
Journal of Scientific & Industrial Research 

Vol. 80, March 2021, pp. 230-238 

ASIC Design of Radix-2,8-Point FFT Processor 

Prasad Kulkarni
1*

, B G Hogade
1
, Vidula Kulkarni

2
 and Varsha Turkar

3 

1
Terna Engineering College, Navi Mumbai 400 706, India 

2Sanpada College of Commerce and Technology Sanpada, Navi Mumbai 400705, India 
3Don Bosco College of Engineering, Goa 403 602, India 

Received 15 August 2020; revised 08 February 2021; accepted 14 February 2021 

In split radix architecture, large sizes Fast Fourier Transforms (FFT) are decomposed into small independent 

computations to reduce storage burden. Radix-2, 8-point is one the popular choice in split radix for small independent 

computation. Authors proposes the FFT processor architecture for this small independent computation i.e. radix-2, 8-point 

FFT. This paper brief architecture comprising Butterfly Unit (BU), register set and controller. The novelty of this 

architecture is that it replaces the series of Processing Elements (PE) by single BU. BU computes two halves of the 

computations concurrently. Arithmetic computations are performed in floating point form to overcome the nonlinearities. 

All computations are controlled by tailored instruction set. All instructions are of same size and have same execution time. 

Twiddle constants are implicitly available in the instruction. Internal computations are stored in register set to avoid the load 

and store operations with memory. The mean square error of the computation is reduced by 41.95% and 55.76% in 

magnitude and phase respectively as compared with computations performed by rounding the twiddle constant. This FFT 

processor is synthesized, placed and routed for 45 nm technology of nangate open cell library. The BU of this architecture is 

18.89% smaller and 5.13% faster as compared with smallest and fastest BU reported previously. The hardware cost metric 

i.e. 𝐴𝑇2
𝑛𝑜𝑟𝑚 Dp mm2 ns2 mW of proposed processor is 1.37. This cost metric is also 32.51% less as compared with the

previous work.

Keywords: Butterfly Unit, Fast Fourier Transform, Fused Floating Point Addition–Subtraction, Non-redundant arithmetic

Introduction 

Digital Signal Processor (DSP) widely use 

FFT for signal processing in variety of fields such 

as entertainment devices, wireless broadband 

communication system, microwave access (Wi Max), 

long term evolution, image processing and biomedical 

signal processing. In the past decade, various 

pipelined FFT processor architectures were presented 

on split radix in which large size FFTs were 

decomposed into small independent computations. 

Radix-2, 8-point FFT computation was majorly used 

as the one of decomposition in split-radix 

architectures. The decomposition of large size FFT 

helped to balance the functionality and increases the 

performance of FFT processor. The performance of 

the processor is also increased by eliminating memory 

to store the intermediate computations. The pipeline 

architectures were of mixed radix multipath delay 

feedback,
1,2

 ring structured multiprocessor,
3
 scalable 

array structure,
4
 single delay feedback,

5
 fixed point 

reconfigurable architecture
6
 and parameterisable 

architecture for memory based FFT algorithm.
7
 On 

the other hand, pipeline architectures consist of an 

interleaved series of computational elements and data 

storage elements i.e. processing elements (PE). 

Computational elements known as butterfly unit (BU) 

are responsible for performing multiplication and 

addition. Hence the architecture of BU is also an 

important unit to decide the performance of FFT 

processor. In this decade, various BUs were proposed 

based on floating point arithmetic to overcome 

nonlinearities such as overflow of number range, 

rounding errors, aliasing errors and coefficient errors. 

