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Abstract

The effects of weak magnetic fields on biological systems have become an area of

burgeoning research and interest in recent years. Specifically, the Radical Pair

Mechanism (RPM) has been quite successful at beginning to explain phenomena such

as avian magnetoreception, the magnetosensitivity of lipid peroxidation reactions

and other such biological magnetic field effects (MFEs) - but there are still many

questions to answer. This thesis addresses such questions, by proposing a new

mechanism (D3M) to offer a new perspective on radical spin dynamics, and methods

for amplifying biological MFEs.

0.1 List of Abbreviations:

- MFE: Magnetic Field Effect

- RPM: Radical Pair Mechanism

- LFE: Low-Field Effect

- D3M: New mechanism proposed to move beyond the RPM, which centres on

the electron-electron dipolar interactions between three radicals.

- DnM: Extension of D3M to many spins

- HFI: Hyperfine Interaction

- CRY: Cryptochrome

- EED: Electron-Electron Dipolar (couplings/interactions)

- MCWF: Monte-Carlo Wave Function
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(0, 7.5) Å; the location of the third spin is varied in the (x,z)-plane;

B0 = d1,2, k
−1 = 1 µs. Top: Absolute value of the change in the

orientationally averaged singlet yield, anisotropy of the singlet yield

(i.e. the maximal absolute change divided by the mean effect), absolute

value of the average MFE, and the maximal absolute value of the

MFE realized for a particular orientation. . . . . . . . . . . . . . . . . 67

3.13 (a) Yield vs applied field for different exchange interaction strengths,

J/d1,2; here, k/d1,2 = 0.001 and B0||x. (b) Yield as a function of

orientation for different B0; here k/d1,2 = 0.001. (c) The location and

amplitude of a low-field peak’s maximum, as a function of the exchange

interaction strength with k/d1,2 = 0.001 and 0.01 (indistinguishable).

(d) The half-width at half-maximum of a low-field peak as a function

of J/d1,2, for k as indicated in the figure. . . . . . . . . . . . . . . . . 69

3.14 Powder averages of the singlet yield for a linear spin-triad, with all spins

subject to electron-electron dipolar coupling and adjacent spins addi-

tionally subjected to exchange coupling: J = J1,2 = J2,3 = 0.25 d1,2.

Left: Dependence of the singlet yield on the magnetic field intensity for

different recombination rate constants k = [0.001 (top), 0.00686, 0.0470, 0.322 (bottom)] d1,2.

Right: Field of half-saturation (top), location of (low-field) minima

and maxima of the field-dependence of the singlet yield (centre) and

absolute values of MFEs for a saturating magnetic field and at the

characteristic minima (bottom), all represented as a function of the

recombination rate constant k. . . . . . . . . . . . . . . . . . . . . . . 71

xi



3.15 Powder averages of the singlet yield for a dipolarly coupled spin-triad

in an equilateral triangular configuration. Left: Dependence of the

singlet yield on the magnetic field intensity for different recombination

rate constants k = [0.001 (top), 0.00686, 0.0470, 0.322 (bottom)] d1,2.

Right: Field of half-saturation (top), location of (low-field) minima

and maxima of the field-dependence of the singlet yield (centre), and

absolute value of the MFEs for a saturating magnetic field and at

the characteristic minima and maxima (bottom), all represented as a

function of the recombination rate constant k. . . . . . . . . . . . . . 72

3.16 Powder averages of the singlet yield for a dipolarly coupled spin-triad

in an isosceles triangular configuration, with the third radical at a

distance of 2 r1,2 from radicals 1 and 2. Left: Dependence of the

singlet yield on the magnetic field intensity for different recombination

rate constants k = [0.001 (top), 0.00686, 0.0470, 0.322 (bottom)] d1,2.

