
Avalanche: an End-to-End Library for Continual Learning

Vincenzo Lomonaco1†* Lorenzo Pellegrini2†Andrea Cossu1,18† Antonio Carta1† Gabriele Graffieti2†

Tyler L. Hayes3 Matthias De Lange4 Marc Masana5 Jary Pomponi6 Gido M. van de Ven7

Martin Mundt8 Qi She9 Keiland Cooper10 Jeremy Forest11 Eden Belouadah12

Simone Calderara13 German I. Parisi14 Fabio Cuzzolin15 Andreas S. Tolias7 Simone Scardapane6

Luca Antiga16 Subutai Ahmad17 Adrian Popescu12 Christopher Kanan3

Joost van de Weijer5 Tinne Tuytelaars4 Davide Bacciu1 Davide Maltoni2

1University of Pisa 2University of Bologna 3Rochester Institute of Technology
4KU Leuven 5Universitat Autònoma de Barcelona 6Sapienza University of Rome

7Baylor College of Medicine 8Goethe University 9ByteDance AI Lab
10University of California 11New York University 12Université Paris-Saclay

13University of Modena and Reggio-Emilia 14University of Hamburg
15Oxford Brookes University 16Orobix 17Numenta 18Scuola Normale Superiore

https://avalanche.continualai.org

Abstract

Learning continually from non-stationary data streams

is a long-standing goal and a challenging problem in ma-

chine learning. Recently, we have witnessed a renewed

and fast-growing interest in continual learning, especially

within the deep learning community. However, algorithmic

solutions are often difficult to re-implement, evaluate and

port across different settings, where even results on stan-

dard benchmarks are hard to reproduce. In this work, we

propose Avalanche, an open-source end-to-end library for

continual learning research based on PyTorch. Avalanche

is designed to provide a shared and collaborative codebase

for fast prototyping, training, and reproducible evaluation

of continual learning algorithms.

1. Introduction

Continual Learning (CL), also referred to as Lifelong

or Incremental Learning, is a challenging research prob-

lem [7]. Lately, it has become the object of fast-growing

interest from the research community, especially thanks to

recent investigations leveraging gradient-based deep archi-

tectures [16, 38]. In the last few years, machine learning

has witnessed a prolific, variegated, and original research

production on the topic: from Computer Vision [9, 31, 37]

*Corresponding author: vincenzo.lomonaco@unipi.it
†Avalanche lead maintainers.

Figure 1: Operational representation of Avalanche with its

main modules (top), the main object instances (middle) and

the generated stream of data (bottom). A Benchmark gen-

erates a stream of experiences ei which are sequentially ac-

cessible by the continual learning algorithm ACL with its

internal model M . The Evaluator object directly interact-

ing with the algorithm provides a unified interface to control

and compute several performance metrics (pi), delegating

results logging to the Logger(s) objects.

to Robotics [29, 39, 41], from Reinforcement Learning

[26, 32] to Sequence Learning [8], among others.

However, continual learning algorithms today are often

designed and implemented from scratch with different as-

sumptions, settings, and benchmarks that make them diffi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/479016777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://avalanche.continualai.org


cult to compare among each other or even port to slightly

different contexts. A crucial factor for the consolidation of

a fast-growing research topic in the machine learning do-

main is the availability of tools and libraries easing the im-

plementation, assessment, and replication of models across

different settings, while promoting the reproducibility of re-

sults from the literature [42].

In this work, we propose Avalanche, an open-source

(MIT licensed) end-to-end library for continual learning

based on PyTorch [40], devised to provide a shared and col-

laborative codebase for fast prototyping, training, and eval-

uation of continual learning algorithms.

We designed Avalanche according to a set of fundamen-

tal design principles (Sec. 2) which, we believe, can help

researchers and practitioners in a number of ways: i) Write

less code, prototype faster, and reduce errors; ii) Improve

reproducibility; iii) Favor modularity and reusability; iv)

Increase code efficiency, scalability and portability; v) Fos-

ter impact and usability.

The contributions of this paper can be summarized as

follows:

1. We propose a general continual learning framework

that provides the conceptual foundation for Avalanche

(Sec. 3).

2. We discuss the general design of the library based on

five main modules: Benchmarks, Training, Evaluation,

Models, and Logging (Sec. 4).

3. We release the open-source, collaboratively

maintained project at https : / / github . com /

ContinualAI/avalanche, as the result of a collab-

oration powered by the non-profit ContinualAI1 and

involving over 15 organizations across Europe, United

States, and China.

Prior work related to this project is discussed in Sec-

tion 5. Lastly, we discuss in Section 6 the importance that

an all-in-one, community-driven library may have for the

future of continual learning and its possible extensions.

2. Design Principles

Avalanche has been designed with five main principles in

mind: i) Comprehensiveness and Consistency; ii) Ease-of-

Use; iii) Reproducibility and Portability; iv) Modularity and

Independence; v) Efficiency and Scalability. These prin-

cipals, we argue, are important for any continual learning

project but become essential for tackling the most interest-

ing research challenges and real-world applications.

