425 videos of

1,595 individuals, where the average length of each video is 181.3 frames. In 2012, WDRef

database [84] was introduced. WDRef contains 99,773 images of 2,995 individuals, where 2,995

subjects have 15 or more images. In 2014, the CelebFaces database [13, 14, 85] was introduced.

CelebFaces contains 202,599 images of 10,177 identities (celebrities), where each identity has

about 20 images. In 2014, CASIA-WebFace database [86] was introduced. CASIA-WebFace

contains 494,414 images pertaining to 10,575 subjects. In 2015, VGG Face dataset [87] was

introduced. VGG Face dataset contains 2.6M image of 2,622 distinct individuals. Moreover,

in 2015, the IARPA Janus Benchmark A (IJB-A) [88] was introduced. IJB-A contains 5,712

images and 2,085 videos from 500 subjects. In 2015 and 2016, the MegaFace database [89,

90] was introduced and extended, respectively. MegaFace contains 4.7M images of 672K

individuals. A table providing an overview of the most recently introduced aforementioned

databases along with their essential statistics is presented in Table 3.1.

Table 3.1: Concise overview of the most broadly used “in-the-wild” facial datasets in the
Computer Vision community since 2007 onwards.

Dataset Year # Images # Videos # Subjects “In-the-wild”
LFW [80, 81] 2007 13,233 – 5,749 Yes
PubFig [82] 2009 58,797 – 200 Yes
YTF [83] 2011 – 3,425 1,595 Yes

WDRef [84] 2012 99,773 – 2,995 Yes
CelebFaces [13, 14, 85] 2014 202,599 – 10,177 Yes
CASIA-WebFace [86] 2014 494,114 – 10,575 Yes

VGG Face [87] 2015 2.6M – 2,622 Yes
IJB-A [88] 2015 5,712 2,085 500 Yes

MegaFace [89, 90] 2016 4.7M – 672K Yes
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Due to the recent surge of deep learning, age estimation from facial images has gradually

gathered increased interest in the community. As of today, various deep learning architectures

have been proposed and several databases annotated with regard to the age attribute have

been made publicly available. The first database which contained images annotated with

respect to the age attribute was FG-NET [91], introduced in 2002. FG-NET includes 1,002

images, captured under controlled conditions, pertaining to 82 subjects with accurate to the

year age annotations. In 2006, MORPH database [92] was introduced. MORPH contains

1,724 images, pertaining to 464 subjects with accurate to the year age annotations. In 2008,

the UIUC-IFP-Y Internal Aging Database [93, 94] was introduced, containing 8,000 images,

captured under controlled conditions, pertaining to 1600 subjects with accurate to the year

age annotations. In 2009, Gallagher group photos [95] was introduced. Gallagher group

photos is an “in-the-wild” database containing 28,231 images of 5,080 subjects. As far as the

annotation with the regard to the age attribute is concerned, 7 distinct age groups are utilised.

Each image is annotated with a unique group identifier. In 2011, VADANA database [96] was

introduced. VADANA is an “in-the-wild” database containing 2,298 images pertaining to

43 subjects. In total 4 age groups are utilised and each image is annotated with a unique

group identifier. In 2014, AdienceFaces database [97, 98] was introduced, containing 26,580

“in-the-wild” images of 2,984 subjects. In total 8 age groups are utilised and each image

is annotated with a unique group identifier. In 2014, Cross-Age Celebrity Dataset (CACD)

[99, 100] was introduced, containing 163,446 “in-the-wild” images of 2,000 celebrities. Images

are annotated with a specific age label which is semi-automatically estimated. In 2015, IMDB-

WIKI database [101, 102] was introduced, containing 523,051 “in-the-wild” images pertaining

to 20,284 celebrities. Images are annotated with a specific age label which is semi-automatically

estimated. A table providing an overview of the aforementioned databases along with the

newly introduced AgeDB database is presented in Table 3.2.

Nevertheless, despite of the increased interest in age estimation “in-the-wild” and the several
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Table 3.2: Concise overview of the most broadly used age datasets in the Computer Vision
community since 2002 onwards.

Dataset Year # Images # Subjects Age labels Noise-free labels “In-the-wild”

FG-NET [91] 2002 1,002 82 Accurate to the year Yes No

MORPH [92] 2006 1,724 464 Accurate to the year Yes No

IFP-Y [93, 94] 2008 8,000 1600 Accurate to the year Yes No

Gallagher [95] 2009 28,231 5,080 7 age groups No Yes

VADANA [96] 2011 2,298 43 4 age groups Yes Yes

AdienceFaces [97, 98] 2014 26,580 2,984 8 age groups Yes Yes

CACD [99, 100] 2014 163,446 2,000 Accurate to the year No Yes

IMDB-WIKI [101, 102] 2015 523,051 20,284 Accurate to the year No Yes

AgeDB 2017 16,488 568 Accurate to the year Yes Yes

databases that came into existence to tackle this task over the last years, no manually collected

“in-the-wild” database with accurate to the year age annotations has been introduced in the

literature. In this Chapter we present the first manually collected “in-the-wild” age database,

dubbed AgeDB. AgeDB contains images of several subjects annotated with accurate to the

year age labels. The fact that AgeDB is manually collected to ensure the accuracy of the age

labels comes with several advantages:

• AgeDB can be used in age-invariant face verification “in-the-wild” experiments, i.e., the

sensitivity in the performance of face recognition algorithms can be measured as the age

gap between instances (images) of the same subject increases. Since the age labels are

clean, AgeDB ensures a noise-free evaluation of the various face recognition algorithms.

• AgeDB can be used in age estimation “in-the-wild” experiments. Since the age labels

are clean, AgeDB may be utilised as a benchmark database for such tasks.

• AgeDB can be utilised in face age progression “in-the-wild” experiments, since it is a

manually collected database with large range of ages for each subject. This property

renders AgeDB highly beneficial when training models for age progression experiments.

The structure of the Chapter is summarised as follows. In Section 2, we provide all the
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necessary details pertaining to the AgeDB database. In Section 3, we present the various

experiments we performed on AgeDB. More specifically, we perform: i) various age-invariant

face verification “in-the-wild” experiments utilising state-of-the-art pre-trained deep networks

and report their performance on AgeDB, ii) various age estimation “in-the-wild” experiments

utilising state-of-the-art pre-trained deep networks and report their performance on AgeDB,

iii) several face age-progression “in-the-wild” experiments and report their results on AgeDB.

3.2 The AgeDB database

In this Section we thoroughly discuss all the details pertaining to the collection of the AgeDB

database as well as provide the necessary statistics related to the database. The database is

publicly available at: https://ibug.doc.ic.ac.uk/resources/agedb/.

As aforementioned, AgeDB is amanually collected database to ensure that the age labels are

clean as opposed to other age databases which have been semi-automatically collected utilising

crawlers and in which the age labels may be noisy. In order to achieve noise-free annotation

with respect to the age labels, we manually searched for images through Google Images and

subsequently kept only images where the exact, accurate to the year age of each depicted

subject is explicitly mentioned in the accompanied caption of the image. An indicative example

of the process followed is provided in Fig. 3.1.

Moreover, AgeDB is an “in-the-wild” database, meaning it contains images captured under

completely uncontrolled, real-world conditions (i.e., having di↵erent poses, containing noise,

bearing various expressions, containing occlusions, etc.). This feature may prove highly ad-

vantageous, since most of the state-of-the-art deep networks are trained and evaluated in

“in-the-wild” databases.

AgeDB contains 16, 488 images of various famous people, such as actors/actresses, writers,

scientists, politicians, etc. Every image is annotated with respect to the identity, age and
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Figure 3.1: Screenshot captured from the Wikipedia lemma about Albert Einstein
(http://bit.ly/AgeDB fig1). Since the exact year the image was captured is available and
also the birth year is provided, the age label can be subsequently calculated. For the image
depicted in the screenshot, the age label is 42.

gender attribute. There exist a total of 568 distinct subjects. The average number of images

per subject is 29. The minimum and maximum age is 1 and 101, respectively. The average

age range for each subject is 50.3 years. A scatter plot depicting the age distribution of the

database is presented in Fig. 3.2. Samples from the AgeDB “in-the-wild” database along with

their labels are provided in Fig. 3.3.

3.3 Experiments

In this Section we present various experiments we performed on AgeDB. More specifically,

we utilise state-of-the-art algorithms and conduct experiments in tasks as age-invariant face

verification “in-the-wild”, age estimation “in-the-wild”, face age progression “in-the-wild” and

subsequently show that AgeDB constitutes a proper benchmark for evaluating state-of-the-art
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Figure 3.2: Scatter plot depicting the age distribution in the AgeDB “in-the-wild” database.

ID: Van Damme, Jean-Claude
Age: 27

ID: Douglas, Michael
Age: 35

ID: Dalton, Timothy
Age: 48

ID: Sinatra, Frank
Age: 56

ID: Disney, Walt
Age: 64

Figure 3.3: Random images from the AgeDB “in-the-wild” database.

algorithms for the previously mentioned tasks.

3.3.1 Age-invariant face verification “in-the-wild”

AgeDB may be utilised for age-invariant face verification “in-the-wild” experiments since it

contains multiple images of subjects depicted at di↵erent ages. To this end, in a similar fashion

to the protocol that is described in the LFW [80] database, we developed four distinct age-

invariant splits utilising AgeDB. More specifically, each split refers to di↵erent age gaps in

terms of years (5, 10, 20, and 30 years). Each of these splits contains 300 intra-split and 300
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inter-split pairs, respectively. In Table 3.4, we report the results from the utilisation of the

VGG Face deep network using the aforementioned splits. In Table 3.3, we report the results

from the Center Loss [103] and Marginal Loss [104] methods, again utilising the same splits. It

should be noted that this series of experiments was conducted on a subset of the final version

of the AgeDB, as AgeDB was further extended by the time it became publicly available. As

can be seen in both experiments, AgeDB is a challenging dataset, especially as the age gap

between the inter and intra splits increases. As a result, it can be widely used to benchmark

algorithms tailored to the task of age-invariant face verification.

Table 3.3: Age-invariant face verification on AgeDB utilising the Centre Loss [103] and Mar-
ginal Loss [104] methods.

Age gap Accuracy per method

Center Loss Marginal Loss

5 0.959 0.981

10 0.951 0.979

20 0.931 0.971

30 0.907 0.957

Table 3.4: Age-invariant face verification on AgeDB utilising the VGG Face [87] deep network.

Age gap Accuracy per layer

33-rd 34-th 35-th 36-th

5 0.912 0.931 0.911 0.934

10 0.900 0.922 0.902 0.914

20 0.879 0.891 0.879 0.888

30 0.839 0.851 0.842 0.840

3.3.2 Age estimation “in-the-wild”

Age estimation “in-the-wild” is a challenging problem in Computer Vision and has recently

gained huge interest in the community, mainly due to the increased penetration of deep learning

techniques in the literature. The challenging nature of this task is primarily attributed to the

71



3. AgeDB: The first manually collected, in-the-wild age database

fact that the databases which are publicly available and utilised for age estimation have been

semi-automatically collected and thus contain age annotations that are noisy. As a result, age

prediction based on such databases cannot be accurate, since the algorithms are trained on

data where the labels in the first place are not accurate. To overcome the said disadvantage,

we introduce the AgeDB “in-the-wild” database, the first manually collected age database.

The state-of-the-art publicly available pre-trained deep network for age estimation “in-the-

wild” is DEX (Deep EXpectation of apparent age from a single image) [101, 102], winner

of the LAP challenge 2015 on apparent age estimation [101]. We hence utilised the publicly

available DEX pre-trained deep network [101] and performed age estimation in the totality of

pictures included on AgeDB.

Preprocessing

In order to feed the images of AgeDB in the pre-trained network, we followed the preprocessing

process described in [101]: We firstly employed the Mathias et al. face detection algorithm

[105] and then used an extra 40% margin on the initial bounding box boundary. Moreover,

we discarded the images in which the face detector was not able to extract a proper bounding

box containing the face. We then used the cropped images as input in the pre-trained deep

network.

Age estimation

As mentioned in [101], the output layer of the deep network corresponds to a 101 dimensional

vector v, representing softmax output probabilities, one for each age between 0 and 100

included. The final age estimation is given by the softmax expected value, i.e.:

E [v] =
100X

n=0

yn · vn, (3.1)

where yi are the years corresponding to the n-th class. A graphical overview of the processed

followed in provided in Fig. 3.4.
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pre-trained DEX Estimated age:
100X

n=0

yn · vn

1. Raw image 2. Face detection 3. Feature extraction 4. Age estimation

Figure 3.4: Visualisation of the complete process for age estimation utilising the pre-trained
DEX deep network [101].
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Figure 3.5: Age-progression results produced by EAP, ADRBM, RJIVE and MARCA method
on images of the FG-Net database [91]. MARCA and RJIVE are trained on AgeDB [16].

Evaluation

As evaluation protocol we used the standard Mean Absolute Error (MAE), which is defined

as the average of the absolute errors between the estimated age and the ground truth age. For

the AgeDB “in-the-wild” database, the MAE for the pre-trained DEX deep network [101] is

13.1 years.

3.3.3 Face age progression “in-the-wild”

Face age-progression is an image translation task where, given an image depicting a subject at

a specific age, we try to alter the appearance of the subject so that they look younger or older.
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In order to train algorithms that can successfully carry out this task, databases annotated

with respect to the age attribute should be used. Nevertheless, most of the age databases

that have been made publicly available are semi-automatically collected and annotated (e.g.,

using web crawlers) and thus contain noisy age labels. As a result, the performance of the

algorithms when trained on such databases can be negatively a↵ected by the errors in the age

labels. AgeDB overcomes the aforementioned shortcomings. To demonstrate this, we carry

out age-progression experiments utilising various age-progression algorithms and show that

when the AgeDB dataset is used for training, results can be considerably improved.

In particular, for the age-progression experiments we utilised the following algorithms: Illu-

mination Aware Age Progression (IAAP) method [106], Coupled Dictionary Learning (CDL)

method [107], Deep Aging with Restricted Boltzmann Machines (DARB) method [108], CG

[109], Recurrent Face Aging (RFA) method [110], Robust Joint and Individual Variance

Explained (RJIVE) [111] and Multi-Attribute Robust Component Analysis (MARCA) [10].

RJIVE and MARCA were trained utilising AgeDB as follows: we split AgeDB in 10 di↵erent

age-groups which include the following ranges: 0�3, 4�7, 8�15, 16�20, 21�30, 31�40, 41�

50, 51 � 60, 61 � 70 and 71 � 100. Then, we use these age-groups to carry out the training

process and thus extract the relevant age-group subspaces after the training is complete. Fi-

nally, depending on which age-group we want to transfer the subject depicted in a test image,

we make use of the relevant learnt subspace. In Fig. 3.5, progressed images produced by the

compared methods are depicted. As can be seen, RJIVE and MARCA outperform the rest

of the methods, deeming the advantages of utilising the AgeDB dataset apparent. Note that

all progressed faces have been fused with the actual ones to retain details such as the image

background. More information about MARCA can be found in Chapter 4.
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3.4 Conclusion

In this Chapter we introduced the AgeDB database, the first manually collected, “in-the-wild”

age database, which contains noise-free identity, gender and accurate to the year age labels.

