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Abstract: Artificial intelligence (“AI”)-enabled products are expected to drive economic growth. Training 
data are important for firms developing AI-enabled products; without training data, firms cannot develop 
or refine their algorithms. This is particularly the case for AI startups developing new algorithms and 
products. However, there is no consensus in the literature on which aspects of training data are most 
important. Using unique survey data of AI startups, we find that startups with access to proprietary training 
data are more likely to acquire venture capital funding.   
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1. Introduction 

As described in the AI Index 2018 Annual Report (Shoham et al. 2018), artificial intelligence (“AI”) has 

advanced rapidly over the past decade. Many scholars believe that AI has the potential to boost human 

productivity and economic growth (Athey 2018, Brynjolfsson et al. 2017, Furman & Seamans 2019). 

However, for this macroeconomic growth to be realized, firms pursuing AI products must gain access to 

the inputs needed to develop their products. The need for training data to train the algorithms underlying a 

firm's AI is important for all AI-producing firms. However, training data is especially important for AI 

startups. These startups need training data to develop effective AI products and scale. Without such data, 

these startups will have difficulties launching their initial product, raising venture capital (“VC”) funds1, 

and scaling their business model.  

 Data is not homogeneous; it can come from different sources and be used for different purposes. 

The choice of which training data to use is competitively significant as certain attributes of training data 

are a better fit with specific algorithms and products than others (Athey 2018, Bajari et al. 2018, Chiou & 

Tucker 2017, Donnelly et al. 2019, Varian 2014). The research question we ask in this paper is: what type 

of data is most important for AI startup growth? To address this question, we first argue that proprietary 

data—data that a firm can exclude others from using—is the most important type of data for AI startup 

growth. We then use responses to a recent survey to show that AI startup firms that use proprietary data 

receive more venture capital (VC) funding.   

 Our research makes several contributions. First, we contribute to a nascent stream of research on 

the role that data plays for AI-enabled firms (Bessen et al. 2018, Brynjolfsson et al. 2017, Cowgill et al. 

2020, Furman & Seamans 2019) and a broader literature on digitization (Cowgill & Tucker 2019, Goldfarb 

& Tucker 2019, Jin & McElheran 2019, Jin et al. 2018, Savona 2019, Tucker 2019) by showing that the 

use of proprietary training data is related to future VC funding. We also find that the relationship between 

 
1 VC funding is an important determinant of startup performance (Kerr & Nanda 2009, Nanda 2016) 
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proprietary data and VC funding is stronger when firms are in markets where data provide a greater 

advantage. Lastly, our research provides practical information useful to policy-makers, designing policies 

to maximize innovation around AI while reducing potential negative externalities to consumers (e.g., 

ACCC 2019, Crémer et al. 2019, Furman et al. 2019), and managers, attempting to scale their AI startups.  

 This paper proceeds as follows. In the next section, we provide additional background from the 

academic literature on the connection between training data and competition, focusing on how training data 

as an input in production differs from other forms of information. Then, drawing on this literature, we 

provide our hypothesis that startups with access to proprietary data raise more VC funds in the future 

(Section 2). Next, we describe the data collected from surveying AI startups and corresponding measures 

(Section 3) and provide details on our research design (Section 4). We share our findings (Section 5), and 

then conclude (Section 6) by discussing limitations to our findings and methodology and describing the 

broader implications of this research. 

 

2. Data as a Competitive Advantage 

Scholars have studied more basic forms of the “sciences of the artificial” since the 1950s (Newell et al. 

1954, Simon 1968, Turing 1950), developing mathematical models that enabled humans to see patterns in 

data. The advent of ‘big data’ and more sophisticated machine learning algorithms has brought AI products 

and needed training data to the forefront of many conversations around bias (Cowgill & Tucker 2019, 

Tucker 2019), fairness (Barocas et al. 2018, Mitchell et al. 2021), competition (Acquisti et al. 2016, Khan 

2017, McSweeny & O’Dea 2018, Scott-Morton et al. 2019), and macroeconomic progress (Jones & Tonetti 

2019, Farboodi et al. 2019). Despite this, we know little about how data as an input in production differs 

from other types of information. Recently, certain macroeconomic growth models started making a 

distinction between ideas (a set of instructions or processes) and data (all remaining forms of information) 

in efforts to understand the digital economy better (Jones & Tonetti 2019, Farboodi et al. 2019). However, 

these and other models still fail to account for the value of different types of data and various political 
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economy implications (i.e., taxation, ownership rights) stemming from the concentration of data on a few 

large digital platforms (Savona 2020). 

