
Journal of Scientific & Industrial Research

Vol. 80, March 2021, pp. 230-238

ASIC Design of Radix-2,8-Point FFT Processor

Prasad Kulkarni
1*

, B G Hogade
1
, Vidula Kulkarni

2
 and Varsha Turkar

3

1
Terna Engineering College, Navi Mumbai 400 706, India

2Sanpada College of Commerce and Technology Sanpada, Navi Mumbai 400705, India
3Don Bosco College of Engineering, Goa 403 602, India

Received 15 August 2020; revised 08 February 2021; accepted 14 February 2021

In split radix architecture, large sizes Fast Fourier Transforms (FFT) are decomposed into small independent

computations to reduce storage burden. Radix-2, 8-point is one the popular choice in split radix for small independent

computation. Authors proposes the FFT processor architecture for this small independent computation i.e. radix-2, 8-point

FFT. This paper brief architecture comprising Butterfly Unit (BU), register set and controller. The novelty of this

architecture is that it replaces the series of Processing Elements (PE) by single BU. BU computes two halves of the

computations concurrently. Arithmetic computations are performed in floating point form to overcome the nonlinearities.

All computations are controlled by tailored instruction set. All instructions are of same size and have same execution time.

Twiddle constants are implicitly available in the instruction. Internal computations are stored in register set to avoid the load

and store operations with memory. The mean square error of the computation is reduced by 41.95% and 55.76% in

magnitude and phase respectively as compared with computations performed by rounding the twiddle constant. This FFT

processor is synthesized, placed and routed for 45 nm technology of nangate open cell library. The BU of this architecture is

18.89% smaller and 5.13% faster as compared with smallest and fastest BU reported previously. The hardware cost metric

i.e. 𝐴𝑇2
𝑛𝑜𝑟𝑚 Dp mm2 ns2 mW of proposed processor is 1.37. This cost metric is also 32.51% less as compared with the

previous work.

Keywords: Butterfly Unit, Fast Fourier Transform, Fused Floating Point Addition–Subtraction, Non-redundant arithmetic

Introduction

Digital Signal Processor (DSP) widely use

FFT for signal processing in variety of fields such

as entertainment devices, wireless broadband

communication system, microwave access (Wi Max),

long term evolution, image processing and biomedical

signal processing. In the past decade, various

pipelined FFT processor architectures were presented

on split radix in which large size FFTs were

decomposed into small independent computations.

Radix-2, 8-point FFT computation was majorly used

as the one of decomposition in split-radix

architectures. The decomposition of large size FFT

helped to balance the functionality and increases the

performance of FFT processor. The performance of

the processor is also increased by eliminating memory

to store the intermediate computations. The pipeline

architectures were of mixed radix multipath delay

feedback,
1,2

 ring structured multiprocessor,
3
 scalable

array structure,
4
 single delay feedback,

5
 fixed point

reconfigurable architecture
6
 and parameterisable

architecture for memory based FFT algorithm.
7
 On

the other hand, pipeline architectures consist of an

interleaved series of computational elements and data

storage elements i.e. processing elements (PE).

Computational elements known as butterfly unit (BU)

are responsible for performing multiplication and

addition. Hence the architecture of BU is also an

important unit to decide the performance of FFT

processor. In this decade, various BUs were proposed

based on floating point arithmetic to overcome

nonlinearities such as overflow of number range,

rounding errors, aliasing errors and coefficient errors.

However, floating point arithmetic has sluggish

nature. To improve speed and to reduce area of

consumption, various arithmetic hardware were

proposed by sharing common logic,
8
 dual path

pipeline,
9
 multi-operand adder

10
 and redundant

arithmetic.
11,12

 Lookup table enabled multiplier,

hash indexing function
13

 and Gauss-Eisenstein

representation
14

 was also used for arithmetic

operations. This paper proposes architecture of radix-

2, 8-point FFT processor for small independent

——————

*Author for Correspondence

E-mail: prasad26276@gmail.com

KULKARNI et al.: ASIC DESIGN OF RADIX-2,8-POINT FFT PROCESSOR

231

computation suitable in split radix architectures. The

novelty of this architecture is that single BU free from

series of processing elements (PE), computes two

halves of the computation concurrently. This BU also

computes FFT in time domain as well as in frequency

domain. Dual path fused floating point addition-

subtraction (DFFAS) and two floating point

multipliers (FMULT) are the major entities of BU.