Moreover, we utilised AgeDB along with state-of-the-art algorithms and performed a series of

experiments in tasks such as age-invariant face verification “in-the-wild”, age estimation “in-

the-wild”, face age progression “in-the-wild”. Finally, we showed that AgeDB can be utilised as

a benchmark for evaluating state-of-the-art algorithms that aim to tackle the aforementioned

tasks.
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4.1 Introduction

Significant progress has been observed during the past years in the field of sparse and dense

3D face alignment [112, 113, 114, 115, 116]. Recent developments include the utilisation of

Deep Neural Networks (DNNs) for estimation of 3D facial structure, as well as a methodology

for fitting a 3D Morphable Model (3DMM) in “in-the-wild” images [116]. Additionally, several

benchmarks for training sparse 3D face alignment models have been recently developed [114,

116]. The utilisation of these methods introduces new challenges and opportunities as far as

facial texture is concerned.

In particular, by sampling over the fitted image, a 2D UV map of the facial texture can be

constructed. A UV texture map is the main way to store the texture of a 3D model as a simple

2D image in graphics applications. In more detail, it is a 2D representation of the texture of a

3D model which is precisely connected with the object’s vertices through a set of coordinates

that map each vertex to a specific location of the UV map. The mapping coordinates naturally

occur by unwrapping the 3D model and scaling it to the UV texture map’s space [117]. In this

work we employ UV texture maps that are precisely mapped to 3D models of human faces

and particularly to instances of the LSFM face model [118].

A facial UV map may contain a considerable amount of missing data (pixels) due to factors

such as self-occlusion. Nevertheless, it does not su↵er from warping e↵ects, in contrast to

the facial images produced by a 2D face alignment algorithm, as can be clearly seen in Fig.

5.2. Utilising facial UV maps for the discovery of latent components suitable for specific

tasks requires the design of statistical component analysis methods that (a) can appropriately

handle missing values, (b) can alleviate problems arising from gross errors, and (c) exploit any

existing labels/attributes that are available. To tackle the aforementioned issues, it is natural

to adopt techniques from the family of robust component analysis.
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a) b) c)

Figure 4.1: Original facial image is depicted in a). The facial image produced by a 2D face
alignment algorithm is presented in b). The UV map derived by fitting a 3DMM is depicted
in c).

In the past years, significant research has been conducted in terms of formulating robust

component analysis techniques. Arguably, the most prominent example lies in the Robust

PCA (RPCA) algorithm [33], that has also been extended for handling missing values in [119].

The RPCA algorithm with missing values has been recently proven extremely useful towards

the extraction of a low-rank subspace of facial UV textures that is free of gross errors, thus

deeming it extremely useful for the fitting of 3DMMs “in-the-wild” [116]. Nevertheless, RPCA

is an unsupervised component analysis technique, and hence does not take into account the

various attributes/annotations that may be present in the data at hand.

Di↵erent variations of RPCA [33] have been introduced in the literature, such as the Robust

Principal Component Analysis with Non-Greedy l1-Norm Maximisation (RPCA-L1) [46] and

the Optimal Mean Robust Principal Component Analysis (OM-RPCA) [120], both of which

propose di↵erent methods for solving the RPCA optimisation problem ([33]). In RPCA-L1

[46], the authors first propose an e�cient optimisation algorithm to solve a general l1-norm

maximisation problem and then employ it to formulate a non-greedy solution of the l1-norm

RPCA problem. OM-RPCA [120] solves the traditional l1-norm RPCA optimisation problem

while simultaneously updating the mean component of the data matrix at each iteration of the

algorithm, aiming to achieve better separation of the data. Similarly to the common RPCA

algorithm [33], none of the two aforementioned methods are designed to exploit any available
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labels or annotations of the data.

Other recent robust component analysis methods include Robust Correlated and Individual

Component Analysis (RCICA) [121], as well as Robust Joint and Individual Variance Ex-

plained (RJIVE) [122]. RCICA robustly recovers both the correlated and individual low-rank

components of two views of noisy data, and can therefore be interpreted as a robust extension

of Canonical Correlation Analysis (CCA) [123]. Nevertheless, RCICA is not designed to utilise

labels or any available annotations. RJIVE further extends RCICA by extracting low-rank

subspaces from multiple-views similarly to RCICA in the presence of a single attribute only

(e.g., if the data at hand are annotated for the attribute age, then they may be split in di↵erent

age-groups and each age-group can be considered as a di↵erent view). As a result, data that is

annotated in terms of multiple attributes (such as identity and age) cannot be fully exploited

in RJIVE.

To alleviate the shortcomings of the previously mentioned methods, in this Chapter we

introduce Multi-Attribute Robust Component Analysis, dubbed MARCA, which takes a much

more natural approach to the problem of facial UV analysis, since it is able to inherently

incorporate the existence of multiple attributes at hand during the training as well as the

testing processes. In this way, as we also show in the experiments, MARCA is be able to

extract more meaningful subspaces compared to the aforementioned methods. This can lead

to better performance in tasks such as image denoising and translation. The rest of the

Chapter is organised as follows. In Section 4.2 we provide the mathematical formulation

of MARCA and present all the necessary optimisation algorithms. In Section 4.3 we run a

series of experiments and demonstrate the merits of MARCA against other state-of-the-art

algorithms.
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4.2. Multi-Attribute Robust Component Analysis

(a) (b) (c) (d)

Figure 4.2: Extraction of a UV texture map with missing values from a 2D image using a face
3DMM. Having recovered the (b) 3D shape of a face by fitting a 3DMM into (a) an input
image we can (c) project the reconstructed 3D shape on it and then compute the UV texture
map along with the occluded parts.

4.2 Multi-Attribute Robust Component Analysis

4.2.1 Preliminaries

Prior to delving into the model, a few explanations regarding the notations used throughout

the Chapter are provided. Lower-case letters, e.g., x, denote scalars, lower-case (upper-case)

bold letters denote vectors (matrices), e.g., x (X). Moreover, L1 (L2) vector norm is defined

as kxk1
.
=
P

i |xi| (kxk2
.
=
qP

i x
2
i ). Similarly, L1,1 ⌘ L1 (L2,2 ⌘ LF ) matrix norm is defined

as kXk1
.
=
P

i,j |xij | (kXkF
.
=
qP

i,j x
2
ij). The nuclear norm of a matrix X, i.e., the sum

of its singular values, is defined as kXk⇤. The Hadamard, i.e., element-wise, product of two

matrices X and Y is denoted as X�Y. Finally, we provide the following operator definitions

which will be utilised in the mathematical derivations required for MARCA.

• Procrustes operator: Q (X)
.
= UVT , where U and V are given by the rank-r Singular

Value Decomposition (SVD) of X, i.e., X = U⌃VT .

• Shrinkage operator: S⌧ (�)
.
= sgn (�)max (|�|� ⌧, 0)

• Singular Value Thresholding (SVT) operator: D⌧ (X)
.
= Udiag (S⌧ (d))VT , where X =

Udiag (d)VT is the SVD of X.
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4.2.2 Problem formulation

Without any loss of generality, suppose that the incomplete, contaminated with gross errors

UV maps are annotated for J attributes (e.g., identity, age, etc.), where each attribute may

have Mi, 8i 2 {1, . . . , J}, di↵erent instantiations (e.g., attribute identity may have the instan-

tiation Frank Sinatra, Albert Einstein, etc.). Moreover, assume that there is a total of N

samples in the training set. Aim of MARCA is to robustly extract J joint components corres-

ponding to the available attributes during training, an individual component which captures

the rest data information that cannot be explained by the J components and a component

which captures the gross but sparse errors. Let training data be concatenated in a column-

wise manner, i.e., X =

"

x1 . . .xN

#
, where xi 2 RF⇥1

, i 2 {1, . . . , N}, is a vectorised form of

a facial UV map. Then MARCA admits the following decomposition.

X =
JX

i=1

Si +G+E, (4.1)

where Si, i 2 {1, . . . , J}, are the J shared components for every attribute, G is the individual

component and E is the error component.

Nevertheless, Si, i 2 {1, . . . , J}, must have a specific low-rank structure which accounts for

the di↵erent instantiations of each attribute. That is, every attribute should be rendered by

a base and subsequently every corresponding instantiation be rendered by a selector on that

base. Therefore, (4.1) is re-formulated as follows.

X =
JX

i=1

FiHi +G+E, (4.2)

where Fi 2 RF⇥Mi , i 2 {1, . . . , J}, are the bases that render each attribute and Hi 2

RMi⇥N
, i 2 {1, . . . , J}, are comprised of the shared selectors, i.e., Hi

.
=

"

hi,a . . .hi,b

#
(such

that a, b 2 {1, . . . ,Mi}), which render a specific instantiation for an attribute (e.g., assuming

that base Fi renders attribute identity, then hMi would render a particular instantiation of

this attribute, e.g., Albert Einstein). It should be noted that data which bear the same in-

stantiation (e.g., Mi) for a particular attribute (e.g., attribute i) have the same selector hi,Mi
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= + G+ E+[ ]xiixi *F1 HA
1[ ]HB

1
*F2 HA

2[ ]HB
2

Figure 4.3: Decomposing the data in di↵erent subspaces in MARCA in the simple case where
only two data xi and xii, two attributes and two labels per attribute are available. Subspaces
F1 and F2 describe each attribute, and the selectors H1

A, H1
B and H2

A, H2
B describe the

instantiations/labels of each attribute, respectively. Subspace G captures the rest of the
information that cannot be explained by the attributes and finally subspace E captures the
gross but sparse error.

(for instance, multiple data with instantiation Albert Einstein will all have the selector hi,Mi).

A visualisation of the above decomposition is presented in Fig. 4.3. Furthermore, low-rank

base G 2 RF⇥N , renders the individual variation for all of the images in the training set that

cannot be explained by the existing attributes. Finally, E 2 RF⇥N encapsulates gross errors

(such as occlusions, pixel corruptions, etc.) for all of the data samples in the training set.

In order to recover components {FiHi}Ji=1 and G which are as informative as possible, the

error term which accounts for the existence of gross but sparse errors in the visible parts of

the UVs has to be minimised. This is equivalent to minimising the L0 norm of the error term

for the visible parts of the UV maps. However, to avoid the NP-hardness of the L0 norm

minimisation we adopt the L1 norm as the tightest convex surrogate [124].

The problem is then formulated as follows.

min
✓
kW �Ek1 ,

s.t. X =
JX

i=1

FiHi +G+E (4.3)

�
FT
i Fi = I

 J
i=1

, rank (G) = R,

where ✓ = {Fi,Hi,G} , i 2 {1, . . . , J} and R,R < min(F,N), is a hyper-parameter. Moreover,

W
.
=

"

w1 . . .wN

#
, where wi 2 {0, 1}F⇥1

, i {1, . . . , N}, is the corresponding vectorised occlu-
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4. Multi-Attribute Robust Component Analysis for Facial UV Maps

sion mask for each UV map xi. The visible (missing) pixels for each UV map correspond to

ones (zeros) in each matching occlusion mask. Orthonormalisation constraints on the bases

{Fi}Ji=1 facilitate the recovery of unique and identifiable selectors. Because of the fact that

R is a hyper-parameter, it requires a large number of experiments to estimate the optimal

rank for G. Since R is upper bounded, the following relaxed decomposition can be used to

automatically recover the optimal rank for G.

min
✓

� kW �Ek1 + kGk⇤ ,

s.t. X =
JX

i=1

FiHi +G+E, (4.4)

�
FT
i Fi = I

 J
i=1

,

where the nuclear norm of G is introduced as a convex surrogate of the rank function [33] and

� > 0 is a regulariser.

Replacing the parameter R with the regulariser � makes the problem much easier to ad-

dress and in much less time [33, 122]. Regulariser � can be selected by using the formula

� = 1/
p
max(F,N) (where F,N correspond to the rows and columns of the data matrix,

respectively), as shown in [33, 122].

4.2.3 Mathematical derivations

Because problem (4.4) is separable, we adopt an alternating optimisation scheme to find the

updates for every parameter. The corresponding partially Augmented Lagrangian for (4.4)

may then be written as

L (✓) = � kW �Ek1 + kGk⇤�
1

2µ
k⇤k2F +

µ

2

�����X�
JX

i=1

FiHi �G�E+
⇤

µ

�����

2

F

, (4.5)

s.t.
�
FT
i Fi = I

 J
i=1

,

where ✓ = {Fi,Hi,G,⇤} , i 2 {1, . . . , J}. Problem (4.5) is minimised by employing the

Alternating Direction Method of Multipliers (ADMM) [45, 44]. The algorithm for solving
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4.2. Multi-Attribute Robust Component Analysis

(4.5) is presented in Algorithm 6. The algorithm terminates when the iterations reach a

predefined maximum value or a convergence criterion is met. The convergence criterion

is met when the normalised reconstruction error is less than a predefined threshold ✏ (i.e.,
���X�

PJ
i=1Fi[t]Hi[t]�G[t]�W �E[t]

���
F
/ kXkF ). The ADMM iteration reads as follows.

Update the primal variables:

For obtaining Hi, i 2 {1, . . . , J}, where, as previously mentioned, Hi =

"

hi,a . . .hi,b

#
, we need

to solve individually for every hi,j , j 2 {1, . . . ,Mi}. Based on (4.5), the solution is given by

minimising

hi,j [t+ 1] = argmin
hi,j [t]

�����X�
JX

k=1

Fk[t]Hk[t]�G[t]�E[t] +
⇤[t]

µ[t]

�����

2

F

. (4.6)

Problem (4.6) admits a closed-form solution, which is

hi,j [t+ 1] =
1

Ni,j

⇣
Fi,j
i [t]

⌘T
 
Xi,j �

JX

k=1,k 6=i

Fi,j
k [t]Hi,j

k [t]�Gi,j [t]�Ei,j [t] +
⇤i,j [t]

µ[t]

!
· 1,

(4.7)

where superscript {i, j} means that only the Ni,j columns corresponding each time to the

j-th instantiation of the i-th attribute are considered (e.g., columns corresponding to data

annotated for attribute identity and instantiation Albert Einstein) and 1 is a column vector of

Ni,j ones.

For deriving subspace Fi, i 2 {1, . . . , J}, the following needs to be solved.

Fi[t+ 1] = argmin
F[t]

�����X�
JX

j=1

Fj [t]Hj [t+ 1]�G[t]�E[t] +
⇤[t]

µ[t]

�����

2

F

, (4.8)

s.t.
�
FT
i Fi = I

 J
i=1

.

In order to solve (4.8), we rely on the Procrustes Operator Q and the Lemma introduced next.

Lemma: The constraint minimisation problem

⌦⇤ = argmin
⌦

k⌦A�Bk2F (4.9)

s.t. ⌦T⌦ = I,
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has a closed-form solution [125] of the form ⌦⇤ = Q
�
BAT

�
. As a result, the solution for (4.8),

taking into account (4.9), is

Fi[t+ 1] = Q
" 

X�
JX

j=1,j 6=i

Fj [t]Hj [t+ 1]�G[t]�E[t] +
⇤[t]

µ[t]

!
·Hi[t+ 1]T

#
. (4.10)

For obtaining subspace G, the following needs to be solved.

G[t+ 1] = argmin
G[t]

"
µ[t]

2

�����X�
JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t]�E[t] +
⇤[t]

µ[t]

�����

2

F

+ kG[t]k⇤

#
.

(4.11)

Problem (4.11) is solved utilising the SVT operator D. The solution is

G[t+ 1] = D 1
µ[t]

"
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�E[t] +
⇤[t]

µ[t]

#
. (4.12)

For obtaining E, the following problem needs to solved.

E[t+ 1] = argmin
E[t]

"
� kW �E[t]k1 +

µ[t]

2

�����X�

�
JX

i=1

Fi[t+ 1] ·Hi[t+ 1]�G[t+ 1]�E[t] +
⇤[t]

µ[t]

�����

2

F

#
(4.13)

Problem (4.13) is solved utilising the Shrinkage operator S. The solution is

E[t+ 1] = W �Y +W �
"
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t+ 1] +
⇤[t]

µ[t]

#
, (4.14)

where

Y = S �
µ[t]

"
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t+ 1] +
⇤[t]

µ[t]

#
(4.15)

and W is the complement of W.

