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Abstract 

Auditory processing disorder is a common developmental disorder affecting about 10% of 

children. It is characterised by poor perception of speech sounds, especially in background noise 

environments, despite normal hearing sensitivity, which can lead to poor performance in school 

with a negative impact on education and everyday life. Previous studies have shown that auditory 

processing skills have a substantial genetic component, however, it is not clear which genes or 

molecular mechanisms are involved. In this thesis three different genetic approaches are applied 

(monogenic, common disease-common variant and common disease-rare variant) to assess the 

effect of candidate genes on neurodevelopmental measures, including hearing and language 

phenotypes, in a population cohort (ALSPAC) of more than 14,000 children. To complement these 

analyses, a reverse phenotype to genotype approach is used, focussing on a surrogate measure of 

auditory processing difficulties in ALSPAC children, to identify potential high impact coding 

variants that may explain these difficulties. 

Given previous work, these genetic investigations focus upon candidate genes related to Usher 

syndrome, a recessive disorder leading to hearing and vision loss resulting from dysfunctional 

neurosensory cells in the inner ear and retina (hair cells and photoreceptor cells respectively). 

Analyses indicate that there is no one single risk variant, but a complex mix of variation across 

Usher genes (such as USH2A, PCDH15, CLRN1, and ADGRV1) might explain some of the APD risk. 

The phenotype to genotype analysis across coding regions further shows that rare pathogenic 

variants with large effect in other genes (such as GRHL3, DIAPH1, FAT4 and IFT88) can contribute 

to risk of APD in simplex cases.  

These results provide insights into the genetic landscape underlying APD and offer candidate 

genes and variants for further investigation and validation. Furthermore, the results highlight 

allelic heterogeneity where multiple variants present in the same Usher gene (USH2A) can display 

different, but related hearing phenotypes. In a wider context, this study also highlights the 

viability of using related/surrogate phenotypes for genetic discovery in a large sample when deep 

phenotyping of APD is unavailable.   
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1. Introduction 

Our understanding of auditory perception can be informed by the investigation of individuals in 

whom this process is disrupted. For example, in auditory processing disorder (APD). This term 

describes a deficit in the perception of speech sounds, especially in background noise, despite 

normal hearing and auditory function (Section 1.2).  

The work described in this thesis was based on preliminary findings in a discovery family affected 

by an apparently autosomal dominant form of APD. The discovery family is briefly described in 

Section 2.1.1 and further described by Perrino et al. (Perrino et al., 2020). The preliminary findings 

resulted from whole genome sequencing analysis (completed before the start of this work), which 

identified a stop-gain heterozygous variant in USH2A, which co-segregated with the disorder in 

the family (Perrino et al., 2020). Perrino et al., further showed that heterozygous Ush2a knockout 

mice (Ush2a+/-) had a distinctive low-frequency (15Hz) hearing loss while their hearing at high-

frequency (40Hz) remained intact (Perrino et al., 2020). Even after allowance for this hearing loss, 

Ush2a+/- mice were impaired on complex pitch discrimination tasks, which involved the detection 

of a deviant target sound embedded in background distractors (Perrino et al., 2020). Furthermore, 

analysis of ultrasonic vocalisations showed that Ush2a+/- mice vocalised at a significantly higher 

pitch and produced calls that were shorter and louder than wildtype mice (Perrino et al., 2020). In 

contrast, the complete knockout mice (Ush2a-/-) had high-frequency hearing loss (as expected) 

but showed superior performance on pitch discrimination tasks and did not have altered 

vocalisations (Perrino et al., 2020). These animal studies provided a direct link between 

heterozygous Ush2a knockout and auditory perception and warranted further analyses. 

This thesis therefore investigates the wider effects of USH2A variation (and the variation in other 

Usher syndrome genes) upon hearing, auditory processing and language in a large human 

population cohort. The sections that follow introduce the background concepts that later link to 

the presented data. 

1.1. The human auditory system 

1.1.1. Central auditory anatomy for information processing 

The human auditory system includes the ear (peripheral auditory organ) and regions within the 

brainstem, midbrain, the thalamus and auditory cortex (forming the central auditory system), that 

receive signals propagated from the inner ear (Figure 1.1). The sound waves picked up by the ear 

are transduced into electrical signals and transmitted via the cochlear (auditory) nerve to the 

cochlear nucleus within the brainstem, where different sound cues are detected (Figure 1.1). 
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Most of the information is then transmitted through crossing fibres into the superior olivary 

complex (important in sound localisation) and from there up through the contralateral side of the 

brainstem and the inferior colliculus within the midbrain (important in integrating auditory input 

with other sensory inputs) (Figure 1.1). The information then passes through the medial 

geniculate nucleus in the thalamus (important in primary auditory information transmission) and 

reaches the auditory cortex where processing takes place. Processing includes complex tasks such 

as resolving multiple concurrent sound sources, attending to sounds in noisy environments, 

recognising auditory objects or contexts and performing higher-order auditory tasks such as 

language (Figure 1.1). This ascending pathway of auditory information is also known as the 

bottom-up or afferent route. Reciprocal connections from the cortex to subcortical structures all 

the way to the cochlea also exist, forming the top-down (descending or efferent) route (Figure 

1.1). Independent tracks from the auditory cortex to the thalamus (medial geniculate nucleus), 

midbrain (inferior colliculus) and brainstem (superior olive) have been identified (Winer, 2006) 

(Figure 1.1). The efferent networks have been proposed to fine-tune afferent signal encoding and 

control gain in the system so important information can be extracted easily (Robinson and 

McAlpine, 2009). While the processing of auditory information is thought to take place along the 

central auditory pathway, transduction in hearing happens in the periphery, i.e. the ear, as 

explained below. 
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Figure 1.1. Diagram of the bilateral ascending auditory pathway from the cochlea and descending pathway 
from the auditory cortex (adapted from Hall, 2011).  
The ascending pathway includes structures in the brainstem (1), midbrain (2) and auditory cortex (3). 
Unilateral auditory pathway involves: cochlear nerve (A), ventral cochlear nucleus to contralateral and 
ipsilateral superior olivary complex (B1), superior olivary complex to inferior colliculus (B2), dorsal 
cochlear nucleus to contralateral inferior colliculus (C), inferior colliculus to medial geniculate nucleus (D) 
within thalamus, and medial geniculate nucleus to auditory cortex (E). Descending pathway is illustrated in 
dotted black lines from auditory cortex back down to each of the auditory pathway structures (E back to 
A). 
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1.1.2. Peripheral auditory system and the process of hearing 

The process of hearing starts with sound waves entering the outer (external) ear and travelling 

through the ear canal until they reach the ear drum, causing it to vibrate (Figure 1.2a). These 

vibrations are amplified within the middle ear and transmitted to the cochlea within the inner ear. 

The cochlea is a snail-like structure, filled with fluid with each turn consisting of three sections: 

scala vestibuli, scala tympani and scala media (Figure 1.2a). The middle section, scala media, 

contains the sensory auditory organ, the organ of Corti (Figure 1.2b-c). The organ of Corti 

comprises of a single row of inner hair cells (IHC) and three rows of outer hair cells (OHC) (Figure 

1.2c-d). The hair cells form tight connections with supporting cells, which are in turn connected at 

their basal surface to an extracellular matrix, called the basilar membrane (Figure 1.2c). The apical 

surface of each hair cell contains the mechanically sensitive organelle, the hair bundle, which 

consists of dozens of “hairs”, called stereocilia (Figure 1.2c-d). Another extracellular matrix, called 

the tectorial membrane, is attached to the stereociliary bundles of OHCs and covers the apical 

surface of the organ of Corti (Figure 1.2c). In contrast to the OHC bundle, the IHC bundle is free 

standing in the subtectorial space (Figure 1.2c). As the sound vibrations reach the organ of Corti, 

they form a travelling wave which causes displacement of the basilar membrane. This in turn 

leads to deflection (bending) of the stereocilia bundle and opening of mechanically gated cation 

channels (Figure 1.2d). The influx of calcium and potassium ions into the hair cell induces 

depolarisation and release of neurotransmitter glutamate at the basal end of the hair cell 

(Hudspeth, 2014). Glutamate stimulates the cochlear (auditory) nerve, which transmits the signal 

to the auditory cortex. 
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Figure 1.2. The mammalian ear and the structures involved in sound processing (adapted from (Frolenkov et al., 2004).  
a) External ear with the inner ear auditory organ; b) sections of the cochlea; c) the sensory cells of the organ of Corti: inner (IHC) and outer (OHC) hair 
cells with afferent terminals (in green) that form the ascending pathway and efferent terminals (in yellow) which exit the descending pathway ; d) a 
scanning electron microscopy picture of hairs cells with three rows of OHCs (left) and one row of IHCs (right); e) the mechanosensitive organelle of 
IHCs, the hair bundle, with Ca2+ and K+ influx through the mechanoelectrical transduction channels of the stereocilia upon hair bundle deflection.  
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There are approximately 16,000 sensory hair cells in the human cochlea (Schwander, Kachar and 

Müller, 2010). Due to variation in width and thickness of the basilar membrane and variation in 

height of the stereocilia, hair cells at different positions along the cochlear duct are tuned to 

different frequencies, described as tonotopic organisation (Mann and Kelley, 2011) (Figure 1.3a). 

Hair cells at the base of the duct (nearest to the tympanic middle ear) are sensitive to high 

frequencies, while those at the apical end of the coiled cochlea are sensitive to low-frequencies 

(Hudspeth, 1997) (Figure 1.3a). The same orderly map of sound frequency is functionally 

represented throughout the auditory system all the way to the auditory cortex (Figure 1.3b).  

The IHC and OHC are specialised to do different things. The IHC (approximately 3,500 in the 

human cochlea) are the primary receptor cells, innervated by dendrites of the auditory nerve and 

so they form the majority of the afferent links to the central auditory system (from the ear to the 

brain). As such they are responsible for the transduction of sound waves into electrical signals and 

so can be perceived as the cells that do the “hearing” process. The OHC (11,000 in human 

cochlea) are the target of efferent neural pathway from the brainstem through the superior 

olivary complex’s olivocochlear bundle (OCB). The OCB contacts OHCs directly and the IHCs 

indirectly via the afferent fibres beneath them (type I afferent fibres) (Figure 1.2c). Therefore, the 

OCB exerts fine-tuning right at the periphery. The OHCs are primarily involved in sound 

amplification and are considered as “amplifiers”, interpreting auditory feedback to balance input 

between ears and facilitate auditory perception (Murakoshi, Suzuki and Wada, 2015). Both types 

of hair cells are exposed to a variety of external and internal ototoxic factors, such as loud noise, 

ototoxic drugs, ageing and genetic defects, which can cause damage. As mammalian hair cells do 

not regenerate, the damage can build up over time and lead to decreased hearing ability and even 

hearing loss, known as peripheral (sensorineural) hearing loss. If the IHC are damaged, that is 

expected to directly disrupt hearing through the afferent pathway. If the OHC are damaged, that 

will affect the ability to amplify important signals, controlled through the efferent pathway, which 

is essential for understanding complex information such as speech in noisy environments. Yet, the 

afferent and efferent pathways are connected and processes in one can influence the output in 

the other. For example, a study where IHCs in chinchillas were preferentially damaged with 

carboplatin (an anti-cancerous drug), showed that in spite of the fact that the chemical damage 

was purely peripheral (mainly as a result of >80% IHCs loss), a cascade of neuroplastic changes in 

the central auditory pathway could compensate for the reduced neural output from a damaged 

cochlea (Salvi et al., 2016). Salvi et al. reported that the chinchilla’s hearing in noise was affected, 

but it was largely preserved in quiet. This was because the activity from the few remaining intact 

IHCs was progressively amplified through the central auditory system so weak signals become 

comfortably loud (Salvi et al., 2016). The difficulty hearing in noise was proposed to arise from the 

central auditory system not being able to compensate for the reduced neural output in the 
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cochlea (by turning up its gain and decreasing its inhibitory effect which worked for weak sounds 

in quiet, but not in adverse conditions with competing noise) (Salvi et al., 2016). Indeed, the 

efferent control of OHCs has been shown to be important in speech discrimination in noise 

(Winslow and Sachs, 1987; Kawase and Liberman, 1993) and sound localisation (Andeol et al., 

2011) and as such is an important pathway studied in disorders of auditory processing (Reynard, 

Veuillet and Thai-Van, 2020; Boothalingam et al., 2015). Furthermore, the function of OHCs is 

thought to also directly contribute to hearing in noise by fine tuning the motion of the basilar 

membrane (Parker, 2020). As such OHCs dysfunction has been shown to correlate with better 

performance in quiet, but poor performance in noise and is regarded as an important cause for 

hidden hearing loss (HHL- explained in Section 1.2) (Hoben et al., 2017; Parker, 2020).  

Auditory nerve (AN) fibers transmit signals from IHCs to the brainstem targets in the cochlear 

nucleus. The multiple innervation of single IHCs, whereby each IHC is contacted by 10-30 AN 

fibers, is important in auditory processing and understanding speech in noise because the AN 

fibers differ in spontaneous discharge rate (SR) and threshold to acoustic stimuli (Liberman, 

1978). The low-SR fibers (<20 sp/s) have higher thresholds and increased dynamic range of the 

auditory periphery compared the high-SR fibers (>20 sp/s) (Liberman, 1978). The low-SR fibers are 

thought to be important for hearing in noisy environments because of their resistance to masking 

by continuous background noise (or because of their ability to follow the quick change of the 

amplitude of acoustic signals) (Costalupes, Young and Gibson, 1984). In contrast, the high-SR 

fibers are responsible for the sensitivity to quiet sounds and are saturated by high-level 

background noise. Kujawa and Liberman showed that acoustic overexposure to intense sound (8 

to 16 kHz octave band at 100 dB SPL for 2h) can cause a permanent damage of auditory nerve 

fibers in mice, but without damaging cochlear hair cells and despite a complete recovery of 

cochlear thresholds (Kujawa and Liberman, 2009), as measured by ABR. It was further confirmed 

this was likely due to the selective loss of low-SR fibers following exposure to neuropathic noise (4 

to 8 kHz octave band at 106 dB SPL for 2h) in guinea pigs, which could explain the recovery of ABR 

thresholds despite significant noise-induced neuropathy (Furman, Kujawa and Liberman, 2013). It 

was therefore suggested that selective loss of low-SR high threshold AN fibers may be another 

contributor to problems of hearing in noise in humans and therefore hidden hearing loss 

(Liberman et al., 2016) and APD (Section 1.2). 
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Figure 1.3. Tonotopic organisation in the auditory system from cochlea to auditory cortex (adapted from Purves et al., 2001). 
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1.1.3. Evaluating hearing 

Amongst the tests used to assess hearing and diagnose hearing loss, the ones I will review and 

later refer to in this thesis are pure tone audiometry, Otoacoustic Emissions (OAE) and Auditory 

Brainstem Response (ABR).  

Pure tone audiometry (also referred to as threshold audiometry) determines the quietest (softest) 

sound that a person can hear at different frequencies from 250 to 8000Hz, which span most of 

the human audible range. It is also called air conduction testing as the sound goes through the 

outer and middle ear to reach the inner ear. This is usually the first-line test to evaluate hearing 

deficits. The results are recorded on an audiogram (Figure 1.4). Sound frequency (ranging from 

low to high pitch) is measured in Hertz (Hz) and is recorded on the audiogram’s horizontal axis 

(Figure 1.4). Sound intensity (hearing level) is measured in decibels hearing level (dB HL) and is 

recorded on the vertical axis (Figure 1.4). The quietest sound at each tested frequency is called air 

conduction threshold and is recorded as a point on the audiogram for the left and right ear 

separately. Any points that are heard at 20dB or quieter are considered to be within the normal 

range. Pure tone audiometry is a key measure in the evaluation of hearing disorders as it is able to 

provide information regarding the type, degree and configuration of hearing loss, however, it is 

considered to offer limited insight into auditory function and auditory processing in real world 

settings (such as speech, music, noisy environments) (Musiek et al., 2017). 

 

 

Additional electrophysiological tests, such as OAE and ABR, are used to test the cochlea and the 

brain pathways (such as auditory nerve and brainstem pathways) and therefore provide 

quiet sounds 

Figure 1.4. Audiogram showing hearing with normal hearing thresholds for both right and left ear 
(ANSI- American National Standards Institute). 

low frequency sounds high frequency sounds 

loud sounds 
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diagnostic insight into specific disorders of the auditory system. Both tests are particularly useful 

for assessment of infants and young children (Stanton et al., 2005). The otoacoustic emissions are 

generated in the cochlea and are measurable in the ear canal, so they are an objective measure of 

the cochlea functioning. Distortion Product Otoacoustic Emissions (DPOAE) are distorted sounds 

generated by the OHCs in the cochlea in response to two tones that are close in frequency. The 

presence of a DPOAE response is typically an indication that the OHCs specifically are functioning 

properly, while the IHCs abnormal function does not seem to affect the DPOAE input/output (Salvi 

et al., 2016). DPOAE is a common hearing test used in mouse models to provide additional 

information about OHCs function. 

ABR measures the electrical activity of the auditory nerve pathway from the inner ear to the 

brainstem that is recorded by electrodes. The ABR response is displayed as a waveform with five 

major peaks used to assess brainstem function at different levels of the auditory pathway. 

Through the different peaks ABR shows the activity of the auditory nerve and the activity of 

neurons in successive nuclei of the auditory hindbrain within the brainstem. The time between 

the peaks (latencies) and the amplitude of the peaks are measured and compared to normative 

data. The reliability, sensitivity, non-invasive nature and ease of application has made ABR a 

method of first choice to assess hearing impairment in mouse models (Zheng, Johnson and Erway, 

1999). 

1.2. Disorders of the auditory system: Hidden Hearing Loss and 

Auditory Processing Disorder 

The audiogram as the standard method to evaluate hearing (Figure 1.4) is sensitive at identifying 

hearing loss but is unable to detect “hidden” cochlear impairments such as cochlear synaptopathy 

(loss of synaptic contact between auditory nerve and IHCs) or hair cell dysfunction (Liberman et 

al., 2016; Chen, 2018). Cochlear impairment with normal audiometric thresholds is defined as 

hidden hearing loss (HHL) (Schaette and McAlpine, 2011) and is thought to result from noise-

induced synaptopathy, cochlear demyelination or possibly hair cell dysfunction (Kujawa and 

Liberman, 2009; Wan and Corfas, 2017; Hoben et al., 2017). These forms of hidden cochlear 

impairment do not result in overt hearing loss (Chen, 2018), but they may increase the 

susceptibility of the cochlea to further damage and weaken or disturb central auditory processing 

such as sound discrimination (D et al., 2020). Due to this secondary impact of HHL on central 

auditory pathway functioning, the term auditory processing disorder is sometimes preferred in 

order to include those individuals with peripheral auditory impairment (Iliadou et al., 2017). 
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1.2.1. APD definition and prevalence 

Auditory Processing Disorder (APD) is a highly heterogeneous neurodevelopmental disorder. It is 

included in the International Classification of Diseases by the World Health Organization, 10th 

edition (ICD-10) as H93.25: “a disorder characterised by impairment of the auditory processing, 

resulting in deficiencies in the recognition and interpretation of sounds by the brain”. According 

to the British Society of Audiology (BSA), APD is considered as “poor perception of speech and 

non-speech sounds” (BSA, 2018). Affected individuals report listening difficulties, despite in most 

cases having a normal hearing sensitivity (as detected on an audiogram- Figure 1.4) (Bamiou, 

Musiek and Luxon, 2001). The BSA proposes three types of APD: developmental, acquired and 

secondary (BSA, 2018) (Table 1.1), and highlights the international focus towards developmental 

APD, because of its unknown aetiology and its potential impact on learning difficulties, which can 

in turn affect school performance.  

Table 1.1. APD types as recommended by the British Society of Audiology 

Developmental APD 
There is usually no known cause other than a family history of developmental 

communication and related disorders, it is present in childhood and may 
continue into adulthood. 

Acquired APD 
Associated with ageing or a known neurological event (brain lesion, trauma, 

stroke, infection). 

Secondary APD 
Occurs together with, or as a result of either short term (for example glue ear) 

or permanent hearing impairment. 

The hallmark of APD is difficulty understanding speech when in noisy environments. Affected 

individuals require frequent repetition of information, they are easily distracted and struggle to 

follow instructions, and they find it difficult to interact in noisy group activities (Moore et al., 

2013; Jerger and Musiek, 2000). These difficulties can consequently impact on school 

achievements and social skills (Moore et al., 2013). This collection of symptoms can be traced 

back to a different auditory deficit (Table 1.2), but they are also present in co-occurring 

neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD), language 

impairment, autism spectrum disorder (ASD) and dyslexia (Witton, 2010; Ferguson et al., 2011; 

Moore and Hunter, 2013; Dawes et al., 2008; Dawes and Bishop, 2010). Effective processing of 

sounds is important for the development of language and this together with the likely cognitive 

elements of APD may explain some of the developmental overlaps. Several causal models have 

been proposed to explain the co-occurrence between APD and language disorders. The earliest 

theory was developed by Tallal and supports the idea that language disorders are caused by APD 

due to a deficit in rapid auditory temporal processing (processing sounds when closely spaced in 

time) (Tallal, 2004). Later studies concluded the opposite relationship: deficits in auditory 

processing are a consequence of language impairment with processing of sounds within the brain 

being affected by poor language skills (Shafer, Schwartz and Martin, 2011; Bishop, Hardiman and 



28 
 

Barry, 2012). An alternative model argues that a number of genetic and environmental factors 

interact with other risk factors to determine whether an individual will develop a language 

disorder (Bishop, 2006). According to this theory, auditory processing deficits may constitute one 

of these risk factors and thus contribute to language difficulties in the absence of a one-to-one 

relationship between the two. Most recently, data from a correlation study investigating the links 

between language and auditory processing tasks in children with mild to moderate sensorineural 

hearing loss, ruled out the extreme models of direct relationships (Halliday, Tuomainen and 

Rosen, 2017). Instead, the results suggested that deficits on auditory processing tasks which 

required higher level cognitive ability were associated with language difficulties, but were not 

sufficient for causality, implying that the relationships were not as straight-forward as 

hypothesised before and were likely influenced by other factors (genetic and environment). 

APD is relatively common with estimates ranging from between 0.5%-1% in the general 

population to 10% when APD occurs in combination with other neurodevelopmental disorders 

(Brewer et al., 2016; Hind et al., 2011). APD impacts on both school performance and everyday 

life, predominantly through a reduced ability to listen and respond to speech and sounds 

appropriately (Moore et al., 2013). 

Table 1.2. Auditory deficits and their implications on day-to-day performance and behaviour, characteristic 
of APD (adapted from (Bamiou, Musiek and Luxon, 2001). 

1.2.2. Diagnosis of APD and hypotheses about its origin 

There is no single test that can diagnose APD. Instead, the diagnosis is typically based on evidence 

from a multi- and inter-disciplinary team. These include concerns from parents and teachers, 

reports from medical professionals (such as GPs, speech and language therapists, audiologists, 

psychologists), medical and family history, observation of speech quality, examination of 

Auditory deficits in: Resulting symptoms and behaviours: 

Sound localisation 
 (ability to pinpoint the source and location of a sound) 

Poor performance in confusing environments 
with competing speech and noise 

Auditory pattern recognition 
 (ability to determine similarities and differences in 

patterns on sounds) 
Difficulties following oral instructions 

Auditory discrimination  
(ability to distinguish between different sounds) 

Language, reading, and spelling difficulties Temporal processing  
(the ability to process multiple auditory stimuli in their 

order of occurrence)  

Processing degraded auditory signals  
(ability to perceive a signal in which some of the 

information is missing) 

Difficulties with rapid speech and with filling in 
missing portion of the auditory signal to 

recognise the whole message  

Processing the auditory signal when embedded in 
competing acoustic signals  

(ability to perceive speech and other sounds when 
another signal is present) 

Difficulties in background noise 

Inattention 

Distractibility 

Academic difficulties 



29 
 

peripheral auditory function and cochlear feedback pathway, and results from auditory 

processing (AP) specific tests (forming an APD test battery). Although individual elements of the 

APD battery are standardised, no agreement has been reached on the exact tests or the number 

of tests that should comprise the battery, resulting in no “gold standard” (Moore et al., 2013; 

Dillon et al., 2012). APD evaluation is described as a dynamic assessment, where specific AP tests 

are selected based on the individual’s age, observational data, medical history and their problems 

and presentations, including any other issues and co-occurring conditions (Campbell et al., 2019). 

Four broad areas of auditory processing are generally measured in the APD battery, including 

dichotic processing, temporal processing, perception of monoaural low redundancy speech and 

binaural interaction (Campbell et al., 2019) (Table 1.3).  

Table 1.3. Main auditory processing areas tested through the APD battery with examples of tests used. 

Concerns have been expressed regarding the suitability of the tests included in the APD battery 

(Dillon et al., 2012; Moore, 2018), as the tests were initially developed in the 1970s and 1980s for 

the detection of brain tumours and cortical lesions in adults (Berlin, 1976; Musiek and Geurkink, 

1980). These AP tests typically carry a high cognitive load and therefore also measure language, 

attention and memory skills indirectly. As a result, a child with a language development problem 

might score poorly on the AP tests because of their poor language skills and not because of their 

poor auditory processing skills. Furthermore, the recommendations regarding what threshold to 

use to interpret APD-battery tests to reach a diagnosis also differ between the three auditory 

bodies: American Speech-Language and Hearing Association (ASHA), American Academy of 

Audiology (AAA) and BSA. The most commonly used diagnostic criteria is performance at or below 

2 standard deviations of the mean on at least two tests from the APD battery, or 3 standard 

deviations below the mean on one AP test (ASHA, 2005). The AAA recommends that these are 

met for at least one ear (AAA, 2010), while BSA suggests that at least one of the diagnostic tests 

should be non-speech stimuli so it does not depend on language skills (BSA, 2013). The lack of 

consensus has been highlighted by Wilson and Arnott (2013), who compared the diagnostic rates 

of APD in 150 children by using recommendations from BSA, AAA and ASHA and selected 

Main auditory processing areas tested: Examples of tests 
Dichotic processing 

(measures the ability to process information when a 
different stimulus is presented to each ear 

simultaneously) 

Dichotic Digit Test (DDT) 
Competing Sentence Test 

Temporal processing 
(assesses the ability to process nonverbal auditory 

signals and to recognise order or patterns) 

Frequency Pattern Test (FPT) 
Duration Pattern test (DPT) 

Perception of monoaural low redundancy speech 
(tests whether each ear can independently recognise 

distorted words) 
Filtered Speech Test 

Binaural interaction 
(tests integration of information using both ears) 

Masking Level Difference (MLD) 
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researchers in the APD field (Wilson and Arnott, 2013). The authors found that 7.3% of the 

children studied were diagnosed with APD under the strictest criteria compared to 96% using the 

most lenient criteria (when using the same traditional APD tests) (Wilson and Arnott, 2013). This 

further emphasised the heterogeneity of the disorder and the need for any diagnosis to be 

qualified by an explicit statement of the criteria used. 

The conventional hypothesis about the origin of APD is that it results from impaired bottom-up 

sensory processing within the central auditory system, which may involve lesions in CANS or 

functional impairment of basic auditory processing (Cacace and McFarland, 2005). The cochlea at 

the periphery is usually not included in this hypothesis, however, it should not be overlooked as 

considerable encoding of sound stimuli is carried out in the cochlea and transmitted via the 

auditory nerve and so synaptic damage preferentially involving low-SR auditory neurons after 

noise damage, is thought to explain problems with understanding speech in background noise 

(Furman, Kujawa and Liberman, 2013). Moreover, impaired hair cell function and resulting 

changes in cochlear compression can influence spectral and temporal tuning to some extent 

independently of pure tone sensitivity (Oxenham and Bacon, 2003). Other researchers argue that 

APD is a multi-modal deficit or even entirely cognitive, incorporating higher order functions, such 

as cognition, attention and language, exerting non-specific effect on perception (Musiek, Bellis 

and Chermak, 2005; Moore et al., 2010).  

1.2.3. Genetic studies 

Twin studies have shown that both speech and non-speech based auditory processing skills have a 

substantial genetic component (Morell et al., 2007; Brewer et al., 2016). Identifying candidate 

genes specific to APD has proven difficult not only due to the diagnostic controversies (highlighted 

in Section 1.2.2), but also due to its frequent co-occurrence with other neurodevelopmental 

conditions, making it challenging to disentangle genetic relationships. Nevertheless, mouse 

models of disrupted genes, known to play a role in other neurodevelopmental disorders such as 

dyslexia, Developmental Language Disorders (DLD) and ASD, have given an insight into candidate 

genes for auditory processing deficits. For example, Guidi et al. identified an impairment in 

behavioural gap-in-noise detection task in double knock-out of the dyslexia susceptibility mouse 

gene Kiaa0319 and its homologous gene Kiaa0319L, indicating a deficit in the auditory system 

(Guidi et al., 2017). Felix et al., studied the contribution of Chrna7 to auditory processing in knock-

out α7-nAChR mice, showing delays of evoked ABR responses, impaired forward masking and 

impaired gap detection (Felix et al., 2019). Human CHRNA7 has been further associated with 

reading and language skills and SLI in genome-wide association studies (GWAS) (Pettigrew et al., 

2015; Simpson et al., 2015; Gialluisi et al., 2016).  
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In two studies Cntnap2 mutant mice showed reduced vocalisations and an impaired temporal 

auditory processing (Peñagarikano et al., 2011; Truong et al., 2015). In humans homozygous 

mutations of CNTNAP2 lead to severe disease, characterised by profound intellectual disability, 

epilepsy, language difficulties and autistic traits (Strauss et al., 2006; Rodenas-Cuadrado et al., 

2016), while multiple studies have identified other variants to be associated with increased risk 

for ASD and language-related disorders (Vernes et al., 2008; Alarcón et al., 2008; Arking et al., 

2008). Scott et al. showed that a new Cntnap2 knock-out rat model had typical hearing thresholds 

but reduced auditory evoked neural responsivity and slowed signal transmission in juvenile 

animals (Scott et al., 2018). By adulthood the disruptions in auditory signal processing mostly 

disappeared, indicating a delayed maturation of auditory processing pathways (Scott et al., 2018). 

However, disruptions in brainstem-mediated auditory evoked behaviour persisted in adulthood, 

suggested that early developmental disruptions in sensory processing can cause permanent 

defects in circuitries responsible for auditory reactivity (Scott et al., 2018). 

A further insight into potential genetic regions and candidates for APD can also be gained from 

family genetic studies, with only one study in the literature and no GWAS or sequencing studies of 

APD available. Addis et al. investigated auditory processing as a core deficit of language 

impairment by performing genome-wide linkage analysis on a three-generation German family 

(NE family) (Addis et al., 2010). The results suggested that a gene within the central region of 

chromosome 12 is likely linked to the auditory processing difficulties (Addis et al., 2010). Although 

a potential “causal” variant was not identified with the techniques available at the time, the study 

proposed that APD could follow a simple inheritance pattern, where a damaging variation within 

one gene can have a direct influence on auditory processing difficulties. 

1.3. Disorders of syndromic hearing loss and the example of 
Usher Syndrome 

1.3.1. Definition and prevalence 

Usher syndrome (USH) is an autosomal recessive genetic disorder that causes hearing and vision 

loss and occasional balance problems (Keats and Corey, 1999). Although considered collectively 

rare with an estimated prevalence of between 4 and 17 in 100,000 people worldwide (Kimberling 

et al., 2010; Boughman, Vernon and Shaver, 1983), it is the most common cause of combined 

hearing and vision loss, accounting for approximately 50% of all deaf-blindness cases (Keats and 

Corey, 1999).  
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1.3.2. Usher Syndrome Types 

Based on the clinical symptoms, relating to severity and age of onset, and the presence or 

absence of balance problems, USH patients are classified into clinical types. Types I to III are the 

more well described ones, with both a newer type IV and atypical cases also reported (Table 1.4). 

1.3.2.1. Usher Syndrome Type I 

Usher syndrome type I (USH1) is the most severe of the three USH types. It is characterised by 

severe to profound deafness from birth affecting both ears, known as congenital bilateral 

sensorineural hearing loss (SNHL- affecting the inner ear) (Lentz and Keats, 1993b) (Table 1.4). 

Affected children who receive cochlear implants at an early age (within the first 2 years of life) can 

usually communicate using speech and lip-reading (Lentz and Keats, 1993b). Poor balance from 

birth, known as vestibular areflexia, is associated with the deafness and causes delays in sitting 

and walking (Lentz and Keats, 1993b) (Table 1.4). Loss of side vision and night blindness are early 

signs of retinitis pigmentosa (RP) which can manifest before the age of 10 (Lentz and Keats, 

1993b) (Table 1.4). RP is a progressive, symmetric degeneration of the retina, affecting both eyes, 

which starts at the periphery, mainly disturbing the function of the photoreceptive cells active in 

dark-adapted state (rod cells). 

1.3.2.2. Usher Syndrome Type II 

Usher syndrome type II (USH2) is the most common form of the disorder, representing around 

half of all cases (Reiners et al., 2006). It is less severe than type I and causes a moderate bilateral 

SNHL from birth and RP that may not become apparent until adulthood (Lentz and Keats, 1993a) 

(Table 1.4). The hearing loss is mild to moderate in the low frequencies (for the sounds that are 

low-pitched) and severe to profound in the higher frequencies (sounds that are high pitched) 

(Lentz and Keats, 1993a) (Table 1.4). The rate and degree of hearing loss is variable among and 

within families with progressive PR and visual symptoms diagnosed around the third decade of 

life (Blanco-Kelly et al., 2015) (Table 1.4). Balance is not affected and so walking and sitting is 

developed at typical age (Table 1.4). Children affected by USH2 benefit from conventional hearing 

aids and often have close to normal speech acquisition. With progression of hearing loss, cochlear 

implants have shown to increase speech intelligibility, quality of life and communication in later 

life (Hartel et al., 2017). 

1.3.2.3. Usher Syndrome Type III 

Usher syndrome type III (USH3) is the mildest and rarest form in the UK, but is particularly 

prevalent in Finland and among Ashkenazi Jewish people (Pakarinen et al., 1995; Ness et al., 

2003). Children usually have normal hearing and vision at birth and develop SNHL after 
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development of speech (usually detected in the first decade of life) and RP in adulthood (Keats 

and Corey, 1999) (Table 1.4). Hearing loss is of progressive nature with high frequencies affected 

first and more severely around the first decade of life and patients still showing some residual 

hearing at the lower frequencies at 40 years or older (Sadeghi et al., 2005). Balance problems are 

experienced by some with most patients reporting a normal age of independent walking (Sadeghi 

et al., 2005). Hearing aids can be of benefit early in the course of disease while cochlear implants 

have been found beneficial later on in life as hearing loss progresses (Pietola et al., 2012) 

1.3.2.4. Usher Syndrome Type IV and atypical Usher Syndrome 

Although clinically divided into three types, atypical cases having incompatible phenotypes with 

the three established types are also described in the literature. For example, Khateb et al. 

described a family with an atypical form of USH (later designated as USH4), inherited in the typical 

autosomal recessive manner, but presenting with a distinctive retinal degeneration phenotype 

(resulting in ring scotoma) and moderate to severe SNHL, both with a late onset (around the age 

of 40), without vestibular involvement (Khateb et al., 2018) (Table 1.4). The cause was a 

homozygous mutation in ARSG (Table 1.4) (further described in Section 1.3.3.2), not previously 

associated with Usher Syndrome or any other disorder.  

Variants in well characterised USH genes (MYO7A, USH2A, CDH23 and SARS) have also been 

associated with atypical clinical presentations of milder symptoms. In two consecutive studies Liu 

et al. described two siblings with bilateral progressive hearing loss and mild RP and another four 

unrelated individuals with progressive SNHL, RP, and variable vestibular function (vestibular 

dysfunction was in one individual only), symptoms most closely related to USH3 (Liu et al., 1998; 

Liu et al., 1999). The siblings in the first study were compound heterozygous for pathogenic 

variants in MYO7A, typically related to syndromic USH1B (Liu et al., 1998). The four individuals in 

the second study had a pathogenic variant in USH2A (homozygous in three individuals and 

heterozygous in one individual), typically associated with USH2 (Liu et al., 1999) and not USH3 as 

was expected by the mild symptoms in the two studies. Atypically milder phenotypes have also 

been described in cases with pathogenic variants in CDH23 (homozygous or compound 

heterozygous splice-site) and SANS (homozygous deletion and homozygous missense), expected 

to cause severe USH1 symptoms, but presenting with no obvious vestibular dysfunction, mild 

retinal symptoms and moderate to severe hearing loss, resembling an USH2 diagnosis (Bashir, 

Fatima and Naz, 2010; Kalay et al., 2005; Bork et al., 2001; Valero et al., 2019). These atypical 

cases underlie the genetic and phenotypic heterogeneity observed in USH.  
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 Table 1.4. Usher Syndrome types, symptoms, genes and proteins. 

USH type 
(phenotype 

MIM number) 
Subtype 

Gene name 
 (gene MIM 

number) 
Protein name Protein Function Hearing loss Retinitis pigmentosa 

Vestibular 
function 

References 

U
SH

1
 

 

(# 276900) USH1B MYO7A (* 276903) myosin VIIa actin-based motor protein 

Congenital, severe to 
profound 

Prepubertal onset; 
average age of 

diagnosis in second 
decade 

Bilateral 
areflexia; 

motor 
development 

may be 
delayed 

(Weil et al., 1995) 

(# 276904) USH1C USH1C (* 605242) harmonin PDZ scaffold protein (Verpy et al., 2000) 

(# 601067) USH1D CDH23 (* 605516) cadherin 23 cell adhesion (Bolz et al., 2001) 

(# 602083) USH1F PCDH15 (* 605514) protocadherin 15 cell adhesion (Ahmed et al., 2001) 

(# 606943) USH1G 
USH1G/SANS  

(* 606943) 
SANS scaffold protein (Weil et al., 2003) 

(# 614869) USH1J CIB2 (* 605564) CIB2 calcium and integrin binding (Riazuddin et al., 2012) 

U
SH

2
 

(# 276901) USH2A USH2A (* 608400) usherin Cell adhesion & signalling 
Congenital moderate 

to severe; high 
frequencies most 

affected 

Onset in second 
decade; average age of 

diagnosis in third 
decade 

Normal 
 

(Eudy et al., 1998) 

(# 605472) USH2C 
ADGRV1/GPR98 

 (* 602851) 
GPR98/VLGR1 

adhesion G-protein coupled 
receptor VI, signalling 

(Weston et al., 2004) 

(# 601067) USH2D 
WHRN/ DFNB31  

(* 607928) 
whirlin PDZ scaffold protein (Ebermann et al., 2007) 

U
SH

3
 

(# 276902) USH3A CLRN1 (* 606397) clarin-1 
scaffolding and cellular 

trafficking 
Post-lingual and 

progressive, variable 
Variable onset, typically 

in second decade 
Variable (Adato et al., 2002) 

(# 614504) 
Proposed 

USH3B 
HARS (* 142810) 

histidyl tRNA 
synthetase 

synthesis of histidyl-transfer 
RNA 

Post-lingual Variable Normal (Puffenberger et al., 2012) 

(# 612674) 
Clinical 
USH3 

ABHD12 (* 613599) 
alpha/beta hydrolase 
domain containing 12 

catalyses the hydrolysis of 2-
arachidonoyl glycerol 

Late onset Late onset Normal (Li et al., 2019) 

U
SH

4
 

(# 618144) -  ARSG (* 610008) Arylsulfatase G 
hydrolyse sulfatase esters, 

located in lysosome 
Progressive moderate 

to severe 
Late onset retinal 

degeneration 
Normal 

(Khateb et al., 2018; Abad-
Morales et al., 2020) 

Digenic cases 
of USH2  

(# 605472) 

USH2C 
digenic 

PDZD7 (* 612971) 
PDZ domain-

containing protein 7 
ciliary protein Typical for USH2 Earlier onset of RP Normal (Ebermann et al., 2010) 

Atypical -  CEP250 (* 609689) CEP2 
centrosome cohesion during 

interphase 
Progressive Mild RP Normal 

(Khateb et al., 2014; Fuster-
Garcia et al., 2018) 

Atypical -  
C2orf71/PCARE  

(* 613425) 
Photoreceptor cilium 

actin regulator 
photoreceptor cell 

maintenance and vision 
Normal AR RP Normal (Khateb et al., 2014) 

https://www.omim.org/entry/602083
http://omim.org/entry/602851


35 
 

1.3.3. Implicated genes 

Usher Syndrome is a not only clinically, but also genetically heterogeneous and to date 16 genes 

have been associated with it (Table 1.4). The numbering system in the Usher Syndrome 

classification (USH1, USH2 and USH3) corresponds to the associated severity of the clinical 

presentation. Each type is split into subtypes, labelled with letters, which indicate the molecular 

subtype (Table 1.4). 