Right: Field of half-saturation (top), location of (low-field) minima

and maxima of the field-dependence of the singlet yield (centre), and

absolute value of the MFEs for a saturating magnetic field and at

the characteristic minima and maxima (bottom), all represented as a

function of the recombination rate constant k. . . . . . . . . . . . . . 73

3.17 Singlet yield for B0 = 0 for an equilateral triangular geometry (solid

line) and the linear spin triad (dashed line) as a function of the

recombination rate constant k. . . . . . . . . . . . . . . . . . . . . . . 74

3.18 Energies of the eigenstates (top) and singlet yields (bottom) as a

function of the magnetic field for a spin triad with an equilateral

triangular geometry and the field oriented perpendicular to the ring

plane (z-axis; left) or along the x- or y-axis (right). The singlet yields

are plotted for k = {0.001, 0.01, 0.1, 0.5, 1} d1,2, with the lowest k

corresponding to the bottommost curve; the curves for k = 0.001 d1,2

and k = 0.01 d1,2 practically coincide. . . . . . . . . . . . . . . . . . . 74

xii



4.1 A: The structure of the isomers 9ez (top) and 13ze (bottom) of

the linoleic acid peroxyl radical. Labels indicate the Boltzmann-

weighted average isotropic hyperfine constant (T = 310 K) as the

peroxyl group rotates. All coupling constants are shown in MHz. B:

3D model of the 13ze isomer with graphical representations of the

hyperfine interactions. The left structure illustrates the hyperfine

coupling constants at T = 310 K; the right structure shows the

hyperfine interaction of the vicinal proton under the assumption that

fast rotation about the carbon backbone (axis shown as black line)

averages the hyperfine interaction (see Appendix Fig. 9.4). . . . . . . 85

4.2 MFEs for two- and three-radical systems. Two radicals are always

considered to be at contact, i.e. at a distance of 9 Å, and thus able to
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E: The field intensity for a MFE of 1% (red) and 5% (blue) for the

three-radical system used in C/D. . . . . . . . . . . . . . . . . . . . . 96
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5.1 Schematics of the distortions introduced into the regular polygon

geometries. The spins highlighted in red show the areas a which a

distortion was applied. The shadowy regions denote the undistorted

geometries. The distorted geometries are shown next to the regular

geometries (labelled Dn) to illustrate how minor the applied distor-

tions are in comparison with the regular structure, with guiding lines

between spin pairs included to highlight subtle changes in the overall

symmetry of the shape and thus the interaction parameters in the

spin Hamiltonian. In essence, radial and tangential displacements

of one spin are considered, indicated by the subscript labels ”r” and

”t”, respectively. Here, a displacement of 0.05 and 0.1 parts of the

inter-spin distance (2R) were assumed for the ”t” and ”r”-variants,

respectively. For the triangular geometry both a smaller (0.1 × 2R;

D3,r) and a larger radial displacement (0.133× 2R; D′3,r) have been

considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Schematics of the distortions introduced into the linear chain geomet-

ries. The Ln case at the top shows the generic labelling convention

for a linear chain of n spins, and the spins highlighted in red show

the areas a which a distortion was applied. The shadowy regions

highlight the difference between the regular and distorted geometries.

Distortions for which the red spin is displaced perpendicular (labelled

as ”y” and ”z”, which are perpendicular and parallel to the applied

magnetic field direction) or parallel (”x”) to the spin chain axis have

been considered. For the x-displacements of the ith spin, all spins

following the ith were also displaced in order to maintain the same

inter-spin distance of 2R for all but the (i− 1, i)-pair. . . . . . . . . . 117
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5.3 Heatplots showing the MFE, χS(B) of the square geometries as a

function of the exchange coupling parameter J0 and the magnetic field

flux density, B. Panel a) shows the profile obtained for the perfect

square geometry D4, b) from distortion D4,t and c) from D4,r. It

can be seen that the two distorted geometries show numerous new

regions of sensitivity across all magnetic field strengths and exchange

interactions studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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field flux density, B pentagonal geometries. Panel a) shows the profile

obtained from the perfect pentagonal geometry D5 and panel b) that
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case of the evenly-spaced chain. b) shows the profile obtained from a
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obtained from a 1.5 Å displacement of spin 2 in the z-direction, and

d) - e) show the profiles obtained from a 1.5 Å displacement of spin 3

in the x-, y- and z-directions respectively. . . . . . . . . . . . . . . . . 123

5.7 MFE profiles for the linear 4-spin geometries. a) shows the control case

of the evenly-spaced chain. b) and c) show the profiles obtained from

a 1.5 Å displacement of spin 3 and 4, respectively, in the y-direction,

d) and e) show the profile obtained from a 1.5 Å displacement of spin 3

and 4, respectively, in the x-direction, and f) and g) show the profiles

obtained from a 1.5 Å displacement of spin 3 and 4, respectively, in

the z-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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5.8 MFE profiles obtained from distorting the five-spin linear geometry.

