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Abstract 

 c-MYC, part of the MYC family of transcription factors, is often deregulated in cancer, 

and since the early 1980’s has been identified as a prime oncogenic factor. Despite much 

research interest, c-MYC’s structural dynamics remain largely uncharted due to its intrinsic 

structural disorder. Disordered proteins are challenging to study using solely structural 

experimental methods, thus lately attention has turned towards the development of reliable in-

silico methods to get an accurate molecular description. Molecular Dynamics simulations, 

commonly and successfully used to study globular proteins, can also be optimised to correctly 

reproduce natural protein disorder. The simulation results were assessed for convergence and 

conformational equilibrium, achieved by comparing the c-MYC’s Molecular Dynamics 

conformational landscape to similar data derived from an abundantly sampled probabilistic 

distribution. After the preparatory and validation work, the efforts turned to the appraisal of c-

MYC’s first 88 amino acids. The revelation of its conformational states and structural dynamics 

opened the door for drug discovery and proof-of-concept that c-MYC should not be considered 

‘undruggable’. Further exploration into the protein first 150 residues, corresponding to its 

transactivation domain, uncovered important structural dynamics controlled by key 

phosphodegron residues. Phosphorylation and mutagenesis studies demonstrated how these 

control mechanisms, which serve to modulate accessibility to crucial regions, are facilitated 

by isomerisation events within the phosphodegron. Overarchingly, this study substantiates the 

robustness of well-parameterised computational simulations, and machine learning methods, 

in uncovering the workings of otherwise difficult to study disordered proteins. 
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Introduction 

1. c-MYC’s research interest timeline 

It was the discovery of tumour-inducing viruses, and the seminal work of virologist Peyton 

Rous, which led to the discovery of oncogenes, including MYC. Well before the advent of 

genetic material isolation, Peyton showed that malignant cellular transformation could be 

transmitted between animals through cell-free chicken sarcoma filtrates (Rous, 1911). This 

spurred intense research into the identification of retroviruses, the understanding of retroviral 

replication mechanism and towards the description of the transforming genetic sequences 

(Varmus, 1984). One of the identified sequences was MC29, an avian leukosis virus, which 

aberrantly transforms myeloid cells and causes myelocytomatosis – a pathology which later 

gave MYC its name (Mladenov et al., 1967). The advances in molecular biology, including the 

technique of hybridisation in solution, allowed researchers to identify the v-MYC gene (the 

viral homolog of c-MYC), and demonstrate that v-MYC is the transforming oncogene in MC29 

(D Sheiness, L Fanshier & J M Bishop, 1978; Pamela Mellon et al., 1978). When, in 1982, c-

MYC was finally cloned and isolated (B Vennstrom et al., 1982) this achievement propelled a 

tidal wave of scientific interest into c-MYC-driven tumorigenesis (Figure 1).  

 

 

Figure 1 – c-MYC timeline. The figure shows the number of publications by year, listed on the 
NCBI’s PubMed database, which used ‘c-MYC’ as an indexing keyword - from 1980 to 2019. 
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The increased research efforts, which started in the early 1980’s, succeeded in identifying 

c-MYC as a key player in most human cancers. The subsequent 2006 ‘boom’ in MYC interest 

was caused by the discovery of c-MYC as an essential factor, alongside Sox2, Oct4, and 

KLF4, in reprogramming differentiated cells and inducing them back to a pluripotent stem-cell 

state (iPS) (Takahashi & Yamanaka, 2006). Since then, interest in c-MYC has been steadily 

increasing and shows little signs of slowing down. 

2. The MYC family of proteins 

c-MYC is a notable member of the MYC basic-helix-loop-helix-zipper (bHLHZ) 

transcription factor family, which also includes N-MYC and L-MYC. The role of the MYC family 

in tissue development and maintenance is well established. Research involving c-MYC 

knockout (KO) mice has shown that c-MYC KO is lethal after 10.5 days of embryonic growth 

and generates specimens of abnormal small size afflicted by severe developmental delays 

(Baudino et al., 2002; Davis et al., 1993). The N‐MYC KO mice tend to die a day later, at 11.5 

days of embryogenesis whilst the L‐MYC KO does not seem to compromise mice viability. 

This suggests that L‐MYC can be substituted by other MYC family proteins and/or is non-

essential for embryonic progression (Charron et al., 1992; K S Hatton et al., 1996; Stanton et 

al., 1992).  

The three MYC family proteins, despite different lengths due to differences in the non-

conserved regions - 439 amino acids (c-MYC), 464 amino acids (N-MYC), and 364 amino 

acids (L-MYC) - display high-structural homology. They are all contain an N-terminus 

transactivation domain, a central section containing a nuclear localization sequence (NLS) 

and a DNA binding domain at the C-terminus. Also, all three MYC proteins contain similar 

stretches of highly conserved sequences, termed MYC boxes (MB), which display up to 95% 

homology (Figure 2) (DePinho et al., 1986; Jacob Sarid et al., 1987; Lawrence W. Stanton, 

Manfred Schwab & J. Michael Bishop, 1986; Legouy et al., 1987). 
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Given the high degree of structural homology, it is unsurprising that all MYC proteins share 

the same basic function of transcriptional regulation.  Each MYC protein, however, has a 

unique expression pattern and is dysregulated in different types of cancer. N-MYC is mainly 

expressed during embryogenesis in the neural tissues of the growing brain, fore and hindbrain. 

After the embryonic stage, N-MYC’s expression is strictly restricted, with little to no N-MYC 

being expressed in fully differentiated tissues (Minna et al., 1986). Consequently, when 

present in cancers, N-MYC’s overexpression is most frequently observed in tumours of neural 

origin, such as gliomas and neuroblastomas (Schwab, 2004). L-MYC, the least studied of the 

MYC proteins, is known to be expressed in both embryonic and mature lung tissue and most 

markedly dysregulated in small cell lung carcinomas (Bertness et al., 1985). Of the three 

transcriptor factors, c-MYC is undoubtedly the most ubiquitous and well expressed in any 

proliferative tissue, both during embryonic/foetal development and in adult animals. Its ubiquity 

implicates c-MYC in the pathogenesis of a great number of malignancies, up to ~60-70% of 

solid and hematopoietic tumours (García-Gutiérrez, Delgado & León, 2019). Unquestionably, 

this makes c-MYC a coveted target for structural and molecular research, drug discovery and 

the main subject matter of this thesis.  

3. c-MYC’s function 

Under normal circumstances, c-MYC is deemed a “master regulator” and controls the 

expression of a staggering number of genes. These genes encode for proteins involved in 

 

Figure 2 – The MYC family of proteins. It shows the location of the MYC boxes (MB) and the basic 
helix‐loop‐helix leucine zipper region (bHLHLZ) in the different MYC proteins. 
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crucial cellular functions including (1) cell growth and cell cycle control; (2) cell metabolism 

and mitochondrial biogenesis; and (3) ribosome biogenesis and protein synthesis (Wahlström 

& Arsenian Henriksson, 2015).  Recent studies have suggested that c-MYC binds to every 

active gene in any given cell type and increases universal transcription by promoting RNA 

Polymerase II pause release at the loci of already actively transcribed genes (Lin et al., 2012; 

Nie et al., 2012; Rahl et al., 2010). According to this model, c-MYC acts as an amplifier of pre-

existing gene transcription programmes, rather than establishing a new one as a sequence-

specific transcriptional activator. This is still subject of much debate because it fails to account 

for c-MYC’s role as a repressor, or if c-MYC-bound genes are responding directly to c-MYC’s 

activity or to a global transcriptional amplification of which c-MYC is only a part (William P. 

Tansey, 2014). 

c-MYC expression is tightly regulated and increases in response to growth factors, 

nutrient abundance, and mitotic stimuli, including signalling from epidermal growth factor 

receptors and platelet-derived growth factor receptors (Oster et al., 2002), and c-MYC rapidly 

rebounds to basal levels as the cell progresses through the cell cycle (Kelly et al., 1983). c-

MYC plays multiple roles in promoting cell cycle progression: (1) it stimulates the transcription 

of cell cycle inducers; (2) represses the activity of cell cycle inhibitors by either blocking their 

transcription (e.g. p21) or enhancing their degradation (e.g. p27); (3) and, together with E2F 

transcription factors, c-MYC upregulates the synthesis of proteins involved in replication 

initiation (Bretones, Delgado & León, 2015). 

In general, c-MYC’s function is achieved by direct transcriptional activation, or 

repression, of its target genes and is modulated by changes in c-MYC expression levels (Walz 

et al., 2014). c-MYC can additionally enhance mRNA 5' end capping by the enzymes RNGTT 

and RNMT-RAM and protect mRNA transcripts from degradation, thus promoting increased 

rates of translation (Dunn & Cowling, 2015). c-MYC is also known to bind ribosomal DNA, 

activate rDNA transcription, regulate the nuclear RNA polymerases’ activity, especially I and 
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III, and upregulate ribosome biogenesis in order to stimulate cell growth (Eisenman et al., 

2003; Galloway et al., 2005; Ridderstråle et al., 2005).   

Recently, c-MYC has been implicated in a partnership with mTOR kinase, the 

mammalian target of rapamycin, to enhance protein synthesis in the cell. c-MYC facilitates 

mTOR’s direct phosphorylation of the tumour suppressor eukaryotic translation initiation factor 

4E (eIF4E) binding protein 1 (4EBP1). The phosphorylation negatively affects 4EBP1’s 

capacity to downregulate the translation initiation factor eIF4E, consequently promoting 

eIF4E’s ability to build up the engagement between mRNAs 5′-cap and the 40S ribosome 

subunit (Michael Pourdehnad et al., 2013). 

Moreover, c-MYC is a general chromatin regulator, able to regulate the expression of, and 

directly bind to, chromatin-modifying complexes (Cheng et al., 2006). c-MYC binds the TRRAP 

coactivator, which subsequently recruits the histone acetyltransferase GCN5 to promote the 

histone acetylation and modulate accessibility to target DNA E-box binding sites (Orian et al., 

2003).  

Somewhat counterintuitive to c-MYC’s role in cell proliferation is its activity as a pro-

apoptotic factor (Askew et al., 1991; Evan et al., 1992; Shi, Y. et al., 1992). Paradoxically, in 

non-transformed cells c-MYC’s role in promoting apoptosis prevents tumorigenesis (Nilsson 

& Cleveland, 2003), which suggests that neoplasia can only occur when c-MYC’s pro-

apoptotic function is abrogated by loss of tumour suppressor pathways (e.g. p53) or 

overexpression of anti-apoptotic factors (Fanidi, Harrington & Evan, 1992). Ultimately, c-

MYC’s activity is so broad, it initiates such a complex and multi-layered expansion programme 

that it is crucial for the cell to be able to strictly control it at every step. 

4. c-MYC’s tight regulation in cells 

c-MYC’s levels are tightly controlled at both transcription and translation stages, chiefly by 

modulating its stability. c-MYC’s expression regulation can be achieved via microRNAs 

(miRNA) and long noncoding RNA control (lncRNA). Twenty-five miRNAs have been identified 
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as c-MYC regulators with most of them binding c-MYC transcripts directly (Swier, Lotteke J. 

Y. M et al., 2019). Other miRNAs, such as miR‐24‐3p, target c-MYC in a more indirect manner: 

by supressing c-MYC’s O-GlcNAcylation via O-GlcNAc transferase (OGT) and causing loss 

of c-MYC’s stability (Liu, Yubo et al., 2017).  

Several lncRNAs, including CCAT1‐L, have also been shown to upregulate c-MYC’s 

transcription in cis by controlling chromatin interactions with the locus of c-MYC transcription 

(Xiang et al., 2014). Whilst other lncRNAs, such as IGF2BPs, can bind to and enhance c-

MYC’s mRNA stability, thereby promoting its translation efficiency (Huang, Huilin et al., 2018). 

Yet other lncRNA’s can directly affect c-MYC protein stability by interfering with its 

degradation. One example is PVT1, a lncRNA that prevents the phosphorylation of c-MYC’s 

threonine 58 and keeps the protein from being targeting for destruction (Tseng et al., 2014); 

and LINC01638, which prevents c-MYC from binding to the E3 ubiquitin ligase adapter SPOP 

(Luo et al., 2018).  

Additional checkpoints for c-MYC include the tight regulation of c-MYC’s transcript 

transport to the cytoplasm by the eukaryotic translation initiation factor (eIF4E) (Biljana 

Culjkovic et al., 2006); its translational supression via the activity of RNA-binding proteins; and 

its own very short mRNA half-life (Farrell & Sears, 2014). 

Post-translationally, c-MYC is also under intense scrutiny. This type of control is often 

achieved by triggering the protein degradation system which relies on a complex network of 

protein interactions mediated by c-MYC’s patterns of posttranslational modifications including 

phosphorylation, acetylation, glycosylation, and ubiquitylation (Hann, 2006). These 

modifications regulate much of c-MYC’s activity in terms of transcriptional activation, 

repression, and protein destruction. In tandem, the activity of proapoptotic and tumour 

suppressor proteins such as p53, BIM, ARF and PTEN act as further barriers which keep c-

MYC in balance (Stine et al., 2015). c-MYC’s regulatory mechanisms are so crucial that any 

failure invariably leads to c-MYC dysregulation and, with it, the destructive c-MYC-induced 

oncogenic progression. 
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5. c-MYC and cancer 

Given c-MYC’s broad influence, even small changes in expression levels can cause 

large-scale abnormalities. These effects include c-MYC’s oncogenic activation and are 

influenced by the epigenetic pattern specific to the cell type (Beer et al., 2004). c-MYC 

neoplasia frequently involves cooperation with other oncogenic agents driving loss of 

regulatory checkpoints, tumour suppressor proteins and feedback loops, which keep c-MYC 

dependent on mitotic stimuli (Gabay, Li & Felsher, 2014). When c-MYC reaches oncogenic 

levels, its far reaching interactome helps the cancer cell survive, proliferate, invade, and thrive 

in a hypoxic environment, by reprogramming the cancer cell’s various functional pathways to 

support it (Dang, Chi V, 2012).  

In terms of metabolic alterations, c-MYC stimulates the expression of genes involved 

in glycolysis and glucose uptake. c-MYC regulates the activity of the enzyme lactate 

dehydrogenase A (LDH-A), which converts pyruvate to lactate in the glycolytic cycle (Hyunsuk 

Shim et al., 1997). This has been established in vivo, with mice overexpressing c-MYC in liver 

cells also demonstrating increased hepatic glycolysis and lactate production (Valera et al., 

1995). Moreover, c-MYC controls genes involved in glucose metabolism including glucose 

transporter GLUT1, hexokinase 2 (HK2), phosphofructokinase (PFKM), and enolase 1 (ENO1) 

and through their activity promotes the Warburg effect in cancer cells (Chi V. Dang, Anne Le 

& Ping Gao, 2009), which can be so significant that some cancer cells become addicted and 

undergo apoptosis if glucose deprived (Hyunsuk Shim et al., 1998). 

Equally important in c-MYC-driven cancer is its dependence on glutamine as an energy 

source for growth and proliferation (Gao et al., 2009).  This is induced by c-MYC’s upregulation 

of key glutamine metabolism enzymes, such as the glutamine importer ASCT2 (David R. Wise 

et al., 2008); and c-MYC transcriptional repression of miRNAs, miR-23a and miR-23b80, 

leading to increased expression of mitochondrial glutaminase (GLS), which further 

upregulates the glutamine metabolism (Miller et al., 2012). This is an important pathway for 

the stressed, nutrient and oxygen deprived cancer cell, as glutamine can be used a source of 
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energy, nitrogen, and carbon substrate for cancer cellular anabolism (Miller et al., 2012). The 

(Le et al., 2012) study ties together the importance of both glycolysis and glutamine 

metabolism for cancer cells, by showing that c-MYC’s overexpression leads to both the 

transformation of glucose into lactic acid, and glutamine oxidation through the tricarboxylic 

acid (TCA) cycle. Furthermore, it showed that in hypoxia and glucose-depleted conditions the 

glutamine metabolism prevails, maintaining cell survival and viability. In that inhospitable 

environment, glutamine was also used by the transformed cells to synthesize glutathione, a 

reducing agent capable of shielding the mitochondria from the accumulation of harmful 

reactive oxygen species (ROS). As proof-of-concept, (Le et al., 2012) study demonstrated that 

the inhibition of glutaminase had an apoptotic effect on tumour cells. c-MYC also plays a vital 

role in amplifying mitochondrial biogenesis - its nuclear genes are prime c-MYC targets (Antje 

Menssen & Heiko Hermeking, 2002; Guo, Q. M. et al., 2000; Hilary A. Coller et al., 2000), as 

well as genes coding for proteins involved in mitochondrial activity (Antje Menssen & Heiko 

Hermeking, 2002; Fernandez et al., 2003). This directly implicates c-MYC overexpression with 

an increase in mitochondrial-derived ROS and DNA oxidative damage, which compromises 

the cell’s genomic integrity often observed in c-MYC-driven neoplasia (Dang, Chi V., Li & Lee, 

2005). On the other hand, c-MYC is known to promote the overexpression of mitochondrial 

serine hydroxymethyltransferase (SHMT), notably SHMT2, in order to protect cancer cells 

from oxidative damage in hypoxia conditions (Ye et al., 2014). Moreover, c-MYC modulates 

mitochondrial function by promoting the synthesis of acetyl-CoA which is then used to promote 

lipid biosynthesis and histone acetylation (Morrish et al., 2010).  

Among c-MYC’s many functions in cancer, it has been suggested that c-MYC directly 

promotes transcription of genes responsible for de novo nucleotide synthesis proteins 

(PRSP2, inosine monophosphate dehydrogenase and thymidylate synthase) and enhances 

serine and glycine synthesis from glycolytic intermediates (Liu, Yen-Chun et al., 2008; 

Vazquez, Markert & Oltvai, 2011).  Furthermore, it increases cell membrane synthesis by 

upregulating genes encoding for de novo fatty acid biosynthesis (ACC, FASN and SCD), whilst 
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keeping them from being used as energy sources (Hsieh et al., 2015; Karen I. Zeller et al., 

2006). And, also known to upregulate cholesterol synthesis by promoting the expression of 

the enzyme hydroxymethylglutaryl coenzyme A reductase (HMG-CoA reductase) (Zhong et 

al., 2014).  Lastly, recent research has uncovered c-MYC’s role in influencing the tumour 

environment by promoting angiogenesis and metastasis. In hypoxic conditions, c-MYC was 

found to inhibit the microRNA tumour suppressor cluster miR-15-16 by upregulating HIF-2α 

and causing the loss of posttranscriptional repression of the angiogenic growth factor FGF2 

(Xue et al., 2015). Although c-MYC’s broad influence in cancer pathogenesis is becoming 

clearer, much remains to be explored. This is especially true when it comes to c-MYC’s own 

structural dynamics, the relationship between structure and function and the rationale behind 

c-MYC’s interactions decisions. 

6. c-MYC’s architecture and interactome 

c-MYC contains a DNA binding domain that is followed by a helix–loop–helix/leucine 

zipper (bHLH-LZ) motif at the C-terminal. The DNA binding domain is the locus of c-MYC’s 

heterodimerisation with its partner molecule Max (Figure 3). This c-MYC/Max partnership 

enables the molecular complex to recognise and bind to DNA E-box sequences and recruit 

the transcriptional machinery required to activate specific target genes (Thomas et al., 2015). 

 

 

Figure 3 – Figure depicts the crystal structure of the c-MYC-MAX heterodimer binding a DNA 
molecule (PDB# 1NKP acquired from the Protein Data Bank). 
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The human c-MYC protein contains several highly conserved regions termed MYC boxes 

(MB). These MBs, as well the bHLH-LZ DNA binding domain, facilitate interactions between 

c-MYC and its molecular partners (Figure 4).  

 

The first three MB are located within c-MYC’s transcriptional activation domain (TAD) which 

spans residues 1 to 143. MB0, comprised of residues 10 to 32, has been identified as the 

binding site for the prolyl isomerase PIN1 (Helander et al., 2015). It has been proposed that 

PIN1 regulates c-MYC activity by allosterically modulating proline isomerisation in MBI’s 

phosphodegron (Helander et al., 2015). MBI, spans residues 45 to 63 and contains within it a 

phosphodegron with two phosphorylation sites - THR58 and SER62. The regulation of the 

MBI’s phosphodegron phosphorylation is especially important since it directly dictates c-

MYC’s fate (Helander et al., 2015).  