Ten of the USH genes are classed as causative of typical Usher syndrome: MYO7A, USH1C, CDH23, 

PCDH15, USH1G, CIB2 causing USH1; USH2A, ADGRV1, WHRN causing USH2 and CLRN1 causing 

USH3 (Table 1.4). The remaining genes can be classed as USH-related or atypical as the symptoms 

of affected individuals do not fully match the three typical clinical types of USH (explained in 

Section 1.3.2) or the genes have only been detected in a very small number of individuals: PDZD7, 

CEP250, C2orf72, ARSG, HARS and ABHD12 (Table 1.4). To date all pathogenic variants within the 

causative genes of typical USH have been reported as homozygous or compound heterozygous 

(inherited in an autosomal recessive model). 

1.3.3.1. Usher Syndrome causative genes  

1.3.3.1.1. USH1 causative genes 

USH1B (# 276900), caused by mutations in MYO7A, is the most common type of USH1, accounting 

for 55-75% of USH1 cases and about 21% of all USH cases (Le Quesne Stabej et al., 2012; Roux et 

al., 2006) (Figure 1.5). MYO7A also harbours mutations causing both recessive (DFNB2) and 

dominant (DFNA11) nonsyndromic deafness and atypical USH (as discussed in Section 1.3.2.4) (Liu 

et al., 1998; Liu et al., 1997c; Liu et al., 1997a; Weil et al., 1997). Pathogenic MYO7A variants 

appear to be spread across the whole gene sequence, with a cluster forming at the motor head 

protein domain and another cluster in the tail (Liu et al., 1998). With the exception of the 

DFNA11-causing mutation c.2662_2670del (p.Lys888_Lys890del), affecting the coiled-coil region, 

there appears to be no obvious correlation between mutations and the resulting phenotype. 

Heterozygous mutations in the coiled-coil region, responsible for the dimerisation of the protein, 

have been proposed to result in dominant hearing loss because of a dominant-negative effect (Liu 

et al., 1998), with affected individuals showing less severe post-lingual hearing loss compared to 

USH2B and DFNB2 (Liu et al., 1997b). The pathogenic variants c.93C>A (p.Cys31Ter) is a major 

recurring MYO7A variant causing USH1B, which has been described as a founder mutation, 

accounting for 33% of all USH1 cases in Denmark (Dad et al., 2016).  

Pathogenic variants in CDH23, PCDH15 and USH1C are responsible for USH1D (# 601067), USH1F 

(# 602083) and USH1C (# 276904) respectively (Oshima et al., 2008; Jouret et al., 2019; Roux et 
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al., 2006) (Figure 1.5). Mutations within the three genes are also implicated in nonsyndromic 

autosomal recessive deafness (DFNB12 for CDH23, DFNB23 for PCDH15 and DFNB18A for USH1C) 

(Bolz et al., 2001; Bork et al., 2001; Ahmed et al., 2001; Ahmed et al., 2003; Verpy et al., 2000). A 

genotype-phenotype correlation has been shown for CDH23 and PCDH15: null variants (stop-gain, 

some splice site and frameshift) which result in truncating USH1 proteins are responsible for the 

occurrence of USH1, whereas missense and some splice site mutations that do not truncate the 

protein lead to milder phenotypes associated with DFNB (Doucette et al., 2009; Astuto et al., 

2002; Schultz et al., 2011). This has led to the hypothesis that the residual function of USH1 

proteins in DFNB “spares” retinal and vestibular function in patients. CDH23 pathogenic variants 

have been found across the gene, affecting all protein domains, except for the signal domain, with 

clustering in the region encoding the EC domain (Astuto et al., 2002). The most frequent CDH23 

pathogenic variant is the splice-site c.336+1G>A, which has been exclusively observed in Swedish 

USH1D individuals and has thus been suggested as a founder mutation (Astuto et al., 2002; 

Oshima et al., 2008). The most common PCDH15 variant is c.733C>T (p.Arg245Ter), which is 

specific to the Ashkenazi Jews and is the predominant cause of USH1 in that population (Ben-

Yosef et al., 2003). Pathogenic variants in USH1C are a relatively rare cause of USH, with the 

exception of the Acadian population, where USH1C mutations represent the most common cause 

of USH1 with c.238dup (p.Arg80ProfsTer69) exhibiting highest prevalence, suggesting a founder 

effect (Verpy et al., 2000; Zwaenepoel et al., 2001; Ouyang et al., 2005).  

Pathogenic variants in USH1G (also known as SANS), responsible for USH1G (# 606943), are the 

rarest cause of USH1 (Bonnet et al., 2011; Jouret et al., 2019; Le Quesne Stabej et al., 2012) 

(Figure 1.5). The nonsense variant c.113G>A (p.Trp38Ter) has been reported in six USH1G cases in 

three independent USH genetic screens, making it the most frequent USH1G mutation (Ouyang et 

al., 2005; Bonnet et al., 2011; Bujakowska et al., 2014).  

CIB2 is the causative gene of USH1J (# 614869). To date, a total number of 13 pathogenic variants 

(including a CNV, missense, frameshift and splicing variants) have been reported in CIB2. Of those, 

only one variant (c.192G>C, p.Glu64Asp) is linked to USH1J while the rest are associated with 

autosomal recessive hearing loss (DFNB48) (Booth et al., 2018; Riazuddin et al., 2012). The 

missense variant c.192G>C was identified in homozygous state in four individuals from a single 

consanguineous Pakistani family diagnosed with USH1J (Riazuddin et al., 2012). The role of CIB2 

variants as disease causing in USH1J has been challenged by Booth et al., who reported four more 

novel CIB2 pathogenic variants (three were loss of function and one was a missense) in families 

from diverse origins, all causing DFNB48 (Booth et al., 2018), providing evidence to disqualify CIB2 

as an USH-causing gene. Yet, because of the private pathogenic variant causing USH1J in the 
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Pakistani family, CIB2 is included in some genetic studies when investigating Usher syndrome’s 

molecular basis (Aparisi et al., 2014). 

1.3.3.1.2. USH2 causative genes 

Pathogenic variants within USH2A can explain the symptoms of up to 85% of USH2 patients and 

about 50% of all USH cases (Jouret et al., 2019) (Figure 1.5), making it the most common cause of 

Usher Syndrome. USH2A pathogenic variants cause USH2A (# 276901). Mutations are spread 

throughout the gene with missense variants being the most common type (Baux et al., 2014; 

Lenassi et al., 2015). The majority of disease-causing USH2A variants are extremely rare, except 

the ancestral pathogenic variant c.2299delG (p.Glu767SerfsTer21), which accounts for 15-31% of 

USH2 cases in European patients (Dreyer et al., 2008; Garcia-Garcia et al., 2011; Le Quesne Stabej 

et al., 2012). The USH2A variant c.2276 G>T, (p.Cys759Phe), also commonly found in patient 

cohorts, has been mainly associated with eye phenotypes (Rivolta et al., 2000; Bernal et al., 2003), 

proposing the existence of USH2A alleles that are retinal-disease specific. In a more recent study, 

investigating 186 individuals with recessive retinal disease and no childhood hearing complaints, 

the allelic hierarchy was evidenced by six USH2A alleles that were associated with nonsyndromic 

retinal disease only (defined as “retinal disease-specific”) and were proposed to be likely 

phenotypically dominant to USH2 alleles (so the presence of at least one retinal disease specific 

USH2A allele would likely result in preservation of hearing) (Lenassi et al., 2015). 

ADGRV1 (also known as GPR98, VLGR1 and previously- MASS1) pathogenic variants cause USH2C 

(# 605472). ADGRV1 mutations are the second most common cause of USH2, accounting for 

about 6% of USH2 cases and about 5% of all USH cases (Le Quesne Stabej et al., 2012; Jouret et 

al., 2019) (Figure 1.5). To date about 106 ADGRV1 variants are classed as presumed pathogenic 

(LOVD-USHBase, accessed 4 July 2020). It needs to be noted that from the reported pathogenic 

ADGRV1 variants, not all are causative of USH with studies suggesting association of ADGRV1 to 

febrile seizures and epilepsy (Nakayama et al., 2002; Coll et al., 2017). Reported ADGRV1 

mutations causing USH1C appear to be spread along the whole sequence with a cluster emerging 

in the terminal end and mutations predominantly resulting in a truncated protein product 

(Besnard et al., 2012). In contrast to USH2A cases, no major recurrent mutations have been 

identified for USH2C (Besnard et al., 2012). 

WHRN (also known as DFNB31) was first linked to nonsyndromic deafness in two families (Mburu 

et al., 2003) with its involvement in USH was later demonstrated by Ebermann et al. in a family 

with typical USH2 symptoms (Ebermann et al., 2007). To date only four pathogenic variants have 

been linked to USH2D, all located towards the start of the gene (between exon 1 and exon 3) 
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(Ebermann et al., 2007; Besnard et al., 2012), showing that WHRN pathogenic variants account for 

a very small proportion of USH2 cases (Figure 1.5).  

Some genotype-phenotype correlations have been suggested for USH2 genes. In a study analysing 

the audiological findings in 100 USH2 patients, Abadie et al. found that as a group the ADGRV1- 

caused USH2 cases had a higher proportion of severe hearing loss (40%), compared to USH2A 

cases (16%) (Abadie et al., 2012). Although this was not statistically significant, it suggests that 

ADGRV1 pathogenic variants are likely to result in more severe hearing symptoms than USH2A 

pathogenic variants in patients with USH2.  

1.3.3.1.3. USH3 causative genes 

CLRN1 pathogenic variants are the main cause of USH3, explaining about 2% of all USH cases 

(Figure 1.5) (Jouret et al., 2019; Joensuu et al., 2001). The missense variant c.144T>G (p.Asn48Lys) 

is relatively common and detected in Ashkenazi Jewish population (Fields et al., 2002). CLRN1 

pathogenic variants are also implicated in nonsyndromic recessive retinitis pigmentosa 61 (Khan 

et al., 2011) with less severe (missense) CLRN1 variants, representing hypomorphic mutations and 

preserving hearing. 

 

Figure 1.5. Frequency of causative mutations in patients presenting with both SNHL and RP suggesting 
Usher Syndrome (adapted from (Jouret et al., 2019).  
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1.3.3.2. Usher Syndrome atypical and rare genes 

PDZD7, encoding PDZ domain-containing 7 scaffolding protein, was first proposed as a prime 

candidate for USH syndrome due to its sequence similarity with the causative USH genes USH1C 

and WHRN (Schneider et al., 2009). Next, Ebermann et al. reported the first clinical cases 

diagnosed with USH2 to carry pathogenic variants in PDZD7 (Ebermann et al., 2010). In one family 

the authors reported a heterozygous frameshift mutation in PDZD7 detected in the presence of a 

homozygous truncating USH2A mutation in an USH2 affected individual with more severe retinal 

phenotype than their USH2 sister, suggesting that PDZD7 has a modifying effect on retinal disease 

(Ebermann et al., 2010). In another family a heterozygous truncating PDZD7 mutation was found 

in and USH2 affected individual with a heterozygous frameshift mutation in ADGRV1, indicating 

digenic inheritance (instead of the typical monogenic inheritance in USH) (Ebermann et al., 2010). 

The role of PDZD7 in USH is further supported by evidence that PDZD7, USH2A, ADGRV1 and 

WHRN interact in vivo and in vitro to form an USH2 complex (Zou et al., 2014; Zou et al., 2015; 

Chen et al., 2014).  

HARS codes for histidyl tRNA synthetase which charges tRNA molecules with histidine amino acids 

for protein translation (Antonellis and Green, 2008). The gene was proposed as a novel USH3 

player as a result of an exome sequencing study of Old Order Amish and Mennonite (Plain) 

children, descendants of Swiss immigrants (Puffenberger et al., 2012). A homozygous missense 

pathogenic HARS variant was identified in two individuals, diagnosed with USH3 and presenting 

with progressive sensorineural hearing loss, retinitis pigmentosa and episodic psychosis 

(Puffenberger et al., 2012). Different HARS compound heterozygous missense pathogenic variants 

were identified in another Swiss individual, diagnosed with Usher Syndrome (unspecified type) in 

a later study (Tiwari et al., 2016). The HARS variant identified by Puffenberger et al. was shown, in 

vitro to cause a reduction in the thermal stability of the protein (Abbott et al., 2017). The role of 

HARS in the inner ear and retina has not been elucidated, therefore, the role of HARS as a typical 

USH3 causing gene requires further investigation.  

CEP250 encodes centrosomal protein 250 (CEP250 or CNAP1), which is a member of CEP family of 

centrosome-associated proteins (Kumar et al., 2013). C2orf71, also known as PCARE, codes for 

photoreceptor cilium actin regulator protein PCARE and is a known retinitis pigmentosa causing 

gene (Collin et al., 2010; Nishimura et al., 2010). Homozygous stop-gain mutations in both CEP250 

and C2orf71 (double homozygotes) were identified in three siblings from a consanguineous family 

of Iranian Jewish origin, who had hearing loss and an early onset severe PR (Khateb et al., 2014). 

Three other siblings from the same family presented with a milder retinal phenotype and were 

found to be homozygous for the CEP250 mutation, but heterozygous for the C2orf71 mutation. It 

was thus concluded that the severe retinal involvement in the double homozygotes indicated a 
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potential additive effect on retinal burden, caused by nonsense mutations in the 2 genes 

occurring within the same cell (and possibly having an impact on the same photoreceptor region). 

In a later study Kubota et al. identified compound heterozygous mutations in CEP250 in a 

Japanese family with cone-rod dystrophy and SNHL while Fuster-Garcia et al. detected two novel 

stop-gain CEP250 mutations in a compound heterozygous state in an individual with symptoms 

similar to the Japanese family (Fuster-Garcia et al., 2018; Kubota et al., 2018). Interactions with 

other USH proteins and how CEP250 and PCARE function in the inner ear and eye are areas still 

open to investigation. 

ABHD12 (α/β-hydrolase domain containing 12) is a membrane-embedded serine hydrolase, which 

catalyses the hydrolysis of 2-arachidonoyl glycerol and is a known causal gene for 

polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and early onset cataract (PHARC). Stop-

gain homozygous ABHD12 mutations were identified in two siblings from a consanguineous 

Lebanese family and later in two siblings from a Chinese family, all clinically diagnosed with USH3 

(Eisenberger et al., 2012; Li et al., 2019). A homozygous splice site mutation was detected in two 

other cases, where the individuals were originally thought to be affected by Usher Syndrome, but 

associated PHARC symptoms of dysfunctional central and peripheral nervous system made a 

PHARC diagnosis more plausible (Yoshimura et al., 2015). All three authors emphasised that Usher 

Syndrome and PHARC have overlapping symptoms and phenotypic variability. ABHD12 is known 

to be expressed in the retina but its expression in the inner ear would need to be investigated to 

support the role of ABHD12 in USH3.  

ARSG (arylsulfatase G) encodes a member of a class of enzymes called sulfatases, responsible for 

hydrolysing ester- sulphate bonds, and playing a role in a variety of biochemical processes 

(Ferrante et al., 2002). Khateb et al. described 5 patients from three Yemenite Jewish Families 

with an atypical form of Usher syndrome, later designated as USH4 and characterised by 

distinctive retinal degeneration (involving a ring scotoma) and usually late-onset of progressive 

sensorineural hearing loss without vestibular involvement (Khateb et al., 2018). The authors 

reported a homozygous ARSG missense mutation which segregated with the disorder in the 

families (Khateb et al., 2018). A different homozygous ARSG missense mutation, a homozygous 

frameshift deletion and two compound heterozygous missense mutations, were recently 

described in three further cases, presenting with clinical features closely resembling the USH4 

phenotype described by Khateb et al. (Abad-Morales et al., 2020; Peter et al., 2020). Khateb et al. 

and Peter et al. further demonstrated that the ARSG mutations in their studies abolished enzyme 

function and the gene was expressed in the human retina (Khateb et al., 2018), while Girotto et al. 

showed Arsg expression at the top of hair cells in mouse cochlea (Girotto et al., 2014). Knock-out 

homozygous Arsg mice show retinal degeneration and behavioural dysfunction suggesting 

systematic effects (Kruszewski et al., 2016). Ingham et al. showed that knockdown of Arsg in mice 
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did not cause any detectable auditory dysfunction (Ingham et al., 2020). However, that could be 

because hearing was tested in mice aged 14 weeks old (Ingham et al., 2020) while Khateb et al. 

found that the onset of hearing loss was relatively late in the reported patients (Khateb et al., 

2018). Possible interactions with the other USH proteins have not been yet explored.  
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1.3.4. Role of Usher proteins in the inner ear 

The ten USH causative genes code for proteins with a wide range of functions: actin-binding 

molecular motors (myosin VIIa encoded by MYO7A), cell adhesion proteins (cadherin 23, 

protocadherin 15 and usherin encoded by CDH23, PCDH15 and USH2A respectively), scaffolding 

proteins (harmonin, SANS and whirlin encoded by USH1C, USH1G and WHRN respectively), an 

adhesion G-coupled receptor (ADGRV1/GPR98 encoded by ADGRV1), calcium and integrin binding 

protein (CIB2 encoded by CIB2) and transmembrane protein involved in scaffolding and cellular 

trafficking (clarin-1 encoded by CLRN1). These proteins form complexes and function 

cooperatively in both the inner ear hair cells and retinal photoreceptor cells. As this thesis focuses 

on hearing and audition, only the role of Usher proteins within the cochlea will be discussed.  

Their role in the retina is reviewed elsewhere (Kremer et al., 2006; Cosgrove and Zallocchi, 2014). 

Most of the USH proteins (except CIB2 and clarin-1) are directly involved in the formation of links 

that hold stereocilia together and therefore play key roles in the morphogenesis of the hair 

bundle as summarised in the following sections. 

1.3.4.1. Morphogenesis of the hair bundle within the inner ear 

The inner ear stereocilia on the IHC and OHCs are organised in bundles, called stereociliary 

bundles which are important for transducing mechanical sound stimuli into electrical signals and 

essentially for sound perception. At the onset of hair bundle formation (as defined in the chick by 

Tilney et al.), the apical surface of each hair cell is covered with microvilli, which consist of parallel 

actin filaments held together by a set of actin-bundling proteins (Figure 1.6a) (Tilney, Tilney and 

DeRosier, 1992). The microvilli grow in length and form stereocilia of similar length, while one 

single kinocilium (primary cilium) is in the centre of the surface (Figure 1.6b). The kinocilium then 

moves to the periphery (lateral edge) of the hair cell, dictating the orientation of the hair bundle 

(i.e. its planar polarity) (Figure 1.6c). Next, the stereocilia closest to the kinocilium start to grow 

longer (Figure 1.6c), which is followed by elongation of stereocilia in adjacent rows, forming a 

staircase pattern of height-ranked rows (Figure 1.6d). The stereocilia then stop growing in length 

but grow in width and then again in length until they reach their final length (Figure 1.6d). The 

processes of elongation and widening of stereocilia are separated in chick but occur in parallel in 

mammals. Finally, excess microvilli on the apical surface are reabsorbed (Figure 1.6e). Upon 

maturation the stereocilia in each bundle are arranged into three rows of increasing length and 

the kinocilium (which during early development is positioned next to the longest stereocilia), is 

lost during the early stages of postnatal development and before the onset of hearing in 

mammalian cochlea (Figure 1.6f). The graded height across the rows of stereocilia (Figure 1.6e) is 

central to their transduction ability. This is because tension on the sloping tip links connecting the 

tops of stereocilia (discussed below) controls the opening probability of the mechanoelectrical 
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transducer (MET) channels which are located at the tips of the short- and middle-row stereocilia 

(Figure 1.6g) (Gillespie and Müller, 2009; Beurg et al., 2009). Bending of the bundle towards the 

tallest row increases tension on tip links and channel conductance whereas deflection the 

opposite way (away from the tallest row) decreases channel conductance (Figure 1.6g), which is 

known as directional sensitivity (Shotwell, Jacobs and Hudspeth, 1981). This directional sensitivity 

is established along the epithelial plane and as a result the apical cytoskeleton in individual hair 

cells is planar polarised leading to the typical V-shaped stereocilia bundle and the off-centre 

position of the kinocilium (Figure 1.6h). Neighbouring hair cells also orient their hair bundles in 

the same direction, to presumably respond in a coherent manner to shared local stimuli (Figure 

1.6h). This cell-to cell communication property is known as planar cell-polarity (PCP). Planar 

polarity mechanisms thus act at two levels (single-cell and intercellular) to provide the specific 

formation required for the hair bundles to function correctly in mechanotransduction and sound 

perception.



44 
 

Figure 1.6. Hair bundle development, mechanotransduction and planar polarity (adapted from (Schwander, Kachar and Müller, 2010; Frolenkov et al., 2004) and 
https://www.tarchini-lab.org/ 
a) at the onset of stereocilia formation the apical hair cell surface contains microvilli and one kinocilium; b) the microvilli grow in length; c) the kinocilium moves to 
the lateral edge of the hair cell; d) microvilli grow in width and reach their final length; e) excess microvilli are reabsorbed; f) scanning electron microscopy of mature 
OHC bundle that shows the staircase organisation of the  three stereocilia rows (scale bar: 1µm); g) deflection of hair bundles in the direction of the longest 
stereocilia leads to the opening of transduction channels at the lower ends of tip links (highlighted in orange); h) model of planar polarity mechanisms in non-
mammalian cells. 
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1.3.4.2. Stereocilia links and Usher proteins in development 

During the stereocilia morphogenesis and growth and in adulthood, the stereocilia stay together 

through fibrous inter-stereociliar links and links with the kinocilium. By keeping the stereocilia and 

kinocilium together in a bundle, these links maintain the stereociliary cohesion, which is essential 

for bundle development, maintenance and function (Goodyear et al., 2005; Michalski et al., 

2007). Developing cochlear hair cells in mice show kinociliary links, transient lateral links and 

ankle links (during embryonic and early postnatal development), whereas functionally mature 

cochlear cells contain tip links and horizontal top connectors (Goodyear et al., 2005) (Figure 1.7). 
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Figure 1.7. Stereociliary links in the hair bundle through development (a), molecular components of the tip links and mechanotransduction complex (b) and components of the 
ankle link complex (c) (adapted from (Mathur and Yang, 2015; Schwander, Kachar and Müller, 2010; Michalski et al., 2007; Richardson and Petit, 2019; El-Amraoui and Petit, 2014). 
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1.3.4.2.1. Kinociliary and transient lateral links 

The kinociliary links connect the longest row of stereocilia to the kinocilium (Figure 1.7a) and are 

present only transiently in mammal cochlea, disappearing with the kinocilium shortly after birth. 

As the kinocilium is crucial for establishing the hair bundle polarity, the kinociliary links are 

thought to be essential for ensuring the kinocilium and the stereociliary bundle are coordinated 

within the hair bundle during early development. Transient lateral links also form during the early 

stages of development, recorded as early as embryonic day (E) 17.5 (Goodyear et al., 2005), and 

are the first links to interconnect the stereocilia along their entire length (Figure 1.7a). These 

lateral links become progressively restricted towards the distal end of the stereocilia forming 

apical lateral links in postnatal development (Figure 1.7a). The apical lateral links are also thought 

to become integrated into the links at the very tip of the stereocilia (tip links) in mature bundles 

(Goodyear et al., 2005; Richardson and Petit, 2019) (Figure 1.7a). The USH1 proteins CDH23 and 

PCDH15 have been shown to be expressed in developing stereocilia and are both localised to 

kinociliary and transient links (Goodyear et al., 2010; Michel et al., 2005) (Figure 1.7a). 

1.3.4.2.2. Ankle links 

At postnatal day (P) 2, thin filaments called ankle links become concentrated at the bottom of the 

stereocilia (where they insert into the cuticular plate) (Goodyear et al., 2005) (Figure 1.7a). In the 

mouse these links are transient and are only detected until P12, disappearing before the onset of 

hearing (Goodyear et al., 2005). The USH2 proteins ADGRV1, usherin, and whirlin are all 

expressed at the base of the inner ear hair cells, detected in embryonic development (as early as 

E17 for ADGRV1 and E18 for usherin) and just after birth (as early as P1 for whirlin) (Michalski et 

al., 2007; Zou et al., 2014; Delprat et al., 2005). Because of the localisation of ADGRV1 and usherin 

and because they both have long extracellular regions, both proteins were suggested as 

components of the ankle link filaments (Figure 1.7c) (Adato et al., 2005a; McGee et al., 2006). 

Together with whirlin and PDZD7 (USH2 modifier), all USH2 proteins have been shown to interact 

with one another to form a multiprotein complex, known as USH2 or ankle link complex (ALC) 

(Figure 1.7c), which is located at the cytoplasmic region of the ankle links (Michalski et al., 2007; 

Zou et al., 2015). Another protein, vezatin (VZT), known to interact with myosin VIIa and usherin 

(Michalski et al., 2007), is also expressed around the base of mouse stereocilia and colocalises 

with ankle links (Figure 1.7c) (Küssel-Andermann et al., 2000). 

1.3.4.2.3. Horizontal top connectors 

Horizontal top connectors, also known as top links or side-to-side links first appear at P9 and 

continue to develop at P12 (when the ankle links disappear), attaining their mature appearance 

between P12 and P14 and becoming highly organised by P19 (Goodyear et al., 2005). In their 
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mature state, the horizontal connectors are zipper-like structures (due to the presence of a 

central density region), located near the tops of the stereocilia (Figure 1.7a) and connecting them 

within and across rows. The central density region has been observed in top connectors within 

cochlear OHCs, but not in IHCs (Goodyear et al., 2005; Tsuprun et al., 2003), showing that the 

structure of the links varies according to type of hair cells which is likely linked to their different 

function. In mice, a protein called stereocilin (STRC) has been shown to be associated with these 

links within OHCs, but has not been detected in IHCs (Verpy et al., 2011), and is thus thought to 

play a key role in the central density region. STRC is also linked to the tectorial membrane 

attachment crowns (Verpy et al., 2011), present at the tips of the tallest stereocilia of OHCs to 

couple them to the tectorial membrane above. 

1.3.4.2.4. Tip links 

Tip links, which connect the tips of the stereocilia between adjacent rows appear on the hair 

bundles of both OHCs and IHCs at the same time as ankle links (around P2), together with the 

tectorial membrane attachment crown and are still present in the mature OHC bundle at 

postnatal day P19 (Figure 1.7a) (Goodyear et al., 2005). The tip links play a major role in 

transmitting force to the MET channels (Figure 1.7b), which convert sound waves into an 

electrical signal (Kazmierczak et al., 2007; Michalski and Petit, 2015). Although the IHCs and OHCs 

have distinct roles (signal transmission for IHCs and frequency dependent amplification for OHCs), 

they both perform mechano-electrical transduction. Increasing evidence has shown that cadherin 

23 and protocadherin 15 make up the upper and lower part of the tip link respectively (Figure 

1.7b) (Siemens et al., 2004; Ahmed et al., 2006). Cadherin 23 binds to the upper tip link density 

region (UTLD) while protocadherin 15 binds to the lower tip link density (LTLD) region (Figure 

1.7b), which are protein-dense plaques that underlie the stereocilia membrane at each end of the 

tip link (Kachar et al., 2000). Protocadherin 15 has also been suggested to interact with TMC1 and 

TMC2, which are core components of the MET complex (Maeda et al., 2014; Pan et al., 2013). The 

three USH1 proteins myosin VIIA, SANS and harmonin localise to the UTLD of mature cochlear 

cells (Figure 1.7b) and form a complex responsible for anchoring cadherin23 to the actin 

cytoskeleton of stereocilia (Yan et al., 2010; Boeda et al., 2002). Out of the three proteins, it is 

harmonin which binds to cadherin 23 within the upper part of the tip links (Figure 1.7b) (Boeda et 

al., 2002), bridging cadherin 23 to the cytoskeletal actin core. Myosin VIIA is expressed along the 

stereocilia and the cuticular plate (Weil et al., 1995; Hasson et al., 1995) and as a motor protein is 

known to transport components of the actin assembling machinery to the tips of the stereocilia to 

regulate length, so it is also likely involved in the transport of other USH molecules (Rhodes et al., 

2004). SANS is highly concentrated below the cuticular plate (Adato et al., 2005b) and has been 

shown to bind harmonin and myosin VIIA (Figure 1.7b), and is required for localisation of 

harmonin to stereocilia tips (Lefèvre et al., 2008). The molecular composition of the LTLD region is 
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much less well characterised, however, it is thought that the region contains elastin filaments, 

important in adaptation to occur following the mechanical deflection of stereocilia in the 

direction of the tallest stereocilia (Figure 1.7b) (Eatock, 2000). Other proteins such as whirlin, 

myosin XVa (essential for stereocilia elongation), actin regulatory protein epsin8 and myosin IIIa 

might also take part in anchoring protocadherin 15 (Delprat et al., 2005; Manor et al., 2011; 

Schneider et al., 2006). 

1.3.4.2.5. Other USH proteins that may interact with stereocilia link proteins 

and are important hair bundle proteins 

The USH1 player calcium and integrin-binding protein-2 (CIB2) is a newly discovered member of 

the USH protein family. It has been shown to bind to the components of the hair cell 

mechanotransduction complex, TMC1 and TMC2 (Giese et al., 2017b). It has thus been suggested 

to play an essential role in mechanotransduction (Wang et al., 2017b) by being involved in limiting 

the growth of transducing shorter row stereocilia in mammalian auditory hair cells (Giese et al., 

2017b). Regulation of stereocilia length is likely to occur at their tips where CIB2 may bind to 

whirlin and be part of the myosin XVa/whirlin stereocilia elongation complex (Belyantseva et al., 

2005). The above findings together with results from Michel et al., propose that unlike the other 

five known USH1 proteins, functional CIB2 is not required to ensure the early cohesion and 

shaping of the growing auditory hair bundle but is necessary for the terminal differentiation and 

maturation stages (Michel et al., 2017).  

Similar to CIB2, the USH3 protein clarin-1 has not been detected to play a direct role in stereocilia 

link formation. However, there is compelling evidence of a link between CLRN1, actin and other 

USH proteins (such as myosin VIIa), supporting the role of clarin-1 as an essential hair bundle 

protein (Tian et al., 2009; Adato et al., 1999), required for the development or maintenance of the 

normal shape of the bundle (Geng et al., 2012). Similarly to the USH2 proteins, clarin-1 is detected 

at the base of both IHCs and OHCs during embryonic development (Zallocchi et al., 2009; Geng et 

al., 2009). Postnatally clarin-1 shows expression at the apical regions of hair cells, which 

disappears from the OHCs at P10, while a weak signal remains at the base of IHCs (Zallocchi et al., 

2009). Contrary to previous reports suggesting a possible role for clarin-1 in the sensory synapses 

of inner hair cells (Adato et al., 2002; Geng et al., 2009), mutant mice findings from Geng et al. 

demonstrate that Clrn1 is not required for the development or maintenance of ribbon synapse 

and is not essential in the hair cell presynaptic function (Geng et al., 2012). 

1.3.4.3. Usher proteins isoforms 

Many of the USH proteins are expressed as multiple isoforms (Figure 1.8) (as reviewed in (El-

Amraoui and Petit, 2005; Kremer et al., 2006). The protein isoforms are often expressed in specific 
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tissues and sub-cellular compartments and even in a tonotopic manner along the cochlea (as 

recently suggested for myosin VIIa) (Adato et al., 2005a; Li et al., 2020), which adds to the 

complexity of deciphering the function of the USH proteins. Harmonin is expressed in at least 

three isoform subclasses (a,b and c) that differ by the number of the PDZ domains and the 

presence or absence of a second coiled-coil domain (Figure 1.8) (Verpy et al., 2000; Boeda et al., 

2002). Cadherin 23 has at least three isoforms that all contain a cytoplasmic domain, but differ at 

the opposite C-terminus (Figure 1.8) (Lagziel et al., 2005). Three protocadherin 15 splice isoform 

classes (Pcdh15-CD1, Pcdh15-CD2 and Pcdh15-CD3), which differ in the C-terminal part of their 

cytoplasmic domain (Figure 1.8) have been shown to be present in the hair bundles of developing 

cochlear hair cells (Ahmed et al., 2006). Two whirlin isoforms (a longer-FL-whirlin and a shorter- C-

whirlin depending on the presence or absence of the PDZ domains 1 and 2 in the N-terminus of 

the protein) are detected in the inner ear (Figure 1.8) (Ebrahim et al., 2016) . The mouse Clrn1 is 

known to give rise to three protein isoform, of which isoform 1 and isoform 2 both contain four 

transmembrane domains (Figure 1.8), and isoform 3 contains only two (not shown) (Adato et al., 

2002). 
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1.3.5. Pathological insights from mouse models of Usher syndrome 

1.3.5.1. Stereocilia defects resulting from dysfunctional Usher proteins 

USH1 mouse models of disrupted Myo7a, Ush1g, Chd23, Pcdh15 and Ush1c genes share hair 

bundle morphological defects including fragmentation and misorientation in embryonic 

development and abnormal staircase architecture postnatally (Lefèvre et al., 2008), whereas 

mouse models for Cib2 show similar bundle disruptions only postnatally (Table 1.5 & Figure 1.9) 

(Wang et al., 2017b; Giese et al., 2017b). The kinocilium in Myo7a, Cdh23, Pcdh15, Ush1g and 

Ush1c mutated mice appears mispositioned and often misplaced (Lefèvre et al., 2008; Di Palma et 

al., 2001). While the mutated USH1 stereocilia in OHCs form clumps and display abnormal length 

leading to loss of staircase architecture (Table 1.5 & Figure 1.9b), the IHCs stereocilia show to be 

affected differently, with abnormally shaped tips and reduction to complete loss of tip links 
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Figure 1.8. USH protein isoforms with predicted domain structures. Many of the proteins exist in multiple 
isoforms: three sub-classes of harmonin isoforms (a,b and c), three sub-classes of cadherin-23 (a,b and c), 
three main classes of protocadherin-15 (CD1-CD3), a secreted and a transmembrane form of usherin and two 
isoforms of whirlin in inner ear (adapted from (El-Amraoui and Petit, 2005; Géléoc and El-Amraoui, 2020). 
.  
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(Lefèvre et al., 2008; Alagramam et al., 2011). The stereocilia defects appear to be more severe as 

the mice grow older with loss of stereocilia observed by P15-P20 in Ush1c, Myo7a and Pcdh15 

mutated mice and at P30 for some Cib2-/ mice, which show loss of OHCs and fusion of IHCs 

stereocilia (Figure 1.9a) (Lefèvre et al., 2008; Self et al., 1998; Washington et al., 2005; Wang et 

al., 2017b). It is important to also note that the severity of the mutations for some USH1 models 

corresponds to the severity of cochlear pathology and hair cell development. For example, mice 

with in-frame deletions and missense mutations (as in Pcdh15avJ, Pcdh15av2J and Myo7ash1, 

Myo7a6j) have shown less disorganised stereocilia within the organ of Corti compared to same 

gene presumptive null alleles (Pcdh15av3J  and Myo7a4626SB) (Mburu et al., 1997; Kros et al., 2002; 

Pawlowski et al., 2006), suggesting a genotype-phenotype correlation. 
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 Table 1.5. USH1 proteins expression, inner ear hair cell localisation and defects in mouse mutants 

USH 
type 

Gene: Protein 
Protein 

Function 

Expression: Hair cell 
localisation 

Knock-out 
mouse mutants 

OHCs defects IHCs defects Cochlear dysfunction References 
Embryonic                 Mature cells 

USH1 

MYO7A: 
myosin VIIa 

Molecular 
motor 

protein 
IHCs and 

OHCs’ 
emerging 

protrusions; 
tips of 

differentiated 
stereocilia and 

surrounding 
microvilli along 

the whole 
cochlea 

UTLD in tallest 
and middle 

stereocilia row 

Hair cell 
cytoplasm and 

hair bundle, 
UTLD 

Shaker:  
Myo7ash1/ sh1 

Myo7a816B/816SB 
Myo7a4626SB/4626SB 

Stereocilia form 
clumps; many 

have abnormal 
length 

Medium stereociliary 
tips not acquiring 

their typical prolate 
shape and tip links 

becoming reduced in 
number 

No CM, CAP or SP 
responses up to the max 

intensities used 

(Mburu et al., 1997; 
Lefèvre et al., 2008; 

Holme and Steel, 2002; 
Kros et al., 2002; Boeda 
et al., 2002; Self et al., 
1998; Tian et al., 2010; 
Alagramam et al., 2011; 
Haywood-Watson et al., 
2006; Washington et al., 

2005; Di Palma et al., 
2001; Raphael et al., 

2001; Pawlowski et al., 
2006; Caberlotto et al., 

2011; Kikkawa et al., 
2003; Wang et al., 2017b; 

Giese et al., 2017a) 

USH1C: 
harmonin 

Scaffold 
protein 

Upper tip link 
and synapse 

Null: Ush1c-/- 

Stereocilia form 
clumps; 

stereocilia 
shorter in small 

and medium 
rows compared 

to wild type 

No detectable ABR 
response to click stimuli 
at 8, 16, 24 and 32 kHz 

tone bursts at max 
intensities used 

CDH23: 
cadherin 23 

Cell adhesion 
(upper tip 

link) 

No longer 
detected 

Transient 
lateral link, 

kinociliary link, 
tip link 

Waltzer: 
Cdh23v/v 

Cdh23v2J/v2J 

Same as above with 
tip links becoming 
completely absent 

PCDH15: 
protocadherin 

15 

Cell adhesion 
(lower tip 

link) 

Tips of short and 
middle 

stereocilia row 
and apico-lateral 
region of tallest 

stereocilia 

Ames Waltzer: 
Pcdh15av6J/ av6J 
Pcdh15avJ/avJ 

Pcdh15av2J/av2J 
Pcdh15av3J/av3J 

Pcdh15av5J/av5J 

USH1G: 
SANS 

Scaffold 
protein 

Apical region 
of cochlear 
hair bundle 

UTLD in tallest 
and middle 

stereocilia row 

Upper tip link 
and 

stereociliary tip 

Jackson shaker: 
Ush1gjs/js 

Null: Ush1g -/- 

Same as above with 
tip links becoming 
reduced in number 

No detectable ABR (same 
as above). No CM 

detected. Defective 
DPOAE for high 

frequencies, and normal 
for low frequencies. 

CIB2: 
CIB2 

mediating 
intracellular 

calcium 
signalling 

No data 
Stereocilia tips 
from shortest 

row 

Stereocilia, 
near tip 

Null: Cib2 ¯/¯ 

Disorganised 
stereocilia with 

medium row 
overgrown and 

tallest row 
retracted 

Staircase architecture 
maintained (middle 

and tallest row 
overgrown); 

kinocilium failing to 
retract 

No detectable ABR (same 
as above). DPOAE show 

threshold elevations. MET 
currents abolished in 

OHCs and IHCs. 
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Figure 1.9. SEM images of cochlear hair bundles from USH1 mice of different genotypes and ages (images adapted from (Kros et al., 2002; Tian et al., 2010; Holme 
and Steel, 2002; Washington et al., 2005; Wang et al., 2017b; Lefèvre et al., 2008) 
a) low-magnification SEM images of OHCs and IHCs of USH1 knock-out mice in bottom row (except Cdh23v/v where only OHCs bundles imaged), showing disordered 
arrangement of stereocilia on OHCs and only moderate disorganisation of IHCs stereocilia compared to controls; b) high magnification SEM images of OHC bundles of 
P5 USH1 mutant mice (view from the end of the apical cochlear turn) showing abnormal height of many stereocilia of the medium row and frequent absence of small 
stereocilia in mutant hair bundles compared to controls (Scale bar = 1µm) 
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While the disrupted function of USH1 proteins affects stereocilia early in embryonic development 

along the whole of the cochlea, knock-out mouse models of the USH2 genes show structural 

defects affecting the hair cell bundles in post-natal development, preferentially at the basal half 

of the cochlea (sensitive to high frequencies) (Table 1.6 & Figure 1.10b). Adgrv1 knock-out mice 

show the most severe USH2 stereociliary defects, that are also detected the earliest: disorganised 

OHC stereocilia bundles, stereocilia tilted at their base and forming U-shape (instead of a V-shape) 

plus significant loss of OHCs by 2 months of age (Table 1.6 & Figure 1.10a) (McGee et al., 2006; 

Michalski et al., 2007; Zou et al., 2015). Ush2a -/- mice show an intermediate phenotype of 

severity with distorted OHC bundle shape and loss of OHCs by 4 months of age (Table 1.6 & Figure 

1.10a-b) (Liu et al., 2007; Zou et al., 2017) and Whrn (also known as Dfnb31) mutated mice have 

least severely affected stereociliary bundle with various U-shaped OHC hair bundles observed at 

P15, leading to degeneration by P99-P102 (Table 1.6 & Figure 1.10a). The IHCs dysmorphology, on 

the other hand, shows to be less evident and only visible at high magnification (Zou et al., 2015). 