Update the Lagrange multiplier and µt parameter:

⇤[t+ 1] = ⇤[t] + µ[t]

 
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t+ 1]�E[t+ 1]

!
, (4.16)

µ[t+ 1] = min (⇢µ[t], µmax) . (4.17)
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Regarding the theoretical convergence of the ADMM algorithm presented previously, there

is no proof when ADMM is utilised in settings with more than two blocks of variables. Never-

theless, ADMM provides good results in non-linear optimisation problems [126]. Experimental

evaluation of MARCA in a number of di↵erent tasks on various facial datasets admits that

the derived solutions constitute a good approximation. It should be noted that despite using

convex surrogates for the L0 norm and the rank function, the problem is still non-convex due

to the product terms of the MARCA formulation. Non-convex relaxation techniques could be

utilised in a future work.

The time complexity for MARCA at each iteration of Algorithm 1 is
PJ

i=1O
�
max

�
MiF

2
��
+

O
��
max

�
NF

2
, F

2
N
���

= O
�
max

�
FN

2
, F

2
N
��
, due to SVD applied on both the shared J

components and the individual one and since Mi < min(F,N), 8i 2 {1, . . . , J}. The memory

complexity of MARCA is O (FN), due to SVD.

As mentioned previously, the type of noise which is mostly prevalent in facial UV maps

is sparse, gross, non-Gaussian noise, due to occlusions, subjects wearing eye-glasses, pixel

corruptions, etc. This is why MARCA is formulated to explicitly account for the sparse noise,

as shown in (4.4). Furthermore, by increasing the regulariser � (i.e., by reducing the e↵ect of

the sparse error term in (4.4)), MARCA will be able to handle data contaminated with both

Gaussian and sparse noise. Finally, MARCA is able to handle data solely contaminated with

Gaussian noise by vanishing the sparse error term, i.e., by setting � ! 1. This is further

corroborated in Section 4.3.1 and Section 4.3.2.

4.2.4 Reconstruction of a test image

After the optimal bases and the selectors have been recovered as described in Section 4.2.3,

they may be utilised in order to recover the shared and individual components of a test image.

Then, the said components can be utilised in experiments such as UV denoising and age

progression “in-the-wild”, as demonstrated in Section 4.3.
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Algorithm 6 ADMM solver for problem (4.5)

Input: X, where X is the set of the training data, Mi, i 2 {1, . . . , J}, where
Mi is number of instantiations for every attribute i, W, where W is the
set of occlusion masks corresponding to the training data and L, where L
is a one hot representation matrix of the instantiations assigned to each
image over all the available attributes. Initialisations: t = 0, ✏ =
1e � 8,maximum number of iterations tmax, µ[0] = 25

kXk , � = 1/
p
max(F,N)

{Fi[0],Hi[0],G[0],⇤[0]} = 0, i 2 {1, . . . , J} , ⇢ = 1.2, µmax = 107, {Fi[0]}Ji=1 =
random initialisations so that Fi[0], i 2 {1, . . . , J} , are orthonormal. Output:
{Fi[T ],Hi[T ]}Ji=1 ,G[T ],E[T ].

while not converged do
for i = 1 : J do

Update Hi:
for j = 1 : Mi do

hi,j [t+ 1] = 1
Ni,j

⇣
Fi,j

i [t]
⌘T
0

@Xi,j �
JX

k=1,k 6=i

Fk[t]H
i,j
k [t]�Gi,j [t]�Ei,j [t] +

⇤i,j [t]

µ[t]

1

A · 1

end

Hi[t+ 1] =

"
hi,1[t+ 1] . . .hi,a[t+ 1]
| {z }

Ni,a times

. . .hi,b[t+ 1] . . .hi,b[t+ 1]
| {z }

Ni,b times

#
s.t. a, b 2 {1, . . . ,Mi}

end
Update F:
for i = 1 : J do

Fi[t+ 1] = Q

2

4

0

@X�
JX

j=1,j 6=i

Fi[t]Hi[t+ 1]�G[t]�E[t] +
⇤[t]

µ[t]

1

AHT
i [t+ 1]

3

5

end
Update G:

G[t+ 1] = D1/µ[t]

"
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�E[t] +
⇤[t]

µ[t]

#

Update E:

E[t+ 1] = S �
µ[t]

"
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t+ 1] +
⇤[t]

µ[t]

#

E[t+ 1] = W �E[t+ 1] +W �
"
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t+ 1] +
⇤[t]

µ[t]

#

Update ⇤:

⇤[t+ 1] = ⇤[t] + µ[t]

 
X�

JX

i=1

Fi[t+ 1]Hi[t+ 1]�G[t+ 1]�E[t+ 1]

!

Update µ:
µ[t+ 1] = min (⇢µ[t], µmax)

end
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Without any loss of generality, assume a test UV map y, which may be decomposed in the

shared and individual components as follows.

y =
JX

i=1

Fiĥi +Kŵ + ✏̂, (4.18)

where K is the linear span of G, given by applying the rank-r SVD on G. In the most general

case, optimal selectors
n
ĥi

o
=J

i=1 and ŵ must be extracted by minimising the sparse error

term ✏̂ corresponding to the visible part of y, for already recovered {Fi}Ji=1 and G. That is,

the following needs to be solved.

min
✓
kwy � ✏̂k1

s.t. y =
JX

i=1

Fiĥi +Kŵ + ✏̂, (4.19)

ŷ =
JX

i=1

Fiĥi +Kŵ,

where wy is the occlusion mask corresponding to the test UV map y and ŷ is the reconstruc-

ted, error-free facial UV map. In the case where, e.g., transfer of a test image to a specific age

is required, the selector corresponding to the specific age will be fixed (i.e., the corresponding

optimal selector found during the training process in Section 4.2.3 is utilised). Because prob-

lem (4.19) is separable, we adopt an alternating optimisation scheme to find the updates for

every parameter. The corresponding partially Augmented Lagrangian for (4.4) may then be

written as

L (✓) = � kwy � ✏̂k1 �
1

2µ
k⇤k2F +

µ

2

�����X�
JX

i=1

Fiĥi �Kŵ � ✏̂+
⇤

µ

�����

2

F

, (4.20)

where ✓ =
n
ĥi, ŵ,⇤

o
, i 2 {1, . . . , J}. Problem (4.20) is minimised by employing the ADMM.

The algorithm for solving (4.20) is presented in Algorithm 7. The algorithm terminates when

the iterations reach a predefined max value or a convergence criterion is met. The convergence

criterion is met when the normalised reconstruction error is less than a predefined threshold ✏

(i.e.,
���y �

PJ
i=1Fiĥi[t]�Kŵ[t]� ✏̂[t]

���
2
/ kyk2). The ADMM iteration reads as follows.
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Update the primal variables:

For obtaining ĥi, i 2 {1, . . . , J}, we need to minimise

ĥi[t+ 1] = argmin
ĥi[t]

�����y �
JX

k=1

Fkĥk[t]�Kŵ[t]� ✏̂[t] +
�[t]

µ[t]

�����

2

2

. (4.21)

Problem (4.21) admits a closed-form solution, which is

ĥi[t+ 1] = FT
i

 
y �

JX

k=1,k 6=i

Fkĥk[t]�Kŵ[t]� ✏̂[t] +
�[t]

µ[t]

!
. (4.22)

For obtaining optimal ŵ, we need to minimise

ŵ[t+ 1] = argmin
ŵ[t]

�����y �
JX

i=1

Fiĥi[t+ 1]� ✏̂[t] +
�[t]

µ[t]

�����

2

2

(4.23)

Problem (4.23) admits a closed-form solution of the form

ŵ[t+ 1] = KT

 
y �

JX

i=1

Fiĥi[t+ 1]� ✏̂[t] +
�[t]

µ[t]

!
. (4.24)

For obtaining optimal ✏̂, we need to minimise

✏̂[t] = argmin
✏̂[t]

"
� kwy � ✏̂[t]k1 +

µ[t]

2

����y �
JX

i=1

Fiĥi[t+ 1]�Kŵ[t+ 1] +
�[t]

µ[t]

����
2

2

#
. (4.25)

Utilising the SVT operator, problem (4.25) admits the following solution

✏̂[t+ 1] = wy � a+wy �
 
y �

JX

i=1

Fiĥi[t+ 1]�Kŵ[t+ 1] +
�[t]

µ[t]

!
, (4.26)

where

a = S �
µ[t]

 
y �

JX

i=1

Fiĥi[t+ 1]�Kŵ[t+ 1] +
�[t]

µ[t]

!
. (4.27)

Update the Lagrange multiplier and parameter µ:

�[t+ 1] = �[t] + µ[t]

 
y �

JX

i=1

Fiĥi[t+ 1]�Kŵ[t+ 1]� ✏̂[t+ 1]

!
, (4.28)

µ[t+ 1] = min (⇢µ[t], µmax) . (4.29)
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Algorithm 7 ADMM solver for problem (4.20)

Input: y, where y is the test datum, Fi, i 2 {1, . . . , J} and G, where Fi and G are the bases
extracted utilising Algorithm 6, K is the linear span ofG given by applying the rank-
r SVD on G and wy, where wy is the occlusion mask corresponding the test datum.
Initialisations: t = 0, ✏ = 1e� 8,maximum number of iterations tmax, µ[0] =

25
kXk ,

⇢ = 1.2, µmax = 107 and � = 1/
p
max(F,N). Output: the reconstructed UV map

without the error term, i.e., ŷ =
JX

i=1

Fiĥi[T ] +Kŵ[T ]

while not converged do
for i = 1 : J do

Update ĥi:

ĥi[t+ 1] = FT
i

0

@y �
JX

k=1,k 6=i

Fkĥk[t]�Kŵ[t]� ✏̂[t] +
�[t]

µ[t]

1

A

end
Update ŵ:

ŵ[t+ 1] = KT
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Update µ:
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end

4.3 Experiments

The experimental evaluation of MARCA against other state-of-the-art algorithms is carried

out via a series of experiments such as: a) noise analysis on synthetic data, b) noise analysis

on real facial UV texture maps, c) age progression “in-the-wild”.

In order to extract the incomplete face UV maps that were used in our algorithm we have

fitted the various databases with a 3DMM. The 3DMM fitting process that was used is the one
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in [116], which is publicly available. The occlusion masks of the fitted images were extracted

by utilising the corresponding shape and camera parameters.

For the experimental evaluations, database Multi-PIE [73] and AgeDB [16] (also presen-

ted in Chapter 3) were utilised to train MARCA. Multi-PIE is a database captured under

controlled lab conditions and thus the images do not contain gross-errors attributed to e.g.,

occlusions. Nevertheless, Multi-PIE is a multi-attribute database, since it contains labels for

attributes such as identity, expression and illumination. That renders it suitable to be utilised

in MARCA. In particular, in the training phase of MARCA on Multi-PIE, 90% of the total

number of UVs pertaining to distinct identities, expressions and illuminations were utilised.

The rest were used for testing.

AgeDB contains images captured under “in-the-wild” conditions (i.e., occlusions, various

poses, pixel corruptions are present in the images). Moreover, it is annotated for multiple

attributes (i.e., identity, age) and thus it is suitable for evaluating MARCA. AgeDB was split

in six distinct age-groups, namely 21-30, 31-40, 41-50, 51-60, 61-70 and 71-100. Then, the

UVs belonging to each age-group were further split according to the attribute identity. In the

training phase of MARCA, 90% of the total number of UVs were kept to extract the bases

with respect to attributes identity and age-groups and the rest were used for testing.

4.3.1 Synthetic noise analysis

In this section we detail the experiments we conducted on synthetic data contaminated with

artificial noise of di↵erent forms and levels. We report quantitative results and compare the

performance of MARCA against RJIVE [122], RPCA-L1 [46] and OM-RPCA [120].

In more detail, with the following experiments we aim to investigate the ability of the four

component analysis methods to handle data that have been contaminated with two common

types of noise. Sparse noise, which is composed of errors that are sparsely supported but of
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large or unbounded magnitude, is a form of noise that is often present in visual data. Such

noise can be the salt & pepper noise, occlusions and registration errors. However, errors of

small magnitude, like ambient noise or quantisation noise cannot be assumed as sparse errors.

For such types of noise it is reasonable to assume that they follow a Gaussian distribution of

small variance. Thus, the two types of noise that we consider in our experiments are the gross,

sparse, non-Gaussian noise and the Gaussian noise. We conduct experiments for di↵erent

levels of each form of noise mentioned above.

We generate the data as follows. We create a random matrix X 2 Rm⇥n for various

dimensions that admits the following decomposition: X = F⇤H⇤ + G⇤ + E⇤, where F⇤H⇤

and G⇤ are random matrices with ranks r1 and r2, respectively. E⇤ corresponds to the noise

term. As mentioned previously, we used di↵erent noise forms (i.e., sparse non-Gaussian and

Gaussian) as well as di↵erent noise levels per form. More specifically, we present the results

when applying MARCA, RJIVE [122], RPCA-L1 [46] and OM-RPCA [120] to extract the

error-free components for the following cases:

• Sparse, non-Gaussian noise, contaminating 10%, 25% and 50% of the data matrix entries.

The values for the regulariser � used for the experiments are provided by the formula: � =

1/
p
max(m,n), following the selection process described in [33]. In particular, for the

case of (m,n) = (500, 500), we used � ⇡ 0.04 and for the case of (m,n) = (1000, 1000),

we used � ⇡ 0.03. The convergence threshold ✏ used for this experiment for MARCA and

RJIVE [122] is 1e�8. In Table 5.1 we report the reconstruction losses where, as evinced,

MARCA successfully reconstructs the error-free components. In the contrary, RPCA-L1

[46] and OM-RPCA [120] perform poorly compared to RJIVE [122] and MARCA, due to

the existence of the term F⇤H⇤, which is a matrix with identical columns in many parts

(e.g., if F⇤H⇤ referred to the age-group component, the columns corresponding to the

age-group 21-30 would be the same for all of the samples that belong in the specific age-

group). The specific structure of F⇤H⇤ does not comply with the incoherence property
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of the low-rank component in the RPCA [33] setting, since F⇤H⇤ is a matrix with sparse

singular values. As a result, since both RPCA-L1 [46] and OM-RPCA [120] belong in

the family of RPCA algorithms, the poor performance under this setting is expected.

We empirically validated this fact by conducting synthetic experiments under the setting

where the incoherence property for the low-rank component holds.

• Gaussian noise corresponding to zero-mean samples with variances of 0.1, 0.25 and 0.5.

The value for the regulariser � used for the experiments is very large, i.e., � = 10, 000,

since MARCA can handle data contaminated with Gaussian noise by vanishing the

sparse error term, as explained in Section 4.2.3. The convergence threshold ✏ used for

this experiment for MARCA and RJIVE [122] is 1e � 8. In Table 5.3 we report the

reconstruction losses where, as evinced, all the four methods successfully reconstruct the

error-free components.

We should note that since MARCA constitutes the first multi-attribute learning algorithm,

we ran experiments under the single attribute scenario (i.e., only a single term F⇤H⇤ is util-

ised), so that comparisons against the other methods are feasible.

4.3.2 Qualitative noise analysis

In this section we detail the experiments we conducted on real data contaminated with artificial

noise of di↵erent forms and levels. We report qualitative results and compare the performance

of MARCA against RJIVE [122], RPCA-L1 [46] and OM-RPCA [120].