 In the case of AI-enabled products, firms use their initial datasets to train their algorithms. These 

algorithms produce data as output which becomes an input in the next iteration in the algorithm training 

process, potentially exacerbating the importance of data inputs on competitive outcomes. As such, 

competitive analyses focused on end-products may undervalue data. Moreover, there is substantial debate 

about what data trains AI products better; there is no ‘one size fits all’ approach, as certain data may be 

better than others at training certain AI (Athey 2018, Donnely et al. 2019). Scholars argue that there are 

tradeoffs among quantity, quality, breadth, and recency of training data (Bajari et al. 2018, Varian 2014, 

Chiou & Tucker 2017). Training data spanning diverse groups are important to an algorithm’s function, 

and there appear to be decreasing marginal returns to increased data quantity if those data are similar 

(Varian 2014, Bajari et al. 2018). Additionally, more recent data (i.e., the shorter lag time from collection 

to use) are particularly important in product or context search (Chiou & Tucker 2017). 

 Unlike large technology firms, AI startups do not have user-based platforms or other business lines 

that enable them to collect large amounts of data. Furthermore, even if they did, they might not have the 

complementary assets necessary to benefit from this additional data (Brynjolfsson & Hitt, 2000). For 

instance, computing power and human capital are also important to AI production. For computing power, 

AI startups rely on IT assets, either developed internally or licensed from a cloud services provider, which 

is important for startup survival, growth, and performance (Jin & McElheran 2019, Jin et al. 2018). Even 

high-potential startups may have difficulties paying for and developing physical IT assets internally (Nanda 

2016, Nanda et al. 2020), potentially reducing the benefits from data to the firm (Farboodi et al. 2019). 

Additionally, AI startups rely on the market for human capital expertise; however, the largest firms have 

already established much cross-disciplinary expertise, including the highly specialized economics and 
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machine learning expertise needed to analyze causal relationships and develop experiments (Thomke 2003, 

Varian 2014, Athey & Luca 2019) 2.  

 Even if startups can create their initial AI product innovation, they may not be able to develop a 

competitive advantage. For instance, they may lack the additional data, computational ability, or expertise 

necessary to benefit from follow-on complementary innovations, because these complementary innovations 

often rely on more of the same production inputs as the initial innovations (Brynjolfsson et al. 2017). 

Moreover, startups may lack needed proprietary resources, like R&D3 or specific training data. For instance, 

if firms relied only on publicly available data (e.g., large data sets released by governments), they would be 

unable to exclude others from accessing and using the data. Proprietary data, on the other hand, provides 

the firm with an exclusionary right, enabling them to prevent others from using the data as an input in their 

production. Ultimately, the use of proprietary training data may enable startups to develop AI products 

using inputs in production that are less substitutable, making their products harder to replicate, more unique 

and therefore potentially more valuable.  

 For AI products to work correctly, training data must sufficiently fit the underlying technology and 

various dimensions of data quantity, breadth, and recency (Bajari et al. 2018, Varian 2014, Chiou & Tucker 

2017). For an AI product to lead to a competitive advantage, we must also consider if its production inputs 

are replicable. AI startups utilizing only public data, a substitutable input, may be unable to create more 

differentiated products. Competitors using similar algorithms could acquire similar non-proprietary training 

data and create similar products, limiting the originating firm's ability to appropriate rents (isolating 

mechanism, Rumelt 1984) from their products (Peteraf 1997, Teece 1986, Barney 1987). However, startups 

utilizing proprietary data develop their products on production inputs that are less imitable and imperfectly 

substitutable. As a result, these startups can create less elastic, more differentiated products, impacting 

 
2 Google conducted 6,000 experiments on its search engine in 2008 (Varian 2014), and Amazon and Facebook conduct 
about 10,000 experiments per year (Athey & Luca 2019). 
3 Microsoft AI & Research and Google AI, that look more like an academic department than a business, offering a 
wealth of targeted, research-based advice on areas of corporate focus. 
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competitive outcomes and enabling them to raise more funds than their rivals without access to proprietary 

data. As such, we hypothesize that AI startups exclusively using proprietary data in AI product development 

experience more VC funding growth than AI startups that rely on public data.  

  

3. AI Survey Data 

We conducted an online survey in Qualtrics to reach founders, CEOs, CTOs, or other similar executives at 

2,517 AI startups. Respondents to our surveys came from several sampling frames, the largest of which 

was from Crunchbase. From Crunchbase, we identified firms associated with the keyword “artificial 

intelligence” that have received funding, are in operation, and have not yet experienced an IPO. In addition 

to Crunchbase, we received a contact list of AI startups from the Creative Destruction Lab, a startup 

incubator based in Toronto, and another contact list from Philipp Hartmann and Joachim Henkel (Hartmann 

& Henkel 2018). Additionally, O’Reilly Media ran a notice of the survey in its AI newsletter, providing a 

link to the online survey.   