Panel d) shows the control case of the evenly-spaced chain, L5. Panels

a) - c) show the distortions in the y-direction: L5,3y and L5,4y, and L5,5y

respectively. Panels e) and f) show the distortions in the x-direction:

L5,4x and L5,5x, respectively. Panels g) - i) show the distortions in the

z-direction: L5,3z and L5,4z, and L5,5z respectively. . . . . . . . . . . . 125
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e) - g) show the profiles obtained from a 1.5 Å displacement, in the

x-direction, of spins 4, 5, and 6 respectively and h) - j) show the

profiles obtained from a 1.5 Å displacement, in the z-direction of spins

4, 5, and 6 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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5.12 A comparison showing that, in fact, 0.75 Å is sufficient to realise the

observed effects in the planar geometries studied. The left-hand side of
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side shows the counterpart to each distorted instead by 1.5 Å. From
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5.13 A comparison showing that, in fact, 0.75 Å is sufficient to realise the

observed effects in the 4-spin linear geometries studied. The left-hand

side of the figure shows the systems distorted by 0.75 Å, and the
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6.1 Three-spin linear system (L3), under the DnM formalism and in the

presence of exchange and S-T dephasing. The top panel shows regions

where the presence of noise can gives an enhanced MFE relatively to

the no-noise system. The bottom panel shows the value of the noise

parameter, Γ (in MHz), that produced the corresponding enhanced

MFE in the upper panel. In both cases, the x-axis denotes the

exchange parameter J given in units of d1,2. . . . . . . . . . . . . . . 145

6.2 Three-spin linear system (L3), under the DnM formalism and in the

presence of exchange and xyz uncorrelated noise. The top panel

shows regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. Note the abolition of most of

the enhancements shown by S-T dephasing. In both cases, the x-axis

denotes the exchange parameter J given in units of d1,2. . . . . . . . . 146

6.3 Equilateral triangle system (D3), under the DnM formalism and in

the presence of exchange and S-T dephasing. The top panel shows

regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. In both cases, the x-axis denotes

the exchange parameter J given in units of d1,2. . . . . . . . . . . . . 147

6.4 Equilateral triangle system (D3), under the DnM formalism and in

the presence of exchange and xyz uncorrelated noise. The top panel

shows regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. Note the abolition of most of

the enhancements shown by S-T dephasing. In both cases, the x-axis

denotes the exchange parameter J given in units of d1,2. . . . . . . . . 148
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6.5 Three-spin distorted linear system (L3,3x), under the DnM formalism

and in the presence of exchange and S-T dephasing. The top panel

shows regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. In both cases, the x-axis denotes

the exchange parameter J given in units of d1,2. . . . . . . . . . . . . 150

6.6 Three-spin distorted linear system (L3,3x), under the DnM formalism

and in the presence of exchange and xyz uncorrelated noise. The

top panel shows regions where the presence of noise can gives an

enhanced MFE relatively to the no-noise system. The bottom panel

shows the value of the noise parameter, Γ (in MHz), that produced the

corresponding enhanced MFE in the upper panel. Note the abolition

of most of the enhancements shown by S-T dephasing. In both cases,

the x-axis denotes the exchange parameter J given in units of d1,2. . . 151

6.7 Isosceles triangle system (D3,r), under the DnM formalism and in

the presence of exchange and S-T dephasing. The top panel shows

regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. In both cases, the x-axis denotes