The computation program based on radix-2

algorithm is written by author and stored in program

memory. This paper briefs on the following:

1 Architecture of FFT processor.

2 BU, comprising DFFAS.

3 Tailored instruction set to perform arithmetic

operations.

4 Comparison of FFT computational error occurred

using floating point against the fixed-point

representation of twiddle constant.

Architecture of Proposed FFT Processor

Architecture of proposed FFT processor is shown

in Fig.1. BU, three register files, multiplexers and

controller are the main entities in proposed FFT

processor. Features of this FFT processor are

 It is16-bit processor.

 BU performing addition and multiplication on

floating point numbers represented in 16 bits

simple 2‘s complement form.

 Tailored instruction set. All instructions have

equal length i.e., 20-bit and same execution time.

 It has three register files named as main, real and

imaginary. Each register file consists of 8, 16-bit

registers.

BU comprises of DFFAS, multiplexers and
FMULT. This BU is responsible to perform arithmetic
operations. Register files are used to hold the input
sequence, intermediate computational operand and

output sequence. 4:1 multiplexer is used to select the
operands for arithmetic operations. 2:1 multiplexer
enables data transfer between two registers.

The program memory is interfaced with the FFT
processor using interfacing signals. These interfacing
signals are shown in Table 1. The interfacing signals
consist of 20-bit data bus, 6-bit address bus, clock
input and reset input. Controller writes the address of
program memory to fetch the instruction. The fetched
instruction is decoded by controller. After decoding
instruction, controller generates controls signals as
shown in Table 2. The control signals WREN, WAD
and RAD are used by register files to perform write
and read operation. Register file has one input data
bus and two output data buses. The input data bus is
used to perform write operation. The register write
operation is enabled by asserting WREN signal. The
write operation is performed on the register whose
address is available in WAD. Simultaneously, two

Fig.1 — Proposed FFT Architecture

J SCI IND RES VOL 80 MARCH 2021

232

registers are read through output data buses. Register
file has two additional input buses i.e., RAD 1 and
RAD 2 to perform read operation. RAD 1 and RAD 2
holds the addresses of two registers to perform read
operation on them.

The signal XCH is used to copy the information

from register available in real register file to register

available in imaginary file and vice-versa. The

register addresses are shown in Table 3. The Rm

denotes the register from main file, Rr denotes the

register from real file and Ri denotes the register from

imaginary file.

The main register file stores the immediate data

sequence (D), products from multipliers and 0d. They

are selected through the select line SELm. Similarly,

the operands X and Y for DFFAS are selected through

SELr and SELi respectively. This operand selection is

listed in Table 4.

The twiddle constants and butterfly operations are

selected by T. The twiddle constants selected through

T are listed in Table 5.

Instruction Set
Instructions are available to perform the trivial as

well as complex arithmetic on operand. Instruction set

is shown in Table 6. The 16-bit immediate data is

indicated by ―nn‖. SRC indicates the source and DST

points the destination. X denotes the BU stage.

Twiddle constants are implicitly available in the

instruction. Here the memory is not used for load and

store operation. The source and destination address of

the registers are mention in the instruction itself. This

saves the load and store time with off chip memory.

Each instruction takes 2 cycles to decode and execute.

Here data is represented in 16-bit simple 2‘s

complement form.
15

 All floating-point operations are

performed as described by Kulkarni et al.
16

Butterfly Unit

BU design reported by Kulkarni et al.
16

uses fused

floating-point addition-subtraction (FFAS), FMULT

and four 4:1 multiplexer. However, in this FFAS unit,

exponent comparator, compares two exponents by

taking difference between them. If this difference is

too large, then the mantissa of the number having

smaller exponent will be insignificant and truncated

after the mantissa shifted more than 16 bits. Hence

this logic sets operand having smaller exponent to

zero value. Therefore, additional path is proposed in

the FFAS design to skip FFAS algorithm and result is

Table 1 — Details of Interfacing Signals

Symbol Status Description

DATA Input 20-bit data bus.

ADDRESS Input 6-bit address lines.

Clock Input Clock signal for synchronization of the

operation.

Reset Input Active high synchronous reset. On reset,

initializes the operation at default level.

