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Novel Schiff bases, Furan-2-carboxylic acid pyridin-4-ylmethyleneamide , and Thiophene-2-carboxylic acid 1H-indol-2-

ylmethyleneamide and their mononuclear Ni(II) and Cu(II) complexes have been synthesized and characterized by 

elemental analysis, molar conductance, UV-visible, FT-IR, 1H NMR and EPR spectroscopy. The complexes are non-

electrolytes as evidenced from the molar conductance vaules. The ligands and their complexes have been tested for their 

antimicrobial activity against one gram positive bacteria, Bacillus subtilis, gram negative bacteria, Escherichia coli and 

fungi Candida albicans. It is found that metal complexes exhibited more activity than the free ligand. 
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The coordination chemistry of transition metals and 

their derivatives has got much attention in recent years
1
 

because many of the biological processes which are 

fundamental to life are controlled by transition metals
2
. 

Many of these coordination compounds possess 

remarkable biological properties such as 

antibacterial
3,4

, analgesic
2
, antifungal

3,4
, antimalarial

5,6
, 

antiviral
7,8 

anticancer
9,10

, antidiabetic
11,12

, anti-HIV
13,14

 

activities and plant growth regulating activity
15

. 

Nitrogen, oxygen and sulphur donor ligands possess a 

range of biological applications like antitumor, 

antibacterial, antifungal, antimalarial and antiviral 

activities
16

 and they can bind the biomolecules at their 

active sites
17

. Due to the excellent donor properties of 

azo group, the complexes containing azo groups 

exhibits excellent antimicrobial activity
18

. The presence 

of azomethine linage (C=N) present in certain 

compounds is also a basic structural necessity for 

biological activity
19

. Remarkable enhanced 

antibacterial
20

, antifungal
20

 and anticancer activities
21,22

 

have been observed for complexes containing 

azomethine linkage. 

Hydrazones which belongs to Schiff base family has 

the functional group (>N-N=C<) in which the 

azomethine group is adjacent to another nitrogen 

atom
23,24

. The biological activities of hydrazones are 

due to the presence of lone pair electrons of 𝑠𝑝2 

hybridized orbitals of azomethine nitrogen
24-26

. 

Hydrazones which contain an azomethine proton 

(–NHN=CH–) is therapeutically important for new 

drug development
27

. The additional donor site, >C=O 

of aroyl, acyl and heteroaroyl hydrazone Schiff base 

compounds makes the hydrazones more flexible and 

versatile. This additional donor site makes hydrazones 

as good polydentate chelating ligand and can 

coordinate with various transition and inner transition 

metals in numerous ways
23

. Hydrazones and their metal 

complexes show varied applications in the fields such 

as antifungal, antibacterial, antioxidative and cytotoxic 

studies
28

. They have been found to be potential 

chemotherapeutic agents. 

The characteristic properties of coordination 

compounds depends on the nature of donor atom, steric 

factors, nature of the metal ion, structure of the 

coordinating ligand, the metal-ligand interaction and 

the nature of the solvent employed
29

. Schiff bases show 

excellent biological activities against many pathogenic 

bacteria, fungi and against certain cancerous cells
18,30

. 

Schiff bases having chelative donor sites like nitrogen, 

oxygen and sulphur when coordinated to metal ions an 

enhanced biological activity is observed
7,31

.  

Generally metal chelates have enhanced activity 

than the free ligand
32

. As chelation increases biological 

activity also increases
7,31

 because chelation increases 

the cell permeability. On chelation the polarity of the 

metal ion reduces and the lipophilic nature of the metal 

ion enhances
21

.  

This enhanced lipophilic nature favours cell 

permeability. Thus metal atoms can permeate more 

effectively through the lipid layer of microbes 
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CuCl2L
2

2.2H2O: Yield, 70 %; Colour: brown; 

Anal.(%), Expt. (Calc.): C,41.89 (42.09); H, 2.96 

(3.02); N, 6.89 (7.01); S, 7.92 (8.02); Absorption: 

(λmax, nm, acetonitrile): 243, 466; IR: (KBr, cm
-1

): 

1602 [ν(C=O)], 1576 [ν(C=N)], 1521 [ν(C=C)], 457 

[ν(Cu-CSC)], 3357 [ν(H2O)]; Molar conductivity, 

16.5 (DMF), 14.6 (acetonitrile) 

NiCl2L
2

2: Yield, 72 %; Colour: pale green; 

Anal.(%), Expt. (Calc.): C, 53.79 (53.89); H, 2.87 

(2.90); N, 8.95 (8.97); S, 10.24 (10.27); Absorption: 

(λmax, nm, acetonitrile): 242, 292; IR: (KBr, cm
-1

): 

1612 [ν(C=O)], 1576 [ν(C=N)], 1521[ν(C=C)], 3167 

[ν(N-H)], 460 [ν(Ni-CSC)], 530 [ν(Ni-O)]; Molar 

conductivity, 17. 1 (DMF), 15.4 (acetonitrile)  
 

Results and Discussion 

Copper(II) and nickel(II) complexes of ligands L
1
 and 

L
2
 were synthesized. and characterised by differrent 

characterization techniques like elemental analysis, 

molar conductivity measurements, 
1
H NMR, UV-visible 

absorption, and FT-IR. All the ligands and complexes 

were stable in room temperature and soluble in 

acetonitrile, DMF and DMSO. Molar conductivities of 

the complexes were recorded in 10
-3
 M solutions of 

DMF and acetonitrile. The molar conductivity values are 

in the range 14.6-19.7 (ohm
-1
 cm

2
 mol

-1
) which indicate 

the non-electrolytic nature of complexes. 
 