Figure 5, which summarises the signalling pathways promoting c-MYC’s transcriptional 

activation and degradation. In response to growth factors, c-MYC is phosphorylated at serine 

62 via mitogenic-stimulated kinases, such as extracellular signal-regulated kinases (ERKs) 

and CDKs (Sears, 2004).  

 

Figure 4 – This diagram depicts c-MYC’s main domains and the MYC boxes location as well as the 
binding sites of some of the co-factors, transcriptional activators and repressors, that are known to 
interact with c-MYC.  
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Upon serine 62 phosphorylation PIN1 isomerisation activates a stabilised c-MYC for 

transcriptional activity (Amy S. Farrell et al., 2013). Serine 62 phosphorylation also promotes 

the subsequent threonine 58 phosphorylation via the activity of glycogen synthase kinase 3-β 

(GSK3β) (Mark A. Gregory, Ying Qi & Stephen R. Hann, 2003). c-MYC now displaying 

threonine 58 and serine 62 phosphorylation, encourages a second PIN1 isomerisation which 

induces PP2A phosphatase to dephosphorylate serine 62 (Arnold & Sears, 2006). With only 

threonine 58 phosphorylation remaining, c-MYC is now recognised by the Skp1-Cullin-F-box 

protein-Fbxw7 (SCFFbxw7) ubiquitin ligase which mediates ubiquitylation and subsequent 

proteasomal degradation by the 26S proteasome (Ishida et al., 2004; Markus Welcker et al., 

2004). 

 c-MYC can be degraded via alternative pathways, notably by the action of SKP2 - a 

ubiquitin kinase that, somewhat paradoxically, can simultaneously act as a c-MYC 

transcriptional activator as well as an inhibitor (Kim et al., 2003).  

MBII spans residues 128 to 143 and is a critical region for the recruitment of multiple 

key c-MYC co-factors and interactors. Of these, the transformation/transcription domain-

associated protein, or TRRAP, is perhaps one of the most important. TRRAP is an adaptor 

protein which provides scaffolding for the assembly of protein complexes with other co-factors. 

It forms STAGA complexes which possess histone acetyltransferase (HAT) activity (Zhang, 

 

Figure 5 – This diagram, adapted from the Helander et al. (2015) paper, highlights the transcriptional 
activation and proteasomal degradation pathways for c-MYC. These pathways involve PIN1-
mediated isomerisation control of successive phospho and dephosphorylation events in MBI 
phosphodegron residues (T58 and S62). 
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N. et al., 2014). These HAT-containing complexes include the General Control of Amino Acid 

Synthesis Protein 5-Like 2 (GCN5) and the 60kDa Tat Interacting Protein (TIP60), and mediate 

histone acetylation and gene activation on target promoters (Jagruti H. Patel et al., 2004; 

Steven B. McMahon, Marcelo A. Wood & Michael D. Cole, 2000). The p300 and cyclic AMP 

response element-binding protein (CBP), which are also transcriptional co-factors and histone 

acetyltransferases themselves, are known to bind c-MYC at two locations. The first binding 

site, spanning residues 1 to 110, mediates c-MYC’s transactivating activity and acts as a c-

MYC regulator by promoting direct lysine acetylation and protein instability (Francesco Faiola 

et al., 2005). The second binding site at the C-terminus is reported to function as an activator 

(Austen et al., 2003). Additionally, the MB0-MBII TAD region interacts with other regulatory c-

MYC partners: the BET bromodomain protein BRD4, to promote transcriptional regulation at 

the initiation and elongation steps and the P-TEFb which controls the transcriptional pause-

release at active genes (Rahl & Young, 2014). The MBIII is another important locus of 

interactions, particularly with the WD repeat-containing protein 5, or WDR5. The c-MYC-

WDR5 complex enhances chromatin-binding at target genes and play a crucial role in gene 

recognition (Thomas et al., 2015). Downstream of the WDR5’s binding site, c-MYC contains 

a PEST sequence, spanning amino acids 207 to 269, very common in short lived proteins 

(Rechsteiner & Rogers, 1996). The PEST region is implicated in efficient c-MYC proteolysis 

and c-MYC mutants deprived of its PEST sequence become much stabilised (Gregory and 

Hann, 2000).  Additionally, c-MYC has been found to contain, at residue lysine 298, a calpain-

sensitive cleavage site. The proteolytic cleavage at this site creates a cytoplasmic c-MYC 

product termed ‘MYC-nick’. MYC-nick was found to promote acetylation of microtubules, 

involving to recruitment of the TRRAP-GCN5 complex, with an important role in myogenic 

differentiation  (Conacci-Sorrell, Ngouenet & Eisenman, 2010; Mousavi & Sartorelli, 2010). 

Lastly, c-MYC is known to sequester the zinc finger protein MIZ-1. This interaction 

transforms c-MYC from a transcriptional activator to a repressor. It enables it to recruit DNA 

methylases (including DNA methyltransferase DMNT3A), histone deacetylases and polycomb 
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proteins to repress transcription (Corvetta et al., 2013; Kouzarides et al., 2005; Licchesi et al., 

2010; Zhang, X. et al., 2012). The c-MYC-MAX-MIZ-1 complex is involved in repression of cell 

cycle inhibitors such as CDK inhibitor p15Ink4b (CDKN2B) and is implicated in preventing cell 

growth inhibition (Seoane et al., 2001).  

Overall, research into c-MYC’s MBs and its interactors emphasizes how crucial these 

regions are for gene transactivation and transrepression. However, despite its importance, the 

exact mechanism(s) behind c-MYC’s interaction decisions with such a variety of co-factors is 

still scantily known (Tu et al., 2015). Questions such as how much each interactor contributes 

to c-MYC’s role in tumorigenesis, have no clear answer. c-MYC’s promiscuous behaviour, 

establishing multiple partnerships with a growing list of co-factors, firmly plants c-MYC at the 

centre of many signalling pathways - each if targeted, could potentially halt the oncogenic 

progression. However, this would require detailed information into c-MYC’s structural 

dynamics and how these relate to c-MYC’s interactions – such endeavour has remained 

elusive. Indeed, without a clearer understanding of the protein’s structure and its 

conformational dynamics, drug discovery or any attempts to target the c-MYC transcriptional 

cascade are severely challenged. The main reason for the lack of structural insights is c-

MYC’s intrinsic disorder. Intrinsically disordered proteins (IDPs) structural dynamics differ from 

canonical proteins. Instead of folding predictably, according to it amino acid sequence, IDPs 

exist in a rapidly changing ensemble of configurations. This structural diversity allows them to 

easily bind multiple partners, co-factors and be at the centre of important cellular pathways 

(Levine & Shea, 2017). IDPs behaviour occurs due to their peculiar amino acid composition, 

an enrichment in polar amino acids coupled with depletion of hydrophobic residues hinders 

the formation of hydrophobic cores, causes destabilisation of the protein fold and allows IDPs 

to sample a wide range of alternate conformations (Babu, 2016). The greatest challenge when 

studying IDPs is finding methods which preserve and accurately describe their rich dynamic 

disorder. Conventionally applied structural methods, such as x-ray crystallography, are often 

unsuitable to assess IDPs – these proteins do not form crystals and inhabit a vast number of 
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conformations which cannot be described by a few high-resolution models.  Even Nuclear 

Magnetic Resonance (NMR) studies are not a standalone option. The NMR ensemble-

averages provide insufficient data to create a robust protein model accounting for state 

transitions, or pocket formations - helpful in the drug discovery process. Recently, in silico 

methods such as molecular dynamics (MD) simulations have been proposed as promising 

alternative methods for IDP exploration. MD simulations can reveal with atomistic detail the 

structural dynamics of the protein over time, its intra and interprotein interactions and target it 

with drug discovery protocols (Chong, Chatterjee & Ham, 2017).  

7. Using Molecular Dynamics Simulations to study IDPs 

MD simulations started with the simulation of simple gasses in the 1950’s (Alder & 

Wainwright, 1957), and progressed to biological systems in the 1970’s with the MD simulation 

of the bovine pancreatic trypsin inhibitor (Gelin, Karplus & McCammon, 1977).  Since then 

interest in MD simulations has soared, owing to an exponential increase in molecular biology 

papers, and associate disciplines, presenting MD results to help interpret and guide 

experimental work (Figure 6). 

 

 

Figure 6 – Molecular dynamics simulations publications timeline. The figure shows the number 
of publications by year, listed on the NCBI’s PubMed database, that include the term “molecular 
dynamics” in either the title, abstract or keywords. - from 1970 to 2019.  
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The increased interest in MD simulations was facilitated by the rise in efficient and 

accessible computational resources, particularly since the early 2000’s. Nowadays, MD 

simulations no longer require Anton-like supercomputers but can be run on regular computer 

hardware using graphics processing units (GPUs), which permits low cost simulation 

parallelisation (John E Stone et al., Jan 1, 2016; Salomon-Ferrer et al., 2013). Over time, the 

MD simulation software packages have become more user-friendly and the physical models, 

underpinning the biological systems simulation estimates, notably increased in accuracy 

(Hollingsworth & Dror, 2018). 

MD simulations are established as the evolution of cartesian coordinates for every 

atom in a system, using a general physics model governing particle interaction (McCammon 

& Karplus, 2002). Given a starting set of atomic coordinates it is possible to calculate the 

velocity, directionality and spatial location of each atom based on the force exerted on it by 

the remainder atoms in the system. These calculations over time are done by numerically 

solving Newton’s laws of motion and result in a trajectory of atoms. This trajectory enables the 

study of a variety of processes, including structural and conformational changes, protein-

protein interactions, ligand binding, drug discovery, protein folding and energetics and the 

system’s response to perturbations, such as mutations and posttranslational modifications 

(Hollingsworth & Dror, 2018). MD simulations allows research that would otherwise be 

impossible, such as determining the exact position of every atom in a molecule at any point in 

time. It also affords absolute control over the experiment’s conditions – from the initial 

conformation of the system, to the temperature, presence of ligands, presence of interactors, 

protonation state, solvent and ions, pH, etc. Modifying and comparing across different 

parameters makes it is possible to investigate a very wide scope of research questions. Once 

the parameters are decided and the system is created, the forces exerted on each atom are 

calculated by deriving equations, known as force-fields, where the potential energy is 

extracted directly from the molecular structure. Force fields are empirical potential energy 

functions derived from the molecule’s bonded interactions (bonds, angles, and dihedrals 
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potentials) and the nonbonded interatomic electrostatic interactions (van der Waals and 

Coulomb potentials) between every atom, to calculate the total energy the system (Hospital et 

al., 2015).  

Although performing MD simulations is now relatively straightforward and the 

computational resources commonly accessible, there is still much to be explored in terms of 

implementing adequate methods for studying different biological systems. There is much to 

be optimised regarding the in silico experimental design, comparing experimental data to 

simulation data and interpreting noisy MD results to gain valid biological insights. 

 

8.  Aims of the project 

This work focuses on exploring c-MYC’s transactivation domain, for which there is little 

information concerning its structural dynamics. This lack of knowledge has impaired any solid 

understanding of c-MYC’s intra and intermolecular interactions and has dampened attempts 

for drug discovery. Given the importance of intrinsically disordered transcription factors, such 

as c-MYC, in molecular biology and cancer research, it is vital to find new ways to study these 

systems. This project addresses these questions by using a combination of MD simulations, 

experimental data, and machine learning analysis to shed light on c-MYC, which for far too 

long has been deemed an ‘undruggable black box’. 
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Materials and Methods 

1. MD simulations setup 

 The MD simulations were created using the AMBER16 MD simulation package (Case 

et al., 2016). To study the force fields, the only difference in the simulation preparation was 

the force field used: the conventional AMBER ff14SB force field (Maier et al., 2015);  the 

ff14IDPs force field (Song et al., 2017); and the updated ff14IDPSFF (Song, Luo & Chen, 

2017). All other aspects of simulation parameterisation remained the same: 

• LEaP (part of AmberTools 16 analysis suite) was used to parameterise and prepare 

the structures for simulation (Case et al., 2016) . TIP3P water model was used to 

solvate the system for all simulations. A periodic water box was created with a 15 Å 

distance between the Histatin 5 molecule and the limits of the box. The solvation 

environment was enriched with Na+ and Cl- ions to a final concentration of 150 mM 

NaCl. LEaP’s output files (.prmtop and .inpcrd files) were used to run the conventional 

molecular dynamics (cMD) simulation. An example of the system preparation file can 

be found in the supplementary information section suppl. Figure S8. 

• The cMD consisted of two successive minimisations (min1 and min2). The 

minimisations were followed by two molecular dynamic stages (md1 and md2). Files 

with input examples can be found in suppl. Figure S9.  

o Min1 consisted of solvent minimisation run with the protein fixed, 10000 

maximum cycles and 5000 ncycles of steepest descent. 

o Min2 consisted to a total system minimisation with 2500 maximum cycles and 

1000 ncycles of steepest descent. 

o Md1 entailed 100 ps of MD with weak restraints on the protein to reach a 

temperature of 310K. It used Langevin dynamics for temperature control. A 

total 50000 MD-steps were performed at a 0.002 ps time step. 
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o Md2 created a 1000 ns simulation of the whole unrestrained system at a 

temperature of 310K. It used Langevin dynamics for temperature control. A 

total 500000000 MD-steps were performed at a 0.002 ps time step. 

o Simulations were executed via the pmemd.cuda (Amber 16), relying on 

exclusive GPU usage, to obtain total potential (EPTOT) and dihedral (DIHED) 

energy values used for setting up the accelerated molecular dynamics (aMD) 

(Salomon-Ferrer et al., 2013).  

• The EPTOT and DIHED energy values obtained from the cMD were used to calculate 

thresholds and to run the aMD also on pmemd.cuda. Each aMD created a 1000 ns 

simulation of the system at 310K also using Langevin dynamics as a thermostat. An 

example file for aMD setup can be found in suppl. Figure S10. 

The explicit water models’ simulations were setup using the exact same protocol both 

the TIP3P simulations and the TIP4-D water model simulations, as developed by (Piana et al., 

2015).  

For the implicit solvent simulations, the starting structure was prepared with LEaP to using 

the modified ff14SBonlysc as a force field without any water box parameters. Several GB 

implementations were tested but only the GB8 model for solvation was found to accurately 

describe the protein and was used to execute the simulations. Since the simulations did not 

contain water molecules, only a short total system minimisation was performed consisting of 

5000 maximum cycles and 2500 ncycles of steepest descent. After the minimisation, the 

simulations were executed for a total of 1000 ns per run at a temperature of 310K, using 

Langevin dynamics as a thermostat and a time step of 0.002 ps. The protocols used to prepare 

the Histatin 5 simulations were replicated for the MYC88 and MYC150 simulations. The 

MYC88 refers to c-MYC’s first 88 amino acids and MYC150 to the first 150 amino, which 

correspond to the entire transactivation domain. The starting structure for all Histatin 5 

simulations was created unstructured to avoid conformational bias using PyMOL v1.8.6.0 

(Schrodinger, 2010). The starting structures for both MYC88 and MYC150 simulations were 
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created using QUARK ab initio protein structure prediction software  (Xu & Zhang, 2012; Xu 

& Zhang, 2013). MCMC representative structures obtained via K-means clustering, using the 

cluster centres representative structures were also used as input coordinates. The starting 

structures for the phosphorylated pTHR58 and pSER62 were prepared completely extended 

using LEaP (Case et al., 2016), based only on their amino acid sequence.  

2. MCMC simulations 

The Markov chain Monte Carlo (MCMC) simulations used the PHAISTOS programme 

package for protein structure inference (Boomsma et al., 2013). An example for the MCMC 

simulation input file can be found in suppl. Figure S13. Two sets of MCMC independent 

simulations were set up with 25 threads each. Each thread simulated a total of 2000 structures. 

Therefore, a total of 100000 structures were obtained for analysis. To avoid any structural 

bias, the simulations were parameterised using the amino acid sequence as sole input. The 

backbone and sidechains were efficiently sampled using both pivot-uniform and sidechain-

uniform moves. These moves are widely used in Monte Carlo simulations and produce a 

random, uniformly distributed rotation of the dihedral (φ, ψ angles) and sidechain torsion 

angles (χ angles) in single residues. The energy terms integrated the highly efficient Profasi 

force-field, parameterised to simulate interactions in the presence of a solvent. The Metropolis-

Hastings algorithm was used as the acceptance criterion for the simulation method.  

3. Trajectory analysis 

The geometric measures such as RMSD, Rg, distances, solvent-accessible surface area 

(SASA), hydrogen bonds, dihedrals and the trajectory clustering analysis in Chapter I was 

calculated using CPPTRAJ (Roe & Cheatham, 2013). An example file for CPPTRAJ 

calculations can be found in suppl. Figure S11. The simulation’s secondary structure 

propensities calculation was done using VMD’s  (Humphrey, Dalke & Schulten, 1996) timeline 

feature. The Sα assessment was conducted using the open-source PLUMED library version 2 

(Tribello et al., 2014) implementing (Pietrucci & Laio, 2009) protocol. The Ramachandran and 
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Psi-Omega plots were calculated using the Dihedral module of the MDAnalysis Python 

package (Gowers et al., Sep 11, 2016; Michaud‐Agrawal et al., 2011). 

Plots and graphs were created using custom Python scripts and the Plotly package, 

GraphPad Prism version 8.3.1 for Windows (GraphPad Software, 2020) and Gnuplot 5.2 

(Williams et al., 2018). 

4. PCA and TICA analysis 

The principal component analysis (PCA) calculation of the XYZ trajectory coordinates was 

obtained using the R package Bio3D (Grant et al., 2006). The dihedral PCA ‘featurised’ with 

the backbone dihedrals was calculated according to the published protocol (Mu, Nguyen & 

Stock, 2005; Sittel, Jain & Stock, 2014)using the GROMACS analysis tools package (Abraham 

et al., 2015). The PCA using the pairwise distances between alpha carbons was calculated 

using the Python MDtraj package (McGibbon et al., 2015). The time-lagged independent 

component analysis (TICA) and associated plots was produced using the Pyemma 2.5.7 

package for Python (Scherer et al., 2015). The TICA was performed using the backbone 

torsion angles for featurisation at a lag of 20 nanoseconds projected over two independent 

components. The Rg of gyration of 45 structures per TICA state were considered to calculate 

the average. Example scripts for both the PCA and TICA analysis can be found in the 

supplementary information section - suppl. Figures S12 and S15, respectively. 

5. Rg peak detection 

The peak minimum and maximum analysis of the radius of gyration over time plot was done 

using the argrelextrema package imported from the scipy.signal module. The local peaks were 

found using a window of 500 to avoid the noise of neighbouring unimportant peaks. An 

example script for the peak analysis can be found in suppl. Figure S14. 

6. Network analysis and contact activity 

The contact analysis was done by deploying a Python custom script which used 

CPPTRAJ-calculated distance data between each MYC150 residue and every other residue 
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in the protein. The cut off distance was 10 Å, and an offset of 10 residues, allowed for local 

interactions to be removed to focus only on long-range interactions. The network analysis 

used the same CPPTRAJ distance calculations to establish the functionally important residues 

for the web of intramolecular contacts. This was created using the Python networkx package. 

The monitoring of contact activity in the MD simulation trajectories was achieved using the 

python module tagging.py from the D.E. Shaw’s Timescapes 1.5 suite of programs (Kovacs & 

Wriggers, 2016; Wriggers et al., 2009). The cutoff contact distance was set at 6.0 angstroms. 

The turning.py module from Timescapes 1.5 was used to map important residues based on 

their correlations of backbone pivot angles, which display hinge bending. The pivot angles 

coefficient calculations are based on the ‘pseudodihedral’ angles created by four consecutive 

α carbons. 

7. Pocket prediction, docking setup and drug discovery 

The identification of a druggable region entailed the deployment of several predictive 

methods: CASTp 3.0, a geometry-based pocket calculation (Dundas et al., 2006); FTMap for 

the detection of binding hotspots using organic probes (Kozakov et al., 2015); Pockdrug which 

calculates suitable pockets by assessing correct geometry and biochemical composition 

(Hussein et al., 2015); MDPocket to assess the stability of the pocket over time (Schmidtke et 

al., 2011). 