Address lines are initialized at 000000b

and others signals are maintained the state

at high impedance level.

Table 2 — Signals Generated by Controller

Symbol Width Description

D 16 A data line carries the immediate data bits.

WREN 1 Register write enable: Active high signal enables the

register to write the information in specified register.

WAD 3 Register write address: Denotes the address of

register to write the information in it.

RAD 3 Register read address: Denotes the address of

register to read information from it.

SEL 2 Select lines to select the operand.

XCH 1 Enables the data transfer between two register files.

XCH= 0b transfer the data from Rr to Ri

XCH= 1b transfer the data from Ri to real Rr

T 2 Select the stage of FFT operation.

Table 3 — Registers Address for Read, Write Operations

WAD RAD Rm Rr Ri

000b 000b R0 Rr0 Ri0

001b 001b R1 Rr1 Ri1

010b 010b R2 Rr2 Ri2

011b 011b R3 Rr3 Ri3

100b 100b R4 Rr4 Ri4

101b 101b R5 Rr5 Ri5

110b 110b R6 Rr6 Ri6

111b 111b R7 Rr7 Ri7

Table 4 — Operands for Register Write in Main Register File and

Operands for DFFAS

Operand for main Register file Operands for DFFAS

SELm Operand SELr X SELi Y

00 Immediate data sequence (D) 00 Rm 00 Rm

01 Output from FMULT 1 01 Rr 01 Rr

10 Output from FMULT 2 10 Ri 10 Ri

11 0000 H 11 0000H 11 0000H

Table 5 — Twiddle Constants

𝑊𝑁
𝑛𝑘 Twiddle Constant

𝑊8
0 1

𝑊8
2 -j

𝑊8
1 0.707 − 𝑗0.707

𝑊8
3 −0.707 − 𝑗0.707

KULKARNI et al.: ASIC DESIGN OF RADIX-2,8-POINT FFT PROCESSOR

233

Table 7 — Decision Table for Special Cases

Input X,Y Sum Difference

X ≠ 0 ,Y≠ 0 X+Y X-Y

X ≠ 0 ,Y= 0 X X

X =0 ,Y≠ 0 Y −Y

X =0 ,Y= −1 Y −Y = 1

X = 0 ,Y= 0 0 0

set to predefined value. Operands -1d or 0d or 1d are

the frequently used coefficient in FFT computation.

Hence additional path for operands -1d,0d and 1d is

introduced. Additional path comprises magnitude

comparator and multiplexers. Magnitude comparator

compares the operand with -1d, 0d and 1d. The output

of comparator enables the multiplexers to set

sum/difference to predefined value as mentioned in

decision Table 7. The FFAS design with this

additional path is named as dual path fused floating

point addition-subtraction (DFFAS) as shown in

Fig. 2. Floating point addition-subtraction perfomed

by DFFAS for the operands other than –1d,0d and 1d

is similar to FFAS designed by Kulkarni et al.
16

 This

DFFAS is proposed at the place FFAS in BU

designed by Kulkarni et al.
16

 This new proposed BU

is shown in Fig. 3.

The signal flow graph (SFG) of radix-2, 8-point

FFT is shown in Fig. 4. It has regular and symmetric

structure. This SFG has three stages. In stage 1, a

single butterfly operation is present. In stage 2, two

butterfly operations are present. Similarly, in stage 3,

four butterfly operations are available. Therefore, a

single BU is designed to perform all butterfly

operations instead of using different processing

elements for each stage butterfly operation. The

twiddle constants required for butterfly operations are

shown in Table 5 previously.

At the first stage, 𝑊8
0 = 1. Hence trivial butterfly

operation is performed on X and Y. They are added

and subtracted. This butterfly operation is initiated by

T = 00b. The sum and difference of X and Y are

available at output R and I respectively. Second stage

of SFG has two butterfly operations. Here 𝑊8
0 = 1

and 𝑊8
2 = −𝑗. Hence trivial butterfly operation

remained same. Another butterfly operation is

performed with input Y. Input Y is multiplied by – 1.