While according to Lui et al. the IHCs in Ush2a ¯/¯ mice were present throughout the cochlear 

spiral and appeared to be normal (Figure 1.10b) (Liu et al., 2007), Zou et al. showed that at high 

scanning electron microscope (SEM) magnification the IHCs bundle showed an additional ectopic 

(outside the bundle) stereocilia at the neural edge of the IHC apex (Figure 1.10a) (Zou et al., 

2015). This ectopic stereociliary phenotype was also present in Adgrv1-/- but not in Dfnb31neo/neo 

mice (Figure 1.10a). Both Adgrv1-/- and Dfnb31neo/neo mice had thicker IHC stereocilia than what 

was observed in wild-type mice, with IHCs lost by 2 months for Vlgr1/del7TM and by P99-P102 for 

Dfnb31wi/wi (Figure 1.10a) . The presence of ankle links in mutated USH2 mice has also been 

investigated, showing missing ankle links in Adgrv1-/-(McGee et al., 2006; Michalski et al., 2007) 

while they were present in Dfnb31neo/neo (Zou et al., 2015) and not studied in Ush2a -/-mice, 

suggesting that ADGRV1 is essential for the formation of the ankle links while whirlin is not and 

usherin is unknown.  

Consistent with the expression of clarin-1, Clrn1-/- knock-out mice also show bundle morphology 

defects in cochlear hair cells, that become more obvious by P2 and primarily affect OHCs along all 

turns of the cochlea while IHCs appear normal or mildly affected (Geng et al., 2009) (Table 1.6 & 

Figure 1.10c). Profound hearing loss is detected at P21 by which time a loss of OHCs is also 

observed, while IHCs appear to be missing at both basal and apical turn of the cochlea around P30 

(Geng et al., 2009). SEM in Clrn1-/- at P3-P4 shows that the disruption of hair bundle integrity is 

characterised by splits in the V-shaped bundle and loss of some of the tall stereocilia (Geng et al., 

2012) (Figure 1.10c). As tip links, the bundle orientation and the graded heights of the stereocilia 

in the hair bundles of Clrn1-/- mice are not affected (Geng et al., 2012), it was concluded that Clrn1 

is not required for the formation of tip links or the polarised orientation of the hair bundle or the 

development of graded heights of stereocilia. Instead, the disruption of the hair bundle structure 
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and loss of stereocilia in Clrn1-/- mice suggests that Clrn1 might be required to maintain the 

structure of the bundle after it is formed (Geng et al., 2012).
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Table 1.6. USH2 and USH3 proteins expression, inner ear hair cell localisation and defects in mouse mutants 

USH 
type 

Gene: 
Protein 

Protein 
Function 

Expression: Hair cell 
localisation 

Knock-out 
mouse 

mutants 
OHCs defects IHCs defects Cochlear dysfunction References 

Embryonic Mature cells 

USH2 

USH2A: 
usherin 

Cell 
adhesion & 
signalling 

At the base of 
inner ear hair 

cells. The 
proteins form 

the ALC 
complex, 

located at the 
cytoplasmic 
region of the 

ankle links 

 only transient 
with ankle links 

Ankle link 
and synapse 

Ush2a -/- 

Distorted bundle shape and 
mislocalised kinocilia, 

stereocilia still connected along 
their entire length and usually 
did not tilt. Loss of basal-coil 
hair cells by 4 months of age 
while apico-middle turn of 

cochlea not affected 

IHCs present 
throughout cochlear 

spiral, showing normal 
stereociliary thickness 

ABR thresholds consistently 
elevated at high 

frequencies. Elevated 
DPOAE thresholds for f2 

frequencies >15 kHz from 4 
months of age 

(Holme et al., 
2002; Delprat 
et al., 2005; 

McGee et al., 
2006; Liu et 

al., 2007; 
Michalski et 

al., 2007; 
Manor et al., 
2011; Zou et 

al., 2015; 
Ebrahim et al., 
2016; Zou et 

al., 2017) 

ADRGV1: 
ADGRV1 

Cell 
adhesion & 
signalling 

Ankle link 
and synapse 

Adgrv1-/- 

Vlgr1/del7T
M 

Disorganised stereocilia 
bundles with stereocilia tilted 
at their base and forming U-

shape; significant loss of OHCs 
from basal half of cochlea by 2 

months of age 

Loss of IHCs at the 
basal half of the 

cochlea by 2 months of 
age, middle and apical 

turn less severely 
affected 

ABR thresholds for click 
stimuli and pure-tone 
elevated across entire 

frequency range tested (2-
32 kHz); Absence of DPOAEs 
at all f2 frequencies tested 

(2-20 kHz) 

WHRN/ 
DFNB31: 
whirlin 

PDZ 
scaffold 
protein 

Ankle link, 
stereociliary 

tip and 
synapse 

Dfnb31wi/wi 
Dfnb31neo/neo 

Various U-shaped hair bundles 
observed at P15, leading to 
degeneration by P99-P102 

IHC stereocilia appear 
shorter, leading to 

degeneration of IHCs 
by P99-P102, more 

severe in basal regions 
compared to apical 

turn of cochlea 

ABR thresholds elevated 
across all frequencies (4- 

45.2 kHz), not as elevated as 
Ush2a and Adgrv1 mutants 

USH3 
CLRN1:    
clarin-1 

Cell 
adhesion 

At the base of 
both IHCs and 

OHCs. 

At apical aspects 
of hair cells 

postnatally, with 
expression in 

OHCs lost at P10 

Hair bundle, 
atypical 

cytoplasm 
and synapse 

Clrn1-/- 

Disorganised stereocilia with 
splits in the V-shaped bundle 
and loss of some of the tall 
stereocilia. Loss of OHCs is 

observed at P21 

Stereocilia in IHCs 
appeared normal or 

mildly affected. By P30 
almost all IHCs are lost 
throughout most of the 

cochlea 

Elevated ABR thresholds 
across entire frequency 

range tested (8-32 KHz) and 
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Figure 1.10. SEM images of cochlear hair bundles from USH2 and USH3 mice of different genotypes and ages (adapted from (Zou et al., 2015; Liu et al., 2007; Geng et al., 2009; Geng et 
al., 2012) 
a) Low and high magnification SEM images of USH2 knock-out mice, showing abnormal hair cell bundles (top row); USH2 knock-out mice OHC bundles show: stereocilia tilted at 
stereociliary bases and missing stereocilia in the shortest stereociliary row (Adgrv1−/−), distorted shapes and mislocalised kinocilia (Ush2a) and a blunt U-rather than a sharp V-shape 
(Dfnb31) (middle row); USH2 knock-out mice IHC bundles show thicker and ectopic stereocilia (Adgrv1), ectopic stereocilia, but no difference in thickness (Ush2a) and thick stereocilia 
(Dfnb31) (Zou et al., 2015).  
b) Low magnification SEM showing Ush2a stereocilia affected only in the basal cochlear turn (top) compared to the middle-apical turn (bottom) 
c)Low and high magnification SEM images of Clrn1 mouse mutants at different stages at both the basal and apical cochlear turn showing disorganised stereocilia bundles in OHCs (with 
splits in the bundles and loss of some of the tallest stereocilia and normal looking bundles in IHCs (top two rows). 
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1.3.5.2. Cochlear dysfunction and hearing impairment resulting from 

dysfunctional Usher proteins in knock-out mice 

As a result of the severe stereocilia defects in USH1 knock-out mice, affecting both IHCs and OHCs 

throughout the cochlear turns, the USH1 mutant mice show severe cochlear dysfunction and 

severe hearing impairment. Absence of ABR response to click stimuli at 8, 16, 24 or 32 kHz tone 

bursts demonstrated that the cochlea in Ush1g, Chd23, Pcdh15 and Ush1c and Cib2 knock-out 

mice was non-functional and the mice were profoundly deaf at all frequencies at all time points 

(Raphael et al., 2001; Washington et al., 2005; Haywood-Watson et al., 2006; Di Palma et al., 

2001; Tian et al., 2010; Kikkawa et al., 2003; Caberlotto et al., 2011; Wang et al., 2017b). It has 

also been suggested that no ABR response at the maximum intensity of above 90dB SPL indicates 

that both OHCs and IHCs were impaired as even a complete loss of OHCs function cannot account 

for more than a 60bB threshold elevation (Dallos and Harris, 1978). 

DPOAE measurements further demonstrated that OHC function of Ush1g-/- mice was defective at 

high frequencies, but was partly preserved at low frequencies in mature mutant mice before the 

complete loss of OHCs at P15 (Caberlotto et al., 2011). DPOAE measurements are also available 

for Cib2-/- mice, indicating significant threshold elevation compared to controls, suggesting OHC 

function deficits in the Cib2 knock-out mice (Wang et al., 2017b). Additional electrophysiology 

experiments, testing MET currents in Cib2 knock-outs, indicated a complete lack of MET current in 

OHCs and in the more intact IHCs at P7 compared to controls, suggesting that disrupted Cib2 

function abolishes MET currents in auditory hair cells (Wang et al., 2017b; Giese et al., 2017b).  

Compared to the hair cell defects along the whole cochlea in the USH1 knock-out mice, the USH2 

mutated mice are preferentially affected at the basal half of the cochlea, which consequently 

leads to elevated thresholds at high frequency. ABR thresholds of all three knock-out USH2 mouse 

models at P30 (when the mouse cochlea has matured) showed to be elevated in the frequency 

range 4-45.2 kHz relative to wild type controls (Zou et al., 2015), with Ush2a thresholds being 

consistently elevated at high frequencies (Liu et al., 2007). Adgrv1-/- mice were most severely 

affected, while Dfnb31neo/neo showed the mildest hearing loss and Ush2a -/- mice were in-between, 

correlating with the degree of ALC disruptions and stereociliary bundle defects. DPOAE signal 

testing of Ush2a -/- mice showed conflicting results between the two studies (Liu et al., 2007; Zou 

et al., 2015). While Lui et al. showed elevated thresholds for f2 frequencies only above 15 KHz, 

but not at low frequencies, Zou et al. showed that the thresholds were elevated for all 

frequencies. This discrepancy might be a result of different genetic backgrounds of the Ush2a -/- 

mice used where potential modifier genes (such as Cdh23ahl allele) could rescue the Ush2a -/- inner 

ear phenotype and thus result in more variable and less severe phenotype reported by Liu et al.  
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By P21, when OHCs are lost from the cochlea, ABR thresholds in Clrn1-/- mice are significantly 

elevated (85-95 dB peSPL), with a delay in latency for all four peaks (at 8, 16 and 32 kHz) 

compared to wild type mice (Geng et al., 2009). In addition, the interpeak latencies P1-P2 and P1-

P3 show to be prolonged in mutant mice compared to controls and by P30 no hearing function is 

detected (Geng et al., 2009), indicating that the mice are deaf around that age, coinciding with 

the loss of IHCs. These results suggest that Clrn1-/- mice have some auditory function at young age, 

which deteriorates rapidly after P21 and demonstrates hair cell function deficiency, and a neural 

deficit, necessary for normal sensory transduction. At P21 the mutant mice produced no 

detectable DPOAE above the noise floor, indicating lack of OHC function (Geng et al., 2009). 

1.4. Current genetic strategies to study complex phenotypes 

1.4.1. Monogenic disorders and gene identification methods 

Monogenic disorders are traditionally defined as resulting from a pathogenic variant/s within a 

single gene where the variants are both necessary and sufficient to produce the clinical 

phenotype and to cause the disease (Peltonen and McKusick, 2001) (Figure 1.11a). Large families 

represent a particularly useful tool for gene identification, because they have multiple affected 

and unaffected members whose clinical symptoms could be related to a single variant in their 

genome. Many hearing disorders such as nonsyndromic and syndromic hearing loss are inherited 

under a monogenic model following a dominant (DFNA loci), recessive (DFNB loci) or X-linked 

inheritance pattern. 

Linkage mapping is a method to identify genetic regions underlying monogenic diseases, relying 

upon linkage disequilibrium (LD) of genetic markers through large pedigrees (Dawn Teare and 

Barrett, 2005). Two genetic features are said to be in LD when they are located close enough to 

not be separated by the recombination process and to always be inherited together. By using 

genetic markers spaced across the genome and studying their segregation through pedigrees, it is 

possible to identify chromosome regions that are linked to the disease (where the affected 

individuals are more similar than expected by chance). The biggest limitation of family linkage is 

the low level of resolution that it offers. Since linkage studies only narrow down the chromosome 

location of contributory variants, they usually result in the identification of a large chromosome 

region rather than a specific variant. Current gene mapping and variant identification methods 

rely on whole exome and whole genome sequencing techniques (WES and WGS), which offer 

better resolution and therefore allow detection of near complete variation. These sequencing 

methods have become relatively cheap and have the advantage of being unbiased regarding the 

set of genes analysed, allowing parallel examination of most/all of the genes in the human 
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genome. They also allow identification at the level of novel and very rare variants, which was not 

possible before.  

The biggest challenge of WES/WGS has been interpreting the data and ranking the large number 

of variants in a systematic way to identify potentially causal variants. To aid variant interpretation 

now available are population datasets, such as the Genome Aggregation Dataset (gnomAD) which 

provides summary statistics of large scale sequencing data (such as population specific variant 

frequency) and prediction tools that assess the potential damaging effect on protein level 

(summarised in Section 2.5.2). 

Guidelines for interpretation of variants in molecular genetic testing have also been developed by 

professional genetic associations such as the American College of Medical Genetics and Genomics 

(ACMG) (Richards et al., 2015). The recommended criteria for classifying pathogenic variants 

involve collecting multiple lines of evidence from publicly available databases on allele frequency, 

functional effect, disease presentation and expected inheritance pattern, computational and 

predictive data and aligning it to the specifics of the investigated disorder and segregation with 

the phenotype (Richards et al., 2015). Although challenges remain in classifying non-coding and 

missense variants (due to limited functional evidence), approaches learnt from monogenic 

disorders can be translated into polygenic and more complex disorders.  
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1.4.2. Complex disorders and the role of common variants through GWAS 

(common disease-common variant hypothesis) 

Complex genetic disorders are influenced by the combination of risk variants within many genes 

and environmental factors that can modify that risk (Mitchell, 2012) (Figure 1.11b). For example, 

complex common disorders such as ARHL, ASD, dyslexia and DLD have an inherited component, 

described by the term heritability. Heritability shows how much of the variation in a given trait or 

disorder can be attributed to genetic variation (0% is entirely environmental and 100% - entirely 

genetic). The heritability estimates for complex disorders typically range from 30% to well over 

a) Monogenic disorder        b) Complex disorder 

Figure 1.11. Monogenic and complex inheritance patterns and risks (adapted from (Peltonen and 
McKusick, 2001). 
a) In monogenic disorders pathogenic variants in a single gene (within the coding region of the 
gene) are typically necessary and enough to cause a disease. Pedigrees show Mendelian inheritance 
patterns. The impact of the pathogenic variant on disease risk is typically 100% (it has a direct effect 
on disease phenotype) and the risk is the same in different families and within populations.  
b) In complex disorders, variants in different genes (within coding or non-coding regions) increase 
the risk and are typically neither sufficient, nor necessary to explain the disease by themselves. 
Family trees do not show Mendelian pattern of inheritance and environmental factors act to modify 
the risk. The effect size of a given variant can differ between individuals and across a population 
according to their background genetic effects and the environment which they have been exposed 
to. 

pathogenic variant 



63 
 

50%, for example ARHL giving estimates between 35% and 55% and DLD -between 18% and 45% 

(Gates, Couropmitree and Myers, 1999; Karlsson, Harris and Svartengren, 1997; Wolber et al., 

2012; Bishop and Hayiou-Thomas, 2008). 

Because of the small effect size of each variant on complex disease, in order to capture risk 

genome-wide association studies (GWAS) compare frequencies of SNPs between cases and 

controls in large populations. Higher frequencies in cases compared to controls usually indicate a 

higher risk for the alleles involved. GWAS are based on the common disease-common variant 

(CDCV) hypothesis which proposes that if a disease that is heritable is common in the population 

(a prevalence greater than 1–5%), then the genetic contributors will also be common in the 

population (Wang et al., 2005). Although for complex diseases such as ARHL and DLD, GWAS have 

identified variants reaching statistical significance within new candidate genes (NOP9 and ROBO2 

for DLD and GRM7, PCDH20 and SLC28A3, IGS20 or ACAN and TRIOBP, and CLRN2 and NID2 for 

ARHL) (Nudel et al., 2014; St Pourcain et al., 2014; Friedman et al., 2009; Vuckovic et al., 2015; 

Hoffmann et al., 2016; Wells et al., 2019) in the majority of cases findings from GWAS fail to 

replicate between studies (Tam et al., 2019). Moreover, the variants identified through GWAS are 

not necessarily functional. This is because they are proxies, which mark the approximate position 

of the aetiological variant within a small segment of DNA. Therefore, while GWAS provide an 

informative starting point for functional studies, even high-density SNP association screens will 

require follow-up studies to enable proof of robust effect (McCarthy and Hirschhorn, 2008).  

Table 1.7. Possible frequencies of gene variants in complex traits (adapted from (Cirulli and Goldstein, 2010) 

Variant class Minor allele frequency (MAF) Implications for analysis 

Common Between 5% and 50% 
Detectable in association analysis using GWAS 

methods 

Less common Between 1% and 5% 
Detectable in association analysis using GWAS 

methods in larger association studies 

Rare but not 
private 

Less than 1% but sill polymorphic in 
one or more major human 

populations 

Detectable in exome/whole genome sequencing 
studies and co-segregation in families 

Very rare and 
private 

Restricted to single families 
Difficult to analyse even in co-segregation and whole 

genome sequencing in affected families 

1.4.3. The role of rare coding variants through genome sequencing 

(common disease-rare variant hypothesis)  

Association studies assume the presense of major shared genetic effect, meaning that very rare 

and private SNPs are overlooked (Table 1.7). Such rare (low-frequency) variants have been 

proposed as players in susceptibility to complex disease even before the GWAS field was 

established to capture common risk variants (Pritchard, 2001). This view was based on the 

theoretical explanation for the importance of rare variants where variants that strongly 

predispose to disease are likely to be deleterious and therefore kept at low frequencies by 
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purifying selection (Pritchard, 2001). These rare, usually coding, variants differ from the rare 

causal variants implicated in Monogenic disorders (described in Section 1.4.1) as they are usually 

not sufficient to cause disease leading to genetic heterogeneity between individuals, but instead 

can contribute to risk in complex disorders (with some exceptions like rare variants in FOXP2 (Lai 

et al., 2001). While common variants, which have high frequency in the general population (MAF≥ 

5%) are expected to have low relative risk, rare highly penetrant variants may confer high risk (as 

shown in neurodevelopmental disorders- ASD, ADHD, schizophrenia) (Henriksen, Nordgaard and 

Jansson, 2017; Anney et al., 2012; Yang et al., 2013; Faraone and Larsson, 2019). Therefore, rare 

risk variants have been considered an important source of variation, leading to the common 

disease-rare variant hypothesis (Iyengar and Elston, 2007). Within this hypothesis the rare 

variants are all considered together in a single analysis rather than being restricted to highly 

penetrant variants. Several statistical methods have been developed to increase statistical power 

in rare variant association studies by combining information across multiple rare variants within a 

specified genomic functional unit such as within a gene (gene-based methods that provide 

multivariate analysis such as burden tests) or across many genes (such as polygenic risk scores) 

(for review of methods see (Lin et al., 2018). 

The role of rare risk variants in neurodevelopmental disoders is now well-recognised. A rare 

variant burden for protein-truncating variants was reported in a WES study in individuals with 

complex neurodevelopmental disorders (such as ASD, ADHD, bipolar disorder or intellectual 

disability) (Ganna et al., 2018), suggesting a widespread genetic effect among those disorders. 

Another recent large scale exome sequencing study of ASD reported 102 genes in ASD risk (of 

which 30 were novel) and a greater burden for de novo protein-truncating varians over de novo 

missense variants, with all exome de novo variants in the autosomes in total explaining 1.92% of 

the variance in ASD (Satterstrom et al., 2020). 

1.4.4. Alternative mechanisms and combinations  

It is becoming apparent that rare and common variants at single bases of DNA sequence (SNPs) 

are unlikely to fully account for the heritability of complex genetic disorders. An alternative 

mechanism such as copy number variants (CNVs representing deletions and duplications ranging 

from 50bp to 5Mb in size) has been identified in many neurodevelopmental disorders such as 

ASD, ADHD, schizophrenia and DLDs (Simpson et al., 2015; Kalnak et al., 2018; Zarrei et al., 2019; 

Shearer et al., 2014).  

Increasing evidence also points to a complex interplay between genes and the environment in 

neurodevelopmental disorders (Tran and Miyake, 2017). Epigenetic mechanisms (affecting gene 

expression, without changing the DNA sequence) such as DNA methylation and histone 

modification can act at this interface (Banik et al., 2017). We need to keep in mind, that although 
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each environmental risk factor (being driven through epigenetic or other mechanisms) might have 

a very small effect, when it occurs in the context of genetic background with specific risk variants, 

the overall combination may result in what’s referred to as a “perfect storm”, leading to 

disruption of normal neurodevelopment. 

The emerging picture of complex genetic neurodevelopmental disorders, including ASD, ADHD, 

dyslexia, schizophrenia and DLDs, is that they can arise for many different reasons, each involving 

different combination of underlying risk. In most cases, we now expect risk models to involve 

many factors that act together: hundreds of genetic variants together with CNVs, gene x gene 

interactions, epigenetic modifications and environmental influences. The application of diverse 

technologies and multi-national collaborative effort is thus required to explore the role of each 

factor when studying a complex disease in order to better explain not only the genetic 

contributions, but also our understanding of the biological mechanisms and interactions involved 

in its aetiology.  
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1.5. Aims of thesis 

The overall aim of this thesis is to comprehensively identify and examine the overlapping genetic 

mechanisms between hearing, auditory processing, and emergent language.  

The specific aims are: 

1. To examine the effect of heterozygous pathogenic variants in USH causative genes (as 

candidate APD susceptibility genes) on hearing, auditory processing, and language under a 

Mendelian model. 

2. To examine the effect of common and rare risk USH variants on hearing, auditory processing, 

and language abilities under a complex model. 

3. To discover new pathways implicated in APD by identifying pathogenic variants with big effect 

on a genome-wide level in individuals that show difficulties discriminating words in noise. 
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2. Subjects and Methods 

2.1. Subjects and ALSPAC population cohort 

2.1.1. Discovery Family 

This thesis came about because of a large family affected by APD. The discovery family consisted 

of 12 members; eight of which (including I.1 and all his seven descendants) (Figure 2.1) were 

affected by expressive language disorder with acute auditory processing difficulties and disfluent 

speech (dysarthria), indicating an autosomal dominant inheritance pattern. The affected 

individuals showed difficulties characteristic of APD such as processing speech and following 

instructions particularly in presence of background noise. The discovery family is further 

described by Perrino et al (Perrino et al., 2020).

 
 

2.1.2. ALSPAC population Cohort 

Following candidate gene identification in the discovery family (Perrino et al., 2020), genetic 

investigations were performed in the Avon Longitudinal Study of Parents and Children (ALSPAC). 

ALSPAC is a population-based birth study of the children born to 14,541 mothers in the Avon area 

(Boyd et al., 2013). Three datasets generated from the ALSPAC study were used in this thesis. 

They will be referred to as ALSPAC phenotype dataset, ALSPAC genotype dataset and ALSPAC 

UK10K dataset. The ALSPAC phenotype dataset provides a wide range of neurodevelopment 

phenotype measures of all participating children including language, memory, hearing and 

neuropsychiatric measures (Table S1). The ALSPAC genotype dataset contains genetic data of 

Figure 2.1. Pedigree of the four-generational APD family 
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common variation, providing 500,527 SNPs genotyped in 8,365 children. The ALSPAC UK10K 

dataset contains low read depth whole genome sequence data for 1,867 children as part of the 

UK10K project, which aimed to study the contribution of genes to phenotype traits and disease 

(Walter et al., 2015) (https://www.uk10k.org/studies/cohorts.html). The ALSPAC cohort profile 

and study protocol have been described elsewhere (Boyd et al., 2013; Golding, Pembrey and 

Jones, 2001) and further information is available on the ALSPAC website 

(http://www.bris.ac.uk/alspac). 

2.1.3. Ethical approval 

Ethical approval for the discovery family was provided by University of London & St George’s 

University Hospitals. All members gave informed consent/assent of investigation. Access to the 

ALSPAC and UK10K data for the use of this study was agreed as part of project B2341 by the 

ALSPAC Ethics and Law Committee and an ethical approval for secondary data analysis was 

granted by Oxford Brookes University (DREC Reference: 1216_29).  

2.2. ALSPAC phenotype dataset 

The ALSPAC phenotype dataset contained 684 measures available for this this study (413 

qualitative and 271 quantitative) (Table S1), for full list of measures see 

http://www.bristol.ac.uk/alspac/researchers/our-data/). Performance on all these measures was 

considered for rare Mendelian analyses utilising the ALSPAC UK10K dataset in Results Chapters 1 

and 4. Subsets of the ALSPAC phenotype dataset were also created and are detailed below. 

2.2.1. Core phenotypes for complex analyses 

Eight core phenotypes were selected from the ALSPAC phenotype dataset for association analyses 

of common variants on the ALSPAC genotype dataset (Results Chapter 2) and gene-based 

association analyses on the ALSPAC UK10K dataset (Results Chapter 3). These core measures 

consisted of three measures of hearing and five measures of language development and are 

summarised below.  

2.2.1.1. Hearing measures 

Otitis Media with Effusion status (OME @ 7 years) (ALSPAC variable f7hs062) 

Bilateral otitis media with effusion (OME) status (“glue ear”) was chosen for analysis because it is 

a known risk factor for secondary APD (Khavarghazalani et al., 2016) and as such is expected to 

show some associations with signs and symptoms of APD. OME status was documented on the 

basis of tympanometry results which were obtained by audiologists and trained staff as part of 

the ALSPAC study when children were 7 years old. In short, the two ears were tested one by one, 

with the right ear tested first. A Kamplex AT2 tympanometer was used and the probe was placed 

http://www.bris.ac.uk/alspac
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at the entrance of the ear canal, measuring the eardrum mobility and middle ear pressure. A 

graph, called tympanogram, was produced, indicating how effectively sound is transmitted into 

the middle ear and thus how well the middle ear functions. Tympanogram tracings were classed 

as type AA (indicating bilateral normal middle ear function with middle ear pressure of +100 to -

100 daPa), Type C1 (indicating bilateral slight eustachian tube dysfunction but no OME with 

middle ear pressure of -101 to  -200 daPa), Type C2/B (indicating unilateral eustachian tube 

dysfunction with middle ear pressure < 200 daPa (Type C2) or unilateral OME with flat trace (Type 

B); Type BB (indicating bilateral OME with flat trace). Data for this measure were available for 

5,410 genotyped children, with a distribution of 74% of children having Type AA, 11.9%- Type C1, 

8.4%- Unilateral C2/B and 5.7%- Bilateral C2/B (Figure 2.2).  

 

 
 

Low-frequency hearing thresholds at 0.5 kHz frequency (LowFreq_min) 

Hearing thresholds at low frequencies (0.5 kHz) were chosen for analysis based on the deficits 

shown by Ush2a heterozygous knock-out mice by Perrino et al. (Perrino et al., 2020). Audiometry 

was performed as per British Society of Audiologists (BSA) standards. Air conduction was 

performed using either a GSI 61 clinical audiometer or a Kamplex AD12 audiometer. All hearing 

tests were carried out by audiologists and trained staff in a room with minimal external noise (not 

exceeding 35 dB) as part of the ALSPAC study. Low frequency hearing thresholds were not directly 

available as a separate score within ALSPAC and so scores at 0.5kHz were derived through 

calculations (see Calculations Box 2.1). In short, lowFreq_min hearing thresholds were defined as 

the minimum air conduction threshold in the better performing ear at 0.5kHz. The measure was 

Figure 2.2. Distribution of OME status across the ALSPAC genotype core cohort 
(N= 5,410 genotyped children).  
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derived from ALSPAC variables f7hs017, f7hs018, f7hs027 and f7hs028 (Calculations Box 2.1), 

which indicate average thresholds across different frequencies (0.5 kHz, 1kHz, 2kHz, 4kHz, 8kHz 

and 16kHz in each ear. This measure was available for 4,440 genotyped children with thresholds 

ranging from -10 dB HL (better performance) to +40 dB HL (poorer performance), with a mean= 

10.36 dB HL and SD= 5.7 (Figure 2.3). 

 

 

Calculations Box 2.1. 

f7hs017 and f7hs018 are composites for Right ear: 
f7hs017 = (f7hs010+f7hs011+f7hs012+f7hs013)/4 
f7hs018 = (f7hs011+f7hs012+f7hs013)/3 
where f7hs010 is air cond hearing threshold level (dB HL) r ear 500 Hz: hearing F @ 7 
where f7hs011 is air cond hearing threshold level (dB HL) r ear 1 kHz: hearing F @ 7 
where f7hs012 is air cond hearing threshold level (dB HL) r ear 2 kHz: hearing F @ 7 
where f7hs013 is air cond hearing threshold level (dB HL) r ear 4 kHz: hearing F @ 7 
f7hs027 and f7hs028 are composites for Left ear: 
f7hs027 = (f7hs020+f7hs021+f7hs022+f7hs023)/4 
f7hs028 = (f7hs021+f7hs022+f7hs023)/3 
where f7hs020 is air cond hearing threshold level (dB HL) l ear 500 Hz: hearing F @ 7 
where f7hs021 is air cond hearing threshold level (dB HL) l ear 1 kHz: hearing F @ 7 
where f7hs022 is air cond hearing threshold level (dB HL) l ear 2 kHz: hearing F @ 7 
where f7hs023 is air cond hearing threshold level (dB HL) l ear 4 kHz: hearing F @ 7 
from these, measures of low frequency thresholds were derived: 
lowfreqR = (f7hs017*4) -(f7hs018*3) 
lowfreqL = (f7hs027*4) -(f7hs028*3) 
 

 

 

Figure 2.3. Distribution of Low frequency_min hearing scores across the ALSPAC 
genotype core cohort (N= 4,440 genotyped children).  

LowFreq_min sores (dB HL) 
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Mid-frequency hearing thresholds (MidFreq_min) 

Mid-frequency hearing thresholds measure was chosen for analysis to cover frequencies in the 

middle ranges between low and high. The thresholds were defined as the minimum air 

conduction thresholds in the better performing ear at mid-range hearing frequencies, which were 

averaged across 1, 2 and 4 kHz (ALSPAC variables f7hs018 and f7hs028 for right and left ear 

respectively). This measure was available for 4,520 genotyped children with scores ranging from 0 

dB HL (better performance) to +40 dB HL (poorer performance), with a mean of 5.55 dB HL and SD 

of 4.4 (Figure 2.4). 

 

 

2.2.1.2. Language measures 

Early communication score (comm @ 18 months) (ALSPAC variable kd654) 

The communication score at 18 months (1.5 years of age) was chosen for analysis as a marker of 

very early language as it starts to develop through signs of communication. It represents a sum of 

items from a list of 14 tasks, which incorporate measures of hearing (child reacts to ringing bells 

and people speaking), vocabulary (child copies what you say, child understands and says words 

and can name colours) and grammar (child combines words and makes negative statements). 

Data were available for 6,344 genotyped children with scores ranging from 1 (child has done the 

task 1-2 times) to 28 (child can do well all the tasks) (mean= 15.96, SD= 4.6) (Figure 2.5).  

Figure 2.4. Distribution of Mid frequency_min hearing scores across the ALSPAC genotype 
core cohort (N= 4,520 genotyped children). 

MidFreq_min sores (dB HL) 
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Early vocabulary (vocab @ 38 months) (ALSPAC variable kg865) 

The vocabulary score taken at 38 months (3 years of age) was chosen for analysis as it represents 

an early marker of expressive language. The measure represents a sum of items that a child could 

use and/or understand, from a list of 123 words (ALSPAC variable kg865). The scores are derived 

from a parental questionnaire. Data were available for 6,165 genotyped children with scores 

ranging from 0 (child did not understand or use any of the 123 words) to 246 (child could use and 

understand all of the 123 words) (mean= 229.8, SD= 29.4) (Figure 2.6). The ceiling effect observed 

shows that at 3 years of age, most children can use and understand all the words tested. 

 

Figure 2.5. Distribution of early communication scores across the ALSPAC genotype core 
cohort (N= 6,344 genotyped children). 

Figure 2.6. Distribution of early vocabulary scores across the ALSPAC genotype core 
cohort (N= 6,165 genotyped children) 
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Verbal Intelligence Quotient (VIQ @ 8 years) (ALSAC variable f8ws110) 

Verbal IQ was chosen for analysis as a cognitive ability marker of verbal comprehension at school 

age (8Y). It was measured using the Wechsler Intelligence Scale for Children Version III (WISC III), 

which is the most widely used individual ability test worldwide for children between the ages of 6 

and 16 (Wechsler et al., 1992). For the ALSPAC study, a short form of the measure was employed 

to reduce the length of the session. Tests were administered by psychology professionals. The 

Verbal IQ scores were finally derived from the sum of five verbal subtests: information (assessing 

child’s knowledge), similarities (where similarities between things must be explained), arithmetic 

(mental arithmetic questions), vocabulary (ascertaining child’s understanding of the meaning of 

different words) and comprehension (questions about different situations), which were scaled for 

age, using look-up tables in the WISC manual. Data were available for 5,218 children and scores 

ranged from 50 (very low scores classed as mild intellectual disability) to 155 (high scores classed 

as “gifted”) with a mean of 108.25 and SD of 16.5 (Figure 2.7). 

 

 

Nonword repetition (NWR @ 8 years) (ALSPAC variable f8sl105) 

Nonword repetition (NWR) was chosen for analysis as it has been shown to be an accurate 

biomarker of speech and language difficulties (Bishop, Adams and Norbury, 2006) (Newbury et al., 

2009). For the ALSPAC study, an adaptation of the Nonword Repetition Test by (Gathercole et al., 

1994) was used to assess short term memory. The ALSPAC test was completed in clinic and 

consisted of 12 nonsense words, split into four of 3, 4 and 5 syllables and conforming to English 

Figure 2.7. Distribution of Verbal IQ scores across the ALSPAC genotype core cohort (N= 
5,218 genotyped children) 
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rules for sound combinations.  The child had to listen to each word via an audio cassette recorder 

and repeat each item. The repetition attempt was correct if there was no phonological deviation 

from the target form. The total number of correctly repeated items (including 3, 4 and 5 syllables) 

was used for analysis. The test was completed at 8 years of age and data were available for 5,229 

children, who scored from 0 (no nonsense words repeated correctly) to 12 (all nonsense words 

repeated correctly) (mean= 7.3, SD= 2.5) (Figure 2.8) 

 

 

Developmental Language Disorder Status (DLD) 

DLD status was assigned to children based on their performance on language tests, covering 

comprehension, verbal fluency and syntax as defined in previous publications (Newbury et al., 

2009). In short, “case” status was assigned to children who performed at least 1SD below mean 

on WOLD comprehension (ALSPAC variable f8sl040) OR had CCC verbal fluency AND syntax 

(ALSPAC variables ku503b and ku504b respectively) ≥ 1SD below mean with no evidence for ASD 

or hearing impairment. Typically developing “controls” were selected to perform above expected 

levels across all three selected measures (WOLD comprehension, CCC verbal fluency and CCC 

syntax) and had nonverbal (performance) IQ > 80 with no documented neurodevelopmental 

disorders or special education needs. The ALSPAC genotype core cohort included 2,114 controls 

and 731 cases from a total of 2,845 genotyped individuals (Figure 2.9).  

Figure 2.8. Distribution of Nonword repetition scores across the ALSPAC genotype core 
cohort (N= 5,229 genotyped children) 
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2.2.2. Core phenotypes for selecting a suspected APD group  

The performance of ALSPAC UK10K individuals on two further measures was compared to select a 

group of children with features of APD (Results Chapter 4). As the most frequently reported 

characteristic of individuals with APD is problems with understanding speech in challenging 

listening conditions, despite normal hearing sensitivity (Bamiou, Musiek and Luxon, 2001; 

Chermak, 2002; Keith, 1999; Vanniasegaram, Cohen and Rosen, 2004), the ALSPAC phenotype 

database was scanned for hearing measures that captured speech identification in quiet and in 

noise as they together, can reveal potential auditory deficits with understanding words only when 

in noisy environments, but not in quiet. The only hearing measure available in quiet and in noise 

conditions was the word discrimination threshold (cf573 in quiet and cf577 in noise), obtained as 

part of the Institute of Hearing Research (IHR)- McCormick Automated Toy Test (ATT) hearing 

measures taken at 61 months (5 years old). The ATT is the most commonly used test of speech 

recognition in preschool children within the UK and it measures the minimum sound level at 

which a child can identify words presented in quiet (Ousey et al., 1989; Palmer, Sheppard and 

Marshall, 1991; Summerfield et al., 1994).  

2.2.2.1. Word discrimination threshold in Quiet (ALSPAC variable cf573) and word 

discrimination threshold in Noise (ALSPAC variable cf577) @ 61 months  

The word discrimination threshold provides a direct measure of the ease with which a child can 

identify speech in quiet versus noise and is a surrogate measure of auditory sensitivity (Ousey et 

al., 1989). The test involves children attempting to identify which of 7 pairs of toys is requested by 

a pre-recorded message from an audio speaker at varying volume levels. The objects are in pairs 

with similar sounds (cup/duck, tree/key, man/lam, fork/horse, spoon/shoe, cow/house and 

Figure 2.9. Distribution of DLD status across the ALSPAC genotype core cohort (N= 2,845 
genotyped children) 
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plate/plane), so that an error most commonly arises when a toy is confused with its pair member 

(Summerfield et al., 1994). For the word discrimination in noise an output of a pink noise 

generator is mixed with the stimulus word (Summerfield et al., 1994). An effort is made to ensure 

that children are familiar with all of the objects before the test is started and, in the event, that 

some were unknown, the pairs were removed, and the remaining pairs included. The volume of 

the instructions increased and decreased 6 times in order to find the level at which the child could 

hear. The two measures were available for 180 ALSPAC children with scores ranging from 15 

(better performance) to 34 (poorer performance) with a mean of 24.37 and SD of 4.48 for word 

discrimination in quiet (Figure 2.10) and scores from 53 (better performance) to 68 (poorer 

performance) with a mean of 58.03 and SD of 2.32 for word discrimination in noise (Figure 2.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Distribution of Word discrimination threshold (Quiet) at 61 months across 
180 ALSPAC children with available scores (Mean= 24.37, SD= 4.483) 

Figure 2.11. Distribution of Word discrimination threshold (Noise) at 61 months across 
180 ALSPAC children with available scores (Mean= 58.03, SD= 2.318) 
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2.3. ALSPAC genetic datasets and core cohorts 

2.3.1. ALSPAC genotype dataset generation 

The ALSPAC children had been genotyped previous to this work, using the Illumina Human Hap 

550-quad chip (Illumina Inc., San Diego, CA), following an already described protocol (Boyd et al., 

2013). After quality control based on gender mismatches; minimal or excessive heterozygosity; 

disproportionate level of individual missingness (> 3%); evidence of cryptic relatedness (> 10% 

IBD) and selection for European descent, 8,365 children were kept within the study. Quality 

control measures removed all rare SNPs with a minor allele frequency of < 1% (because rare SNPs 

are not informative in a gene association study), a call rate of < 95% and the ones which violated 

the Hardy-Weinberg equilibrium (p< 5x10-7), resulting in 500,527 SNPs. These quality control steps 

were performed by ALSPAC prior to data release.  

2.3.2. ALSPAC genotype core cohort selection 

As this thesis focuses upon auditory processing and speech and language difficulties, the ALSPAC 

genotype dataset (N=8,365) was filtered to exclude confounding factors (Table 2.1). Children were 

excluded if they were a twin, not of British ethnicity, who were bilingual, born earlier than 32 

weeks gestation, and having a birth weight < 1500g, who were missing a large amount of data and 

had an overt pathology that could confound language development (non-verbal IQ <65) and 

hearing loss (hearing thresholds above 40dB) (Table 2.1). These filtering criteria resulted in a 

selected cohort of 7,141 children (3,615M and 3,526F), which will be referred to as ALSPAC 

genotype core cohort and is used in Results Chapter 2. The number of individuals provides 80% 

power to detect a variant that explains at least 0.38% of the traits’ variance at a Bonferroni-

corrected alpha level of 1.13 x 10-05 (Figure S1).  