To pursue this analysis we employ the UV texture data from images of neutral expression

from Multi-PIE [73]. Five images of the same person, captured simultaneously in five di↵erent

viewing angles, �30�,�15�, 0�, 15� and 30� were used to obtain the UV textures. We first

fitted a 3DMM on the five images of each person and then generated a corresponding UV

map from each image. By using the occlusion-free pixels of each of the five UV maps we
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Table 4.1: Quantitative results when comparing reconstruction losses of the error-free com-
ponents as retrieved by MARCA against RPCA-L1 [46], OM-RPCA [120] and RJIVE [122]
on synthetic data of various dimensions, contaminated with sparse, non-Gaussian noise, where
the data decomposition is X = F⇤H⇤+G⇤+E⇤. In the case of RJIVE [122], FH corresponds
to the individual component A and G to the joint component J. In the case of RPCA-L1 [46]
and OM-RPCA [120], the projection matrix W is related to the low rank component FH+G.
All of the experiments were executed on an Intel i9-7900X 3.30GHz machine. We ran each
experiment 10 times and report the average execution time for each one.

(m,n, r1, r2) Method
kF⇤H⇤ +G⇤ � FH�Gk2F

kF⇤H⇤ +G⇤k2F
Execution time (s)

Noise level 10% 25% 50% 10% 25% 50%

(500, 500, 5, 10)

RPCA-L1 [46] 0.182 0.313 2.159 0.99 1.09 0.84

OM-RPCA [120] 0.181 0.313 2.159 0.36 0.36 0.37

RJIVE [122] 3.36e� 09 3.62e� 09 6.17e� 04 25.75 26.33 24.38

MARCA 1.78e� 10 4.81e� 10 2.56e� 04 16.25 17.27 16.83

(1000, 1000, 10, 20)

RPCA-L1 [46] 0.183 0.315 2.167 5.04 4.17 4.64

OM-RPCA [120] 0.183 0.315 2.167 1.72 1.80 1.84

RJIVE [122] 1.07e� 09 2.27e� 09 8.25e� 04 71.18 71.98 65.11

MARCA 3.56e� 10 5.75e� 10 4.39e� 04 24.85 27.28 28.30

�30� �15� 0� 15� 30� full UV

Figure 4.4: UV texture maps extracted by five images of the same person, captured simultan-
eously from di↵erent viewing angles and contained in the multipie database. By combining
the five UV maps we are able to generate a full UV texture map.

were able to obtain a full UV texture map that contains no missing values as can also be seen

in Fig. 4.4. We trained all of the four algorithms on UV maps that are completely free of

sparse errors (i.e., we only chose subjects that are not wearing eye-glasses and also created

UV maps without missing values). This is of important essence, as we can then artificially

add noise on the error-free UV maps which in turn can be used as ground truth for evaluating

the performance of the four methods.
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Table 4.2: Quantitative results when comparing reconstruction losses of the error-free com-
ponents as retrieved by MARCA against RPCA-L1 [46], OM-RPCA [120] and RJIVE [122]
on synthetic data of various dimensions, contaminated with Gaussian noise, where the data
decomposition is X = F⇤H⇤ +G⇤ + E⇤. In the case of RJIVE [122], FH corresponds to the
individual component A and G to the joint component J. In the case of RPCA-L1 [46] and
OM-RPCA [120], the projection matrix W is related to the low rank component FH + G.
All of the experiments were executed on an Intel i9-7900X 3.30GHz machine. We ran each
experiment 10 times and report the average execution time for each one.

(m,n, r1, r2) Method
kF⇤H⇤ +G⇤ � FH�Gk2F

kF⇤H⇤ +G⇤k2F
Execution time (s)

Variance level 0.10 0.25 0.50 0.10 0.25 0.50

(500, 500, 5, 10)

RPCA-L1 [46] 6.89e� 09 4.32e� 08 1.71e� 07 0.36 0.35 0.35

OM-RPCA [120] 6.89e� 09 4.32e� 08 1.71e� 07 0.38 0.38 0.36

RJIVE [122] 6.89e� 09 4.32e� 08 1.71e� 07 31.95 32.34 28.53

MARCA 6.89e� 09 4.32e� 08 1.71e� 07 18.34 18.00 17.65

(1000, 1000, 10, 20)

RPCA-L1 [46] 1.88e� 09 1.17e� 08 4.70e� 07 2.39 1.81 1.83

OM-RPCA [120] 1.88e� 09 1.17e� 08 4.70e� 07 1.84 1.82 1.84

RJIVE [122] 1.88e� 09 1.17e� 08 4.70e� 07 142.78 142.03 140.39

MARCA 1.88e� 09 1.17e� 08 4.70e� 07 91.83 86.98 85.04

We then applied MARCA, RJIVE [122], RPCA-L1 [46] and OM-RPCA [120] to extract the

error-free components. Similarly to the quantitative experiments, we present the results for

the following cases:

• Sparse, non-Gaussian noise with error terms corresponding to samples with 10%, 25%

and 50% non-zero entries. The value for the regulariser � used for the experiments is

provided by the formula: � = 1/
p

max(m,n), following the selection process described

in [33]. In particular, for n = 765 UV images and m = 556266 the size of a vectorised UV

image, � ⇡ 0.0015. The convergence threshold ✏ used for this experiment for MARCA

and RJIVE [122] is 1e� 5, which is su�cient for the analysis of images. The recovered

rank of the individual subspace G when MARCA was applied was 185 for 10% noise,

197 for 25% noise and 216 for 50% noise. These rank values are expected as G is by

96



4.3. Experiments

definition a low rank matrix which is able to express the individual variations of the

data. Also, the low rank of matrix G is sensible for the data in use as all data are

facial images with similar background. As can been seen in Fig. 4.5, MARCA is able

to produce better results in recovering the error free images than RPCA-L1 [46] and

OM-RPCA [120] in almost all cases. In comparison to RJIVE [122], MARCA retains

the identity and illumination with greater success.

• Gaussian noise with error terms corresponding to zero-mean samples with variances of

0.1, 0.25 and 0.5. The value for the regulariser � used for the experiments is very large,

i.e., � = 10, 000, since MARCA can handle data contaminated with Gaussian noise by

vanishing the sparse error term, as explained previously. The convergence threshold ✏

used for this experiment for MARCA and RJIVE [122] is 1e � 5, which is su�cient for

the analysis of images. The recovered rank of the individual subspace G when MARCA

was applied was 164 for variance 0.1, 182 for variance 0.25 and 214 for variance 0.5.

These rank values are expected as in the previous experiment. As anticipated, all four

methods are able to recover the error-free images with high accuracy as is also shown in

Fig. 4.6. RPCA-L1 [46] seems to have produced the lowest quality reconstructions.

Similarly to Section 4.3.1, we should note that since MARCA constitutes the first multi-

attribute learning algorithm, we ran experiments under the single attribute scenario (i.e., only

a single term F⇤H⇤ is utilised), so that comparisons against the other methods are feasible.

4.3.3 Age-progression “in-the-wild”

Age-progression “in-the-wild” entails the task of rendering a facial image of a subject at various

ages. It is arguably a very challenging task in Computer Vision, since “in-the-wild” images

are captured in uncontrolled conditions (e.g., di↵erent illuminations and poses, self-occlusions,

etc.). AgeDB [16], also presented in Chapter 3, was utilised in this experiment, since it is a
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Input RPCA-L1 OMRPCA RJIVE MARCA

10%

25%

50%

Figure 4.5: Reconstructed UV texture maps produced by employing RPCA-L1, OM-RPCA,
RJIVE and MARCA on data that have been contaminated with di↵erent levels of sparse,
non-Gaussian noise.

Noise free
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Noise
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50%

Figure 4.6: Reconstructed UV texture maps produced by employing RPCA-L1, OM-RPCA,
RJIVE and MARCA on data that have been contaminated with di↵erent levels of Gaussian
noise.

manually collected “in-the-wild” age database with accurate age and identity labels and hence

the extracted age-groups and identity bases will contain no errors due to incorrect annotations.

During the training phase, MARCA was trained under the multi-attribute scenario, incor-

porating both the knowledge of the age as well as the identity attributes. In the testing phase,

a random UV map which did not belong to the training set was chosen and reconstructed for

various ages following the process described in Section 4.2.4.

Comparisons against other broadly used age-progression methods are provided in Fig. 4.7

and Fig. 4.8. More specifically, we compare MARCA against Illumination Aware Age Pro-
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MA-RCA

RJIVE

ADRBM

IAAP

21-30 31-40 41-50 51-60 61-70

input

Figure 4.7: Age-progression results on FG-Net database [91] produced by IAAP, ADRBM,
RJIVE and the proposed MARCA method. RJIVE and MARCA are trained on AgeDB [16].
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input EAP ADRBM RJIVE MA-RCA GT

Figure 4.8: Age-progression results produced by EAP, ADRBM, RJIVE and the proposed
MARCA method on images of the FG-Net database [91]. MARCA and RJIVE are trained on
AgeDB [16].

gression (IAAP) [106], Aging with Deep Restricted Boltzmann Machines (ADRBM) [108],

Exemplar-based Age Progression (EAP) [127] and RJIVE [122] . Finally, MARCA is com-

pared against the state-of-the-art RJIVE [122] in Fig. 4.9.

4.4 Conclusions

With the use of 3D face fitting methods we can generate incomplete facial UV maps of the facial

textures. The use of incomplete facial UV maps contaminated with gross errors introduces

many challenges and opportunities. In particular, since facial UV maps lie in a pose-free space,

linear component analysis techniques can be applied to learn statistical components for various

99



4. Multi-Attribute Robust Component Analysis for Facial UV Maps

MA-RCA RJIVE MA-RCA RJIVE

Input Input

21-30

31-40

41-50

51-60

61-70

71+

Figure 4.9: Comparing MARCA against state-of-the-art RJIVE in age-progression “in-the-
wild” experiments. As can be seen in both cases, MARCA reconstructions are more realistic
compared to the reconstructions utilising RJIVE.

tasks. In this Chapter, we presented a novel statistical robust component analysis technique

that can tackle the above challenges and at the same time exploit multiple labels of the data

at hand during training.
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µ +   F[:,1] µ +   F[:,2] µ +   F[:,3]

PL
D
A
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White Black Chinese

Figure 5.1: Visualisation of recovered components by MAPLDA as compared to PLDA, high-
lighting the improvement induced by explicitly accounting for multiple attributes. We denote
with µ the global mean, and with F the learned subspace of the ethnicity attribute where
↵ � 1 is used to accentuate the component visualisation. MAPLDA is trained by jointly
taking into account the ethnicity and age-group attributes. As can be seen, this leads to a
more accurate representation of the ethnicity attribute in MAPLDA, which is more prominent
for the Black class.

5.1 Introduction

CA techniques such as PCA [128], LDA [129] and Canonical Correlation Analysis (CCA) [130]

are among the most popular methods for feature extraction and dimensionality reduction,

typically utilised in a wide range of applications in Computer Vision and Machine Learning.

While CA methods such as PCA have been introduced in the literature more than a century

ago, it was only during the last two decades that probabilistic interpretations of CA techniques

have been introduced in the literature, with examples of such e↵orts including Probabilistic

PCA (PPCA) [131, 132, 133], Probabilistic LDA (PLDA) [134, 135, 136, 137, 8, 9] and Prob-

abilistic CCA (PCCA) [138, 139]. The rise in popularity of probabilistic CA methods can be
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attributed to several appealing properties, such as explicit variance modelling and inherent

handling of missing data [140]. Furthermore, probabilistic CA models may be easily extended

to mixture models [141] and Bayesian methodologies [142], while they can also be utilised as

general density models [133].

While many CA methods such as PCA and CCA are typically considered to be unsupervised,

methods such as LDA assume knowledge of labelled data in order to derive a discriminative

subspace based on attribute values (labels), that can subsequently be utilised for predictive

analysis e.g., classification of unlabelled data. Probabilistic LDA (PLDA) [9, 143] constitutes

one of the first attempts towards formulating a probabilistic generative CA model that incor-

porates information regarding data labels (e.g., the identity of a person in an image). In more

detail, as have also mentioned in the introductory Chapter, each datum is generated by two

distinct subspaces: a subspace that incorporates information among instances belonging to the

same class, and a subspace that models information that is unique to each datum. Put simply

in the context of face recognition, all images of a specific subject share the same identity, while

each image may carry its own particular variations (e.g., in terms of illumination, pose and so

on).

Nevertheless, a feature of PLDA and other probabilistic LDA variants that can be disadvant-

ageous is the single-attribute assumption. In other words, PLDA is limited to the knowledge of

one attribute, e↵ectively disregarding knowledge of any other attributes available for the data

at hand that may prove beneficial for a given task. For example, it is reasonable to assume

that knowledge of attributes such as pose, expression and age may be deemed beneficial in

terms of determining the identity of a person in a facial image. By incorporating knowledge

of multiple attributes, we would expect a generative model to better explain the observation

variance, by decomposing the observation space into multiple components conditioned on the

attributes at hand. Fig. 5.1 illustrates the more accurate representations we can obtain in

this way.
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In the past, PLDA was successfully applied to tasks such as face recognition and speaker

verification [9, 144]. The advent of Deep Convolutional Neural Networks (DCNNs) provided

models that overperformed linear CA techniques with respect to feature extraction in Com-

puter Vision applications that involve intensity images and video, mainly due to the complex

variations introduced by the texture and the geometric transformations. Nevertheless, linear

CA techniques remain prominent and powerful techniques for tasks related to the analysis of

3D shapes, especially in case that dense correspondences have been established among them.

Recently, very powerful frameworks have been proposed for establishing dense correspondences

in large scale databases of 3D faces [145, 146], 3D bodies [147] and 3D hands [148].

Given that several modern databases of 3D shapes are annotated in terms of multiple attrib-

utes, and further motivated by the aforementioned shortcomings of single-attribute methods,

in this Chapter we present a Multi-Attribute generative probabilistic variant of LDA, dubbed

Multi-Attribute Probabilistic LDA (MAPLDA). The proposed MAPLDA is able to jointly

model the influence of multiple attributes on observed data, thus e↵ectively decomposing the

observation space into a set of subspaces depending on multiple attribute instantiations. As

shown via a set of experiments on age, ethnicity and age group identification, the joint multi-

attribute modelling embedded in MAPLDA appears highly beneficial, outperforming other

single-attribute approaches in an elegant probabilistic framework. In what follows, we briefly

summarise the contributions of our work.

• We present MAPLDA, the first probabilistic variant of LDA that is inherently able to

jointly model multiple attributes.

• We provide a probabilistic formulation and optimisation procedure for training, as well

as a flexible framework for performing inference on any subset of the multiple attributes

available during training.

• We demonstrate the advantages of joint-attribute modelling by a set of experiments on
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the MeIn3D dataset [146], in terms of ethnicity, age and weight group identification, as

well as facial shape generation.

The rest of the Chapter is organised as follows. In Section 5.2, we briefly recap PLDA, a

generative counterpart to LDA. MAPLDA is introduced in Section 5.3, along with details on

optimisation and inference. Finally, experimental evaluation is detailed in Section 5.4.

5.2 Probabilistic Linear Discriminant Analysis

In this section, we briefly review the PLDA model introduced in [9, 143] and presented in

more detail in Chapter 1. As aforementioned, PLDA carries the assumption that data are

generated by two di↵erent subspaces: one that depends on the class and one that depends on

the sample. That is, assuming we have a total of I classes, with each class i containing a total

of J samples, then the j-th datum of the i-th class is defined as:

xi,j = µ+ Fhi +Gwi,j + ✏i,j (5.1)

where µ denotes the global mean of the training set, F defines the subspace capturing the

identity of every subject, with hi being the latent identity variable representing the position

in the particular subspace. Furthermore, G defines the subspace modelling variations among

data, with wi,j being the associated latent variable. Finally, ✏i,j is a residual noise term which

is Gaussian with diagonal covariance ⌃. Assuming zero-mean observations, the model in (5.1)

can be described as:

P (xi,j |hi,wi,j ,✓) = Nx (Fhi +Gwi,j ,⌃) (5.2)

P (hi) = Nh (0, I) (5.3)

P (wi,j) = Nw (0, I) (5.4)

where the set of parameters ✓ = {F ,G,⌃} is optimised during training via EM [49]. In the

training process, EM is applied and the optimal set of parameters, ✓ = {F ,G,⌃}, is recovered.