However, floating point arithmetic has sluggish 

nature. To improve speed and to reduce area of 

consumption, various arithmetic hardware were 

proposed by sharing common logic,
8
 dual path 

pipeline,
9
 multi-operand adder

10
 and redundant 

arithmetic.
11,12

 Lookup table enabled multiplier, 

hash indexing function
13

 and Gauss-Eisenstein 

representation
14

 was also used for arithmetic 

operations. This paper proposes architecture of radix-

2, 8-point FFT processor for small independent 
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computation suitable in split radix architectures. The 

novelty of this architecture is that single BU free from 

series of processing elements (PE), computes two 

halves of the computation concurrently. This BU also 

computes FFT in time domain as well as in frequency 

domain. Dual path fused floating point addition-

subtraction (DFFAS) and two floating point 

multipliers (FMULT) are the major entities of BU.  

The computation program based on radix-2 

algorithm is written by author and stored in program 

memory. This paper briefs on the following: 

1 Architecture of FFT processor. 

2 BU, comprising DFFAS. 

3 Tailored instruction set to perform arithmetic 

operations. 

4 Comparison of FFT computational error occurred 

using floating point against the fixed-point 

representation of twiddle constant. 
 

Architecture of Proposed FFT Processor  

Architecture of proposed FFT processor is shown 

in Fig.1. BU, three register files, multiplexers and 

controller are the main entities in proposed FFT 

processor. Features of this FFT processor are 

 It is16-bit processor. 

 BU performing addition and multiplication on 

floating point numbers represented in 16 bits 

simple 2‘s complement form.  

 Tailored instruction set. All instructions have 

equal length i.e., 20-bit and same execution time. 

 It has three register files named as main, real and 

imaginary. Each register file consists of 8, 16-bit 

registers. 

BU comprises of DFFAS, multiplexers and 
FMULT. This BU is responsible to perform arithmetic 
operations. Register files are used to hold the input 
sequence, intermediate computational operand and 

output sequence. 4:1 multiplexer is used to select the 
operands for arithmetic operations. 2:1 multiplexer 
enables data transfer between two registers. 

The program memory is interfaced with the FFT 
processor using interfacing signals. These interfacing 
signals are shown in Table 1. The interfacing signals 
consist of 20-bit data bus, 6-bit address bus, clock 
input and reset input. Controller writes the address of 
program memory to fetch the instruction. The fetched 
instruction is decoded by controller. After decoding 
instruction, controller generates controls signals as 
shown in Table 2. The control signals WREN, WAD 
and RAD are used by register files to perform write 
and read operation. Register file has one input data 
bus and two output data buses. The input data bus is 
used to perform write operation. The register write 
operation is enabled by asserting WREN signal. The 
write operation is performed on the register whose 
address is available in WAD. Simultaneously, two 

 
 

Fig.1 — Proposed FFT Architecture 
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registers are read through output data buses. Register 
file has two additional input buses i.e., RAD 1 and 
RAD 2 to perform read operation. RAD 1 and RAD 2 
holds the addresses of two registers to perform read 
operation on them. 

The signal XCH is used to copy the information 

from register available in real register file to register 

available in imaginary file and vice-versa. The 

register addresses are shown in Table 3. The Rm 

denotes the register from main file, Rr denotes the 

register from real file and Ri denotes the register from 

imaginary file.  

The main register file stores the immediate data 

sequence (D), products from multipliers and 0d. They 

are selected through the select line SELm. Similarly, 

the operands X and Y for DFFAS are selected through 

SELr and SELi respectively. This operand selection is 

listed in Table 4. 

The twiddle constants and butterfly operations are 

selected by T. The twiddle constants selected through 

T are listed in Table 5. 

 

Instruction Set 
Instructions are available to perform the trivial as 

well as complex arithmetic on operand. Instruction set 

is shown in Table 6. The 16-bit immediate data is 

indicated by ―nn‖. SRC indicates the source and DST 

points the destination. X denotes the BU stage. 

Twiddle constants are implicitly available in the 

instruction. Here the memory is not used for load and 

store operation. The source and destination address of 

the registers are mention in the instruction itself. This 

saves the load and store time with off chip memory. 

Each instruction takes 2 cycles to decode and execute. 