 



78 
 

Table 2.1. Exclusion criteria to generate ALSPAC genotype core cohort of 7,141 individuals 

 
Exclusion criteria used 

ALSPAC code 
Reason for exclusion 

No. inds 
excluded 

% exclusions 
No. inds 

remaining 
    15,444 

no gtyp data Not informative 7,165 46.39% 8,279 

Twins MZ010>1 (kept A if genotyped) ¹ The genetic effect is falsely over-represented 51 0.62% 8,228 

English not main language² f8sl200 not=1 
May confound language assessment scores as 

bilingual children can be slower to develop language (Hoff et al., 2012) 
7 0.09% 8,221 

child uses other language regularly² f8sl201=1 May confound language assessment scores (same as above) 104 1.27% 8,117 

English not mother tongue² cf442=2 May confound language assessment scores (same as above) 9 0.11% 8,108 

more than one language spoken at home² cf443>1 May confound language assessment scores (same as above)  17 0.21% 8,091 

English not first language² plascc24=2 May confound language assessment scores (same as above) 7 0.09% 8,084 

ethnicity not British³ plasca20 not=1 Confounding ethnic factor 4 0.05% 8,080 

Premature bestgest⁴ < 32 
May confound overall development as premature children are at risk 
of reduced cognitive scores (Bhutta et al., 2002) (Zimmerman, 2018) 

SLI to DLD criteria development references to add 
39 0.48% 8,041 

low birth weight⁴ KZ030<1500 May confound overall development  (Zimmerman, 2018) 6 0.07% 8,035 

premature AND low birth weight⁴ KZ030<2000 AND bestgest < 34 May confound overall development  (Zimmerman, 2018) 22 0.27% 8,013 

no phenotypes 
more than 114 of 116 core phenotypes data missing 

Missing data above acceptable threshold, does not allow informative 
conclusion 

67 0.84% 7,946 

Missing data from 16 essential hearing & language phenotypes⁵ 
Missing data above acceptable threshold, does not allow informative 

conclusion 
663 8.34% 7,283 

PIQ (performance IQ)⁶ <65 F8ws111<65 May confound language assessment scores-add reference 78 1.07% 7,205 

Individuals presenting with moderate to severe hearing loss⁷ (hearing 
thresholds >40 dB HL) 

May confound auditory processes- add reference 64 0.89% 7,141 

Total  8,303 60.79% 7,141 

1. In multiple pregnancies only 1 genotyped baby was kept in core cohort; 2. Children, whose main language at home was different from English and whose mother tongue 
and/or first language was not English, who used other languages regularly  and spoke more than one language at home, were all excluded; 3. Children who were not of white 
ethnicity were excluded; 4. Children who were born before 32 weeks were excluded, together with children born weighing less than 1.5kg and children born before 34 weeks 
with birth weight less than 2kg were all  excluded; 5. Hearing & language phenotypes included: six developmental problems that required special arrangement at school, 
reading and spelling @ 7Y, WOLD comprehension, nonword rep, Verbal IQ and Performance IQ @ 8Y, Vocab score @ 38 mths, high frequency hearing loss, bilateral OME, low 
and mid-frequency derived scores; 6. Children with Performance IQ scoring less than 65 were excluded; 7. Children with hearing thresholds >40 dB HL, representing moderate 
to severe hearing loss were excluded.  
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2.3.3. ALSPAC UK10K dataset generation 

The ALSPAC UK10K sequence dataset was generated previous to this study and full details are 

available within the supplementary data of other studies (Taylor et al., 2015; Timpson et al., 

2014). In short, low-read-depth whole genome sequencing was performed on 2,040 individuals 

using Illumina HiSeq platform (low read depth at an average 7x depth). Sequencing reads that 

passed quality control were aligned to the GRCh37 human reference, using BWA (v0.5.9- r16) (Li 

and Durbin, 2010). This resulted in 1,976 sequenced samples that went through the variant calling 

procedure, generated using samtools/bcftools (version 0.1.18-r579) (Danecek et al., 2011). 

Following a standard filtering pipeline and quality control steps, 1,867 samples remained for 

analysis. 

2.3.4. ALSPAC UK10K core cohort selection 

The ALSPAC UK10K dataset was filtered on the same criteria as ALSPAC genotype dataset (Section 

2.3.2), but individuals with hearing loss and neurodevelopmental difficulties (last two filtering 

steps in Table 2.1) were left in. This produced a selected cohort of 1,681 individuals (806M: 875F), 

which will be referred to as ALSPAC UK10K core cohort and is used in Results Chapters 1 and 3. 

2.3.5. ALSPAC suspected APD cohort selection 

This ALSPAC UK10K core cohort was further filtered to produce the suspected APD (sAPD) cohort: 

individuals who were not subjected to the word discrimination hearing tests and those who had 

missing data for the two core phenotypes of word discrimination threshold in quiet (cf573) and in 

noise (cf577) (Section 2.2.2) were excluded. Because the two word discrimination thresholds 

(cf573 and cf577) were tested only in a sub-cohort of the ALSPAC UK10K cohort, called Children in 

Focus, the number of available children dropped significantly, resulting in 180 individuals 

remaining (Table 2.2). To exclude the confounding effect of hearing loss, all individuals who 

presented with moderate to severe hearing loss were excluded (those who had hearing 

thresholds f7hs017, f7hs018, f7hs028, f7hs028 >40 Db), resulting in 177 individuals remaining 

(Table 2.2). Lastly, only children whose word discrimination thresholds in quiet were considered 

typical within a normative range (cf573 ≤29 which excludes individuals with scores 1SD above the 

mean) and whose word discrimination thresholds in noise were elevated (cf577 ≥61 which 

includes individuals with scores 1SD above the mean) were included, resulting in 13 individuals in 

the sAPD cohort (7%) (Table 2.2). The sAPD cohort is used in Result Chapter 4. 
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Table 2.2. Exclusion criteria to generate APD suspected core cohort 

2.4. Genetic analyses 

The genetic investigations on the discovery family (2.4.1) were completed prior to the current PhD 

project and therefore the PhD candidate was not involved in the analyses. All the follow-up 

analyses, including the ALSPAC association analyses of common variants (2.4.2), the ALSPAC 

UK10K gene-based association analyses (2.4.3) and the sAPD cohort coding variant analysis (2.4.4) 

were completed by the PhD candidate herself and are further explained below. 

2.4.1. Discovery family genetic investigations 

All genetic analyses on the discovery family were performed by the Newbury group at the 

Wellcome Centre for Human Genetics, Oxford and formed the basis of the current PhD project. 

Full details are provided by Perrino et al. (Perrino et al., 2020). In short, seven members of the 

discovery family (five affected individuals: II.1, II.2, III.3, IV.1 and IV.2, and two unaffected 

individuals, II.4, III.4, Figure 2.1) were genotyped to allow identification of shared chromosome 

segments between affected individuals and to identify copy number variants (CNVs). Two 

individuals (II.2 and IV.1, Figure 2.1) underwent whole genome sequencing, enabling the 

identification of possibly pathogenic variants. Candidate variants were further validated by Sanger 

sequencing using BigDye (v3.1). Data from these analyses enabled the identification of a set of 

candidate genes that set the foundation of this thesis. 

2.4.2. ALSPAC association analyses of common variants 

The ALSPAC genotype data were filtered for the purpose of Results Chapter 2 to include variants 

with a minor allele frequency > 5% within the 11 Usher genes of interest , which were pruned 

within PLINK (Section 2.5.1) to obtain a pairwise tagging SNP set with R2< 0.8. (Table 2.3). The 

UCSC genome browser was used to position the Usher genes to the human genome based on the 

NCBI RefSeq genes track (GRCh37 assembly).  

Exclusion criteria used 
ALSPAC code 

N children remaining 
 

ALSPAC UK10K core cohort 1681 

Individuals with available cf573 and cf577 scores 180 

Individuals presenting with moderate to severe hearing loss (hearing 
thresholds f7hs017, f7hs018, f7hs028, f7hs028 >40 Db) 

177 

cf577 ≥61 and cf573 ≤29 13 
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Table 2.3. Usher genes of interest- chromosome positions and length of studied regions 

 
The eight core phenotypes of hearing and language (Section 2.2.1) were tested for association 

with the pruned common variants within the USH genes (Table 2.3) using a linear model of 

regression for quantitative traits and a logistic model for discrete traits within PLINK (additive 

model). Bonferroni correction for multiple testing was used to calculate the significance threshold 

using the formula: 0.05/number of tested traits/number of tested pruned SNPs. Regional 

association plots were generated with LocusZoom (http://locuszoom.org). 

Gene-environment (GxE) interactions were modelled within PLINK at the gene level to further 

investigate the relationships between Usher genes and speech and language outcomes. Within 

this model, the ALSPAC genotype core cohort was analysed by adding low frequency hearing as an 

interaction factor within a linear regression model (Y= b0 + b1.ADD + b2COV1 + b3.ADD.COV1 + e) 

(interaction model)(Purcell et al., 2007). As an output, p-values were reported for each term. 

ADDxCOV p-values were used to detect interaction as they represent the interaction between the 

SNP and covariate factor and show if together they exert a stronger effect on the phenotype than 

expected through the linear addition of their individual effect. These analyses were performed on 

the five language outcome measures (early communication, early vocabulary, VIQ, NWR and DLD 

status). 

2.4.3. ALSPAC UK10K gene-based association analyses 

The sequence data from ALSPAC UK10K includes all variants across the genome. This data was 

filtered to include only the 11 genes of interest and only SNPs, resulting in 33,452 variants for 

analysis (Figure 2.12). The resulting variants had an allele count of at least 1 in the sample set 

(meaning each variant was carried by at least 1 individual), with a minimum base quality of 20, a 

minimum mean depth of 3 across samples and Hardy Weinberg equilibrium p value of > 1x10-5.  

The transition-transversion ratio of the variants was 2.3.  

chr gene transcript -/+ 10Kb length of 
region 

covered (bp) 

No SNPs after pruning 

1 USH2A  chr1:215,786,236-216,606,738 820,502 129 

3 CLRN1 chr3:150,633,950-150,700,786 66,836 8 

5 ADGRV1 chr5:89,844,617-90,470,033 625,416 66 

5 HARS chr5: 140,043,490- 140,081,312 37,822 Gene too small-0 SNPs* 

9 WHRN chr9:117,154,360-117,277,736  123,376 21 

10 PCDH15 chr10:55,552,533-56,571,051 1,018,518 135 

10 CDH23 chr10:73,146,691-73,585,704 439,013 127 

11 MYO7A chr11:76,829,310-76,936,286 106,976 22 

11 USH1C chr11:17,505,442-17,575,963 70,521 34 

15 CIB2 chr15:78,386,948-78,433,877 46,929 11 

17 USH1G chr17:72,902,176-72,929,351 27,175 Gene too small- 0 SNPs* 

0 SNPs* as genes are too small and not spanned by any common SNPs (MAF>0.05) after pruning using 
Illumina Human Hap 550-quad chip assay. 
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The eight core phenotypes of hearing and language (Section 2.2.1) were tested for association 

with rare variants (MAF≤1%) within the 11 Usher genes of interest (Figure 2.12) under Burden-

Zeggini model for gene-based associations within RVTESTS (Section 2.5.1). Analysing the eight 

core phenotypes for all rare variants yielded a Bonferroni significance threshold of P= 0.05/8 

phenotypes/11 Usher genes= 5.68x10-4 at an alpha level of 0.05. 

As gene-based association analyses collapse the effects of many variants into one, it is difficult to 

distinguish the group of variants that are most strongly contributing to any observed association. 

Further in-depth analyses were therefore performed to isolate possible groups of rare driver 

variants in genes with evidence of association. The in-depth analyses included grouping rare 

Figure 2.12. A flow diagram showing the filtering steps of ALSPAC UK10K core cohort data. Purple boxes 
show each filter step and red boxes describe the inclusion/exclusion criteria involved in each step. 
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variants by function (1) (into rare intronic, regulatory and exonic and if applicable further sub-

grouping the exonic variants into missense, stop-gained, splice-site and synonymous) and by 

location (2) (Figure. 2.13). For grouping variants by function (1), gene variant annotations and 

functional effect predictions were performed through SnpEff (Section 2.5.1.) and were based on 

the canonical gene transcript. Gene variants were grouped into exonic (located within exons), 

intronic (located within introns) and regulatory (located within 5- and 3-prime untranslated 

regions). Variants within the former two groups could be further divided into variant type such as 

missense, stop, frameshift, splice-site, synonymous for exonic (which were not filtered out 

because of their possible effect on splicing), and introns towards the 5-prime end and towards the 

3-prime end for intronic variants. Finally, to group gene variants by position (2), the Haploview 

programme was used (Barrett et al., 2005), which generates LD information and haplotype blocks, 

so variants within the same LD block were grouped together. Due to the memory limitation of 

Haploview to analyse genes that contain more than 1,000 variants, larger genes (USH2A and 

ADGRV1) were manually grouped into 5’ and 3’ -ends. 

Figure 2.13. A flow diagram for gene-based associations in the investigated Usher genes, divided into 
baseline and in-depth analyses.  
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2.4.4. ALSPAC UK10K data- sAPD cohort coding variant analysis 

The ALSPAC UK10K sequence data included all variants across the 13 sAPD individuals. In order to 

identify whether this set of data included potentially pathogenic variants in individuals with sAPD, 

the following pipeline was used: all variants which were homozygous for the reference allele were 

removed (using VCFtools- Section 2.5.1) and the potential functional relevance of the remaining 

variants was annotated using SnpEff (v.4.3) (Section 2.5.1) (Figure 2.14). The variants were then 

filtered to only include sites within exons or potential splicing site regions (coding variants) (Figure 

2.14). These coding variants included missense, splice, frameshift, stop loss/gain, start loss, exon 

loss and transcription factor ablation site. To identify novel/very rare variants that were most 

likely to be deleterious, very stringent criteria were used where variants were excluded if they 

were reported in the gnomAD Non-Finnish European population (Figure 2.14) (including 55,860 

individuals which allows for the detection of variants with an expected population frequency of 

8.95x10-6). The pathogenicity of the novel remaining variants (Table S7) was then ranked 

according to ACMG guidelines (Richards et al., 2015; Abou Tayoun et al., 2018) and only 

pathogenic or likely pathogenic variants were prioritised for follow-up (Figure 2.14). As an 

addition to supporting evidence PP4 (gene involved in a disorder with affected hearing), a list of 

known deafness genes in humans and/or mice was used as compiled by Lewis et al. (Table S8) 

(Lewis et al., 2018). 
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Figure 2.14. A flow diagram showing the filtering of the UK10K whole genome data for sAPD 
individuals. 
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2.5. Tools for data analysis and interpretation 

2.5.1. Bioinformatics packages 

PLINK is an open-source package, developed to facilitate the analysis of genome-wide association 

studies and can effectively analyse very large datasets for hundreds of thousands of SNPs across 

large sample sizes (Purcell et al., 2007). Therefore, PLINK (v1.90) was selected for association 

analyses of common variants in this work and all analyses were run within a Linux environment. 

RVTESTS is a software package which allows gene-based collapsing analysis to be performed (Zhan 

et al., 2016), in this way identifying whether qualifying rare variants across the 11 candidate Usher 

genes were, in aggregate, associated with a hearing and/or language phenotype. The Burden-

Zeggini (BZ) model was employed upon all variants with MAF≤1% to test for increased burden 

(MAF was based on the frequency of each variant in the 1,681 ALSPAC UK10K core cohort). BZ 

works by aggregating counts of rare variants into 1 variable for each individual and tests whether 

the variable is associated with phenotype variation on a single phenotype basis (Morris and 

Zeggini, 2010). As this approach works under the assumption that a large proportion of the 

variants are causal and have the same direction of effect, it is a powerful method to detect a 

group of rare variants with a deleterious effect.  

VCFtools is a programme package designed for working with variant call format (vcf) files 

(Danecek et al., 2011), generated from sequencing studies, such as the ALSPAC UK10K datasets. A 

range of VCFtools commands were used to summarise and filter out data, to compare and merge 

files, to run calculations and summarise variants.  

SnpEff (v.4.3) is a genetic variant annotation and functional prediction toolbox, designed to work 

with vcf files (Cingolani et al., 2012). It was used for simple annotations of variants within ALSPAC 

genotype and ALSPAC UK10K datasets in order to locate each variant within the human genome 

and to predict its effect.  

wAnnovar is a web-based rapid and efficient tool that uses the ANNOVAR software to annotate 

functional consequences of genetic variation (http://wannovar.wglab.org/) (Chang and Wang, 

2012). It was used to link population allele frequency information for investigated variants and to 

predict functional effect to the protein.  

2.5.2. In Silico tools  

2.5.2.1. ClinVar and gnomAD 

Pathogenicity in Results Chapter 1 was defined by a clinical significance of 4 or 5 of reported 

variants in ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/). Each identified Usher 

pathogenic mutation from the ALSPAC UK10K cohort was annotated with genome information 
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retrieved from the UCSC Genome Browser (http://genome.ucsc.edu/), which included genome 

position, identification number, transcript details, reference and alternative allele, functional 

effect, DNA and protein change. ClinVar database was used to interpret the clinical significance of 

each mutation and gnomAD (v2.1) browser (http://gnomad.broadinstitute.org/) was used to 

retrieve information on the allele frequency of each mutation.  

2.5.2.2. Constraint scores  

For loss of function gene classification in Results Chapter 4, the following constraint scores were 

taken into account: pLI, pRec and o/e ratios (all accessed through the gnomAD browser at 

http://gnomad.broadinstitute.org/). The probability of being loss-of-function (LoF) intolerant (pLI) 

separates genes of sufficient length into LoF intolerant (pLI ≥ 0.9) or LoF tolerant (pLI ≤ 0.1) 

categories. pRec shows the probability of being intolerant to two loss of function variants within 

the same gene (recessive inheritance). pRec≥ 0.9 is the cut-off for highly intolerant genes. The o/e 

LoF ratio is a score showing a ratio of observed/expected individuals with that particular variant. 

The scale of o/e is the opposite of pLI, where low o/e values are indicative of strong intolerance. A 

gene with LoF o/e score of 0.1 will be interpreted as a gene where only 10% of the expected LoF 

variants were observed and therefore is likely under selection against LoF variants.  

2.5.2.3. Putative functional effect, splicing defect prediction and evolutionary 

conservation 

Putative functional effects of associated variants in Results Chapter 4 were evaluated using 

Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen2), Combined 

Annotation Dependent Depletion (CADD) score and Genomic Evolutionary Rate Profiling (GERP) 

score, while splicing-altering single nucleotide variants were predicted using ada- and rf-scores, 

and evolutionary conservation of the affected nucleotide was assessed across 100 vertebrate 

species using the phastCons and phyloP conservation scores from wAnnovar.  

To assign pathogenicity, SIFT and PolyPhen-2 algorithms consider protein sequences, motifs and 

structures and thus can only be used for coding changes and missense mutations in particular (Ng 

and Henikoff, 2001; Adzhubei et al., 2010). SIFT scores range between 0 and 1, where amino acid 

substitutions are classified as “deleterious” for scores ≤ 0.05 and “tolerated” when > 0.05. 

PolyPhen-2 provides scores for two models: HumDiv, more appropriate for identification of rare 

alleles at loci involved in complex phenotypes, and HumVar, more appropriate for distinguishing 

mutations with drastic effect in Mendelian disorders. For both models, PolyPhen-2 scores range 

between 0 and 1, where scores ≥ 0.95 predict a “deleterious” effect. Functional effects are 

evaluated as “benign”, “possibly damaging” and “probably damaging”, based on pairs of false 

positive rate thresholds.  
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The CADD score integrates many diverse annotations into a single, quantitative score by 

contrasting variants that survived natural selection with simulated mutations (Kircher et al., 

2014). CADD measures deleteriousness of single nucleotide variants, as well as 

insertions/deletions variants in the human genome. CADD scores strongly correlate with allelic 

diversity, pathogenicity of both coding and non-coding variants, and experimentally measured 

regulatory effects, and also highly rank causal variants within individual genome sequences. 

PHRED-like (-10*log10(rank/total)) scaled CADD score ranks a variant relative to all possible 

substitutions of the human genome (8.6x109). A scaled CADD score of greater of equal 10 

indicates that these are predicted to be the 10% most deleterious substitutions that you can do to 

the human genome, whereas scores of greater or equal 30 are predicted to be the 0.1% most 

deleterious possible substitutions in the human genome. 

The GERP score is defined as the reduction in the number of substitutions in the multi-species 

sequence alignment compared to the neutral expectation (Davydov et al., 2010). For example, a 

GERP score of 4 would mean there are 4 fewer substitutions at a particular site than what is 

expected based on the neutral rate of evolution across the phylogeny. As such, the GERP score is 

a measure of sequence conservation across multiple species. Thus, positive scores represent a 

substitution deficit (which would be expected for sites under selective constraint), while negative 

scores represent a substitution surplus. 

Splicing ada and rf scores are splicing-change predictions for splicing consensus SNPs (scSNVs)  

across the human genome, based on adaptive boosting and random forest ensemble learning 

methods, respectively (Jian, Boerwinkle and Liu, 2014). A variant is considered to be splice altering 

when both predictions are taken into account and both are higher than the optimum cut off value 

of 0.6 (Jian, Boerwinkle and Liu, 2014). 

PhastCons is based on a hidden Markov model (a statistical model of sequence evolution) which 

shows the probability of each nucleotide belonging to a conserved element, considering flanking 

alignment columns (Siepel et al., 2005). Scores range between 0 and 1, where 0 shows divergent 

bases and 1 conserved. PhyloP measures conservation at individual alignment columns and 

disregards the effect of their neighbours (Pollard et al., 2010). Scores range between -14 and +6, 

where negative values represent nucleotide bases that have undergone accelerated evolution and 

positive values represent conserved bases.  

2.5.3. Statistical analyses tools 

The performance of Usher pathogenic carriers (N= 17 individuals) (Section 3.2.1 for description) 

and sAPD group (N= 13 individuals) on neurodevelopmental measures (including language, 

reading, cognition, educational support, neurodevelopmental disorders and hearing) was 
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compared to control groups. Those included individuals that were known non-carriers of Usher 

heterozygous pathogenic variants (N= 1,664 non-carriers not found to carry a heterozygous 

pathogenic variant in the 11 USH genes) and individuals not suspected for APD according to the 

same selection criteria as the sAPD group (N= 163 unsuspected individuals). Descriptive statistics 

to show score distributions of quantitative and discrete measures for the two groups (Usher 

carriers vs non-carriers and sAPD group vs unsuspected group) was performed in IBM SPSS, 

version 25. The expected normal range between 5th and 95th percentile was computed for each 

tested quantitative measure in the control groups so individuals from the Usher carriers and the 

sAPD groups performing outside the normal range could be identified. Effect sizes were computed 

as standardised mean difference (Cohen’s d) with 95% confidence interval in SPSS (Cohen, 1998). 

The effect size for the tested discrete measures was calculated as Relative Risk (RR) with 95% 

confidence interval using a web-based effect-size calculator 

(https://campbellcollaboration.org/research-resources/effect-size-calculator.html). 



90 
 

 

Figure 2.15. Workflow of Result Chapters 1-4. 
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3. Results Chapter 1: Genotype-driven rare 

Mendelian analysis 

3.1. Rationale 

Preliminary genetic investigations of a discovery family affected by a severe language disorder 

with AP difficulties (Figure 2.1) showed a stop-gain heterozygous pathogenic variant in the USH2A 

gene as further described by (Perrino et al., 2020). The apparent AD inheritance pattern in the 

family (Figure 2.1) matched with the observed stop-gain heterozygous USH2A pathogenic variant, 

which co-segregated in the family (Perrino et al., 2020). At a population level, Perrino et al. 

showed that these USH2A variants increased the risk of delayed language milestones, but they 

alone did not result in a discernible carrier phenotype (Perrino et al., 2020). Given these findings, 

and the known role of usherin in stereocilia development in Usher syndrome (Section 1.3.4.), we 

hypothesised that pathogenic heterozygous variants in other USH causing genes (MYO7A, CDH23, 

PCDH15, USH1C, USH1G, CIB2, USH2A, ADGRV1, WHRN and CLRN1) have a similar subtle effect on 

developmental profiles in other carrier individuals (Hypothesis 1: H1). The atypical USH gene 

HARS was added to the hypothesis as a novel USH3B player. 

To test H1, a genotype-driven Mendelian approach was utilised where individuals who carried 

variants previously identified as pathogenic in Usher syndrome were identified from the ALSPAC 

UK10K core cohort (N= 1,681) (Section 2.3.4). Individuals found to carry a pathogenic USH variant 

were compared to non-carrier controls on a range of neurodevelopmental measures to identify 

potential clinical phenotypes arising from carrying the variant (Figure 2.15). 
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3.2. Results 

3.2.1. Pathogenic Usher carriers 

Seventeen UK10K individuals (14 M: 3F, from 1,681 individuals with sequence and phenotypic 

data available, 1.01% detection rate) were identified as carriers of known USH gene variants that 

were designated as “pathogenic” in ClinVar. These consisted of eight distinct variants which were 

always detected in a heterozygous form in USH2A (relating to USH2 syndrome) and MYO7A, 

USH1C or CDH23 (relating to USH1 syndrome) (Table 3.1). No second hit was observed in either 

USH2A, MYO7A, USH1C or CDH23, indicating that all 17 individuals were carriers. None of the 17 

individuals had a genetic diagnosis of Usher syndrome. This is not surprising as the number of 

individuals tested here (1,681) is not large enough to detect USH cases with reported population 

frequency of 4- 17 in 100,000 individuals (meaning that 1 case will be detected in a population of 

5,882 individuals) (Kimberling et al., 2010). The variant found in the discovery family 

(rs765476745) was not present in the UK10K samples (Table 3.1). No pathogenic variants were 

found in the rest of the USH genes tested (ADGRV1, WHRN, CLRN1, PCDH15, USH1G, CIB2 and 

HARS) across the UK10K sample. It needs to be noted that the 1,681 individuals in the ALSPAC 

UK10K core cohort were not excluded on basis of hearing or neurodevelopmental impairment 

(Section 2.3.4) and as such they represent an entire population spectrum that will include 

individuals with deficits in hearing, language and cognition.  
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 Table 3.1. Heterozygous pathogenic mutations identified across USH2A, MYO7A, USH1C and CDH23 in individuals from ALSPAC UK10K core cohort

Usher gene  
N 

carriers 
Genome 

Location¹ [hg19] 
SNP ID² 

Transcript 
variant ID³ 

Ref⁴ Alt⁵ 
QUAL 
score⁶ 

Clinical significance 
(ClinVar)⁷ 

MAF 
(gnomAD 
browser)⁸ 

Functional 
effect⁹ 

DNA 
change¹⁰ 

Amino Acid 
change¹¹ 

USH2A 

 1 chr1:215956104 rs111033264 NM_206933.2 A G 24.8 pathogenic: USH2A 0.0000003 missense c.10561T>C p.Trp3521Arg 

 5 chr1:215963510 rs148660051 NM_206933.2 C T 247 
pathogenic: USH2A 

and AR retinitis pigmentosa 
0.000004 missense c.10073G>A p.Cys3358Tyr 

 1 chr1:216019240 rs397518041 NM_206933.2 C T 46.4 pathogenic: USH2A 0.00002 stop-gained c.8981G>A p.Trp2994* 

 6 chr1:216420436 rs80338903 NM_206933.2 C (-) 967 
pathogenic: USH2A 

and AR retinitis pigmentosa 
0.0007 frameshift c.2299delG p.Glu767Serfs 

 1 chr1:216497582 rs121912600 NM_206933.2 C A 171 pathogenic: USH2A 0.00004 missense c.1256G>T p.Cys419Phe 

MYO7A  1 chr11:76867949 rs121965080 NM_000260.3 C T 114 pathogenic: USH1B 
Not 

reported 
missense c.634C>T p.Arg212Cys 

USH1C  1 chr11:17552955 rs397515359 NM_005709.3 C CG 15.5 pathogenic: USH1C 0.0003 frameshift c.238dupC p.Arg80fs 

CDH23  1 chr10:73492049 rs121908351 NM_022124.5 G A 84.2 
pathogenic/likely 

pathogenic: USH1 and AR 
non-syndromic deafness 

0.000 missense c.4036G>A p.Asp1346Asn 

1- Genome location according to GRCh37/hg19 assembly. 
2- Single nucleotide polymorphism identification number. 
3- Transcript variant identification number according to NCBI RNA reference sequence collection (RefSeq). 
4- Reference allele on forward (+ strand) of the human genome. 
5- Alternative allele on forward (+ strand) of the human genome; (-) represents a deleted base. 
6- Phred-scaled quality score: assertion made in Alt i.e. give -10log_10 prob (call in Alt is wrong). High QUAL scores indicate high confidence calls. QUAL> 15 is acceptable. 
7- Clinical significance value as recommended by the American College of Medical Genetics and Genomics for variants interpreted for Mendelian disorders. 
8- Minor allele frequency: frequency of the second most common allele as reported on gnomAD browser (http://gnomad.broadinstitute.org/). 
9- Predicted functional effect of variant on RefSeq transcript. 
10- Coding DNA position where the alteration has taken place; (>) represents substitution, (del)- deletion and (dup)- duplication.  
11- Protein consequence showing the exact amino acid where the change has occurred; (*) represents a stop codon and (fs)- frameshift. 
MAF=0.000 (rs121908351) = variant not reported 
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3.2.2. Cohort characteristics as a group 

Performance on 684 individual measures of neurodevelopment (including measures of hearing 

and language) (Table S1) was compared between the 17 USH carriers and 1,664 non-carriers in 

order to characterise the carrier individuals at a broad neurodevelopmental level and to find 

areas where they showed difficulties (performed below expected).  

Characterising the USH carriers at a broad neurodevelopmental level showed that, as a group, the 

USH carriers performed below expected on a measure of early vocabulary at 3 years (ALSPAC 

code kg865) (Cohen’s d= 0.52, 95% CI= 0.03- 1.01) and word combination at 3 years (ALSPAC code 

kg868) (Cohen’s d= 0.84, 95% CI= 0.34- 1.33) compared to non-carriers (Table 3.2a) (Figure 3.1a 

and 3.1b). Although the effect size of the difference between the means of the USH carrier group 

and the non-carrier group is considered as medium to large for vocabulary and word 

discrimination scores respectively, the 95% CI for both measures spans the value of 0 (95% CI= 

0.03- 1.01 and 95% CI= 0.34- 1.33 respectively), which indicates lower confidence (<95%) in the 

effect sizes, possibly a result of the small sample size available.  

Analysis of available discrete measures showed that parents/carers of USH carriers were three 

times more likely to be concerned about their child’s speech at 2.5 years of age (RR= 3.34, 95% 

CI= 1.41- 7.95) and reported higher incidence of stuttering for carrier children at 8 years (RR= 

2.31, 95% CI= 0.82- 6.54) (Table 3.3) (Figure 3.1c and 3.1f). Children who were USH carriers were 

also twice as likely to have problems with talking at 3 years of age, compared to non-carriers (RR= 

2.02, 95% CI= 0.98- 4.17) (Table 3.3) (Figure 3.1d). Teachers expressed complaints towards the 

USH carrier children more often than expected (RR= 2.47, 95% CI= 1.48- 4.13) (Table 3.3) (Figure 

3.1e).  
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Table 3.2a. Quantitative measures of language, reading and cognition in carriers of USH pathogenic variants compared to non-carriers in ALSPAC UK10K core cohort (lower scores 
represent poor performance) 

 

Table 3.2b. Quantitative measures of language, reading and cognition in carriers of USH pathogenic variants compared to non-carriers in ALSPAC UK10K core cohort (higher scores 
represent poor performance) 

 

Measure Age Range of scores 
(carriers) 

Mean score 
(carriers) 

N non-
carriers 

Range of 
scores(non-carriers) 

Mean score 
(non-

carriers) 

SD (non-
carriers) 

5th percentile N carriers 
below 5th 
percentile 

Vocabulary score 3 years 64 - 246 219.31 1598 0 - 246 232.40 24.83 186 2 of 16 

Plurals score 3 years 7 - 12 10.47 1591 1 - 12 10.32 2.02 6 0 of 15 

Past tense score 3 years 11 - 42 35.47 1581 0 - 42 34.23 9.44 13 1 of 16 

Word combination score 3 years 0 - 26 19.13 1590 0 - 26 22.79 4.31 15 4 of 16 

Language score 3 years 223 - 324 296.00 1568 94 - 326 300.90 31.49 236.9 2 of 15 

Reading score 7 years 14 - 45 28.59 1555 0 - 50 30.10 8.74 15 1 of 17 

Spelling score 7 years 3 - 15 7.29 1544 0 - 15 8.36 4.27 2 0 of 17 

Nonword Repetition (NWR) 8 years 4 - 10 6.76 1555 0 - 12 7.48 2.46 3 0 of 17 

WOLD comprehension 8 years 5 - 13 8.18 1554 2 - 14 7.76 1.90 5 0 of 17 

WISC - Verbal IQ 8 years 93 - 130 115.18 1548 54 - 155 112.02 16.75 86 0 of 17 

WISC - Performance IQ 8 years 82 - 139 103.29 1547 46 - 145 103.56 16.85 76 0 of 17 

WISC - Total IQ 8 years 90 - 135 111.06 1542 46 - 148 109.22 16.21 82 0 of 17 

Measure Age Range of scores 
(carriers) 

Mean score 
(carriers) 

N non-
carriers 

Range of 
scores(non-carriers) 

Mean score 
(non-

carriers) 

SD (non-
carriers) 

95th 

percentile 
N carriers 
above 95th 
percentile 

Air conduction Right average 0.5, 1, 2, 4 kHz 7 years 1.25 - 12.5 7.43 1444 -3.75 - 78.75 8.82 6.75 18.75 0 of 17 

Air conduction Left average 0.5, 1, 2, 4 kHz 7 years 0 - 16.25 7.35 1443 -8.75 - 66.25 8.64 7.03 20 0 of 17 

Low_frequency_min 7 years 5 - 15 10.88 1444 -10 - 50 10.53 6.62 20 0 of 17 

Mid_frequency_min 7 years -1.67 - 11.67 4.12 1489 -8.33 - 71.67 5.41 5.84 15 0 of 17 
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Table 3.3. Discrete measures of educational support, neurodevelopmental disorders and hearing in carriers of USH pathogenic variants compared to non-carriers in ALSPAC UK10K core 
cohort 

Measure Age N affected 
carriers 

Freq in carriers N affected non-
carriers 

Freq in non-
carriers 

Carer worried about child’s speech 2.5 years 4 of 16 0.25 118 of 1577 0.075 

Child has problems with talking 3 years 5 of 15 0.33 262 of 1589 0.16 

OME/abnormal middle ear pressure (< -100 daPa)  7 years 6 of 17 0.35 421 of 1507 0.278 

Hearing Impairment 7 years 0 of 17 0 114 of 1489 0.076 

Teacher's rating of child is average/below average 7 years 2 of 10 0.2 307 of 857 0.35 

Child received complaints from the teacher*  7.5 years 8 of 17 0.47 297 of 1559 0.19 

Child currently has uncontrollable tics or twitches 7.5 years 1 of 16 0.63 34 of 1543 0.02 

Child has learning difficulties requiring special arrangements at school 7.5 years 0 of 16 0 55 of 1545 0.036 

Child has speech problems requiring special arrangements at school 7.5 years 0 of 16 0 13 of 1545 0.008 

Child has hearing problems requiring special arrangements at school 7.5 years 0 of 16 0 30 of 1545 0.019 

Child has eyesight problems requiring special arrangements at school 7.5 years 0 of 16 0 13 of 1545 0.008 

 Child has physical problems requiring special arrangements at school 7.5 years 1 of 17 0.059 11 of 1545 0.007 

Child has reading difficulties requiring special arrangements at school 7.5 years 0 of 17 0 70 of 1545 0.045 

Child has emotional/behavioural problems requiring special arrangements at school 7.5 years 1 of 17 0.059 21 of 1545 0.014 

DAWBA DSM-IV clinical diagnosis - Any ADHD disorder 7.5 years 0 of 17 0 20 of 1566 0.013 

Child has ever had speech/language therapy 7.5 years 3 of 14 0.214 156 of 1523 0.102 

Child stutters/stumbles when speaks 8 years 3 of 17 0.176 119 of 1557 0.07 

 Mother told child has Dyslexia 9 years 1 of 14 0.07 71 of 1538 0.05 

B6b: Mother told child has Dyspraxia 9 years 1 of 14 0.07 28 of 1510 0.02 

B6e: Mother told child has Dyscalculia 9 years 0 of 13 0 8 of 1494 0.005 
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Figure 3.1. Differences in the performance for carriers of USH pathogenic variants compared to non-carriers on a range of language 
and neurodevelopmental measures.  
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3.2.3. Individual Usher carriers’ characteristics 

In order to further characterise and compare the 17 USH carriers on an individual, rather than 

group level, neurodevelopmental ALSPAC measures where at least 1/17 carriers showed deficits 

were combined into composite scores across different time points allowing any trends of a 

recurrent difficulty to be revealed (Table S2-S3). This analysis showed that 11/17 USH carriers 

(65%) had recurrent ear problems that included earache, ear discharge, red and sore ears, pulling 

on ears, ear infections and use of ear drops between 6 months and 7.5 years of age (Table 3.4). 

Furthermore, 10/17 carriers (59%) showed a recurrent hearing problem/concern which could be 

attributed to an early sign of difficulties processing sounds, concerns over hearing abilities from 

carers/health professionals, to a referral for a hearing assessment and abnormal middle ear 

pressure measurements between 15 months and 9 years of age (Table 3.4). It needs to be noted, 

however, that none of the 17 individuals suffered from overt hearing loss or had a hearing 

impairment. Six of sixteen carriers (38%) indicated a recurrent problem with speech/talking based 

on carers expressing concerns about speech development, stuttering/stumbling, use of babbling 

noise, wrong order of words or had attended speech therapy (Table 3.4). Moreover, 6/17 carriers 

(35%) showed recurrent signs of speech and language difficulties, defined by vocabulary size, use 

of grammar, combination of words and intelligibility between the age of 1.5 and 3 years (early 

scores), reading, spelling and NWR between the age of 7 and 9 years and pragmatic skills at 9.5 

years (measured by Children’s Communication Checklist- CCC) (Table 3.4). Finally, 11/17 carriers 

(65%) showed persistent poor scores in a composite measure designated as general development 

(Table 3.4). The general development measure included early fine and gross motor coordination 

skills, understanding and communication skills (between 6 months and 1.5 years), IQ scores at 8 

years (as defined by Wechsler Intelligence Scale for Children- WISC), problems at school between 

7.5 and 13 years (defined by teacher’s reports on child’s ability, medical diagnosis and special 

education needs requiring school action) and friendship score at 8 years old. Three of the 

seventeen USH carriers (17%), of which one had dyslexia and one dyspraxia, were classed as 

children with special education needs or had received school action (Table 3.4). None of the 

carriers showed deficits on verbal and non-verbal intelligence (minimum score was low average), 

with total IQ scores ranging from average to exceptional (Table 3.4 and S2).  

To further investigate any genotype-phenotype correlations resulting from the type of USH 

variant carried by each of the 17 individuals, the USH carriers were grouped into two groups: LoF 

group (one carrier of USH2A stop-gain, six carriers of USH2A frameshift and one carrier of USH1C 

frameshift variant) and missense group (seven carriers of USH2A, 1 carrier of MYO7A and 1 carrier 

of CDH23 variant) (Table 3.4). This revealed that 5/8 (55%) LoF USH variant carriers had recurrent 

problems leading to both ear-related and hearing problems, compared to 3/9 (33%) missense USH 
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variant carriers (Table 3.4). Further 2/8 (25%) LoF USH variant carriers showed recurrent problems 

in both areas of talking abilities (reported by parent/carer) and speech and language skills 

(clinically recorded), while none of the missense USH carriers showed recurrent deficits in both 

areas (Table 3.4). In contrast 4/8 (50%) LoF USH variant carriers showed recurrent deficits in 

overall development compared to 7/9 (77%) missense carriers (Table 3.4). 
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Table 3.4. Heat map of individual deficits (in stop-gain and frameshift- USH pathogenic carriers) across 
different time points of development. 