105



5. Multi-Attribute Probabilistic Linear Discriminant Analysis for 3D Facial Shapes

5.3 Multi-Attribute PLDA (MAPLDA)

Let us consider a generalisation of the single-attribute setting, as described in Section 5.2.

In particular, let us assume that the data at hand are labelled in terms of a total of N

attributes, where each attribute may take Ki discrete instantiations (labels/classes), that is

ai 2 {1, · · · ,Ki}1. We further assume that a set of J data available during training for

any distinct combination of attribute instantiations. The generative model for MAPLDA

corresponding to the j-th observation (datum) can then be described as:

xa1:N ,j = µ+
NX

i=1

Fihi,ai +Gwa1:N ,j + ✏a1:N ,j (5.5)

where µ denotes the training set global mean, F1, . . . ,FN are loadings that define the subspace

bases for each particular attribute (e.g., F1 may be the basis for the attribute age-group, F2 the

basis for the attribute ethnicity, etc.) and h1,a1 , . . . ,hN,aN are selectors that define the position

in each subspace, respectively (e.g., selector h1,a1 will render the distinct age-group instanti-

ation with which each datum is annotated). Furthermore, the matrix G defines a basis for the

subspace that models the variations among the data and wa1:N ,j defines the position in that

subspace for the j-th datum. Finally, random noise is captured through the term ✏a1:N,j which

is specific for each datum and is set as a Gaussian with diagonal covariance ⌃. Note that from

here on, to avoid cluttering the notation we omit dependence on attribute instantiations (unless

specified otherwise), that is we denote xa1:N ,j as xj , wa1:N ,j as wj and ✏a1:N ,j as ✏j . Moreover,

by assuming zero-mean observations, the model in (5.5) can be written more clearly as:

xj =
NX

i=1

Fihi,ai +Gwj + ✏j (5.6)

while the prior probabilities of (5.6) can be written as:

P (hi,ai) = Nh (0, I) , 8i 2 {1, . . . , N} (5.7)

P (wj) = Nw (0, I) (5.8)

1
For brevity of notation, we denote a1, . . . , aN as a1:N .
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x1 xJ

h1,a1
h2,a2 hN,aN

w1

. . .

. . .

wJ

Figure 5.2: Graphical model for J observed data of the training set (i.e., x1, . . . ,xJ) for a
distinct combination of attribute instantiations. The positions of the data in the subspaces
F1, . . . ,FN are given by the latent variables h1,a1 , . . . ,hN,aN , respectively, while the position
in subspace G is given by the latent variables w1, . . . ,wJ , respectively.

and the posterior as:

P (xj |h1,a1 , . . . ,hN,aN ,wj ,✓) = Nx

 
NX

i=1

Fihi,ai +Gwj ,⌃

!
(5.9)

where ✓ = {F1, . . . ,FN ,G,⌃} is the set of parameters. Having defined our model, in the next

subsections we detail both the training and inference procedures of MAPLDA in the presence

of multiple attributes. For further clarification, we note that the graphical model of MAPLDA

is illustrated in Fig. 5.2.

5.3.1 Training with Multiple Attributes

In this section, we detail the estimation of both the latent variables and parameters involved

in MAPLDA. We assume that we are interested in making predictions regarding a subset of

available attributes. While any subset can be chosen, for purposes of clarity and without loss

of generality, we assume this set consists of the first N � 1 attributes. That is, when given a

test datum we can assign any of the N � 1 attributes to classes ai, i 2 {1, . . . ,Ki}, while ex-

ploiting the knowledge of the remaining attributes (e.g., by marginalisation during inference).

Furthermore, without loss of generality, assume that there is a total of M data for each distinct

combination of theN�1 attributes instantiations. We denote F
.
=

"

F1 F2 . . . FN�1

#
, and
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h
.
=

"

hT
1,a1 hT

2,a2 . . . hT
N�1,aN�1

#T
the block matrices consisting of loadings and variables

for the first N-1 attributes, and ĥN
.
=

"

hT
N,1 hT

N,2 . . . hT
N,KN

#T
the latent variable block

matrix for all attribute values of the N -th attribute. Following a block matrix formulation,

we group the M data samples as follows,

2

6666666666666664

x1

x2

...

xM

3

7777777777777775

=

2

6666666666666664

F e1,aN ⌦ FN G 0 . . . 0

F e2,aN ⌦ FN 0 G . . . 0

...
...

...
. . .

. . .
...

F eM,aN ⌦ FN 0 0 . . . G

3

7777777777777775

2

666666666666666666664

h

ĥN

w1

...

wM

3

777777777777777777775

+

2

66666666664

✏1

...

✏M

3

77777777775

(5.10)

where ⌦ denotes the Kronecker product, and ei,aN 2 R1⇥KN is a one-hot embedding of the

value of attribute aN for datum xi (recall that aN 2 {1, . . . ,KN}). For example, assume

that for x1, aN = KN . Then, e1,N = [0, . . . , 0, 1] 2 R1⇥KN and e1,N ⌦ FN = [0, . . . ,0,FN ].

Furthermore, (5.10) can be written compactly as:

x0 = Ay + ✏0 (5.11)

where the prior and conditional probabilities of (5.11) can now be written as:

P
�
x0|y,✓

�
= Nx0

�
Ay,⌃0� (5.12)

P (y) = Ny (0, I) (5.13)
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where:

⌃0 =

2

6666666666666664

⌃ 0 . . . 0

0 ⌃ . . . 0

...
...

. . .
...

0 0 . . . ⌃

3

7777777777777775

(5.14)

Following EM and given an instantiation of the model parameters ✓ = {F1, . . . ,FN ,G,⌃},

we need to estimate the su�cient statistics, that is the first and second moments of the

posterior latent distribution P (y|x0
,✓). Since both (5.12) and (5.13) refer to Gaussian distri-

butions, it can easily be shown [149] that the posterior also follows a Gaussian distribution:

P
�
y|x0

,✓
�
= Ny

⇣
ÂAT⌃0�1x0

, Â
⌘

(5.15)

where Â
.
=
�
AT⌃0�1A+ I

��1
, and thus:

E [y] = ÂAT⌃0�1x0 (5.16)

E
⇥
yyT

⇤
= Â+ E [y]E [y]T (5.17)

Having derived the su�cient statistics of MAPLDA, we carry on to the maximisation step.

In order to recover the parameter updates, we take the partial derivatives of the conditional

(on the posterior) expectation of the complete-data log likelihood of MAPLDA with regards
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to parameters ✓ = {F1, . . . ,FN ,G,⌃}. In order to do so, we firstly rewrite (5.6) as follows:

xj =

"

F1 . . . FN G

#

2

6666666666666664

h1,a1

...

hN,aN

wj

3

7777777777777775

+ ✏j (5.18)

where (5.18) can be compactly written as:

xj = Bzj + ✏j . (5.19)

By adopting the aforementioned grouping, our set of parameters is now denoted as ✓ = {B,⌃},

and the complete-data log likelihood conditioned on the posterior is formulated as:

Q
⇣
✓,✓old

⌘
=
X

Z

P

⇣
Z|X,✓old

⌘
ln [P (X,Z|✓)] (5.20)

where the joint can be decomposed as:

P (X,Z|✓) =
K1Y

a1=1

· · ·
KNY

aN=1

JY

j=1

P (xa1:N ,j |za1:N ,j)P (za1:N ,j) (5.21)

It can be easily shown [149] that the updates are as follows:

B =

0

@
K1X

a1=1

· · ·
KNX

aN=1

JX

j=1

xa1:N ,jE [za1:N ]
T

1

A
 

K1X

a1=1

· · ·
KNX

aN=1

E
⇥
za1:Nz

T
a1:N

⇤
!�1

(5.22)

⌃ =
1

KJ
Diag

 
St �B

K1X

a1=1

· · ·
KNX

aN=1

JX

j=1

E [za1:N ]x
T
a1:N ,j

!
, (5.23)

with St =
K1X

a1=1

· · ·
KNX

aN=1

JX

j=1

xa1:N ,jx
T
a1:N ,j being the total covariance matrix and K =

NY

i=1

Ki.

5.3.2 Inference

Having completed the training process and derived the optimal MAPLDA parameters, we can

proceed with inferences on unseen data on the first N � 1 attributes. That is, given a datum
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(probe) from a test set, we aim to classify the datum into the appropriate classes for each of

the corresponding N � 1 attributes.

Since we do not have any prior knowledge of the conditions under which the data that belong

to the test set may have been captured, it is very likely that the data may be perturbed by

noise. Therefore, in order to determine the appropriate class, we compare the probe (xp)

with a number of di↵erent data from a gallery in order to find the most likely match, in a

similar manner to [9]. In essence, this boils down to maximum likelihood estimation under

M (i.e., the total number of data in the gallery) di↵erent models. That is, for every model

m,m 2 {1, . . . ,M}, we calculate the log likelihood that the datum xk in the gallery matches

with the probe xp and finally, we keep the pair that gives the largest log likelihood. This

process falls under the so-called closed-set identification task, where a probe dataum has to be

matched with a gallery datum. The algorithm can be extended to cover other scenarios such

as verification or open-set identification.

Without loss of generality, let us assume a gallery with M data, all of which are labelled

with di↵erent instantiations per attribute. Our aim is to find the pair that produces the max-

imum likelihood between the probe datum and one of the M gallery data. More formally, this

corresponds to:

Mv = argmax
m2{1,...,M}

{lnP (Mm|X)} (5.24)

where X
.
=
⇥
xT
1 , . . . ,x

T
M ,xT

p

⇤T
. The optimal set of instantiations is described by the model

Mv. If we consider a uniform prior for the selection of each model (i.e., P (Mm) is a constant

for all m 2 {1, . . . ,M}), then the actual log likelihood in (5.24) can calculated using Bayes’

theorem as follows:

P (Mm|X) =
P (X|Mm)P (Mm)

PM
m=1 P (X|Mm)P (Mm)

(5.25)

where the denominator is simply a normalising constant, ensuring the probabilities sum to 1.
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Therefore, inference boils down to calculating:

lnP (X|Mm) =
MX

q=1,q 6=m

lnP (xq) + lnP (xp,xm) (5.26)

where for each model m, the probe is paired with the m-th datum in the gallery and an

individual marginal is added for the rest of the gallery data.

As aforementioned, and without loss of generality, we assume that inference is conducted

for the first N �1 attributes. In order to perform inference without disregarding knowledge of

attributes not required for inference, the sensible approach is to marginalise out the remaining

N -th attribute. Then, following the process described above, we recover the optimal instan-

tiations of attributes explained by model Mv, utilising (5.24), (5.25) and (5.26). The joint

probabilities in (5.26) are Gaussians, and therefore, they can be estimated as:

P (xq) ⇠ Nxq

�
0,FFT + FNFT

N +GGT +⌃
�

(5.27)

where F
.
=

"

F1 F2 . . . FN�1

#
. By assigning x0 .

=
⇥
xT
p ,x

T
m

⇤T
and using the “completing-

the-square” method, the marginals can be estimated as:

P
�
x0� = Nx0

�
0,AAT +⌃0� (5.28)

where:

A =

2

66664

F G 0

F 0 G

3

77775
, ⌃0 =

2

66664

⌃+ FNF T
N 0

0 ⌃+ FNF T
N

3

77775
(5.29)

A graphical representation for this case can be found in Fig. 5.3.

Regarding the special case where inference about only one attribute is required, the margin-

als have the same form as in (5.27). The joint distribution, given that the attribute of interest

is denoted as i 2 {1, . . . , N}, follows the form:

P
�
x0� ⇠ Nx0

�
0,AAT +⌃0� (5.30)
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M1

x1 xp

w1 wp

h1,a1
hN�1,aN�1

. . .

x2

w2

h1,a0
1

hN�1,a0
N�1

. . .

M2

x2 xp

w2 wp

h1,a0
1

hN�1,a0
N�1

. . .

x1

w1

h1,a1
hN�1,aN�1

. . .

Figure 5.3: Inference for some attributes (in this case, the first N � 1 attributes). For this
particular case, only two data exist in the gallery, so the probe datum xp can be matched with
either datum x1 or datum x2. In case it does match with datum x1, then it is assigned labels
{a1, . . . , aN�1} (model M1). Otherwise, it receives labels {a01, . . . , a0N�1} (model M2).

where in this case:

A =

2

66664

Fi G 0

Fi 0 G

3

77775
, ⌃0 =

2

6666664

⌃+
NX

i=1,i 6=n

FiF
T
i 0

0 ⌃+
NX

i=1,i 6=n

FiF
T
i

3

7777775
(5.31)

We finally note that MAPLDA is a generalisation of PLDA; in the degenerate case where only

one attribute is available during training, MAPLDA reduces to PLDA.

5.3.3 3D Facial Shape Generation

We can exploit the generative property of MAPLDA, alongside the multi-attribute aspect of

the model, to generate data with respect to di↵erent combinations of attribute values. Data

generation can be accomplished as follows:

• Firstly, without loss of generality, we train a MAPLDA model with regards to two

attributes we are interested in (e.g., attributes ethnicity and age, weight and age, etc.).

After the training process, we recover the optimal F1, F2, G subspaces and noise diagonal

covariance ⌃.

• Secondly, we pick the distinct instantiations of attributes we are interested in generating

(e.g., Chinese ethnic group and 18-24 age group) and stack row-wise all the training
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data pertaining to these instantiations, creating a new vector x0.

• Thirdly, if hi,ai and hj,aj are the selectors corresponding to the particular attributes, we

stack them row-wise, i.e., hT .
=

"

hi,ai hj,aj

#
, and calculate the posterior E [P (h|x0)] as

E
⇥
P
�
h|x0�⇤ = CATD�1x0

, (5.32)

where A =

"

F1 F2

#
, C =

�
I+ATD�1A

��1
and D =

�
⌃0 +G0G0T ��1

, where ⌃0 is

defined as in (5.14), and G0 is a block-diagonal matrix with copies of G on the diagonal.

• Finally, for selector w, we choose a random vector from the multivariate normal distri-

bution and the generated datum will be rendered as

xg = AE
⇥
P
�
h|x0�⇤+Gw. (5.33)

Examples of generated shapes are provided in the next section.

5.4 Experiments

Having described the training and inference procedure for MAPLDA, in this section we demon-

strate the e↵ectiveness of MAPLDA against PLDA [9], DS-LDA [150], Io↵e’s PLDA variant

[8], the Bayesian approach [151], LDA [152] and PCA [41], by performing several experiments

on facial shapes from MeIn3D dataset [146]. We should note here that we do not compare

our algorithm against DL methods. DL methods tailored to 3D face data are still in their

infancy and the state-of-the-art in 3D face anlysis tasks is still provided by subspace learning

methods, such as PCA [12]. In the experiments that follow we only take into account the 3D

shape of the human face without any texture information.

MeIn3d Dataset

MeIn3D dataset [146] consists of 10, 000 raw facial scans that describe a large variation of the

population. More specifically, MeIn3D dataset [146] consists of data annotated with multiple
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Table 5.1: Ethnicity identification. Average identification rates ± standard deviations per
method. MAPLDA outperforms all of the compared methods.

