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ABSTRACT: This text revisits selected aspects of Muzzulini’s article and reformulates 
them on the basis of a three-dimensional interval space E and its dual E*. The pitch height 
of just intonation is conceived as an element h of the dual space. From octave-fifth-third 
coordinates it becomes transformed into chromatic coordinates. The dual chromatic basis 
is spanned by the duals a* of a minor second a and the duals b* and c*  of two kinds of 
augmented primes b and c. Then for every natural number n a modified pitch height form 
hn is derived from h by augmenting its coordinates with the factor n, followed by 
rounding to nearest integers. Of particular interest are the octave-consitent forms hn  
mapping the octave to the value n. The three forms hn for n = 612, 118, 53 (yielding 
smallest deviations from the respective values of n h) form the Muzzulini basis of E*. 
The respective transformation matrix T* between the coordinate representations of linear 
forms in the Muzzulini basis and the dual chromatic basis is unimodular and a Pisot 
matrix with the dominant eigen-co-vector very close to h. Certain selections of the linear 
forms hn are displayed in Muzzuli coordinates as ball-like point clouds within a suitable 
cuboid containing the origin. As an open problem remains the estimation of the musical 
relevance of  Newton’s chromatic mode, and chromatic modes in general. As a possible 
direction of further investigation it is proposed to study the exo-mode of Newton’s 
chromatic mode 
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MUZZULINI’S article combines a study of historical/philological nature with actual computational research 
and offers novel results thanks to this very combination. I appreciate its publication in Empirical Musicology 
Review as I find it fascinating and thought-provoking to interpret the process of theory creation, i.e. the 
exploratory investigations of a theorist, as an instance of empirical work. The fascination is amplified by the 
circumstance that the investigation is dedicated to the traces of music-theoretical explorations of none other 
than Isaac Newton. The overall subject of Newton’s notebook entries and – consequently – Muzzulini’s study 
is the search for good  approximations of a selection of musical intervals within regular divisions of the 
octave. 
 

MUSICAL INTERVALS AND THE PITCH HEIGHT OF JUST INTONATION 
 
In this commentary I would like to highlight one particular aspect of music-theoretical and algebraic nature. 
With the choice of his title Muzzulini tacitly locates genuine musical structures such as the diatonic and 
chromatic scales and the hexachords within the medium of pitch height. As an alternative to the squeezing 
of these musical entities directly into a linear pitch height space I would like to advertise a more abstract 
concept of musical interval space, which supports the investigation of a variety of pitch height interpretations 
in terms of elements of the associated dual space.  
 Herein I follow Eric Regener’s (1973) approach to the analysis of musical pitch notation as well as 
Guerino Mazzola’s (1990) proposal to model the concept of pitch height in terms of linear forms on an 
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underlying linear interval space. This approach splits the linearity of a single pitch height space into two 
components: (1) The operation of interval concatenation is modeled in terms of vector addition. This 
operation is of tremendous musical importance. (2) The mapping of musical intervals into a one-dimensional 
„medium“ of pitch height is accomplished in terms of a linear pitch height form. Its linearity guaratees that 
interval concatenation is thereby faithfully preserved. 
I will argue that this maneuver is more than an ontological sophistry, particularly in connection with 
Newton’s explorations and Muzzini’s refinements thereof. To that end I will paraphrase some of their 
findings along the lines of this approach.  
 To begin with, we regard three intervals, the perfect octave P8, the perfect fifth P5 and the major 
third M3 as three linearly independent generators of a 3-dimensional vector space E of musical intervals. The 
associated limit 5 tuning pitch height can then be given by the linear form h: E -> R with h(P8) = 1, h(P5) = 
log2(3/2), h(M3) = log2(5/4). Among other possible bases for this musical interval space E we choose 
Newtons three chromatic step intervals a = P8 - P5 - M3, b = -2 P8 + 3 P5 + M3, c = -P5 + 2 M3 with the 
transformation matrix: 

 
 

The columns of this matrix show the chromatic step coordinates of the perfect octave, perfect fifth 
and major third, respectively. The chromatic basis a, b, c serves as the main reference for the investigation. 
The transformation M goes hand in hand with its dual map M* which converts pitch height forms, given in 
chromatic coordinates into their associated octave-fifth-third coordinates. Hence, the inverse dual map (M*)-1 

sends the co-vector u = (1, log2(3/2), log2(5/4)) to its associated representation in chromatic coordinates  
v = (h(a), h(b), h(c)) = (log2(16/15), log2(135/128), log2(25/24)). 
 