Here data is represented in 16-bit simple 2‘s 

complement form.
15

 All floating-point operations are 

performed as described by Kulkarni et al.
16 

 

Butterfly Unit 

BU design reported by Kulkarni et al.
16 

uses fused 

floating-point addition-subtraction (FFAS), FMULT 

and four 4:1 multiplexer. However, in this FFAS unit, 

exponent comparator, compares two exponents by 

taking difference between them. If this difference is 

too large, then the mantissa of the number having 

smaller exponent will be insignificant and truncated 

after the mantissa shifted more than 16 bits. Hence 

this logic sets operand having smaller exponent to 

zero value. Therefore, additional path is proposed in 

the FFAS design to skip FFAS algorithm and result  is  

Table 1 — Details of Interfacing Signals 

Symbol Status Description 

DATA Input  20-bit data bus. 

ADDRESS Input 6-bit address lines. 

Clock Input  Clock signal for synchronization of the 

operation. 

Reset Input Active high synchronous reset. On reset, 

initializes the operation at default level.  

Address lines are initialized at 000000b 

and others signals are maintained the state 

at high impedance level. 
 

 

Table 2 — Signals Generated by Controller 

Symbol Width Description 

D 16 A data line carries the immediate data bits. 

WREN 1 Register write enable: Active high signal enables the 

register to write the information in specified register.  

WAD 3 Register write address: Denotes the address of 

register to write the information in it.  

RAD 3 Register read address: Denotes the address of 

register to read information from it. 

SEL 2 Select lines to select the operand. 

XCH 1 Enables the data transfer between two register files. 

XCH= 0b transfer the data from Rr to Ri 

XCH= 1b transfer the data from Ri to real Rr 

T 2  Select the stage of FFT operation. 
 

 

Table 3 — Registers Address for Read, Write Operations 

WAD RAD Rm Rr Ri 

000b 000b R0 Rr0 Ri0 

001b 001b R1 Rr1 Ri1 

010b 010b R2 Rr2 Ri2 

011b 011b R3 Rr3 Ri3 

100b 100b R4 Rr4 Ri4 

101b 101b R5 Rr5 Ri5 

110b 110b R6 Rr6 Ri6 

111b 111b R7 Rr7 Ri7 

Table 4 — Operands for Register Write in Main Register File and 

Operands for DFFAS 

Operand for main Register file Operands for DFFAS 

SELm Operand SELr X SELi Y 

00 Immediate data sequence (D) 00 Rm 00 Rm 

01 Output from FMULT 1 01 Rr 01 Rr 

10 Output from FMULT 2 10 Ri 10 Ri 

11 0000 H 11 0000H 11 0000H 
 

 

Table 5 — Twiddle Constants 

𝑊𝑁
𝑛𝑘  Twiddle Constant 

𝑊8
0 1 

𝑊8
2 -j 

𝑊8
1 0.707 − 𝑗0.707 

𝑊8
3 −0.707 − 𝑗0.707 
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Table 7 — Decision Table for Special Cases 

Input X,Y Sum Difference 

X ≠ 0 ,Y≠ 0 X+Y X-Y 

X ≠ 0 ,Y= 0 X X 

X =0 ,Y≠ 0  Y −Y 

X =0 ,Y= −1 Y −Y = 1 

X = 0 ,Y= 0 0 0 
 

set to predefined value. Operands -1d or 0d or 1d are 

the frequently used coefficient in FFT computation. 

Hence additional path for operands -1d,0d and 1d is 

introduced. Additional path comprises magnitude 

comparator and multiplexers. Magnitude comparator 

compares the operand with -1d, 0d and 1d. The output 

of comparator enables the multiplexers to set 

sum/difference to predefined value as mentioned in 

decision Table 7. The FFAS design with this 

additional path is named as dual path fused floating 

point addition-subtraction (DFFAS) as shown in  

Fig. 2. Floating point addition-subtraction perfomed 

by DFFAS for the operands other than –1d,0d and 1d 

is similar to FFAS designed by Kulkarni et al.
16

 This 

DFFAS is proposed at the place FFAS in BU 

designed by Kulkarni et al.
16

 This new proposed BU 

is shown in Fig. 3.  