Method Mean Std

MAPLDA 0.990 0.051

PLDA 0.927 0.084

DS-LDA 0.919 0.073

PLDA (Io↵e) 0.917 0.089

Bayesian 0.911 0.077

LDA 0.878 0.079

PCA 0.634 0.083

attributes (i.e., ethnicity, age, weight), thus it is highly appropriate for evaluating MAPLDA.

Before performing any type of training or inference the scans are consistently re-parametrised

into a form where the number of vertices, the triangulation and the anatomical meaning of

each vertex are made consistent across all meshes. In this way, all the training and test meshes

are brought into dense correspondence. In order to achieve this task, we employ an optimal

step non-rigid ICP algorithm [153]. We utilise the full spectrum of 10, 000 meshes where each

mesh is labelled for a specific identity, age and ethnicity. The training and the inference are

performed directly on the vectorised re-parametrised mesh of the form R3⇤N⇥1, where N is

the distinct number of vertices.

5.4.1 Ethnicity Identification

In this experiment, we identify the ethnicity attribute for a given 3D shape based on its shape

features, regardless of the age-group attribute (i.e., by marginalising out the attribute age-

group). We split the ethnicity attribute into three groups consisting of White, Black and Asian

ethnic groups. We used 85% of the MeIn3D data for training and the rest for testing. Moreover,

for each experiment, we used three random test data, with each test datum belonging in a

di↵erent ethnic group. For the gallery we use the same set of distinct ethnic groups used in

115



5. Multi-Attribute Probabilistic Linear Discriminant Analysis for 3D Facial Shapes

Table 5.2: Confusion matrices of MAPLDA and PLDA for the ethnicity identification exper-
iment. By incorporating the knowledge of the age-group attribute in the training phase,
MAPLDA is able to better discriminate between the di↵erent ethnicities. In particular,
MAPLDA classifies correctly all of the Black people in contrast to PLDA.

Actual Predicted Acc

White Black Chinese

White 0.99 0.00 0.01 0.99

Black 0.00 1.00 0.00 1.00

Chinese 0.02 0.00 0.98 0.98

(a) MAPLDA

Actual Predicted Acc

White Black Chinese

White 0.97 0.01 0.02 0.97

Black 0.04 0.89 0.07 0.89

Chinese 0.05 0.02 0.93 0.93

(b) PLDA [9]

test samples from three random identities. We execute a total of 100 random experiments (i.e.,

we repeat the aforementioned process 100 times for randomly chosen test data and galleries

in every experiment). Average identification rates along with the corresponding standard

deviations per setting are shown in Table 5.1. Confusion matrices for MAPLDA and PLDA

are provided in Table 5.2. As can be seen, MAPLDA outperforms all of the compared methods,

thus demonstrating the advantages of joint attribute modelling.

5.4.2 Age-group Identification

In this experiment, we identify the age-group for a given datum, regardless of the ethnicity

attribute (i.e., by marginalising out the ethnicity attribute). We split the age-group attribute

into four groups consisting of under 18 years old (<18), 18-24, 24-31 and 31-60 years old
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Table 5.3: Age-group identification. Average identification rates ± standard deviations per
method. MAPLDA outperforms all of the compared methods.

Method Mean Std

MAPLDA 0.695 0.063

PLDA [9] 0.540 0.079

PLDA (Io↵e) [8] 0.534 0.068

DS-LDA [150] 0.531 0.059

Bayesian [151] 0.529 0.071

LDA [152] 0.464 0.065

PCA [41] 0.327 0.074

groups. We used 85% of the MeIn3D data for training and the rest for testing. Moreover,

for each experiment we used four di↵erent random test data, with each test datum belonging

in a di↵erent age group. For the gallery we use the same set of distinct age groups used in

the test data from four random identities. We execute 100 random experiments per setting

(i.e., we repeat the aforementioned process 100 times for randomly chosen probes and galleries

in every experiment). Average identification rates along with the corresponding standard

deviations per setting are shown in Table 5.3. Confusion matrices for MAPLDA and PLDA

are provided in Table 5.4. The identification rates are considerably lower compared to the

ethnicity experiment and that demonstrates that the task of inferring the age of a certain

face by the shape of it is a challenging one. Nevertheless, our proposed framework exhibits

performance that outperforms all of the compared methods by a large margin.

5.4.3 Weight-group Identification

In this experiment, we identify the weight-group attribute for a given datum, regardless of the

age-group attribute (i.e., by marginalising out the attribute age-group). We split the weight

attribute into five groups consisting of 30-45 kg, 45-55 kg, 55-62 kg, 62-70 kg and 70-80 kg

groups. We used 85% of the MeIn3D data for training and the rest for testing. Similarly to our
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Table 5.4: Confusion matrices of MAPLDA and PLDA for the age-group identification ex-
periment. By incorporating the knowledge of the ethnicity attribute in the training phase,
MAPLDA is able to better discriminate between the di↵erent age-groups.

Actual Predicted Acc

< 18 18-24 24-31 31-60

< 18 0.77 0.18 0.05 0 0.77

18-24 0.14 0.62 0.23 0.01 0.62

24-31 0.02 0.20 0.66 0.12 0.66

31-60 0 0.06 0.19 0.75 0.75

(a) MAPLDA

Actual Predicted Acc

< 18 18-24 24-31 31-60

< 18 0.59 0.27 0.13 0.01 0.59

18-24 0.17 0.48 0.31 0.04 0.48

24-31 0.02 0.24 0.52 0.22 0.52

31-60 0.02 0.13 0.28 0.57 0.57

(b) PLDA [9]

previous experiments, we use five di↵erent random test data, with each test datum belonging

in a di↵erent weight group. For the gallery we use the same set of distinct weight groups

used in the test samples from five random identities. We execute 100 random experiments per

setting (i.e., we repeat the aforementioned process 100 times for randomly chosen test data

and galleries in every experiment). Average identification rates along with the corresponding

standard deviations per setting are shown in Table 5.5. Confusion matrices for MAPLDA and

PLDA are provided in Table 5.6. Weight identification is considered to be the most challenging

experiment of all three, as predicting the correct weight group solely from 3D facial shapes

without considering the scaling factor is a very di�cult problem. Nevertheless, as it can be

seen in Table 5.5, the top performance is given by MAPLDA which is 51.6%, outperforming
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(a) Black, 31-60 (b) Chinese, 24-31 (c) White, 31-60 (d) White, <18 (e) White, 70-80kg

(f) White, 31-60 (g) White, 31-60 (h) Chinese, 24-31 (i) Black, <18 (j) White, 70-80kg

Figure 5.4: 3D facial shapes generated via MAPLDA for di↵erent attribute combinations.
Figures (a-d) and (f-i) visualise di↵erent instantiations of attributes ethnicity and age group,
while Figures (e,j) of attributes ethnicity and weight group.

Table 5.5: Weight-group identification. Average identification rates ± standard deviations per
method. MAPLDA outperforms all of the compared methods.

Method Mean Std

MAPLDA 0.516 0.051

PLDA [9] 0.380 0.084

PLDA (Io↵e) [8] 0.373 0.049

DS-LDA [150] 0.368 0.054

Bayesian [151] 0.364 0.071

LDA [152] 0.346 0.059

PCA [41] 0.197 0.062

the other methods by a large margin.

5.4.4 Generating data

As thoroughly described in Section 5.3.3, the novel, multi-attribute nature of MAPLDA can

be exploited to generate data with regards to a particular combination of attributes. By
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Table 5.6: Confusion matrices of MAPLDA and PLDA for the weight-group identification
experiment. By incorporating the knowledge of the age-group attribute in the training phase,
MAPLDA is able to better discriminate between the di↵erent weight-groups.

Actual Predicted Acc

30-45 45-55 55-62 62-70 70-80

30-45 0.55 0.26 0.14 0.04 0.01 0.55

45-55 0.23 0.58 0.11 0.05 0.03 0.58

55-62 0.09 0.15 0.46 0.23 0.07 0.46

62-70 0.02 0.10 0.19 0.53 0.16 0.53

70-80 0.02 0.08 0.17 0.24 0.49 0.49

(a) MAPLDA

Actual Predicted Acc

30-45 45-55 55-62 62-70 70-80

30-45 0.41 0.31 0.19 0.06 0.03 0.41

45-55 0.26 0.44 0.20 0.07 0.03 0.44

55-62 0.10 0.22 0.32 0.28 0.08 0.32

62-70 0.04 0.12 0.25 0.38 0.21 0.38

70-80 0.06 0.11 0.18 0.30 0.35 0.35

(b) PLDA [9]

utilising MeIn3D [146] dataset, we can train a multi-attribute model with regards to e.g., the

ethnicity and age-group attributes and thus generate bespoke shapes that belong in a specific

combination of attribute instantiations (e.g., ethnic group Asian and age group 24-31). In

Fig. 5.4, we visualise some examples of generated shapes belonging to a distinct combination

of attributes such as ethnicity and age-group and ethnicity and weight-group.
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5.5 Conclusions

In this Chapter, we introduced Multi-Attribute PLDA, a novel CA method that is able to

jointly model observations enriched with labels in terms of multiple attributes. We provided

a probabilistic formulation and optimisation procedure for training, as well as a flexible and

e�cient framework for inference on any subset of the attributes available during training.

Evaluation was performed via several experiments on 3D facial shapes, namely ethnicity,

age, and weight identification as well as 3D face generation under arbitrary instantiations of

attributes. Results showed that MAPLDA outperformed all compared methods, deeming the

advantages of joint attribute modelling apparent.
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(a) (b)

(c) (d)

Figure 6.1: UV extraction process. In (a) we present a raw mesh, in (b) the registered mesh
using the LSFM template [146], in (c) the unwrapped 3D mesh in the 2D UV space, and finally
in (d) the interpolated 2D UVmap. Interpolation is carried out using the 2D nearest-neighbour
method.

6.1 Introduction

GANs are a promising unsupervised machine learning methodology implemented by a system

of two deep neural networks competing against each other in a zero-sum game framework [20].

GANs became immediately very popular due to their unprecedented capability in terms of

implicitly modelling the distribution of visual data, thus being able to generate and synthesise

novel yet realistic images and videos, by preserving high-frequency details of the data distri-

bution and hence appearing authentic to human observers. Many di↵erent GAN architectures

have been proposed over the past few years, such as the Deep Convolutional GAN (DCGAN)

[62] and the Progressive GAN (PGAN) [23], which was the first to show impressive results in

generation of high-resolution images.

A type of GANs which has also been extensively studied in the literature is the so-called

124



6.1. Introduction

Conditional GAN (CGAN) [34], where the inputs of the generator as well as the discriminator

are conditioned on the class labels. Applications of CGANs include domain transfer [154,

155, 156], image completion [157, 158, 159], image super-resolution [160, 161, 162] and image

translation [35, 163, 164, 25].

Despite the great success, GANs have had in 2D image/video generation and representation,

no GAN method tailored towards tackling the aforementioned tasks in 3D shapes has been

introduced in the literature. This is primarily attributed to the lack of appropriate decoder

networks for meshes that are able to retain high frequency details [165, 166].

In this Chapter, we study the task of representation and generation of 3D facial surfaces us-

ing GANs. Examples of the applications of 3DFaceGAN in the tasks of 3D face representation

and generation are presented in Fig. 6.2. Other DL methods that have been tried on 3D data

include volumetric representations and geometric DL approaches. Nevertheless, volumetric

representations lead to very low-quality representations [167, 168], and geometric DL methods

[27] preserve only the low-frequency details. In 3DFaceGAN, we study approaches that use

2D convolutions in a UV unwrapping of the 3D face. The process of unwrapping a 3D face in

the UV domain is shown in Fig. 6.1. Overall, key points of the Chapter can be summarised

as follows.

• We introduce a novel autoencoder-like network architecture for GANs, which achieves

state-of-the-art results in tasks such as 3D face representation and generation.

• We introduce a novel training framework for GANs, especially tailored for 3D facial data.

• We introduce a novel process for generating realistic 3D facial data, retaining the high

frequency details of the 3D face.

The rest of the Chapter is structured as follows. In Section 6.2, we present all the details

with respect to 3DFaceGAN training process, losses, and model architectures. Finally, in
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Real x1 Recon x1 Real x2Recon x2Interpolation in the latent space

Real 3D faces

Reconstructed 3D faces

(a)

(b)

Figure 6.2: 3D face representation and generation utilising the proposed 3DFaceGAN. In (a)
we demonstrate the 3D face representation capability of 3DFaceGAN. The first row shows the
reconstructed 3D faces whereas the second row shows the corresponding real 3D faces. As
evidenced, 3DFaceGAN is able to capture and reconstruct non-linear details of the 3D face
such as lips, eyelids, etc. In (b) we present the generative nature of 3DFaceGAN. The left
and right hand-side show the real 3D face targets. The provided samples in between show the
generations derived by the interpolations of the targets in the latent space.

Section 6.3, we provide information about the database we collected, the preprocessing we

carried out in the databases we utilised for the experiments and lastly we present an extensive

range of experiments of 3DFaceGAN against other state-of-the-art deep networks.

6.2 3DFaceGAN

In this Section we describe the training process, network architectures, and loss functions we

utilised for 3DFaceGAN. Moreover, we discuss the framework we utilised for 3D face gener-

ation as well as present an extension of 3DFaceGAN which is able to handle data annotated

with multiple labels. Finally, we should point out that while most GANs use discriminator

architectures with logit outputs, in 3DFaceGAN we use an autoencoder as a discriminator for
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Pre-training the Discriminator Training 3DFaceGAN

D

G

G(x)x

x
D(G(x))

D(x)

D

x D(x)

Figure 6.3: 3DFaceGAN training process overview. The networks receive (extract) 2D facial
UVs as inputs (outputs). The corresponding 3D faces are shown below or next to them. We
firstly pre-train D (left figure). We then use the learned weights/biases to initialise D and G

and subsequently start the adversarial training (right figure). The decoder parts of D and G

are depicted in red color as we freeze the weights/biases updates during the training phase of
3DFaceGAN.

reasons that are thoroughly explained in Section 6.2.2.

6.2.1 Objective function

The main objective of the generator G is to retrieve a facial UV map x as input and generate

a fake one, G (x), which in turn should be as close as possible to the real target facial UV map

y. For example, in the case of 3D face reconstruction the input can be a 3D facial UV map and

the output a reconstruction of the particular 3D facial UV map. The goal of the discriminator

D is to distinguish between the real (y) and fake (G (x)) facial UV maps. Throughout the

training process, D and G compete against each other until they reach an equilibrium, i.e.,

until D can no longer di↵erentiate between the fake and the real facial UV maps.

Adversarial loss. To achieve the 3DFaceGAN objective, we propose to utilise the following
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novel loss for the adversarial part. That is,

LD = Ey [L (y)]� �adv · Ex [L (G(x))] ,

LG = Ex [L (G(x))] ,

(6.1)

where D (·) refers to the output of the discriminator D, L (x)
.
= kx�D(x)k1, and �adv is

the hyper-parameter which controls how much weight should be put on L (G(x)). The higher

the �adv, the more emphasis D puts on the task of di↵erentiating between the real and fake

data. The lower the �adv, the more emphasis D puts on reconstructing the actual real data.

There is a fine line between which task D should primarily focus on by adjusting �adv. In our

experiments we deduced that for relatively low values of �adv we retrieve optimal performance

as then D is able to influence the updates of G in such a way that the generated facial UV

maps are more realistic. During the adversarial training, D tries to minimise LD whereas G

tries to minimise LG. Similar to recent works such as [67, 63], the discriminator D has the

structure of an autoencoder. Nevertheless, the main di↵erences are that (a) we do not make

use of the margin m as in [67] or the equilibrium constraint as in [63], and (b) we use the

autoencoder structure of the discriminator and pre-train it with the real UV targets prior to

the adversarial training. Further details about the training procedure are presented in Section

6.2.2.