MODIFYING THE PITCH HEIGHT FORM 
 
Looking through the lens of this approach, we will see that central findings in Newton’s and Muzzulini’s 
explorations are closely related to modifications of this co-vector v: for every natural number n > 0 we obtain 
a linear form hn by replacing the coordinates of the augmented co-vector n.v by the nearest integer-
coordinates, respectively. More explicitly, if r[x] denotes the integer closest to a real number x, then hn is 
represented by the co-vector vn = (r[n log2(16/15)], r[n log2(135/128)], r[n log2(25/24)]).  
The empirical question behind this definition is how one can measure the musical suitability of such a 
modified linear form hn as an alternative pitch height interpretation of the interval space E. And the answer 
should grasp relevant apects of Daniel Muzzulini’s evaluation of chromatic n-EDO scales, which he 
explicates in terms of (in)consistency-levels and a “log-compatibility”-criterion.   
 The following definition draws upon a set C of musical intervals chosen a priori. It is meant to 
represent the core of the musical interval system: The pitch height form hn is said to be consistent with respect 
to the interval set C, if the equation hn(i) = r[n.h(i)] is satisfied for all intervals i in C.  This consistency 
condition means that the values hn(i) under the modified linear form should coincide with the isolated 
roundings of their original pitch heights, when augmented by the factor n.   
 If we choose C = {7a+3b+2c} to be just the singleton set containing the octave, the  definition is 
satisfied for all those hn which satisfy hn(7a+3b+2c) = n. Comparing this with Muzzulini’s terms we may 
state — for the time being —, that this matches the condition to be “consistent and log-compatible with 
respect to the three chromatic intervals a, b, c”. Between n = 1 and n = 5000 there are 711 linear forms, 
which are consistent in this sense.[2] 
 The core collection of musically prominent notes from Newton’s notebook is the chromatic scale  
G – Aflat – A – Bflat – B – C – Csharp – D – Eflat – E – F – Fsharp – G’  with the step interval pattern (a, b, a, c, a, 
b, a, a, c, a, b, a). Translating the scale notes to intervals anchored in the first note G, we would consider in 
the role of the core set C the vector sums of the twelve prefixes of this chromatic step interval pattern, i.e., 
the intervals a = (1, 0, 0), a+b = (1, 1, 0), 2a+b = (2, 1, 0), 2a+b+c = (2, 1, 1), etc. till 7a+3b+2c = (7, 3, 
2). In this case the definition matches Muzzulini’s “log-compatibility“ criterion for the entire scale. 
Experimentally, I found to my surprise that all the 14,275 octave-consistent instances among the linear forms 
hn (n < 100000) turn out to be consistent with respect to these 12 chromatic intervals as well. Does plain 
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octave consistency imply scale consistency for Newton’s scale? This would be an interesting property of this 
scale, because for random permutations of the pattern this does not hold anymore. 
 As a musically reasonable strengthening one may consider the vector sums of all factors of the 
cyclically conceived chromatic step interval pattern in the role of the core set C. In this case the equation 
hn(i) = r[n.h(i)] should be satisfied for all internal intervals of Newton’s chromatic scale. Among the 711 
consistent linear forms I found 421 satisfying this stronger condition.[3] 
 

INSPECTING THE MUZZULINI TRANSFORM 
 
In his advanced continuation of Newton’s investigation Muzzulini offers an elegant method for the control 
of the variety of consistent and “log-compatible” chromatic n-EDO scales. After the familiar 12-equal-
tempered chromatic scale he identifies the three cases n = 53, 118 and 612 as the best approximations of 
Newton’s chromatic scale with respect to the measurement of the deviation from just intonation, each of them 
better than the previous ones. What he then does with these three extraordinary cases, can be rephrased as 
follows:  
 The three chromatic delta functions a*, b* and c* with a*(a) = 1, a*(b) = a*(c) = 0, b*(b) = 1, b*(a) 
= b*(c) = 0, c*(c) = 1, c*(a) = c*(a) = 0 constitute a basis in E*, dual to the basis {a, b, c} in E. The three 
linear forms h612, h118 and h53 form another basis of the dual space E*: the Muzzulini basis. The columns of the 
unimodular transformation matrix T* show the chromatic coordinates of the linear forms h612, h118 and h53, 
respectively. Analogously, the columns of the inverse matrix T*-1show the Muzzulini-coordinates of the 
chromatic delta functions ha, hb, hc. 
 