The process of drug screening and protein-ligand docking was conducted using AutoDock 

Vina and the established Vina protocol described in literature (Trott & Olson, 2010) and iDock 

(Hongjian Li, Kwong-Sak Leung & Man-Hon Wong, May 2012). For both tools the exact same 

coordinates, corresponding to the calculated pocket, were used as the docking site. The 

compound screening searched for suitable small ligands from the ZINC the libraries ‘All clean’, 

‘Natural Products’ and ‘FDA approved’, part of the freely available ZINC database (Irwin et al., 

2012).  A total of 23,221,614 compounds were screened - 23,129,083 compounds coming 

from the ‘All clean’ library and 92,531 compounds coming from the ‘FDA approved’ and 
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‘Natural Products’ combined libraries. Subsequently, a compilation containing the 10000 best 

scoring ligands, in terms of their binding affinity to MYC88, was analysed to identify drug 

candidates that satisfied the lead-like ligand conditions and/or the Lipinski rule. This was done 

using a custom R script deploying the GGPLOT2 package (Wickham, 2016). 

8. The experimental methods 

The Histatin 5 SAXS data used in this study was generated by (Cragnell et al., 2016)  

and acquired according to their published protocol. The Histatin 5 NMR data was derived from 

(Raj, Marcus & Sukumaran, 1998). The MYC88 NMR-derived secondary structure 

propensities were obtained from (Andresen et al., 2012) published work. 

Regarding the MYC150 experimental CD data, the plasmid containing human c-MYC 

residues 1–150 with a N-terminal 6× His tag was expressed in BL21-DE3 competent cells and 

incubated at 37oC overnight. The cells were cultured at 37oC overnight in auto induction media 

(containing 0.6% Na2HPO4, 0.3% KH2PO4, 2% tryptone, 0.5% yeast extract, 0.5% NaCl, 1% 

of 60% v/v Glycerol, 0.5% of 10% w/v Glucose, 2.5% of w/v 8% Lactose) supplemented with 

ampicillin to the final concentration of 100ug/ml. Subsequently, the cells were harvested, 

pelleted and the pellet frozen at -80oC for 1 hour. The pellet was resuspended in buffer 

containing PBS, 10/% glycerol and 15mM of mercaptoethanol. The sample was then sonicated 

on ice 3 × 30 s and centrifuged at 10 000g for 10 min. Followed this, the pellet was 

resuspended in lysis buffer containing 1% lysozyme, 5% sodium deoxycholate and 0.2% 

EDTA and left to incubate at room temperature for 90 minutes. This was followed by a 10 000g 

centrifugation run for 10 min after which the sample was resuspended in lysis buffer and left 

overnight to incubate. The sample was then centrifuged, resuspended in buffer without 

lysozyme, centrifuged again in resuspended in dH2O and 15mM mercaptoethanol. The 

sample was then purified using ion exchange chromatography and left to dialyse overnight in 

dialysis buffer containing sodium fluoride. The sample was then analysed with circular 

dichroism (CD) using an Applied Photophysics Chirascan machine. The CD spectrum was 

obtained at a temperature of 25oC, wavelength range between 190 to 260 nm, at a 0.5nm 
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intervals, with a bandwidth of 1 nm and at 1 second per time point. Protein purity was assessed 

using MALDI–TOF–MS analysis. 

9.  Experimental data analysis 

The theoretical Cα proton chemical shifts were calculated for each trajectory, sampled 

at every 10 ns, using SPARTA+ (Shen & Bax, 2010). Scatter Biosis software (Rambo, 2017) 

was used to calculate the theoretical SAXS intensities of the simulation representative 

structures, for comparison with the experimental data. The experimental SAXS data was 

analysed using GNOM and PRIMUS, part of a suite of programmes developed for small angle 

scattering data analysis (ATSAS data analysis software) (Konarev et al., 2003; Petoukhov et 

al., 2012; Svergun, 1992). The circular dichroism (CD) protein spectra analysis was performed 

using the Dichroweb tool (Whitmore & Wallace, 2004; Whitmore & Wallace, 2008), the 

SELCON 3 method (Sreerama & Woody, 2000), a scale factor of 1.5 and the reference set 7, 

appropriate for IDPs. 
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Chapter I – MD parameterisation for IDPs 

1. Introduction 

The proposal that IDPs can be successfully studied using MD simulation is heavily 

reliant on the accuracy of the calculated properties, and on the correctness of the simulation 

parameterisation. Amongst the most well-studied and popular force fields packages, AMBER, 

GROMOS and CHARMM are typically used to set up the MD simulations in molecular biology. 

However, commonly used force fields and solvation models are known to present with different 

performance biases (Table 1).  

 

Table 1 – Performance comparison of commonly used force fields, and solvation methods, in the 
structural characterisation of different protein systems. 

Force field Package Solvation Performance bias Reference 

ff99 AMBER TIP3P Overestimates α-helical content. (Hornak et al., 2006) 

ff99SB AMBER TIP3P Underestimates α-helical content but retains structure 

compactness. 

(Best & Hummer, 

2009) 

ff99SB*-ILDN AMBER TIP3P Produces high structure compactness displaying increased 

number of intrapeptide hydrogen bonding. Underestimates 

Rg values for IDPs. IDPs secondary structure is inconsistent 

with experimental values. 

(Robustelli, Piana & 

Shaw, 2018) 

(Rauscher et al., 

2015) 

ff99SB-ILDN AMBER TIP4P-D Severe destabilisation of folded proteins. Substantial 

underestimation of helical content for IDPs. 

(Robustelli, Piana & 

Shaw, 2018) 

ff03ws AMBER Modified TIP4P/2005 

interactions 

Severe protein destabilisation for folded systems. For IDPs it 

is inaccurate in describing its secondary structure content. 

(Robustelli, Piana & 

Shaw, 2018) 

ff99SB-UCB AMBER TIP4P-Ew with 

modifications 

Structural deviations leading to partial or complete unfolding 

of ordered proteins. Considerable helicity underestimation for 

IDPs. 

(Robustelli, Piana & 

Shaw, 2018) 

C22* CHARMM TIP4P-D C22* with TIP4P-D produces ensembles that are too 

expanded when compared to experimentally determined Rg. 

(Rauscher et al., 

2015) 

C22* CHARMM TIP3P-CHARMM Stable for < 60 residue proteins but leads to structural 

instability for larger folded proteins. Unsuitable to study IDPs 

by severe underestimation of Rg values and inconsistent 

secondary structure formation. 

(Robustelli, Piana & 

Shaw, 2018) 

(Rauscher et al., 

2015) 

C36m CHARMM TIP3P-CHARMM It overestimates Rg of small proteins of < 60 amino acids. 

Unstable when simulating ordered systems of > 60 residues. 

Produces overly collapsed IDPs with inconsistent secondary 

structure, 

(Robustelli, Piana & 

Shaw, 2018) 

(Henriques, et al., 

2018)   

C36 CHARMM TIP3P and TIP3P-

CHARMM 

It displays a bias towards long left-handed α-helices, which 

should be absent from structured proteins. 

(Rauscher et al., 

2015) 

G54A7 GROMOS SPC Produces collapsed protein structures, biased towards 

displaying unreasonably high helical content. 

(Henriques, Cragnell 

& Skepö, 2015) 

G53A6 GROMOS SPC Simulated proteins are too collapsed, when compared to 

SAXS experimental averages. Heavy bias towards β-sheet 

content with higher prediction of β-hairpins. 

(Henriques, Cragnell 

& Skepö, 2015) 

(Sun, Qian & Wei, 

2016) 
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Whilst the widely used AMBER and CHARMM force field refinements have been found 

to precisely describe small globular proteins (Beauchamp et al., 2012), the older AMBER ff99 

and CHARMM22/CMAP both tend to overemphasise helical content; whereas the more recent 

AMBER ff99SB underestimates it; and GROMOS96 displays a heavy bias towards the 

creation of β-sheet structures (Chong, Chatterjee & Ham, 2017; Rauscher et al., 2015). Other 

modified, more recent iterations of the standard force fields, such as AMBER ff99SB-ILDN, 

AMBER ff99SBNMR1-ILDN, GROMOS 53A6 and GROMOS 54A7 have proved to be equally 

unsuitable by simulating excessively collapsed proteins, failing to emulate the structural 

diversity associated with IDPs, and/or exhibiting considerable bias towards folded secondary 

structure motifs (Henriques, Joao, Cragnell & Skepö, 2015). The recent CHARMM36 force 

field displayed a marked bias towards left-handed α-helix oversampling (Rauscher et al., 

2015), which was addressed by their latest iteration for IDP simulation - CHARMM36m 

(Huang, Jing et al., 2017). Nevertheless, even CHARMM36m has been subsequently found 

to display biases towards secondary structure motifs inconsistent with experimental data, and 

overly collapse the protein structures (Robustelli, Piana & Shaw, 2018). As for AMBER, even 

its latest force field release, ff14SB, touted to have improved the sampling accuracy of 

backbone and sidechains, failed when applied to IDPs. AMBER ff14SB was found to create 

excessively hydrophobic and overly folded structures, which display extravagant α-helices 

and/or β-sheet formations (Best, 2017; Piana, Klepeis & Shaw, 2014).  

To correct the biases and limitations of conventional MD simulations parameters two 

main ways have been proposed: (1) re-design the simulation models by optimising the force 

fields or (2) improve the accuracy of the simulation by enhancing the solvation conditions 

(Piana et al., 2015).  

1.1 Optimising force fields for IDP simulations 

In 2017, two novel AMBER force field optimisations for IDP simulation were published: 

ff14IDPs (Song et al., 2017)  and ff14IDPSFF (Song, Luo & Chen, 2017). These constitute re-
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parameterisations of the conventional AMBER ff14SB and maintain its the main features. The 

AMBER ff14SB uses the following molecular mechanics (MM) potential energy function: 

𝐸𝑡𝑜𝑡𝑎𝑙  =  ∑ 𝐾𝑟(𝑟 − 𝑟𝑒𝑞)
2

 +  ∑ 𝐾𝜃(𝜃 − 𝜃𝑒𝑞)
2

 +  ∑
𝑉𝑛

2
[1 + 𝑐𝑜𝑠(𝑛∅ −

𝛾)]  +  ∑ ⌈
𝐴𝑖𝑗

𝑅𝑖𝑗
12  −  

𝐵𝑖𝑗

𝑅𝑖𝑗
6  +  

𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
⌉𝑖<𝑗  (Cornell et al., 1995)  

Which can be summarised as: 

Etotal = Ebonded + Enon-bonded 

In which: 

Ebonded = Edihedrals + Eangles + Ebonds  

and 

Enon-bonded = Eelectrostatics + Evan-der-Waals  

The two force field modifications implement a grid-based energy correction map (CMAP) 

method to optimise the dihedral energy terms (Song et al., 2017; Song, Luo & Chen, 2017), 

leading to following optimised energy function: 

Etotal = Eff14SB + ECMAP  

The difference between the two force field optimisations is based on the scope of the 

CMAP application. The ff14IDPs force field iteration improves IDP sampling by modifying the 

φ/ψ distributions of the 8 disorder-promoting amino acids (G, A, S, P, R, Q, E, and K). These 

modifications were based on the statistical assessment of a total of 17 540 IDP structures 

obtained from the PDB database, which contained 54 838 coil fragments and a total of 

346 335 pairs of backbone dihedrals. The second IDP-optimised force field modification - 

ff14IDPSFF expands the application of the backbone dihedral terms upgrade to all 20 naturally 

occurring amino acids, since IDPs contain both order and disorder-promoting residues. 
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A recent computational study used the ff14IDPSFF force field iteration to assess the order-

disorder transition of inducible transactivation domain (KID) (Liu, Hao et al., 2018). It 

demonstrated that ff14IDPSFF force field might be a valid and accurate option to parameterise 

IDP MD simulations.  

1.2 Enhancing the water model 

IDPs are very susceptible to the solvation model used to generate the simulation 

environment due to its large solvent-exposed surfaces, making them highly responsive to the 

protein–water interaction forces. Incorrect solvation potentials have been recognized as the 

main source of inaccurate, overly stabilised, or fragmentary IDP conformational description 

(Levine & Shea, 2017). In the simulations of globular proteins, the conventional solvation 

models create water molecules with 3-site rigid pair potentials with charges and Lennard-

Jones parameters assigned to each atom  (Mark & Nilsson, 2001). This type of solvation, 

including the TIP3P and SPC water models, has been identified as major contributor to 

deficient IDP sampling (Best, Zheng & Mittal, 2014). Recently, a new solvation model has 

been developed to address this limitation - (Piana et al., 2015)’s TIP4P-D, a 4-site water 

model, with a similar geometry to the older TIP4P/2005 model, but with improved charges and 

Lennard-Jones parameters (Table 2).  

 

Table 2 – Comparison of the physical properties of the commonly used solvation models. Adapted 
from Piana et al. (2015). 

 TIP3P SPC/E TIP4P-EW TIP4P/2005 TIP4P-D 

μ (D) 2.35 2.35 2.32 2.305 2.403 

hydrogen charge 0.417 0.4238 0.52422 0.5564 0.58 

C6 (kcal mol-1 Å6) 595 625 653 736 900 

C12 (kcal mol-1 Å12) 582000 629482 656138 731380 904657 

ΔHv (kcal mol-1) 10.2 10.5 10.6 11 11.3 

Cp (kcal mol-1 K-1) 15.2 17.3 17.6 17.8 16.8 

Tmd (K) 250 270 275 270  

ρ (Tmd)(g cm−3)  1.012 1 1.001 0.997 

γ (mN m-1) 47.8 58.4 59.2 63.3 71.2 

αV (10−4 K−1) 8.5 4.7 3.1 2.7 2.6 

D (10−5 cm2 s−1) 5.8 2.6 2.6 2.2 2.1 

ε0 96(3) 72(4) 63(3) 56(2) 68(2) 
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The TIP4P-D increases by 50% the TIP3P R6 dispersion coefficient, with the R12 

parameters adjusted accordingly. These modifications optimise the potentials for dispersion 

interactions, reduce the protein’s overall tendency for intramolecular interactions in support of 

protein–water interactions, thus counteracting common biases towards overestimation of 

intraprotein and protein–protein interactions displayed by the standard MD simulations 

(Henriques, João & Skepö, 2016). The TIP4P-D water model is found by Henriques & Skepö 

(2016) to expand the conformational diversity of the disordered states for small peptides, in 

agreement with experimental SAXS data. However, explicit water models such as the TIP4P-

D, in which water molecules are explicitly defined to simulate the aqueous medium, are 

computationally costly especially for large systems. Hence, exploring the feasibility of implicit 

solvation methods is also worth pursuing.  

Implicit solvent models represent their solvation free energy as a continuum of electrostatic 

approximation. At each simulation point, the solvation potential of the system is re-computed 

based only on the degrees of freedom of the solute’s coordinates and the solvation 

environment instantaneously adjusts to the new solute conformation (Onufriev & Case, 2019). 

In this type of solvation, because there are no explicitly created water molecules, the number 

of atoms in the system is considerably reduced, creating a very efficient method of simulation 

parameterisation in terms of time and computational cost. There is no need for lengthy water 

equilibration steps, no water box constraints, no artifacts caused by periodic boundary 

conditions clashes and improved protein sampling due to lack of viscosity (Onufriev & Case, 

2019). The AMBER package for MD simulations offers different ‘flavours’ of the Generalised 

Born (GB) implicit solvent model. The GB method calculates the total energy of the molecule 

by decomposing its electrostatic and non-electrostatic potentials: 

∆G𝑠𝑜𝑙𝑣 =  ∆G𝑒𝑙 + ∆G𝑛𝑜𝑛𝑒𝑙 

The ∆Gnonel value is derived from the energy required to solvate the molecule with the 

charges removed. It is calculated from the favourable van der Waals interactions between 
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solvent and solute and the unfavourable cost of disrupting the solvent around the solute. The 

∆Gel value is calculated by removing charges in a vacuum and then adding them back in a 

continuum solvent environment (Case et al., 2016). 

Despite the clear advantages, and a raise in research interest, continuum implicit 

solvents have been neglected as viable parameterisation methods for MD simulations. This is 

mostly out of fear that implicit solvation might improve simulation speed at the cost of biological 

realism and compromise the accuracy of the simulation (Beauchamp et al., 2012). However, 

given its multiple advantages - especially the considerable reduction in computational cost - 

makes it an appealing alternative worth testing against experimental data.  

 

2. Results and discussion 

2.1 Using Histatin 5 as the model protein 

Histatin 5 is a 24-amino acid human salivary protein, known for its antimicrobial and 

antifungal role. It was chosen as a preliminary model due to its small size, which allows for 

efficient MD sampling. It has a completely unstructured configuration in solution which has 

been experimentally characterised with small-angle x-ray scattering (SAXS) (Cragnell et al., 

2016). To compare the Histatin 5 SAXS data to the results obtained from the simulations, 

noise reduction clustering was first performed, to address the complexity of the simulation 

trajectory, using the k-means algorithm. This revealed the average structures for the most 

abundant states sampled during the simulation. Table 3 includes the cluster representative 

structures’ radius of gyration (Rg) for each force field.  
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The comparison between the simulation representative structures and the SAXS-determined 

Rg affords invaluable insight reveal how poorly the clusters of simulation conformations agree 

with the experimental data, for any of the tested force fields. To highlight this further, Figure 

7 (a) presents the Kratky plot comparison between the experimental SAXS data and the most 

extended simulation cluster centroid structures for each force field tested.  Upon assessment 

it is evident that none of the force fields creates structures consistent with the experimental 

data, producing instead collapsed and overly folded Histatin 5 configurations. Furthermore, 

the modified ff14IDPs force field variant performs significantly worse than the conventionally 

used ff14SB, with the ff14IDPSFF only marginally outperforming it. 

 

With the different force field iterations failing to adequately describe Histatin 5, attention turns 

towards the water models, to have its performance benchmarked against the experimental 

Table 3 – Comparison of the radius of gyration for each the representative structures, per cluster 
and simulated force field condition, with the experimentally-determined Histatin 5 radius of gyration. 

Force fields Cluster 1 Cluster 2 Experimental 

ff14SB 9.15 Å 7.71 Å  
13.8 Å ff14IDPs 7.38 Å 8.15 Å 

ff14IDPSFF 7.48 Å 9.87 Å 

 

 

Figure 7 – Kratky plots comparing the experimental small-angle X-ray scattering (SAXS) data (in 
gray) to representative structures obtained from each of the (a) simulated force field conditions: 
ff14SB and the modified ff14IDPs and ff14IDPSFF force fields and (b) solvation conditions: TIP3P, 
TIP4P-D and the implicit solvent GB8. 
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data.  Table 4 contains the Rg values for each cluster centroid structure and the 

experimentally derived Rg. 

 

Table 4 results demonstrate that the modified TIP4P-D water model and the implicit solvation 

based on Generalised Born (GB) 8 create average structures closer to the experimentally 

determined Rg value, especially when compared to the conventional TIP3P solvation. It is 

interesting to note that for the simulations solvated with the TIP4P-D method, the two most 

abundant clusters consist of extended conformations, whereas the implicitly solvated GB8 

simulations creates conformations with a wider range of structure compactness, oscillating 

between averages of 10.68 Å and 14.14 Å. Figure 7 (b) reveals the Kratky experimental data 

plotted against the most extended representative structures for each of the three water models 

tested: the conventional TIP3P, the optimised TIP4P-D and the implicit solvent model GB8.  

Figure 7 (b) further emphasizes the close agreement between the optimised water models 

(TIP4P-D and GB8) and the experimental data, especially when comparing it to the TIP3P 

result. Of remarkable consistency with the experimental values is the structure derived from 

the GB8 simulation, which accurately agrees the experimentally determined Kratky curve.  

Additionally, when considering available Histatin 5 NMR data (Figure 8), the results show a 

similar conclusion – both TIP4P-D, and especially GB8, match the experimental HA chemical 

shifts accurately, whilst TIP3P does not. The GB8 solvation solution displays a RMSE score 

of 0.12 ppm against the experimental data, closely followed by TIP4P-D with a RMSE of 0.14. 

Comparatively, TIP3P achieved a RMSE of 0.21 ppm, which collectively with its p-value of 

0.0208 highlights its unsuitability to solvate disordered systems simulations. 