 Over 15-months, we received responses from 325 AI startups. We estimate that about five percent 

of the firms that we reached out to are not addressable in our study as they are located in China or no longer 

appear to be in business (bounce back from email), leading to a 13 percent response rate overall. Because 

the response rate is relatively low, one might worry that our respondent sample is biased. To address any 

biases arising from our respondent sample being different from the population, we use a Heckman selection 

correction in our results, as described below.  

 Ultimately, 271 firms responded to the survey question on the proprietary nature of training data, 

and 159 of these firms also have funding information in Crunchbase. We dropped two observations in which 

the respondent indicated that their firm was not involved with AI production. We report descriptive statistics 

in Table 1. We compare firm size from Crunchbase and from the responses to our survey and report the 

chart in Table A1. Note that responses are very similar (slightly higher frequency than Crunchbase for the 
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smallest firms (<11 employees) and slightly lower for the second size tier of firms (11-50 employees)), 

suggesting that self-reported survey responses accurately depict respondents. 

 To test our hypothesis, we create measures from our survey responses and paired firm-level 

Crunchbase data. Through the survey, we collected information on if AI startups use proprietary data and 

data from customers to train their AI. The majority of firms (56 percent) use (a) some proprietary training 

data, defined as firm-held data collected to develop their products. This measure does not include firms that 

only use proprietary data sourced from customers. Next, we create an additional dummy variable for 

respondents using (b) any customer data, defined as data sourced from their customers (79 percent). Since 

we do not know the exact nature of the data-sharing arrangements between the firm and its customers, 

customer data is a mix of proprietary data and public data sourced through customer telemetry or direct 

data agreements. Moreover, customer data could include data about a customer’s customer. Third, we create 

dummy variables for firms using (c) a mix of firm-held proprietary and customer data (41 percent). For 

instance, some firms use customer data but do not respond that they use propriety data. Lastly, we have a 

dummy variable for firms that only use (d) proprietary data only without any customer data (15 percent), 

responding to only the first answer choice in the provided survey question in Appendix A2. We provide a 

summary of these measures in this appendix and descriptive statistics in Table 1. 

 We rely on funding data from Crunchbase to create a measure of VC funding after 2019 (i.e., after 

the survey concluded). Even though our models are cross-sectional, this timing variance enables us to 

examine how access to proprietary training data in an earlier period could impact funding performance in 

a later period. We also include a control for prior VC funding before 2019. Additionally, we collected and 

use firm age, firm age2, firm size, and geographic locations (e.g., dummy variables for the United States, 

Canada, and Germany) from Crunchbase as additional controls in our models. We report these measures 

and their summary statistics in Table 1. We also report the correlation of these measures with firm 

demographics and performance measures in the Appendix in Table A3.A to A3.C. 
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4. Research Design 

4.1. Selection. We use regression models to explore the relationship between proprietary training data and 

VC funding. We use Heckman’s selection approach (Heckman 1976, 1979) and Coarsened Exact Matching 

(CEM, Iacus et al. 2019) to help address selection and endogeneity issues. First, given our lower survey 

response rate and reliance on cross-sectional data, we analyze if our survey respondents are similar to the 

broader population of startups in Crunchbase. From the t-test results, we find that responses from New York 

are over-represented, and responses from small firms (<10 employees) and California-based startups are 

under-represented, reported in Table 1. The probit model confirms that startups that are very small or are 

located in California are less likely to respond; startups located in New York are more likely to respond4 

(Table 2).  

 Based on this, we use Heckman’s two-step procedure to account for selection issues from possible 

respondent missingness to support the argument that our sample of respondents does not bias our main OLS 

model estimates. We include dummy variables for small firm size and HQ locations in New York and 

California in the first step, below, to obtain estimates of 𝛾𝛾. 

(1) 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = 𝑤𝑤𝑖𝑖𝛾𝛾 + 𝜇𝜇   [selection equation] 

where,  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 takes the value of 1 if a firm in the population responds to the survey, otherwise 0. 

𝑤𝑤𝑖𝑖 is a vector of firm demographic dummy variables (e.g., NY, California, Small (<11 employees)) 

that are plausibly correlated with sample response.  

Now that we have obtained the estimates of 𝛾𝛾 from the selection equation, we compute the inverse Mills 

ratios of each observation.  