Reconstruction loss. With the utilisation of the adversarial loss (6.1), the generator G

is trying to “fool” the discriminator D. Nevertheless, this does not guarantee that the fake

facial UV will be close to the corresponding real, target one. To impose this, we use an L1 loss

between the fake sample G (x) and the corresponding real one, y, so that they are as similar

as possible, as in [35]. Namely, the reconstruction loss is the following.

Lrec = Ex kG (x)� yk1 . (6.2)
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Full objective. In sum, taking into account (6.1) and (6.2), the full objective becomes

LD = Ey [L (y)]� �adv · Ex [L (G(x))] ,

LG = Ex [L (G(x))] + �rec · Lrec,

(6.3)

where �rec is the hyper-parameter that controls how much emphasis should be put on the

reconstruction loss. Overall, the discriminator D tries to minimise LD while the generator G

tries to minimise LG.

6.2.2 Training procedure

In this Section, we first describe how we pre-train the discriminator (autoencoder) D and then

provide details with respect to the adversarial training of 3DFaceGAN.

Pre-training the discriminator. The majority of GANs in the literature utilise discrim-

inator architectures with logit outputs that correspond to a prediction on whether the input

fed into the discriminator is real or fake. Recently proposed GAN variations have neverthe-

less taken a di↵erent approach, namely by utilising autoencoder structures as discriminators

[67, 63]. Using an autoencoder structure in the discriminator D is of paramount importance

in the proposed 3DFaceGAN. The benefit is twofold: (a) we can pre-train the autoencoder

D acting as discriminator prior to the adversarial training, which leads to better quantitative

as well as more compelling visual results 1, and (b) we are able to compute the actual UV

space dense loss, as compared to simply deciding on whether the input is real or fake. As

we empirically show in our experiments and ablation studies, this approach encourages the

generator to produce more realistic results than other, state-of-the-art methodologies.

Adversarial training. Before starting the adversarial training, we initialise the weights

1
note that pre-training D is not possible when the outputs are logits since there are no fake data to compare

against prior to the adversarial training.
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and biases2 for both the generator G and the discriminator D utilising the learned parameters

estimated after the pre-training of D (the architecture of G is identical to the architecture of

D). During the training phase of 3DFaceGAN, we freeze the parameter updates in the decoder

parts for both the generator G and the discriminator D. Furthermore, we utilise a low learning

rate on the encoder and bottleneck parts of G and D so that overall the parameter updates

are relatively close to the ones found during the pre-training of D.

Network architectures. The network architectures for both the discriminator D and the

generator G are the same. In particular, each network is consisted of 2D convolutional blocks

with kernel size of three, stride and padding size of one. Down-sampling is achieved by average

2D pooling with kernel and stride size of two. The convolution filters grow linearly in each

down-sampling step. Up-sampling is implemented by nearest-neighbour with scale factor of

two. The activation function that is primarily used is ELU [169], apart from the last layer of

both D and G where Tanh is utilised instead. At the bottleneck we utilise fully connected

layers and thus project the tensors to a latent vector b 2 RNb . To generate more compelling

visual results, we utilised skip connections [170, 171] in the first layers of the decoder part of

both the generator and the discriminator. Further details about the network architectures are

provided in Table 6.1, whereas the training pipeline is depicted in Fig. 6.3.

6.2.3 3D face generation

Variational autoencoders (VAEs) [53] are widely used for generating new data using autoencoder-

like structures. In this setting, VAEs add a constraint on the latent embeddings of the autoen-

coders that forces them to roughly follow a normal distribution. We can then generate new

data by sampling a latent embedding from the normal distribution and pass it to the decoder.

Nevertheless, it was empirically shown that enforcing the embeddings in the training process

to follow a normal distribution leads to generators that are unable to capture high frequency

2
for brevity in the text, we will use the term parameters to refer to the weights and the biases from this

point onwards.
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Table 6.1: Generator/Discriminator network architectures of 3DFaceGAN. As far as the nota-
tion is concerned, C denotes the number of input/output channels, K denotes the kernel size,
S denotes the stride size, P denotes the padding size, AvgPool2D denotes average 2D pooling,
UpNN denotes nearest-neighbour upsampling, and SF refers to the scaling factor size of the
nearest-neighbour upsampling. CONV-BLOCK(C1, C2, K, S, P) and DECONV-BLOCK(C1,
C2, K, S, P) refer to a block of two convolutions where the first is CONV(C1, C2, K, S, P)
followed by an ELU [169] activation function and the second is CONV(C2, C2, K, S, P), also
followed by an ELU [169] activation function.

Part Input ! Output shape Layer information

Encoder

(h, w, 3) ! (h, w, n) CONV-(Cn, K3x3, S1, P1), ELU

(h, w, n) ! (
h
2 ,

w
2 , 2n) CONV-BLOCK-(Cn, 2n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

(
h
2 ,

w
2 , 2n) ! (

h
4 ,

w
4 , 3n) CONV-BLOCK-(C2n, C3n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

(
h
4 ,

w
4 , 3n) ! (

h
8 ,

w
8 , 4n) CONV-BLOCK-(C3n, C4n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

(
h
8 ,

w
8 , 4n) ! (

h
16 ,

w
16 , 5n) CONV-BLOCK-(C4n, C5n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

(
h
16 ,

w
16 , 5n) ! (

h
32 ,

w
32 , 6n) CONV-BLOCK-(C5n, C6n, K3x3, S1, P1), AvgPool2D(K2x2, S2)

(
h
32 ,

w
32 , 6n) ! (

h
32 ,

w
32 , 6n) CONV-BLOCK-(C6n, C6n, K3x3, S1, P1)

Bottleneck1 (
h
32 ⇥ w

32⇥6n) ! n Fully connected

Bottleneck2 n ! (
h
32 ⇥ w

32⇥n) Fully connected

Decoder

(
h
32 ,

w
32 , n) ! (

h
16 ,

w
16 , n) DECONV-BLOCK(Cn, Cn K3x3, S1, P1), UpNN(SF2)

(
h
16 ,

w
16 , n) ! (

h
8 ,

w
8 , n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

(
h
8 ,

w
8 , n) ! (

h
4 ,

w
4 , n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

(
h
8 ,

w
8 , n) ! (

h
4 ,

w
4 , n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

(
h
2 ,

w
2 , n) ! (h, w, n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1), UpNN(SF2)

(h, w, n) ! (h, w, n) DECONV-BLOCK(Cn, Cn, K3x3, S1, P1)

(h, w, n) ! (h, w, 3) DECONV(Cn, C3, K3x3, S1, P1), Tanh

details [172]. To alleviate this, we propose to generate data using Algorithm 8, which better

retains the generated data fidelity, as shown in Section 6.3.

6.2.4 3DFaceGAN for multi-label 3D data

Over the last few years, databases annotated with regards to multiple labels are becoming

available in the scientific community. For instance, 4DFAB [173] is a publicly available 3D

facial database containing data annotated with respect to multiple expressions.
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Algorithm 8 3D face generation algorithm.

Step 1: Train 3DFaceGAN utilising (6.3). Step 2: Extract the trained G, and for all N
training facial UV maps: for i = 1 : N do

Input UV map xi in G. Extract the corresponding bottleneck zi 2 RNb⇥1.
end
Step 3: Concatenate column-wise all of the bottlenecks, i.e., Z = [z1, z2, . . . , zN ]. Step 4:
Extract the mean µZ of Z and the covariance ⌃Z of the zero-mean Z. Step 5: To generate
new data, retain only the trained Bottleneck2 and the Decoder part of G (see Table 6.1 for
the network structures) and sample a new zi (i.e., Bottleneck2 input) from the multivariate
Gaussian N (µZ ,⌃Z).

We can extend 3DFaceGAN to handle data annotated with regards to multiple labels as

follows. Without any loss of generality, suppose there are three labels in the database (e.g.,

expressions neutral, happiness and surprise). We adopt the so-called one-hot representation

and thus denote the existence of a particular label in a datum by 1 and the absence by 0. For

example, a 3D face datum annotated with the label happiness will have the following label

representation: l = [0, 1, 0], where the first entry corresponds to the label neutral, the second

to the label happiness and the third to the label surprise. We then choose the corresponding

l we want to generate and then spatially replicate it and concatenate it in the input that is

then fed to the generator. The real target has also the corresponding l spatially replicated and

concatenated. Apart from this change, the rest of the training process is exactly the same as

the one described in Section 6.2.2.

Finally, to generate 3D facial data with respect to a particular label, we follow the same

process as the one presented in Algorithm 8, with the only di↵erence being that we extract

di↵erent pairs of (µZ , ⌃Z) for every subset of the data, each corresponding to a particular

label in the database. We then choose the pair (µZ , ⌃Z) corresponding to the desired label

and sample from this multi-variate Gaussian distribution.
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6.3 Experiments

In this Section we (a) describe the databases which we used to carry out the experiments

utilising 3DFaceGAN, (b) provide information with respect to the data preprocessing we con-

ducted prior to feeding the 3D data into the network, (c) succinctly describe the baseline

state-of-the-art algorithms we employed for comparisons and (d) provide quantitative as well

as qualitative results on a series of experiments that demonstrate the superiority of 3DFace-

GAN.

6.3.1 Databases

The 3dMD database

The 3dMD database contains approximately 5, 000 3D facial scans captured during a spe-

cial exhibition in the Science Museum, London. The data were recorded with a 3dMD face

capturing system. All the subjects were recorded in neutral expression.

The 3dMD apparatus utilises a 4 camera structured light stereo system which can create

3D triangular surface meshes composed of approximately 60, 000 vertices joined into approx-

imately 120, 000 triangles. Each subject was instructed to stay still in a fixed pose during the

entire scanning process with a neutral facial expression. The frame rate for every subject was

constant at 8 frames per second.

Furthermore, all 5, 000 subjects provided meta-data about themselves, including their gender,

age, and ethnicity. The database covers a wide variety of age, gender (48% male, 52% female),

and ethnicity (82% White, 9% Asian, 5% Mixed Heritage, 3% Black and 1% other). In all of

the training tasks, 85% of the data were used for training and the rest were used for testing.

The subjects in the training and testing sets are disjoint.
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4DFAB database

4DFAB database [173] contains 3D facial data from both male and female subjects, aged from

5 to 75 years old. The subjects vary in their ethnicity background, coming from more than 30

di↵erent ethnic groups. For the capturing process, the DI4D dynamic capturing system 3 was

used.

4DFAB [173] contains data varying in expressions, such as neutral, happiness, and surprise.

As a result, we utilised it to showcase 3DFaceGAN’s capability in successfully handling data

annotated with multiple labels in the task of 3D face generation. In all of the training tasks,

85% of the data were used for training and the rest were used for testing. The subjects in the

training and testing sets are disjoint.

6.3.2 Data preprocessing

In order to feed the 3D data into a deep network several steps need to be carried out. Since we

employ various databases, the representation of the facial topology is not consistent in terms of

vertex number and triangulation. To this end, we need to find a suitable template T that can

easily retain the information of all raw scans across all databases and describe them with the

same triangulation/topology. We utilised the mean face mesh of the LSFM model proposed

by [146], which consists of approximately 54, 000 vertices that are su�cient to capture high

frequency facial details. We then bring the raw scans in dense correspondence by morphing

non-rigidly the template mesh to each one of them. For this task, we utilise an optimal-step

Non-rigid Iterative Closest Point algorithm [38] in combination with a per vertex weighting

scheme. We weight the vertices according to the Euclidean distance measured from the tip of

the nose. The greater the distance from the nose tip, the bigger the weight that is assigned to

that vertex, i.e., less flexible to deform. In that way we are able to avoid the noisy information

recorded by the scanners on the outer regions of the raw scans.

3
http://www.di4d.com
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(a) (b)
(a) (b)
(a) (b)

(a) (b)

(a) (b)

(a) (b)

Figure 6.4: (a) Generalisation results on the test set for the 3D face representation task.
The results are presented as cumulative error distributions of the normalised dense vertex
errors. 3DFaceGAN outperforms all of the compared methods by a large margin. (b) Ablation
study generalisation results for the 3D face representation task. The results are presented as
cumulative error distributions of the normalised dense vertex errors.

UV maps are usually utilised to store texture information. In our case, we store the spatial

location of each vertex as an RGB value in the UV space. In order to acquire the UV pixel

coordinates for each vertex, we start by unwrapping our mesh template T into a 2D flat space

by utilising an optimal cylindrical unwrapping technique proposed by [39]. Before storing the

3D coordinates into the UV space, all meshes are aligned in the 3D spaces by performing the

General Procrustes Analysis [174] and are normalised to be in the scale of [1,�1]. Afterwards,

we place each 3D vertex in the image plane given the respective UV pixel coordinate. Finally,

after storing the original vertex coordinates, we perform a 2D nearest point interpolation in

the UV domain to fill out the missing areas in order to produce a dense representation of the

originally sparse UV map. Since the number of vertices in ST is more than 50K, we choose a

256⇥256⇥3 tensor as the UV map size, which assists in retrieving a high precision point cloud

with negligible re-sampling errors. A graphical representation of the preprocessing pipeline

can be seen in Fig. 6.1.
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Table 6.2: Generalisation metric for the meshes of the test set for the 3D face representation
task. The table reports the mean error (Mean), the standard deviation (std), the Area Under
the Curve (AUC), and the Failure Rate (FR) of the Cumulative Error Distributions of Fig.
6.4a.

Method Mean std AUC FR (%)

3DFaceGAN 0.0031 ± 0.0028 0.741 1.42e-7

CoMA 0.0038 ± 0.0037 0.716 3.66e-7

PCA 0.0040 ± 0.0040 0.711 0.91e-6

PGAN 0.0041 ± 0.0041 0.705 1.22e-6

Table 6.3: Ablation study generalisation results for the 3D face representation task. The table
reports the Area Under the Curve (AUC) and Failure Rate (FR) of the Cumulative Error
Distributions of Fig. 6.4b.

Method AUC FR (%)

3DFaceGAN 0.741 1.42e-7

3DFaceGAN V3 0.736 2.62e-7

3DFaceGAN V2 0.704 3.15e-6

Baseline (AE) 0.697 4.24-6

6.3.3 Training

We trained all 3DFaceGAN models utilising Adam [175] with �1 = 0.5 and �2 = 0.999. The

batch size we used for the pre-training of the discriminator was 32 for a total of 300 epochs.

The batch size we used for 3DFaceGAN was 16 for a total of 300 epochs. For our model

we used n = 128 convolution filters and a bottleneck of size b = 128. The total number of

trainable parameters was 38.5⇥106. The learning rates that we used for both the pre-training

and training of the discriminator was 5e�5 and the same was for the training of the generator.

We linearly decayed the learning rate by 5% every 30 epochs during training. For the rest of

the parameters, we used �adv = 1e� 3, �rec = 1. Overall training time on a GV100 NVIDIA

GPU was about 5 days.
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Figure 6.5: Qualitative results of 3DFaceGAN compared to CoMA [29] in the 3D representa-
tion task. Moreover, heatmaps are provided, visualising the errors of both approaches against
the ground truth test data. As evidenced, 3DFaceGAN is able to better capture the variation
in the test data, especially in the eye and nose regions, where most of the non-linearities are
present.

6.3.4 3D Face Representation

In the 3D face representation (reconstruction) experiments, we utilise the 3dMD database to

train the algorithms. In particular, we feed the registered 3D data as inputs to the models

and use the same data as target outputs. Before providing the qualitative as well as quantit-

ative results, we briefly describe the baseline models we compared against as well as provide

information about the error metric we used for the quantitative assessment.