This second butterfly operation is selected when T=

01b. The product of multiplication is available at the

output I. Third stage of SFG has four butterfly

operations. The butterfly operations with twiddle

constant 𝑊8
0 = 1 and 𝑊8

2 = −𝑗 are similar to

previous stages. The additional two butterfly

operations are performed on input X and Y. In this

stage input X denotes the real part and Y denotes the

complex part of the intermediate computation

available from previous stage. When T = 10b,

intermediate computation from previous stage is

multiplied by 𝑊8
1 = 0.707 − 𝑗0.707 . The similar

complex multiplication of 𝑊8
3 = −0.707 − 𝑗0.707

with intermediate computation is performed when

T=11b. The real part of multiplication is available at

output R and imaginary part of it is available at output

I. The operational methodology
16

 for butterfly

operations is shown in Table 8.

FFT Computation and Error Analysis

FFTs of input sequences shown in Table 9 are

computed using designed FFT processor. The

computation is performed using decimation in time

(DIT) as well as decimation in frequency (DIF). A

computational program is written using the tailored

instruction set shown in Table 6. The binary file of

computational program is the part of design to test the

functionality. Verilog entity of this binary file is

named as program memory. Xilinx 14.7 is used to

simulate the computational program. The FFTs of

same input sequences are also computed by rounding

the twiddle factors on proposed processor. To validate

the result, FFTs of sequences are also

Table 6 — Instruction Set

Instruction Description

Load Rm, ##nn Load immediate 16-bit data in main register

BU X SRC1, SRC2, DST1, DST2 BU stands for butterfly computation. X indicates the stage (0 to 3), SRC and DST from Rm, Rr or

Ri. BU0 R0, R1, Rr0, Ri0 perform R0±R1, store the sum in Rr0 and difference in Ri0.

However, SRC1/DST1 is either Rm or Rr. Similarly, SRC2/DST2 is either Rm or Ri.

BU X #0, SRC2, DST1, DST2 There is a special case in which the SRC1 is ‗0‘ and DST1 and DST2 are same as described above.

BU X SRC1,#0,DST1,DST2 There is also a special case in which the SRC2 is ‗0‘ and DST1 and DST2 are same as described above

Mov Rr,Ri Copy the contents of Ri in to Rr.

Mov Ri,Rr Copy the contents of Rr, Ri.

Out Rr,Ri Read the contents of Rr, Ri

Halt Termination of Program

J SCI IND RES VOL 80 MARCH 2021

234

Fig. 3 — Radix-2,8-point Butterfly Unit

simulated using Scilab. The magnitude X[k] and

phase < X[k] of FFT output is used to compare the

result. The magnitudes and phases of the FFT ouputs

are calculated using Eqs 1 & 2.

Fig. 4 — Signal Flow Graph for Radix-2,8-Point FFT

 𝑋 𝑘 = 𝑋𝑟𝑒𝑎𝑙
2 + 𝑋𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

2 …(1)

< 𝑋 𝑘 = tan−1 𝑋𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑋𝑟𝑒𝑎𝑙
 …(2)

These calculated magnitudes and phases values are

compared with their Scilab simulated values. The

comparison is in terms of mean square error (MSE).

MSE is calculated using Eq. 3.

𝑀𝑆𝐸 =
1

𝑁
 𝐸(|𝑋 𝑘 − 𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑁−1
𝑘=0 𝑘 |)2 …(3)

𝑋 𝑘 is simulated value using Scilab.

𝑋𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑘 is calculated value using proposed

FFT processor. N represents the numbers of

computations. The MSE is calculated for each

sequence without and with rounding the twiddle

constant as shown in Table 9. The MSE, without

Fig. 2 — Dual Path Fused Floating Point Addition-Subtraction

KULKARNI et al.: ASIC DESIGN OF RADIX-2,8-POINT FFT PROCESSOR

235

rounding and with rounding of twiddle constants are

3.16 and 5.45 respectively for magnitude. Similarly,

the MSE are 0.29 and 0.66 without and with rounding

the twiddle constants respectively for phase. The

proposed architecture reduces the MSE by 41.95%

and 55.76% in magnitude and phase respectively as

compared against its simulation performed by

rounding the twiddle constant. The standard deviation

and standard error are also computed for MSE. The

standard error for magnitude is 2.83 in case of twiddle

constants are rounded off and 1.14 otherwise.