Table 4 – Comparison of the radius of gyration for each the representative structures, per cluster 
and simulated water model condition, with the experimentally-determined Histatin 5 radius of 
gyration. 

Water model Cluster 1 Cluster 2 Experimental 

TIP3P 9.15 Å 7.71 Å  
13.8 Å TIP4P-D 13.47 Å 12.12 Å 

Implicit GB8 10.68 Å 14.14 Å 
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Overall, it is clear from the preliminary tests with Histatin 5 that the adapted water models offer 

a solid performance in terms of recreating the conformational nature of a fully disordered 

protein, outperforming any of the tested force field modifications. However, further assessment 

is required into how well these water models perform when simulating larger protein systems. 

Therefore, the different solvation methods were benchmarked against NMR-derived 

secondary structure propensities, using MYC88 as the protein model. 

 

Figure 8 – Comparison of NMR-determined HA chemical shifts to calculated chemical shifts for the 
simulation trajectories (a) using the TIP3P solvation method (p-value 0.0208*), (b) using the TIP4P-
D water model (p-value 0.1387) and (c) those obtained from the simulations using the implicit GB8 
solvation method (p-value 0.9874). 
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2.2 Water model testing using MYC88 as the model protein 

MYC88, encompassing the first 88 c-MYC amino acids, contains within it two highly 

conserved regions - MB0 and MBI. (Andresen et al., 2012)’s NMR study of the protein offers 

a glimpse into its secondary structure propensities (SSP) per residue (Figure 9 (a)). 

 

 

Figure 9 – Comparison of (a) NMR-determined transient secondary structure propensities of c-
MYC1‐88 with (b) those obtained from the molecular dynamics simulations using the TIP3P 
solvation method, (c) those obtained from simulations using the TIP4P-D water model and (d) those 
obtained from the simulations using the implicit generalized Born (GB8) solvation method. The 
positive values on the Y-axis correspond to regions with a tendency to form α-helices, whilst the 
negative Y-axis values reflect regions with propensities towards extended structure formation. (e) 
Sequence of MYC88 with MYC-boxes MB0 coloured in red and MBI in blue).  
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 Andresen et al. (2012) found based on combined SSP and NOE assessment four main 

regions displaying transient ordered structure formation: a β-turn at residues 21 to 24; a 

transiently helical region comprised of residues 26 to 34; another important helical region 

between residue 47 and 54; followed by an extended region from residue 55 to 65.  Andresen 

et al. (2012)’s findings can be compared to the averaged secondary structure propensity for 

each residue, calculated over the course of the entire MD trajectory. This avoids any potential 

bias introduced by the clustering and the exclusion of rarer states. Figure 9 (b) displays the 

SSP derived from the simulations solvated with the TIP3P water model. It is clear, when 

studying the ranges of the Y-axis for Figure 9 (a) and (b), how biased the TIP3P system is 

towards heavily helical formations, especially considering the first 40 residues. For the regions 

between residues 1 to 12 and between residues 26 to 40 the incidence of helical motifs for the 

TIP3P simulations (Figure 9 (b)) reaches over 75%. The experimental data (Figure 9 (a)) 

indicates that no MYC88 region is predicted to display helical propensity above 50%, 

emphasizing the discrepancy between the simulation and the experimental results. The 

extended regions, particularly residues 9 to 12 and 22 to 25, predicted by NMR are also absent 

from the TIP3P simulation. This is consistent with the results obtained from the Histatin 5 

simulations, which show that the conventional TIP3P solvation method produces overly 

ordered and compact structures with a severe bias towards helical motifs and is incompatible 

with experimental data. 

Figure 9 (c) shows the average SSP data obtained from the simulations parameterised 

with the optimised TIP4P-D water model. One of the main findings when considering the 

TIP4P-D SSP distribution histogram is that this solvation method dramatically reduces the 

development of any ordered secondary structure. Ostensibly, the TIP4P-D simulations 

demonstrate a 50% reduction in the propensity for helical formations, but also completely 

abrogate the formation of predicted β-sheet extended motifs, which is inconsistent with 

experiment. Lastly, Figure 9 (d) displays the data obtained from the implicitly solvated 

simulations. The results obtained with the implicit GB8 solvation method display the highest 
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conformity with the experimental data (Figure 9 (a)). Notably, the implicitly solvated simulation 

consistently simulates the β-sheet extended regions between residue 21 to 25 and the α-

helical regions formed by the residues 26 to 34 and 47 to 54, which are predicted by 

experiment. Although it creates slight overly ordered loci at the two terminal regions, it 

otherwise displays noteworthy consistency with the experimentally determined SSP. It should 

also be considered that the MYC88 NMR N-terminal oligo-histidine tag might have slightly 

affected the experimental results of the surrounding N-terminal helices (Andresen et al., 2012). 

Thus, the overall conclusion is sustained by the total values for helical and extended β-sheet 

content which demonstrates that both explicit water models replicate the helical content well, 

but only GB8 recreates the extended content predicted by experiment (Suppl. Figure S1). 

2.3 Further testing using MYC150 as the protein model.  

MYC150, spanning residues 1 to 150, contains the entire MYC88 TAD domain and its 

first three highly conserved regions: MB0, MBI and MBII. Since neither the modified force 

fields nor the TIP3P solvation model produced adequate protein structures, these conditions 

are discarded in favour of further assessing TIP4P-D and the implicit solvation GB8 method, 

which showed more promise. Circular dichroism (CD) was used to analyse MYC150 structure 

by estimating its helical, β -sheets and random coil ratios, to be compared with the MD 

simulations data. The MYC150 experimental data is directly derived from the CD spectra, 

whilst the secondary structure percentages from simulation are obtained by averaging the total 

values, for each type of secondary structure content, over the entire simulation. Table 5 

contains the secondary structure percentage for both the experimental data and the two 

simulation conditions: TIP4P-D and GB8 and Figure 10 offers the graphical representation of 

the same data. 

 

Table 5 – Comparison of the secondary structure ratio for the TIP4P-D, GB8 MYC150 simulation 
with the experimentally determined secondary structure ratio from CD analysis. 

Condition Helical (%) β-sheets (%) Random coil (%) 

Experimental 32.5 7.2 59.5 

TIP4P-D 41.6 1.26 57.08 

Implicit GB8 40.83 7.56 51.61 
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It is clear from the results that the comparison of the simulation data to CD experiment is 

consistent with the earlier SAXS and NMR findings. The TIP4P-D solvation method fails to 

adequately describe the protein’s β-sheet extended structure content despite closely 

emulating the MYC150’s random coil score. Overall, TIP4P-D is undoubtedly a better option 

when compared to the standard TIP3P solvation method. However, the implicit solvation GB8 

method despite marginally underestimating the random coil and overestimating the helical 

content – a slight bias present also in the MYC88 simulation, displays the protein description 

most consistent with the available experimental data. Given GB8 model’s accuracy, when 

compared to SAXS, NMR and CD data using multiple protein models, and the advantages of 

the implicit water model in terms of speed and computational efficiency, makes this the prime 

solvation choice for c-MYC’s in silico studies. 

2.4 MYC88’s GB8 MD and Markov-chain Monte Carlo simulation comparison. 

 

The Markov-Chain Monte Carlo (MCMC) simulation produces a collection of samples 

from a dense stationary (π) target distribution. The Markov chain builds a detailed balanced 

equation in which new states are accepted or rejected based on the following probability: 

𝜋(𝑥)𝑃(𝑥 →  𝑥′)  =  𝜋(𝑥′)𝑃(𝑥′ →  𝑥) 

Which means that the probability of inhabiting state x multiplied by the probability of going 

from state x to state x’, is reversibly equal to the probability of moving from state x’ to state x. 

 

Figure 10 – Comparison of MYC150 CD-determined secondary structure ratio (in percentage) to 
those obtained from the TIP4P-D and the implicit GB8 solvation simulations (also in percentage). 

 



50 
 

The next phase is to define two transition probability steps - the proposal probability and the 

acceptance-rejection probability: 

𝑃(𝑥 →  𝑥′)  =  𝑃𝑝(𝑥 →  𝑥′)𝑃𝑎(𝑥 →  𝑥′) 

Where the proposal probability 𝑃𝑝(𝑥 →  𝑥′)  corresponds to the calculated probability of 

proposing a given state and the acceptance probability 𝑃𝑎(𝑥 →  𝑥′) corresponds to the 

calculated probability of accepting the new state or rejecting it.  

There are many Bayesian inference algorithms that can be implemented to practically 

solve for the acceptance probability equation, but of all the Metropolis-Hastings is undoubtedly 

the most common and well-researched (Boomsma et al., 2013). It takes the previous steps 

into account and aims: 

𝑃(𝑥 →  𝑥′)  =  𝑚𝑖𝑛 (1,
𝜋(𝑥′)𝑃𝑝(𝑥′ →  𝑥)

𝜋(𝑥)𝑃𝑝(𝑥 →  𝑥′)
) 

Which entails, assuming unbiased transitions, that the algorithm fully accepts the new state if 

its probability is increased according to the target distribution ( 𝜋 (x’) > 𝜋 (x)). If the probability 

is lower, the acceptance will depend on how unfavourable the new conformation is. This 

ensures harmonious sampling and a congruent probability distribution in which the structures 

are sampled according to their conformation favourability. Thus, comparing the balanced and 

well-sampled conformational distribution approximated by the MCMC simulations to the 

conformational landscape derived from the MD simulations allows for insight into how 

extensively the MD protein’s conformational ensemble is being described (Sullivan & 

Weinzierl, 2020). 

To compare the conformational landscapes derived from MCMC and MD simulations, 

they are both firstly defined in terms of the RMSD and Rg of the structural ensembles 

generated. This allows for assessment of the compactness, flexibility, and conformational 

divergence of the MYC88 data. The RMSD was calculated against a completely extended 
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structure as a reference. Therefore, the highest RMSD and low Rg values correspond to 

structures in folded states and, conversely, the lower RMSD and high Rg values correspond 

to the most extended structures. The MCMC landscape and RMSD frequency distribution plot 

indicate that the most probable states, and most well-sampled conformations, occupy the 

highest RMSD. This correlates with the lowest Rg values, between 13 and 18 Å, hinting at c-

MYC88 preferentially inhabiting a series of relatively compact states, whereas the MCMC 

probability landscape also identifies a wealth of extended MYC88 states (Figure 11).  

 

 

Figure 11 – (a) MCMC conformational landscape of MYC88 defined in terms of its RMSD and Rg. 
(b) The same for MD GB8 simulations.  
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The rationale for creating such a landscape is not to directly assess the protein dynamics of 

MYC88 from it - MCMC simulations do not reflect a temporal progression of a system, but 

rather give an overview of the range of possible conformational spaces available to the protein. 

A comparison of the MCMC and MD conformational landscapes results calculated in the same 

manner shows that the two methods create structures that inhabit an extensively overlapping 

landscape, especially when referring to the most compact conformations. Furthermore, using 

Sα—a metric of α-helical content similarity—as a conformational descriptor against the Rg, 

allows for investigation into the helical sampling of the MD landscape; the MD simulation 

explores a wide range of helical content, similar to the range explored by the MCMC landscape 

(Figure 12). 

 

 

Figure 12 – (a) MCMC conformational landscape of MYC88 defined in terms of its Sα and Rg. (b) 
The same for MD GB8 simulations.  
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From these data, it is evident that the MD simulations do not become trapped in overly helical 

states, but sample within a wide basin of Sα values. Nevertheless, the MD simulations 

preferentially explore the lowest Rg states, which could be due to a variety of reasons. It is 

possible that the most extended states, as predicted by the MCMC simulation, are not very 

favourable energetically. Alternatively, the MD simulations may require more extensive 

sampling on a longer time scale. To assess the validity of these two hypotheses, MD 

simulations were repeated, starting with the coordinates from an extended, compacted 

structure or MCMC k-means clustering centroids as starting points. The results demonstrate 

that the choice of initial structures has no significant impact on the MD simulation 

conformational sampling range; all simulations converge on the same common space (Figure 

13). 

 

Given that our finally selected simulation parameterization (ff14SB/GB8) agrees with 

experimentally determined secondary structure propensity—and the starting coordinates do 

not bias the simulations towards more compact structures—any differences between the 

MCMC and MD simulations are therefore more likely to be caused by the energy functions 
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Figure 13 – Boxplots comparing the RMSD values obtained by the MCMC simulation and the MD 
simulations initiated with different starting structures: Extended corresponds to fully unstructured 
initial coordinates; Folded to a structure created with ab initio software; the cluster structures 
correspond to the different MCMC centroid structures obtained via K-means clustering. 
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used to calculate the structural properties, rather than any bias introduced by the starting point 

of the simulation. 

3. Conclusion 

Prior to drawing conclusions from computational simulation studies, it is necessary to 

ensure that they reflect, with high degree of accuracy, the structural features of the simulated 

systems. Accurate MD simulation results rely heavily on the parameters used to set up the 

simulation. It is known that the conventionally used force fields and solvation methods, 

although adequate to study globular proteins, introduce various structural biases which are 

incompatible with IDPs conformations. Here, several alternatives to the standard force field 

and solvation models were tested using Histatin 5, MYC88 and MYC150 as protein models. 

The modified force fields failed to adequately describe the IDPs structural characteristics when 

compared to experimental data, whilst the modified water models showed more promise. 

Surprisingly, the method displaying the highest degree of accuracy when compared to SAXS, 

NMR-derived and CD data was the Generalised Born 8 implicit solvation model. This 

parameterisation method not only produces accurate IDP structural determination, highly 

consistent with different experimental results, as it is also exceedingly efficient in protein 

sampling and computational productivity. 

Being able to demonstrate that the GB8 MD simulation samples a varied conformational 

space instead of being trapped in some unimportant local minima is also crucial. Here a new 

method is proposed: comparing the MD simulation conformational ensemble to the structural 

landscape built from a MCMC simulation. The results show that the MCMC and MD 

simulations converge to the same conformational space determined by Rg and Sα metrics. 

The Sα results further demonstrate that MYC88 MD simulation samples a wide range of helical 

content, indicating that the GB8 parameterisation allows the molecule to sample diverse 

structural states and display suitable secondary structure content, consistent with experim 

ental data. 
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Chapter II – MYC88 structural dynamics 

 

1. Introduction 

The MD simulation data takes the form of a series of snapshots, created by moving the 

coordinates of the system, over time. Before gaining insight into the dynamic findings of 

MYC88’s MD trajectory, methods that can extract the relevant features of such large, noisy 

datasets are urgently needed. This is especially true when dealing with IDPs, which create 

even noisier and more complex trajectory data.  

The MD trajectory can be unpacked into a variety of basic geometrics, which includes the 

root mean square fluctuations (RMSF) of aligned structures, a metric that calculates the 

deviation between the position of aligned residues and is a measure of protein flexibility. 

Distance measurements are also routinely used in MD analysis to understand the dynamics 

between different regions, different proteins or between ligand and receptor. The calculation 

of dihedrals and torsions allows for enquiry into the study of conformers and conformational 

arrangements. Similarly, the study of bonds and contacts provides additional information 

regarding intra and intermolecular interactions. Other methods of analysis include the 

calculation of secondary structure propensities, which can be done over the course of the 

trajectory, or averaged per residues as seen in Chapter I. 

The calculation of the MD trajectory features can be achieved using an array of different 

programmes commonly available, which include CPPTRAJ from the AMBER suite of MD 

programmes (Roe & Cheatham, 2013), MMTSB toolset from the CHARMM suite (Feig, 

Karanicolas & Brooks, 2004), GMX the toolbox from GROMACS suite of programmes 

(Abraham et al., 2015), BIO3D an R based analysis package (Grant et al., 2006), MDAnalysis 

(Gowers et al., Sep 11, 2016; Michaud‐Agrawal et al., 2011)  and MDTraj (McGibbon et al., 

2015) packages that use Python Conda environment to deploy its algorithms. These constitute 
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some of the most well-known alternatives that are routinely used in research to perform the 

MD trajectory analysis. However, the calculation of simple geometric measures is frequently 

insufficient to describe, by itself, the protein’s dynamics. The relevant protein states are often 

perfectly hidden in the complexity of the data (Shao et al., 2007). Therefore, noise reduction 

and dimensionality reduction methods are regularly used to sieve the data and reveal the 

underlying system motions. One of such methods is clustering, which was deployed previously 

as an analysis tool in Chapter I. Clustering entails grouping together protein conformations 

with a high degree of similarity by allocating the data points into separate sets called clusters 

(Shenkin & McDonald, 1994). The configurations in a cluster are structurally closer to each 

other than to structures from other clusters, allowing for a rapid description of the resulting 

conformational sets. The calculation of the cluster centroids, which correspond to the 

averaged representative structures, summarises the type of configurations inhabiting each 

set.  

There is a wide variety of clustering methods and several algorithms are available in the 

Data Science arsenal. In Chapter I, the K-means algorithm, one of the most popular, was used 

(De Paris et al., 2015). The K-means clustering approach relies on two main decisions: the 

pre-determination of the total number of clusters (or the cluster radius) and the distance metric 

by which to assess similarity. In machine learning, K-means is an unsupervised learning 

algorithm and to group similar data points, it starts by initialising the centroids which constitute 

the centre of each cluster followed by the assignment of the remainder data points to their 

nearest centroid. The algorithm then repeatedly iterates through the data to refine the 

allocation of data points and stops when there are no new cluster reassignments (J. A. 

Hartigan & M. A. Wong, 1979). However, whilst K-means clustering is a great way to quickly 

summarise the data landscape, it is dependent on many factors that might introduce bias such 

the heuristic determination of the cluster (k) number. Additionally, noisy datasets, such as 

those produced by IDPs simulations, and small changes in cut off parameters makes the 

clustering unreliable and yield a ‘unclusterable’ landscape (Rajan, Freddolino & Schulten, 
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2010). Furthermore, the centroids and averaged molecular representations often do not 

accurately describe the IDP conformational range. Although helpful to give an overview of the 

different states of the molecule, clustering cannot give any insight into its structural transitions. 

These are several of the reasons why many researchers turn to Principal Component Analysis, 

or PCA, as a data reduction method to extract the important data features. 

PCA is a multivariate statistical method that reduces the high-dimensional MD trajectory 

space to a smaller spatial scale. PCA applies a linear transform, to obtain the most important 

data elements, using a matrix created from the atomic coordinates that describe the system’s 

main features. It assumes that each trajectory snapshot conformation comes from a well-

sampled, equilibrated simulation hence capturing the protein’s essential dynamics. It then 

decomposes the matrix and projects the data onto a set of eigenvectors (a principal 

component or PC) with a corresponding variance that reduces the system’s degrees of 

freedom and explains the largest amplitude motions, typically corresponding to folding events 

(David & Jacobs, 2014). Whilst PCA is a robust method for feature extraction and noise 

reduction, it deals poorly with data that is not linearly correlated. This is because it uses a 

linear transformation based on covariance and projection of the data onto orthogonal 

eigenvectors, meaning that any not linearly related variable, very common in IDP simulations, 

will not be accurately described (David & Jacobs, 2014; Rajan, Freddolino & Schulten, 2010).  

Ultimately, there are many methods that can be used in Data Science to analyse MD 

trajectories and some are well described and commonly deployed in literature. However, little 

is known about the performance of many of these methods in the analysis of IDP simulation 

data. This Chapter will address this question and aim to decipher MYC88’s structural 

dynamics. 

2. Results and Discussion 

The first step in analysing the MD trajectory is to describe it in terms of its simple geometric 

calculations. Figure 14 shows several descriptive landscapes obtained by plotting different 
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trajectory analysis metrics against the RMSD. Upon close examination, the plots suggest that 

the landscape does not contain any differentiated clusters and is quite homogenous, as would 

be expected of an IDP simulation. 

 

The lack of discernible clusters makes it difficult to deploy clustering algorithms to gain insight 

into the different molecular macrostates, making direct clustering entirely unsuitable to define 

protein states. Therefore, analysis methods that can reduce the dimensional space and find 

the hidden messages in the data are necessary. PCA is the most likely candidate for the 

purpose. Figure 15 depicts the PCA landscape obtained from MYC88’s C-alpha atoms XYZ 

coordinates over the course of the trajectory.  