Comprehensiveness and consistency The main design

principle for Avalanche follows from the concept of com-

prehensiveness, the idea of providing an exhaustive and uni-

fying library with end-to-end support for continual learn-

1https://www.continualai.org

ing research and development. A comprehensive codebase

does not only provide a unique and clear access point to re-

searchers and practitioners working on the topic, but also

favors consistency across the library, with a coherent and

easy interaction across modules and sub-modules. Last but

not least, it promotes the consolidation of a large commu-

nity able to provide better support for the library.

Ease-of-Use The second principle is the focus on simplic-

ity: simple solutions to complex problems and a simple us-

age of the library. We concentrate our efforts on the design

of an intuitive Application Programming Interface (API), an

official website, and rich documentation with a curated list

of executable notebooks and examples2.

Reproducibility and Portability Reproducing research

paper results is a difficult but much needed task in ma-

chine learning [22]. The problem is exacerbated in con-

tinual learning. A critical design objective of Avalanche is

to allow experimental results to be seamlessly reproduced.

This allows researchers to simply integrate their own orig-

inal research into the shared codebase and compare their

solution with the existing literature, forming a virtuous cir-

cle. Hence, reproducibility is not only a core objective of

sound and consistent scientific research, but also a means

to speed up the development of original continual learning

solutions.

Modularity and Independence Modularity is another

fundamental design principle. In Avalanche, simplicity is

sometimes bent in favor of modularity and reusability. This

is essential for scalability and to collaboratively bring the

codebase to maturity. A particular focus on module inde-

pendence is maintained to guarantee the stand-alone usabil-

ity of individual module functionalities and facilitates learn-

ing of a particular tool.

Efficiency and Scalability Computational and memory

requirements in machine learning have grown significantly

throughout the last two decades [51]. Standard deep learn-

ing libraries such as TensorFlow [1] or PyTorch [40] already

focus on efficiency and scalability as two fundamental de-

signing principles, since modern research experiments can

take months to complete [47]. Avalanche is based on the

same principles: offering the end-user a seamless and trans-

parent experience regardless of the use-case or the hardware

platform that the library is run on.

2The official website, documentation, notebooks, and examples are

available at https://avalanche.continualai.org.

https://github.com/ContinualAI/avalanche
https://github.com/ContinualAI/avalanche
https://www.continualai.org
https://avalanche.continualai.org


3. Continual Learning Framework

Recently, we have witnessed a significant attempt to for-

malize a general framework for continual learning algo-

rithms [31, 32, 53]. These proposals often categorize sce-

narios and algorithms based on their unique properties and

specific settings. However, as outlined in this paper, within

the formal design of Avalanche, we take a different ap-

proach.

Given the fast-evolving, often conflicting views of the

problem, we aim to lower the number of assumptions to

a minimum, favoring simplicity and flexibility. In prac-

tice, this translates into providing users with a set of build-

ing blocks that can be used in any continual learning solu-

tion without imposing any strong nomenclature, constrain-

ing abstractions, or assumptions.

In Avalanche, data is modeled as an ordered sequence

(or stream) composed of n, usually non-iid, learning expe-

riences:

e0, e1, . . . , en.

A learning experience is a set composed of one or mul-

tiple samples which can be used to update the model. This

is often referred to in the literature as batch or task. This

formulation is general enough to be used in several con-

tinual learning contexts, such as supervised, reinforcement,

or unsupervised continual learning. Avalanche provides a

general set of abstractions that do not impose any particular

constraints on the content of the experiences. For example,

in a supervised training regime, each learning experience

ei can be seen as a set of triplets 〈xi, yi, ti〉, where xi and

yi represent an input and its corresponding target, respec-

tively, while ti is the task label, which may or may not be

available.

During training, a continual learning algorithm ACL

processes experiences sequentially and uses them to update

the model and its internal state. In Avalanche, each algo-

rithm has a training mode, used to update the model, and an

evaluation mode, which may be used to process streams of

experiences for testing purposes.

The continual learning framework we propose can be

formalized as follows.

Definition (Continual Learning Framework). A continual

Learning algorithm ACL is expected to update its internal

state (e.g. its internal model M or other data structures)

based on the sequential exposure to a non-stationary stream

of experiences (e1, . . . , en). The objective of ACL is to im-

prove its performance on a set of metrics (p1, . . . , pm) as

assessed on a test stream of experiences (et
1
, . . . , etn).

4. Main Modules

The library is organized into five main modules: Bench-

marks (Sec. 4.1), Training (Sec. 4.2), Evaluation (Sec.

Figure 2: Example of a generated stream in Avalanche,

composed by five experiences, implementing the common

SplitMNIST benchmark [56]. When accessing experience

e3, the ACL algorithm has no access to previous or future

experiences.

4.3), Models (Sec. 4.5), and Logging (Sec. 4.4). Table 1

summarizes the features provided by Avalanche at the cur-

rent stage of development. In Fig. 1, an operational repre-

sentation of the library modules and their interplay within

the aforementioned reference framework is shown.

4.1. Benchmarks

Continual learning revolves around the idea of dealing

with a non-stationary stream of experiences. An exam-

ple stream from the standard SplitMNIST benchmark [56]

composed of five experiences is shown in Fig. 2. A tar-

get system powered by a continual learning strategy is re-

quired to learn from experiences (e.g., by considering ad-

ditional classes in a class-incremental setting [37]) in order

to improve its performance or expand its set of capabilities.