Similarly, the standard errors for phase values are

0.16 and 0.39 without and with rounding the twiddle

constant respectively. Hence the proposed

architecture reduces the standard error by 59.71% and

Table 9 — MSEs of FFT Computations

Sr No. Input Sequence Domain MSE in Magnitude MSE in Phase

Without

Rounding

With

Rounding

Without

Rounding

With

Rounding

1 1,2,3,4,4,3,2,1 DIT 0.006563 0.018 0.044063 0.353

2 1,2,3,4,4,3,2,1 DIF 0.003525 0.018 0.054141 0.349741

3 1,1,1,1,-1,-1,-1,-1 DIT 0.032038 0.023 0.02905 0.966077

4 1,1,1,1,-1,-1,-1,-1 DIF 0.028061 0.05698 0.004449 0.348237

5 1,-1,1,-1,0,0,0,0 DIT 0.006875 0.0065 0.00897 0.039812

6 1,-1,1,-1,0,0,0,0 DIF 0.007069 0.006432 0.006554 0.039812

7 2,1,2,1,2,1,2,1 DIT 0 0 0 0

8 2,1,2,1,2,1,2,1 DIF 0 0 0 0

9 1,2,3,2,1,2,3,2 DIT 0 0 0 0

10 1,2,3,2,1,2,3,2 DIF 0 0 0 0

11 1,1,1,1,0,1,1,1 DIT 0 0 0 0

12 1,1,1,1,0,1,1,1 DIF 0 0 0 0

13 1,2,4,8,16,32,64,128 DIT 29.00963 59.14134 0.007001 0.034374

14 1,2,4,8,16,32,64,128 DIF 28.23196 62.15168 0.005252 0.035111

15 128,64,32,16,8,4,2,1 DIT 7.722965 15.83844 0.001468 0.129015

16 128,64,32,16,8,4,2,1 DIF 23.21319 15.83844 0.013673 0.02153

17 64,32,16,8,4,2,1,0 DIT 1.931382 3.998601 0.001428 0.020782

18 64,32,16,8,4,2,1,0 DIF 1.720276 3.998601 0.000643 0.020782

19 0,1,2,1,0,-1,-2,-1 DIT 0.040316 0.10663 0 0.61685

20 0,1,2,1,0,-1,-2,-1 DIF 0.047816 0.10663 0.308644 0.61685

21 2,1,0,-1,-2,-1,0,1 DIT 0.301449 0.462885 0 0

22 2,1,0,-1,-2,-1,0,1 DIF 0.328785 0.462885 0.063263 0

23 0,1,2,3,4,5,6,7 DIT 0.124693 0.103462 0.019086 0.040108

24 0,1,2,3,4,5,6,7 DIF 0.288528 0.103462 0.083398 0.040108

25 7,6,5,4,3,2,1,0 DIT 0.124693 0.103462 0.776286 0.040108

26 7,6,5,4,3,2,1,0 DIF 0.126876 0.103462 0.023278 0.040108

27 16,8,4,2,1,0.5,0.25,0 DIT 0.638105 0.13083 0.024978 0.047688

28 16,8,4,2,1,0.5,0.25,0 DIF 1.026858 0.672341 0.029083 0.105215

29 -1,-1,-1,-1,1,1,1,1 DIT 0.030933 0.288264 3.609475 10.85544

30 -1,-1,-1,-1,1,1,1,1 DIF 0.066433 0.025874 3.687191 5.137126

Mean 3.168634 5.458873 0.293379 0.663262

Standard Error 1.14 2.83 0.16 0.39

Standard deviation 8.18 15.53 0.92 2.14

Table 8 — Operational Methodology

Inputs Stage

Twiddle

factor

 FMULT 1

Inputs

FMULT 2

Inputs

Output

R

Output

I

𝑋, 𝑌
I

T=00
 𝑊8

0 = 1 𝑋 + 𝑌, 1 𝑋 − 𝑌, 1 𝑋 + 𝑌 𝑋 − 𝑌

0, 𝑌
II

T=01
 𝑊8

2 = −𝑗 0,0 𝑌, −1 ‗0‘ −𝑗𝑌

𝑋 + 𝑗𝑌
III

T=10

 𝑊8
1

= 0.707
− 𝑗0.707

𝑋 + 𝑌,

0.707

𝑋 − 𝑌,

−0.707

Real

Part

Imaginary

Part

𝑋 + 𝑗𝑌
III

T=11

 𝑊8
3

= −0.707
− 𝑗0.707

𝑋 − 𝑌,

−0.707

𝑋 + 𝑌,

−0.707

Real

Part

Imaginary

Part

J SCI IND RES VOL 80 MARCH 2021

236

58.97% in magnitude and phase respectively as

compared against the fixed point representation of

twiddle constant.