 

Figure 14 – Normalised MYC88 landscapes obtained by plotting RMSD values against different 
simple MD simulation metrics: (a) radius of gyration (Rg), (b) the molecule’s distance from N-
terminal to the C-terminal (Distance end-to-end), (c) solvent-accessible surface area (SASA) and 
(d) the number of hydrogen bonds formed (Hbonds). 
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Upon inspection, the PCA plot reveals a slightly less noisy landscape when compared to the 

RMSD/Rg landscape and presents a potential separation of clusters, with two large clusters 

present and a third smaller one at the bottom. However, the problem with using the PCA to 

describe the protein’s conformational space arises from the fact that the first two PC’s only 

cumulatively explain ~22.5% of the data variance. (Table 6).  

 

Even when considering the first 6 PC’s, it cumulatively explains less than 50% of the data 

which is clearly insufficient to derive any conclusions. When visually inspecting the highest-

amplitude atomic displacement projected over the PC1, it is interesting to note that the protein 

 

Figure 15 – PCA plot depicted with a kernel density estimation heatmap for easy detection of areas 
with high density of data points. 

 

Table 6 – Eigenvalues, explained variance and cumulative explained variance for the first 6 
principal components. 

 Eigenvalue Variance (%) Cumulative (%) 

PC 1 1273.756 12.328 12.328 

PC 2 1042.172 10.087 22.415 

PC 3 799.842 7.741 30.156 

PC 4 719.519 6.964 37.120 

PC 5 612.431 5.927 43.047 

PC 6 513.945 4.974 48.022 
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region with the highest atomic displacement exactly coincides with MBI – residues 43 to 63 

(Figure 16).  

 

However, this finding by itself it is unlikely to be very descriptive of an important protein motion 

given the low explanative power of the PCA vectors. Alternatively, internal coordinates such 

as backbone dihedral angles have been deemed as a viable option to resolve the PCA 

landscapes for flexible systems (Mu, Nguyen & Stock, 2005; Sittel, Jain & Stock, 2014). 

MYC88 the backbone dihedral PCA is plagued by the same issue – whilst it produces a free-

energy landscape (FES) landscape with distinct clusters (Figure 17), the variance explained 

by each component is too low to be taken as a solution for dimensionality reduction (Table 7). 

 

 

Figure 16 – Figure depicting the structures projected onto PC1. The colour scale highlights the 
regions with high atomic displacements (in red) and low atomic displacements (in blue). 

 

 

Figure 17 – Dihedral PCA plot for MYC88 MD simulation. 
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Other metrics were also attempted - namely, PCA based on geometric descriptors (RMSD, 

Rg, distance end-to-end, SASA, and number of hydrogen bonds) (suppl. Figure S2); 

secondary structure content (calculated using the ‘Define Secondary Structure of Proteins’ or 

DSSP algorithm) (suppl. Figure S3 and Table S1); and pairwise distances between alpha-

carbons (suppl. Figure S4). Unfortunately, PCA based on any of these features also failed to 

satisfactorily reduce the dimensionality of the conformational space by either producing 

landscapes without discernible clusters or failing to adequately explain the data variance. With 

the PCA being insufficient to define the MYC88’s conformational landscape, another method 

is required to describe the structural identities hidden in the MYC88 trajectory. 

Time-lagged independent component analysis (TICA) is another linear transformation 

method oriented towards finding coordinates of maximal correlation within a given time lag. 

The slowest motions, rather than maximal amplitude motions as with PCA, are tracked 

(Scherer et al., 2015).  The main advantage of TICA over PCA is its lower dependence on the 

distance metrics since TICA is not so much concerned with the variance of atomic 

displacement but rather with the speed of temporal change. The speed is embedded into the 

process of structural change and is not so coordinate dependent. However, featurisation of 

data remains important should be carefully decided to minimise statistical error  (Chodera & 

Noé, 2014). 

Table 7 – Dihedral PCA: Explained variance and cumulative explained variance for the first 6 
principal components. 

 Variance (%) Cumulative (%) 

PC 1 3.7 3.7 

PC 2 2.9 6.6 

PC 3 2.8 9.4 

PC 4 2.3 11.7 

PC 5 1.9 13.6 

PC 6 1.9 15.5 
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With TICA analysis the data was projected over two dimensions, the first two 

independent components (IC), with a lag of 20 ns. The two IC’s correspond to the two slowest 

and largest timescale transitions in the data. When plotting the two IC’s directly as a free 

energy plot it immediately becomes apparent that TICA creates a clearer landscape with well-

defined and separated minima basins, which are less prone to clustering errors (Figure 18).  

 

TICA also predicts three conformational basins, which correspond to three metastable states. 

Unlike PCA, the states in the TICA landscape are very well-defined making clustering more 

reliable. The K-means can now be deployed to discretize the IC landscape and allocate the 

trajectory structures to their respective clusters, ensuring that the cluster centroids align with 

the calculated IC landscape. Figure 19 shows the overlapped IC landscape and the location 

of the calculated 200 K-means cluster centres. The centroids are very well-distributed within 

the TICA landscape and match the predicted conformational space. 

 

Figure 18  – Free energy plot showing the conformational basins created by the first two ICs after 
TICA analysis. 
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With the discretization completed, the data can now be used to build a matrix and 

calculate the dynamic transitions between each state using a Markov State Model (MSM) to 

predict the protein’s kinetics. The meaningful transitions are calculated at the optimal lag time 

which can be derived from implied timescales taken at several lag points to determine the 

relaxation timescales of the processes (suppl. Figure S6). After determining the ideal lag, 

which in the case of MYC88 is 18 ns, it is necessary to assign the clustered microstates to the 

three metastable macrostates, as predicted by the TICA free energy landscape. The PCCA++ 

method is used to extract a coarse representation of the MSM and the representative 

structures for each macrostate. PCCA++, or Perron-Cluster Cluster Analysis, calculates the 

membership distribution of the clustered structures within the metastable, or long-lived, states 

(suppl. Figure S7).   The PCCA++ assignments neatly match the TICA state space, enabling 

the determination and inspection of the representative structures for each macrostate. Figure 

20 represents the re-weighted TICA landscape, using the stationary distribution, indicating the 

PCCA++ representative structures attributed to each metastable macrostate.  

 

Figure 19 – Free energy plot showing the conformational basins with the K-means overlapped cluster 
centres (in orange). 
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The main long-lived basin, corresponding to the most abundantly visited pool of 

conformations, is State 3. This is a key finding, as this pool of conformations affords a window 

of opportunity for drug discovery – it is a frequently visited protein state and at the heart of the 

two slowest transition processes. Hence, the representative structures from State 3 formed 

the structural basis for the ‘druggability’ studies presented in Chapter III. Exploring along the 

IC1, the main slowest transition process can be easily determined between State 3 and State 

2. The graphical representations of the structures are coloured to identify MB0 in red and MBI 

in blue, so it is interesting to note that the structural dynamics from State 3 to State 2 entails 

the extension of MYC88’s N-terminal, which includes the MB0 region. The second slowest 

process along the IC2 axis identifies the transition between State 3 and State 1, which moves 

MYC88 to a more compacted configuration. Thus, the TICA landscape identifies a protein with 

a very abundant pool of conformations (State 3), averaging 12.96 Å in Rg. The State 3 displays 

 

Figure 20 – Representative structures of each of the TICA-predicted macrostates. The structure 
figures highlight the location of the MB0 (in red) and MBI (in blue). 
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the slowest transition to State 2, which mainly consists of the N-terminal extension – with an 

average Rg of 13.3 Å. The transition from State 3 to State 1 is the second slowest process in 

which the molecule acquires a slightly more compact structure, with an average Rg of 12.7 Å. 

Despite the unsuccessful PCA calculation, it is still important to assess the highest 

amplitude motions because they usually correspond to rarer but important peak protein 

configurations. The strategy presented here goes back to basic geometrics measures, in this 

case the radius of gyration, and assesses the minima and maxima peaks over time (Figure 

21).  

 

The noise reduction approach here consists of an algorithm that analyses the trajectory data 

over time without altering or averaging the peaks, but finds both the maximum and minimum 

value points, within a rolling window, whilst discarding smaller neighbouring peak values. This 

allows for the detection of the true peak events within the linear data while eliminating local 

noise. Considering at the configurations corresponding to the minimum (min) and maximum 

(max) peaks detected (Figure 22), it is obvious that the max values correspond to the most 

extended and the min values to the most compacted structures.  

 

Figure 21 – The radius of gyration values over the course of the trajectory with the minimum and 
maxima point (coloured red and green, respectively) have been identified. 
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The min peaks correspond to very compacted structures, constituting rare events within the 

State 1 predicted by the TICA landscape. The very extended max peak structures are extreme 

configurations, part of State 2 predicted by the TICA space. The structure of the max 

configurations reiterates that MYC88’s extension involves its N-terminal and clearly includes 

MB0. These results echo the findings obtained from the TICA landscape, thus it is perhaps 

helpful to assess the protein’s structural sequence, from most compacted to most extended, 

to fully appreciate the structural range predicted by the MD simulations (Figure 23). 

 

The sequence illustrates the range of protein conformations available to MYC88. The 

minimum and maximum structures indicate rarer peak events, in which the protein acquires a 

 

Figure 22 – Some of the minima and maxima configurations over time. The red corresponds to the 
location of MB0 and blue to the location of MBI. 

 

 

Figure 23 – The representative structures that summarise the structural dynamics of MYC88’s MD 
simulations. The minimum and maximum were derived from the peaks detected from the Rg timeline 
and the 3 states correspond to the structures obtained from the three TICA metastable states. 
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very compact and very extended configurations, respectively. The three TICA states 

correspond to averaged and well-sampled pool of conformations, especially State 3, the most 

abundant. State 3 is the most visited metastable state because it corresponds to an 

intermediate configuration that can easily go either way: (1) become more compact – therefore 

less likely to interact with molecular partners; or (2) project the N-terminal outwards in an 

extended configuration, which promotes the binding with key molecular partners. The N-

terminal flexibility is clear when comparing the Rg and the RMSD of the first MYC88 24 amino 

acids with the remainder MYC88’s 63 amino acids (Figure 24).  

 

The frequency plots shows that MYC88’s first 24 residues alone, a region which includes most 

of the MB0’s residues, displays a wider range of Rg and RMSD values when compared to the 

remainder 63 amino acids. It is the most active protein region and greatly oscillates between 

extension and compaction. MYC88’s N-terminal RMSD and Rg variability suggests it is the 

region mainly responsible for most of MYC88’s conformational flexibility. MB0’s structural 

dynamics, within a flexible N-terminal, are especially intriguing because until recently this 

region was not deemed a crucial part of the transactivation domain. Many research papers did 

not even mention MB0, describing only the activity of MBI and MBII. Only recently did Zhang 

et al. (2017) suggest that MB0 corresponds to a separate and independent transactivation 

 

Figure 24 – Plot A shows the radius of gyration frequency of MB0’s first 24 residues versus the rest 
of the protein and Plot B depicts the same for the RMSD values. 
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domain. The results in this Chapter support this view, as MB0’s structural dynamics were 

further investigated to consider the contact formation rate per residue (Figure 25).  

 

This metric allows for the identification of active and inactive protein regions in terms of their 

contact activity rate. Figure 25 contains a graph and a heatmap (plots B and C) of the same 

data, depicting the contact residue coefficient per residue. The plots identify the MYC88 

regions with the highest (in red) and lowest (in blue) contact formation and breaking activity. 

The regions most involved in the forming and breaking contacts are inevitably the most active 

and structurally more dynamic. In Figure 25 - A shows the data mapped onto a representative 

structure clearly reiterating that the region with the highest contact activity is the MYC88’s N-

terminal residues 1 to 24. The rest of the protein remains comparatively stable. Additionally, 

the pivot angle formation coefficient calculation allows for the identification of pivot residues 

that act as hinges and facilitators of the protein’s contact activity. Figure 26 presents the 

calculations for the pivot angle formation propensity for each residue. 

 

Figure 25 – Plot B is a linear graph containing the contact residue coefficient for RMS fluctuation per 
residue whilst plot C offers the data as a heat map to ease the visualisation of active vs inactive protein 
regions. (A) shows the contact activity data superimposed on a representative structure. 
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The pivot angle coefficient (Figure 26 - B) identifies the residues 20 to 24 as MYC88’s main 

hinge which is responsible for most of MYC88’s N-terminal and MB0’s conformational 

extension. The hinge is formed by the same residues predicted by NMR data (Figure 26 - A) 

to form a β-turn. Other notable pivot angles, such as residue 8 to 12 allow the N-terminal to 

further extend away from the rest of the protein. An NMR predicted stable helix, spanning 

residues 27 to 38, corresponds in our MD simulations to an equally stable helical region. Up 

until now no function had been ascribed to this transiently ordered region but our findings show 

it acts as a divider, allowing both MB0 and MBI to act autonomously in terms of their structural 

dynamics. The dynamics of these highly conserved regions reiterate the idea that MB0 is a 

distinct transactivation domain and the ordered region creates an anchor which allows MB0 to 

perform its alternating extension and compaction motions, fly-catching its molecular partners, 

without disrupting MBI’s stability.  

3. Conclusion 

Protein MD trajectories are noisy and complex datasets and IDPs MD trajectories even 

more so. The analysis of IDP trajectories need the careful deployment of methods able to 

address the trajectory noise. Many commonly used analytical methods fail to adequately 

 

Figure 26 – The plot A is the linear data for the pivot angle coefficient, which identifies the residues 
involved in the formation of pivot angles. The same data is mapped onto a representative structure (B). 
The results show that the most prominent pivot angle is the β-turn formed by amino acids 20 to 24, which 
corresponds to a highly conserved region identified by NMR experiment (Andresen et al., 2012). 
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resolve the data complexity. In the case of MYC88’s MD simulations, the clustering based on 

simple geometrics did not yield the expected definition of discrete protein states, neither did 

the deployment of the PCA. For MYC88, the identification of its metastable states entailed 

discovering its slowest transitions with TICA analysis. The TICA analysis identified three main 

metastable states: a slightly compacted State 1, a very abundant intermediate State 3, and a 

slightly extended State 2. MYC88’s slowest transition entailed the movement from the 

abundant State 3 to State 2 and its second slowest transition from State 3 to State1. The State 

3 to State 2 transition sees the protein project outwards its N-terminal, whilst the State 3 to 

State 1 sees the protein increase in compaction.  

MYC88’s maximum amplitude motions were analysed using the Rg linear data conjunctly with 

an algorithm that detects the data’s highest min and max peaks. These min and max peaks 

correspond to rarer structural events: the minimum correspond to a very compacted 

configuration unlikely to establish any intermolecular interactions; the maximum corresponds 

to a full extension of the N-terminal and MB0, which restates the idea that MB0 is involved in 

a fly-catching motion by optimising its binding surface, to attract molecular partners crucial for 

c-MYC’s activation and degradation. The flexible nature of MB0 was further echoed by the 

study of MYC88’s contact activity. It identified MYC88’s first N-terminal 24 residues as the 

region accountable for most of the protein’s flexibility. It also identified the hinges which 

facilitate MB0’s extension spanning residues 20 to 24 - an NMR-predicted β-turn, and residues 

8 to 12. It also highlighted that the NMR-predicted helical region – covering residues 27 to 38 

acts as a stabilising anchor allowing MB0 to act independently whilst preserving MBI’s stability. 

The identification of the protein dynamics, its most abundant configurations and its slowest 

transitions allows for a window of opportunity in terms of drug targeting. Chapter III presents 

the results of the drug discovery process applied to MYC88.  
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Chapter III – Targeting MYC88 

 

1. Introduction 

Attempts have been made to target c-MYC at every step of its life - from modulating its 

transcription levels; affect its mRNA stability; amplify its degradation; or inhibit its interaction 

with molecular partners. Some drug discovery attempts have targeted it indirectly by disrupting 

the binding to its vast interactome, while others relied on a more direct approach by interfering 

with its production and/or degradation. 

 

1.1 Indirect approaches 

One of the main ways to indirectly target c-MYC has been to block its transcription and 

modulate its expression. Current research into bromo- and extra-terminal domain (BET) 

inhibitors, such as JQ1, found that this small molecule inhibitor can interfere with bromodomain 

chromatin regulators and downregulate c-MYC’s transcription (Delmore et al., 2011). 

Specifically, JQ1 is thought to prevent the activity of the chromatin remodeller, and c-MYC 

coactivator, bromodomain-4 (BRD4) (Carabet, Rennie & Cherkasov, 2018), and induce cell 

senescence, cell-cycle arrest and reduce tumour activity in animal models of multiple 

myeloma, Burkitt lymphoma and acute myeloid leukaemia (Delmore et al., 2011; Jennifer A. 

Mertz et al., 2011). Recent research has disputed the idea that JQ1 inhibits c-MYC levels as, 

in some well-studied cases, c-MYC’s levels remain quite high despite JQ1’s activity (Ambrosini 

et al., 2015; Andrieu, Belkina & Denis, 2016; Bid et al., 2016; Garcia et al., 2016; Hogg et al., 

2016; Yao et al., 2015).  Furthermore, there is evidence suggesting that c-MYC can easily 

develop protective mutations, rendering it immune to the downregulatory effect induced by 

BET inhibitors (Fong et al., 2015; Rathert et al., 2015; Shi, X. et al., 2016; Shimamura et al., 

2013).  Lowering c-MYC’s transcription levels was also attempted by targeting the cyclin-
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dependent protein kinase 7 (CDK7), a catalytic subunit of the CDK-activating kinase (CAK). 

The CAK creates a complex with the human transcription factor II (TFIIH) and facilitates, via 

serine-5 phosphorylation of the RNA polymerase II (RNA Pol II), the subsequent elongation of 

the target transcripts (Sun, B. et al., 2020). The CDK7 inhibitor THZ1 has shown promise in a 

variety of cancers including neuroblastoma (Chipumuro et al., 2014; Kwiatkowski et al., 2014); 

lung cancer (Christensen et al., 2015) and triple-negative breast cancer (Wang, Y. et al., 

2015). Nevertheless, although this inhibitor was found to lower c-MYC levels in 

neuroblastomas, it is still not fully established that it does so by blocking c-MYC’s transcription 

(Whitfield, Beaulieu & Soucek, 2017).  

Another approach to inhibit c-MYC’s overexpression has been to block its translation. The 

mTOR translation regulatory mechanism has been particularly aimed at by several small 

molecular inhibitors. Many of these inhibitors, already approved for clinical use, affect mTOR 

directly or indirectly by regulating the activity of its many pathway partners (Polivka & Janku, 

2014; Roohi & Hojjat-Farsangi, 2017). The eukaryotic initiation factor-4A (eIF4A) has been 

consistently targeted, notably by the inhibitor silvestrol, and was found to reduce c-MYC 

translation rates and impair tumour development (Wiegering et al., 2015).  The Src kinase has 

also been targeted using the inhibitor saracatinib and found to downregulate eIF4A-mediated 

c-MYC translation (Jain et al., 2015).   

Additionally, c-MYC has been the focus of synthetic lethality studies. In these studies, 

many proteins, unrelated to c-MYC, have been identified as potential targets since they display 

lethality when c-MYC is overexpressed (Cermelli et al., 2014; Xin Li et al., 2015). Namely, the 

artemisinin by-product compound dihydroartemisinin was found to indirectly destabilise c-

MYC by activating the glycogen synthase kinase GSK3-β, promote THR58 phosphorylation, 

and subsequent c-MYC ubiquitination (Wei et al., 2018). Other lethality screen identified 

targets include Aurora kinases (Whitfield, Beaulieu & Soucek, 2017). Studies with Aurora-A 

kinase and n-MYC have suggested that the formation of Aurora A and n-MYC complex 

rescues n-MYC from degradation. Thus, it has been proposed that disrupting this interaction, 
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via small inhibitors, would be a viable tactic to promote normal n-MYC, and potentially c-MYC, 

degradation (Brockmann et al., 2016). 

Attempts to find immunotherapy treatments for c-MYC-driven tumours have also gained 

traction. Notably, PCI-32765 (Ibrutinib) - an inhibitor of Bruton's tyrosine kinase (BTK)  

currently used in cancer treatments (Whitfield, Beaulieu & Soucek, 2017), was found to 

possess inhibitory activity against the formation of pancreatic islet tumours, a c-MYC-driven 

neoplasia (Soucek et al., 2011). 