This means that the component in charge of generating the

data stream is usually the first building block of a continual

learning experiment. It is no surprise that a considerable

amount of time is spent defining and implementing the data

loading module. The benchmarks module offers a powerful

set of tools one can leverage to greatly simplify this process.

The term benchmark is used in Avalanche to describe

a recipe that specifies how the stream of data is created

by defining the originating dataset(s), the contents of the

stream, the amount of examples, task labels and bound-

aries [2], etc. When defining such elements, some degree

of freedom is retained to allow obtaining different bench-

mark instances. For example, different instantiations of the

SplitMNIST benchmark [56] can be obtained by setting dif-

ferent class assignments. Alternatively, distinct instances of

the PermutedMNIST [15] benchmark can be obtained by

choosing different pixel permutations.

The benchmarks module is designed with the idea of

providing an extensive set of out-of-the-box loaders cov-

ering the most common benchmarks (i.e. SplitCIFAR [45],

PermutedMNIST [15], etc.) through the classic submod-

ule. A simple example illustrating how to use the “SplitM-

NIST” benchmark [56] is shown in Fig. 3. Moreover, a wide



Supported features

Benchmarks Split/Permuted/Rotated MNIST [35], Split Fashion Mnist [14], Split Cifar10/100/110 [45, 36],

Split CUB200, Split ImageNet [45], Split TinyImageNet [9], Split/Permuted/Rotated Omniglot [48],

CORe50 [33], OpenLORIS [50], Stream51 [46].
Scenarios Multi Task [29], Single Incremental Task [29], Multi Incremental Task [29], Class incremental [45, 53],

Domain Incremental [53], Task Incremental [53], Task-agnostic, Online, New Instances, New Classes,

New Instances and Classes.
Strategies Naive (Finetuning), CWR* [34], Replay, GDumb [43], Cumulative, LwF [30], GEM [35], A-GEM [6],

EWC [27], Synaptic Intelligence [56], AR1 [36], Joint Training.
Metrics Accuracy, Loss (user specified), Confusion Matrix, Forgetting, CPU Usage, GPU usage, RAM usage,

Disk Usage, Timing, Multiply, and Accumulate [23, 11].
Loggers Text Logger, Interactive Logger, Tensorboard Logger [1], Weights and Biases (W&B) Logger [3] (in

progress).

Table 1: Avalanche supported features for the Alpha release (v0.0.1).

Classic Benchmarks

1 benchmark_instance = SplitMNIST(

2 n_experiences=5, seed=1)

3 # Other useful parameters

4 # return_task_id=False/True

5 # fixed_class_order=[5, 0, 9, ...]

Figure 3: Simple instantiation of a Classic continual learn-

ing benchmark.

range of tools are available that enables the creation of cus-

tomized benchmarks. The goal is to provide full support to

researchers implementing benchmarks that do not easily fit

into the existing categories.

Most out-of-the-box benchmarks are based on the

dataset implementation provided by the torchvision li-

brary. A proper implementation is provided for other

datasets (such as CORe50 [33], Stream-51 [46], and Open-

LORIS [50]). The benchmark preparation and data loading

process can seamlessly handle memory-intensive bench-

marks, such as Split-ImageNet [45], without the need to

load the whole dataset into memory in advance.

Further, the benchmarks module is entirely standalone,

meaning that it can be used independently from the rest of

Avalanche.

Benchmarks creation The benchmarks module exposes

a uniform API that makes it easy to define a new continual

learning benchmark.

The classic package hosts an ever-growing set of com-

mon benchmarks and is expected to cover the usage require-

ments of the vast majority of researchers. However, there

are situations in which implementing a novel benchmark is

required. Avalanche offers a flexible API that can be used

to easily handle this situation.

Starting from the higher-level API, Avalanche offers

explicit support for creating benchmarks that fit one of

the ready-to-use scenarios. The concept of scenario is

slightly different from that of ‘benchmark’ as it describes

a more general recipe independent of a specific dataset. If

the benchmark to be implemented fits either in the New

Instances or New Classes scenarios [36], one can con-

sider using one of the specific generators nc scenario or

ni scenario. Both generators take a pair of train and

test datasets and produce a benchmark instance. The New

Classes generator splits all the available classes in a num-

ber of subsets equal to the required number of experiences.

Patterns are then allocated to each experience by assigning

all patterns of the selected classes. This means that the New

Classes generator can be used as a basis to set up Task or

Class-incremental learning benchmarks [53]. The New In-

stances generator splits the original training set by creating

experiences containing an equal amount of patterns using

a random allocation schema. The main intended usage for

this generator is to help in setting up Domain-Incremental

learning benchmarks [53]. Most classic benchmarks are

based on these generators. Fig. 4 shows a simple example

of using nc scenario.

If the benchmark does not fit into a predefined scenario,

a generic generator can be used. At the moment, Avalanche

allows users to create benchmark instances from lists of

files, Caffe-style filelists [24], lists of PyTorch datasets, or

even directly from Tensors. We expect that the number of

generic generators will rapidly grow in order to cover the

most common use cases and allow for maximum flexibility.