Hardware Implementation and Comparison of

Result
Verilog codes of DFFAS, BU and proposed

architecture of FFT processor are synthesized and

placed using Mentor-Graphics - Oasys for 45 nm

technology of nangate open cell library. Operating

conditions are set to typical values. Authors have also

synthesized the Verilog codes of the discrete design

of floating point addition-subtraction and FFAS. In

discrete design, common logic i.e., exponent

comparator, mantissa mux and right barrel shifter are

not shared. Similarly, in FFAS, no additional path is

used. The comparative statistics of synthesized result

is shown in Table 10. Discrete addition-subtraction

design consumes 11422 µm
2

area with the delay of

1.47 ns. Similarly, FFAS and DFFAS design

contributes area 10330 µm
2
 and 10836 µm

2

respectively. FFAS and DFFAS design causes delay

of 1.56 ns and 1.63 ns respectively. Area and delay of

DFFAS are increased by 4.66% and 4.06%

respectively as compared with FFAS.
16

This addition

in area and delay is due to the additional pathused in

DFFAS. Proposed BU design reports a delay of 3.51

ns with placement area of 20423 µm
2
. Comparison of

butterfly designs with previously reported work
8,10,11,16

is shown in Table 11. The proposed BU design

reduces area by 14.58% with the additional delay of

1.99% as compared with authors previous work.
16

Similarly, the proposed BU design reduces area by

18.89% and delay by 5.13% as compared with the

previous work reported by

Kaivani et al.
10

. In addition to this, work reported by

Kaivani et al.
10

 computes one halves with five

operand adder and two dot products. However

proposed BU computes two halves with single

DFFAS and two FMULT. The trade-offs between

area and delay are usual conflicts. Hence the second

order area time complexity parameter AT
2

i.e. Area ×

Time
2
 is mentioned in comparison. It is worth

mentioning that proposed BU design has smallest

AT
2
. The work reported by Kaivani et al.

11
 is based

on redundant algorithm. Here additional logic is

required to convert the data available in non-

redundant form to redundant form and vice-versa.

Redundant to non-redundant logic contributes the

additional delay and area.

BU of proposed FFT processor takes two cycles are

required to complete one butterfly operation which

one more cycle to write back the result in register file.

However, the BU designed by Noor et al.
13

takes 12

cycles to complete one butterfly operation and

additional 6 cycles for memory read, write back and

scaling process. Therefore total 18 cycles to complete

one BU operation and is too large as compared with

the proposed design. The Mentor Graphics Oasys-

Nitro flow is used to place and route the proposed

architecture of FFT processor. The logical

hierarchical placement details of proposed FFT

processor in Nitro is shown in Table 12. Design

summary is shown in Table 13. Synthesized, placed

and routed results show that proposed processor has

die area of 37251 µm
2
 at 60.86% chip utilization.

Table 11 — Comparison of Butterfly Unit

Parameter
Proposed

Design
SwartzlanderJr et al.8 Kaivani et al.10 Kaivani et al.11 Kulkarni et al.16

Technology
Free PDK Nangate

Open cell 45nm Lib

45nm Bulk

CMOS Standard Lib

45nm

Opennangate

STM CMOS 90nm

Liband

Scaled to 45nm

Free PDK

Nangate Open

cell 45nm Lib

Area (µm2) 20423 47489 25182 93836 23910

Delay(ns) 3.51 4.00 3.70 2.59# 3.44

Area (µm2) × Delay 2

(ns)2
251613 759824 344741 629461 282941

Input-Output Non-redundant Non-redundant Non-redundant Redundant Non-redundant

Redundant to non-redundant and vice-versa logic and its delay is not included in the design

Table 10 — Comparative Statistics of Floating-point Addition

and Subtraction

Parameter DFFAS

Proposed

Discrete Addition

–subtraction16

FFAS16

Technology Nangate Open

Cell Library

45nm

Nangate Open

Cell Library

45nm

Nangate Open

Cell Library

45nm

Area (A) in

(µm2)
10836 11422 10330

Delay (T) in

(ns)
1.63 1.47 1.56

AT2 in
(mm2 ns2)

0.028 0.024 0.025

KULKARNI et al.: ASIC DESIGN OF RADIX-2,8-POINT FFT PROCESSOR

237

Proposed processor dissipates 4.65 mW power.