 

Ind Genotype 
Ear problems 

(6m-7.5Y) 

Hearing 
problems/concerns 

(15m-9Y) 

Talking 
problems/concerns 

(1.5Y-8Y) 

Speech and 
language  

(15m- 9.5Y) 

General 
development 

(6m-13Y) 

2081 
USH2A 

stop-gain 
ear discharge & pus 

(1.5 & 3.5Y) 

hearing worse 
during a cold (3.5- 

4.5Y) 

avoids eye contact 3Y| 
sometimes silent 

3Y|stumbles/repeats 
words (3-8Y) 

low spelling 
score and slow 
reading speed 

9Y 

teacher's rating 
negative 

7Y|dyslexia 
7.5Y 

tics/twitches 
7.5Y|school 

action 11-13Y 

21131 

USH2A 
frame- 

shift 

earache (1.5-
7.5Y)|pulls/scratches 

ears 1.5Y|red/sore 
ears 1.5Y|ear 
infection 4.5Y 

hearing worse 
during a cold (3.5-

4.5Y) 

avoids eye contact 
3Y|stutters/stumbles 

3Y 
Typical Typical 

18459 
earache (2.5Y-

3.5Y)|pulls/scratches 
ears 3.5Y 

abnormal 
tympanometry 7Y 

worried about speech 
3.5Y|talking and 
speech problems 

3.5Y|stutters/stumbles 
3Y 

low plurals, 
tenses, and 

word 
combination 
scores (2-3Y) 

Typical 

6526 

earache (1.5-
3.5Y)|pulls/scratches 

ears when poorly 
(1.5-3.5Y)|red/sore 
ears when poorly 

1.5Y 

hearing worse 
during a cold 
3.5Y|hearing 

referral 7Y 

No speech/talking 
problem 

low vocab and 
word 

combination 
score (2-3Y) 

poor social, 
fine motor and 

comm skills 
(6m-1.5Y)| low 
total dev (6m-

1.5Y)|less 
positive 

friendships 

598 
earache (3-5Y)|ear 
infection (3-4.5Y) 

hearing problems 
8Y|hearing referral 

9Y 

talking problems 
3Y|speech therapy 

7.5Y 

low tenses and 
intelligibility 
scores (2-3Y) 

poor gross 
motor 

coordination 
6m| PIQ low 

average 

2029 earache 6m 

sus hearing 
problem 

15m|abnormal 
tympanometry 7Y 

husky voice 3Y|words 
in wrong order 

3Y|stumbles/repeats 
words 3Y 

Typical Typical 

14200 No ear problems hearing referral 9Y 

husky voice 3Y|words 
in wrong order 

3Y|stumbles/repeats 
words 3Y 

low word 
combination 

score 3Y 

teacher 
complaints 

7.5Y|PIQ low 
average 

14242 
USH1C 
frame- 

shift 

earache 7.5Y|ear 
discharge 1.5Y|ear 

infection 7.5Y 

sometimes head 
turns towards 

sounds 15m|sus 
hearing problem 3Y 
|hearing referral 7Y 

worried about speech 
(2.5-7.5Y)|words in 

wrong order 
3Y|speech therapy 

7.5Y 

low 
intelligibility 
score 3Y|low 
reading score 
9Y|low word 

comprehension 
score 8Y 

poor 
communication 

1.5Y 

red cells= persistent problem, reported on two or more time points OR two different problems reported at one or 
more timepoints; orange cells= isolated problem reported at one time point OR two problems that are 
related/happen at the same time point; green cells= no problems reported. 
Speech and language composite score includes early scores (15m-3Y)| reading/ spelling/ NWR (7Y-9Y) & pragmatic 
skills (CCC 9.5Y); Development composite score includes early scores (6m-1.5Y) | IQ (WISC 8Y) | teacher reports & 
SEN (7.5-13Y) | Friendship score (8Y). 
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Table 3.4 (cont). Heat map of individual deficits (in missense USH pathogenic carriers) across development. 

Inds 
Geno-
type 

Ear problems  
(6m-7.5Y) 

Hearing 
problems/concerns 

(15m-9Y) 

Talking 
problems/concer

ns (1.5Y-8Y) 

Speech and 
language  

(15m- 9.5Y) 

General 
development  

(6m-13Y) 

3896 

USH2A  
mis- 

sense 

earache (2.5-
7Y)|red/sore ears 

when poorly (2.5Y & 
3.5Y)|ear infection 

4.5Y 

No hearing problems 

avoids eye 
contact & words 
in wrong order 

3Y|stumbles/repe
ats words (3-8Y) 

Typical Typical 

5032 earache 1.5Y 

sus hearing problem 
15m|hearing worse 

during a cold 
2.5Y|abnormal 

tympanometry 7Y 

stutters/stumbles 
3Y 

Typical 

teacher complaints 
7.5Y|attention/ 
activity problem 

7.5Y| less positive 
friendships 

6546 
earache & pus (1.5-

3.5Y)|pulls/scratches 
ears 1.5Y 

hearing worse during 
a cold 3.5Y|abnormal 

tympanometry 7Y 

worried about 
speech 2.5Y 

Typical 
teacher complaints 

7.5Y 

12321 

earache & ear 
discharge/pus/ 
mucous (1.5-

3.5Y)|pulls/scratches 
ears when poorly 

(1.5-2.5Y)|red/sore 
ears (1.5-3.5Y) 

OME 9Y 
No speech/talking 

problem 
low reading score 

7Y 

teacher complaints 
7.5Y|school action 

11-13Y 

16203 Ear drops 15m hearing referral 7Y 

words in wrong 
order & 

stutters/stumbles 
3Y 

low vocabulary, 
plurals and 

language scores 
3Y| poor 

pragmatic 
composite 9.5 Y 

poor communication 
6m|low total dev 

6m| teacher 
complaints 7.5Y 

17275 No ear problems No hearing problems Missing Typical 

poor fine and gross 
motor skills 6m|poor 

communication 
1.5Y|low total dev 

score (6m-1.5Y)| less 
positive friendships 

19476 

earache & 
pulls/scratches ears 
(1.5-2.5Y)|red/sore 
ears when poorly 

(1.5- 3.5Y) 

abnormal 
tympanometry 

7Y|OME 9Y 

worried about 
speech 2.5Y 

low past tenses, 
word combination 

and language 
scores 3Y| poor 

pragmatic 
composite 

poor gross motor 
coordination 6m| 

teacher complaints 
7.5Y 

17155 
MYO7A  

mis-
sense 

earache & ear 
discharge (1.5-

7.5y)|pulls/scratches 
ears (1.5-3Y)|ear 
infection (4.5-7Y) 

sus hearing problem 
3Y |hearing worse 
during a cold 2.5Y-

4.5Y|hearing referral 
7Y 

worried about 
speech (1.5-
7.5Y)|never 

babbled & talking 
problems 3Y 

very poor 
pragmatic 
composite 

poor understand 
score 15m|teacher 

complaints 
7.5Y|behavioural 

difficulties 
7.5Y|dyspraxia| 
recognised SEN 

7Y|PIQ low average 

16009 
CDH23  

mis-
sense 

pulls/scratches ears 
& red/sore ears 1.5Y 

abnormal 
tympanometry 7Y 

worried about 
speech (2.5-

7.5Y)|babbling 
noises/difficulty 

while talking 
3Y|speech 

therapy 7.5Y 

Typical 

poor gross motor 
coordination 
1.5Y|teacher 

complaints 7.5Y 
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3.3. Discussion  

Identifying USH pathogenic carriers from the ALSPAC UK10K core cohort resulted in detecting 14 

individuals carrying USH2A pathogenic variants, and a further 3 individuals carrying pathogenic 

MYO7A, USH1C and CDH23 variants (Table 3.1). Comparing developmental profiles between USH 

carriers and non-carriers showed that as a group the 17 USH carriers had expressive language 

delays at an early age (3 years) and a higher incidence of stuttering plus increased complaints 

from teachers in the classroom at the age of 7.5- 8 years (Figure 3.1). Further analysis of individual 

profiles of USH carriers across different ages indicated common trends amongst the carriers 

towards recurring subtle difficulties with hearing, language and overall development which in the 

majority of cases did not lead to a recognised clinical problem (Table 3.4). 

3.3.1. Carriers of pathogenic USH gene variants show poor early 

expressive language as a sign of a delay rather than a deficit 

The vocabulary and word combination scores at 3 years of age are early markers of expressive 

language. The vocabulary measure is a sum of items that a child could use and/or understand, 

from a list of 123 words (ALSPAC variable kg865) while the word combination measure is a sum of 

13 sets of items that a child could combine correctly (ALSPAC variable kg868). The scores for both 

measures were derived from a parental questionnaire and range from 0 (child did not understand 

or use any of the 123 words) to 246 (child could use and understand all of the 123 words) for 

vocabulary, and from 0 (child did not combine correctly any of the 13 items) to 26 (child could 

combine all 13 items correctly) for word combination. Although as a group the USH pathogenic 

carriers showed slightly smaller vocabulary size and fewer word combinations than expected, 

later language measures (Verbal IQ and NWR) were found to be comparable with the non-carrier 

group (Table 3.2a), suggesting a trend towards a delay in early expressive language. 

The measures “carer worried about child’s speech” and “child has problems with talking” (ALSPAC 

variables kf550 and kg904) are subjective scores that examine signs of speech development in 

children aged 3 from the perspective of the parent/carer. A greater proportion of the 

parents/carers looking after children who were pathogenic USH carriers answered “yes, worried 

about speech” and “yes, has problems with talking” to the two questions, indicating a possible 

problem with speech/talking at age of 3. However, by 7 years of age, those USH carrier children 

who had shown a speech/talking difficulty at the age of 3, were reported clear of it and none of 

them had speech problems requiring special arrangements at school (Table 3.3). This 

demonstrates that, although there is a trend, the early detected talking and speech problems are 

likely to represent a speech delay rather than a deficit.  
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The questionnaires on the “child’s speech including stuttering/stumbling” are also aimed at 

identifying speech problems, but at a later age, at 8 years old, and so can be predictive of speech 

disorders at school age. Although USH carriers showed a higher risk of stuttering/stammering, the 

children showing these risks were different individuals from those who showed concerns over 

speech and talking at 3 years of age. Nevertheless, if we consider the USH carriers as a group, 

rather than as individuals, the group results show an increased overall risk for speech difficulties. 

The higher frequency of USH carriers exhibiting this problem could therefore be an additional 

indicator of a correlation between heterozygous changes and possible speech difficulties, in this 

case- at school age.  

3.3.2. High teacher complaints as a sign of classroom difficulties for USH 

carriers 

The teacher complaint score (kr468b) is a derived sum of complaints from teachers toward 

students at the age of 7.5 years including reasons such as restlessness or overactivity; poor 

concentration or being easily distracted; acting without thinking, frequently butting in, or not 

waiting their turn. A score of 0 denotes no complaints at all and a score of 6- maximum 

complaints (the higher the score, the higher the number and severity of teacher complaints). 

Because this is an overall score that could result from one or more reasons, from this measure 

alone, it is not possible to conclude whether the child received a high complaint score because 

they were overactive and restless in class, because they showed poor concentration or because 

they showed impatience (or maybe all three together), which could be signs of 

neurodevelopmental difficulties in ASD, ADHD, APD, DLD. Therefore, the higher likelihood of 

higher teacher complaints score for children carriers of USH pathogenic variants can be 

interpreted as a sign of classroom difficulties for carriers, but is not a phenotype showing a deficit 

in a specific area of development. It needs to be noted that the USH carriers all had typical 

hearing sensitivity (as measured by pure tone audiometry- Table 3.2b).  

3.3.3. USH carriers show trends for subtle problems with hearing  

The identification of subtle difficulties in hearing amongst USH carriers, revealed through analysis 

of composite neurodevelopmental scores, is not surprising because of the role of Usher related 

genes in inner ear hair cell development. In fact, it has been long recognised that carriers of genes 

for deafness exhibit some subclinical abnormalities in pure-tone sensitivity (Anderson and 

Wedenberg, 1968), which has later been shown to be the case for USH1 and USH2 subtype 

carriers (Wagenaar et al., 1995; van Aarem et al., 1995). While homozygous pathogenic variants in 

Usher genes are in general expected to cause Usher syndrome with overt hearing loss (Le Quesne 
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Stabej et al., 2012), pathogenic heterozygous variants in the same genes can lead to subtle, but 

persistent changes in auditory processes which over time can build up and result in an increased 

risk to APD. For example, a heterozygous Cdh23 mouse knock-out (heterozygous for a presumed 

null allele of Cdh23) showed hearing loss at both low and high frequencies at 5-6 weeks of age, 

with high frequency component worsening with age (Holme and Steel, 2004). This suggests that 

Cdh23 heterozygous pathogenic changes, and not only homozygous, can lead to an auditory 

phenotype that persists and gets worse over time. A similar model of effect that builds up has 

been proposed for chronic otitis media with effusion, which is a known risk factor for secondary 

APD (Khavarghazalani et al., 2016), likely because hearing gets disrupted during an important 

developmental period. 

Hearing and ear-related problems showed to be enriched amongst USH carriers of LoF pathogenic 

variants (such as stop-gain and frameshift, which may result in truncating the USH proteins), 

compared to carriers of missense USH variants who showed to suffer less frequently of such 

problems. While genotype-phenotype correlations have been previously described for USH genes 

in relation to severity of hearing loss (Bolz et al., 2001; Bork et al., 2001; Astuto et al., 2002; 

Doucette et al., 2009; Schultz et al., 2011), in the context of increased risk for APD, it is possible 

that the more severe heterozygous USH variants are more likely to affect hearing, which can in 

turn affect auditory processes as explained above.



105 
 

3.4. Conclusion  

Results Chapter 1 was based on the hypothesis that heterozygous variants in Usher causing genes 

have a subtle effect on developmental profiles, similar to the subtle effect of USH2A heterozygous 

pathogenic variants on early language and audition, shown by Perrino et al. (Perrino et al., 2020). 

This hypothesis is confirmed by results indicating that heterozygous USH2A, MYO7A, CDH23 and 

USH1C pathogenic variants are associated with subtle problems in hearing and delays in early 

language milestones, but there is no one measure that could be considered as a “clinical marker 

of deficit” of USH carriers. Instead, these subtle difficulties might put Usher carriers at a higher 

risk of developing APD and having delayed language development.  

The finding of no one clear phenotype resulting directly from heterozygous pathogenic Usher 

gene variants is in line with heterogeneous presentations in other disorders. For example, 

heterogeneity is seen even in cases where variants explain majority of risk (SATB1 in relation to 

neurodevelopmental disorder) (den Hoed et al., 2020) and may be due to the genetic background 

of the individual and the effect of a particular variant on the protein function. Moreover, 

heterogeneity in neurodevelopmental conditions is thought to be influenced by the small effect 

size of individual variants which act in complex genetic mechanisms leading to different 

behavioural phenotypes between individuals (Girirajan et al., 2012; Hemati et al., 2018). This 

suggests that, as with other neurodevelopmental conditions, the Usher pathogenic variants alone 

are not causative of APD and do not result in a discernible carrier phenotype as would be 

expected in a monogenic model. Instead, they might form part of a genetic risk within a complex 

genetic model. Given these findings, the effect of Usher genes variation on neurodevelopmental 

ALSPAC measures (such as common variants that form part of complex disorders) was examined 

in Results Chapter 2. 
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4. Results Chapter 2: Association analyses of 

common variants 

4.1. Rationale 

Results Chapter 1 showed that rare pathogenic heterozygous variants in known Usher syndrome 

genes USH2A, MYO7A, USH1C and CDH23 increased the risk of subtle hearing problems and 

delayed language milestones in some cases but did not directly lead to a distinct carrier 

phenotype (as would be expected in a monogenic model). This led to Hypothesis 2 (H2) where 

under the present investigations of effect on hearing, auditory processing and language abilities, 

we hypothesised that common variants in Usher genes form part of a complex genetic model. 

According to H2, the effect of each individual common variant is small and not sufficient to fully 

explain a particular phenotype, but can contribute to susceptibility or altered ability (in line with 

complex genetic disorders discussed in Section 1.4.2).  

To test H2, SNPs tagging common variants within 10 typical USH genes (MYO7A, CDH23, PCDH15, 

USH1C, USH1G, CIB2, USH2A, ADGRV1, WHRN, CLRN1) and one atypical USH gene (HARS) were 

analysed for allelic association in the ALSPAC genotype core cohort (N= 7,141) (Section 2.3.2) 

using PLINK. Three measures of hearing: low-frequency hearing (low freq_min), mid-frequency 

hearing (mid freq_min) and otitis media with effusion status (OME) (Section 2.2.1.1), and five 

measures of language: early communication skills (comm), early vocabulary size (vocab), nonword 

repetition (NWR), Verbal IQ (VIQ), developmental language disorder (DLD) status (Section 2.2.1.2), 

were assessed for direct association (Section 2.4.2) (Figure 2.15).  

Results from Perrino et al. showing that heterozygous disruptions of mouse Ush2a led to altered 

low-frequency thresholds, which were further associated with disrupted mouse vocalisations 

(Perrino et al., 2020), warranted a further investigation into the relationship between low-

frequency hearing abilities and language within an interactive model on a population level. For 

this purpose, GxE interaction modelling was applied to the ALSPAC genotype core cohort (Section 

2.4.2), in which low-frequency hearing was included as an interaction factor to the complex model 

(thus investigating the combined effect of common variants and low-frequency hearing abilities 

on language). 
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4.2. Results 

Across the eleven USH genes analysed, two genes (USH2A and CLRN1) contained at least one 

significant SNP associated with hearing or language outcomes and one further gene (PCDH15) 

contained a cluster of suggestively associated SNPs with hearing and language outcomes (see 

Table S4 for significance value for all SNPs per gene). Three more genes (CDH23, ADGRV1 and 

USH1C) indicated sporadic association to hearing and/or language outcomes, which were 

represented by single SNPs, while three other genes (CIB2, WHRN and MYO7A) showed no 

association (Table S4). USH1G and HARS common variants were not analysed as the genes were 

not covered by the genotype assay. The sections below review each of the significant genes one 

by one according to SNPs reaching the Bonferroni corrected p-value (Table 4.1). 

Table 4.1. Usher genes with P-values of significance for association analyses 

 

4.2.1. USH2A common variants are directly associated with low-

frequency hearing outcomes and indirectly associated with early 

language milestones 

A cluster of SNPs located towards the 5’end of USH2A (between intron 4 and 13 on NM_206933.2 

transcript) showed association specifically with low-frequency hearing thresholds (Table 4.2 & 

Figure 4.1). The top associated SNP (rs10864237, p= 2.92 x 10-5) explained 0.39% of variance in 

low-frequency hearing thresholds (ßSE= 0.1), representing a 0.9dB difference between risk (T/T 

genotype group with low-frequency thresholdsmean= 10.77 dB) and non-risk individuals (C/C 

genotype group with low-frequency thresholdsmean= 9.864 dB) (Table 4.2 & Figure 4.3). This 

difference in low frequency hearing thresholds was found to be statically significant, t(2466)= 3.1, 

p= 0.0018 (Figure 4.3). These analyses show that common USH2A variants exert a small effect on 

low-frequency hearing thresholds within the typical range. No association was found between 

common variants in USH2A and language outcomes (Table 4.2).  

Gene Length of region 
(Kb) 

N pruned SNPs N tested traits Corrected P-value of 
significance (Bonferroni)* 

USH2A 820 129 8 4.84E-05 

CLRN1 66 8 8 7.81E-04 

ADGRV1 625 66 8 9.47E-05 

HARS 37,8 0 8 Gene not covered 

WHRN 123 21 8 2.98E-04 

PCDH15 1,018 135 8 4.63E-05 

CDH23 439 127 8 4.92E-05 

MYO7A 106 22 8 2.84E-04 

USH1C 70 34 8 1.84E-04 

CIB2 46 11 8 5.68E-04 

USH1G 27 0  8 Gene not covered 

* Bonferroni significance calculated at an alpha level of 0.05 
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The association between USH2A variation and low-frequency hearing abilities together with the 

results from Perrino et al., showing that heterozygous Ush2a disruptions in mice affect their 

expressive communication abilities, warranted a further investigation into the relationships 

between USH2A and language. In this model, common variants in USH2A were assessed for 

association to language outcomes in ALSPAC, but this time including low-frequency hearing 

thresholds as an interaction factor (GxE interactions in Section 2.4.2). Significant association was 

now observed with early vocabulary at 3 years (kg865), represented by the top SNP rs7532570 

(Table 4.2), located towards the 5’ end of USH2A (between intron 4 and 13 on NM_206933.2 

transcript) (Figure 4.2b). Within this interactive model rs7532570 had a p-value of 1.16 x 10-4 

compared to P= 0.197 in the additive model. Together these data suggest that low frequency 

hearing can act as a modifying factor and modulate the effects of USH2A variants upon language 

development.
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Figure 4.1. UCSC custom track of USH2A genotyped SNPs. Annotations show two protein coding USH2A RefSeq gene transcripts, 
located on the reverse DNA strand of chromosome 1. In blue (bottom of figure) are all genotyped SNPs that are of sufficient quality 
and have been pruned for high LD. Top associated SNP is marked in grey box.  

USH2A 

USH2A 
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Table 4.2. Associations of 5’ USH2A common variants with hearing and language phenotypes under an additive and interactive model  

    Additive Model Interactive Model 
    Hearing outcomes Language outcomes Language outcomes 

Gene SNP 
BP (hg19) 

chr 1: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid 
Freq _ 

min 

Comm 
@1.5 Y 

Vocab 
@3Y 

VIQ @8Y 
NWR 
@8Y 

DLD 
Comm 
@1.5Y 

Vocab 
@3Y 

VIQ @8Y NWR @8Y DLD 

3’end 

USH2A 

5’ end 

rs682319 216417675 T 1.34E-01 6.88E-03 1.65E-02 3.17E-01 9.30E-02 3.62E-01 8.04E-01 7.39E-01 1.91E-02 5.87E-04 1.61E-01 5.03E-02 9.76E-01 

rs386654 216431962 A 9.25E-01 3.90E-01 4.30E-01 5.05E-01 9.38E-01 8.84E-01 8.74E-01 1.98E-01 3.88E-01 6.24E-02 8.12E-01 5.81E-01 8.44E-01 

rs11120747 216438500 G 5.36E-01 5.05E-03 5.81E-01 8.41E-01 2.38E-01 4.97E-01 9.61E-01 1.89E-01 4.79E-01 5.55E-01 2.78E-01 7.56E-02 8.66E-01 

rs2168924 216440105 A 9.98E-02 9.93E-01 4.41E-02 1.98E-01 3.49E-01 3.14E-01 5.37E-02 4.63E-01 1.60E-01 4.54E-01 7.43E-01 7.50E-02 3.75E-01 

rs1159143 216454483 T 2.50E-01 5.13E-03 6.41E-02 6.31E-01 5.38E-01 6.82E-01 7.20E-01 3.20E-01 5.94E-01 9.26E-02 3.12E-01 4.45E-01 6.79E-01 

rs10864237 216466861 C 8.03E-02 2.92E-05 1.14E-03 4.03E-01 2.44E-01 9.09E-01 9.88E-01 3.12E-01 3.47E-01 5.25E-01 1.08E-01 4.98E-02 8.79E-01 

rs17651066 216470121 C 1.29E-01 3.76E-02 2.34E-02 9.42E-01 1.22E-01 4.14E-01 3.15E-01 4.88E-01 5.03E-02 3.18E-03 3.44E-01 1.84E-01 3.28E-01 

rs11801737 216492391 G 7.48E-01 6.39E-04 2.59E-02 3.59E-01 5.39E-01 9.05E-01 7.29E-01 8.23E-01 9.20E-01 4.97E-01 3.68E-01 2.63E-01 6.30E-01 

rs7532570 216504269 G 8.09E-02 1.97E-01 1.16E-01 3.77E-01 1.50E-01 6.86E-01 8.35E-01 8.47E-01 7.64E-03 1.16E-04 2.16E-01 1.16E-01 8.15E-01 

rs17657634 216552571 G 2.14E-01 7.81E-01 7.61E-01 5.01E-01 7.28E-01 2.57E-01 3.17E-02 3.41E-01 6.56E-01 2.39E-01 2.96E-01 7.76E-01 6.69E-01 

rs4253963 216592003 T 5.94E-02 1.20E-02 4.30E-02 2.16E-01 1.60E-01 8.49E-01 6.17E-01 7.32E-01 2.47E-01 2.74E-01 1.54E-01 2.28E-01 5.46E-01 

rs10779261 216595306 C 5.60E-02 4.28E-02 1.41E-02 6.52E-01 6.76E-01 3.77E-01 8.25E-01 8.62E-01 4.44E-01 7.54E-01 4.45E-01 2.27E-01 5.30E-01 

rs12723493 216605071 A 6.39E-01 1.53E-02 5.33E-01 7.98E-01 8.27E-01 2.83E-01 6.59E-01 3.95E-01 1.73E-01 3.37E-01 7.35E-01 1.94E-01 4.36E-01 
SNPs are shown for the 5’ region of association only (chr1:216417675-216605071, hg 19). 
A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01. Bold values indicate that p-value was significant after a Bonferroni correction for multiple testing.  
Bonferroni corrected p value for additive model: p= 0.05/129 SNPs/8 traits= 4.84 x 10-5; Bonferroni corrected p value for interactive model: p= 0.05/13 SNPs/5 traits= 7.69 x 10-4 
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Figure 4.2. Regional USH2A plots of association. 
a) with low frequency hearing thresholds under additive model and b) with vocabulary score at 38 months under interactive model. The -log10 of p values of the 
genotyped SNPs are plotted on the y-axis against genomic positions (hg19 assembly) on the x-axis. The top associated SNPs are represented by the purple diamond: a) 
rs10864237 and b) rs7532570. The colours of all other SNPs are representative of the pairwise r2 value relative to the top SNP using patterns of Linkage Disequilibrium 
from the CEU HapMap populations. The top markers in (b) are shown to be in very high LD with each other and for both (a) and (b) they are in moderate LD with a cluster 
of markers in the 5’ end of the gene, which have moderately elevated -log (p-values). Plots were generated using Locus Zoom (http://locuszoom.org/). 

    

a) Additive Model b) Interactive Model 

http://locuszoom.org/
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4.2.2. CLRN1 common variants are directly associated with early 

communication skills 

Direct associations under the additive model were observed for a cluster of CLRN1 SNPs and early 

communication skills at 1.5 years (kd654) (Table 4.3 & Figure 4.4). The top-associated SNP 

(rs10935822, p= 2.94 x 10-4) explained 0.21% of variance in early communication scores at 1.5 

years (ßSE= 0.1), representing a 0.78 item decrease in the mean communication score for the risk 

group of individuals (C/C genotype) compared to the non-risk group (T/T genotype) (Table 4.3 & 

Figure 4.5a). This result suggests that CLRN1 common variants exert only a small effect on early 

communication abilities at 1.5 years within the typical range. No associations were observed with 

the core language measures at later ages: vocabulary at 3 years, nonword repetition at 8 years 

and Verbal IQ at 8 years (Table 4.3). There were no associations to hearing outcomes tested 

(Table 4.3). 

Based on the significant associations to communication skills at 1.5 years and the lack of 

association to later language measures at 8 years, associations to other language markers were 

further explored, just before and just after the 1.5 years milestone (between 6 months and 3 

years of age). For this purpose, additional additive model associations were performed on 12 

available language phenotypes taken from 6 months to 3 years of age (Table 4.4). These 

phenotypes captured scores of pre-linguistic communication skills at 6 months, emerging 
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Figure 4.3. Low frequency hearing threshold per genotype. Risk genotype T/T increases the 
threshold for hearing noises at low-frequency, compared to C/C and C/T genotypes (difference 
between risk T/T and non-risk C/C genotype was significant (p= 0.0018). Error bars represent 
standard error of the mean. N individuals with C/C genotype= 479; N individuals with C/T genotype= 
1,972; N individuals with T/T genotype= 1,989. Value of beta regression coefficient and standard 
error of beta is: ß= -0.5, ßSE= 0.1. 



113 
 

receptive and expressive language skills between 15 months and 2 years and developed 

expressive language at 3 years, and were highly positively correlated (Table S5).  

These further association analyses under an additive model showed a suggestive cluster of 

associations between CLRN1 common SNPs and communication skills at 6 months (kb855a), and 

between a larger SNP cluster and vocabulary score at 15 months (kc954) (Table 4.4). The SNPs 

showing highest signals of association were: rs936188 (p=6.01 x 10-4) and rs4680058 (p=3.66 x 10-

3). The risk genotypes G/G for communication skills at 6 months and G/G for vocabulary at 15 

months showed a decrease in the mean scores of communication and vocabulary of 0.43 and 0.72 

less items and words respectively, as compared to the non-risk genotypes of T/T and A/A (Figure 

4.5 b-c). One single SNP (rs4680058) showed suggestive associations to vocabulary scores at 15 

months and 2 years, communication skills at 1.5 years, use of plurals and tenses at 2 years, and 

overall grammar score at 2 years, which were all highly positively correlated measures (Table 4.4 

& S5 for correlations). No associations were observed with vocabulary, language or grammar 

scores at 3 years.  

Taken together, these results show that the association of CLRN1 common variants with early 

language outcomes is only transient (observed up until 2 years) and is most strongly linked to 

expressive communication skills at 1.5 years.  

It needs to be noted that CLRN1 was not fully covered by the genotype assay: the 5’ end was not 

spanned by common SNPs between chr3: 150,678,233- 150,690,786 (12Mb), including 5’UTR, 

exon 1 and the 5’ end of intron 1 (26.7% of the gene length was not covered) (Figure. 4.4) and so 

any associations within those regions have been missed. 
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   Table 4.3. Associations of CLRN1 common variants with hearing and language phenotypes under an additive model 
    Additive Model 
    Hearing outcomes Language outcomes 

Gene SNP 
BP (hg19) 

chr 3: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid Freq 
_min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ @8Y 
NWR 
@8Y 

DLD 

3’ end 

CLRN1 

5’end 

rs4680058 150645351 G 8.21E-01 6.63E-02 1.50E-01 1.27E-03 7.18E-01 9.52E-01 9.96E-01 6.00E-01 

rs1456137 150648811 C 9.40E-01 2.02E-01 1.17E-01 2.12E-02 8.09E-02 5.65E-01 7.30E-01 2.19E-01 

rs936188 150649718 G 6.35E-01 2.35E-01 1.09E-01 9.56E-04 6.28E-01 8.32E-01 7.22E-01 4.15E-01 

rs12635944 150654154 A 9.90E-01 4.40E-01 2.72E-01 4.97E-03 1.02E-01 7.26E-01 5.98E-01 6.76E-01 

rs13092829 150662914 A 6.63E-01 4.57E-01 7.65E-01 5.03E-01 6.08E-01 2.69E-02 4.36E-01 2.81E-01 

rs10935822 150663334 C 8.72E-01 7.65E-01 1.88E-01 2.94E-04 8.44E-01 2.37E-01 2.22E-01 3.90E-01 

rs11924857 150672805 G 9.32E-01 4.60E-01 8.30E-02 1.44E-02 2.18E-01 9.07E-01 4.20E-01 6.50E-01 

rs9825721 150678233 G 1.28E-01 9.54E-01 1.78E-01 2.58E-01 3.52E-01 9.82E-01 5.59E-01 9.65E-01 

Figure 4.4. UCSC custom track of CLRN1 genotyped SNPs. Annotations show four protein coding CLRN1 RefSeq gene transcripts and one non-protein coding transcripts 
(NR_046380.2), located on the reverse DNA strand of chromosome 3. In blue (bottom of figure) are all genotyped SNPs that are of sufficient quality and have been pruned for 
high LD. Top associated SNP is marked in grey box.  

CLRN1 antisense 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01. Bold values indicate that p-value was significant after a Bonferroni correction for multiple testing. 
Bonferroni corrected p value for additive model: p= 0.05/8 SNPs/8 traits= 7.81 x 10-4 
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Table 4.4. Associations of CLRN1 common variants with early language phenotypes under an additive model 

  

    Additive Model Language outcomes 

Gene SNP 
BP (hg19) 

chr 3: 
A1 

Comm @6 
Mths 

Understand 
@15 Mths 

Vocab @15 
Mths 

Comm 
@1.5Y 

Vocab 
@2Y 

Plurals 
@2Y 

Tenses 
@2Y 

Grammar 
@2Y 

Vocab 
@3Y 

Plurals 
@3Y 

Tenses 
@3Y 

Word 
comb @3Y 

3’ end 

CLRN1 

5’end 

rs4680058 150645351 G 2.91E-02 3.98E-01 3.66E-03 1.27E-03 4.22E-03 3.44E-03 2.74E-03 8.24E-03 7.18E-01 8.25E-01 8.02E-01 3.83E-01 

rs1456137 150648811 C 7.19E-03 5.45E-01 1.19E-01 2.12E-02 1.67E-01 2.15E-01 4.44E-01 7.72E-01 8.09E-02 8.41E-01 6.54E-01 3.36E-01 

rs936188 150649718 G 6.01E-04 9.93E-01 8.28E-03 9.56E-04 2.06E-01 4.11E-01 4.61E-01 8.21E-01 6.28E-01 7.39E-01 7.96E-01 5.85E-01 

rs12635944 150654154 A 8.62E-03 5.99E-01 5.33E-02 4.97E-03 9.70E-02 5.45E-02 3.05E-01 7.21E-01 1.02E-01 5.66E-01 8.72E-01 2.27E-01 

rs13092829 150662914 A 9.88E-01 8.92E-01 4.10E-01 5.03E-01 6.98E-01 3.14E-01 9.86E-01 6.71E-01 6.08E-01 2.16E-01 3.16E-01 2.66E-01 

rs10935822 150663334 C 3.71E-02 9.38E-01 7.38E-03 2.94E-04 8.11E-02 1.46E-01 3.02E-01 6.77E-01 8.44E-01 4.44E-01 7.89E-01 4.74E-01 

rs11924857 150672805 G 1.44E-01 7.42E-01 7.77E-02 1.44E-02 3.04E-01 3.15E-01 2.78E-01 8.03E-01 2.18E-01 7.68E-01 1.67E-01 5.75E-02 

rs9825721 150678233 G 1.16E-01 6.21E-01 3.72E-01 2.58E-01 4.03E-01 6.06E-01 5.15E-01 8.19E-01 3.52E-01 1.70E-01 3.08E-01 7.62E-01 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01. Bold values indicate that p-value was significant after a Bonferroni correction for multiple testing. 
Bonferroni corrected p value for additive model: p= 0.05/8 SNPs/12 traits= 5.21 x 10-4 
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Figure 4.5. Early expressive language scores per genotype. Risk genotypes: C/C gives lower score on early communication test @1.5Y (a), G/G- to early communication 
test @ 6mths (b) and G/G- to vocabulary test @ 15mths (c). Error bars represent standard error of the mean. Number of available genotyped individuals: a) N individuals 
with C/C genotype=372; N individuals with C/T genotype= 2,280; N individuals with T/T genotype= 3,689; b) N individuals with G/G genotype=622; N individuals with G/T 
genotype= 2,689; N individuals with T/T genotype= 3,045; c) N individuals with G/G genotype=517; N individuals with G/A genotype= 2,521; N individuals with A/A 
genotype= 3,306. Value of beta regression coefficient and standard error of beta is: a) ß= -0.35, ßSE= 0.1; b) ß= -0.18, ßSE= 0.05; c) ß= -2.52, ßSE= 0.9. 

a) 

b) c) 
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4.2.3. A cluster of PCDH15 common variants are marginally associated 

with risk of DLD 

Under the additive model of direct effect, suggestive association was observed for a cluster of 

SNPs, located between intron 12 and 16 (NM_001142771.1 transcript) with DLD status (top SNP 

rs10763086, p= 1.94 x 10-3) (Table 4.5 & Figure 4.6). The top SNP was found to be 1.2 times more 

common in cases (G/G genotype) compared to controls (A/A genotype) (OR= 1.2). Suggestive 

direct associations were also observed with low-frequency thresholds, represented by two SNPs 

and with mid-frequency thresholds, represented by three SNPs (Table 4.5), both located between 

intron 14 and intron 16 (NM_001142771.1 transcript). The top associated SNPs were rs7904409 

(p= 5.24 x 10-3) for low-frequency hearing thresholds and rs11004121 (p= 5.03 x 10-4) for mid-

hearing thresholds (Table 4.5). These analyses suggest that common PCDH15 variants are 

marginally associated with altered hearing abilities (including low and mid-frequency hearing) and 

increased risk for DLD. 

   



118 
 

 

Figure 4.6. UCSC custom track of PCDH15 genotyped SNPs. Annotations show twelve protein coding PCDH15 RefSeq gene transcripts, located on the reverse 
DNA strand of chromosome 10. In blue (bottom of figure) are all genotyped SNPs that are of sufficient quality and have been pruned for high LD. Top associated 
SNP is marked in grey box. 

PCDH15 

LOC105378311 
MIR548F1 



119 
 

    Table 4.5. Associations of PCDH15 common variants with hearing and language phenotypes under an additive model 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19) 

chr 10: 
A1 

OME 
@7Y 

LowFreq
_min 

MidFreq 
_min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ @8Y 
NWR 
@8Y 

DLD 

3’ end 

PCDH15 

5’end  

rs7896093 55564355 T 8.88E-01 6.56E-01 9.01E-01 2.81E-01 5.44E-01 8.93E-01 1.04E-02 1.52E-01 
           

rs7904409 55890367 G 8.14E-01 5.24E-03 5.18E-04 9.91E-01 2.70E-01 8.69E-01 2.29E-02 2.89E-03 

rs4447073 55898144 T 8.76E-01 3.73E-02 7.19E-02 7.30E-01 7.56E-01 1.39E-01 3.74E-01 8.00E-03 

rs11004104 55918359 T 8.19E-01 1.45E-01 1.96E-01 7.58E-01 7.67E-01 2.32E-01 9.85E-01 6.67E-03 

rs17646169 55922376 T 8.57E-01 7.39E-01 8.97E-01 1.75E-01 9.62E-01 9.25E-01 6.86E-01 3.11E-01 

rs10509006 55922706 G 3.37E-01 4.86E-01 1.93E-02 4.26E-01 8.28E-01 2.49E-01 7.88E-02 2.26E-01 

rs11004121 55937483 C 3.89E-01 5.62E-03 5.03E-04 6.91E-01 2.54E-01 9.55E-01 2.18E-02 5.88E-02 

rs7093302 55943184 T 8.99E-01 1.87E-01 8.14E-02 8.58E-01 2.78E-01 5.15E-01 1.57E-01 9.47E-03 

rs7914881 55947112 C 4.36E-01 2.41E-02 2.36E-03 3.04E-01 6.42E-01 3.10E-01 2.12E-03 3.05E-03 

rs1561674 55948714 C 4.20E-01 7.04E-01 5.63E-01 4.70E-01 5.86E-01 1.68E-01 5.73E-01 5.63E-01 

rs10825269 55955610 T 5.49E-01 6.13E-02 5.88E-02 7.23E-01 4.93E-01 1.31E-01 6.54E-02 8.62E-02 

rs2384414 55964008 A 9.13E-01 9.00E-01 5.49E-01 5.63E-01 9.11E-01 2.52E-01 5.46E-01 5.20E-01 

rs4082042 55964451 G 7.71E-01 1.45E-01 9.46E-02 8.76E-01 8.41E-01 5.45E-01 6.88E-01 2.49E-02 

rs10825273 55968685 T 7.19E-01 9.03E-02 3.69E-01 8.32E-01 1.79E-01 9.52E-01 3.62E-01 1.39E-01 

rs6481068 55970721 T 8.54E-01 3.88E-01 7.40E-01 4.18E-01 1.08E-01 7.21E-01 5.07E-01 8.66E-02 

rs11004142 55972031 A 9.09E-01 7.89E-02 1.10E-01 5.63E-01 2.50E-01 3.86E-01 5.88E-01 2.50E-03 

rs10763086 55973889 G 7.33E-01 1.35E-02 3.96E-02 7.74E-01 3.26E-01 6.69E-01 3.18E-01 1.94E-03 
           

rs1912982 56569551 G 3.94E-02 7.45E-01 6.59E-01 8.12E-02 6.62E-01 9.98E-01 5.76E-02 8.40E-01 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01.  
Bonferroni corrected p value for additive model: p= 0.05/135 SNPs/8 traits= 4.63 x 10-5 
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As the DLD status score is a composite measure, based on several aspects of language 

performance (WOLD Comprehension: f8sl040; CCC Intelligibility and Fluency: ku503b and CCC 

Syntax: ku504b scores) (Section 2.2.1.2), additional analyses were performed on each individual 

contributory measure in order to find if one aspect of language was particularly associated with 

PCDH15. Suggestive associations between single variants and all three outcomes were observed 

(Table S6). The strongest signal of suggestive association was between PCDH15 variant 

rs12772008 and CCC Intelligibility and Fluency score represented by p= 4.17 x 10-3 (corrected 

threshold of significance for multiple testing P= 1.23 x 10-4). These results suggest that the three 

language measures (WOLD comprehension, CCC Intelligibility and Fluency, and CCC Syntax) within 

the DLD score all contribute to the suggestive association with PCDH15 common variants and that 

there is no individual measure that is driving the association. This further demonstrates that the 

DLD score as a collective is the most appropriate measure to use in order to capture association 

with PCDH15 variants.  

The suggestive association between common PCDH15 variants and DLD status can also be further 

inspected by testing whether variants within PCDH15 play a role in wider neurodevelopmental 

disorders which require special arrangements at school. To do this, common variants in PCDH15 

were assessed for association with ALSPAC measures of problems requiring special school 

arrangement, dyslexia status and special education needs status. A small cluster of suggestive 

associations were observed with communication and interaction needs at school (SEN), located 

within the same cluster of associations with DLD (Table 4.6).The top associated SNP, rs11004121, 

showed highest signal of association at p=1.17 x 10-3 (corrected threshold of significance for 

multiple testing P= 3.47 x 10-4). 