Many approaches have aimed to disrupt c-MYC’s stability. Namely, the E3 ligases 

responsible for c-MYC ubiquitination, FBW7 and Skp2, have been induced by compounds 

such as oridonin, a diterpenoid, to promote c-MYC degradation (Huang, Hui-Lin et al., 2012). 

Targeting strategies have also aimed to compromise the deubiquitinating proteins, including 

USP28, USP38, and USP36, to enhance c-MYC’s destruction (Sun, X., Sears & Dai, 2015).  

Despite showing promise, and many compounds progressing to clinical trials, the success 

of the indirect approaches has been dampened by the lack of demonstrated specificity to c-

MYC. Although several inhibitors are undergoing clinical trials, many researchers still question 

the idea that the observed clinical efficacy is caused by interference with the c-MYC’s 

transcription or is even related to c-MYC at all (Whitfield, Beaulieu & Soucek, 2017). 

 

1.2 Direct approaches 

The direct targeting of c-MYC has proven equally difficult, to the extent that the protein has 

been deemed undruggable (Dang, Chi V. et al., 2017). This has mainly to do with c-MYC’s 

disordered nature and the absence of identifiable stable druggable pockets and cavities 

(Whitfield, Beaulieu & Soucek, 2017). To complicate matters further, c-MYC is a nuclear 

protein with no enzymatic function and a history of poor interaction with small molecules 

(Posternak & Cole, 2016).  



74 
 

The most noteworthy attempt to directly target c-MYC involved blocking the MYC/MAX 

dimerization and downregulate c-MYC’s transcriptional activity. One of the first small 

molecules to be tested as a MYC/MAX dimerization inhibitor was the peptide mimetic molecule 

IIA6B17 (Thorsten Berg et al., 2002). Unfortunately, this small compound lacked specificity 

and displayed heavy cross reactivity with other proteins, specifically with c-Jun, limiting its 

prospects as MYC/MAX inhibitor (Berg, 2008). Shortly after, another compound was 

developed, the 10058-F4, to bind c-MYC’s bHLH-LZ domain in a more specific way (Yin et al., 

2003). 10058-F4 performed excellently in vitro, and it is still commonly used in assays as a c-

MYC inhibitor. However, it failed in animal testing due to its largely inadequate 

pharmacokinetic and pharmacodynamic qualities (Horiuchi, Anderton & Goga, 2014). Its fast 

metabolization, poor tissue bioavailability and inadequate tumour penetration made 10058-F4 

an unacceptable candidate for further clinical trials (Fletcher & Prochownik, 2015; Guo, J. et 

al., 2009). Several other small molecule inhibitors have been described in literature, including 

10074-G5 (Yin et al., 2003) and JY-3-094 (Wang, H. et al., 2013; Yap et al., 2013)  which, 

likewise, suffered from low bioavailability and poor cell penetration. 

c-MYC’s direct drug discovery approaches have focused exclusively on the C-terminal, 

particularly the bHLH-LZ region, for a good reason: the bHLH-LZ is c-MYC’s most ordered 

region with an established crystal structure. Conversely, the lack of structural knowledge 

regarding c-MYC’s N-terminus makes it difficult to find suitable pockets within this region. 

However, as discussed in the previous Chapter, the MD trajectory analysis identified MYC88’s 

slow transitions and abundant metastable states. Armed with this structural dynamics’ 

knowledge, a rational approach to the assess the ‘druggability’ of this region is now feasible 

and is the main topic of this Chapter.  
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2. Results and Discussion 

3.1 Pocket discovery 

After determining MYC88’s most abundant metastable state using TICA analysis, its 

‘druggability’ largely depends on finding a suitable druggable pocket. The ideal cavity is 

assessed in terms of its geometry, favourable electrostatics, ideal polar and hydrophobic 

composition, and stability over time (Figure 27). This has typically precluded drug discovery 

research into c-MYC’s N-terminal due to its intrinsically disordered nature. However, as 

previously discussed in Chapter II, MYC88 possesses transiently ordered regions that can be 

targeted. Additionally, the structure put forth to drug discovery analysis belongs to a very 

abundant metastable state which offers a good window of opportunity for pocket stability.  

 

The representative structure for TICA State 3 was used to look for a suitable pocket 

that would satisfy the step-by-step conditions defined in Figure 27. To do so, various in silico 

drug discovery methods were used in tandem to assess MYC88’s surface for suitable pockets 

and cavities. A binding site consensus across different methods would robustly indicate a 

suitable druggable region.  

 

Figure 27– Diagram summarising the rationale informing the search for a druggable pocket. 

 

Does the protein 
have druggable 

pockets or cavities?

Is the pocket 
energetically 
favourable?

Does the pocket 
possess the correct 

physicochemical 
properties such as 

polar amino acids and 
hydrophobic 

patches?

Is the pocket 
conserved over time? 
(Very important for 

IDPs)
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The first tool used, CASTp, calculates the existence of suitable cavities based on 

geometry algorithms including the molecular surface volume of the pocket, the solvent-

accessible surface volume, and the molecular surface area of the cavity’s mouth. CASTp 

defines pockets as empty concavities on a protein surface with a mouth opening connecting 

the protein’s interior with the solvent (with a probe sphere of 1.4 angstroms). Figure 28 shows 

CASTp pocket prediction results mapped onto MYC88’s representative structure. 

 

 CASTp’s prediction identifies a suitable pocket with correct geometric features. 

Interestingly, the residues involved in forming the pocket (Figure 28 - in red) are mostly highly 

conserved amino acids within the MBI region, including SER62. A ligand binding this pocket 

is likely to interfere with MBI’s interaction with molecular partners and interfere with the MBI 

mediated intramolecular contact network. However, a successful binding site must also 

display a high-level binding affinity to ligands. To assess this, FTMap was used as a tool to 

identify docking regions, or hotspots, possessing high affinity binding to organic probes 

(Figure 29). The probes consist of 16 small organic molecules of varying sizes, shapes and 

 

Figure 28 – CASTp pocket prediction results using a geometry-based approach. The ideal pocket 
region is highlighted in red and spans residues 41 to 46, 49, 60 to 63, 74 to 77, 82 and 86. 
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polarities which help identify binding hotspots on the protein’s surface. The identification of a 

consensus site for many probes indicates a highly druggable region. 

 

 

Extraordinarily, all 16 probes converged to the exact same spot, indicating a very strong 

druggable region. Furthermore, the predicted FTMap pocket is formed by most of the residues 

identified by CASTp, including the MBI amino acids and the all-crucial phosphodegron SER62 

residue. Additionally, FTMap predicted a few highly conserved residues in the MB0 region as 

also participating in the formation of the binding hotspot. 

  The encouraging results obtained with FTMap and CASTp were replicated using 

another tool, PockDrug, which assesses the pocket in terms of its geometry, hydrophobicity, 

and polarity. PockDrug is an all-rounder application that assesses pockets in terms of their 

geometric aspects such as its shape, volume, and solvent-accessible area; and their 

biochemical aspects, including its residue composition, hydrophobicity, polarity and 

aromaticity to detect the presence of regions with high potential to form favourable 

intermolecular interactions with ligands (Figure 30). 

 

Figure 29 – FTMap results showing the consensus site identified by the 16 small molecule organic 
probes and the residues involved in creating the binding hotspot. 
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 Yet again, the PockDrug analysis results reflect nearly exactly CASTp’s findings. Both 

applications identify the same MBI residues, amino acids 41 to 46, 49; the phosphodegron 60 

to 63 containing the all-important SER62; as well as some C-terminal residues 74 to 77, 79, 

82 and 86, as the predicted pocket.  Furthermore, PockDrug estimates that the pocket is 

composed of 33% polar residues and 31% hydrophobic residues based on Kyle-Doolitle 

hydrophobicity score, offering a high ‘druggability’ probability score of 84%.  

Despite such encouraging results, it is imperative to consider the pocket stability over 

time and this is even more important for an IDP, such as MYC88. To assess the existence of 

a robust and well-maintained pocket another key analysis tool was deployed – MDPocket. 

This tool assesses the pocket stability by analysing its evolution over the course of the 

simulation.  To do so, 10 snapshots were extracted from a 1000 ns simulation sampled at 

every 100 ns, allowing MDPocket to detect the presence of a conserved pocket throughout 

the trajectory. Figure 31 shows the MDPocket results mapped onto the representative 

structure.   

 

Figure 30 – PockDrug predicted pocket residues (in red) mapped onto MYC88’s structure. 
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The MDPocket identifies the pocket residues as being maintained over time. In other words, 

MDPocket’s findings show that the pocket created by the residues previously identified by 

CASTp, FTMap and PockDrug is very stable over the course of the MD trajectory. This is 

consistent with the results obtained from Chapter II, since the residues involved in forming the 

pocket are mostly MBI residues predicted to be the most stable part of the protein. 

Therefore, based on the comparison of the results across the different methods a 

highly druggable pocket was identified. The consensus across the different methodologies 

identifies the residues 41 to 50, 60 to 63 and 74 to 77 as the main pocket. Since this pocket is 

mainly comprised of MBI residues, a region very specific to the MYC family of proteins, it is 

unlikely to suffer from the promiscuity, and cross-reactivity problems which plagued other c-

MYC drug compounds. With a suitable pocket identified and its location defined as the docking 

site for potential ligands, the drug discovery process can proceed unimpeded. 

 

Figure 31 – MDPocket results identify which residues are the most stable over time the course of 
the trajectory (in red) and the least stable (in blue). The sequence below is coloured in the same 
colour scheme as the figure and identifies that the most stable regions correspond to the predicted 
pocket. 
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3.2. Drug discovery 

 With MYC88’s druggable pocket defined, tools were deployed to search for compound 

candidates which could target the predicted pocket with favourable free energy binding. This 

drug discovery process was undertaken using Autodock Vina (Trott & Olson, 2010) and iDock  

(Hongjian Li, Kwong-Sak Leung & Man-Hon Wong, May 2012) to identify the best drug 

candidates. Out of a total of 23,221,614 compounds screened, the 10,000 best scoring ligands 

were selected. To narrow this number down to a more manageable figure, only ligands that 

satisfied the Lipinski rule (rule of five) were considered, as this ensures that ligands with poor 

pharmacokinetics are discarded. 

The Lipinski rule, derived from the work of (Lipinski et al., 1997), aims to provide sound 

guidelines for the selection of suitable compounds in drug discovery. According to the Lipinski 

rule, compounds with good pharmacodynamics, pharmacokinetics and satisfactory 

bioavailability properties should not violate more than one Lipinski condition. Ligands with two 

or more violations are expected to display inadequate absorption and permeability (Lipinski et 

al., 1997; Petit et al., 2012)  and were not selected for testing. The Lipinski rule states that 

small ligands should have: 

• No more than 5 hydrogen bond donors and no more than 10 hydrogen bond acceptors.  

• A molecular mass less than 500 Daltons. 

• An octanol-water partition coefficient log P not greater than 5. 

• Fewer than 10 rotatable bonds. 

Additionally, it is also possible to search for smaller lead-like compounds with more 

stringent parameters: 

• An octanol-water partition coefficient log P not greater than 3. 

• A molecular mass lower than 300 Daltons.  

• 3 hydrogen bond donors or less; 3 hydrogen bond acceptors or less; and 3 rotatable 

bonds or less. 
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To choose the ideal drug candidates, with adequate physicochemical characteristics and 

solubility, the 10,000 compounds were triaged in order to identify the ligands that satisfied all 

Lipinski constraints and displayed a free binding energy of < -10.2 (kcal/mol); and the ligands 

that satisfied the lead-like parameters with a free binding energy of < -8.5 (kcal/mol) (Figure 

32).  

 

 A total of 46 compounds were identified: of these 39 satisfied the Lipinski rule and bound 

MYC88 with a free energy less than -10.2 (kcal/mol); whilst further 7 complied with lead-like 

constraints and bound the protein with free energy less than -8.5 (kcal/mol). These compounds 

were all tested using MD simulations to assess their interaction with MYC88. Of the 46 

compounds, only 14 demonstrated stable binding throughout the MD trajectory and of these, 

the best performing 6 were chosen due to their noteworthy binding stability and energies 

(Figure 33).  The chemical structures of these 6 ligands can be found in suppl. Figure S5.  

 

Figure 32 – Identification of compounds out of the top scoring 10.000 candidates that (A) fulfil the 
Lipinski rule and have a binding energy of < -10.2 (kcal/mol); (B) fulfil the lead-like constraints and 
display a binding energy of < -8.5 (kcal/mol). 
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Binding stability is defined by the ligand’s sustained binding and its closeness to the predicted 

pocket throughout the course of the MD trajectory. On average, all ligands maintained a very 

close distance of 5 Å to the predicted pocket (Figure 33 - A). In tandem, the ligands were also 

found to favourably bind the pocket, as seen on Figure 33 – B. Each tested ligand bound 

MYC88’s pocket very favourably creating complexes with binding energies lower than -20 

kcal/mol.  

The tested compounds’ high binding affinity and a strong binding stability maintained 

throughout the trajectory demonstrates the robustness of their binding kinetics. Such strong 

interactions are likely to have consequences to MYC88’s conformational landscape, which 

can now be evaluated by deploying analytical methods previously unsuccessful due to MYC88 

intrinsic disorder. In other words, PCA can now be used to analyse the MYC88-ligand complex 

conformational landscape (Figure 34).  

 

Figure 33 – Frequency distribution plots showing each ligand’s distance from the pocket throughout the 
simulation (A) and the ligand’s binding energy to MYC88’s pocket throughout the simulation. 
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 Previously inadequate to resolve MYC88 conformational states, the PCA plots now reveals 

that MYC88-ligand trajectories display a significant loss of protein disorder, now revealing 

‘clusterable’ landscapes. This implicates the ligands in MYC88’s loss of natural disorder and 

suggests their role in forcing MYC88 to adopt discrete states, which can now be directly 

discerned from a simple PCA noise reduction analysis. 

Ligands, such as 23251632, compel MYC88 to inhabit well-defined PCA clusters with PC’s 

that explain close to 60% of the data variance. In the case of ligand 23251632 there are three 

distinct clusters, which can then be used to deploy the K-means clustering algorithm (Figure 

35). 

 

Figure 34 – PCA landscapes for each of the ligands: (a) 02123368, (b) 12866951, (c) 14464010, 
(d) 23251632, (e) 35838345 and (f) 25694629. 
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The representative structure obtained from each cluster (Figure 35) shows that MYC88, when 

drugged with ligand 23251632, appears structurally folded, ordered, and compacted in all its 

conformational clusters. The visual inspection of the structures indicates that the loss of 

disorder is linked to MYC88 N-terminal’s, which includes the MB0’s region (coloured in red in 

Figure 35), loss of its dynamic ‘fly-casting’ movement. This abrogated N-terminal extension is 

the main cause of the protein compaction. This can be further discerned by considering the 

overall frequency distribution of the Rg for the unbound MYC88 simulation versus the MYC88 

in interaction with ligand 23251632 (Figure 36). 

 

Figure 35 – This figure shows the data analysis for the MYC88 targeted with ligand 23251632 (a) 
the PCA landscape showing the allocation of the 3 predicted clusters and (b) the representative 
centroid structures for each of the clusters. 
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The ligand interaction with MYC88 dramatically shifts the protein’s Rg towards a more 

compacted and less conformationally diverse space. Also, the comparative analysis of the 

secondary structure propensities shows that the ligand enhances MYC88’s ordered content 

when compared to unbound MYC88 (Figure 37).  

 

 

 

Figure 36 – Comparative probability density Rg histogram for the MYC88 simulation (brown) and 
MYC88 targeted with the ligand 23251632 (green). 

 

          

   

   

   

   

 

   

        

              

      

 
  
 
 
 
   
  
  
 
 
 
  
 

 

Figure 37 – The secondary structure propensities (SSP) scores for the MYC88 simulation (a) and 
MYC88 targeted with the ligand 23251632 (b). 
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MYC88 when targeted with the ligand 23251632 displays a remarkable 50% increase in helical 

formations of residues 3 to 12, which serves to stabilise the entire MB0 region. It also displays 

an abrogation of the β-turn formation between residues 22 and 25 which, as previously seen, 

acts as a crucial pivot angle and a hinge facilitating MYC88’s N-terminal extension and 

retraction.  

The ligand’s stabilizing effect on MYC88’s conformational potential is more evident 

when considering the MYC88’s peak minimum and maximum configurations extracted directly 

from the Rg over time linear plot (Figure 38).  

 

Figure 38, which shows the MYC88 configurations timeline evolution, also displays the 

location of the ligand 23251632 for each represented structure and allows for the visual 

assessment of the ligand’s interaction with MYC88 over the course of the trajectory. It is 

curious to note that at the start of the simulation MYC88’s N-terminal initially attempts an 

extension at 27 ns. However, the subsequent maximum peaks highlight how MYC88’s N-

 

Figure 38 – Timeline evolution of MYC88’s Rg showcasing the peak minimum and maximum 
structures. The figures display the ligand and the location of both MYC boxes: MB0 in red and MBI 
in blue. 
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terminal becomes so trapped in its interaction with the ligand that is unable to extend out from 

the protein. So much so that, after the first 500 ns, the variance in Rg between the maximum 

(~12.5 Å) and minimum peaks (~12 Å) is only 0.5 angstroms, suggesting extraordinary protein 

stabilisation and narrowing of the conformational range.  

 By investigating the MYC88/ligand contact map it was possible to identify which exact 

protein residues the ligand is targeting throughout the trajectory (Figure 39). 

 

Figure 39 results show that the ligand stably and consistently binds four MYC88 regions: 

residues 1 to 5; residues 58 to 63; residues 69 to 72; and residues 83 to 88. This sees the 

ligand binding together N-terminal residues to C-terminal residues, involving the 

phosphodegron as well, which keeps the protein in a folded configuration. The ligand 

occupancy of the phosphodegron region is likely to negatively affect any interactions that could 

lead to c-MYC activation. The protein activation is further negatively impacted by the 

 

Figure 39 – The MYC88 contact map for ligand 23251632 which shows that the compound binds 
consistently throughout the simulation to four main regions highlighted in blue frames: N-terminal 
region - residues 1 to 5; phosphodegron region – residues 58 to 63 and the C-teminal regions – 
residues 69 to 72 and residues 83 to 88. 
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abrogation of the N-terminal extension which interferes with MB0’s recruitment of PIN1, a 

molecular interaction crucial for c-MYC transcriptional activation and this likely causes c-MYC 

inactivation - a very desirable outcome in cancer. 

The ‘druggability’ proof-of-concept achieved with ligand 23251632 is in no way unique 

but reflects the findings obtained with the other 6 ligands. Figure 40 offers the K-means 

clustering landscape for the ligand 358383345 along with the representative centroid 

structures. 

 

It is immediately evident upon inspection that the representative structures obtained for the 

ligand 358383345 closely replicate the findings obtained for ligand 23251632: the centroid 

structures are too folded, and the N-terminal does not appear extended in any of the clusters. 

Further investigation with the minimum and maximum Rg peaks reveals that only two 

 

Figure 40 – PCA landscape obtained from the simulation of MYC88 targeted by ligand 358383345. 
It shows the allocation of the 4 predicted clusters using the K-means clustering algorithm alongside 
the representative structures for each of the cluster centroids. 
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maximum Rg of gyration peaks, occurring at 366 ns and 391 ns, involve the extension of the 

N-terminal (Figure 41). For the remainder of the trajectory, the N-terminal remains firmly 

compacted. 

 

The reason for the two mid-trajectory extension events is obvious when looking at the contact 

map between MYC88 and ligand 358383345 - the max N-terminal extension events coincide 

with the period during which the ligand transiently unbinds the N-terminal’ residues 2 to 13 

(Figure 42).  

 

Figure 41– Timeline evolution of MYC88’s Rg showcasing the peak minimum and maximum 
structures. The figures display the ligand and the location of both MYC boxes: MB0 in red and MBI 
in blue. 
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The ligand transient unbinding occurring between 310 and 500 ns leaves MYC88’s N-terminal 

momentarily free and able to extend, causing the maximum peak of extension observed at 

366 and 391 ns. Upon reassociation of the ligand to the N-terminal, occurring at the 500 ns 

mark, MYC88’s N-terminal ‘fly-casting’ activity is once more abolished and the protein 

becomes once again trapped in a compacted configuration. This establishes that the loss of 

the structural mobility of the N-terminal is a direct result of the ligand’s interaction. 