1H NMR spectra of ligands 

The proton NMR spectra of the ligands are shown in 

Supplementary Data, Fig. S1. L
1
 displayed a singlet at 

δ, 12.1 ppm which is assigned to azomethine proton. 

The peaks due to protons on furan and pyridine rings 

are in the range δ, 6.7 to 8.6 ppm. L
2
 displayed a 

singlet at δ 9.9 ppm which is attributed to the indole 

NH and signal at δ, 12.1 ppm is ascribed to the 

azomethine proton. The resonance due to protons on 

thiophene and benzene rings are in the range δ, 7.1 to 

8.2 ppm (Supplementary Data, Table S1). 
 

IR spectra 

The IR spectra of the ligands and complexes showed 

various significant bands in the region of 4000-400 cm
-1
 

(Fig. 1), and their assignments were tentatively used to 

establish the mode of coordination as given in 

Supplementary Data, Table S2. A strong sharp band 

observed at 1244 cm
-1 

corresponds to the C-O group of 

L
1
 (Fig. 1a) which is lowered to 1231 cm

-1
 in the copper 

complex (Fig. 1b). C=O band appeared at 1659 cm
-1
 in 

L
1
 lowered to 1618 cm

-1
 in complexes. Coordination of 

L
1 
to the Cu was further confirmed by the appearance of 

bands at 536 cm
-1
 corresponding to Cu–O bond. A 

strong sharp band at 1244 cm
-1
 corresponding to the C-O 

group of L
1
 is lowered to 1220 cm

-1
 in complexes nickel 

(Fig. 1c). The band at 1659 cm
-1
 in L

1 
corresponding to 

C=O was lowered to 1618 cm
-1
 in the Ni complexes. 

Coordination of L
1 
to the metal was further confirmed by 

the appearance of bands at 536 cm
-1
 Ni–O. A sharp band 

observed at 3381 cm
-1
 in nickel complex of L

1
 shows the 

presence of lattice water. 
 

 
 

Fig. 1 — IR spectra of (a) ligand L1, (b) Cu(II)- L1 and (c) Ni(II)- L1 complexes 
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Fig. 2 shows the IR spectra of ligand L
2
 and its 

Cu(II) and Ni(II) complexes. As shown in Fig. 2b, a 

strong sharp band observed at 1602 cm
-1

 for copper 

complexes of L
2
 corresponds to the C=O group of the 

ligand coordinated to Cu. N-H stretching frequency in 

ligand and complexes remain unchanged in L
2
 

complexes. Coordination of ligand L
2
 to the metal was 

further confirmed by the appearance of band at  

536 cm
-1
 corresponding to Cu–O. A sharp band 

observed at 3357 cm
-1

 shows the presence of lattice 

water for copper complex of L
2
. A strong sharp band 

observed at 1612 cm
-1

 for nickel complexes of L
2
 

indicates that C=O group of the Ligand (Fig. 2c). N-H 

stretching frequency in ligand and complexes remain 

unchanged in L
2
 complexes. Coordination of ligand L

2
 

to the metal was further confirmed by the appearance 

of bands at 530 cm
-1

 corresponding to Ni–O.  
 

Electronic absorption spectra  

The electronic spectra of the ligands were recorded 

in the range of 200-900 nm region in acetonitrile 

solution (10
-5
 M) and are shown in Fig. 3. In absorption 

spectrum of the ligand L
1
 (Fig. 3a) band at 303 nm is 

assigned to π- π* transition and displayed bands for L
2
 

(Supplementary Data, Fig. S2a) at 249 and 273 nm are 

assigned to n-π* and π- π* transitions, respectively. For 

Cu(II) complex of L
1
, bands at 223, 293 and 458 nm 

are assigned to n- π*, π- π* and d-d transitions, 

respectively (Fig. 3b) and copper complex of L
2
 shows 

bands at 243 and 466, which are assigned to π- π* and 

d-d transitions, respectively (Fig. 3c). In the spectrum 

of Ni(II) complex of L
1
, bands at 223 and 290 nm are 

assigned to n- π* and π- π* transitions, respectively, 

and for nickel complex of L
2 
bands at 242 and 292 nm 

are assigned to n- π* and π- π* transitions, respectively 

(Supplementary Data, Fig. S2b). 
 