Streams and Experiences Not all continual learning

benchmarks limit themselves to describing a single stream

of data. Many contemplate an out-of-distribution stream,

a validation stream and possibly several other arbitrary

streams, each linked to a different semantic. For instance,



Benchmarks Generators

1 # Nearly all datasets from torchvision

2 # are supported

3

4 mnist_train = MNIST('./mnist', train=True)

5 mnist_test = MNIST('./mnist', train=False)

6 benchmark_instance = nc_scenario(

7 train_dataset=mnist_train,

8 test_dataset=mnist_test,

9 n_experiences=n_experiences,

10 task_labels=True/False)

Figure 4: Example of the ”New Classes” benchmark gen-

erator on the MNIST dataset.

[6] proposes a benchmark where a separate stream of data

is used for cross-validation, while [46] defines an out-of-

distribution stream used to evaluate the novelty detection

capabilities of the model.

Motivated by this remark, we decided to model bench-

mark instances as a composition of streams of experiences.

This choice has two positive effects on the resulting API.

Firstly, the way streams and experiences can be accessed

is shared across all benchmark instances. Secondly, this

modeling of benchmark instances does not force any pre-

conceived schema upon researchers. Avalanche leaves the

semantic aspects regarding the definition and usage of each

stream to the creator of the benchmark.

A simple example showing the versatility of this design

choice concerns the test stream: in order to allow for a

proper evaluation of a continual learning strategy, bench-

marks do not only need to describe the stream of training

experiences but also need to properly describe a testing pro-

tocol. Such protocol is, in turn, based on one or more test

datasets on which appropriate metrics can be computed. In

many cases, the test data may need to be structured into

a sequence of ‘test experiences’, analogously to what hap-

pens with the training data stream. For instance, in Class-

Incremental learning the test set may be split into differ-

ent experiences each containing only test patterns related to

classes in the corresponding training experience.

Avalanche currently supports two different streams:

train and test, while the support for arbitrary streams (for

instance, out-of-distribution stream) will be implemented in

the near future.

Each experience can be obtained by iterating over one

of the available streams. Fig. 5 shows how, starting from

a benchmark instance, streams can be retrieved and used.

Each experience carries a PyTorch dataset, task label(s)

and other useful benchmark-specific information that can

be used for introspection. An experience also carries a nu-

merical identifier that defines its position in the originating

stream. In fact, experiences in a stream can be also accessed

by index. This functionality makes it easy to couple related

experiences from different streams.

Main Training Loop

1 train_stream = benchmark_instance.train_stream

2 test_stream = benchmark_instance.test_stream

3

4 for idx, experience in enumerate(train_stream):

5 dataset = experience.dataset

6

7 print('Train dataset contains',

8 len(dataset), 'patterns')

9

10 for x, y, t in dataset:

11 ...

12

13 test_experience = test_stream[idx]

14 cumulative_test = test_stream[:idx+1]

Figure 5: Example of the main training loop over the stream

of experiences.

Task Labels and Nomenclature Every mechanism, in-

ternal aspect, name of function and class in the benchmarks

module were designed with the intent of keeping Avalanche

as neutral as possible with respect to the presence of task

labels. Task boundaries, task descriptors and task labels

are widely used in the continual learning literature to de-

fine both semantic and practical aspects of a benchmark.

However, the meaning of those concepts is usually blurred

with the definition of the specific benchmark to which they

are applied to, making it hard to clearly pin-point a generic

way to manage them.

Based on this observation, and due to the fact that the

usage of task-specific information may become more ex-

travagant or sophisticated in the future, we decided that

Avalanche should not force any kind of convention. This

means that the choice of whether to use task labels and how

to use them is left to the user.

Following this idea, the GenericCLScenario class,

which is the common class for all scenarios instances, al-

lows researchers to assign task labels at pattern granularity,

thus allowing for experiences with zero or more task labels.

We deemed this the most natural choice for Avalanche: we

believe that a continual learning library should not constrain

researchers by superimposing a certain view of the field

upon them. Instead, the idea of enabling the user to create

complex setups in a simple way, without forcing a subjec-

tive interpretation, will probably prove to be more robust as

the field continues to evolve.



4.2. Training

The training module implements both popular contin-

ual learning strategies and a set of abstractions that make it

easy for a user to implement custom continual learning al-

gorithms. Each strategy in Avalanche implements a method

for training (train) and a method for evaluation (eval),

which can work either on single experiences or on entire

slices of the data stream. Currently, Avalanche provides

11 continual learning strategies (with many more to come),

that can be used to train baselines in a few lines of code,

as shown in Fig. 6. See Table 1 for a complete list of the

available strategies.

Training Strategies

1 strategy = Replay(model, optimizer,

2 criterion, mem_size)

3 for train_exp in scenario.train_stream:

4 strategy.train(train_exp)

5 strategy.eval(scenario.test_stream)

Figure 6: Simple instantiation of an already available strat-

egy in Avalanche.

Training/Eval Loops In Avalanche, continual learn-

ing strategies subclass BaseStrategy, which provides

generic training and evaluation loops. These can be

extended and adapted by each strategy. For example,

JointTraining implements offline training by concatenat-

ing the entire data stream in a single dataset and training

only once. The pseudo-code in Fig. 7 shows part of the

BaseStrategy.train loop (eval has a similar structure).