Operating voltage is 0.85V. The maximum clock

frequency applied to this processor is 500MHz. The

placement of logical cells is shown in Fig. 5. For fair

comparison of proposed application specific

integrated circuit (ASIC) design of FFT processor

with previously reported designs having different FFT

sizes, area-time complexity (𝐴𝑇2
𝑛𝑜𝑟𝑚) , stated by

Diego et al.
14

 is used. Area-time complexity is the

second order normalised term and given by Eq. 4, in

which A, s, N and T represents area, processing

technology in µm, FFT sequence size and time

respectively.

 𝐴𝑇2
𝑛𝑜𝑟𝑚 =

𝐴𝑟𝑒𝑎

𝑁 (𝑠 0.18)2 𝑇2 …(4)

The hardware cost metric is represented by the

product of 𝐴𝑇2
𝑛𝑜𝑟𝑚 and power (Dp).

14
 The hardware

cost metric of proposed processor is 1.37.

Comparative statistics of hardware utilization and cost

metric with previous work
6,7,13,14

 is given in Table 14.

The proposed processor dissipates more power as

compared with the ASIC design reported by Noor et al.
13

It is worth mentioning that proposed processor has

lowest hardware cost metric and 𝐴𝑇2
𝑛𝑜𝑟𝑚 . The

hardware cost metric is 32.51 % less as compared

with hardware cost metric of ASIC design given by

Noor et al.
13

Conclusions

The proposed FFT processor can be suitably

suitable to adopt in radix–r pipelined split radix

architecture for small independent, radix-2, 8-point

computation. Twiddle constants are implicitly

available in instructions to avoid the additional fetch

cycle for them. Intermediate computational result are

stored in register files which saves the load and store

time required in memory-based architecture.

Computational unit i.e., BU of proposed FFT

processor is formatting smaller. It replaces a set of

two five operand adder and two multipliers by dual

path fused floating point addition-subtraction, two

floating point multiplier as compared with previous

work. The proposed BU performs arithmetic

computation in floating point form to reduce the

Table 12 — Logical Hierarchical Placement in Nitro

Module No of Cells Cell Area in µm2

FFT (TOP) 6839 10753

FFAS 1031 1170.13

Fmult x 2 2746 4111.55

Register files x 3 1623 3758.58

Mux 2:1 x 2 32 59.58

Mux 4:1 x 7 602 555.11

Controller 584 878.06

Program Memory 219 220.51

Table 13 — Design Summary of FFT Processor

Library Nangate Open cell Library

Technology 45nm

Die Area 37251µm2

Max Clock Frequency 500MHz

Standard Cell utilization 60.86 %

Power 4654.2µW

Total Cycles to compute 8-point FFT 76 cycles

Fig. 5 — Placements in Chip of FFT Processor

Table 14 — Comparative Statistics of Hardware Utilization

and Cost Metrics

Parameter Proposed

Design

Xiao

et al.6

Velncia

et al.7

Noor

et al.13

Diego

et al.14

Technology

(T) nm
45 130 45 90 180

Area (A) µm2 37251 2700000 348100 198404 740000

Voltage V 0.85 1.2 1.1 1.2 1.8

Clock Rate

MHz
500 40 317 100 505

Power

(Dp)mW
4.65 35.7 10 3.44 192

Data Length 16 10 16 16 8

FFT Points (N) 8 8192 32 128 12

𝐴𝑇2
𝑛𝑜𝑟𝑚 mm2

ns2
0.296 0.394 1.73 0.594 0.242

𝐴𝑇2
𝑛𝑜𝑟𝑚 Dp

mm2 ns2 mW
1.37 14.09 17.32 2.03 46.42

J SCI IND RES VOL 80 MARCH 2021

238

nonlinearities. Hence the proposed architecture

reduces the MSE by 41.95% and 55.76% in

magnitude and phase respectively as compared with

computations performed by rounding the twiddle

constants. The proposed processor also offers the

flexibility to compute FFT in time and frequency

domain without changing the BU design. It is also

observed that hardware cost metric of the proposed

architecture is 32.51% less than previous work.