 
4 We use all AI startups that we contacted (2,517 firms) as the population with a dummy variable for firms that 
responded and are observed (271 firms). 
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(2) 𝜆𝜆 = 𝜙𝜙(𝑤𝑤𝑖𝑖𝛾𝛾)
Φ(𝑤𝑤𝑖𝑖𝛾𝛾)

    [inverse Mill’s ratio] 

where,  

𝜙𝜙(𝑤𝑤𝑖𝑖𝛾𝛾) is the probability density function  

Φ(𝑤𝑤𝑖𝑖𝛾𝛾) is the complementary cumulative distribution function 

Next, we use CEM to ensure that the firms using proprietary data are observationally similar to 

those not using proprietary data. We include HQ locations (dummies for the US and EU), age, and 

employment size as parameters in the CEM model and match 150 firms of the 159 firms with both survey 

and funding data. The match reduces the difference in standardized means across these observable 

demographic variables between the respondents who use and do not use proprietary data. We show the 

differences in standardized means for these groups before and after matching in the Appendix in Figure A4. 

4.2. Main OLS Specification. For the main regression, we use OLS to provide linear approximations since 

we have a continuous dependent variable (Angrist & Pischke 2009, Gibson 2019). As controls in the main 

regression, we include firm age, which is often related to acquiring funding outcomes. Older firms have 

more opportunities to raise funds. Additionally, we use age2 to adjust for the curvilinear relation that likely 

exists between age and funding. For instance, beyond a certain age, older firms that have not experienced 

significant growth may no longer be considered for VC investment (Kerr & Nanda 2009). We also include 

the log of prior funding to help control for the unobservable variables influencing prior funding that may 

also be correlated with increased future funding. Lastly, we include a dummy variable for having their 

headquarters in the San Francisco area, where most VC funds are located. The dummy variable for San 

Francisco is correlated (69 percent) with the dummy variable for California; however, this is the only 

control variable in the main OLS model that is highly correlated with a variable used in the Heckman first-

stage. We do not include controls for firm size (<11 employees) or New York because they are used in the 

Heckman first-stage selection equation.  
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(3) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 + 𝜆𝜆 +  𝜌𝜌 +  𝜇𝜇       [mainregression equation] 

where, 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 is the log of the funding raised between January 1, 2019 and May 31, 2020 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖  for takes the value 1 if a firm responds to using existing proprietary data, 0 otherwise 

 𝜌𝜌 are controls for age, age2, prior VC funding before 2019, San Francisco HQ dummy variable 

 𝜆𝜆 is the inverse of the Mills ratio, included controlling for representativeness of our sample 

compared with the population of AI startups that we sourced and contacted 

𝜇𝜇 is the error term  

  

5. Findings 

Our main results are reported in Table 3. These models rely on both Heckman’s two-stage selection 

procedure to control for non-response and matching (CEM) to support that firms using firm proprietary 

data are observationally similar to those using non-proprietary data. In model (1), the base model, we 

investigate the relationship between proprietary data and VC funding. The coefficient on proprietary data 

is positive and statistically significant. In model (2) we include the inverse Mill’s ratio from the first stage 

of Heckman’s procedure. In model (3) we repeat the first model, including log VC funding prior to 2019 to 

control for aspects of prior performance that may be endogenous with funding outcomes. The coefficient 

on proprietary data remains positive and statistically significant.  

 We then run two more models with additional controls. In model (4) we include a control for firm 

age and firm age2. The coefficient on age measures (age is positive and age2 is negative) suggests a 

curvilinear effect of age on funding (i.e., funding increased with age until a certain point and then 

decreases). So, certain older firms may still exist as entrepreneurial ventures but are not high-potential 

startups. Lastly, in model (5) we include a dummy variable for startup location in the San Francisco bay 
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area, where there is a high concentration of venture capital firms. In summary, we find that the use of 

proprietary data is related to increased future funding in all these models. This effect holds when using 

Heckman’s selection,  matching (CEM), and controls for prior performance and aspects of firm demography 

related to funding (age and location) (Table 3, model (5): +2.7 SD 1.0).  

 We then examine if firms using a mix of propriety data and customer data experience a similar 

positive relationship with increased future funding. To do this, we include two measures, (i) Proprietary 

and Customer Data and (ii) Only Proprietary Data (with no customer data). Using only proprietary data are 

related to a larger increase in future VC funding than using a mix of customer and proprietary data (Table 

3, model (6): Prop & Customer +1.9 SD 1.1; Only Prop Data, +4.8 SD 1.7). To further support this, we run 

a separate model including only proprietary data without any customer data and again find a stronger 

positive correlation with increased future funding (+3.9 SD 1.6, Appendix, Table A5, model (5)). 

Proprietary data from customers do not provide the same advantage as other forms of firm-held proprietary 

data, suggesting that the source of the training data may be competitively significant.  

 Next, we examine mechanisms that may impact the relationship between proprietary data and 

increased funding and report these results in Table 4. First, in model (1) we include the main result from 

Table 3, model (5) as a point of comparison for the next several models. In a subset of firms (120 of the 

initial 150 matched firms), we have additional survey responses on if data ownership provides a major 

advantage in their markets.5 In model (2) we replicate our main specification on the subset of 120 matched 

firms with additional survey data, which provides very similar results as in model (1).  