Training Structure

1 def train(experiences):

2 before_training()

3 for exp in experiences:

4 train_exp(exp)

5 after_training()

6

7 def train_exp(exp):

8 adapt_train_dataset()

9 make_train_dataloader()

10 before_training_exp()

11 for epoch in range(n_epochs):

12 before_training_epoch()

13 training_epoch()

14 after_training_epoch()

15 after_training_exp()

Figure 7: Main training structure, the skeleton of the

BaseStrategy class.

Under the hood, BaseStrategy deals with most of the

boilerplate code. The generic loops are able to seam-

lessly handle common continual learning scenarios, inde-

pendently of differences such as the presence or absence of

task labels.

Plugin System BaseStrategy provides a simple callback

mechanism. This is used by strategies, metrics, and loggers

to interact with the training loop and execute their code at

the correct points using a simple interface and provides an

easy interface to implement new strategies by adding cus-

tom code to the generic loops. BaseStrategy provides the

global state (current mini-batch, logits, loss, ...) to suit-

able plugins so that they can access all the information they

need. In practice, most strategies in Avalanche are imple-

mented via plugins. This approach has several advantages

compared to a custom training loop. Firstly, the readability

of the code is enhanced since most strategies only need to

specify a few methods. Secondly, this allows for multiple

strategies to be combined together. For example, we can

define a hybrid strategy that uses Elastic Weight Consolida-

tion (EWC) [27] and replay using the snippet of code shown

in Fig. 8.

Hybrid Strategies

1 replay = ReplayPlugin(mem_size)

2 ewc = EWCPlugin(ewc_lambda)

3 strategy = BaseStrategy(

4 model, optimizer,

5 criterion, mem_size,

6 plugins=[replay, ewc])

Figure 8: Example of an on-the-fly instantiation of hybrid

strategies through Plugins.

4.3. Evaluation

The performance of a CL algorithm should be assessed

by monitoring multiple aspects of the computation [29].

The evaluation module offers a wide set of metrics to

evaluate experiments.

Avalanche’s design principle is to separate the issues of

what to monitor and how to monitor it: the evaluation

module provides support for the former through the metrics,

while the logging module fulfills the latter (Section 4.4).

Metrics do not specify in which format their output should

be displayed, while loggers do not alter metrics logic. Met-

rics can work even without a logger: the strategy’s train and

eval methods return a dictionary with all the metrics logged

during the experiment.

Few lines of code are sufficient to monitor a vast set of

metrics: accuracy, loss, catastrophic forgetting, confusion



matrix, timing, ram/disk/CPU/GPU usage and Multiply and

Accumulate [23] (which measures the computational cost

of the model’s forward pass in terms of floating point oper-

ations). Each metric comes with a standalone class and a set

of plugin classes aimed at emitting metric values on specific

moments during training and evaluation.

Stand-alone Metrics Stand-alone metrics are meant to be

used independently of all Avalanche functionalities. Each

metric can be instantiated as a simple Python object. The

metric will keep an internal state to store metric values. The

state can be reset, updated or returned to the user by call-

ing the related reset, update and result methods, respec-

tively.

Plugin Metrics Plugin metrics are meant to be easily in-

tegrated into the Avalanche training and evaluation loops.

Plugin metrics emit a curve composed by multiple values

at different points in time. Usually, plugin metrics emit

values after each training iteration, training epoch, evalua-

tion experience or at the end of the entire evaluation stream.

For example, EpochAccuracy reports the accuracy over all

training epochs, while ExperienceLoss produces as many

curves as the number of experiences. Each curve monitors

the evaluation accuracy of an experience at the end of each

training loop. Avalanche recommends the use of already

implemented helper functions to simplify the creation of

each plugin metric. The output of these functions can be

passed as parameters directly to the EvaluationPlugin.

Evaluation Plugin EvaluationPlugin is the component

responsible for the orchestration of both plugin metrics and

loggers. Its role is to gather metrics outputs and forward

them to the loggers during training and evaluation loops.

All the user has to do to keep track of an experiment

is to provide the strategy object with an instance of the

EvaluationPlugin with the target metrics and loggers as

parameters. Fig. 9 shows how to use the evaluation plugin

and metric helper functions.

Avalanche’s effort to monitor different facets of perfor-

mance aims at enabling a wider experimental assessment,

which is too often focused only on the forgetting of previ-

ous knowledge [11].

4.4. Logging

Nowadays, logging facilities are fundamental to monitor

in real time the behavior of an ongoing experiment (which

may last from minutes to days). The Avalanche logging

module is in charge of displaying to the user the result of

each plugin metric during the different experiment phases.

Avalanche provides three different loggers: TextLogger,

Evaluation Plugin

1 eval_plugin = EvaluationPlugin(

2 accuracy_metrics(experience=True),

3 loss_metrics(minibatch=True, stream=True),

4 forgetting_metrics(experience=True),

5 timing_metrics(minibatch=True),

6 gpu_usage_metrics(gpu_id, epoch=True),

7 loggers=[InteractiveLogger(),

8 TextLogger(open('out.txt', 'w')),

9 TensorboardLogger()])

Figure 9: Avalanche evaluation plugin (or evaluator) object

instantiation example.