The signal flow graph (SFG) of radix-2, 8-point 

FFT is shown in Fig. 4. It has regular and symmetric 

structure. This SFG has three stages. In stage 1, a 

single butterfly operation is present. In stage 2, two 

butterfly operations are present. Similarly, in stage 3, 

four butterfly operations are available. Therefore, a 

single BU is designed to perform all butterfly 

operations instead of using different processing 

elements for each stage butterfly operation. The 

twiddle constants required for butterfly operations are 

shown in Table 5 previously.  

At the first stage, 𝑊8
0 = 1. Hence trivial butterfly 

operation is performed on X and Y. They are added 

and subtracted. This butterfly operation is initiated by 

T = 00b. The sum and difference of X and Y are 

available at output R and I respectively. Second stage 

of SFG has two butterfly operations. Here 𝑊8
0 = 1 

and  𝑊8
2 =  −𝑗. Hence trivial butterfly operation 

remained same. Another butterfly operation is 

performed with input Y. Input Y is multiplied by – 1. 

This second butterfly operation is selected when T= 

01b. The product of multiplication is available at the 

output I. Third stage of SFG has four butterfly 

operations. The butterfly operations with twiddle 

constant 𝑊8
0 = 1 and  𝑊8

2 =  −𝑗 are similar to 

previous stages. The additional two butterfly 

operations are performed on input X and Y. In this 

stage input X denotes the real part and Y denotes the 

complex part of the intermediate computation 

available from previous stage. When T = 10b, 

intermediate computation from previous stage is 

multiplied by  𝑊8
1 =  0.707 − 𝑗0.707 . The similar 

complex multiplication of  𝑊8
3 =  −0.707 − 𝑗0.707 

with intermediate computation is performed when 

T=11b. The real part of multiplication is available at 

output R and imaginary part of it is available at output 

I. The operational methodology
16

 for butterfly 

operations is shown in Table 8. 
 

FFT Computation and Error Analysis 

FFTs of input sequences shown in Table 9 are 

computed using designed FFT processor. The 

computation is performed using decimation in time 

(DIT) as well as decimation in frequency (DIF). A 

computational program is written using the tailored 

instruction set shown in Table 6. The binary file of 

computational program is the part of design to test the 

functionality. Verilog entity of this binary file is 

named as program memory. Xilinx 14.7 is used to 

simulate the computational program. The FFTs of 

same input sequences are also computed by rounding 

the twiddle factors on proposed processor. To validate 

the result, FFTs of sequences are also  

Table 6 — Instruction Set 

Instruction Description 

Load Rm, ##nn Load immediate 16-bit data in main register  

BU X SRC1, SRC2, DST1, DST2 BU stands for butterfly computation. X indicates the stage (0 to 3), SRC and DST from Rm, Rr or  

Ri. BU0 R0, R1, Rr0, Ri0 perform R0±R1, store the sum in Rr0 and difference in Ri0.  

However, SRC1/DST1 is either Rm or Rr. Similarly, SRC2/DST2 is either Rm or Ri. 

BU X #0, SRC2, DST1, DST2 There is a special case in which the SRC1 is ‗0‘ and DST1 and DST2 are same as described above. 

BU X SRC1,#0,DST1,DST2 There is also a special case in which the SRC2 is ‗0‘ and DST1 and DST2 are same as described above 

Mov Rr,Ri Copy the contents of Ri in to Rr. 

Mov Ri,Rr Copy the contents of Rr, Ri. 

Out Rr,Ri Read the contents of Rr, Ri 

Halt Termination of Program 
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Fig. 3 — Radix-2,8-point Butterfly Unit 
 

simulated using Scilab. The magnitude X[k] and 

phase < X[k] of FFT output is used to compare the 

result. The magnitudes and phases of the FFT ouputs 

are calculated using Eqs 1 & 2. 