Taken together, the association analyses suggest that common PCDH15 variants are directly, but 

only marginally associated with DLD status, where WOLD Comprehension, CCC Intelligibility and 

Fluency, and CCC Syntax all contribute to the risk for DLD. Furthermore, common PCDH15 variants 

are likely to also increase the risk for requiring special education provision during Key Stage 3 (11-

13 years) in the area of communication and interaction.  
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Table 4.6. Follow-up associations of PCDH15 common variants (intron 12 to 16) with measures of special school arrangements, dyslexia and SEN statement under 
additive model. 

     Additive Model 

     Problems that require special school arrangement @7.5Y 
Dyslexia 
@9.5Y 

Special Education Needs (SEN) 
statement @11-13Y 

Gene SNP 
BP (hg19) 

chr 10: 
A1 DLD 

Any 
problems 

Learning Speech Reading 
Emotional/ 
behavioural 

Child had 
dyslexia 

Cognition 
& learning 

Behaviour, 
emotional 

& social 

Communication 
& interaction 

towards
3’ end 

PCDH15 

towards 
5’end 

rs7904409 55890367 G 2.89E-03 0.8232 0.5495 0.1586 0.5803 0.08859 0.3255 0.3375 0.3869 3.16E-03 

rs4447073 55898144 T 8.00E-03 0.9547 0.4851 0.5225 0.2465 0.4176 0.4086 0.07142 0.2366 0.0936 

rs11004104 55918359 T 6.67E-03 0.913 0.6432 0.2867 0.222 0.1366 0.863 0.16 0.3018 0.2318 

rs17646169 55922376 T 0.311 0.681 0.9652 0.3596 0.6171 0.3221 0.6737 0.5539 2.41E-03 6.57E-03 

rs10509006 55922706 G 0.2256 0.9769 0.4882 0.9385 0.9417 0.9098 0.1893 0.6215 0.7706 0.0876 

rs11004121 55937483 C 0.05884 0.9312 0.8397 0.4774 0.694 0.2624 0.5426 0.9044 0.2973 1.17E-03 

rs7093302 55943184 T 9.47E-03 0.6926 0.5785 0.9358 0.5288 0.06188 0.9063 0.6476 0.1711 0.3591 

rs7914881 55947112 C 3.05E-03 0.6922 0.7804 0.4873 0.775 0.4709 0.8595 0.711 0.3247 0.0255 

rs1561674 55948714 C 0.5634 0.7825 0.722 0.04995 0.4446 0.7301 0.358 0.586 0.6514 0.2962 

rs10825269 55955610 T 0.08615 0.3407 0.3761 0.5869 0.9307 0.09019 0.5682 0.09107 0.6501 0.3905 

rs2384414 55964008 A 0.5199 0.1015 0.2312 0.4364 0.7795 0.2573 0.7277 0.1162 0.1782 0.1005 

rs4082042 55964451 G 0.02493 0.4433 0.5369 0.4775 0.9146 0.7541 0.3023 0.3475 0.2242 0.4401 

rs10825273 55968685 T 0.1386 0.1985 0.3469 0.03487 0.265 0.08322 0.3953 0.357 0.8378 0.5767 

rs6481068 55970721 T 0.08662 0.6469 0.7541 0.02744 0.362 0.3908 0.3029 0.4266 0.5861 0.4357 

rs11004142 55972031 A 2.50E-03 0.9417 0.8267 0.1293 0.472 0.3484 0.7963 0.9848 0.1748 0.216 

rs10763086 55973889 G 1.94E-03 0.5454 0.7352 0.2376 0.3365 0.09833 0.9311 0.9704 0.2946 0.316 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01.  
Bonferroni corrected p value for additive model: p= 0.05/16 SNPs/9 traits= 3.47 x 10-4 
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4.2.4. CDH23 common variants show sporadic association across hearing 

or language measures  

Under the additive model of direct effect, suggestive associations were observed for single SNPs 

and low-frequency hearing thresholds, mid-frequency hearing threshold, communication skills at 

1.5 years and Verbal IQ at 8 years (represented by 2 SNPs) (Table 4.7). No clusters of associated 

SNPs were observed for any one measure, however, the individual SNPs formed a cluster of 

suggestive associations located between intron 11 and 13 on NM_022124.5 transcript (Figure 4.7) 

(Table 4.7). The top SNP (rs11819553 with p=3.24 x 10-3) was marginally associated with Verbal IQ 

at 8 years (Table 4.7 & Figure 4.7). These marginal single variant associations to low- and mid-

hearing thresholds, early communication and Verbal IQ at 8 years are not a strong enough 

evidence of a robust direct link between CHD23 common variants and hearing/language 

outcomes in this cohort sample, and therefore do not warrant any further investigations. Larger 

samples sizes would be needed to replicate these results at a significant level. 

Table 4.7. Associations of CDH23 common variants with hearing and language phenotypes under an 
additive model (only regions of suggestive associations shown). 

 

 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19)  

chr 10: 
A1 

OME 
@7Y 

Low 
Freq 
_min 

Mid 
Freq 
_min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ 
@8Y 

NWR 
@8Y 

DLD 

5’ end 

CDH23 

3’end 

rs10999801 73150325 A 0.70 0.45 0.77 0.58 0.27 0.42 0.48 0.25 

rs12360332 73152849 T 0.01 0.30 0.0054 0.49 0.75 0.99 0.86 0.65 
           

rs1868003 73386066 A 0.21 0.60 0.49 0.0084 0.28 0.02 0.17 0.06 

rs4746089 73387685 A 0.60 0.82 0.60 0.19 0.78 0.12 0.46 0.10 

rs2394834 73392998 G 0.84 0.08 0.60 0.11 0.68 0.02 0.46 0.02 

rs1900514 73408326 A 0.58 0.74 0.58 0.04 0.01 0.05 0.60 0.06 

rs956734 73408544 A 0.30 0.62 0.52 0.93 0.18 0.75 0.84 0.54 

rs4746093 73409978 A 0.77 0.0096 0.02 0.81 0.78 0.17 0.20 0.25 

rs10999933 73411591 T 0.87 0.82 0.54 0.27 0.82 0.62 0.17 0.76 

rs1900515 73413555 A 0.61 0.87 0.48 0.86 0.18 0.19 0.11 0.54 

rs12573587 73413824 T 1.00 0.05 0.50 0.94 0.79 0.0051 0.36 0.04 

rs7896061 73414010 C 0.95 0.18 0.47 0.67 0.89 0.54 0.87 0.13 

rs10762465 73414206 G 0.49 0.22 0.31 0.90 0.12 0.43 0.32 0.12 

rs7087554 73414577 A 0.56 0.87 0.35 0.72 0.72 0.20 0.17 0.58 

rs1665688 73417236 T 0.92 0.05 0.15 0.91 0.33 0.07 0.57 0.07 

rs1665624 73421248 C 0.69 0.32 0.58 0.66 0.45 0.13 0.21 0.15 

rs11819553 73426465 G 0.59 0.24 0.96 0.79 0.81 0.0032 0.58 0.02 
           

rs1015193 73584426 C 0.37 0.83 0.13 0.40 0.21 0.64 0.49 0.62 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01.  
Bonferroni corrected p value for additive model: p= 0.05/127 SNPs/8 traits= 4.92 x 10-5 

 
 
 
 



123 
 

 

 
Figure 4.7. UCSC custom track of CDH23 genotyped SNPs. Annotations show nine protein coding CDH23 RefSeq gene transcripts, located on the forward DNA 
strand of chromosome 10. In blue (bottom of figure) are all genotyped SNPs that are of sufficient quality and have been pruned for high LD. Top associated 
SNP is marked in grey box. 
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4.2.5. ADGRV1 and USH1C common variants show sporadic association 

across hearing or language measures  

Under the additive model, only suggestive sporadic SNP associations were observed between 

ADGRV1 and low-and-mid-frequency hearing thresholds and DLD (Table 4.8), and between USH1C 

and low-and-mid-frequency, vocabulary at 3 years and VIQ at 8 years (Table 4.9). These 

suggestive associations were spread across both genes and therefore did not form a particular 

cluster of association (Table 4.8 and Table 4.9). The top SNP for ADGRV1 (rs2007538, p= 0.0018) 

was marginally associated with mid-frequency hearing thresholds (Table 4.8), while the top SNP 

for USH1C (rs2237960, p= 0.0006) was marginally associated with VIQ at 8 years. Similar to the 

CDH23 results above, these marginal sporadic ADGRV1 and USH1C variant associations within the 

investigated cohort are not robust and do not warrant any further analysis. Larger samples sizes 

would be needed to replicate these results at a significant level. 

Table 4.8. Associations of 5’ ADGRV1 common variants with hearing and language phenotypes under an 
additive model (only regions of suggestive associations shown). 

 
 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19) 

chr 5: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid 
Freq _ 

min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ 
@8Y 

NWR 
@8Y 

DLD 

5’ end 

ADGRV1 

3’end 

rs10514328 89847694 T 0.25 0.46 0.76 0.91 0.18 0.05 0.72 0.77 
                   

rs16869016 90000210 T 0.49 0.0039 0.0064 0.34 0.96 0.29 0.19 0.54 
                   

rs949787 90251205 T 0.04 0.96 0.96 0.79 0.06 0.27 0.17 0.0042 
                   

rs2007538 90374713 C 0.03 0.04 0.0018 0.20 0.43 0.55 0.68 0.69 
                   

rs4537089 90466296 C 1.00 0.97 0.66 0.55 0.27 0.08 0.16 0.82 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01.  
Bonferroni corrected p value for additive model: p= 0.05/66 SNPs/8 traits= 9.47 x 10-5 
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Table 4.9. Associations of USH1C common variants with hearing and language phenotypes under an 
additive model 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19) 

chr 11: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid 
Freq _ 

min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ @8Y 
NWR 
@8Y 

DLD 

3’ end 

USH1C 

5’end 

rs1076204 17506874 C 0.40 0.58 0.79 0.29 0.02 0.16 0.53 0.64 

rs12278908 17508140 A 0.17 0.08 0.08 0.65 0.55 0.53 0.95 0.14 

rs4757527 17510565 G 0.74 0.81 0.78 0.09 0.0089 0.56 0.73 0.42 

rs17703233 17513147 C 0.62 0.84 0.78 0.02 0.04 0.56 0.70 0.27 

           

rs2190454 17533635 G 0.39 0.05 0.85 0.28 0.72 0.66 0.20 0.12 

rs2237960 17538048 A 0.80 0.26 0.67 0.43 0.30 0.0006 0.10 0.66 

rs10766408 17539212 T 0.56 0.11 0.37 0.07 0.60 0.17 0.07 0.06 

rs11603262 17540079 T 0.20 0.11 0.28 0.32 0.05 0.14 0.73 0.43 

rs7129173 17541798 A 0.96 0.54 0.36 0.02 0.19 0.65 0.58 0.32 

rs2041032 17542649 T 0.83 0.28 0.26 0.02 0.23 0.46 0.59 0.03 

rs16934382 17551893 A 0.10 0.29 0.0020 0.78 0.98 0.95 0.93 0.11 

rs2041027 17553105 A 0.90 0.07 0.07 0.02 0.81 0.82 0.92 0.01 

           

rs7119071 17572402 A 0.75 0.01 0.38 0.39 1.00 0.97 0.31 0.05 

rs10766410 17573329 A 0.76 0.0058 0.21 0.25 0.70 0.91 0.81 0.02 

rs7951242 17573927 T 0.60 0.14 0.76 0.90 0.29 0.35 0.69 0.59 

rs4757543 17574588 T 0.26 0.52 0.93 0.78 0.35 0.18 0.66 0.31 

 
 

4.2.6. CIB2, WHRN and MYO7A show no association of their common 

variants with hearing or language milestones 

Association analyses under the additive model showed no significant or suggestive associations 

between common variants in CIB2, WHRN and MYO7A and any of the hearing or language 

phenotypes tested (Table 4.10-4.12). 

A1 is allele 1 (usually minor). 
Grey cells indicate p-values <0.01.  
Bonferroni corrected p value for additive model: p= 0.05/34 SNPs/8 traits= 1.84 x 10-4 
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Table 4.10. Associations of CIB2 common variants with hearing and language phenotypes under an additive 
model 

Table 4.11. Associations of WHRN common variants with hearing and language phenotypes under an 
additive model 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19) 

 chr 9: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid 
Freq _ 

min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ 
@8Y 

NWR 
@8Y 

DLD 

3’ end 

WHRN 

5’end 

rs2274159 117166246 A 0.02 0.67 0.95 0.91 0.55 0.11 0.77 0.35 

rs942519 117169033 A 0.01 0.87 0.80 0.99 0.47 0.08 0.41 0.20 

rs2236388 117169300 A 0.49 0.12 0.38 0.87 0.22 0.66 0.48 0.96 

rs1075559 117174124 G 0.24 0.33 0.91 0.23 0.98 0.17 0.88 0.55 

rs10081699 117182478 G 0.10 0.15 0.51 0.36 0.62 0.06 0.59 0.03 

rs10739411 117183149 G 0.36 0.57 0.84 0.96 0.75 0.68 1.00 0.20 

rs2181928 117185395 A 0.03 0.21 0.48 0.88 0.85 0.18 0.63 0.20 

rs2274162 117187569 T 0.08 0.57 0.94 0.25 0.66 0.74 0.89 0.55 

rs7046973 117193206 G 0.19 0.26 0.45 0.93 0.87 0.31 0.41 0.16 

rs10982218 117200140 C 0.99 0.63 0.35 0.76 0.81 0.51 0.07 0.32 

rs942520 117214909 C 0.96 0.13 0.35 0.96 0.77 0.95 0.66 0.93 

rs10759707 117222287 A 0.51 0.24 0.27 0.62 0.72 0.77 0.77 0.15 

rs10217748 117225658 T 0.80 0.35 0.72 0.34 0.26 0.47 0.69 0.62 

rs4979407 117228115 C 0.78 0.24 0.05 0.17 0.85 0.84 0.73 0.21 

rs1535971 117229400 T 0.49 0.49 0.98 0.46 0.75 0.76 0.60 0.30 

rs10982234 117230017 C 0.57 0.64 0.45 0.32 0.48 0.53 0.31 0.92 

rs1123056 117236557 T 0.77 0.62 0.67 0.66 0.39 0.50 0.29 0.97 

rs17807115 117256467 G 0.25 0.55 0.15 0.78 0.17 0.83 0.65 0.75 

rs4979415 117261599 A 0.33 0.49 0.76 0.84 0.99 0.30 0.14 0.70 

rs4979418 117264083 G 0.41 0.23 0.20 0.47 0.40 0.69 0.11 0.97 

rs2296262 117265406 T 0.61 0.50 0.23 0.95 0.62 0.88 0.66 0.27 

 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19) 

chr 15: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid 
Freq 
_min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ @8Y 
NWR 
@8Y 

DLD 

3’ end 

CIB2 

5’end 

rs2289524 78390414 C 0.40 0.23 0.49 0.30 0.88 0.97 0.88 0.24 

rs12593575 78390909 T 0.06 0.15 0.50 0.82 0.40 0.93 0.57 0.19 

rs2867922 78391969 A 0.36 0.94 0.90 0.36 0.53 0.91 0.39 0.96 

rs7182113 78392357 A 0.22 0.05 0.19 0.99 0.77 0.83 0.89 0.16 

rs9806257 78395362 C 0.68 0.24 0.48 1.00 0.65 0.62 0.55 0.68 

rs16953973 78400640 T 0.11 0.64 0.06 0.92 0.40 0.96 0.32 0.74 

rs3784327 78402258 A 0.74 0.65 0.14 0.46 0.33 0.91 0.95 0.38 

rs11856417 78404315 A 0.14 0.97 0.03 0.45 0.54 0.43 0.62 0.32 

rs17478430 78406959 C 0.79 0.48 0.74 0.51 0.73 0.84 0.28 0.84 

rs16969514 78410289 C 0.75 0.76 0.82 0.42 0.89 0.21 0.65 0.92 

rs1542101 78413016 G 0.15 0.79 0.23 0.49 0.35 0.37 0.34 0.88 

A1 is allele 1 (usually minor). 

A1 is allele 1 (usually minor). 
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Table 4.12. Associations of MYO7A common variants with hearing and language phenotypes under an 
additive model 

4.2.7. USH1G and HARS common variants are not covered by the genotype 

assay 

Due to the small size of USH1G (7Kb) and HARS (17Kb), plus filtering of low-quality variants and 

pruning for variants in high LD, no common variants within the genotype assay were left covering 

these genes. 

    Additive Model 
    Hearing Language 

Gene SNP 
BP (hg19) 

chr 11: 
A1 

OME 
@7Y 

Low 
Freq_ 
min 

Mid 
Freq 
_min 

Comm 
@1.5Y 

Vocab 
@3Y 

VIQ 
@8Y 

NWR 
@8Y 

DLD 

5’ end 

MYO7A 

3’end 

rs2276031 76832011 T 0.82 0.61 0.35 0.96 0.78 0.17 0.28 0.88 

rs1043418 76836350 C 0.58 0.66 0.17 0.57 0.65 0.03 0.03 0.58 

rs7943716 76837499 A 0.54 0.72 0.69 0.15 0.88 0.69 0.94 0.62 

rs10899353 76837552 T 0.44 0.60 0.93 0.86 0.34 0.99 0.04 0.10 

rs7121485 76840709 G 0.60 0.62 0.30 0.89 0.70 0.01 0.19 0.63 

rs7121629 76840798 G 0.06 0.32 0.06 0.67 0.09 0.56 0.95 0.99 

rs948969 76848035 G 0.78 0.86 0.48 0.94 0.98 0.17 0.10 0.80 

rs1052030 76853783 C 0.34 0.85 0.60 0.10 0.49 0.85 0.96 0.10 

rs12279716 76858756 T 0.14 0.90 0.32 0.97 0.90 0.70 0.46 0.81 

rs3737454 76868278 A 0.87 0.14 0.84 0.97 0.49 0.75 0.08 0.83 

rs762667 76868372 C 0.76 0.45 0.34 0.84 0.10 0.43 0.54 0.32 

rs3740763 76873620 T 0.56 0.44 0.99 0.37 0.31 0.86 0.92 0.72 

rs4944147 76880518 A 0.72 0.49 0.73 0.83 0.29 0.22 0.71 0.21 

rs4945156 76892179 A 0.30 0.85 0.51 0.66 0.94 0.30 0.19 0.15 

rs3758708 76894463 T 0.20 0.51 0.12 0.23 0.26 0.89 0.36 0.80 

rs12805353 76898797 T 0.21 0.09 0.73 0.73 0.41 0.63 0.31 0.25 

rs3781694 76899265 A 0.07 0.04 0.42 0.41 0.50 0.59 0.41 0.31 

rs948962 76919478 A 0.17 0.02 0.40 0.51 0.66 0.53 0.08 1.00 

rs885442 76920038 T 0.05 0.01 0.54 0.24 0.50 1.00 0.07 0.73 

rs12793189 76921090 A 0.19 0.07 0.73 0.46 0.38 0.39 0.01 0.78 

rs12793619 76921358 A 0.88 0.31 0.32 0.71 0.32 0.19 0.05 0.26 

rs11237123 76922946 A 0.90 0.34 0.49 0.84 0.53 0.24 0.04 0.46 

A1 is allele 1 (usually minor). 
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4.3. Discussion 

Across the eleven Usher genes analysed, three genes (USH2A, CLRN1, PCDH15) showed evidence 

of association to hearing and/or language measures across multiple time points (Table 4.13). 

Three further genes (CDH23, ADGRV1 and USH1C) showed sporadic associations to hearing and 

language outcomes (Table 4.13), which were represented by single SNPs and therefore no trend 

was observed. The Usher genes WHRN, MYO7A and CIB2 did not show association of their 

common variants to hearing or language outcomes and USH1G and HARS common variants were 

not analysed as the genes were not covered by the genotype assay (Table 4.13). 
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 Table 4.13. Summary results for the effect of common variants in 11 Usher genes on hearing and language phenotypes plus wider effects and protein function 

 

Gene 
Association with 

hearing 

Association with 
early language 

marker 

Association 
with language 

outcomes (DLD) 

Effect of biallelic 
mutations on hearing 

in USH syndrome 
Protein Function Protein Localisation Cochlea expression 

Brain expression 
(Human Brain 

Transcriptome Project) 

USH2A low-frequency indirect none 
congenital & moderate 

hearing loss 
cell adhesion & 

signalling 
stereocilia ankle links 

transient (embryonic 
development in ankle links) 

negligible 

CLRN1 none direct none 
post-lingual hearing 

loss 
cell adhesion hair bundle 

embryonic & postnatal hair 
cells 

negligible 

PCDH15 
suggestive low/ 
mid-frequency 

none direct 
congenital & profound 

hearing loss 
cell adhesion, 
upper tip link 

stereocilia lateral, kinociliary 
and tip links 

transient (embryonic in lateral 
links) and postnatal in mature 

hair cells 

prenatal (CBC); 
postnatal (HIP, AMY, 

MD, NCX, STR) 

CDH23 
sporadic low/mid-

frequency 
direct 

 sporadic 
none 

congenital & profound 
hearing loss 

cell adhesion, 
lower tip link   

stereocilia lateral, kinociliary 
and tip links 

transient (embryonic in lateral 
links) and postnatal in mature 

hair cells 
postnatal (CBC, MD) 

ADGRV1 
sporadic low/mid-

frequency 
none 

direct  
sporadic 

congenital & moderate 
hearing loss 

cell adhesion  stereocilia ankle links 
transient (embryonic 

development in ankle links) 

early prenatal (STR, 
AMY, HIP); postnatal 
(HIP, AMY, NCX, STR) 

USH1C 
sporadic low/mid-

frequency 
direct  

sporadic 
none 

congenital & profound 
hearing loss 

scaffold protein 
stereocilia upper tip link and 

synapse 
embryonic & postnatal hair 

cells 

prenatal (small peak in 
HIP); postnatal (HIP, 

STR AND MD) 

WHRN none none none 
congenital & moderate 

hearing loss 
scaffold protein 

stereocilia ankle link, 
stereocilia tip & synapse 

transient (embryonic 
development in ankle links) 

N/A 

MYO7A none none none 
congenital & profound 

hearing loss 
molecular motor 

protein 

hair cell cytoplasm, hair 
bundle, upper tip link 

density 

embryonic & postnatal hair 
cells 

N/A 

CIB2 none none none 
congenital & profound 

hearing loss 
intracellular 

calcium signalling 
stereocilia near tip 

no data on embryonic 
development/ in mature hair 

cells 
N/A 

USH1G 
HARS 

N/A N/A N/A N/A N/A N/A N/A N/A 

Brain expression data is from the Human Brain Transcriptome Project (https://hbatlas.org/pages/hbtd).  
CBC= cerebellar cortex; HIP= hippocampus; AMY= amygdala; MD= mediodorsal nucleus of the thalamus; NCX= neocortex; STR= striatum.  
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4.3.1. USH2A common variants and hearing/language abilities 

The associations of common USH2A variants with hearing abilities suggests that individuals with 

common risk variants located at the start of the gene (5’ end) are susceptible to having difficulties 

detecting low-frequency sounds. Moreover, individuals carrying USH2A risk variants in the 

presence of altered low-frequency hearing thresholds were more likely to have a limited 

vocabulary than those who carried only one of these risk variants in isolation. This indicates a 

directionality of effects which stems from low-frequency hearing thresholds and further shows 

that hearing can modulate the effects of USH2A upon language development (Figure 4.8a). These 

population-based findings are in line with the results from the discovery family, implicating 

USH2A in impaired auditory processing and language, suggesting that the pathology of APD may 

stem from subtleties in early hearing abilities (Perrino et al., 2020). As peripheral auditory 

mechanisms are not typically included in the diagnosis of APD, rather, individuals are only 

screened for overt hearing loss, therefore subtle differences at low-frequency hearing abilities 

would be missed. As auditory perception involves the integration of bottom-up, auditory ‘sensory’ 

information (from the inner ear up) with top-down, multimodal ‘cognitive’ information (from the 

auditory cortex down) (Moore et al., 2010), a subtle change in low-frequency hearing can exert a 

small, but potentially deleterious effect that disrupts higher order processes and therefore, 

language. Further studies would need to be performed to investigate the underlying mechanisms. 

4.3.2. CLRN1 common variants and language abilities 

The direct association of common CLRN1 variants with very early expressive communication skills 

was only transient and not observed with later language markers. This suggests that children who 

carried CLRN1 risk variants were more likely to show a slight delay in their communication abilities 

during pre-lingual and early lingual period compared to children who did not carry the risk 

variants (Figure 4.8c). Clarin-1 localises to the mouse inner ear hair bundle (Adato et al., 2002) 

(Table 4.13) with complete loss of clrn1 in knock-out models resulting in attenuated, but not 

completely lost hair bundle function (Gopal et al., 2015). Clarin-1 has been therefore proposed as 

essential for the early stages of hair cell development but not required to maintain the integrity of 

hair bundles. This is consistent with the effects of recessive pathogenic CLRN1 variants in USH3 

individuals (Gopal et al., 2015; Geng et al., 2012). USH3 individuals are born hearing, but fail to 

maintain proper hearing function (Plantinga et al., 2005) (Table 4.13). This suggests that they 

develop functional hair cells but cannot maintain them, leading to progressive loss of hair bundle 

structure and function over time, resulting in post-lingual hearing loss. This might also explain why 

no association was found to any of the hearing abilities tested (low and mid-frequency and risk of 

OME) at 7 years of age when normal/close to normal hearing function is still maintained. This 

explanation is further supported by the highly variable type and degree of progressive hearing 
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loss amongst USH3 patients showing asymptomatic to moderate hearing presentation at young 

age (Plantinga et al., 2005; Abu-Ameerh et al., 2020). The post-lingual effects of CLRN1 on hearing 

abilities therefore cannot explain the observed susceptibility to pre-lingual and early lingual 

communication delays in children with risk CLRN1 common variants (Figure 4.8c). CLRN1 has not 

been shown to be associated with language abilities in the literature and its expression across 

different regions of the brain is negligible (Table 4.13). Further research is needed to investigate 

the true effect of common CLRN1 variants on early language and the molecular mechanism 

behind it.  

4.3.3. PCDH15 common variants and language abilities 

Common PCDH15 variants were found to be directly, but only marginally associated with hearing 

abilities (to low and mid-frequencies) and DLD risk (Figure 4.8b). Children who carried these risk 

variants were also more likely to require special help with their communication and interaction 

skills at school (11- 13 years of age), compared to children who did not carry the risk variants. 

Protocadherin-15 is a structural protein at the tip link of stereocilia (Alagramam et al., 2011), also 

expressed in hair cell synapses and spiral ganglion neurons (SGN), suggesting a role in synaptic 

maturation (Zallocchi et al., 2012). Defective pcdh15 in knock-out mice show disordered 

arrangements of stereocilia in hair cells and a reduction in the number of SGN (Washington et al., 

2005). Phenotypically USH1F affected patients present with congenital and profound hearing loss 

(Ahmed et al., 2001). Pathogenic variants within PCDH15 have also been associated with poor 

cochlear implantation outcomes, with individuals with bi-allelic PCDH15 mutations showing 

poorer auditory receptive ability, speech perception and speech intelligibility compared to 

controls (Wu et al., 2015). The poorer outcomes were attributed to the preferential expression of 

PCDH15 in SGN compared to other parts of the cochlea, with biallelic mutations leading to more 

severe pathology affecting the auditory neural pathway (Nishio, Takumi and Usami, 2017). Libé-

Philippot et al. showed that Pcdh15 is expressed in GABAergic interneurons of the developing 

auditory cortex (Libé-Philippot et al., 2017). Moreover, Pcdh15 knock-out mice displayed impaired 

interneuron development, directly as a result from an intrinsic role of Pcdh15 in the developing 

auditory cortex (before the onset of hearing), rather than as a consequence of the peripheral 

auditory impairment in the knock-out mice (Libé-Philippot et al., 2017). According to the Human 

Brain Transcriptome Project, PCDH15 shows low expression in embryonic development across 

different regions of the brain, which increases and peaks in the cerebral cortex between 19 and 

24 prenatal weeks, followed by relatively low expression postnatally (Table 4.13). Based on this, a 

plausible hypothesis could be that the observed association to DLD risk (which may also lead to an 

increased need of special help with communication and interaction) in children carrying PCDH15 

risk common variants occurs directly through the auditory neural pathway and possibly as a result 
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of interneuron deficit in the auditory cortex. Larger samples sizes would, however, be needed to 

replicate this finding at a significant level and to further study the biology of this relationship.  

 

 
Figure 4.8. USH common variants association models. 
a) USH2A: altered hearing thresholds combine with existing genetic factors to moderate the risk of early 
vocabulary outcomes 
b) PCDH15 and c) CLRN1:  risk variants directly affect language outcome (b) and early communication skills (c).  
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4.4. Conclusion 

In summary, in Results Chapter 2, we hypothesised that common variants in Usher genes form 

part of a complex model where common risk variants contribute to the susceptibility to altered 

hearing and/or language ability or skills (H2). This hypothesis is confirmed by the presence of 

direct and indirect associations between USH2A, CLRN1 and PCDH15 common SNPs and low-

frequency hearing thresholds, early language markers and language outcomes such as DLD. This 

further supports a risk model for hearing difficulties such as auditory processing, which may 

indirectly contribute to language difficulties, involving common genetic variants. This is in line 

with complex models of genetic contribution to other neurodevelopmental and learning/hearing 

disorders such as language disorders (Gialluisi et al., 2014; Luciano et al., 2013), dyslexia (Gialluisi 

et al., 2020), ASD (Arking et al., 2008; Grove et al., 2019) and ARHL (Wells et al., 2019). 
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5. Results Chapter 3: Gene-based analyses of rare 

variants 

5.1. Rationale 

Findings from Results Chapter 2 indicated that common variation across some USH genes (USH2A, 

CLRN1 and PCDH15) play a complex role in low-frequency hearing abilities and/or language 

development. Research has shown that rare and common variants can both play a role in complex 

disorders (Fritsche et al., 2016; Chen et al., 2017). This led to Hypothesis 3 (H3) where in order to 

gain a complete picture of the role of Usher gene variation in a complex model, we hypothesised 

that multiple rare variants across coding USH gene regions have an effect on hearing, auditory 

processing and/or language abilities. Therefore, H3 considers the combinatory effect of rare risk 

variants to susceptibility to disease or altered ability in a single multivariate analysis. 

To test H3, gene-based analyses (Section 2.4.3) were performed within RVTESTS on the eleven 

USH candidate genes (USH2A, CLRN1, CDH23, PCDH15, ADGRV1, USH1C, USH1G, MYO7A, WHRN, 

CIB2, HARS) using whole genome sequence data from ALSPAC UK10K core cohort (Section 2.3.4). 

The phenotypes tested for association were the same three measures of hearing (low-frequency 

hearing, mid-frequency hearing and OME status) and the same five measures of language (early 

communication skills, early vocabulary size, NWR, VIQ, DLD status) as tested in Results Chapter 2 

(Section 2.2.1), allowing direct comparison of the effects of rare versus common variants (Figure 

2.15). 
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5.2. Results 

Collectively gene-based association results showed that rare variants within USH2A were 

suggestively associated with mid-frequency hearing abilities, whereas rare variants within CLRN1 

and ADGRV1 were suggestively associated with markers of language (Table 5.1). The sections 

below review each of the significant genes one by one. 

Table 5.1. USH genes gene-based association testing results using Burden-Zeggini tests  

5.2.1. Rare USH2A variants are suggestively associated with altered mid-

frequency hearing thresholds  

USH2A showed an increased rare variant burden in relation to altered mid-frequency hearing 

thresholds (gene-based p= 0.0073) (Table 5.2). Sub-grouping rare USH2A variants by function and 

repeating the Burden-Zeggini (BZ) association test showed that the likely rare variant drivers of 

association reside within USH2A exons (p= 0.0005) (Table 5.2). Further dividing USH2A rare exonic 

variants into types (missense, stop-gain, splice-site and synonymous) showed that the suggestive 

association to mid-frequency hearing threshold was driven by rare missense USH2A variants (p= 

0.0017) (Table 5.2). No associations were observed with language outcomes (Table 5.2). 

 Rare variants (MAF≤1%) BZ model 

Gene 
OME@

7Y 

Low 
Freq 
_min 

Mid Freq 
_min 

Comm_
score@

1.5Y 

Vocab 
score 
@3Y 

VIQ 
@8Y 

NWR 
@8Y 

DLD 

USH2A 0.09 0.61 0.0073 0.61 0.90 0.14 0.70 0.25 

CLRN1 0.96 0.86 0.33 0.87 0.85 0.0069 0.46 0.12 

ADGRV1 0.34 0.10 0.58 0.07 0.13 0.24 0.00095 0.30 

HARS 0.20 0.99 0.91 0.81 0.30 0.65 0.72 0.88 

WHRN 0.07 0.03 0.02 0.21 0.88 0.91 0.40 0.44 

PCDH15 0.05 0.28 0.25 0.67 0.48 0.73 0.75 0.87 

CDH23 0.26 0.68 0.36 0.65 0.36 0.10 0.03 0.94 

USH1C 0.99 0.44 0.82 0.08 0.85 0.12 0.78 0.01 

MYO7A 0.59 0.92 0.78 0.68 0.35 0.83 0.64 0.68 

CIB2 0.67 0.62 0.83 0.79 0.87 0.33 0.69 0.37 

USH1G 0.05 0.09 0.06 0.74 0.74 0.17 0.30 0.64 

P-values for each hearing and language outcome are reported. Grey cells indicate p-values < 0.01. 
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The number of variants tested within each subgroup and p-values are reported.  
Grey cells indicate p-values < 0.01.  

Table 5.2. USH2A gene-based association testing results using Burden-Zeggini, grouping variants by function 
in relation to mid-frequency hearing thresholds. 

USH2A variant subgroups 
(Transcript: ENST00000366943.2) 

No. variants 
Mid 

Freq _min  
(association p-value) 

Baseline rare variants 5361 0.0073 

By function  

rare intronic 5178 0.02 

rare regulatory 45 0.01 

rare exonic 138 0.0005 

rare missense 87 0.0017 

rare stop-gained 3 0.95 

rare splice-site 5 0.05 

rare synonymous 43 0.10 

 

5.2.2. Rare CLRN1 variants are suggestively associated with altered 

Verbal IQ 

Suggestive association was found between rare CLRN1 variants and Verbal IQ score at 8 years of 

age (p= 0.0069) (Table 5.3). Sub-grouping rare CLRN1 variants by function and repeating the BZ 

analysis showed nominal association with MinP= 0.012 for rare intronic variants (Table 5.3). Next, 

using Haploview, the CLRN1 variants were grouped by position, showing two broad blocks of LD; a 

3’ block (incorporating five smaller blocks in tight LD) and a 5’ block (Figure 5.1). The BZ test was 

repeated with the rare variants residing in the 5’ and 3’ LD blocks. Again, no association with p< 

0.01 was observed with VIQ at 8 years.  
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Table 5.3. CLRN1 gene-based association testing results using Burden-Zeggini, grouping variants by function 
and position in relation to Verbal IQ at 8 years. 

 

 

CLRN1 variant subgroups  
(Transcript: ENST00000327047) 

No. variants 
VIQ @8Y 

(association p-value) 

Baseline rare variants  344 0.0069 

By function 

rare intronic  324 0.012 

rare exonic  6 0.046 

rare regulatory 14 0.372 

By position 

5’ LD block rare 118 0.133 

3’ LD block rare 178 0.016 

The number of variants tested within each subgroup and p-values are reported.  
Grey cells indicate p-values < 0.01.  
 

Figure. 5.1. Linkage disequilibrium analysis of CLRN1 SNPs (plot generated using Haploview). Linkage 
disequilibrium is displayed by standard colour scheme, with bright red for very strong LD (LOD ≥2, D’ =1), pink 
red (LOD ≥2, D’ <1) and white for no LD (LOD < 2, D’ <1). Six LD blocks were generated and further grouped into 
3-and-5-prime end LD blocks. Canonical CLRN1 transcript is marked in black box according to UCSC browser. 
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5.2.3. Rare intronic variants in ADGRV1 are suggestively associated with 

altered Nonword repetition score  

Suggestive association was observed between rare variants across AGDRV1 and NWR at 8 years 

(p= 0.00095) (Table 5.4). Further gene-based analysis showed that this association was driven by 

rare intronic variants (p=0.00122). As the ADGRV1 gene is relatively large (90 exons), Haploview 

software could not generate an LD plot. Instead, the annotated rare variants within the ADGRV1 

introns were split by position manually. Rare variants within the 5’ end of the gene formed rare 

intronic 5’ end (including 1759 variants within introns 1 to 82) and the rare variants within the 3’ 

end of the gene formed rare intronic 3’ end (including 1814 variants within intron 83 to intron 89) 

(Figure 5.2). Repeating the BZ model on both subgroups of variants resulted in rare intronic 

variants located within intron 83 to intron 89 showing a suggestive signal of association 

(p=0.00387). This group of variants were further divided into rare variants within intron 83 to 85 

(N=1205 variants) and rare variants within intron 86 to 89 (N=609 variants). Repeating the BZ 

model for the 2 groups showed that the signal of increased burden to altered nonword repetition 

was likely resulting from intron variants between introns 83-85 (towards the middle of the gene). 

The rare variants within the two largest introns of the gene (intron 83 and intron 85) were 

separately run through the BZ model and showed that the association signal in ADGRV1 was most 

heavily concentrated in rare variants within intron 85 (p= 0.00041).  

5.2.4. Rare Variants in HARS, WHRN, PCDH15, CDH23, USH1C, MYO7A 

CIB2 and USH1G show no associations to the hearing and language 

outcomes tested 

Gene-based analyses showed no significant or suggestive associations of rare HARS, WHRN, 

PCDH15, CDH23, USH1C, MYO7A, CIB2 and USH1G variants with the tested hearing or language 

outcomes (Table 5.1). 
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Table 5.4. ADGRV1 gene-based association testing results using Burden-Zeggini, grouping variants by frequency, function and position 
 in relation to nonword repetition score at 8 years. 

 
ADGRV1 variant subgroups 

(Transcript: ENST00000405460) 
No. variants 

NWR 
@8Y 

 (association p-value) 

Baseline rare variants 3718 0.00095 

By function 

rare intronic 3573 0.00122 

rare exonic 137 0.429 

rare regulatory 8 0.037 

By position 

rare intronic 5' end (intron 1-82) 1759 0.016 

rare intronic 3’ end (intron 83-89) 1814 0.00378 

rare intronic 3' end (intron 83-85) 1205 0.00399 

rare intronic 3' end (intron 86-89) 609 0.077 

rare intron 83 557 0.460 

rare intron 85 553 0.00041 

The number of variants tested within each subgroup and p-values are reported. Grey cells indicate p-values < 0.01.  