the exchange parameter J given in units of d1,2. . . . . . . . . . . . . 152

6.8 Isosceles triangle system (D3,r), under the DnM formalism and in

the presence of exchange and xyz uncorrelated noise. The top panel

shows regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. Note the abolition of most of

the enhancements given by S-T dephasing. In both cases, the x-axis

denotes the exchange parameter J given in units of d1,2. . . . . . . . . 153
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6.9 Distorted square system (D4,t), under the DnM formalism and in

the presence of exchange and S-T dephasing. The top panel shows

regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. In both cases, the x-axis denotes

the exchange parameter J given in units of d1,2. . . . . . . . . . . . . 154

6.10 Distorted square system (D4,t), under the DnM formalism and in

the presence of exchange and xyz uncorrelated noise. The top panel

shows regions where the presence of noise can gives an enhanced MFE

relatively to the no-noise system. The bottom panel shows the value

of the noise parameter, Γ (in MHz), that produced the corresponding

enhanced MFE in the upper panel. Note the abolition of most of

the enhancements given by S-T dephasing. In both cases, the x-axis

denotes the exchange parameter J given in units of d1,2. . . . . . . . . 155

7.1 Transformed survival probability, f1(1) = p1(t) exp(kf t), as a function

of time for the [FAD•− W•+] system with 8 + 8 nuclear spins, subject

to S/T-dephasing at the rate γST = 11 µs−1 and a magnetic field of

B = 1 mT. A recombination rate of kb = 0.5 µs−1 was assumed. (a)

shows the reconstruction of the time-dependence of f1(t) for many

trajectories using the MCWF approach. The solid red line shows the

eventually converged mean; every gray curve, a single of which has

been highlighted in black, corresponds to 80 samples. Here, B = 1

mT is aligned with the ẑ-axis of FAD. (b) summarizes the converged

results for or different field directions in the absence and presence

of S/T-dephasing. Note that S/T-dephasing strongly attenuates the

anisotropy of the response to magnetic field. . . . . . . . . . . . . . . 171

7.2 f1(t) = p1 exp(kf t) for the [FAD•− W•+] radical pair with 8 + 8

nuclear spins, kb = 0.5 µs−1 and B = 0, with (blue) and without

(orange) S/T-dephasing at a rate of γST = 11 µs−1. . . . . . . . . . . 172
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7.3 (a) The test case used here was the [FAD•− Z•] system, with 14

spins under random field relaxation with rate γRF = 0.2 µs−1 and

kb = 2 µs−1. Here, it has been assumed B = 50 µT, which is of

the order of the geomagnetic field at mid-latitude. The insert shows

the dependence of the magnetic anisotropy for this system, evaluated

as the difference of Y1 when the field is in the ŷ and ẑ-direction,

respectively, on the forward rate constant kf . (b) shows f1(t) on a

logarithmic scale. tmax = 24 µs and N = 476, 800 Monte Carlo samples

have been collected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.4 f1(t) of the [FAD•− Z•] systems with parameters as specified for Fig.

7.3. Solid lines: calculated using the MCWF approach with N = 3200

samples only. The general shape of the transformed survival probability

is hardly discernible from the converged result (dashed lines). . . . . . 175

7.5 ∆Y1 for the [FAD•− Z•] described in Fig. 7.3 at B = 50 µT with

random field relaxation as a function of the number N of averaged

MC trajectories. The orange, blue and green data apply to kf = 0.5

µs−1, 1 µs−1 and 2 µs−1, respectively. . . . . . . . . . . . . . . . . . . 175

7.6 (a) Deviation of the direct ME integration and MCWF approach with

160, 000 samples drawn, for the [FAD•− Z•] problem with random

field relaxation (γRS = 0.2 µs−1), kb = 2 µs−1 and 10 coupled nuclei

(including two nitrogen atoms) for different orientations of the mag-

netic field (B = 50 µT) as indicated. (b) The transformed survival

probability of this system as a function of time. The ME and MCWF

approaches are indistinguishable on the image scale. . . . . . . . . . . 177

7.7 (a) Deviation of the direct ME integration and MCWF approach with

16, 000 samples drawn, for the [FAD•− W•+] with 4 hyperfine-coupled

nuclear spin in every radical, random field relaxation (γRS = 0.2 µs−1),
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7.8 Error of the MCWF approach relative to the ME method for a small