 
Fig. 4 — Signal Flow Graph for Radix-2,8-Point FFT 

 

 𝑋 𝑘  =   𝑋𝑟𝑒𝑎𝑙
2 + 𝑋𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦  

2   …(1) 

 

< 𝑋 𝑘 =  tan−1 𝑋𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑋𝑟𝑒𝑎𝑙
    …(2) 

 

These calculated magnitudes and phases values are 

compared with their Scilab simulated values. The 

comparison is in terms of mean square error (MSE). 

MSE is calculated using Eq. 3.  

𝑀𝑆𝐸 =
1

𝑁
 𝐸(|𝑋 𝑘 − 𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  

𝑁−1
𝑘=0  𝑘 |)2 …(3) 

𝑋 𝑘  is simulated value using Scilab. 

𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑   𝑘  is calculated value using proposed 

FFT processor. N represents the numbers of 

computations. The MSE is calculated for each 

sequence without and with rounding the twiddle 

constant  as  shown  in  Table 9.  The  MSE,   without  

 
 

Fig. 2 — Dual Path Fused Floating Point Addition-Subtraction  
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rounding and with rounding of  twiddle  constants  are 

3.16 and 5.45 respectively  for  magnitude.  Similarly, 

the MSE are 0.29 and 0.66 without and with rounding 

the twiddle constants respectively for phase. The 

proposed architecture reduces the MSE by 41.95% 

and 55.76% in magnitude and phase respectively as 

compared against its simulation performed by 

rounding the twiddle constant. The standard deviation 

and standard error are also computed for MSE. The 

standard error for magnitude is 2.83 in case of twiddle 

constants are rounded off and 1.14 otherwise. 