Figure. 5.2. ADGRV1 gene-based analysis by position (ENST00000405460 Ensembl transcript is made of 90 exons and 89 introns). For gene-based analysis by position, the 
ADGRV1 introns were split into 5’ and 3’, covering the start of the gene and the end of the gene.  
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5.3. Discussion 

Complex disorders such as auditory processing disorder and speech/language disorders represent 

a continuum with high heterogeneity, supported by findings in Results Chapters 1 and 2. Gene-

based analyses, applied here, offer further modelling of complex effect as they allow the 

consideration of the combined effect of rare risk factors across the entire gene. The results 

revealed that rare missense USH2A variants were suggestively associated with mid-frequency 

hearing abilities, whereas rare CLRN1 and rare ADGRV1 variants (concentrated within intron 

85/89) showed suggestive associations to VIQ and NWR performance, respectively (Table 5.6). No 

association was detected between rare variants in PCDH15, CDH23, USH1C, WHRN, MYO7A, CIB2, 

USH1G and HARS and the tested hearing and language markers (Table 5.6). 
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Table 5.6 Summary results for the combined effect of rare variants in 11 Usher genes on hearing and language phenotypes plus wider effects and protein function 

Gene 
 Rare variants 

 & hearing 
Rare variants 
& language 

Common variants  
& hearing 

Common variants 
& language 

Effect of biallelic 
mutations on hearing in 

USH syndrome 
Protein Function Protein Localisation Cochlea expression 

Brain expression 
(Human Brain 
Transcriptome 

Project) 

USH2A 
suggestive mid-

frequency 
none low-frequency 

Indirect 
 (early vocab) 

congenital & moderate 
hearing loss 

cell adhesion & 
signalling 

stereocilia ankle 
links 

transient (embryonic 
development in ankle links) 

negligible 

CLRN1 none 
suggestive 

(VIQ) 
none 

direct  
(early comm) 

post-lingual hearing loss cell adhesion hair bundle 
embryonic & postnatal hair 

cells 
negligible 

PCDH15 none none 
suggestive low/ 
mid-frequency 

direct  
(DLD) 

congenital & profound 
hearing loss 

cell adhesion, 
upper tip link 

stereocilia lateral, 
kinociliary and tip 

links 

transient (embryonic in 
lateral links) and postnatal 

in mature hair cells 

prenatal (CBC); 
postnatal (HIP, AMY, 

MD, NCX, STR) 

CDH23 none none 
sporadic low/mid-

frequency 
direct 

 sporadic 
congenital & profound 

hearing loss 
cell adhesion, 
lower tip link   

stereocilia lateral, 
kinociliary and tip 

links 

transient (embryonic in 
lateral links) and postnatal 

in mature hair cells 
postnatal (CBC, MD) 

ADGRV1 none 
suggestive 

(NWR) 
sporadic low/mid-

frequency 
direct  

sporadic (DLD) 
congenital & moderate 

hearing loss 
cell adhesion  

stereocilia ankle 
links 

transient (embryonic 
development in ankle links) 

early prenatal (STR, 
AMY, HIP); postnatal 
(HIP, AMY, NCX, STR) 

USH1C none none 
sporadic low/mid-

frequency 
direct sporadic 

congenital & profound 
hearing loss 

scaffold protein 
stereocilia upper tip 

link and synapse 
embryonic & postnatal hair 

cells 

prenatal (small peak 
in HIP); postnatal 

(HIP, STR AND MD) 

WHRN none none none none 
congenital & moderate 

hearing loss 
scaffold protein 

stereocilia ankle link, 
stereocilia tip & 

synapse 

transient (embryonic 
development in ankle links) 

N/A 

MYO7A none none none none 
congenital & profound 

hearing loss 
molecular motor 

protein 

hair cell cytoplasm, 
hair bundle, upper 

tip link density 

embryonic & postnatal hair 
cells 

N/A 

CIB2 none none none none 
congenital & profound 

hearing loss 
intracellular 

calcium signalling 
stereocilia near tip 

no data on embryonic 
development/ in mature 

hair cells 
N/A 

USH1G 
HARS 

none none N/A N/A N/A N/A N/A N/A N/A 

Brain expression data is from the Human Brain Transcriptome Project (https://hbatlas.org/pages/hbtd).  
CBC= cerebellar cortex; HIP= hippocampus; AMY= amygdala; MD= mediodorsal nucleus of the thalamus; NCX= neocortex; STR= striatum.  
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5.3.1. USH2A rare variants and hearing abilities 

USH2A is directly associated with hearing. While common variants show strong associations with 

low-frequency hearing abilities and indirect associations with vocabulary size, rare variants are 

associated with mid-frequency abilities (perhaps just due to insensitivity of these metrics to 

detect associations with low-frequency) (Table 5.6). The USH2A findings are consistent with 

emerging evidence that different variant types within the same gene can associate with variable 

and different outcomes (Lenassi et al., 2015; Molina-Ramírez et al., 2020; Toma et al., 2018). This 

forms an allelic hierarchy of disease-causing high impact variants and complex risk variants as 

examined in this study, and represents a shift from Mendelian genetic models. If two rare 

pathogenic USH2A disease-causing variants are inherited in a recessive form, that will lead to the 

presentation of Usher Syndrome or a nonsyndromic retinopathy (Lenassi et al., 2015). However, if 

only one pathogenic variant is inherited in a heterozygous form alongside common risk and rare 

coding USH2A variants with marginal effects upon protein function, this is likely to contribute to 

subtle changes in the processing of low-frequency sounds (opposite frequency end to the high-

frequency hearing loss observed in USH2). Such subtle changes would not necessarily be detected 

in a clinical setting, where the focus would be on USH2-related high-frequency hearing loss. While 

it is unlikely that such subtle changes in hearing thresholds at low frequencies will directly lead to 

language disorder, we hypothesise that mild changes in low-level hearing can exert a snow-ball 

effect that disrupts higher order communicative processes. This model is analogous to the model 

of persistent OME, which in itself does not lead to a language disorder, but may represent a risk 

factor if recurrent (Rosenfeld et al., 2016).  

5.3.2. CLRN1 rare variants and language abilities 

Both gene-based analyses and single common SNPs analyses of CLRN1 variation showed 

association with language markers: significant association between common CLRN1 variants and 

early language communication deficits and marginal association of rare variants with Verbal IQ at 

8 years (Table 5.6). The finding that different variants (common vs rare) correlated with different 

language outcomes might reflect the complex nature of association studies and defining 

phenotypes, which on an individual level do not always reflect aetiology. The absence of any 

association to hearing measures could be explained by the preserved normal hearing function in 

childhood even for biallelic CLRN1 mutations known to cause post-lingual hearing loss in USH3 

(see Results Chapter 2). To better understand the involvement of CLRN1 in language abilities, 

further genetic analyses using larger databases would need to be performed. 

5.3.3. ADGRV1 rare variants and language abilities 

Association results of both common and rare variants within ADGRV1 suggest that intronic risk 

variants, located between introns 83 and 86 may be important factors for language abilities. 
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Gene-based analyses of rare variants showed an increased burden to NWR likely represented by 

ADGRV1 rare variants within intron 85. Sporadic marginal association was observed between a 

common ADGRV1 SNP (rs2007538) located in intron 83 and mid-frequency hearing abilities and 

another common SNP (rs949787) in intron 86 and DLD, suggesting the variants are proxies (Table 

5.6). Biallelic pathogenic variants in ADGRV1 cause USH2C with congenital moderate to severe 

hearing impairment in the first or second decade of life (Weston et al., 2004). Loss of Adgrv1 in 

Vlgr1/del7TM mice result in lack of ankle links which disturbs the organisation of the hair bundles 

leading to profound deafness by 3 weeks of age (McGee et al., 2006), thus recapitulating the 

symptoms found in USH2C patients. Moreover, a homozygous truncating mutation in the mouse 

ortholog Adgrv1 (Adgrv1frings/frings mouse), was found to cause audiogenic seizures (Skradski et al., 

2001). In humans 5q14.3 microdeletions, incorporating ADGRV1, and heterozygous missense 

ADGRV1 mutations are identified in patients with febrile seizures and myoclonic epilepsy (Myers 

et al., 2018; Han et al., 2020). While most reported homozygous mutations associated with 

USH2C result in frameshift/truncation (Weston et al., 2004; Hilgert et al., 2009; Ebermann et al., 

2010; Besnard et al., 2012), vast majority of mutations leading to seizures are heterozygous 

missense (Myers et al., 2018; Han et al., 2020) suggesting that the complete absence or lack of 

function of ADGRV1 leads to USH2C while protein dysfunction caused is likely to result in seizures 

via a different molecular pathway.  

ADGRV1 belongs to the family of G-protein coupled receptor, known to be expressed in the 

central nervous system (CNS) and to play a role in neurodevelopment, with members of the 

family associated with ADHD (ADGRL3) and schizophrenia (ADGRB3) (McMillan et al., 2002; 

DeRosse et al., 2008; Arcos-Burgos et al., 2010). The exact mechanisms by which ADGRV1 is 

involved in epilepsy is not known, but it is suggested it might be through its epilepsy-related 

repeat (EAR) domain, which is the same as the functional domain found in the LGI1 gene, known 

to cause autosomal dominant lateral temporal epilepsy with auditory features (Scheel, Tomiuk 

and Hofmann, 2002). The EAR domain is thought to be important in attaching to an antiepileptic 

ligand or in interfering with synaptogenesis or axon guidance for its critical role in developing 

epilepsy (Scheel, Tomiuk and Hofmann, 2002). All reported individuals harbouring ADGRV1 

pathogenic variants resulting with myoclonic epilepsy also had intellectual disability or 

developmental delay, which might explain the effect of rare variants on NWR observed here. 
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5.4. Conclusion 

Results Chapter 3 was based on the hypothesis that rare variants in USH genes play a role in a 

complex model where multiple rare risk variants in combination contribute to the susceptibility to 

altered hearing and/or language ability or skills (H3). This hypothesis is confirmed by the presence 

of association (increased burden) between USH2A, CLRN1 and ADGRV1 rare variants and mid-

frequency hearing thresholds or language markers such as Verbal IQ and nonword repetition. This 

combines with evidence from Results Chapter 2 and demonstrates the important role of common 

and rare variants within some Usher genes in complex models of hearing, auditory processing and 

language, suggesting that there is no one single risk variant, but a complex mix of variation across 

the USH genes might explain some of the APD risk. This combined risk is also in line with wider 

evidence from neurodevelopmental disorder risk involving the influence of common genetic 

variants in combination with rare variants (Villanueva et al., 2015; Chen et al., 2017; Satterstrom 

et al., 2020). 
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6. Results Chapter 4: Phenotype-driven rare 

Mendelian analysis 

6.1. Rationale 

Based on H1 in Results Chapter 1, pathogenic coding variants in the candidate USH genes in a 

heterozygous form showed an increased risk of delayed language milestones and subtle hearing 

difficulties, but no clinical distinct carrier phenotype. Additionally, Results Chapter 3 showed that 

rare variants may be important in some USH genes with regards to language and hearing 

development. These genotype-driven approaches were, however, restricted to the candidate USH 

genes and would have missed detecting many other genes that may also play a role. Therefore, in 

Results Chapter 4, we hypothesise that difficulty discriminating words in noisy environment (as a 

potential sign of suspected APD- sAPD) in a small number of ALSPAC children can be explained by 

rare coding pathogenic variants on a genome-wide level using a phenotype to genotype approach. 

This is the first study that considers the direct effect of rare pathogenic variants on a suspected 

APD phenotype, which has not been addressed in the literature before. Therefore, this is an 

exploratory study, presenting preliminary results. 

For the purpose of Results Chapter 4, the ALSPAC UK10K core cohort was screened to produce a 

sAPD cohort of individuals whose word discrimination threshold in quiet was within expected 

ranges, but whose word discrimination threshold in noise was elevated 1SD above the mean 

(Section 2.3.5). The performance of identified sAPD individuals on neurodevelopmental ALSPAC 

measures (available through the ALSPAC phenotype dataset- Section 2.2) was compared to 

control individuals, allowing the investigation of the wider phenotype that may present together 

with difficulties recognising speech in noisy environment (Figure 2.15). Potentially deleterious 

coding variants within each sAPD individual were identified through VCFtools and annotated 

through SnpEff and wAnnovar (Section 2.5.1) and ranked for pathogenicity following ACMG 

guidelines (Section 2.4.4).  
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6.2. Results 

6.2.1. sAPD cohort characteristics 

Characterising the sAPD individuals at a broad neurodevelopmental level showed that, as a group, 

sAPD individuals performed below expected on a measure of early vocabulary at 2 and at 3 years 

(ALSPAC codes ke643 and kg865) (Cohen’s d= 0.48; 95% CI= 0.08- 1.05 for vocabulary at 2 years 

and Cohen’s d= 0.65, 95% CI= 0.06- 1.23 for vocabulary at 3 years) (Table 6.1a) (Figure 6.1a). 

Although the effect size of the difference between the means of the sAPD group and the control 

group is considered as medium, the 95% CI for both measures spans the value of 0 (95% CI= 0.08- 

1.05 and 95% CI= 0.06- 1.23), which indicates lower confidence (<95%) in the effect sizes, likely 

due to the small sample size. 

Analysis of available discrete measures showed that children with sAPD are more likely to suffer 

from otitis media with effusion/abnormal middle ear pressure very early in life compared to 

controls (RR= 1.6, 95% CI= 1.08- 2.399 for OME at 1.5Y and RR= 1.49, 95% CI= 0.604- 3.66 for OME 

at 2.5 Y) (Table 6.2). However, at 7Y the sAPD group showed the opposite results: sAPD individuals 

were less likely to suffer from otitis media with effusion/abnormal middle ear pressure compared 

to controls (RR= 0.493, 95% CI= 0.135- 1.807) (Table 6.2 & Figure 6.1b), suggesting that risk of 

OME was transient and only elevated during early life. Teachers rated the general ability of sAPD 

children as average or below average more often than expected (RR= 2.1943, 95% CI= 1.06- 4.53) 

and expressed complaints towards the sAPD children more often than expected (RR= 1.57, 95% 

CI= 0.55- 4.46) (Table 6.2 and Figure 6.1c-d). sAPD children were much more likely to also have 

ADHD (RR= 13, 95% CI= 2.00- 84.34) and DLD (RR= 2.06, 95% CI= 0.56- 7.66) (Table 6.2 & Figure 

6.1e-f).  
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Table 6.1a. Quantitative measures of language, reading and cognition in individuals with sAPD compared to controls from ALSPAC dataset (lower scores represent poor performance) 

 
 
Table 6.1b. Quantitative measures of hearing and friendship in individuals with sAPD compared to controls from ALSPAC dataset (higher scores represent poor performance) 

 
 

Measure Age Range of scores 
(sAPD) 

Mean score 
(sAPD) 

No 
controls 

Range of 
scores(controls) 

Mean 
score 

(controls) 

SD 
(controls) 

5th 
percentile 

No sAPD 
below 5th 
percentile 

Vocabulary Score 2 years 35 - 228 136.2308 163 22 - 246 161.23 50.27 79.2 4 of 13 

Vocabulary score 3 years 0 - 246 215.75 164 132 - 246 233.28 20.69 195 2 of 12 

Plurals score 3 years 5 - 12 9.82 163 5 - 12 10.53 1.74 7 1 of 11 

Past tense score 3 years 11 - 42 34 164 3 - 42 34.62 9.43 12 1 of 10 

Word combination score 3 years 0 - 26 21.5 162 0 - 26 22.75 4.08 16 1 of 12 

Language score 3 years 216 - 324 303.4 161 183 - 326 301.92 28.86 244.4 1 of 13 

Reading score 7 years 11 - 43 28.0769 164 6 - 46 30.77 8.05 15.25 1 of 13 

Spelling score 7 years 2 - 15 7.2308 164 0 - 15 9.02 3.99 2 0 of 13 

Nonword Repetition 8 years 3 - 12 6.77 163 1 - 12 7.91 2.41 4 1 of 13 

WOLD comprehension 8 years 4- 10 7.307692 163 2- 14 8.06 1.85 5 1 of 13 

WISC - Verbal IQ 8 years 83 - 144 105.6923 161 74 - 151 112.16 16.21 86.2 1 of 13 

WISC - Performance IQ 8 years 69 - 123 102.9231 160 55 - 137 102.9 16.74 75.1 1 of 13 

WISC - Total IQ 8 years 77 - 137 104.7692 160 68 - 144 108.88 15.51 88 1 of 13 

Measure Age Range of scores 
(sAPD) 

Mean score 
(sAPD) 

No 
controls 

Range of 
scores(controls) 

Mean 
score 

(controls) 

SD 
(controls) 

95th 

percentile 
No sAPD 

above 95th 
percentile 

Air conduction Right average 0.5, 1, 2, 4 kHz 7 years 1.25 - 12.5 6.6346 151 0 - 35 8.48 4.73 16.75 0 of 13 

Air conduction Left average 0.5, 1, 2, 4 kHz 7 years 0 - 15 6.9792 148 0 - 42.5 7.99 6.11 17.62 0 of 12 

Low_frequency_min 7 years 0 - 20 10 138 0 - 40 10.65 5.66 20 0 of 12 

Mid_frequency_min 7 years 0 - 10 3.8892 140 0 - 33.33 4.96 4.26 13.25 0 of 12 

 Friendship score 8 years 2 - 8 4.42 150 0 - 9 3.41 2.14 7 1 of 13 
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Table 6.2. Discrete measures of educational support, neurodevelopmental disorders and hearing in individuals with sAPD compared to controls from ALSPAC database 

 

Measure Age N affected sAPD Freq in sAPD N affected 
controls 

Freq in 
controls 

OME/abnormal middle ear pressure (< -100 daPa)  1.5 years 7 of 13 0.538 55 of 142 0.387 

OME/abnormal middle ear pressure (< -100 daPa)  2.5 years 3 of 12 0.25 34 of 150 0.227 

Carer worried about child’s speech 2.5 years 0 of 13 0 12 of 161 0.075 

OME/abnormal middle ear pressure (< -100 daPa)  7 years 2 of 13 0.154 47 of 154 0.305 

Hearing Impairment 7 years 0 of 13 0 6 of 154 0.039 

Teacher's rating of child is average/below average 7 years 4 of 7 0.57 25 of 96 0.26 

Child received complaints from the teacher  7.5 years 3 of 12 0.25 25 of 157 0.15 

Child currently has uncontrollable tics or twitches 7.5 years 1 of 12 0.083 0 of 156 0 

Child has learning difficulties requiring special arrangements at school 7.5 years 0 of 12 0 3 of 152 0.02 

Child has speech problems requiring special arrangements at school 7.5 years 0 of 12 0 0 of 152 0 

Child has hearing problems requiring special arrangements at school 7.5 years 0 of 12 0 4 of 152 0.026 

Child has eyesight problems requiring special arrangements at school 7.5 years 0 of 12 0 0 of 152 0 

 Child has physical problems requiring special arrangements at school 7.5 years 0 of 12 0 0 of 152 0 

Child has reading difficulties requiring special arrangements at school 7.5 years 0 of 12 0 7 of 152 0.046 

Child has emotional/behavioural problems requiring special arrangements at school 7.5 years 1 of 12 0.083 2 of 152 0.013 

DAWBA DSM-IV clinical diagnosis - Any ADHD disorder 7.5 years 2 of 12 0.167 2 of 156 0.013 

DAWBA DSM-IV clinical diagnosis - Any oppositional-conduct disorder 7.5 years 1 of 12 0.083 4 of 156 0.026 

Child has ever had speech/language therapy 7.5 years 1 of 12 0.083 17 of 156 0.109 

Child stutters/stumbles when speaks 8 years 1 of 13 0.077 8 of 163 0.049 

 Mother told child has Dyslexia 9 years 0 of 11 0 7 of 153 0.046 

B6b: Mother told child has Dyspraxia 9 years 0 of 11 0 6 of 154 0.039 

B6e: Mother told child has Dyscalculia 9 years 0 of 11 0 1 of 152 0.07 

DLD status  2 of 8 0.25 12 of 99  0.12 
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Figure 6.1. Differences in the performance of sAPD group compared to controls on a range of neurodevelopmental measures. 
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6.2.2. Gene variant analysis 

In total 7,392,168 variants were considered in all 13 sAPD individuals (Figure 2.14 in Section 

2.4.4). All variants had a quality score over 6.2 (QUAL score) and a minimum mean depth of 4.97 

per individual (consistent with the UK10K low sequencing coverage). Ninety one percent of 

variants were SNPs, 76% of which had MAF > 0.05 and were therefore considered to be common. 

On average, 2,036,823 genetic variants (which were alternative to the Ref variant) were identified 

in each of the thirteen sAPD individuals.  

Following the filtering exclusion steps (shown in Figure 2.14 in Section 2.4.4), 655 novel 

potentially deleterious variants were highlighted in the thirteen individuals with sAPD (Table S7). 

These variants were classed by function into 59 null variants (including stop-gain, frameshift and 

splice variants), 2 stop-loss and 4 start loss, 585 missense variants and 2 transcription factor 

ablation sites. Each group of variants was considered separately when applying ACMG 

classification for pathogenic or likely pathogenic variants. Under the secondary variant search 

criteria, a further 72 missense variants with MAF ranging from 6.6x10-5 to 0.047 (according to 

gnomAD_NFE population) were detected in the four sAPD individuals with primary 

pathogenic/likely pathogenic variant (individuals 17275, 465, 518, 16005). 

6.2.2.1. Primary variants classed as pathogenic/likely pathogenic 

Of the null LoF variants, a frameshift variant in GRHL3 (heterozygous in individual 17275), a splice 

variant in FAT4 (heterozygous in individual 465) and a frameshift variant in IFT88 (heterozygous in 

individual 518) were classified as pathogenic (GRHL3 and FAT4) and likely pathogenic (IFT88), 

according to the ACMG guidelines (Table 6.3). Of the missense variants, a variant in DIAPH1 

(heterozygous in individual 17275) and a variant in NAV2 (heterozygous in individual 16005) were 

classified as likely pathogenic, according to the ACMG guidelines (Table 6.4).  

The GRHL3 frameshift variant (chr1: 24669442, AGACT>A, (hg19), c.1350_1353delTGAC, 

p.Asp451fs, ENST00000350501) is a null variant (PVS1), it is absent from the gnomAD non-Finnish 

European (NFE) population database (PS4), and occurs in a gene known to be involved in cleft 

palate/lip disorder (Van der Woude syndrome 2 MIM: 606713), which has been linked to auditory 

processing difficulties (Ma, McPherson and Ma, 2016) (PP4) (Table 6.3). A second likely 

pathogenic heterozygous missense variant was found in the same individual in the deafness gene 

DIAPH1 (rs745742167) (Table 6.4). 

The FAT4 splice variant rs762672127 (chr4: 126384823, G>T (hg19), c.11899+1G>T, 

ENST00000394329) is a null variant (PVS1) absent from the gnomAD NFE population database 

(PS4), its deleterious effect is supported by multiple lines of computations evidence (PP3) and the 

gene is involved in a relevant disorder with affected hearing (PP4) (Table 6.3). No secondary 
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putative pathogenic changes were found in the same gene, however the secondary variant search 

detected a missense variant in SLC9A3R1 within the same individual (Section 6.2.2.2). 

The IFT88 frameshift variant (chr13: 21265255, AG>A, (hg19), c.2445delG, p.Ile816fs, 

ENST00000319980) is in a hot spot for frameshift variants (PM1), it is absent from the gnomAD 

NFE population database (PS4), and occurs in a gene known to be involved in deafness (PP4) 

(Table 6.3). No secondary putative pathogenic changes were found in the same gene (or other 

deafness genes according to the criteria used in secondary variant search). 

The DIAPH1 variant rs745742167 (chr5: 140958708, G>A (hg19), c.880C>T, p.Arg294Cys 

ENST00000253811) and the NAV2 variant rs771443047 (chr11: 20065723, G>T (hg19), c.3173G>T, 

p.Gly1058Val, ENST00000396087) are missense variants absent from the gnomAD NFE population 

database (PS4) (Table 6.4). Their deleterious effect is supported by multiple lines of computations 

evidence (SIFT, PolyPhen2, CADD, GERP, PhyloP and PhastCons all showing deleterious scores: 

PP3) and they occur at well-established functional protein domains (PM1) (Table 6.4). DIAPH1 is a 

known deafness gene, with pathogenic variants known to cause Deafness, autosomal dominant 1 

(MIM: 124900), while NAV2 is a deafness candidate gene, with hypomorphic mutant mice 

showing impaired auditory responses (Peeters et al., 2004).  
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Table 6.3. Null LoF variants classed as pathogenic/likely pathogenic according to ACMG classification 

 

Table 6.4. Missense variants classed as pathogenic/likely pathogenic according to ACMG classification 

Ind. Chr Pos (hg19) rs ID Ref Alt Gene Transcript 
Functional 
annotation 

Variant position 
(exon|DNA|protein) 

pLI pRec o/e LOF 
Splice 
score 

(ada|rf) 

CADD_ 
phred 

PhyloP 
Phast 
Cons 

17275 1 24669442 rs768635791 AGACT A GRHL3 
ENST00000350501 
(longest transcript) 

frameshift 
|11/16| 

c.1350_1353delTGAC| 
p.Asp451fs 

0.99 0.007 0.107 . . . . 

465 4 126384823 rs762672127 G T FAT4 
ENST00000394329 
(longest transcript) 

splicing 
|10/16| 

c.11899+1G>T 
1 1.7E-10 0.121 

0.99| 
0.94 

26.2 9.626 1 

518 13 21265255 rs750570861 AG A IFT88 
ENST00000319980 
(longest transcript) 

frameshift 
28/28| 

c.2445delG| 
p.Ile816fs 

0 0.999 0.507 . . . . 

Ind. Chr Pos (hg19) rs ID Ref Alt Gene Transcript 
Functional 
annotation 

Variant 
position 
(exon| 

DNA|protein) 

pLI o/e LOF 
Interpro 
domain 

SIFT 
Poly 

Phen2 
CADD_ 
phred 

GERP++ 
_rs 

PhyloP 
Phast 
Cons 

17275 5 140958708 rs745742167 G A DIAPH1 
ENST0000025381

1 (longest 
transcript) 

missense 
9/28| 

c.880C>T| 
p.Arg294Cys 

0.92 0.197 
Formin homology 3 
(GBD/FH3) domain 

0 1 27.5 5.11 4.46 1 

16005 11 20065723 rs771443047 G T NAV2 
ENST0000039608
7 (one of longest 

transcripts) 
missense 

14/41| 
c.3173G>T| 

p.Gly1058Val 
0.99 0.165 

Calponin homology 
domain 

0 1 32 5.51 9.76 1 
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6.2.2.2. Secondary variants classed as pathogenic in Clinvar 

The USH2A rs148660051 (chr1: 215963510, C>T (hg19), c.10073G>A, p.Cys3358Tyr 

ENST00000366943) and the SLC9A3R1 rs35910969 (chr17: 72745313, C>G (hg19), c.328C>G, 

p.Leu110Val, ENST00000262613) are missense variants reported as pathogenic in Clinvar (Table 

6.5). The USH2A variant, here identified in a single individual (17275) in a heterozygous state  

(Table 6.6), has been reported as pathogenic in compound heterozygous state in patients with 

USH2, atypical Usher and non-syndromic retinitis pigmentosa (McGee et al., 2010; Le Quesne 

Stabej et al., 2012; Garcia-Garcia et al., 2011) and was also detected in Result Chapter 1 (Table 

3.1). This pathogenic variant had a MAF of 0.0057 (gnomAD_NFE), which did not meet the 

threshold to be included in the primary variant filtering (Figure 2.14). The SLC9A3R1 variant 

detected here in a single individual in heterozygous state (Table 6.5) has been previously reported 

as pathogenic in 2 unrelated patients (1 female and 1 male) with impaired renal phosphate 

absorption resulting in calcium nephrolithiasis and decreased bone mineral density with 

autosomal dominant inheritance (Karim et al., 2008). While recessive pathogenic variants in 

USH2A are a well-known cause of USH2 and have been a focus in this thesis, dominant pathogenic 

missense variants in SLC9A3R1 have been linked to human ARHL (Girotto et al., 2019), which 

makes SLC9A3R1 a potential candidate as secondary player in auditory processing risk. 
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Table 6.5. Secondary variants reported as pathogenic according to Clinvar 

Ind. Chr Pos (hg19) rs ID Ref Alt Gene Transcript 
Functional 
annotation 

Variant 
position 

(exon|DNA| 
protein) 

AF 
(gnomAD 

NFE)  

Protein  
Domain 

SIFT 
Poly 

Phen2 
CADD_ 
phred 

GERP++ 
_rs 

PhyloP 
Phast 
Cons 

Clinvar phenotype 
(inheritance) 

17275 1 215963510 rs148660051 C T USH2A ENST00000366943 missense 
51/73| 

c.10073G>A| 
p.Cys3358Tyr 

0.0057 
Fibronectin 

type III 
0 1 28.8 5.76 7.376 1 

Pathogenic USH2 
& RP (AR) 

465 17 72745313 rs35910969 C G SLC9A3R1 ENST00000262613 missense 
1/6|c.328C>G|

p.Leu110Val 
0.0241 

Between 
PDZ1 & 

PDZ2 
0.28 0.26 13.54 1.11 -0.095 0.435 

Pathogenic 
Nephrolithiasis/ 

osteoporosis (AD) 
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6.3. Discussion 

Five pathogenic/ likely pathogenic heterozygous variants within GRHL3, FAT4, IFT88, DIAPH1 and 

NAV2 were identified in four individuals out of 13 with sAPD, yielding a detection rate of 30%. 

Under the selection criteria to identify very rare pathogenic variants (not reported in 

gnomAD_NFE population) within candidate genes associated with closely related phenotypes to 

hearing/sAPD, no such variants were detected in the remaining nine individuals with sAPD. Each 

individual’s neurodevelopmental profile together with identified candidate genes and their 

potential role in APD are discussed below.  

6.3.1. GRHL3, DIAPH1 and USH2A in individual 17275 

Individual 17275 was found to carry a pathogenic heterozygous frameshift variant 

(c.1350_1353delTGAC, p.Asp451fs) in the cleft lip/palate gene GRHL3, which is classified as 

extremely intolerant for loss of function variants (pLI and o/e scores) (Table 6.3). The same 

individuals was also found to harbour a heterozygous likely pathogenic missense variant in the AD 

deafness gene DIAPH1 (c.880C>T, p.Arg294Cys) which was predicted to be damaging by six 

bioinformatics tools (Table 6.4) and another secondary heterozygous missense variant in the AR 

Usher syndrome gene USH2A (c.10073G>A, p.Cys3358Tyr), which has been previously reported as 

pathogenic in homozygous/compound heterozygous individuals with USH2 and/or RP (Table 6.5). 

6.3.1.1. Neurodevelopmental profile of 17275 

Individual 17275 showed word discrimination thresholds in quiet to be well within the expected 

normal range (taken from the 180 ALSPAC individuals with available scores), while his word 

discrimination thresholds in noise were elevated above the 95th percentile, assigning the sAPD 

status. Very early on (at six months), individual 17275 showed fine-and-gross motor coordination 

difficulties (Table 6.6). Between 2 and 4 years, both his expressive and receptive language 

(measured by vocabulary and grammar scores, number of unintelligible responses, verbal 

comprehension and VIQ scores) were below expected, indicating early language difficulties or 

delays (Table 6.6). The individual also suffered from recurrent middle ear infections (otitis media 

with effusion) between 8 months and 3.5 years of age (Table 6.6), which is a crucial time during 

which both receptive and expressive language develops (Paul and Roth, 2011). Recurrent OME 

can result in mild and temporary hearing loss, which might directly impact on developing 

language skills within those early years and in such a way contribute to the deficits of individual 

17275 in early receptive and expressive language. Nevertheless, individual 17275 had normal pure 

tone audiometry for both ears (mean hearing level at 0.5, 1, 2 and 4 kHz ≤ 20 dB HL) and normal 

middle ear functioning recorded at 7 years and average VIQ at 8 years (Table 6.6), suggesting the 
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earlier ear and language problems had cleared. The individual was clear of any overt hearing loss 

diagnosis or any psychiatric diagnosis at 7 and 7.5 years respectively (Table 6.6).  
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Table 6.6. Individual 17275 neurodevelopmental profile and proposed genotype 

Individual Neurodevelopmental profile (age) 1st gene (variant) 
MIM#; 
Inheritance; 
Phenotype 

2nd gene 
(variant) 

MIM#; 
Inheritance; 
Phenotype 

3rd gene 
(variant) 

MIM#; 
Inheritance; 
Phenotype 

17275 

-poor fine and gross motor coordination skills (6mths) 
-poor expressive and receptive language skills (2-4Y) 
-low average VIQ and Fullscale IQ; average PIQ (4Y) 
-average VIQ, PIQ and total IQ (8Y) 
-poor verbal comprehension on 1 WISC subtest (8Y) 
-impaired middle ear functioning (1.5-3.5Y) 
-recurrent middle ear infections (OME) (8m-3.5Y) 
-normal middle ear functioning and no middle ear infections (7Y) 
- hearing thresholds in normal range (7Y) 
-no hearing loss diagnosed (7Y) 
-no psychiatric clinical diagnosis (ADHD, oppositional/conduct 
disorder, pervasive developmental disorder, anxiety, phobia, 
depressive disorder) (7.5) 

GRHL3 
(c.1350_1353del 
TGAC; 
p.Asp451fs) 

606713; 
AD; 
cleft lip/ cleft 
palate 

DIAPH1 
(c.880C>T; 
p.Arg294Cys) 

-124900 (AD; Hearing 
loss, sensorineural 
(affecting all 
frequencies) 
 
-616632 (AR; Seizures, 
cortical blindness, 
microcephaly 
syndrome) 
 

USH2A 
(c.10073G>A; 
p.Cys3358Tyr) 

-276901 (AR; 
Usher 
Syndrome Type 
2) 
 
-613809 
(Retinitis 
pigmentosa 39) 
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6.3.1.2. Candidate genes in individual 17275 

GRHL3 

GRHL3 belongs to the family of three highly conserved grainyhead-like transcription factors 

(GRHL1-3) which play a crucial regulatory role in epithelial development, maintenance and 

homeostasis (Bray and Kafatos, 1991). While GRHL2 has been implicated in AD human age-related 

hearing impairment and deafness (Peters et al., 2002; Van Laer et al., 2008), mutations in GRHL3 

cause AD syndromic (Van der Woude Syndrome 2) and non-syndromic isolated cleft lip and palate 

(CL/P) (Peyrard-Janvid et al., 2014; Basha et al., 2018), and neural tube defects such as spina 

bifida (Lemay et al., 2017). Mouse Grhl3 is expressed early in development (at E8.5) in non-neural 

ectoderm adjacent to the neural plate, which undergoes folding to form the neural tube with 

widespread expression in the surface ectoderm, progressively increasing until E15.5 (Ting et al., 

2003). Furthermore, mouse Grhl3 is expressed in developing brain, localised specifically in the 

habenula (strongest levels), striatum and posterior lateral ventricles. The habenula is known to 

regulate locomotor and cognitive functions, including action planning and decision making, and 

operates to prevent over-stimulation of both serotonergic and dopaminergic systems (Hikosaka, 

2010). Behavioural tests on mice with conditionally deleted Grhl3 in the adult brain (as 

constitutive loss of Grhl3 causes early post-natal death) showed significant defects in locomotor 

activity with affected mice taking shorter, quicker and more frequent steps, as an indicator of 

hyperactivity related behaviours (Dworkin et al., 2017).  

A highlight in individual 17275’s development is his recurrent OME episodes between 8 months 

and 3.5 years of age which is likely to have impacted their early language development and 

hearing. Moreover, OME has been linked to cleft lip/palate with higher incidence amongst 

individuals with cleft lip/palate (Sheahan et al., 2003; Mangia et al., 2019) and so it is likely that 

auditory processing difficulties may be secondary. A recent scoping review looking at association 

of comorbidities with non-syndromic CL/P diagnosis summarised eight papers in the literature 

that reported auditory processing difficulties in the non-syndromic CL/P population (van Eeden 

and Stringer, 2020). The emerging theme was that children with non-syndromic CL/P were more 

likely to score poorly on behavioural tests, language processing with noise distractions and 

discrimination of non-verbal sounds tests (presentation overlapping with auditory processing 

difficulties) than age matched non-CL/P controls (van Eeden and Stringer, 2020). The fact that the 

ALSPAC individual 17275 carried a heterozygous pathogenic variant in GRHL3, a gene implicated 

in CL/P, and is suspected of having auditory processing difficulties (because of elevated word 

discrimination thresholds in noise) could be suggestive of common aetiological risk factors. It also 

needs to be noted that there was no available data on CL/P symptoms or diagnosis for individual 
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17275, so this data is very preliminary and only suggestive until further in-depth investigations of 

the role of GRHL3 in auditory processing are completed. 

DIAPH1 

DIAPH1 encodes the mammalian diaphanous-related formin-1 (mDia1), a protein that plays a role 

in the regulation of cell morphology and cytoskeletal organization (Al-Maawali et al., 2016). It is 

widely expressed in embryonic mouse forebrain and brainstem (including the ventricular and 

subventricular zone progenitor cells) and in the cerebral cortex, basal ganglia, hippocampus, 

thalamus and external granular layer of cerebellum during postnatal development (Ercan-

Sencicek et al., 2015). Neuhaus et al. found Diaph1 expression in the organ of Corti of mouse 

cochlea, specifically in the pillar cells (contributing to the rigidity of the organ of Corti) and at the 

base of OHCs and also in neuronal ear structures, including spiral ganglion neurons and the 

cochlear nerve (Neuhaus et al., 2017). Mutations in DIAPH1 have been associated with AD SNHL 

and AR microcephaly and seizures (Lynch et al., 1997; Ercan-Sencicek et al., 2015). There is a 

phenotype-genotype correlation with heterozygous, presumably truncating DIAPH1 mutations 

predominantly located within the Diaphanous-autoregulatory domain (DAD) (5 out of 7 reported 

mutations) causing AD deafness (in some cases associated with thrombocytopenia) (Lynch et al., 

1997; Stritt et al., 2016; Neuhaus et al., 2017; Kang et al., 2017; Baek et al., 2012; Ueyama et al., 

2016), while homozygous truncating DIAPH1 mutations located towards the middle of the gene 

and affecting the Formin Homology 2 (FH2) domain cause microcephaly (Ercan-Sencicek et al., 

2015; Al-Maawali et al., 2016). The FH2 domain is the central catalytic element of formins which 

nucleates actin filament formation and regulates filament elongation (Higgs and Peterson, 2005). 

The missense heterozygous c.880C>T (p.Arg294Cys) variant in 17275 individual is predicted to 

affect the FH3 domain, which has not been linked to causative mutations in either AD deafness or 

microcephaly before (Figure 6.2). The FH3 domain, which is structurally and functionally least 

conserved FH domain (Wallar and Alberts, 2003) is believed to mediate the subcellular localisation 

of mDia proteins (Kato et al., 2001). The DAD domain is highly conserved and shares a mutually 

exclusive binding site with Rho in the GBD/FH3 region which keeps the protein in inactive 

confirmation (Rose et al., 2005). A small region of conserved amino acids in the GDB/FH3 domain 

are considered to be putative DAD binding site. A p.Ala256Asp mutation (which is close proximity 

to the p.Arg294Cys identified here) was found to significantly reduced the affinity of DAD binding 

to mDia, but it did not affect Rho binding (Rose et al., 2005). This means the protein will not be 

able to stay in inactive conformation, which will affect the regulation of its function. However, no 

mutations with clinical relevance have been observed within the FH3 domain, and therefore their 

potential effect has not been studied in those circumstances. The p.Arg294Cys mutation changes 

the highly conserved arginine to cysteine residue, evidenced by the high conservation GERP, 

PhyloP and PhastCons scores (Table 6.5). The very low population MAF of 0.000008014 (gnomAD) 
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and the multiple pathogenic in silico predictions deem the detected DIAPH1 variant of particular 

interest, especially because individual 17275A carries other two pathogenic variant in GRHL3 and 

USH2A. On the individual’s genetic background, it is possible that the DIAPH1 variant is a 

hypomorph (causing loss of some of the protein’s activity compared to wild type) and as such 

acting as a risk variant that in combination with the other two pathogenic variants, further 

increases the overall risk of potential auditory processing difficulties. 

 

 

USH2A 

USH2A is the gene responsible for AR USH2A and Retinitis Pigmentosa (Section 1.3.3.1). The 

variant c.10073G>A (p.Cys3358Tyr) detected here has been reported as pathogenic in both USH2 

and RP, but also indicated as a RP-specific by multiple studies when in compound het state 

(McGee et al., 2010; Le Quesne Stabej et al., 2012; Garcia-Garcia et al., 2011), which would 

challenge its role in hearing. Nevertheless, based on the identification of the same pathogenic 

variant in USH carriers (Results Chapter 1) and evidence from Results Chapters 2 and 3 showing 

that USH2A variation is likely to play a role in APD risk, the c.10073G>A USH2A pathogenic variant 

is likely to contribute to APD susceptibility which may also be influenced by the identified variants 

in GRHL3, DIAPH1 in individual 17275.  

There has been no reported functional links or detected interactions between the GRHL3, DIAPH1 

and USH2A genes, therefore although the finding of pathogenic variants within those three genes 

in individual 17275 is of particular interest, their effect (whether combinatory or individually) on 

sAPD phenotype is unknown. It might be that in combination, the three variants contribute to a 

susceptibility to auditory processing difficulties, or it might be that they are unrelated and one or 

Figure. 6.2. Structure of DIAPH1 gene (ENST00000253811) with 28 exons and corresponding protein 
(adapted from (Wu et al., 2020)). The likely pathogenic variant detected here is located in exon 9 of the 
gene (highlighted in blue). Domains of DIAPH1 protein and locations of variants previously detected and 
are associated with heterozygous hearing loss are indicated above the protein diagram and the ones 
associated with homozygous microcephaly are under the protein diagram.  
 



161 
 

more are incidental findings, not directly involved in auditory processing aetiology (for example 

GRHL3 which role in the auditory system is unknown). Further genetic and functional studies of a 

diagnosed APD cohort and mouse models are required to investigate any overlapping pathways 

and understand the molecular links, if any, between these three genes. 

6.3.2. FAT4 and SLC9A3R1 in individual 465 

Individual 465 was found to have a pathogenic heterozygous splicing variant in the planar polarity 

gene FAT4 (c.11899+1G>T), which has a high intolerance score for LoF variants (pLI and o/e ratio) 

(Table 6.3). A secondary heterozygous missense variant, previously reported as pathogenic in 

heterozygous state, was also found in SLC9A3R1, known to have mutations that might lead to 

dominant inheritance of ARHL (c.328C>G, p.Leu110Val) (Table 6.5).  