 In model (3) we include an interaction between firms using proprietary training data and firms that 

respond that owning data is a major advantage in their market. The coefficient on this interaction term is 

positive and significant (+4.7 SD 2.3, model (3)). We graph this interaction in the Appendix in Table A8. 

Next, in models (4) and (5) we present split sample results. We show that proprietary data is related to even 

 
5 This survey question is also included in Appendix, Note A2. 
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higher future funding amounts (+4.5, SD 1.9, model (4)) in markets where owning data is a major 

advantage. Alternately, for firms responding that owning data is not a major advantage in their markets, we 

find no significant effect (model (5)).  

 We conduct a variety of robustness checks and present these results in an Appendix for space 

considerations. We show that results are similar for the full sample of firms (159 firms) without any CEM 

matching (but still including the Heckman selection approach) in the Appendix in Table A6. In our main 

results, the inverse Mill’s ratio is not significant, but this does not necessarily mean that respondent 

selection bias does not exist (Certo et al. 2016). Given this, we include the inverse Mill’s ratio as a control 

in the main results, but also reproduce our findings without this control (i.e., without using Heckman’s two-

stage selection procedure) on the matched sample (150 firms) in the Appendix in Table A7. In these tables, 

we use a similar buildup of models adding control variables (base model, prior funding, age, and location 

in San Francisco) as we did with the main results. The results are consistent with the results in the main 

text.  

 Next, we examine the same specification with an alternative dependent variable, creating a dummy 

variable for increased VC funding, if the funding CAGR is higher in the post-period, 2019 and after, than 

in the earlier period, before 2019. We find a positive, significant effect in the OLS specification (Table A9, 

model (3): 0.23 SD .06). Since the dependent variable is binary, we also run a probit regression that also 

supports a positive, significant relationship (Table 9, model (6): +0.95 SD 0.3). The results are consistent 

with our main results.  

  

6. Conclusion 

In this study, we find a significant positive correlation between proprietary training data and future VC 

funding. We also find that firms benefit more from proprietary data when they are in markets where owning 

data provides an advantage. Additionally, data from customers may not provide the same level of benefit 
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as proprietary data from other sources. We believe these empirical findings support the idea that proprietary 

data are imperfectly substitutable inputs in production. As such, using proprietary training data leads to less 

imitable products, positively impacting a startup's ability to collect additional rents from the market and 

develop an initial competitive advantage in this nascent industry.  

 Our results are derived from cross-sectional survey data, which has its limitations. We have 

attempted to address these issues as much as possible by using Heckman selection correction and Coarsened 

Exact Matching approaches. Though we control for prior fundraising, age, location near San Francisco, 

where there is a high concentration of VC firms, we cannot entirely rule out that well-funded firms can 

access proprietary data more easily or that we are not capturing other unobservable aspects of performance 

correlated with future funding. For instance, one possibility is that our measures capture the ability of a 

startup to forge partnerships with other firms, such as large cloud services providers. Another possibility is 

that our measures endogenously capture some elements of founder connections or leadership ability. 

Additionally, there could be other unobservable relationships, such as a relationship with higher status or 

reputation venture capital or the impact of accelerator programs that assist in proprietary data acquisition. 

For instance, serial entrepreneurs could have proprietary data from another venture, or groups of startups 

could pool data resources. These are all issues that future research could investigate. 

 Regulating data remains a topic of intense debate, especially amid recent policies that limit data 

availability to protect consumer privacy, including the European Union’s General Data Protection 

Regulation (“GDPR”) and California’s Consumer Privacy Act (“CCPA”). In many cases, there is a tradeoff 

between increased data regulation and access to training data, asymmetrically increasing the costs of 

collecting and using data for smaller firms (Bessen et al. 2020b, Johnson et al. 2020). Regulation may 

specify that certain data are deleted or withheld from use, increasing the scarcity and value of training data 

for AI startups. Many governments recognize the importance of AI advancements to the broader economy 

and may consider establishing policies to increase the entry of AI startups, such as data sharing (Calo, 2017, 

Himel and Seamans, 2017). However, regulations that require data sharing may not necessarily increase 



 
 

14 

 

entry if the training data are fully substitutable. Firms may hesitate to invest in developing products with 

training data that is not proprietary, and VCs may hesitate to invest in firms that don’t provide innovative 

or differentiated products. Our findings suggest that proprietary data, not public data widely available to 

many firms, is what drives follow-on VC funding. Thus, some skepticism is warranted that policies around 

data sharing will help drive AI startup success.  
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Table 2 - Base Probit for Heckman 
    (1) (2) (3) 

    Response (dummy) 