Similarly, the standard errors for phase values are 

0.16 and 0.39 without and with rounding the twiddle 

constant respectively. Hence the proposed 

architecture reduces the standard error by 59.71% and 

Table 9 — MSEs of FFT Computations 

Sr No. Input Sequence Domain MSE in Magnitude  MSE in Phase 

Without 

Rounding 

With  

Rounding 

Without 

Rounding 

With  

Rounding 

1 1,2,3,4,4,3,2,1 DIT 0.006563 0.018 0.044063 0.353 

2 1,2,3,4,4,3,2,1 DIF 0.003525 0.018 0.054141 0.349741 

3 1,1,1,1,-1,-1,-1,-1 DIT 0.032038 0.023 0.02905 0.966077 

4 1,1,1,1,-1,-1,-1,-1 DIF 0.028061 0.05698 0.004449 0.348237 

5 1,-1,1,-1,0,0,0,0 DIT 0.006875 0.0065 0.00897 0.039812 

6 1,-1,1,-1,0,0,0,0 DIF 0.007069 0.006432 0.006554 0.039812 

7 2,1,2,1,2,1,2,1 DIT 0 0 0 0 

8 2,1,2,1,2,1,2,1 DIF 0 0 0 0 

9 1,2,3,2,1,2,3,2 DIT 0 0 0 0 

10 1,2,3,2,1,2,3,2 DIF 0 0 0 0 

11 1,1,1,1,0,1,1,1 DIT 0 0 0 0 

12 1,1,1,1,0,1,1,1 DIF 0 0 0 0 

13 1,2,4,8,16,32,64,128 DIT 29.00963 59.14134 0.007001 0.034374 

14 1,2,4,8,16,32,64,128 DIF 28.23196 62.15168 0.005252 0.035111 

15 128,64,32,16,8,4,2,1 DIT 7.722965 15.83844 0.001468 0.129015 

16 128,64,32,16,8,4,2,1 DIF 23.21319 15.83844 0.013673 0.02153 

17 64,32,16,8,4,2,1,0 DIT 1.931382 3.998601 0.001428 0.020782 

18 64,32,16,8,4,2,1,0 DIF 1.720276 3.998601 0.000643 0.020782 

19 0,1,2,1,0,-1,-2,-1 DIT 0.040316 0.10663 0 0.61685 

20 0,1,2,1,0,-1,-2,-1 DIF 0.047816 0.10663 0.308644 0.61685 

21 2,1,0,-1,-2,-1,0,1 DIT 0.301449 0.462885 0 0 

22 2,1,0,-1,-2,-1,0,1 DIF 0.328785 0.462885 0.063263 0 

23 0,1,2,3,4,5,6,7 DIT 0.124693 0.103462 0.019086 0.040108 

24 0,1,2,3,4,5,6,7 DIF 0.288528 0.103462 0.083398 0.040108 

25 7,6,5,4,3,2,1,0 DIT 0.124693 0.103462 0.776286 0.040108 

26 7,6,5,4,3,2,1,0 DIF 0.126876 0.103462 0.023278 0.040108 

27 16,8,4,2,1,0.5,0.25,0 DIT 0.638105 0.13083 0.024978 0.047688 

28 16,8,4,2,1,0.5,0.25,0 DIF 1.026858 0.672341 0.029083 0.105215 

29 -1,-1,-1,-1,1,1,1,1 DIT 0.030933 0.288264 3.609475 10.85544 

30 -1,-1,-1,-1,1,1,1,1 DIF 0.066433 0.025874 3.687191 5.137126 

Mean 3.168634 5.458873 0.293379 0.663262 

Standard Error 1.14 2.83 0.16 0.39 

Standard deviation 8.18 15.53 0.92 2.14 

Table 8 — Operational Methodology  

Inputs Stage 

 

Twiddle 

factor 

  FMULT 1 

Inputs 

FMULT 2 

Inputs 

Output 

R 

Output 

I 

𝑋, 𝑌 
I 

T=00 
 𝑊8

0 = 1 𝑋 + 𝑌, 1 𝑋 − 𝑌, 1 𝑋 + 𝑌 𝑋 − 𝑌 

0, 𝑌 
II 

T=01 
 𝑊8

2 =  −𝑗 0,0 𝑌, −1 ‗0‘ −𝑗𝑌 

𝑋 + 𝑗𝑌 
III 

T=10 

 𝑊8
1

=  0.707
− 𝑗0.707 

𝑋 + 𝑌, 

0.707 

𝑋 − 𝑌, 

−0.707 

 

Real 

Part 

Imaginary 

Part 

𝑋 + 𝑗𝑌 
III 

T=11 

 𝑊8
3

= −0.707
− 𝑗0.707 

𝑋 − 𝑌, 

−0.707 

𝑋 + 𝑌, 

−0.707 

Real 

Part 

Imaginary 

Part 
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58.97% in magnitude and phase respectively as 

compared against the fixed point representation of 

twiddle constant. 
 

Hardware Implementation and Comparison of 

Result  
Verilog codes of DFFAS, BU and proposed 

architecture of FFT processor are synthesized and 

placed using Mentor-Graphics - Oasys for 45 nm 

technology of nangate open cell library. Operating 

conditions are set to typical values. Authors have also 

synthesized the Verilog codes of the discrete design 

of floating point addition-subtraction and FFAS. In 

discrete design, common logic i.e., exponent 

comparator, mantissa mux and right barrel shifter are 

not shared. Similarly, in FFAS, no additional path is 

used. The comparative statistics of synthesized result 

is shown in Table 10. Discrete addition-subtraction 

design consumes 11422 µm
2 

area with the delay of 

1.47 ns. Similarly, FFAS and DFFAS design 

contributes area 10330 µm
2
 and 10836 µm

2 

respectively. FFAS and DFFAS design causes delay 

of 1.56 ns and 1.63 ns respectively. Area and delay of 

DFFAS are increased by 4.66% and 4.06% 

respectively as compared with FFAS.
16 

This addition 

in area and delay is due to the additional pathused in 

DFFAS. Proposed BU design reports a delay of 3.51 

ns with placement area of 20423 µm
2
. Comparison of 

butterfly designs with previously reported work
8,10,11,16

 

is shown in Table 11. The proposed BU design 

reduces area by 14.58% with the additional delay of 

1.99% as compared with authors previous work.
16

 