InteractiveLogger and TensorboardLogger [1]. They

provide reports on textual file, standard output and Tensor-

board, respectively. As soon as a metric emits a value, the

Text Logger prints the complete metric name followed by

its value in the destination file. The InteractiveLogger

reports the same output as TextLogger, but it also uses the

tqdm package3 to display a progress bar during training and

evaluation. TensorboardLogger is able to show images

and more complex outputs, which cannot be appropriately

printed on standard output or textual file. We are also work-

ing on the integration of the Weights and Biases logger [3],

which should be released soon.

Integrating loggers into both training and evaluation loops is

straightforward. Once created, loggers have to be passed to

the EvaluationPlugin, which will be in charge of redirect-

ing metrics outputs to each logger during the experiment.

See Fig. 9 for an example of loggers creation.

Users can easily design their own loggers by extending

the class StrategyLogger, which provides the necessary

interface to interact with the EvaluationPlugin.

4.5. Models

The Avalanche models module offers a set of simple

machine learning architectures ready to be used in exper-

iments. In particular, the module contains versions of

feedforward and convolutional neural networks and a pre-

trained version of MobileNet (v1) [19]. The main purpose

of these models is to let the user focus on Avalanche fea-

tures, rather than on writing lines of code to build a specific

architecture. We plan to extend our model support with

more advanced architectures, also tailored to specific CL

applications.

5. Related Works

Reproducibility is one of the main principles upon which

Avalanche is based. Experiments in the continual learning

3https://tqdm.github.io

https://tqdm.github.io


field are often challenging to reproduce, due to the differ-

ent implementations of protocols, benchmarks and strate-

gies by different authors. This issue of insufficient repro-

ducibility is not limited to continual learning. The whole

artificial intelligence community is affected; a number of

authors have recently discussed some possible solutions to

the problem [17, 42, 44].

The advent of machine (and deep) learning libraries,

mainly TensorFlow [1] and PyTorch [40] has partially miti-

gated the reproducibility problem. Using these libraries as-

sures a standard implementation of many machine learning

building blocks, reducing ambiguities due to bespoke and

different implementations of basic concepts.

In recent times, the continual learning community has

put a lot of effort into addressing these problems, by provid-

ing code and libraries aimed to increase the reproducibility

of continual learning experiments [9, 21, 37, 49, 52, 53].

On the one hand, these first attempts lack the generality and

the consistency of Avalanche, especially regarding the cre-

ation of different and complex benchmarks, and the con-

tinual support of a large community. On the other hand,

they demonstrate, however, the growing interest of the en-

tire community towards these issues.

Another area other than continual learning which has re-

cently seen a proliferation of libraries and tools similar in

spirit to Avalanche is reinforcement learning (RL). One of

the most popular such benchmark RL libraries is OpenAI

Gym [4], within which a multitude of different RL envi-

ronments is available. A similar library is ViZDoom [55],

in which an agent plays the famous computer game Doom.

Other relevant projects in the field of reinforcement learn-

ing are Dopamine [5], which focuses on simplicity and easy

prototyping, and project Malmo [25], which is based on the

famous Minecraft game. Many of these libraries, however,

only focus on the agent’s interaction with the environment.

This problem is addressed by other libraries that include

standard implementations of baselines algorithms, such as

OpenAI baselines [10] and stable baselines [18].

Another prominent example of a collection of base-

line training strategies and pretrained models is the natu-

ral language processing transformers library by Hugging

Face [54]. Many basic concepts upon which Avalanche is

based (e.g. plugins, loggers, benchmarks) can also be found

in more general machine learning libraries such as PyTorch

Lighting [13] and fastai [20].

Another important problem in research is the bookkeep-

ing of experiments. As discussed in Sec. 4.4, Avalanche

already implements a fine-grained and punctual logging,

which allows to visualize and save the results of different

experiments. Moreover, Avalanche could be easily inte-

grated with standalone libraries specifically developed for

experiments bookkeeping and visualization, such as Sa-

cred [28] or Weights and Biases (wandb) [3].

The motivations and the community needs behind the de-

veloping of Avalanche were reinforced by the recent pub-

lication of similar continual learning libraries. Contin-

uum [12] focuses on data loading and processing, and could

be related with the functionalities provided by the bench-

mark module of Avalanche. Sequoia4 is based on Contin-

uum for the data loading, but, in addition, it provides a play-

ground for research at the intersection of Continual, Rein-

forcement, and Self-Supervised Learning.

6. Conclusion and Future Work

In the last decade, we have witnessed a significant effort

towards making research in machine learning more trans-

parent, reproducible and open-access. However, although

research papers are increasingly accompanied by publicly

hosted codebases, it is often difficult to run and integrate

such software into environments which are typically differ-

ent from the one within which it was originally designed.

This not only hampers reproducibility but also inhibits scal-

ability, for each research paper ends up creating its own im-

plementation almost from scratch. Avalanche aims to pro-

vide a coherent, end-to-end, easily extendable library for

continual learning research and development; a solid refer-

ence point and shared resource for researchers and practi-

tioners working on continual learning and related areas.

As reported in Table 1, the current Avalanche Alpha

version focuses on continual supervised learning for vision

tasks, as a significant amount of deep learning research in

this area was designed and assessed in this context [16].