6.3.2.1. Neurodevelopmental profile 

Individual 465 showed word discrimination thresholds in quiet to be at the higher end of the 

expected normal range (taken from the 180 ALSPAC individuals with available scores), while his 

word discrimination thresholds in noise were elevated above the 95th percentile, assigning the 

sAPD status. Very early on (at six months), individual 465 showed communication and gross motor 

coordination difficulties (Table 6.7). At 15 months he had early receptive language difficulties and 

between 2 and 3 years of age he also showed expressive language difficulties (Table 6.7). Later on, 

at 8 years, individual 465 was reported to stutter/stumble when speaking; he had a low NWR 

score and an average Verbal IQ, while his Performance IQ was very low (below the expected 5% of 

the tested population) (Table 6.7). Further assessment of cognitive function, done through the 

Weschler Intelligence Scale for Children (WISC) confirmed the poor performance of individual 465 

on verbal and non-verbal tests: slightly worse performance than controls on vocabulary and 

comprehension subtests (testing the child’s understanding of the meaning of different words and 

situations) and very poor performance compared to controls on block design and object assembly 

(testing the ability to copy a specific pattern and to put puzzles together) (Table 6.7). Individual 

465 also showed recurrent ear problems between the age of 1.5 and 4 years which consisted of 

earache, ear discharge (including pus/mucus), sore and red ears and pulling/scratching of ears 

(Table 6.7). Hearing abilities of individual 465 were reported to get worse during a cold between 

3.5 and 4.5 years and a hearing problem was noted by a health visitor at 3 years (Table 6.7). 

However, no clinical referral was made and the child’s pure tone audiometry at 7 years was 

normal for both ears (mean hearing level at 0.5, 1, 2 and 4 kHz ≤ 20 dB HL) with no hearing 

impairment and no psychiatric disorder diagnosed (Table 6.7).
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 Table 6.7. Individual 465 neurodevelopmental profile and proposed genotype 

Individual Neurodevelopmental profile (age) 1st gene (variant) 
MIM#; 
Inheritance; 
Phenotype 

2nd gene (variant) 
MIM#; 
Inheritance; 
Phenotype 

465 

-poor communication and gross motor coordination skills (6mths) 
-poor expressive and receptive language skills (2-3Y) 
-low Nonword repetition score (8Y) 
-average VIQ and very low PIQ, below average total IQ (8Y) 
-poor perceptual reasoning on 2 WISC subtests (8Y) 
-poor verbal comprehension on 1 WISC subtest (8Y) 
-stuttering/stumbling when speaking (8Y) 
-recurrent ear problems (earache, ear discharge, red ears) (1.5-3.5Y) 
-impaired middle ear functioning and middle ear infection (1.5Y) 
-hearing worsens during a cold (3.5Y) 
-health visitor noticed a problem with hearing (3Y) 
-normal middle ear functioning and no middle ear infections (7Y) 
- hearing thresholds in normal range (7Y) 
-no hearing loss diagnosed (7Y) 
-no psychiatric clinical diagnosis ( ADHD, oppositional/conduct 
disorder, pervasive developmental disorder, anxiety, phobia, 
depressive disorder ) (7.5Y) 
-no known disorder reported by family (dyslexia, dyspraxia, dysgraphia, 
dysorthographia, dyscalculia, ASD) (7.5Y) 
-no recognised difficulties/delays requiring special education (7.5Y) 

FAT4  
(c.11899+1G>T) 

616006; AR;  Hennekam 
lymphangiectasia-
lymphedema syndrome 2 
 
615546; AR;  Van 
Maldergem syndrome 2 

SLC9A3R1  
(c.328C>G; p.Leu110Val) 

612287, AD  
Nephrolithiasis/osteo
porosis, 
hypophosphatemic, 2 
 
AD Adult-related 
hearing loss (Girotto 
et al. 2019) 
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6.3.2.2. Candidate genes in individual 465 

FAT4, the fat atypical cadherin 4, is the mammalian homolog of Drosophila Fat4, which plays a key 

role in vertebrate planar polarity (Saburi et al., 2012). Planar polarity (as explained in Section 

1.3.4.1) is the organisation of cells within the plane of a tissue, as shown by the orderly 

arrangements of hair cells in the cochlea. Fat4-/- mice exhibit distinctive planar polarity 

phenotypes, including misorientation of hair cells (predominantly in the third row OHCs) and 

short and deformed cochleae in inner ear (Mao et al., 2011; Saburi et al., 2012), illustrating the 

role of the Fat4 in inner ear development. Fat4 is expressed in all layers of the developing mouse 

brain, and in both the neural tube and the intervertebral discs during development (Rock, 

Schrauth and Gessler, 2005). Vangl2, a core “planar cell polarity” gene important in axon turning 

for innervation of OHCs (Ghimire, Ratzan and Deans, 2018), has been shown to cooperatively 

interact with Fat4, where mutating one copy of Vangl2 significantly increased the severity of 

cochlear ducts shortening in Fat4–/– cochlea (Saburi et al., 2012). Furthermore, the Dchs1, 

encoding another protocadherin that is a ligand to Fat4, functions with Fat4 to control tissue 

patterning and is essential in the development of several organs, including ear and cochlea (Mao 

et al., 2011). Homozygous mutations in the human FAT4 cause Van Maldergem syndrome (VMS), 

an AR disorder characterised by intellectual disability, craniofacial, auditory malformations 

resulting in hearing loss, renal, skeletal and limb malformations (Cappello et al., 2013). Biallelic 

mutations in the same gene also cause Hennekam lymphangiectasia-lymphedema syndrome-2, 

which is a distinct disorder with lymphedema with overlapping features (such as intellectual 

disability, dysmorphic features and hearing loss in some patients) (Alders et al., 2014). Cases with 

mild manifestations of VMS have also been reported (van der Ven et al., 2017), which might 

explain the low PIQ in individual 465 and his early ear recurrent discomfort (earache, discharge, 

red/sore ears), OME at 1.5Y and concerns over a hearing problem with no overt hearing loss as a 

result of a monoallelic splicing LOF FAT4 variant. As the expression of Fat4 in mouse ear has not 

been studied, its expression in the mouse organ of Corti was examined using the gEAR portal 

(Hertzano and Orvis, https://umgear.org/), which displays data from the mouse organ of Corti at 

postnatal day P0 to P7. Fat4 shows very little expression in the hair cells, but is strongly expressed 

in non-sensory cells at P0 (Cai et al., 2015). The direct role of Fat4 in inner ear OHCs’ orientation 

and the FAT4’s causative role in human disease associated with hearing loss, makes the gene a 

relevant candidate for sAPD.  

SLC9A3R1 encodes the Na+/H+ Exchange Regulatory factor 1 (NHERF1) protein, which belongs to 

NHERF family of scaffolding proteins. It has been shown that protein-protein interactions 

involving NHERFs take place in the cochlea and a Nherf1 KO mouse displays hearing deficits with 

hair cell anomalies (Kamiya et al., 2014). A recent study by Girotto et al confirmed the role of 
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SLC9A3R1 in the hearing system’ function and development and demonstrated its role in human 

adult-related hearing loss (Girotto et al., 2019). A missense variant in SLC9A3R1 (c.539G>A) was 

detected in two unrelated patients with ARHL, characterised by severe to profound high-

frequency hearing loss (Girotto et al., 2019). However, the same heterozygous SLC9A3R1 variant 

detected here (c.328C>G) was previously reported as pathogenic in 2 unrelated patients with 

impaired renal phosphate absorption resulting in calcium nephrolithiasis and decreased BMD 

(Karim et al., 2008) (suggesting this might be an unrelated finding), but hearing abilities of those 

patients were not tested and therefore are unknown. The deleterious effect of c.328C>G, 

suggested by SIFT, PolyPhen and CADD is not very strong (Table 6.5) and the amino acid Leu at 

position 110 of the protein is not very conserved (Table 6.5), suggesting that the effect of the 

variant on the protein might not be as deleterious as suggested by Karim et al. to cause disease. 

Nevertheless, the involvement of SLC9A3R1 in auditory processing skills is of interest as the 

contribution of c.328C>G to hearing abilities might be subtle enough to contribute to such 

difficulties and would require further investigations.   

6.3.3. NAV2 in individual 16005 

Individual 16005 was found to carry a likely pathogenic heterozygous missense variant in the 

candidate deafness gene NAV2 (c.3173G>T), which was predicted to be damaging by six 

bioinformatics tools (Table 6.4).  

6.3.3.1. Neurodevelopmental profile 

Individual 16005 showed word discrimination thresholds in quiet to be at the higher end of the 

expected normal range (taken from the 180 ALSPAC individuals with available scores), while his 

word discrimination thresholds in noise were elevated above the 95th percentile assigning the 

sAPD status. Between 2 and 3 years of age, individual 16005 showed expressive language 

difficulties with grammar, plurals and vocabulary scores placed in the expected bottom 5% of the 

tested population (Table 6.8). He also never babbled and never used gestures to get what he 

wanted below the age of 3, suggesting a delay in expressive language development. His Verbal IQ 

measured at 4 years (WPPSI) and later at 8 years (WISC) was of average performance (on a 

general population level), however WISC information and comprehension scores were below the 

expected 10% of the tested population, illustrating that some difficulties with verbal 

comprehension remained (Table 6.8). Individual 16005 also experienced earache before 1.5 and 

2.5 years of age and hearing that deteriorated during a cold at 3.5 years but had normal pure tone 

audiometry at 7 years and normal middle ear functioning recorded between 1.5 and 7 years 

(Table 6.8). 
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Table 6.8. Individual 16005 neurodevelopmental profile and proposed genotype 

Individual Neurodevelopmental profile (age) 
 Gene 
 (variant) 

MIM#; 
Inheritance; 
Phenotype 

16005 

-poor expressive language skills (2-3Y) 
-child never babbled or used gestures to communicate (3Y) 
-poor receptive language (comprehension) (4Y) 
-average VIQ, PIQ and Fullscale IQ (4Y) 
-average VIQ, high average PIQ and average IQ (8Y) 
-poor verbal comprehension on 1 WISC subtest (8Y) 
-poor general knowledge on 1 WISC subtest (8Y) 
-some ear problems (1.5-2.5Y) 
-hearing worsens during a cold (3.5Y) 
-normal middle ear functioning and no middle ear infections 
(1.5-7Y) 
-normal pure tone air conduction (7Y) 
-no hearing loss diagnosed (7Y) 
-no psychiatric clinical diagnosis (ADHD, oppositional/conduct 
disorder, pervasive developmental disorder, anxiety, phobia, 
depressive disorder) (7.5Y) 
-no known disorder reported by family (dyslexia, dyspraxia, 
dysgraphia, dysorthographia, dyscalculia, ASD) (7.5Y) 
 
-no recognised difficulties/delays requiring special education 
(7.5Y) 

NAV2 
(c.3173G>T; 
p.Gly1058Val) 

None 
Sensory deficits 
in mice (Peeters 
et al., 2004) 
Associated with 
risk of AD (Wang 
et al., 2018) 
 

 

6.3.3.2. Candidate gene in individual 16005 

Neuron navigator 2 (Nav2) is the closest human homolog and ortholog of Caenorhabditis elegans 

UNC-53, showing a conserved function in axon elongation and cell migration (Muley et al., 2008; 

Stringham and Schmidt, 2009). Hypomorphic mutant mice, containing a gene trap which 

eliminates the expression of the full-length Nav2 transcript, are ataxic and show impaired sense of 

hearing (with increased startle thresholds compared to wild-type), together with defects in cranial 

nerve development and cerebellar development (McNeill et al., 2010; Peeters et al., 2004). A 

recent study looking into the expression of mouse Nav2 in CNS throughout development showed 

most abundant expression in the cerebellum, hippocampus, cortex, and thalamus during late 

embryogenesis and early postnatal life, suggesting a role of NAV2 in CNS development (Pook, 

Ahrens and Clagett-Dame, 2020). In human disease, NAV2 has been suggested as a candidate 

Alzheimer’s disease risk gene (Wang et al., 2017a). As the expression of Nav2 in mouse ear has 

not been studied, its expression in the mouse organ of Corti was examined using the gEAR portal 

(Hertzano and Orvis, https://umgear.org/), which displays data from the mouse organ of Corti at 

postnatal day P0 to P7. Nav2 shows to be expressed at high levels in both sensory hair cells and in 

supporting cells at P0 (Cai et al., 2015), supporting its role in hearing and its candidate role in 

deafness and possibly sAPD. 
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6.3.4. IFT88 in individual 518  

Individual 518 was found to carry a heterozygous pathogenic frameshift deletion variant in the 

planar cell polarity gene IFT88 (c.2445delG), which is not expected to result in loss of function 

(pLI=0) but might be sufficient to increase risk (Table 6.3).  

6.3.4.1. Neurodevelopmental profile 

Individual 518 showed word discrimination thresholds in quiet to be well within the expected 

normal range (taken from the 180 ALSPAC individuals with available scores), while his word 

discrimination thresholds in noise were elevated above the 95th percentile, assigning the sAPD 

status. Individual 518 showed a difficulty with very early communication (at 6 months) and 

“sometimes talked with words in the wrong order” at 3 years, followed by a poor score on WPSSI 

visual special reasoning subtest block design at 4 years (Table 6.9). However, his later language 

scores were within the expected rage with Verbal IQ at 8 years being above average, suggesting 

that the earlier language problems showed slight delay rather than a deficit. Between 8 months 

and 3.5 years individual 16005 showed recurrent abnormal middle ear functioning affecting both 

ears and leading to otitis media with effusion (Table 6.9). Later tests performed at 7 years showed 

normal hearing sensitivity and no sign of otitis media, suggesting the earlier middle ear 

malfunctioning had cleared (Table 6.9).  

Table 6.9. Individual 518 neurodevelopmental profile and proposed genotype 

Individual Neurodevelopmental profile (age) 
 Gene 
 (variant) 

MIM#; 
Inheritance; 
Phenotype 

518 

-poor communication (6mths) 
-average VIQ, PIQ and Fullscale IQ (4Y) 
-poor visual spatial reasoning on 1 WPPSI subtest (4Y) 
-high average VIQ, average PIQ and high average Total IQ (8Y) 
-some ear problems (1.5) 
-sometimes talking with the words in the wrong order (3Y) 
-impaired middle ear functioning (8mths-3.5Y) 
-recurrent middle ear infections (OME) (8m-3.5Y) 
-normal pure tone air conduction (7Y) 
-no hearing loss diagnosed (7Y) 
-no psychiatric clinical diagnosis (ADHD, oppositional/conduct 
disorder, pervasive developmental disorder, anxiety, phobia, 
depressive disorder) (7.5Y) 
-no known disorder reported by family (dyslexia, dyspraxia, 
dysgraphia, dysorthographia, dyscalculia, ASD) (7.5Y) 

IFT88 
(c.2445delG| 
p.Ile816fs) 

None 
 
Candidate 
gene for AD 
craniofacial 
abnormalities
(Tian et al., 
2017) 
 
AR retinal 
denegation 
(Chekuri et 
al., 2018) 
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6.3.4.2. Candidate gene in individual 518 

IFT88 codes for intraflagellar transport protein 88 (IFT88), which is a core component of IFT 

complex B and is required for the assembly and maintenance of primary cilia and flagella across 

species (from unicellular organisms to high-order mammals) (Rosenbaum and Witman, 2002). 

Ift88 is expressed in kinocilia of the organ of Corti in mouse cochlea (Jones et al., 2008). Null 

mutations result in embryonic lethality in mice due to severe left-right symmetry defects (Murcia 

et al., 2000), however, conditional inactivation of Ift88 in cochlea (ablating kinocilia in cochlea) 

causes stereocilia bundle misorientation and shortening and widening of the cochlea (Jones et al., 

2008), indicating the role of Ift88 in planar cell polarity regulation. Jones et al., also showed that 

Ift88 interacts with Vangl2, a core planar cell polarity gene (Jones et al., 2008). Furthermore, 

functional studies in zebrafish inner ear hair cells have shown the association of Ift88 with USH1 

proteins where the reported similarity in of hair cells phenotype in mutated chd23, ush1c, myo7a 

and ift88 mice (bent/splayed stereocilia and fewer hair cells forming stereocilia) suggest that the 

genes might function in same or overlapping developmental processes (Blanco-Sánchez et al., 

2014). Chekuri et al. prosed IFT88 as a candidate gene for AR inherited retinal denegation 

(resulting from two compound heterozygous mutations in two affected sisters) (Chekuri et al., 

2018). Interestingly, conditional loss of Ift88 in the cranial neural crest cells has been shown to 

lead to craniofacial abnormalities with Tian et al. proposing IFT88 as a candidate gene for AD 

craniofacial abnormalities such as cleft lip and palate with variable penetrance (in three affected 

siblings with heterozygous missense variant) (Tian et al., 2017). The AD inheritance makes the 

IFT88 frameshift variant a very plausible candidate for the presentations in individual 465: 

recurrent early OME which may be linked to cleft lip/palate symptoms, which can impact on 

hearing and language skills. There have been no reports of IFT88 pathogenic variants causing 

hearing phenotypes in humans yet, however based on expression data and mouse models, the 

role of IFT88 in hearing processes is strongly suggested. 

It needs to be noted, however, that the IFT88 variant c.2445delG reported here, is a frameshift 

variant in the last exon of the transcript and so its effect on the amount of expressed protein is 

questionable and would need further analysis. Moreover, similarly to individual 17275, there was 

no available data on CL/P symptoms or diagnosis for individual 518, so this data is very 

preliminary and only suggestive until a molecular overlap between cleft lip/palate, OME and 

auditory processing is further demonstrated.  
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6.4. Conclusion 

 The overall goal of this chapter was to identify pathogenic coding variants with large effect that 

might be able to explain the poor performance on recognising speech in noisy environment (as a 

potential sign of suspected APD) in a small number of ALSPAC children. The results here support 

pathogenic variants in four individuals. Of note, individual 17275 and 425 had pathogenic variants 

identified in multiple genes: GRHL3, DIAPH1 and USH2A (individual 17275) and FAT4 and SLC9A3R 

(individual 425). No direct interaction between those genes detected in each individual have been 

reported, so their overall contribution to APD-related phenotypes would need to be investigated 

further. The identification of pathogenic variants in candidate genes in four individuals (30% 

detection rate) supports the conclusion that rare pathogenic variants with large effect can explain 

some APD risk (in a small number of individuals selected for a specific phenotype). This finding is 

supported by other studies in neurodevelopmental disorders, such as childhood apraxia of speech 

(CAS), which has shown FOXP2 disruptions as sufficient (monogenic) causes in some individuals 

and families (Fisher et al., 1998), while others show a heterogenous, more complex aetiology 

(Worthey et al., 2013; Eising et al., 2019).  

The genes with pathogenic variants identified here (GRHL3, DIAPH1, FAT4 and IFT88) are all 

substantiated candidates for sAPD. Two genes are cleft lip/palate genes (GRHL3 and IFT88) with 

non-syndromic cleft lip/palate disorders shown to be linked to recurrent otitis media episodes 

and worse auditory processing skills, suggesting that the three conditions might have overlapping 

molecular pathways. Two genes (FAT4 and IFT88) are involved in planar polarity, which is a crucial 

step of development especially in the inner ear, and thus might be related to auditory processing 

skills through a reduced ability to hear properly, which is a subtle deficit rather than an overt 

impairment. Three of the genes (FAT4, GRHL3 and DIAPH1) show to be expressed in the brain, 

which is consistent with the view of APD being a higher order disorder. NAV2 is a candidate 

hearing gene and has not yet been detected in human disease, so its role in auditory processing 

would require more evidence.  Furthermore, the findings here demonstrate the potential validity 

of larger-scale genetic studies in some cases of APD which makes WES/WGS a valid approach that 

could identify novel genes with high rare penetrance variants that contribute to APD. 
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7. Overall Discussion 

7.1. Summary of findings 

Previous research in a large family, affected by a severe language disorder with auditory 

processing difficulties, showed a heterozygous stop-gain USH2A variant (with very strong 

evidence of pathogenicity) which co-segregated with the disorder (Perrino et al., 2020). Given the 

role of USH2A in syndromic hearing loss (homozygous USH2A mutations causing USH2) (Eudy et 

al., 1998), the location of its protein within stereocilia links in inner ear OHCs (Adato et al., 2005a) 

and the role of OHCs in selective amplification, facilitating auditory perception (Froud et al., 2015; 

Murakoshi, Suzuki and Wada, 2015), USH2A represented a clear candidate for studying its role in 

APD. Due to the overlapping and well-studied function of typical Usher syndrome genes in 

stereocilia development, the current thesis extended the early investigations by Perrino et al., 

hypothesising that pathogenic heterozygous variants in eleven USH causing genes (MYO7A, 

CDH23, PCDH15, USH1C, USH1G, CIB2, USH2A, ADGRV1, WHRN, CLRN1 and HARS) have a subtle 

effect on developmental profiles in ALSPAC carrier individuals (H1). Hypothesis 2 proposed that 

common variants in Usher genes have an effect on hearing, auditory processing and/or language 

abilities as part of a complex genetic model (H2), while hypothesis 3 focussed on multiple rare 

variants across Usher gene regions and their complex effect on auditory processing, hearing and 

language (H3). Hypothesis 4 suggested that difficulty discriminating words in noisy environment 

(as a potential sign of sAPD) in a small number of ALSPAC children can be explained by rare coding 

pathogenic variants (H4). 

Findings from Results Chapter 1 demonstrated the association of heterozygous USH2A, MYO7A, 

CDH23 and USH1C pathogenic variants with subtle problems in hearing and delays in early 

language milestones, supporting H1. Moreover, no one individual neurodevelopmental measure 

could be taken as a “clinical marker of deficit” of Usher carriers. This suggested a more complex 

model of interaction and susceptibility, which was explored under H2 (Results Chapter 2) and H3 

(Results Chapter 3), proposing that USH common and rare variants contribute to altered hearing 

and/or language abilities. Direct and indirect associations were observed between USH2A, CLRN1 

and PCDH15 common SNPs and low-frequency hearing thresholds, early language markers and 

language outcomes (DLD) (Results Chapter 2) and between USH2A, CLRN1 and ADGRV1 rare 

variants and mid-frequency hearing thresholds or language markers (VIQ and NWR) (Results 

Chapter 3). These findings demonstrated the important role of common and rare risk variants 

within Usher genes in complex models of hearing, auditory processing and language. Moreover, 

they suggested that the combination of heterozygous USH pathogenic variants in a genomic 
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background of increased risk (through inheritance of other common and rare variants) may lead 

to increased susceptibility to APD. 

Examining the contribution of rare variants on a genome-wide level, in Results Chapter 4, H4 

proposed that pathogenic coding variants with large effect can explain poor performance on a 

surrogate measure of auditory processing difficulties in a small number of APD suspected 

children. H4 was supported by the identification of pathogenic variants in four of thirteen sAPD 

individuals highlighting GRHL3, DIAPH1, FAT4 and IFT88 as novel candidate genes for APD. Taken 

together, this research supports emerging ideas around genetic complexity and indicates a 

continuous model of complex APD genetic risk that includes multiple interacting factors. 

Moreover, it provides potential risk APD candidates that can shed light into the molecular 

pathways underlying difficulty listening in noise and advance our understanding of the 

pathophysiology of APD. This can further improve detection and diagnosis of APD, which will also 

lead to more appropriate APD- specific therapy for those affected. 

7.2. Relationship between APD and language 

The USH carriers showed delays in language milestones, as did the suspected APD (sAPD) group 

individuals, indicating that a correlate of APD is language delay (supported from both genetic 

driven and phenotype driven approach in Result Chapters 1 and 4). This adds to the literature 

which describes overlaps between language and auditory processing based on examining 

populations with APD/sAPD, speech and language disorders (SLD) or other related problems such 

as mild to moderate SNHL (Dawes and Bishop, 2009; Ferguson et al., 2011; Sharma, Purdy and 

Kelly, 2009; Halliday, Tuomainen and Rosen, 2017; Bishop, Hardiman and Barry, 2012). The 

correlation data between APD and SLD which currently exists is poor at distinguishing causal 

models (summarised in Section 1.2.1) as it based on behavioural/electrophysiological tests, but 

not molecular data. This thesis is the first study to examine correlations on a genetic basis and 

confirm that auditory perception is a building block of communication and language 

development. The overlaps observed in this work may indicate overlapping gene effects between 

hearing, auditory processing and language or from auditory processing difficulties, affected 

directly by the gene variants, having an indirect negative effect on early language development, 

supporting the risk factor model. This work therefore demonstrates that the genetic architecture 

of APD is likely to be complex and comparable to the current model of developmental disorders of 

speech and language with which it overlaps phenotypically. This further suggests that just as DLD, 

APD is influenced by the combination of many genetic and environmental risk factors (Chen et al., 

2017; Gialluisi et al., 2014; Newbury et al., 2009; Villanueva et al., 2015) and yet simplex familial 

cases of APD with private high penetrance variants are likely to exist, similar to childhood apraxia 

of speech (Fisher et al., 1998). To further unravel the relationships between APD and speech and 
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language disorders on a molecular level, further work would need to be undertaken and is 

discussed in Section 7.6. 

7.3. Relationship between APD and hearing 

Carriers of pathogenic USH gene variants (largely represented by USH2A carriers) showed subtle 

hearing difficulties that did not lead to an overt hearing impairment, suggesting a subclinical 

hearing deficit. Under this model, a subclinical impaired function in the peripheral auditory 

system (affecting the ear) can result in long-term changes that may persist even after normal 

peripheral function is restored and therefore have a negative impact on auditory processing 

(Moore and Hunter, 2013). People with normal hearing as measured on the standard audiogram, 

including those with APD, may thus have very slight, yet functionally significant hearing loss that 

goes undetected. The hypothesis that auditory processing difficulties/poor listening skills in 

background noise result from a subclinical hearing deficit has been supported by previous 

literature (Badri, Siegel and Wright, 2011; Saxena, Allan and Allen, 2015; Hoben et al., 2017). Two 

of those studies suggested that dysfunctional OHCs and abnormal acoustic reflex (both important 

auditory system feedback mechanisms) could impact upon speech perception in background 

noise in children with listening difficulties or suspected APD (Hoben et al., 2017; Saxena, Allan and 

Allen, 2015). This fits well with the present results supporting the hypothesis that USH2A may 

represent a risk factor for APD: a complete loss of Ush2a in mouse models preferentially affects 

OHCs, leading to overt hearing loss (Liu et al., 2007), while a heterozygous mutation in USH2A is 

hypothesised to preserve some of the OHC function, which may lead to subtle malfunction that 

could impact hearing in noise, but preserve hearing in quiet. Moreover, from the investigated 

eleven USH genes as candidates for APD, five (USH2A, PCDH15, CDH23, ADGRV1 and USH1C) 

showed association to low-and/or-mid-frequency hearing abilities. Such results of subtle 

differences in hearing abilities among individuals with risk variants in USH genes were expected 

because of their role in syndromic and/or or non-syndromic deafness. Moreover, they represent 

an example of allelic hierarchy where multiple variants within the same gene display different 

types of hearing phenotypes (Lenassi et al., 2015): recessive pathogenic USH2A variants are 

associated with high-frequency deafness and/or RP in USH2 while common risk variants within 

the same gene are associated with altered abilities at low-frequency hearing.  

7.4. Genetic models underlying APD and genetic contributions 

The different approaches applied in this thesis to investigate the genetic contributions to APD 

suggest that APD is a heterogeneous disorder following a complex genetic model, influenced by 

genetic variants with large effect (Result Chapter 4), and genetic variants with small effect, 

contributing to risk (Result Chapter 1- 3). This conclusion is in line with other neurodevelopmental 
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disorders with heterogeneous presentation, combining a complex interplay between genetic 

factors of different effect size (some large, some small) (Gaugler et al., 2014; Griswold et al., 2015; 

Niemi et al., 2018; Satterstrom et al., 2020). 

Furthermore, this thesis offers examples of deafness genes likely to be involved in the 

susceptibility to APD phenotypes and potential cellular pathways, with the caveat that this work 

has only captured preselected genes known to underlie deafness.  

From the eleven USH genes, investigated for association to hearing and language phenotypes 

(Result Chapters 1-3), the strongest contributor for APD susceptibility remains USH2A as first 

explored by Perrino et al. Across the three genetic models (rare Mendelian, common risk model 

and gene-based rare risk model), USH2A pathogenic heterozygous variants, common and rare risk 

variants showed consistent contribution to hearing and/or language abilities. In addition, Perrino 

et al. found that children carriers of pathogenic heterozygous USH2A variants had increased low-

frequency hearing thresholds (+1.2 dB HL at 500 Hz), which was consistent with other reports of 

obligate USH carriers from the literature (van Aarem et al., 1995; Wagenaar et al., 1995). 

Moreover, association analyses including common risk variants illustrated that USH2A has a direct 

influence upon low-frequency hearing abilities and an indirect influence upon language that is, in 

part, modulated by hearing. In support of the link between subtle hearing abilities and language, 

an association between mild/moderate SNHL and poorer phonological processing (the use of 

sounds to process spoken and written language) has been recognised in previous reports (Wake 

et al., 2006; Briscoe, Bishop and Norbury, 2001). These findings illustrate that even a very mild 

problem with hearing can lead to a reduction in a particular language skill that together with 

other risk factors can increase the susceptibility to impairment in other domains of language. The 

usherin protein functions as a lateral link providing support between stereocilia and USH2A is 

expressed transiently during development (Adato et al., 2005a), suggesting a key role in 

establishing stereocilia organisation early on. Although USH2A is found in both IHC and OHC, its 

knock-out disproportionally affects OHCs, leading to overt hearing loss specifically at high 

frequencies (Liu et al., 2007). The low-frequency hearing abilities being affected because of a 

more complex USH2A risk model therefore suggests that USH2A risk variants can increase the 

susceptibility to an APD phenotype through the subtle disruption of feedback mechanisms by 

OHCs.  

Although USH2A is primarily expressed in cochlea and retina, but not in the brain, a recent study 

by Perrino et al. provides a molecular explanation to the effects of USH2A genetic variation in CNS 

(Perrino, Newbury and Fitch, 2021). Heterozygous Ush2a mice showed an increased right superior 

olivary complex (SOC) volume compared to a decreased SOC volume in homozygous knock-out 

Ush2a mice (Perrino, Newbury and Fitch, 2021). These findings suggested that altered cochlear 

development, as a result of usherin malfunction or dysfunction, impacts higher order auditory 
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processing at both functional and structural level, but with different consequences for 

heterozygous compared to homozygous subjects. 

Findings presented in Results Chapter 4, investigating genetic variants with large effect that could 

contribute to a sAPD phenotype, offer further insight into potential novel molecular pathways. 

Two frameshift heterozygous variants, one in GRHL3 (p.Asp451fs) and another one in IFT88 

(p.Ile816fs) were detected in two individuals with very similar phenotypes of recurrent middle ear 

infections in early life, early language subtle deficits, typical audiogram and no recognised clinical 

disorder. Both genes are implicated in cleft lip/palate pathology (Basha et al., 2018; Tian et al., 

2017), which is known to be associated with higher incidence of OME (Sheahan et al., 2003), 

which is also a well-recognised risk factor to secondary APD. IFT88 is known to be expressed in the 

organ of Corti and plays a role in planar cell polarity, while the expression of GRHL3 in inner ear is 

not known, however, GRHL3 is expressed in the brain and is known to regulate cognitive function. 

How and if their pathophysiological pathways overlap with APD would need further investigations 

but is nevertheless a valuable finding. It should to be noted that no data was available for cleft/lip 

palate symptoms for these individuals, therefore these conclusions are only suggestive. 

A splicing heterozygous pathogenic variant in FAT4 (c.11899+1G>T) was found in one more sAPD 

individual presenting with some early expressive and receptive deficits and recurrent ear 

problems with very low PIQ, average VIQ, no hearing loss and no diagnosed clinical disorder. 

Homozygous mutations in FAT4 are a known cause of Van Maldergem syndrome, characterised 

with intellectual disability, craniofacial and auditory malformations, leading to hearing loss, renal 

and skeletal malformations (Cappello et al., 2013). However, cases with milder phenotypes and 

compound heterozygous mutations have been reported (van der Ven et al., 2017), suggesting a 

phenotypic variability of the syndrome. Although not explored before for FAT4, the phenotypic 

variability could be linked to heterozygous pathogenic variants (for example the FAT4 

c.11899+1G>T variant) which could result in some preservation of the protein function and 

therefore cause milder symptoms including auditory deficits. This view is similar to the subtle 

hearing effects seen in USH2A heterozygous individuals compared to homozygous USH2A 

pathogenic variants which cause hearing loss in Usher syndrome.  

7.5. Limitations 

The current work has a number of important limitations that should be considered. 

Firstly, due to the small samples size of USH carriers (N= 17) and sAPD cohort (N= 13), no firm 

conclusions can be drawn as one or two individuals with extreme phenotypes can skew the 

dataset considerably. A larger sample size from a targeted population is needed to increase the 

statistical power of the findings. This is also true for the ALSPAC genotype (N= 7,141) and ALSPAC 

UK10K (N= 1,681) core datasets used for association analyses- much bigger populations are 
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needed to detect subtle effects of risk variants, which will also improve on the statistical power 

and replicate any true associations. There are other large developmental cohorts which include 

genetic and phenotype data to potentially study longitudinal hearing/auditory processing skills in 

relation to genetic variation. Examples of such cohorts are: the Norwegian Mother, Father and 

Child Cohort Study (MoBa) ( https://www.fhi.no/en/studies/moba/) which includes over 90,000 

pregnant women, Born in Bradford cohort (https://borninbradford.nhs.uk/research/documents-

data) with over 13,500 children and their parents available, and the Millennium Cohort Study 

(MCS) (https://cls.ucl.ac.uk/cls-studies/millennium-cohort-study/), which follows the lives of 

around 19,000 young people across the UK. Although these cohorts primarily rely upon 

questionnaire-based measures and their available hearing measures are not as extensive as the 

ones within ALSPAC, they may still be suitable to study alongside ALSPAC. 

Secondly, the sAPD cohort was selected based on performance on two measures at 5 years of 

age. Although word discrimination threshold is a speech recognition test that was performed in 

quiet as well as in noisy conditions, offering selection of individuals who struggle to hear speech in 

noise (reflecting the most common complaint in individuals with APD), it is not a typical auditory 

diagnostic assessment included in the APD battery (Campbell et al., 2019). Therefore, the sAPD 

cohort of 13 children includes individuals with listening difficulties in noise that might reflect a 

more global deficit (such as cognition) or secondary auditory deficit as a result of episodes of 

middle ear infections (such as OME) rather than a specific auditory deficit. Moreover, measures 

utilised to review the broad neurodevelopmental profile for sAPD individuals were available up to 

the age of 14, with no later milestones to evaluate neurodevelopment in adult life. This further 

supports the notion that selection of sAPD individuals based on the two measures at an early age 

(at 5 years) might have in some cases led to inclusion of individuals with subtle hearing/listening 

difficulties at young age (with secondary APD perhaps), who develop a recognisable hearing loss 

with an adult onset later in life. It is assuring, however, that all sAPD individuals selected here 

show some degree of language deficit/delay and have normal hearing sensitivity with no obvious 

disorders diagnosed. Moreover, some individuals showed poorer PIQ, which fits with a possible 

auditory processing deficit (either as a developmental APD or part of a subtle language disorder) 

described in other studies (de Wit et al., 2016).  

Thirdly, the analysis of coding regions applied on sAPD individuals only shortlisted the most 

obvious candidates, which included very rare (novel in gnomAD_NFE population) and strongly 

pathogenic variants. In this way variants that have a higher allele frequency but are still 

considered rare (for example MAF ≤ 0.01) and may be relevant, have been missed, which might 

explain why no candidate variants were detected in the nine remaining sAPD individuals. This 

would also lead to any other contributing variants to the phenotypes to also remain undetected. 

Moreover, none of the detected candidate variants were confirmed on Sanger sequencing to 
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check that they were true positives (because primary DNA samples for the ALSPAC study are not 

readily available). 

Fourth, within the gene-based analyses, the frequency for selecting rare variants (MAF ≤ 0.01) 

was based on the ALSPAC UK10K cohort variant frequency, rather than a larger population (such 

as gnomAD) database frequency. The relatively small size of the UK10K cohort (N= 1,867 

individuals) compared to gnomAD (N= 76,156 individuals) may have resulted in some rare variants 

having a falsely elevated frequency and being missed, leading to missed possible gene-based rare 

variants associations across the USH genes.  

Lastly, the effect of CNVs on the ALSPAC tested phenotypes were not explored, further analysis of 

copy-number variants will be needed to account more completely for the complex genetic 

contributions to APD. 

7.6. Future work and conclusions 

7.6.1. USH2A effects on language follow-up 

Perrino et al. showed that heterozygous disruptions of USH2A in mice and humans are associated 

with altered low-frequency hearing abilities (auditory input) and altered early expressive language 

abilities (Perrino et al., 2020). In a follow-up study, Perrino et al. illustrated that altered cochlear 

development as a result of Ush2a heterozygous knock-out mutations can secondarily impact the 

development of brain regions (specifically SOC volume) and consequently affect auditory 

processing ability (Perrino, Newbury and Fitch, 2021). However, the exact relationship between 

altered input and language acquisition is still unclear. It is unclear whether worse language 

outcomes are a result of an impaired auditory input that affects central mechanisms and thus 

indirectly affects language (similar to the model of effect on auditory processing ability proposed 

by Perrino et al.) or whether background genetic language risk combines with altered auditory 

input and modifies the risk. Further large-scale characterisation of USH2A variation and 

behavioural outcomes in a homogenous cohort, such as a large cohort of USH2A carriers, will 

allow more accurate quantification of disrupted low-frequency abilities in carriers and more 

precise assessment of language and cognitive abilities across carriers. Moreover, as the mouse 

strains with Ush2a heterozygous disruption used by Perrino et al. have a homogenous background 

which lacks overt risk mutations (Perrino et al., 2020), an additional double vs single risk mouse 

model would be needed for the investigation of the double-hit model. A good candidate for a 

double risk model with heterozygous Ush2a knock-out is Cntnap2. CNTNAP2 is a well-

characterised gene with robust association to various aspects of language, communication and 

neurodevelopment in humans (Alarcón et al., 2008; Vernes et al., 2008). Moreover, auditory 

processing has been proposed as a mediator of CNTNAP2 influence upon expressive language 

(Scott et al., 2018; Truong et al., 2015). Further functional studies and imaging of the stereocilia in 
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heterozygous Ush2a mice and double risk models with Cntnap2 will allow the identification of the 

level at which the input is impaired (obvious structural stereocilia damage will indicate a crucial 

role). 

 In addition, gene expression analyses in developmental brain anatomy (for example olivary 

complex, cochlea and auditory cortex) at different time points in developing mouse models (single 

and double risk) will allow the investigation of the type of biological processes which underlie the 

auditory input changes. Such additional investigations of USH2A carriers and mouse will inform 

our understanding of auditory perception processes and the effects of genetic and 

neurodevelopmental mechanisms upon longer-term brain development and language acquisition.  

7.6.2. Association studies follow-up 

Future work would also aim to replicate findings from the association analyses (Results Chapter 2-

3), implicating common USH2A and PCDH15 variants and rare ADGRV1 variants in low-frequency 

abilities and/or language abilities. Larger GWAS or meta-GWAS (incorporating multiple 

independent GWAS) on cohorts with a range of markers of auditory processing/hearing (for 

example suprathreshold features of physiological tests like ABR) and language will have better 

association resolution to capture subtle effects. Following replication, the most promising results 

would need to be studied at the functional level to characterise molecular consequences of the 

variants (see Section 7.6.3).  

7.6.3. Candidate genes follow-up 

In addition to the larger cohorts of relevant populations, the functional effects of the identified 

predicted pathogenic variants in GRHL3, IFT88 and FAT4 would need to be investigated in cell or 

animal models. Mouse mutants would be the first step to study the effect of knocked-out or 

knocked-down Grhl3, Ift88 and Fat4 function on more specific auditory and behavioural processes 

in mice (including auditory brainstem response and prepulse inhibition tasks), similar to the 

experiments on Ush2a in Perrino et al. If these genes are confirmed to play a role in auditory 

perception, then the exact mechanisms can be further studied with the addition of histological, 

microscopy imaging and gene expression in specific brain regions. 

7.6.4. Conclusions 

The aim of this thesis was to fully examine the effect of candidate gene variation on auditory 

processing, hearing, and emergent language skills to better understand the shared mechanisms 

that underpin these processes. Overall, this research supports the idea of genetic complexity and 

suggests an overlap between auditory processing, hearing and language on a genetic level. 

Moreover, it provides an insight into the genetic architecture of APD, proposing several risk genes 
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(USH2A, GRHL3, IFT88 and FAT4) that would need to be further examined so we can gain better 

understanding into the molecular biology of APD. This will lead to a better classification of APD as 

a disorder, which will further improve the specificity of diagnostic criteria used and the 

therapeutic input that affected individuals require.
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