Baseline models

In this Section we briefly describe the state-of-the-art models we utilised to compare 3DFace-

GAN against.
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Figure 6.6: Generated faces utilising 3DFaceGAN.

Vanilla Autoencoder (AE)

Vanilla Autoencoder follows exactly the same structure of the discriminator we used in 3DFace-

GAN. We used the same values for the hyper-parameters and the same optimisation process.

This is the main baseline we compared against and the results are provided in the ablation

study in Section 6.3.4.

Convolutional Mesh Autoencoder (CoMA)

In order to train CoMA [29], we use the authors’ publicly available implementation and utilise

the default parameter values, the only di↵erence being that the bottleneck size is 128, to make

a fair comparison against 3DFaceGAN, where we also used a bottleneck size of 128.

Principal Component Analysis (PCA)

We employ and train a standard PCA model [176] based on the meshes of our database we

used for training. We aimed at retaining the 98% of variance of our available training data

which corresponds to the first 50 principal components.
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Progressive GAN (PGAN)

In order to train PGAN [23], we used the authors’ publicly available implementation with

the default parameter values. After the training is complete, in order to represent a test 3D

datum, we invert the generator G as in [177] and [178], i.e., we solve z
⇤ = argmin kx�G(z)k

by applying gradient descent on z while retaining G fixed [178].

Error metric

A common practice when it comes to evaluating statistical shape models is to estimate the

intrinsic characteristics, such as the generalisation of the model [179]. The generalisation

metric captures the ability of a model to represent unseen 3D face shapes during the testing

phase. Table 6.2 presents the generalisation metric for 3DFaceGAN compared against the

baseline models. The Failure Rate mentioned in Table 6.2 and later on in the text, represents

the frequency with which a method fails to represent a 3D face for a specific amount of vertices

within a threshold (the bins of our graph) divided by the total number of bins. Essentially, it is

the probability of failure given a threshold. Moreover, in order to compute the generalisation

error for a given model, we compute the per-vertex Euclidean distance between every sample

of the test set and its corresponding reconstruction. We observe that the model which holds

the best error results and thus demonstrates greater generalisation capabilities is the proposed

3DFaceGAN with mean error 0.0031 and standard deviation 0.0028. Additionally, as shown

in Fig. 6.4a, which depicts the cumulative error distribution of the normalised dense vertex

errors, 3DFaceGAN outperforms all of the baseline models.

Ablation study

In this ablation study we investigate the importance of pre-training the discriminator D prior

to the adversarial training of 3DFaceGAN as well as the freezing of the weights in the de-

coder parts of both D and G. More specifically, we compare 3DFaceGAN against the Vanilla

Autoencoder (AE) and another two 3DFaceGAN possible variations, namely (a) the simplest
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case, where the discriminator and generator structures are retained as is, but no pre-training

takes place prior to the adversarial training (we refer to this methodology as 3DFaceGAN V2),

(b) the case where (i) the discriminator and generator structures are retained as is, (ii) we pre-

train the discriminator and initialise both the generator and the discriminator with the learned

weights with no parameters frozen during the adversarial training (we refer to this method-

ology as 3DFaceGAN V3). As shown in Fig. 6.4b and Table 6.3, 3DFaceGAN outperforms

Vanilla AE and 3DFaceGAN V2 by a large margin. Moreover, 3DFaceGAN also outperforms

3DFaceGAN V3. As a result, not only does 3DFaceGAN have the best performance among the

compared 3DFaceGAN variants, but it also requires less training time compared to 3DFace-

GAN V3, as the parameters in the decoder parts of both the generator and the discriminator

are not updated during the training phase and thus need not be computed.

6.3.5 3D Face Generation

In the 3D face generation experiment, we utilised the 3dMD database to train the algorithms.

In particular, we feed the registered 3D data as inputs to the models and use the same data

as target outputs.

Baseline models

The baseline models we used in this set of experiments are the same as the ones presented in

Section 6.3.4.

Error metric

The metric of choice to quantitatively assess the performance of the models in this set of exper-

iments is specificity [180]. For a randomly generated 3D face, specificity metric measures the

distance of this 3D face to its nearest real 3D face belonging in the test, in terms of minimum

per vertex distance over all samples of the test set. To evaluate this metric, we randomly

generate n = 10, 000 face meshes from each model. Table 6.4 reports the specificity metric
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Table 6.4: Specificity metric on the test set for the 3D face generation task. We generate
10, 000 random faces from each model. The table reports the mean error (Mean) and the
standard deviation (std).

Method Mean std

3DFaceGAN 1.28 ± 0.183

CoMA 1.40 ± 0.205

PCA 1.43 ± 0.232

PGAN 1.79 ± 0.189

Figure 6.7: Generated faces with expression utilising 3DFaceGAN multi-label approach.

for 3DFaceGAN compared against the baseline models. In order to generate random meshes

utilising 3DFaceGAN, we sample from a multivariate Gaussian distribution, as explained in

Section 6.2.3. To generate random meshes utilising PGAN [23], we sample new latent em-

beddings from the multivariate normal distribution and feed them to the generator G. To

generate random faces utilising CoMA [29], we utilise the proposed variational convolutional

mesh autoencoder structure, as described in [29]. For the PCA model [176], we generate

meshes directly from the latent eigenspace by drawing random samples from a Gaussian dis-

tribution defined by the principal eigenvalues. As shown in Table 6.4, 3DFaceGAN achieves
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the best specificity error, outperforming all compared methods by a large margin.

In Fig. 6.6, we present various visualisations of realistic 3D faces generated by 3DFaceGAN.

As can be clearly seen, 3DFaceGAN is able to generate data varying in ethnicity, age, etc.,

thus capturing the whole population spectrum.

6.3.6 Multi-label 3D Face Generation

In this set of experiments, we utilised the 4DFAB [173] data to generate random subjects

of various expressions such as happiness and surprise, as seen in Fig. 6.7. The 3D faces

were generated utilising the methodology detailed in Section 6.2.4. As evinced, 3DFaceGAN

is able to generate expressions of subjects varying in age and ethnicity, while retaining the

high-frequency details of the 3D face.

6.4 Conclusion

In this Chapter we presented the first GAN tailored for the tasks of 3D face representation and

generation. Leveraging the strengths of autoencoder-based discriminators in an adversarial

framework, we presented 3DFaceGAN, a novel technique for training on large-scale 3D facial

scans. As shown in an extensive series of quantitative as well as qualitative experiments against

other state-of-the-art deep networks, 3DFaceGAN improves upon state-of-the-art algorithms

for the tasks at hand by a significant margin.
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Contents

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

In this Thesis, we presented a novel multi-attribute dataset as well as a number of novel

generative algorithms which are able to work e�ciently in both 2D and 3D data, ranging from

component analysis techniques to deep learning methodologies and in particular generative

adversarial networks.

More specifically, in Chapter 3, we presented AgeDB, the first, manually collected “in-

the-wild” age database, which contains annotations for multiple labels as well as attributes.

AgeDB is a facial image database and comes with annotations for the attributes identity,

gender, and age (where the age attribute is accurate to the year). The main advantage

of AgeDB compared to other multi-attribute datasets available in the literature is that the

annotations it contains are manually collected and it is thus a reliable benchmark when it

comes to evaluating the performance of facial analysis algorithms. As we demonstrated in a

series of quantitative and qualitative experiments in applications such as age-invariant face

recognition, age estimation and progression “in-the-wild”, AgeDB can be the leading standard
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for the performance measuring of face analysis algorithms.

In Chapter 4, we presented a novel robust CA algorithm, tailored for 2D facial UV maps,

which can be used in data that are annotated with respect to multiple attributes. The pro-

posed Multi-Attribute Robust Component Analysis (MARCA) is able to exploit all available

label information during training and it is thus able to create more informative subspaces.

At the same time, because of its robustness to di↵erent types of noise such as non-Gaussian,

sparse or Gaussian, it is inherently able to successfully disregard any type of noise. As a result,

it outperforms other robust CA algorithms when applied on multi-attribute datasets, as we

demonstrated in a number of synthetic as well as real-world applications, such as UV map

denoising.

In Chapter 5, we presented Multi-Attribute Probabilistic Linear Discriminant Analysis

(MAPLDA), a novel probabilistic CA algorithm tailored to 3D facial shape identification

as well as generation. Based on Probabilistic Linear Discriminant Analysis (PLDA) [8, 9],

which is a probabilistic model able to work under the assumption of single-attribute data,

in MAPLDA we derived all the necessary theoretical frameworks so that it can work with

data annotated with regards to multiple-attributes. Utilising MAPLDA on multi-attribute

datasets, we are able to extract more meaningful representations of the subspaces compared

to single-attribute methods such as PLDA, and thus conduct better inferences based on the

derived subspaces. As we showed in a number of qualitative as well as quantitative experi-

ments, MAPLDA is able to outperform the compared methods.

In Chapter 6, we presented 3DFaceGAN, which is a GAN tailored to representation and

generation of 3D facial data. Although 3D data are non-Euclidean data and thus operators

such as the 2D convolution cannot be directly applied on 3D data, in 3DFaceGAN we projec-
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ted the 3D meshes on 2D UV maps and we were thus able to perform all standard operations

which are typically used on 2D Euclidean data. Moreover, we developed and presented a

novel GAN loss framework which is able to control the behaviour of the discriminator so that

the performance of the generator is stabilised and improved. Finally, we reported a novel

algorithm which can be used to generate 3D facial data with an increasing level of detail. As

we showed in a number of experiments, both quantitative and qualitative, the performance of

3DFaceGAN is significantly better than the state-of-the-art.

7.1 Future Work

Although AgeDB, introduced in Chapter 3, is a very good benchmark to evaluate face analysis

algorithms, several improvements can be made. Firstly, the size of AgeDB can be further

extended as it now contains around 17k images. By increasing the size of the database, we can

better train DL algorithms which normally requite a significant amount of data. Moreover,

although AgeDB contains a di↵erent range of ethnicities, more emphasis could be put on

ethnicities that are not very prevalent such as the Asian or the Black groups. Finally, more

emphasis could be put in collecting data of younger or older people as most of the AgeDB

identities have ages in the range of 30 to 50 years old.

One of the main arguments against DL is that we do not understand the deep features it

generates and thus the behaviour of certain algorithms cannot be explained in a rigorous way.

CA algorithms could step in and help in this direction and can be used alongside deep network

architectures as follows: we can first extract deep features for the tasks at hand, and then feed

these deep features to CA methods to conduct inferences based on the extracted subspaces.

As a result, on one hand the inferences would then make more sense and on the other hand,

the results could further be improved as it has been demonstrated in [181, 103]. Both MARCA

and MAPLDA introduced in Chapters 4 and 5, respectively, are subspace learning algorithms.
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As such, both approaches could be used on top of deep feature extraction methodologies.

MAPLDA, introduced in Chapter 5, is a probabilistic CA algorithm and use the EM al-

gorithm in the training process. One big challenge in such probabilistic models is the initial-

isation of the parameters. Certain approaches resort to heuristics to make the initialisation

as robust as possible [182] or others do completely random initialisations and keep the best

hyperparameters found based on the validation set [11]. In order to alleviate such drawbacks,

more sophisticated methods should be introduced in the literature to robustly initialise the

parameters, such as the one introduced in [182]. Following this work [182], the algorithm can

be extended and applied on MAPLDA.

Finally, 3DFaceGAN, introduced in Chapter 6, is one of the first attempts towards utilising

GANs tailored for 3D data. Instead of first projecting the 3D data onto UV maps and then

apply standard 2D convolutions, one could directly use mesh convolutions on the registered

meshes. This could improve the performance of 3DFaceGAN as well as reduce the hyper-

parameters needed during training since UV maps contain quite a few interpolated values.

Moreover, both the generator and the discriminator have an autoencoder-like structure, the

latent representations could be used in order to carry out discriminative tasks such as 3D face

verification.
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Appendix — Expectation Maximisation

We have mentioned and used the EM algorithm in 5, in order to compute the optimal set of

parameters ✓. It would be simple to estimate this set of parameters ✓, if the hidden variables

were known or, likewise, it would be simple to estimate the hidden variables if ✓ were known.

Since none of the two above options is available, we resort to the EM algorithm, which is an

algorithm that can e↵ectively manage such kind of mathematical problems.

EM-algorithm [49], [50] is in general a mathematical tool that is employed in order to derive

maximum likelihood solutions to problems with hidden variables. If we denote all the visible

data by X and the hidden variables by Y, the likelihood may be written as follows:

P (X|✓) =
X

Y

P (X,Y|✓) (7.1)

Our goal is to maximise (7.1). In order to achieve this, we firstly have to introduce some more

notation. First of all, the joint (the visible data plus the hidden variables given the set of

parameters ✓) can be manipulated as follows:

P (X,Y|✓) = P (Y|X,✓) · P (X|✓) (7.2)

which follows from the multiplication rule of probability which states that for the dependent
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variables a and b, the following holds:

P (a,b) = P (a|b) · P (b) (7.3)

As a result, from (7.2), the likelihood may be written as follows:

P (X|✓) = P (X,Y|✓)
P (Y|X,✓)

(7.4)

Then, for any PDF q (Y) defined over the hidden variables and by taking the logarithm of the

likelihood, the following holds:

lnP (X|✓) = ln

P (X,Y|✓)
q (Y)

P (Y|X,✓)

q (Y)

(7.5)

Moreover, since q (Y) summed over possible values of y actuals to 1, (7.5) may be rewritten

as follows:

lnP (X|✓) =
X

Y

q (Y) lnP (X,✓) =
X

Y

q (Y) ln

P (X,Y|✓)
q (Y)

P (Y|X,✓)

q (Y)

(7.6)

After some algebraic manipulation, (7.6) may be written as follows:

lnP (X|✓) =
X

Y

q (Y) ln
P (X,Y|✓)

q (Y)
| {z }

L(q,✓)

�
X

Y

q (Y) ln
P (Y|X,✓)

q (Y)
| {z }

KL(q||P )

(7.7)

where L (q,✓) is a functional of q (Y) and KL (q||P ) is the Kullback–Leibler divergence ([183])

which is a statistical tool that measures the distance between two PDFs, it is always non-

negative and in our case equal to zero i↵ P (Y|X,✓) = q (Y). EM is an iterative process

which consists of two parts: the E-step and the M-step and may be run for a couple of times

until a convergence criterion is met.

E step In this step, we are trying to maximise L
�
q,✓old

�
with respect to q (Y), and at the

same time we keep ✓old fixed to its previous set of values (hence the exponent “old”). From

(7.7) we can notice that L
�
q,✓old

�
= lnP (X|✓)�KL (q||P ), so that means that the functional
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L
�
q,✓old

�
, since lnP (X|✓) is not dependent on q (Y), will reach its maximum value when

KL (q||P ) is minimum (so when it is equal to zero). From (7.7) we can see that KL (q||P ) is

equal to zero when q (Y) = P (Y|X,✓). As a result, the E-step is completed by setting q (Y)

equal to the posterior.

M step In this step, q (Y) is kept fixed and we maximise L (q,✓) with respect to ✓. In other

words, with this procedure we update the values for ✓, which we now call ✓new. This step

causes the log likelihood to further increase (unless it is already at a maximum). However, we

should note that q (Y) has been calculated with the previous set of values for ✓ (i.e. ✓old).

That di↵erentiates q (Y) from the posterior (i.e. P (Y|X,✓new)), which is calculated with the

new set of values for ✓, thus making the KL divergence non-zero, which results in a further

increase of the log likelihood than the actual increase in the functional L (q,✓new).
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