Employ. Small (<11)   -0.155** -0.155** -0.148* 
    (0.079) (0.079) (0.079) 
California     -0.368* -0.311 
      (0.188) (0.190) 
NY       0.196** 
        (0.086) 
Observations   2331 2331 2331 
Psuedo R2   0.03 0.06 0.11 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are 
estimated using Probit regression, showing the buildup to model 
(3), which supports the variables used in the first stage of the 
Heckman selection procedure. 
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Table 3 - Proprietary Data & Funding (Heckman & CEM) 
    (1) (2) (3) (4) (5) (6) 

DV is log of:    Funding 2019 & After 
Any Prop Data   2.479** 2.477** 2.225** 2.396** 2.657**   
    (1.061) (1.063) (1.031) (1.019) (1.023)   
Prop & Customer Data             1.905* 
              (1.101) 
Only Prop Data             4.821*** 
              (1.679) 
IMR     1.031 -1.070 -2.752 0.166 0.339 
      (4.768) (5.003) (5.117) (5.356) (5.245) 
log(Funding before 2019)       -0.249*** -0.171* -0.194* -0.173* 
        (0.095) (0.101) (0.100) (0.097) 
log(Age)         29.357*** 28.468*** 37.580*** 
          (10.270) (10.485) (11.019) 
log(Age2)         -13.801*** -13.305*** -17.277*** 
          (4.866) (4.975) (5.110) 
SF           3.519 3.513 
            (2.271) (2.254) 
Observations   150 150 150 150 150 150 
Adj. R2   0.0291 0.0228 0.0763 0.0914 0.105 0.121 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS regression and include robust 
standard errors, in parentheses below the coefficient. All models include matching (CEM), based on firm age 
(cont.), employment size (buckets, employment small), and region (US, EU), dropping 9 firms. Additionally, 
all models use Heckman’s selection procedure, controlling with IMR. 
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Table 4 – Proprietary Training Data and “Major Advantage from Data”  
    (1) (2) (3) (4) (5) 

DV is log of:    Funding 2019 & After 

Sample   All Survey 2 
only 

Survey 2 
only 

Survey 2 
& Data 

Maj. Adv. 

Survey 2 
& Data 

Not Maj. 
Adv. 

Any Prop Data   2.657** 2.328* -0.426 4.527** -0.337 
    (1.023) (1.206) (1.582) (1.930) (1.464) 
IMR   0.166 1.767 2.686 13.614 -8.952 
    (5.356) (5.735) (5.549) (8.762) (5.729) 
log(Funding before 2019)   -0.194* -0.173 -0.131 -0.024 -0.309** 
    (0.100) (0.105) (0.102) (0.165) (0.126) 
log(Age)   28.468*** 28.300*** 36.373*** 40.601** 145.136* 
    (10.485) (10.659) (10.521) (15.807) (82.802) 
log(Age2)   -13.305*** -13.345*** -17.006*** -19.461** -62.546* 
    (4.975) (5.092) (4.995) (7.642) (35.555) 
SF   3.519 2.931 3.008 3.085 1.984 
    (2.271) (2.436) (2.260) (2.840) (3.848) 
Data Major Adv.       -0.776     
        (1.624)     
Any Prop x Data Major Adv.       4.720**     
        (2.315)     
Observations   150 120 120 61 59 
Adj. R2   0.105 0.0753 0.107 0.157 0.0854 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS regression, and include robust 
standard errors, in parentheses below the coefficient. All models include CEM, based on firm age (cont.), 
employment size (buckets) and regions (buckets), dropping 9 firms. Additionally, all models use 
Heckman’s selection procedure, controlling with IMR. 
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Appendix 
 

Figure A1 - Firm Size Self-reported in Survey vs. Crunchbase 
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Note A2 -  Survey Questions and Measure Creation 

Proprietary Data Question 

Which of the following types of data does your product rely on? 
(Please select all that apply.) 

▢ Your firm's proprietary data  (1) 

▢ Your customer's data about their customers and users  (2) 

▢ Other proprietary data from your customer  (3) 

▢ Other third-party data provider  (4) 

▢ Publicly available data (including demographic data from government agencies or data 
scraped from the internet)  (5) 

▢ Publicly available benchmarks for artificial intelligence (e.g., CIFAR)  (6) 

▢ Synthetic data  (8) 

▢ No data needed  (7) 

 
Additional Details on Measure Creation 

(a) Any Proprietary Data. Firms using any firm-held proprietary training data to train their AI (56 

percent) [checks box 1] 

(b) Any Customer Data. Firms that use some data sourced from their customers (79 percent) [checks 

box 2, 3 or both box 2 and 3] 

(c) Proprietary and Customer Data. Firms using a mix of firm-held proprietary and customer data (41 

percent) [checks box 1 and either box 2, 3, or both box 2 and 3] 