EPR spectral studies of copper complexes 

EPR spectrum of copper complexes of L
1
 was 

recorded in RT (300 K) as well as LNT (77 K) on X-

band at 9.1 GHz frequency and the magnetic field of 

3400 G in DMSO as solvent using DPPH as internal 

reference. In the complexes copper ion has oxidation 

state II and hence has d
1
 electronic configuration. The 

spectrum at RT shows one intense band at high field 

region (Fig. 4). The EPR spectrum of the powder at 

 
 

Fig. 2 — IR spectra of (a) ligand L2, (b) Cu(II)- L2 and (c) Ni(II)- L2 complexes 
 

 
 

Fig. 3 — Absorption spectra of (a) ligand L1, (b) Cu(II)- L1 complex and (c) Ni(II)- L1 complex 
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RT gave a giso= 2.10 (Aiso= 320). At LNT, the g∥ and 

g⊥(avg) are found to be 2.25 and 2.07 (A⊥=315), 

respectively. g∥>g⊥> 2.0023 indicate that the unpaired 

electron is in dx
2

-y
2
 of the Cu(II) ion. It is a 

characteristic of the axial symmetry with possibly a 

square planar geometry or a distorted octahedral
33

.
 

 
Microbiology 

The antibacterial activity of ligand, L
2
 and its 

complexes with Ni(II) and Cu(II), were tested against 

the one gram positive bacteria, Bacillus subtilis and 

against one Gram negative bacteria Escherichia coli. 

The antifungal activity of the ligands and its complexes 

with Ni(II) and Cu(II) were tested against fungi, 

Candida albicans. The standard used for antibacterial 

study was ampicillin and that for antifungal studies was 

flucanazole. DMSO was used as solvent control. The 

values of zone inhibition were measured in millimeter. 

The zone of inhibition against standards and test 

samples are summarized in Table 1. The data reveal 

that the complexes have higher antimicrobial activities 

than the free ligand and it may be attributed to its 

higher stability constant
34

. Among the test complexes 

copper complexes exhibited greater microbial 

inhibition than the nickel complexes. 
 

Conclusions 

The present work has focused on the synthesis, 

characterization and antimicrobial studies of two new 

ligands and their Cu(II) and Ni(II) complexes derived 

from furan-2-carboxylic acid pyridin-4-

ylmethyleneamide (L
1
) and thiophene-2-carboxylic acid 

1H-indol-2-ylmethyleneamide (L
2
). The ligands and 

complexes were characterized by CHNS analysis, 
1
H 

NMR, UV-visible absorption, and FT-IR and EPR 

techniques. Molar conductivity measurements of the 

Cu(II) and Ni(II) complexes revealed their non-

electrolytic nature in acetonitrile and DMF. 
1
H NMR 

studies of the ligands correspond to the structure of the 

compound. FT-IR data showed the presence of lattice 

water for the copper complexes L
1
 and L

2
, and for nickel 

complex of L
1
. Lattice water is absent for nickel 

complex of L
2
. FT-IR data confirmed the coordination 

of ligand to the metal ion. Absorption spectra of 

complexes were studied for their n-π* and π-π* 

transitions. EPR studies suggest the possibility of square 

planar geometry or distorted octahedral geometry. The 

antimicrobial study of the ligand L
2
 and its Cu(II) and 

 
 

Fig. 4 — EPR spectrum of powder Cu(II)- L1 at room temperature 

 

 

Table 1 — Inhibitory activity of compounds and test organisms 

Test compound Conc. (µg/25 µL) Zone of inhibition (mm) 

Test organism 

Escherichia coli MTCC 7410 Bacillus subtilis MTCC 121 Candida albicans MTCC 183 

L1 10  - - 

 25 - - - 

L2 10 - - - 

 25 4.50 ±0.50 - 2.00 ±0.00 

CuCl2L
1
2. 2H2O 10 10.00 ± 0.0 16.00 ± 0.0 4.00 ± 0.00 

 25 12.00 ± 0.0 18.00 ± 0.0 6.00 ± 0.00 

CuCl2L
2
2. 2H2O 10 13.00 ± 0.0 13.00 ± 0.0 4.00 ± 0.00 

 25 15.00 ± 0.0 15.00 ± 0.0 7.50 ± 0.00 

NiCl2L
1
2. 2H2O 10 6.00 ± 0.0 - 2.00 ± 0.00 

 25 8.00 ± 0.0 - 2.00 ± 0.00 

NiCl2L
1
2. 2H2O 10 6.00 ± 0.0 - 2.00 ± 0.00 

 25 9.00 ± 0.0 - 2.00 ± 0.00 

Standard Ampicillinref 25 30.00 ± 0.5 35.00 ± 0.00 - 

Standard Fluconazoleref - - - 7.50 ± 0.00 
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Ni(II) complexes showed microbial inhibition against 

the selected test microorganisms of bacteria and fungi. 

Among the test compounds copper complexes showed 

higher microbial inhibition activity. 
 

Supplementary Data 

Supplementary Data associated with this article  

are available in the electronic form at http://nopr.niscair. 

res.in/jinfo/ijca/IJCA_60A(04)538-544_SupplData.pdf. 
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