Furthermore, Figure 42 also confirms that ligand 358383345 strongly binds to the 

phosphodegron region and is also likely to interfere with c-MYC activation.  

These findings reveal a very exciting pattern of interaction between the ligands and c-MYC 

which leads to an extremely desired outcome – to tackle c-MYC overexpression by preventing, 

and interfering with, its activation in cancer. 

 

 

Figure 42 – Timeline evolution of MYC88’s interaction with ligand 358383345. 
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3. Conclusion 

This Chapter started with a representative structure from MYC88’s most abundant and 

well-sampled metastable state and the intention to challenge the idea that c-MYC is an 

undruggable ‘black box’. The first step was to search for a druggable pocket within the MYC88 

against which to build the drug discovery process. Several methodologies were employed to 

find the elusive pocket. The results, originating from a variety of distinct tools, recognised the 

same region as a suitable pocket formed by a cavity with the correct geometry, favourable 

residue composition and stability over time. This region created mainly by MBI residues, 

includes the phosphodegron and some C-terminal residues, became the target site for drug 

screening. The extensive screening process identified suitable compounds that bound MYC88 

with excellent binding affinity and displayed exceptional binding stability. These compounds 

also respect the Lipinski rules and are, thus, expected to display optimal pharmacokinetics 

and pharmacodynamics, making them strong candidates for additional medicinal chemistry 

research and drug compound optimisation.  

Analysing the MD trajectories of several MYC88-ligand complexes revealed a wealth 

of information, including the mode by which these ligands interfere with MYC88’s structural 

dynamics. These compounds turn MYC88’s noisy and disordered PCA landscape into a 

‘clusterable’ conformational landscape. The ligands cause MYC88 to lose its intrinsic disorder, 

forcing it to adopt ordered and compact conformational states. This loss of disorder correlates 

with the abrogation of the N-terminal extension activity and occurs because of direct ligand 

binding to key N-terminal residues. The ligand traps the N-terminal into a folded, compacted 

configuration and is likely to have a significant negative impact to MYC88’s function. The N-

terminal’s loss of structural dynamics interferes with the ‘fly-casting’ recruitment of molecular 

partners and makes MB0 docking site unavailable. Molecular partners, such as PIN1, become 

unable to activate c-MYC for transcriptional activity. With impaired activation it is probable that 

c-MYC-driven carcinogenesis is negatively impacted since the ligands also stably bind to the 

phosphodegron region, further limiting access to c-MYC’s activation switch – SER62.  



92 
 

Ultimately, this Chapter provides strong evidence that c-MYC’s TAD domain can and 

should be successfully considered for drug discovery. It offers robust proof-of-concept that it 

is viable, and even advantageous, to target c-MYC regions other than its DNA binding domain. 

These conserved c-MYC regions are less likely to trigger compound cross-reactivity since they 

are highly specific to MYC family of proteins. The findings in this Chapter can help jumpstart 

further enquiry into TAD domain drug discovery and highlight how the deployment of robust 

Molecular dynamics simulations and in silico drug discovery tools can tackle previously 

intractable IDPs, confirming that c-MYC should no longer be deemed an undruggable ‘black 

box’. 
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Chapter IV – c-MYC TAD domain 

 

1. Introduction 

The focus of this Chapter is on the study of c-MYC’s first 150 amino acids (MYC150), 

which contain the entirety of its TAD domain. This provides validation for the MYC88 findings 

and, most importantly, offers further insight into c-MYC’s epicentre of interaction with its 

molecular partners – its TAD domain. These interactions, and how they are modulated, the 

molecular mechanisms behind c-MYC’s interaction decisions remain poorly understood, which 

strictly frustrates the search for solutions to c-MYC’s overexpression. 

MYC150 contains the first three highly conserved MYC boxes. This includes MB0 

(residues 10 to 32), MBI (residues 45 to 63) and MBII (residues 128 to 143). As described, 

MB0 has been recently identified as the target docking site for a prolyl isomerase enzyme – 

PIN1 (Helander et al., 2015) and as an independent transactivation domain (Zhang, Q. et al., 

2017). Prior to that, MB0 was not even described in literature and the TAD domain was solely 

defined in terms of its two other MYC boxes – MBI and MBII. Our research into MYC88 finds 

that MB0 acts as an independent, autonomous flexible region, engaged in periodic extensions 

and reassociations which serve as a fly-casting mechanism. In our MYC88 studies, MB0 

structural dynamics account for MYC88’s highest amplitude conformational changes. The 

most notable of MB0’s interactors - PIN1 has been identified as a molecular switch for a variety 

of substrates. It is known that Pin1-mediated cis-trans isomerization of prolines neighbouring 

the phosphodegron residues, THR58 and SER62, regulates c-MYC’s activation and 

degradation and, therefore, dictates c-MYC’s fate. c-MYC’s proliferative activity is activated 

by phosphorylation of SER62, whilst the subsequent phosphorylation of THR58 causes c-

MYC to be flagged for proteasomal degradation (Hann, 2006). PIN1 is thought to mediate the 

phosphodegron phosphorylation and dephosphorylation events and regulate c-MYC’s 

interaction with different kinases and phosphatases  (Helander et al., 2015). This regulatory 
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PIN1 function is further evidenced in cancer, as cancer-induced phosphodegron mutations 

result in c-MYC aberrantly maintaining its transcriptional activated state (Bahram et al., 2000; 

Wang, X. et al., 2011). PIN1 in c-MYC-driven cancers often functions only as a co-activator 

and loses its function as a c-MYC degradation promoter (Farrell & Sears, 2014). This 

highlights how important it is to understand these regulatory molecular interactions. How the 

PIN1 control is achieved and how c-MYC recognises and coordinates its TAD domain 

dynamics in response to its many co-factors is still very inadequately understood. This final 

Chapter aims to investigate the structural dynamics of the entire TAD domain to reveal more 

about key residues involved in the MYC150’s structural dynamics and how these relate to 

mechanisms that control and modulate c-MYC’s activity. 

 

2. Results and Discussion 

3.1 Exploring the MYC150 structural dynamics 

This sub-Chapter seeks to validate the results obtained for MYC88 in terms of its clustering 

and noise reduction data analysis and applies the same analytical methods. Firstly, it looks at 

the MYC150 landscape created by simple geometrics including radius of gyration (Rg) and 

the distance end-to-end (from the first to the last residue) for insight into the protein’s 

compactness; solvent-accessible surface area (SASA); and the molecule’s hydrogen bonds, 

to explore the protein’s stability. The results in Figure 43 indicate that MYC150 mimics the 

results obtained for MYC88 and fails to create a ‘clusterable’ landscape with any of its simple 

metrics. Of course, this is unsurprising given that MYC150 is larger and more complex than 

MYC88, and more residues means more degrees of freedom, and ultimately noise. 
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Again, TICA analysis is deployed to give insight into the major average metastable states the 

protein might be inhabiting. TICA analysis for MYC150 (Figure 44 - B) reveals a much flatter 

landscape when compared to MYC88’s landscape (Figure 44 - A).  

Unlike MYC88, the MYC150 conformational space does not inhabit well-defined, and clearly 

 

Figure 43 – Normalised MYC150 landscapes obtained by plotting RMSD values against different 
simple MD simulation metrics: (a) radius of gyration (Rg), (b) the molecule’s distance from N-terminal 
to the C-terminal (Distance end-to-end), (c) solvent-accessible surface area (SASA) and (d) the number 
of hydrogen bonds (Hbonds). 

 

 

Figure 44 – Free energy plots revealing the conformational basins created by the first two ICs after 
TICA analysis for both the MYC88 (A) and the MYC150 (B). 
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separated, energy basins and contains a very large conformational basin with several local 

minima. MYC150 rapidly moves between a substantial ensemble of conformations separated 

by very small energy barriers. An attempt at clustering revealed the predicted structures for 

each of the states including the large basin (Figure 45).  

 

Since this is such a flat landscape, several representative structures were extracted for each 

basin, and then averaged to reveal a clearer description its conformational range. Hence, the 

average structure should not be taken a true conformation but rather as an indication of the 

representative structures’ mean. The results show that the largest basin corresponds to 

structures with the highest compaction, which includes the folding of each of the three MYC 

boxes. The upper left cluster (IC1 of -2) corresponds to structures exhibiting mostly N-terminal 

and MB0 extension - consistent with the findings obtained for MYC88. The upper right cluster 

(IC1 of 1.5) reveals a new pool of conformations characterised mostly by flexibility and 

extension associated with the C-terminal and the MBII region. 

Given the evident limitations of the TICA analysis, these results were validated by the analysis 

of the linear Rg over time to find the conformational maximum and minimum peaks, affording 

a reliable way to gain insight into MYC150’s highest amplitude transitions (Figure 46). 

 

Figure 45 – Conformational averages for each basin mapped onto the TICA free energy landscape. 
The representative structures show MB0 in red, MBI in blue and MBII in green. 
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As with MYC88, MYC150’s Rg evolution over time also reveals that the protein undergoes 

frequent and periodic sampling of maximum and minimum peak conformations. Figure 47 

maps the max and min peak conformations onto the Rg linear plot to identify their structural 

features. 

 

 

Figure 46 – MYC150 Rg evolution over time showing the identified minimum and maximum peaks. 

 

 

Figure 47 – Representative structures of some maximum and minimum peaks sampled by MYC150 
throughout the MD simulations. MB0 is depicted in red, MBI in blue and MBII in green. 
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The max peak structures, colour-coded with the MB0 in red, MBI in blue and MBII in green, 

show that the maximum extension and flexibility occurs due to three main structural motions: 

(1) when the N-terminal and the MB0 extends out from the protein which can be seen at 1663 

ns and 3377 ns; (2) when MBI displays an extended configuration at 8112 ns and (3) when 

the C-terminal and MBII extends out which can be seen occurring at 16232 ns and 18994 ns.  

 As previously observed for MYC88, MYC150 also undertakes periodic peak 

configurations involving transitions from compacted to extended, followed by a reassociation. 

In MYC150, however, the extension events involve each of the MYC boxes separately. This 

suggests a dynamic mechanism which aims to maximise interaction with molecular partners 

and to promote the formation of molecular complexes with these conserved regions. Since 

each MYC box seems to be extending independently, MYC150’s dynamics serve the purpose 

of selecting molecular partners by modulating access to the binding site – making it accessible 

during extension and inaccessible during compaction.  

MYC150 conformational selectivity can be assessed by looking at the long-range 

intramolecular interactions involving the MB regions. Figure 48 maps the MYC150 long-

distance internal connectivity with a 10-angstrom cut off, considering only very close contacts 

between residues. 
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The contact map shows that the phosphodegron region mediates MYC150’s long-range 

intramolecular interactions. The phosphodegron is in direct contact with two main interaction 

regions: interaction region 1 (IR1) which corresponds to a conserved region outside of the 

MYC boxes and interaction region 2 (IR2) a highly conserved region inside MBII. The network 

centrality of the phosphodegron, previously identified for MYC88, suggests that the region is 

more than a phosphorylation switch but mediates the structural dynamics of the 

unphosphorylated protein as well. This can be further assessed with network analysis to 

determine the most important residues in terms of centrality (Figure 49). 

 

Figure 48 – MYC150 long-range interaction contact maps. MB0 is depicted in red, MBI in blue and MBII 
in green. The phosphodegron (PD)’s prolines are in marked in light green, the T58 and S62 in orange. 
The conserved interaction region 1 (IR1) is coloured in cyan and the interaction region 2 (IR2) in salmon. 
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The main hub in the MYC150 network is PRO60, at the centre of the phosphodegron, 

displaying both the highest degree and the highest betweenness centrality. This makes it the 

most connected residue and the main orchestrator between the different regions of the 

network. PRO60 is closely followed in importance by another phosphodegron proline – PRO59 

with an equally high degree centrality, the same 11 connections as PRO60 (Table 8).  

 

 

Figure 49 – MYC150 network analysis. The nodes are coloured by their degree centrality and sized 
according to their betweenness centrality. 

 

Table 8 – MYC150 network centrality measures for the highest-scoring residues. 

Residue Degree centrality (edges) Betweenness centrality (score) 

PRO60 11 0.54 

PRO59 11 0.145 

ILE130 7 0.22 

LEU61 6 0.123 

THR58 6 0.07 
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Out of the 5-top scoring residues in terms of degree centrality - four are phosphodegron 

residues, including THR58, indicating that the phosphodegron is key for the long-range 

interconnectedness of MYC150. The main recipient of the phosphodegron connections is the 

MBII residue ILE130, highlighting that the connectivity between MBI and MBII is of central 

importance to establishing MYC150 pattern of intramolecular interactions.  

Considering the protein’s structural dynamics as information flow systems, the central 

residues identified by the network analysis constitute main hubs in the information 

transmission between different parts of the system. These key network residues, involved in 

network information modulation, are often crucial for protein folding regulation (Atilgan, Akan 

& Baysal, 2004; Nikolay V. Dokholyan et al., 2002; Vendruscolo et al., 2002), found in binding 

sites controlling interactions with other proteins (del Sol & O'Meara, 2005; del Sol, Fujihashi & 

O'Meara, 2005) and associated with the active site in several enzymes (Amitai et al., 2004). 

The identification of MYC150’s functionally important residues is, again, pointing towards the 

importance of the phosphodegron, making it is crucial to further assess the role of the 

phosphorylation for MYC150’s structural dynamics. 

 

3.2 MYC150 phosphorylation and mutagenesis 

The first step in assessing the effects of the phosphorylation is to study the Rg linear graph 

showing the maximum and minimum Rg peaks for the three conditions: MYC150; MYC150 

phosphorylated at SER62 (pSER62); and MYC150 with phosphorylated THR58 (pTHR58) 

(Figure 50).  



102 
 

 

 

Observing the three plots it is immediately obvious that the simulations containing the 

phosphorylated residues, both pTHR58 (Figure 50 - C) and pSER62 (Figure 50 - B) 

 

Figure 50 – Rg evolution over time for (A) MYC150, (B) pSER62 and (C) pTHR58. The graph 
identified the minimum peaks in red and maximum in green. 
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simulations, display a decreased number of maximum peak configurations when compared to 

the unphosphorylated MYC150 (Figure 50 - A). The count of maximum Rg peaks events, 

defined as Rg values above 20 Å, reveals that MYC150 displays a higher frequency of 

maximum peak events – 137 (Table 9). This when compared to pSER62, which only has 5 

maximum peaks, and pTHR58, displaying 14 maximum peaks, suggests that phosphorylation 

of either residue interferes with MYC150’s conformational flexibility and its ability to achieve 

its periodic states of maximum extension. 

 

Considering the range of Y-axis values for each of the Figure 50’s plots, makes it evident 

that even when the pTHR58 and pSER62 trajectories sample the extended peaks their 

extension range does not compare to the range sampled by MYC150. The maximum 

extension Rg value for MYC150 is 25.5 Å; whilst pSER62 only achieves a maximum Rg 

conformation of 21.3 Å; and pTHR58 a maximum of 23.7 Å (Table 9).  

It is interesting to note that for pSER62 the maximum Rg peaks are caused by a modest 

extension of MB0, whilst the other two MYC boxes remain largely folded and compacted. 

Whilst for pTHR58 the maximum peak of extension does not involve the extension of any MYC 

boxes, which remain all quite compacted. To visually highlight this, Figure 51 presents the 

most unfolded structures for each simulation phosphorylation condition. 

 

Table 9 – Descriptive statistics for the Rg over time data concerning the MYC150 simulations and 
the phosphorylated simulations: pSER62 and pTHR58. 

Simulation Number of Rg peaks (>20 Å)  Highest Rg (Å) Rg mean (Å) 

MYC150 137 25.5 15.9 

pTHR58 14 23.7 15.8 

pSER62 5 21.3 15.7 

 

 



104 
 

 

SER62 phosphorylation drives a dramatical loss, in the number and amplitude, of unfolded 

peak events - these become exclusively caused by a modest MB0 extension motion whilst the 

other MYC boxes remain stably folded. It is important to note that although pSER62 displays 

a reduction in maximum Rg peak events and becomes stabilised, the mean Rg does not seem 

to be affected, the pSER62’s Rg mean of 15.7 Å is very close to MYC150’s Rg mean of 15.9 

Å (Table 9).These findings are in line with current research by (Helander et al., 2015)  which 

suggests that upon SER62 phosphorylation, the binding patterns of MB0 to PIN1 are 

maintained and this is the main reason why, in pSER62 simulations, the MB0 extension motion 

 

Figure 51 – Maximum Rg peak configurations for (A) MYC150, (B) pSER62 and (C) pTHR58. The 
figures highlight the MB0 in red, MBI in blue and MBII in green. 
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continues to be observed and accounts for the maximum Rg events. PIN1’s interaction 

continues to be crucial even after the phosphorylation of SER62 because PIN1 also mediates 

the pSER62 dephosphorylation, which together with the phosphorylation of THR58 flags the 

protein for destruction. 

Interestingly, the pTHR58’s dynamics also show a remarkable decrease in the number of 

maximum Rg peak that does not seem to interfere with the overall intrinsic disorder - the mean 

Rg of pTHR58 is 15.8 Å and comparable to MYC150’s Rg mean of 15.9 Å (Table 9). 

Considering pTHR58’s highest Rg value structure in Figure 51 – C, it is curious to note that 

even its most unfolded conformation displays highly compacted MYC boxes. This suggests 

that upon THR58 phosphorylation, since the protein is marked for degradation, the decrease 

in the MYC boxes’ binding surface due to folding and compaction makes them unavailable for 

further intermolecular interaction. This raises the idea that specific phosphorylation patterns 

change the overall MYC150’s structural dynamics involved in modulating local accessibility to 

the MBs and to phosphodegron. The accessibility to the phosphodegron switch residues, 

THR58 and SER62, is of utmost importance and can be measured in the terms of each 

residue’s solvent accessible surface area or SASA.  

The first phosphorylation event occurs at SER62, which activates MYC150 for 

transcription. Subsequently, a second phosphorylation event at THR58 starts the process of 

flagging MYC150 for destruction. The process is finalised when PIN1 mediates the 

dephosphorylation of SER62 at which point only THR58 remains phosphorylated. When this 

occurs, the protein is finally flagged for destruction via proteasomal degradation. To assess 

the changes each phosphorylation event causes to the SASA values of both THR58 and 

SER62, the boxplots in Figure 52 present the solvent accessibility shifts for both residues. 
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Figure 52 depicts an interesting accessibility modulation pattern involving the phosphodegron 

residues and caused by the phosphorylation events. Figure 52 - A indicates that when SER62 

is phosphorylated (green boxplot) its solvent accessible area is very similar to the 

unphosphorylated SER62 (grey boxplot), however SER62’s accessibility dramatically 

increases when THR58 gets phosphorylated (red boxplot). This is likely caused by the need 

to dephosphorylate SER62 after THR58 becomes phosphorylated, increasing its accessibility. 

Figure 52 - B shows the opposite effect occurring in terms of THR58 accessibility: when 

SER62 gets phosphorylated (green boxplot) THR58’s accessibility dramatically increases 

which helps to promote its phosphorylation. On the other hand, when THR58 itself is 

phosphorylated (red boxplot) its accessibility noticeably decreases - undoubtedly to prevent 

undue dephosphorylation that would interfere with the protein’s degradation. This dynamic 

switch, facilitated by the phosphorylation events, serves to modulate access to c-MYC’s TAD 

 

Figure 52 – Boxplots presenting the SASA values for the SER62 (top) and THR58 (bottom) across 
the different simulation conditions (MYC150 refers to the unphosphorylated protein in grey; pTHR58 
refers to the simulations with a phosphorylated THR58 in red; and pSER62 to the simulations with 
a phosphorylated SER62 in green). 
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domain ‘activation’ and ‘destruction’ buttons, SER62 and THR58, respectively. Thus, it is 

crucial to assess MYC150’s network of intramolecular contacts upon phosphorylation. Figure 

53 presents the contact (A) and network (B) maps for pSER62.  