(d) Only Proprietary Data (No Cust.). Firms using only firm-held proprietary training data without any 

customer data (15 percent) [check only box 1] 
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Data Advantage Question 

How strong of an advantage does ownership of data provide in your market? 

o No advantage  (1)  

o Minor advantage  (3)  

o Major advantage  (4)  

o I don't know  (99)  
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A3. Correlation Tables 

Notes: * p<0.1 

  

Table A3.A - Correlation Table (Funding) 

    

Any 
Prop 
Data 

Any 
Customer 

Data 

Prop  
(No 

Cust) 

Prop & 
Customer 

After 
2019 

Funding  

Before 
2019 

Funding  

                
Any Customer Data   -0.2028*           
    0.0069           
                
Only Prop Data (No Cust)   0.3844* -0.8315*         
    0.0000 0.0000         
                
Prop & Customer   0.7496* 0.3883* -0.3229*       
    0.0000 0.0000 0.0000       
                
Funding 2019 & After   0.1600* -0.1566* 0.2014* 0.0154     
    0.0432 0.048 0.0106 0.8465     
                
Before 2019 Funding   0.0056 0.0115 -0.0653 0.0532 -0.1245*   
    0.9436 0.8849 0.4119 0.5042 0.0016   
                
Funding Growth Increase (2019, dummy)   0.2292* -0.1039 0.1588* 0.1164 0.8702* -0.0498 
    0.0036 0.191 0.0449 0.1427 0.0000 0.2081 
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Table A3.B - Correlation Table (Age & Size) 

    
Any 
Prop 
Data 

Any 
Customer 

Data 

Prop  
(No 

Cust) 

Prop & 
Customer 

Employ. 
Size 

Employ. 
Small  

                
Any Customer Data   -0.2028*           
    0.0069           
                
Only Prop Data (No Cust. )   0.3844* -0.8315*         
    0.0000 0.0000         
                
Prop & Customer   0.7496* 0.3883* -0.3229*       
    0.0000 0.0000 0.0000       
                
Employ. Size (4)   0.074 0.111 -0.1025 0.1493*     
    0.3289 0.1424 0.176 0.0479     
                
Employ. Small (<11)   -0.114 -0.1686* 0.1323 -0.2117* -0.8099*   
    0.1319 0.0253 0.0801 0.0048 0.0000   
                
Age (cont.)   0.0314 0.0157 -0.0181 0.0452 0.3004* -0.2795* 
    0.6789 0.8362 0.8118 0.5516 0.0000 0.0000 
        

Notes: * p<0.1 
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Notes: * p<0.1 

  

Table A3.C - Correlation Table (Geography) 

    Any Prop 
Data 

Any 
Customer 

Data 

Prop  
(No 

Cust) 

Prop & 
Customer Region US Calif. SF 

                    
Any Customer 
Data   -0.2028*               
    0.0069               
                    
Only Prop Data 
(No Cust. )   0.3844* -0.8315*             
    0.0000 0.0000             
                    
Prop & Customer   0.7496* 0.3883* -0.3229*           
    0.0000 0.0000 0.0000           
                    
Regions (5)   0.1076 0.0054 -0.0096 0.117         
    0.1565 0.9437 0.8994 0.1229         
                    
US   0.1164 -0.0649 0.0529 0.0811 0.7836*       
    0.1251 0.3937 0.4865 0.2858 0.0000       
                    
California   0.1187 -0.1227 0.101 0.0493 0.4915* 0.6276*     
    0.1166 0.1048 0.1823 0.5158 0.0000 0.0000     
                    
San Francisco   -0.0576 0.0046 -0.0721 -0.0074 0.3364* 0.4295* 0.6847*   
    0.4477 0.9522 0.3419 0.9226 0.0000 0.0000 0.0000   
                    
New York   -0.0107 0.0919 -0.0764 0.0438 0.2350* 0.3000* -0.1530*   -0.1048* 
    0.888 0.225 0.3133 0.5634 0.0000 0.0000 0.0000 0.0000 
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Figure A4 - CEM Matching Comparison, Before and After Matching 
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Table A5 - Prop Data (No Customer Data) & Funding (Heckman & CEM) 
    (1) (2) (3) (4) (5) 