 
 
The rows of the matrix T*-1 (i.e., the columns of the transposed matrix T*-1* = T-1) also represent the 

chromatic coordinates of the dual Muzzulini basis. And we get a nice explication of an observation in the 
article, namely that Newton’s pitch height form h612 is dual to the interval -a+2b-c, whose pitch height is also 
known as the schisma. It is the difference h(-a + 2b - c) between the Pythagorean comma h(-a + 3 b - 2 c) 
and the syntonic comma h(b - c) and, likewise, it is the difference between the syntonic comma h(b - c) and 
the diaschisma h(a-b). In old-fashioned frequency ratios this can be written as 32,805/32,768 = 
(531,441/524,288)/(81/80) = (81/80)/(2,048/2,025). The other two intervals of this basis need getting used 
to: -4a-3b+5c maps to the micro-chromatic step interval in 53-EDO, but vanishes in 118-EDO and 612-EDO, 
while 7a-9b+3c maps to the micro-chromatic step interval in 118-EDO, but vanishes in 53-EDO and 612-
EDO. The behavior of the latter two intervals thus illustrates interesting side effects of the rounding 
procedure. 
 Figure 1 displays the 5,000 linear forms h1, … h5000, and illustrates the location of the 711 consistent 
ones among them as well as the 241 linear forms which are consistent with respect to the internal intervals 
of Newton’s chromatic scale. They are shown as points in Muzzulini coordinates within a cuboid. One can 
think of these points as vectors in E (acting on E via scalar product). The convex closure of each of the three 
point clouds is shown to illustrate the effectivity of this basis. We note though, that these convex closures 
contain other integral points as well. 
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Figure 1: Outer Shape (light gray): Representation of the linear forms hn (n = 1, …, 5,000) as points in 
Muzzulini coordinates. Middle Shape (medium gray): Representation of the 711 consistent linear forms 
among these. Inner Shape (dark gray): Representation of the linear forms which are consistent with all 
internal intervals of Newton’s chromatic scale. 
 

Thus, we see that the height forms hn up to some limit (such as n = 5,000) are nicely clustered within 
a bounded region in E*. Those which are octave-consistent, are concentrated in a smaller subregion, and those 
which are furthermore consistent with all the chromatic intervals occupy a still smaller subregion of the 
former. In order to explain the effect of the transformation T* (turning Muzzulini coordinates into chromatic 
coordinates) geometrically, it is useful to inspect its eigen co-vectors. T* is a Pisot transformation with the 
large real eigenvalue 69.2025 and the corresponding normalized eigen-co-vector (0.6943, 0.5711, 0.4379). 
This eigen-co-vector is quite close to the normalized coordinate representation (0.6933, 0.5719, 0.4385) of 
the pitch height form h. As a consequence of this property, the transformation maps small ball-like point 
clouds into elongated tube-like point clouds along this eigen-direction, which almost coincides with the pitch 
height direction. 

 
PONDERING ABOUT NEWTON’S CHROMATIC MODE 

 
Apart from the issue of n-EDO approximations, the publication of Muzzulini’s article in EMR is thought-
provoking in view of the open empirical status of Newton’s chromatic scale itself in terms of musical 
relevance, be it with respect to the music of the 17th century or beyond. To some extent was Newton indeed 
committed to this particular step interval pattern (a, b, a, c, a, b, a, a, c, a, b, a). After all, with respect to the 
search for embeddings in suitable n-EDOs he was in the first instance interested in the representation of the 
pattern and only in the second instance in good numerical approximation. In figure 9b of the article Muzzulini 
reproduces a table with n-EDO representations, where one row sticks out: The sequence (0, 4, 2, 6, 1, 5, 3, 
7, 11, 6, 10, 8, 12) is not monotonously growing like the pitches of a scale. Butwhatever the numbers meant 
for Newton, they still exemplify the pattern with 4 representing a,  -2 representing b and -5 representing c. 
 The question is: shall such 12-letter patterns (like Mercator’s, Newton’s, Holder’s or Euler’s) be 
investigated as chromatic refinements of the diatonic modes? What are the conditions of fulfillment for an 
affirmative answer?  Over the centuries music theorists have paid considerable attention to the classification 
of the step interval patterns of the diatonic modes.  And since the new-era theorists have also studied tone 
repertories, intervals and chords in the three-dimensional space, generated by intervals of the major and minor 
triads. But chromatic modes do not seem to have gained a strong interest so far. Does this mean that there 
exists a broad consensus that their study is irrelevant? Or is it a potentially interesting unexplored territory? 
Which kind of research questions would have to be raised?   
 In music cognition and in music theory there is a renewed interest in the study scale degree qualia. 
This concept attributes different qualities to the diatonic scale degrees apart from their pitch height.  Guido 
explained the different characters of the notes of a mode (propriatas sonorum) in terms of their different step 
interval neighborhoods. Would it make sense to extend this concept to a level of chromatic modes?  
 The theoretical path from the concept of (pseudo-classical) mode to Newton’s chromatic “mode” 
combines two different kinds of refinement, namely: (1) the chromatic extension of a diatonic mode on the 
level of notes as such as (a+b, a+b, a, b+a, a+b, a+b, a), and (2) the refinement (for example) of the 
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authentic Ionian mode T-T-S-T | T-T-S through Zarlino’s syntonic-diatonic mode T-t-S-T | t-T-S. Newton’s 
pattern accounts for a combination of both procedures. But the “refinement” also entails obstructions for a 
seamless extension of the diatonic theory. Guido’s affinities of the hexachord T-T-S-T-T (its double 
periodicity with respect to the prefixes T-T-S-T and T-T-S) does not hold anymore for Descartes’ and 
Newton’s syntonic hexachords t-T-S-T-t and T-t-S-T-t. Nonetheless, it could be worthwhile to explore the 
potential meanings of chromatic scale degree qualia.  
 At present there are two different approaches available. Huron (2006) sees the different profiles of 
transition probabilities from a given scale degree to the others as a clue for statistical learning and interprets 
scale degree qualia as a side effect of statistical cognition. In Noll (2018a, 2018b) I constructed exo-modes, 
i.e., parametrizations of different musical qualities of one the same interval or interval combination. 
Geometrically, these exo-modes are located in the kernel (the zero-space) of a suitably chosen pitch height 
form. Noll (2018a) is dedicated to diatonic and chromatic exo-modes in Reger’s (1973) two-dimensional 
note interval space, while Noll (2018b) is dedicated to the study of the exo-partners of Zarlino’s syntonic-
diatonic modes in the three-dimensional interval space E. As far as I see, nothing should be in the way of 
applying the approach taken in Noll (2018b) to Newton’s chromatic mode.  
 This perspective of achieving a parametrization of possible tone qualia in the orthogonal 
complements of the gradients of pitch height forms adds to my motivation to object against the squeezing of 
musical scales and related entities into the one-dimensional pitch height space. 
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NOTES 
 