References
1 Yu-Wei Lin, Hsuan-Yu Liu and Chen-Yi Lee, ―A 1-GS/s

FFT/IFFT Processor for UWB Applications,‖ IEEE Journal

of Solid-State Circuits, 40(8) (2005) 1726–1735.

2 Yu-Wei Lin and Chen-Yi Lee, ―Design of an FFT/IFFT

Processor for MIMO OFDM Systems,‖IEEE Transactions

on circuits and systems –I regular papers, 54(4) (2007)

807–815.

3 Guichang Zhong, Fan Xu and Alan N. Willson, ―A Power-

Scalable Reconfigurable FFT/IFFT IC Based on a Multi-

Processor Ring,‖IEEE Journal of Solid-State Circuits, 41(2)

(2006) 483–495.

4 Xuan Guan,Yunsi Fei and Hai Lin, ― Hierarchical Design of

an Application-Specific Instruction Set Processor for High-

Throughput and Scalable FFT Processing,‖ IEEE

Transactions on Very Large Scale Integration (vlsi) Systems,

20(3) (2012) 551–563.

5 Chu Yu and Mao-Hsu Yen, ―An Area Efficient 128 to

2048/1536-Point Pipeline FFT Processor for LTE and

Mobile Wi-Max System,‖IEEE Transactions on Very Large

Scale Integration (vlsi) Systems, 23(9) (2015) 1793–1800.

6 Hao Xiao, XiangYin, Ning Wu, Xin Chen, Jun Li and

Xiaoxing Chen, ― VLSI design of low –cost and high-

precision fixed-point reconfigurable FFT processor,‖IET

Comput. Digit. Tech.,12(3) (2018) 105–110.

7 Daniel Velncia and Amirhossein Alimohammad, ―Compact

and high-throughput parameterisable architectures for

memory-based FFT algorithms,‖ IET Circuits Devices

Syst.,13(5) (2019) 696–703.

8 Earl E. SwartzlanderJr., and H. H. Saleh, ―FFT

implementation with fused floating-point operations,‖ IEEE

Trans. Comput.,61(2) (2012) 284–288.

9 J. Sohn and E. E. Swartzlander, Jr., ―Improved architectures

for a floating-point fused dot product unit,‖ in IEEE

Transactions on circuits and systems –I regular

papers,59(10) (2012) 2285–2291.

10 Amir Kaivani and Seokbum Ko ―Area efficient Floating-

Point butterfly Architecture Based on multi operand adders,”

Electronics Letter,51(2) (2015) 895–897.

11 Amir Kaivani and Seokbum Ko ―Floating-Point Architecture

Based on Binary Signed-Digit Representation,‖ IEEE

Transaction on VLSI Systems, 24(3) (2016) 1208–1211.

12 Klaus Schneider , Adrian Willenbucher, ― A New Algorithm

for Carry free Addition of Binary Signed Digit

numbers,‖IEEE Int. Symp. On Field Programmable Custom

Computing Machines, (2014) 44–51.

13 Safwat Mostafa Noor , Eugene John, and Manoj Panday ,

―Design and Implementation of an Ultralow-Energy FFT

ASIC for Processing ECG in Cardiac Pacemakers,‖IEEE

Transaction on VLSI Systems ,27(4) (2019) 983–987.

14 Diego F G Coelho, Renato J. Cintra, Nilanka Rajapaksha,

Gihan J. Mendis, Arjuna Madanayake, Vassil S. Dimitrov,

―DFT Computation using Gauss-Eisenstein Basis: FFT

Algorithms and VLSI Architectures,‖IEEE transactions on

computers,66(8) (2017) 1442–1448.

15 Prasad Kulkarni, B G Hogade , Vidula Kulkarni, ―Designing

of Radix-2 Butterfly for Digital Signal Processor for FFT

Computation,‖ Proceedings of third International

Conference on Information and Communication Technology

for Intelligent Systems, Smart Innovation, Systems and

Technologies ,107 (2019) 603–610.

16 Prasad Kulkarni, B G Hogade, Vidula Kulkarni, ― ASIC

Design of Butterfly Unit based on Non-redundant and

Redundant Algorithm,‖Iranian Journal of Electrical and

Electronics Engineering, accepted for publication, in

press.IJEEE.2021:17(1):1809–1809.