DV is log of:    Funding 2019 & After 
Only Prop Data (No Cust.)   3.763** 3.769** 3.244* 3.763** 3.877** 
    (1.683) (1.695) (1.642) (1.645) (1.620) 
IMR     1.295 -0.763 -2.469 0.086 
      (4.827) (5.024) (5.083) (5.335) 
log(Funding before 2019)       -0.240*** -0.156 -0.177* 
        (0.092) (0.095) (0.094) 
log(Age)         38.415*** 37.619*** 
          (10.893) (10.991) 
log(Age2)         -17.717*** -17.272*** 
          (5.049) (5.103) 
SF           3.063 
            (2.376) 
Observations   150 150 150 150 150 
Adj. R2   0.0368 0.0307 0.0795 0.0996 0.109 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS regression, and include 
robust standard errors, in parentheses below the coefficient. All models include matching (CEM), 
based on firm age (cont.), employment size (buckets, employment small) and region (US, EU), 
dropping 9 firms. Additionally, all models use Heckman’s selection procedure, controlling with IMR. 
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Table A6 - Proprietary Data & Funding (Heckman, No CEM) 
    (1) (2) (3) (4) (5) (6) 

DV is log of:    Funding 2019 & After 
Any Prop Data   2.086** 2.005* 1.939* 2.150** 2.546***   
    (1.028) (1.038) (0.994) (0.978) (0.958)   
Prop & Customer Data             1.710 
              (1.036) 
Only Prop Data (No Cust.)             4.982*** 
              (1.588) 
IMR     -2.437 -3.971 -5.544 -1.253 -1.089 
      (4.684) (4.757) (4.799) (5.001) (4.885) 
log(Funding before 2019)       -0.258*** -0.169* -0.181** -0.164* 
        (0.084) (0.093) (0.089) (0.086) 
log(Age)         34.969*** 33.147*** 43.247*** 
          (10.150) (10.747) (11.132) 
log(Age2)         -16.389*** -15.489*** -19.866*** 
          (4.783) (5.043) (5.126) 
SF           4.710** 4.806** 
            (2.176) (2.154) 
Observations   159 159 159 159 159 159 
Adj. R2   0.0182 0.0137 0.0747 0.100 0.127 0.149 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS regression, and include robust 
standard errors, in parentheses below the coefficient. Models include IMR from the first-stage Heckman Selection, 
including employment small (<11), California, and New York (dummies). All these models do not include matching 
(CEM). 
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Table A7 - Proprietary Data & Funding (CEM, No Heckman) 
    (1) (2) (3) (4) (5) 

DV is log of:    Funding 2019 & After 
Any Prop Data   2.479** 2.226** 2.391** 2.656**   
    (1.061) (1.027) (1.016) (1.020)   
Prop & Customer Data           1.902* 
            (1.098) 
Only Prop Data (No Cust.)           4.816*** 
            (1.671) 
log(Funding before 2019)     -0.246*** -0.168* -0.194* -0.173* 
      (0.093) (0.100) (0.099) (0.096) 
log(Age)       28.424*** 28.524*** 37.688*** 
        (9.907) (10.067) (10.743) 
log(Age2)       -13.337*** -13.333*** -17.331*** 
        (4.680) (4.757) (4.962) 
SF         3.496 3.467 
          (2.163) (2.144) 
Observations   150 150 150 150 150 
Adj. R2   0.0291 0.0823 0.0955 0.111 0.127 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS regression, and include robust 
standard errors, in parentheses below the coefficient. Models includes CEM, based on firm age (cont.), 
employment size (buckets) and regions (buckets), dropping 9 firms. All these models do not use Heckman’s 
selection procedure, controlling with IMR. 
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Figure A8 - Heterogeneous Effects: Advantage from Data 
 

 
 

Note: Confidence intervals at the p<0.1 level. 
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Table A9 -  Proprietary Data & Funding Growth Dummy (CEM) 
    (1) (2) (3)   (4) (5) (6) 
    Funding Growth Increase (2019, dummy) 

    OLS   Probit 
Any Prop Data   0.226*** 0.226*** 0.251***   0.689*** 0.683*** 0.949*** 
     (0.058)   (0.058)   (0.058)    (0.242) (0.245) (0.260) 
IMR       0.153   0.371      -0.208 1.298 
        (0.306)   (0.330)      (1.056) (1.177) 
log(Funding before 2019)       -0.004       -0.022 
           (0.006)        (0.020) 
log(Age)       1.384*       25.769 
           (0.790)        (18.644) 
log(Age2)       -0.593       -11.047 
           (0.367)        (7.993) 
SF       0.312**       1.523*** 
         (0.138)        (0.441) 
CEM Weighted                 
Observations   150 150 150   159 159 159 
Adj. R2   0.0731 0.0687 0.0922         

Notes: * p<0.1, ** p<0.05, *** p<0.01.  CEM drops 9 firms in the OLS models.  Since DV is binary, we estimate 
coefficients using  OLS and Logit specifications. Robust standard errors are in parentheses below the coefficient. 
All models include Heckman’s selection procedure, controlling with IMR. 

 

 
 

 


	The Role of Data for AI Startup Growth
	tmp.1626274772.pdf.jtXMF