[1] thomas.mamuth@gmail.com 
 
[2] The sequence starts with 12, 19, 22, 31, 34, 41, 43, 46, 53, 65, 75, 77, 84, 87, 96, 99, 106, 111, 118, 
130, 140, 149, 152, 159, 164, 171, 183, 193, 205, 212, 214, 217, 224, 236, 246, 248, 258, 270, 277, 280, 
282, 289, 301, 311, 323, 330, 335, 342, 345, 354, 364, 366, 376, 388, 395, 398, 400, 407, 419, 429, 441, 
448, 453, 460, 463, 472, 482, 484, 494, 506, 513, 516, 518,  525, 528, 537, 547, 559, 566, 571, 578, 581, 
590, 593, 600, 612, … 
 
[3] The sequence starts with 12, 34, 41, 53, 65, 87, 106, 118, 130, 140, 152, 159, 171, 183, 193, 205, 217, 
224, 236, 248, 258, 270, 277, 289, 301, 311, 323, 335, 342, 354, 376, 388, 407, 419, 429, 441, 453, 460, 
472, 482, 494, 506, 525, 537, 547, 559, 571, 600, 612, … 
 

REFERENCES 
 
Huron, D. (2006). Sweet Anticipation. Music and the Psychology of Expectation. Cambridge, MA: MIT 
Press. https://doi.org/10.7551/mitpress/6575.001.0001 
 
Mazzola, G. (1990). Die Geometrie der Töne. Birkhäuser. Basel.   
https://doi.org/10.1007/978-3-0348-7427-4 
 
Noll, T. (2018a). One Note Samba: Navigating Notes and their Meanings within Modes and Exo-Modes. In 
M. Montiel & R. Peck (Eds.), Mathematical Music Theory: Algebraic, Geometric, Combinatorial, 
Topological and Applied Approaches to Understanding Musical Phenomena.  
https://doi.org/10.1142/9789813235311_0006 
 
Noll, T. (2018b). Dual lattice-path transformations and the dynamics of the major and minor exo-modes. 
Journal of Mathematics and Music 12 (3), 212-232. https://doi.org/10.1080/17459737.2018.1548035 
 
Regener, E. (1973). Pitch Notation and Equal Temperament: A Formal Study. University of California 
Press, Berkeley. 

 

mailto:thomas.mamuth@gmail.com
https://doi.org/10.7551/mitpress/6575.001.0001
https://doi.org/10.1007/978-3-0348-7427-4
https://doi.org/10.1142/9789813235311_0006
https://doi.org/10.1080/17459737.2018.1548035

	MUSICAL INTERVALS AND THE PITCH HEIGHT OF JUST INTONATION
	MODIFYING THE PITCH HEIGHT FORM
	INSPECTING THE MUZZULINI TRANSFORM
	PONDERING ABOUT NEWTON’S CHROMATIC MODE
	NOTES
	REFERENCES