Similarly, the proposed BU design reduces area by 

18.89% and delay by 5.13% as compared with the 

previous work reported by  

Kaivani et al.
10

. In addition to this, work reported by 

Kaivani et al.
10

 computes one halves with five 

operand adder and two dot products. However 

proposed BU computes two halves with single 

DFFAS and two FMULT. The trade-offs between 

area and delay are usual conflicts. Hence the second 

order area time complexity parameter AT
2 

i.e. Area × 

Time
2
 is mentioned in comparison. It is worth 

mentioning that proposed BU design has smallest 

AT
2
. The work reported by Kaivani et al.

11
 is based 

on redundant algorithm. Here additional logic is 

required to convert the data available in non-

redundant form to redundant form and vice-versa. 

Redundant to non-redundant logic contributes the 

additional delay and area.  

BU of proposed FFT processor takes two cycles are 

required to complete one butterfly operation which 

one more cycle to write back the result in register file. 

However, the BU designed by Noor et al.
13 

takes 12 

cycles to complete one butterfly operation and 

additional 6 cycles for memory read, write back and 

scaling process. Therefore total 18 cycles to complete 

one BU operation and is too large as compared with 

the proposed design. The Mentor Graphics Oasys-

Nitro flow is used to place and route the proposed 

architecture of FFT processor. The logical 

hierarchical placement details of proposed FFT 

processor in Nitro is shown in Table 12. Design 

summary is shown in Table 13. Synthesized, placed 

and routed results show that proposed processor has 

die area of 37251 µm
2
 at 60.86% chip utilization. 

Table 11 — Comparison of Butterfly Unit 

Parameter 
Proposed 

Design 
SwartzlanderJr et al.8 Kaivani et al.10 Kaivani et al.11 Kulkarni et al.16 

Technology 
Free PDK Nangate 

Open cell 45nm Lib 

45nm Bulk  

CMOS Standard Lib 

45nm 

Opennangate 

STM CMOS 90nm 

Liband 

Scaled to 45nm 

Free PDK  

Nangate Open  

cell 45nm Lib 

Area (µm2 ) 20423 47489 25182 93836 23910 

Delay(ns) 3.51 4.00 3.70 2.59# 3.44 

Area (µm2 ) × Delay 2 

(ns)2 
251613 759824 344741 629461 282941 

Input-Output Non-redundant Non-redundant Non-redundant Redundant Non-redundant 

# Redundant to non-redundant and vice-versa logic and its delay is not included in the design 

Table 10 — Comparative Statistics of Floating-point Addition  

and Subtraction  

Parameter DFFAS 

Proposed 

Discrete Addition 

–subtraction16 

FFAS16 

Technology Nangate Open 

Cell Library 

45nm 

Nangate Open 

Cell Library 

45nm 

Nangate Open 

Cell Library 

45nm 

Area (A) in 

(µm2 ) 
10836 11422 10330 

Delay (T) in 

(ns) 
1.63 1.47 1.56 

AT2 in  
(mm2 ns2) 

0.028 0.024 0.025 
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Proposed processor dissipates 4.65 mW power. 

Operating voltage is 0.85V. The maximum clock 

frequency applied to this processor is 500MHz. The 

placement of logical cells is shown in Fig. 5. For fair 

comparison of proposed application specific 

integrated circuit (ASIC) design of FFT processor 

with previously reported designs having different FFT 

sizes, area-time complexity ( 𝐴𝑇2
𝑛𝑜𝑟𝑚  ) , stated by 

Diego et al.
14

 is used. Area-time complexity is the 

second order normalised term and given by Eq. 4, in 

which A, s, N and T represents area, processing 

technology in µm, FFT sequence size and time 

respectively. 
 