 

It is evident from the contact map that the phosphodegron remains central to most of the long-

range interactions. There is a high prevalence of contacts between the phosphodegron 

 

Figure 53 – Long-range internal connectivity (A) and network analysis (B) for pSER62. 
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residues and MBII, which accounts for the higher stability displayed by MYC150 after SER62 

becomes phosphorylated. The phosphodegron residues are also in close interaction with MB0 

residues, which explains why the MB0 extension frequency is decreased when compared to 

the unphosphorylated MYC150. Also, when compared to MYC150, pSER62 phosphodegron 

region displays increased intermolecular contact to the MYC150 IR2 region and abrogates 

contacts with the IR1 region. Most interestingly, the contact network map for pSER62 (Figure 

53 - B) identifies SER62 as the most important functional residue alongside MBII residue 132. 

These two residues become central hubs of connectivity and mediate the contacts between 

different regions of the network. These residues are at the core of structural dynamics which 

strengthen the interaction between MB0, MBI and MBI, lead to protein stabilisation, decreased 

frequency of MB0 fly-catching motion and increased accessibility to THR58. 

 Similarly, the contact and network assessment for pTHR58 is presented in Figure 54. 

Upon THR58 phosphorylation, it is striking to note the loss of long-range intramolecular 

contacts displayed by the protein. However, despite a dramatic difference in connectivity 

pattern, the contact map (Figure 54 - A) shows how, yet again, the phosphodegron is at the 

heart of the protein’s intramolecular interactions, establishing contacts with MB0 and, 

sparsely, with the MYC150’s C-terminal, including some IR2 MBII residues. Most remarkably, 

the protein’s interconnectivity becomes predominantly dominated by short-range local 

interactions (Figure 54 – A red box) and involves low-conserved regions outside any of the 

MYC boxes. The network map (Figure 54 - B) reveals that upon being phosphorylated, THR58 

becomes the most prominent residue in the network displaying an incredible score in degree 

centrality with a total of 18 connections. The second-best scoring residue in terms of degree 

centrality (residue 93) displays only half of THR68’s connection – a total of 9 network edges. 

This highlights how critical THR58’s role is as a modulator of the pTHR58 contact network. 
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Figure 54 – Long-range internal connectivity (A) and network analysis (B) for pTHR58. 
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  This finding suggests that when THR58 becomes phosphorylated it also becomes the 

most central residue in the network of contacts, modulating the structural dynamics to make 

the MYC boxes unavailable for binding.  

The structural changes modulated by phosphorylation at THR58 and SER62 are 

crucially vital to the protein’s function and interaction with other molecules, which would 

explain why mutations at or near these residues are so deleterious. To further assess the 

effect of mutations involving either SER62 or THR58, and how these alter MYC150’s structural 

dynamics in silico mutagenesis was attempted. In both cases, SER62 and THR58 were 

substituted by the phosphomimetic residue glutamic acid. This is a best-case scenario, given 

that the mutation of a phosphorylated residue by a phosphomimetic residue has the potential 

to replicate the phosphorylated residues’ functions. However, despite being a best-case 

scenario the mutagenesis uncovered the adverse effects underlying altering the 

phosphodegron’s dynamics. Figure 55 presents the accessibility values for both SER62 and 

when serine is mutated to glutamic acid (S62E). 

The S62E (red boxplot) mutation leads to a dramatic increase in the residue’s accessibility 

when compared to the unphosphorylated protein (in grey). This, of course, has grave 

implications as an increased access to the activation residue is likely to promote 

 

Figure 55 – Boxplots presenting SER62’s solvent accessible area range for the unphosphorylated 
protein (in grey) and when SER62 is mutated to a GLU62 (red). 
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phosphorylation and, consequentially, undue c-MYC transcriptional activation. This explains 

why phosphodegron mutations cause c-MYC to aberrantly maintain its transcriptional 

activated state and increase its stability (Chakraborty et al., 2015). They do so by increasing 

accessibility to the activation switch: SER62. This increase in SER62’s accessibility is 

accompanied and likely caused by the spectacular changes in its contacts and network control 

(Figure 56).  

 

 

Figure 56 – Long-range internal connectivity (A) and network analysis (B) for S62E. 
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The phosphodegron, which in normal circumstances is the focal point in the protein’s long-

range intramolecular connectivity, loses all control of the protein’s contact activity. In fact, the 

network shows a substantial decrease in long-range contacts and becomes modulated by 

short-range interactions modulated by unimportant residues, outside any of the MYC boxes. 

The mutation of T58E delivers similar results (Figure 57) creating a completely altered 

network of contacts and intramolecular connectivity pattern.  

 

 

Figure 57 – Long-range internal connectivity (A) and network analysis (B) for T58E. 
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In the case of T58E, although the phosphodegron is still involved in some of the protein’s 

contacts, these are mainly local contacts within MBI itself. The phosphodegron loses its long-

range connectivity and none of the phosphodegron residues displays high centrality, 

especially when compared to the unphosphorylated MYC150’s PRO59 and PRO60.  

Upon investigation into why PRO59 and PRO 60 are so prominent in the MYC150’s 

network, it was found that PRO59 displays a peculiar state of isomerisation. Proline 

isomerisation has been identified as a molecular timer, or a switch, crucial for the regulation 

of the c-MYC’s biological functions (Helander et al., 2015).  

Prolines preferentially adopt a trans configuration, although they can often sample the cis 

configuration (Nicholson et al., 2007). This offers a mode of protein regulation, since certain 

interactors only recognise specific states of prolyl isomerisation  (Hamelberg & McCammon, 

2009).  Figure 58 presents the PRO59 isomerisation state results, in the form of a psi-omega 

Ramachandran plot, for the unphosphorylated protein and how it changes when SER62 and 

THR58 become phosphorylated. The unphosphorylated MYC150 (Figure 58 - grey plots) 

displays a PRO59 isomerisation pattern in which the residue equally inhabits the trans and cis 

configurations. The Ramachandran analysis reveals that the THR58 β-region is the most 

populated, with some sampling of both left-handed and right-handed α-helical conformations. 

However, this is altered when SER62 becomes phosphorylated (Figure 58 – green plots). 

Not only is PRO59 switched exclusively to the cis configuration but also the THR58-PRO59 

sees its α-helical content dramatically reduced in favour of exclusive β-region sampling. When 

THR58 is phosphorylated (Figure 58 – red plots), PRO59 remains in cis configuration, but 

the THR58 Ramachandran plot reveals an increase in right-handed α-helical content. 
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Figure 58 –The Ramachandran and Psi-omega for MYC150 (grey), pSER62 (green) and pTHR58 (red). 
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These structural dynamic patterns alongside proline isomerisation transitions are very crucial 

in regulating the processes uncovered in this Chapter. This becomes more evident when 

considering the dramatic impact of the mutations on the isomerisation arrangement of PRO59 

and the Ramachandran plot of THR58 (Figure 59). 

 

Both mutations cause the same exact effect - they both turn PRO59’s isomerisation state to 

trans only. This abolishes PRO59’s role as a molecular switch to control and mediate the 

phosphodegron interactions. Since some interactors, including kinases, prefer to bind proteins 

in the trans state, it is not unreasonable to think that having PRO59 switched to the trans only 

configuration, alongside increased accessibility to SER62, leads to amplified interaction with 

 

Figure 59 –The Ramachandran and Psi-omega S62E (cyan) and T58E (violet). 
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those specific molecular partners becoming an additional causal factor in the undue, excessive 

protein activation and/or compromised protein degradation.  

 

3. Conclusion 

c-MYC’s TAD domain has been, for the most part, unexplored due to its highly disordered 

nature. Its interaction decisions and the coordination between the protein’s activation and 

degradation pathways were always poorly understood. In this Chapter, c-MYC’s TAD domain 

(MYC150) was found to display frequently and periodic conformational extensions which 

involved each of the three MYC boxes independently. The MB0 was found frequently extended 

in a manner consistent with the findings for MYC88 in Chapter II. This was identified as a 

motion destined to optimise interaction with molecular interactors, notably PIN1, whose 

binding site is found within MB0. PIN1 is known to bind MB0 and allosterically modulate proline 

isomerisation events in the phosphodegron prolines in MBI. Curiously, the long-range contact 

analysis for MYC150 identified phosphodegron prolines 59 and 60 as the most functionally 

important residues in the network for MYC150’s intramolecular interactions. It was also found 

that specifically PRO59 modulates the phosphodegron activity by acting a switch moving from 

trans-cis to exclusive cis conformations upon phosphorylation of either THR58 or SER62. The 

control of c-MYC activity was found to take shape in terms of accessibility to the all-important 

phosphoresidues THR58 and SER62. When SER62 gets phosphorylated, the accessibility to 

THR58 increases which improves its availability for phosphorylation. Vice-versa when THR58 

gets phosphorylated the accessibility to SER62 increases since increased accessibility is 

necessary for the dephosphorylation event to take place, as a final step to protein degradation. 

These dynamics are crucial and highly depend on the precise residue composition. Mutations 

of either THR58 or SER62, even by phosphomimetic alternatives, lead to a complete alteration 

of MYC150’s delicate balance of intramolecular interactions and structural dynamics. These 

alterations are likely responsible for the impairment of c-MYC’s degradation, its aberrant 

activation and increased stability.  



117 
 

Summary and final thoughts 

This work uncovers a journey intended to tackle c-MYC, a protein deemed important 

as it is elusive. c-MYC’s intrinsically disordered nature has severely hindered its structural 

study using conventional experimental methods. This has naturally spurred interest into 

alternative in-silico methods. Molecular dynamics simulations, capable of studying systems 

with atomistic detail, showed promise in overcoming the experimental difficulties.  

To be a true alternative, MD simulations must reproduce the complex workings of a 

disordered protein system and many methods for simulation setup, which proved their worth 

in simulating ordered systems, consistently failed to replicate the richness of IDP 

conformational diversity. Thus, the first step became finding novel ways for MD simulation 

optimisation. Different molecular dynamics force fields and solvation methods were tested and 

compared to experimental data. The combination of ff14sconly force field with the Generalised 

Born 8 implicit solvation model produced highly accurate simulations, consistent with different 

experimental models. Implicit solvation is often overlooked for fear of compromising biological 

realism, however, the GB8 model demonstrably outperformed any other parameterisation 

solution. Furthermore, when compared to a well-sampled and unencumbered by temporal 

progression Markov-Chain Monte Carlo simulation, the GB8 simulations demonstrated great 

overlap in sampling range and a wide conformational space. This coupled with its 

computational accuracy, and unmatched efficiency, made the GB8 solvation method the prime 

parameterisation protocol used for c-MYC simulations.  Certainly, an optimised protocol that 

can be useful to study other similar IDPs. 

Having troubleshooted the simulation parameterisation, assessed it for accuracy and 

equilibrium, the path was prepared for the analysis of the simulation results. Of the many 

available methods commonly used to make sense of the noisy and complex datasets, tools 

such as K-means clustering and PCA did not perform adequately in terms of IDP trajectory 

analysis. These methods failed to characterise the important IDP features and the deployment 
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of alternative methods, including TICA and the Rg linear analysis over time, proved more 

helpful in uncovering the structural dynamics of MYC88. MYC88, which corresponds to the 

first 88 amino acids of the c-MYC protein, contains two highly conserved MYC boxes: MB0 

and MBI. The TICA analysis identified three metastable MYC88 states: a compact state, a 

well-sampled intermediate state, and a more unfolded state created by the N-terminal and the 

MB0 intermittent outward extension. The linear analysis of the radius of gyration, which 

ascertained the maximum and minimum peaks in terms of conformation compactness, 

uncovers MYC88’s highest amplitude motion clearly dominated by the extension of the N-

terminal and MB0. This motion created by the MB0 full extension and subsequent 

reassociation is proposed to be involved in ‘fly-casting’ and optimising c-MYC’s binding to key 

MB0 molecular partners. Such molecular partners, as in the case of PIN1, are crucial to c-

MYC’s life cycle – including modulating the protein’s transcriptional activation and 

degradation. 

With MYC88’s metastable states defined, its slowest and most abundant state offered a 

window of opportunity for drug discovery, targeting a region never attempted before – its TAD 

domain. The search for a druggable pocket revealed the presence of a suitable cavity 

endowed with the correct geometry, electrostatics, residue composition and preservation over 

time. This region mainly comprised of MBI residues, included the phosphodegron residues, 

became the target site for drug screening. The drug screening process identified a series of 

suitable compounds, with six of them demonstrating excellent binding kinetics. These 

compounds selected for their pharmacodynamic characteristics, respect the Lipinski and lead-

like compound rules and are exceptional candidates for further work in medicinal chemistry 

optimisation. The analysis of MYC88’s interaction with the ligands uncovered an 

overwhelming consensus regarding the ligand influence on MYC88’s conformational space:  

when bound to a ligand MYC88 loses its disorder, becomes stabilised, ordered, and more 

folded. The cause for this lies mainly with the loss of N-terminal extension, exposing the 

compound’s two-fold action – on one hand, the ligands trap the N-terminal in a compacted 
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configuration, impeding its interaction with molecular partners; and, on the other, the ligands 

occupy the all-important phosphodegron region, obstructing by competition the access to the 

MBI phosphorylation sites. This loss of function is necessary and essential when battling c-

MYC overexpression in c-MYC-driven cancers. These findings provide a proof-of-concept that 

c-MYC should not be regarded ‘undruggable’ when regions, other than its DNA-binding 

domain, can demonstrably be successfully tackled. 

Finally, the c-MYC research extended to the entirety of its TAD domain including its 

first 3 MYC boxes: MB0, MBI and MBII. This spans c-MYC’s first 150 amino acids (MYC150). 

The investigation revealed that MYC150 validated much of MYC88’s structural activity, 

particularly with MB0 displaying the same pattern of periodic and frequent extensions. In 

tandem, MYC150 peak analysis discovered additional rare extensions which involved the 

other two MYC boxes. The contact and network analysis reiterated the centrality of the 

phosphodegron residues as main hubs modulating the protein’s long-range intramolecular 

connectivity. For the unphosphorylated MYC150, the network orchestration relies on the 

contact patterns of two prolines – PRO59 and PRO60. When SER62 gets phosphorylated, 

SER62 assumes a position of high centrality, likewise when THR58 gets phosphorylated, 

THR58 itself becomes the most important functional residues in the network displaying the 

highest degree and betweenness centrality. The network of contacts regulation creates 

structural dynamics which modulate accessibility to the phosphodegron residues: when 

SER62 gets phosphorylated its own accessibility decreases, reducing the chances for a 

potential undue dephosphorylation; however, the accessibility of THR58 increases since it is 

appropriate and necessary to phosphorylate THR58 in order to start the process of 

degradation. Likewise, when THR58 becomes phosphorylated, its own accessibility is reduced 

to avoid undue dephosphorylation which would put the c-MYC back into active mode; while 

SER62’s accessibility is increased since its dephosphorylation is now necessary to complete 

the flagging process crucial for its degradation. All these processes are highly dependent on 

the precise residue composition in the phosphodegron and mutations here are known to cause 
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extremely deleterious effects. Substituting either SER62 or THR58, with a phosphomimetic 

residue produces catastrophic results, including a completely altered intramolecular 

connectivity network which abrogates the phosphodegron control. Additionally, it was found 

that PRO59 possesses a peculiar pattern of cis-trans configuration, inhabiting the cis and trans 

states equally in the unphosphorylated protein. PRO59 then moves to a cis exclusive mode 

when MYC150 becomes phosphorylated. Mutations of either SER62 and THR58 abrogate 

this isomerisation switch and move PRO59 to a trans only configuration, making c-MYC more 

likely to interact with molecular partners, for example kinases, which tend to prefer a trans 

substate. This likely explains for why mutations involving, or nearby, any of the 

phosphoresidues lead to undue c-MYC activation. 

Overall, the explorative research pursued in this work offers proof-of-concept which 

highlights the robustness of well-parameterised in-silico simulation methods, and machine 

learning analysis algorithms, to study previously deemed intractable proteins. The intention is 

not to replace the experimental work, as the experimental validation is, of course, crucial for 

the advancement of our knowledge of c-MYC. Rather, it aims to offer additional and/or 

alternative methods to delve deeper where experimental work cannot, due to its limitations; 

and provide extra guidance where the experimental work is insufficient to establish the full 

picture. Owing to our ever-expanding computational capabilities, the refinement of our 

algorithms and the advancements in data science, the use of in-silico simulation methods and 

bioinformatic resources to make sense of molecular biological systems is more than practical, 

it is absolutely necessary. 
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Supplementary Information 

Figure S1 compares the total secondary structure content created by the trajectories with the 

ones obtained by NMR.  

 

 

Figure S1. Comparison of the helical and extended SSPs between the NMR-determined SSP and the 

SSP values predicted from the explicit TIP4P-D and the implicit GB8 solvation models. 

 

From the SSP results it is evident that whilst both GB8 and TIP4P-D accurately replicate the 

helical content of MYC88, only GB8 correctly describes the extended content and TIP4P-D 

dramatically underestimates β-sheet propensities (p-value <0.0001). 

 

Figure S2 shows the free energy landscape PCA plot for the MYC88 trajectory structures 

defined in terms of their RMSD, Rg, SASA, distance end-to-end and hydrogen bond number.  
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Figure S2. PCA plot for the MYC88 MD simulation defined by simple geometrics: RMSD, Rg, SASA, 
distance end-to-end and the number of hydrogen bonds. 

 

It is evident that these metrics do not a PCA landscape with discernible clusters. Therefore, 

Figure S3 shows the PCA plot for the MYC88 MD simulation described in terms of its 

secondary structure content. 

 

 

Figure S3. PCA plot for the MYC88 MD simulation defined by its secondary structure content. 
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Although the PCA plot for MYC88 secondary structure displays two large cluster of structures, 

the explanative power of the principal components (Table S1) is so low that these clusters 

cannot be used to make predictive conclusions about the data - cumulatively, the first two PCs 

account for only 7% of the explained variance. 

 

The internal coordinates of inter-atom distances between alpha carbons were also used to 

‘featurise’ the PCA calculation (Figure S4). However, even this metric does not yield a PCA 

landscape with distinct clusters. 

 

Figure S4. PCA plot for the MYC88 MD simulation defined by its inter-atom alpha carbon distances. 

 

Table S1. MYC88 secondary structure PCA - explained variance and cumulative explained variance 
for the first 6 principal components. 

 Variance (%) Cumulative (%) 

PC 1 3.8 3.8 

PC 2 3.2 7.0 

PC 3 3.1 10.1 

PC 4 2.8 12.9 

PC 5 2.6 15.5 

PC 6 2.4 17.9 
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Figure S5 displays the chemical structures for the 6 ligands identified by the drug discovery 

process to bind MYC88 with great affinity and stability. 

 

Figure S6 shows he implied timescales used to derive the lag time. 

 

Figure S7 shows a contour plots of each PCCA++ metastable states assignments.  

 

 

Figure S5.  Chemical structures of the 6 identified ligands. 

 

Figure S6. Implied timescales plot showing the MSM timescales converge to the true relaxation 
timescales with increasing lag time. 
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Figure S8 shows an example of a TLeap input file which parameterises the simulation to use 

the ff14SB force field solvated with the explicit the TIP3-P water model.  

 

Figure S9 shows examples for the input files used to run conventional MD simulations (cMD), 

including the two minimisations followed by two production runs. And Figure S10 shows the 

input file for accelerated MD simulation. 

 

Figure S7. PCCA++ metastable states. 

 

Figure S8. TLeap system preparation example file. 
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Figure S9. Examples of cMD input files used to perform conventional MD simulations. 

 

Figure S11 contains an example of analysis script for CPPTRAJ. 

 

 

 

 

Figure S10. aMD input file example. Note that EthreshD, alphaD, EthreshP and alphaP values are 
simulation specific and obtained from the cMD simulation. 
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Figure S12 shows an example of PCA calculation in R using the BIO3D package. 

 

 

Figure S11. CPPTRAJ input file example with instructions for RMSD, Rg, distance end-to-end, 
solvent accessible surface area, secondary structure, hydrogen bond and dihedral angles 
calculation. 

 

Figure S12. R script for PCA calculation using the BIO3D analysis package. 
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Figure S13 shows an example of Markov-chain Monte Carlo simulation input file. 

 

Figure S14 shows an example of the maximum and minimum peak calculation for Rg linear 

data using Python and argrelextrema package.  

 

Figure S15 shows the different stages for the calculation of TICA landscape and extraction of 

the representative structures. 

 

Figure S13. Markov-chain Monte Carlo simulation input. 

 

Figure S14. Python script for peak detection while removing local noise. 
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Figure S15. TICA analysis script using the Pyemma package.  

 