However, being Avalanche a community-driven effort, we

plan in both the near and medium terms to support the in-

tegration of additional learning paradigms (e.g. Reinforce-

ment or Unsupervised Learning), tasks type (e.g. Detection,

Segmentation) and application contexts (e.g. Natural Lan-

guage Processing, Speech Recognition), depending on the

research community demands and priorities.

We hope that this library, as a powerful avalanche, may

trigger a positive reinforcement loop within our community,

nudging it to shift towards a more collaborative and inclu-

sive research environment and helping all of us tackle to-

gether the grand research challenges presented by a frontier

topic such as continual learning.

Acknowledgments

The Avalanche project is a community-driven, collabora-

tive project powered and maintained by ContinualAI: a non-

profit research organization and the largest open community

on Continual Learning for AI. We would like to thank all its

members for the valuable contributions and feedback that

significantly improved the quality of the manuscript and the

software library.

4https://github.com/lebrice/Sequoia

https://github.com/lebrice/Sequoia


References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-

nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-

berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org.

[2] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars.

Task-Free Continual Learning. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2019.

[3] Lukas Biewald. Experiment tracking with weights and bi-

ases, 2020. Software available from wandb.com.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas

Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.

Openai gym, 2016.

[5] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada,

Saurabh Kumar, and Marc G. Bellemare. Dopamine: A Re-

search Framework for Deep Reinforcement Learning. arXiv

preprint arXiv:1812.06110, 2018.

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient Lifelong Learning with

A-GEM. In ICLR, 2019.

[7] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning,

Second Edition, volume 12. Morgan & Claypool Publishers

LLC, 2018.

[8] Andrea Cossu, Antonio Carta, Vincenzo Lomonaco, and

Davide Bacciu. Continual learning for recurrent neu-

ral networks: an empirical evaluation. arXiv preprint

arXiv:2103.07492, 2021.

[9] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah

Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne

Tuytelaars. A continual learning survey: Defying forgetting

in classification tasks. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 2021.

[10] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex

Nichol, Matthias Plappert, Alec Radford, John Schulman,

Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai base-

lines. https://github.com/openai/baselines, 2017.

[11] Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat,

and Davide Maltoni. Don’t forget, there is more than forget-

ting: New metrics for Continual Learning. Continual Learn-

ing Workshop at NeurIPS, 2018.

[12] Arthur Douillard and Timothée Lesort. Continuum: Simple

management of complex continual learning scenarios, 2021.

[13] WA Falcon and .al. Pytorch lightning. GitHub. Note:

https://github.com/PyTorchLightning/pytorch-lightning, 3,

2019.

[14] Sebastian Farquhar and Yarin Gal. A Unifying Bayesian

View of Continual Learning. In NeurIPS Bayesian Deep

Learning Workshop, 2018.

[15] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,

and Yoshua Bengio. An empirical investigation of catas-

trophic forgetting in gradient-based neural networks. arXiv

preprint arXiv:1312.6211, 2013.

[16] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan

Pascanu. Embracing Change: Continual Learning in Deep

Neural Networks. Trends in Cognitive Sciences, 2020.

[17] Matthew Hartley and Tjelvar S.G. Olsson. dtoolai: Repro-

ducibility for deep learning. Patterns, 1(5):100073, 2020.

[18] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam

Gleave, Anssi Kanervisto, Rene Traore, Prafulla Dhariwal,

Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias

Plappert, Alec Radford, John Schulman, Szymon Sidor, and

Yuhuai Wu. Stable baselines. https://github.com/hill-

a/stable-baselines, 2018.

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. MobileNets: Efficient Con-

volutional Neural Networks for Mobile Vision Applications.

arXiv:1704.04861 [cs], 2017.

[20] Jeremy Howard and Sylvain Gugger. Fastai: A layered api

for deep learning. Information, 11(2):108, 2020.

[21] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and

Zsolt Kira. Re-evaluating continual learning scenarios: A

categorization and case for strong baselines. In NeurIPS

Continual learning Workshop, 2018.

[22] Matthew Hutson. Artificial intelligence faces reproducibility

crisis, 2018.

[23] C. Jeangoudoux and C. Lauter. A Correctly Rounded Mixed-

Radix Fused-Multiply-Add. In 2018 IEEE 25th Symposium

on Computer Arithmetic (ARITH), pages 21–28, 2018.

[24] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,

and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. In Proceedings of the 22nd ACM inter-

national conference on Multimedia, pages 675–678, 2014.

[25] Matthew Johnson, Katja Hofmann, T. Hutton, and D.

Bignell. The malmo platform for artificial intelligence ex-

perimentation. In IJCAI, 2016.

[26] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina

Precup. Towards continual reinforcement learning: A review

and perspectives. arXiv preprint arXiv:2012.13490, 2020.

[27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-

maran, and Raia Hadsell. Overcoming catastrophic forget-

ting in neural networks. PNAS, 114(13):3521–3526, 2017.

[28] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hut-

ter, and Jürgen Schmidhuber. The Sacred Infrastructure for

Computational Research. In Katy Huff, David Lippa, Dil-

lon Niederhut, and M Pacer, editors, Proceedings of the 16th

Python in Science Conference, pages 49 – 56, 2017.