 𝐴𝑇2
𝑛𝑜𝑟𝑚  =  

𝐴𝑟𝑒𝑎

𝑁 (𝑠 0.18 )2 𝑇2  …(4) 
 

The hardware cost metric is represented by the 

product of 𝐴𝑇2
𝑛𝑜𝑟𝑚  and power (Dp).

14
 The hardware 

cost metric of proposed processor is 1.37. 

Comparative statistics of hardware utilization and cost 

metric with previous work
6,7,13,14

 is given in Table 14. 

The proposed processor dissipates more power as 

compared with the ASIC design reported by Noor et al.
13

 

It is worth mentioning that proposed processor has 

lowest hardware cost metric and 𝐴𝑇2
𝑛𝑜𝑟𝑚  . The 

hardware cost metric is 32.51 % less as compared 

with hardware cost metric of ASIC design given by 

Noor et al.
13

 
 

Conclusions 

The proposed FFT processor can be suitably  

suitable to adopt in radix–r pipelined split radix 

architecture for small independent, radix-2, 8-point 

computation. Twiddle constants are implicitly 

available in instructions to avoid the additional fetch 

cycle for them. Intermediate computational result are 

stored in register files which saves the load and store 

time required in memory-based architecture. 

Computational unit i.e., BU of proposed FFT 

processor is formatting smaller. It replaces a set of 

two five operand adder and two multipliers by dual 

path fused floating point addition-subtraction, two 

floating point multiplier as compared with previous 

work. The proposed BU performs arithmetic 

computation in floating point form to reduce the 

Table 12 — Logical Hierarchical Placement in Nitro 

Module No of Cells Cell Area in µm2 

FFT (TOP) 6839 10753 

FFAS 1031 1170.13 

Fmult x 2 2746 4111.55 

Register files x 3 1623 3758.58 

Mux 2:1 x 2 32 59.58 

Mux 4:1 x 7 602 555.11 

Controller 584 878.06 

Program Memory 219 220.51 
 

 

Table 13 — Design Summary of FFT Processor 

Library Nangate Open cell Library 

Technology 45nm 

Die Area 37251µm2 

Max Clock Frequency 500MHz 

Standard Cell utilization  60.86 % 

Power 4654.2µW 

Total Cycles to compute 8-point FFT 76 cycles 
 

 
Fig. 5 — Placements in Chip of FFT Processor 

Table 14 — Comparative Statistics of Hardware Utilization  

and Cost Metrics 

Parameter Proposed 

Design 

Xiao  

et al.6 

Velncia 

et al.7 

Noor  

et al.13 

Diego  

et al.14 

Technology 

(T) nm 
45 130 45 90 180 

Area (A) µm2 37251 2700000 348100 198404 740000 

Voltage V 0.85 1.2 1.1 1.2 1.8 

Clock Rate 

MHz 
500 40 317 100 505 

Power 

(Dp)mW 
4.65 35.7 10 3.44 192 

Data Length 16 10 16 16 8 

FFT Points (N) 8 8192 32 128 12 

𝐴𝑇2
𝑛𝑜𝑟𝑚  mm2 

ns2 
0.296 0.394 1.73 0.594 0.242 

𝐴𝑇2
𝑛𝑜𝑟𝑚 Dp 

mm2 ns2 mW 
1.37 14.09 17.32 2.03 46.42 
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nonlinearities. Hence the proposed architecture 

reduces the MSE by 41.95% and 55.76% in 

magnitude and phase respectively as compared with 

computations performed by rounding the twiddle 

constants. The proposed processor also offers the 

flexibility to compute FFT in time and frequency 

domain without changing the BU design. It is also 

observed that hardware cost metric of the proposed 

architecture is 32.51% less than previous work. 
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