[29] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Da-

vide Maltoni, David Filliat, and Natalia Dı́az-Rodrı́guez.

Continual learning for robotics: Definition, framework,

learning strategies, opportunities and challenges. Informa-

tion Fusion, 58:52–68, 2020.

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines


[30] Zhizhong Li and Derek Hoiem. Learning without Forget-

ting. In European Conference on Computer Vision, Springer,

pages 614–629, 2016.

[31] Vincenzo Lomonaco. Continual Learning with Deep Archi-

tectures. PhD Thesis, alma, 2019.

[32] Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello,

and Davide Maltoni. Continual Reinforcement Learning

in 3D Non-Stationary Environments. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 248–249, 2020.

[33] Vincenzo Lomonaco and Davide Maltoni. CORe50: A New

Dataset and Benchmark for Continuous Object Recognition.

In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg,

editors, Proceedings of the 1st Annual Conference on Robot

Learning, volume 78 of Proceedings of Machine Learning

Research, pages 17–26. PMLR, 2017.

[34] Vincenzo Lomonaco, Davide Maltoni, and Lorenzo Pelle-

grini. Rehearsal-Free Continual Learning over Small Non-

I.I.D. Batches. In CVPR Workshop on Continual Learning

for Computer Vision, pages 246–247, 2020.

[35] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

Episodic Memory for Continual Learning. In NIPS, 2017.

[36] Davide Maltoni and Vincenzo Lomonaco. Continuous

Learning in Single-Incremental-Task Scenarios. Neural Net-

works, 116:56–73, 2019.

[37] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel

Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-

incremental learning: survey and performance evaluation.

arXiv preprint arXiv:2010.15277, 2020.

[38] German I Parisi, Ronald Kemker, Jose L Part, Christopher

Kanan, and Stefan Wermter. Continual lifelong learning with

neural networks: A review. Neural Networks, 113:54–71,

2019.

[39] German I Parisi and Vincenzo Lomonaco. Online continual

learning on sequences. In Recent Trends in Learning From

Data, pages 197–221. Springer, 2020.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[41] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco,

and Davide Maltoni. Latent replay for real-time continual

learning. In Proceedings of the 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2020.

[42] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha,

Vincent Larivière, Alina Beygelzimer, Florence d’Alché

Buc, Emily Fox, and Hugo Larochelle. Improving re-

producibility in machine learning research (a report from

the neurips 2019 reproducibility program). arXiv preprint

arXiv:2003.12206, 2020.

[43] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania.

GDumb: A Simple Approach that Questions Our Progress

in Continual Learning. In Andrea Vedaldi, Horst Bischof,

Thomas Brox, and Jan-Michael Frahm, editors, Computer

Vision – ECCV 2020, Lecture Notes in Computer Science,

pages 524–540, Cham, 2020. Springer International Publish-

ing.

[44] Edward Raff. A step toward quantifying independently re-

producible machine learning research. In H. Wallach, H.

Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.

Garnett, editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc., 2019.

[45] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classifier

and representation learning. In Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, pages

2001–2010, 2017.

[46] Ryne Roady, Tyler L Hayes, Hitesh Vaidya, and Christopher

Kanan. Stream-51: Streaming classification and novelty de-

tection from videos. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 228–229, 2020.

[47] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Et-

zioni. Green ai. arXiv preprint arXiv:1907.10597, 2019.

[48] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina,

Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

canu, and Raia Hadsell. Progress & Compress: A scalable

framework for continual learning. In International Confer-

ence on Machine Learning, pages 4528–4537, 2018.

[49] Joan Serra, Didac Suris, Marius Miron, and Alexandros

Karatzoglou. Overcoming catastrophic forgetting with hard

attention to the task. In Jennifer Dy and Andreas Krause,

editors, Proceedings of the 35th International Conference on

Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 4548–4557, Stockholmsmässan,

Stockholm Sweden, 10–15 Jul 2018. PMLR.

[50] Qi She, Fan Feng, Xinyue Hao, Qihan Yang, Chuanlin

Lan, Vincenzo Lomonaco, Xuesong Shi, Zhengwei Wang,

Yao Guo, Yimin Zhang, Fei Qiao, and Rosa H M Chan.

OpenLORIS-Object: A Robotic Vision Dataset and Bench-

mark for Lifelong Deep Learning. arXiv, pages 1–8, 2019.

[51] Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and

Gabriel F Manso. The computational limits of deep learning.

arXiv preprint arXiv:2007.05558, 2020.

[52] Gido M van de Ven and Andreas S Tolias. Generative replay

with feedback connections as a general strategy for continual

learning. arXiv preprint arXiv:1809.10635, 2018.

[53] Gido M van de Ven and Andreas S Tolias. Three scenar-

ios for continual learning. In Continual Learning Workshop

NeurIPS, 2018.

[54] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-

mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim

Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam

Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien

Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush. Trans-

formers: State-of-the-art natural language processing. In



Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: System Demonstrations,

pages 38–45, Online, Oct. 2020. Association for Computa-

tional Linguistics.

[55] Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski.

Vizdoom competitions: Playing doom from pixels. IEEE

Transactions on Games, 2018.

[56] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual Learning Through Synaptic Intelligence. In International

Conference on Machine Learning, pages 3987–3995, 2017.