[FAD•− W•+] spin system with 4 + 4 coupled nuclear spins subject

to S/T-dephasing. N = 16, 000, kb = 0.5 µs−1, gammaST = 11 µs−1,

B = 1 mT. Considered nuclei: N5, N10, H6, H8 in FAD•− and N1,

H1, Hβ2, H4 in W•+. The magnetic anisotropy is tiny under the

simulation conditions. For kf = 1 µs−1, Y1 differs by only 0.0051 for

the y (blue) and z-direction (orange); the yield for the z direction is
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implementation of the direct integration of the master equation as a
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spin system FAD•− W•+] system; (b) collects data for an 8 spin system

of the same type. The errors ES and E1 are shown in green and blue,

respectively. Different sampling strategies of the initial nuclear spin

configurations are encoded by line styles: solid lines: spin coherent

state sampling; dashed lines: random sampling of nuclear spin states

in the Zeeman basis; and dotted lines: complete sampling. The arrow

indicates the slope of the expected N−1/2-dependence. Linear fits to

the data are in agreement with this expectation within statistical error.

The error bars indicate two standard deviations of the mean error Ei

evaluated from 94 to 4 independent repeats for a given sample size N .
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7.10 Comparison of the CPU time required to generate a solution for both

the integration of the ME and the implementation of the MCWF

approach, as a function of the number of coupled spins in the system.

Panel (a) shows a [FAD•− W•+] system that comprised all nitrogen

spins and a variable number of proton spins, and panel (b) shows a

basic [FAD•− Z•] system. Simulation parameters are as given in Fig.
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the MCWF approach and tmax = 12 µs. The MCWF method used

the Dormand-Prince 5/4 Runge-Kutta method with an absolute error
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9.4 13ze (left) and 9ez (right) shown with the average hyperfine interaction
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9.7 The magnetic field at which the MFE reaches half saturation plotted

against the surface concentration of the lipids. The blue and red lines

represent the cases with a = 0 and a = 10.3 MHz, respectively, both

with the magnetic field oriented perpendicular to the membrane plan.

The yellow line shows the rotational average when a = 0. . . . . . . . 207
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9.9 Characteristics of the magnetic field effect for circular microreactors

containing three radicals at variable concentrations under the hypo-

thetical scenario that the electron-electron dipolar interaction is absent.

Top: the low field effect as a function of the surface concentration.
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1. Introduction

There is growing excitement about the possibility of quantum coherence and entan-

glement underpinning the optimal functioning of biological processes (Lambert et al.,

2013; Brookes, 2017; Scholes et al., 2017; Kim et al., 2021). A notable example

is the avian inclination compass (Hore and Mouritsen, 2016; Hiscock et al., 2016;

Gauger et al., 2011; Clausen et al., 2014; Pauls et al., 2013; Hogben, Biskup and

Hore, 2012; Cai et al., 2012; Ritz, Adem and Schulten, 2000; Tiersch and Briegel,

2012; Xu et al., 2013; Kattnig et al., 2016a), which has recently been realised as a

truly quantum-biological process (Hiscock et al., 2016), and has likely been optimised

through evolution (Melkikh and Khrennikov, 2015). The leading explanation of this

phenomenon utilizes the Radical Pair Mechanism (RPM), which describes the unitary

evolution of singlet-triplet (S-T) coherences in systems comprising two radicals, i.e.

two electron spins (Hore and Mouritsen, 2016; Rodgers and Hore, 2009; Steiner and

Ulrich, 1989). The avian compass has received the most high-profile attention in the

literature, and has thus been afforded significant attention in the motivation for this

thesis. However, as this chapter hints at, and later chapters expand upon, there is in

fact a much more general argument in place from a theoretical perspective and a far

wider-reaching range of applications than just magnetoreception. For instance, the

RPM has also been suggested to underpin controversial health-related implications of

exposure to weak electromagnetic fields, such as cellular lipid peroxidation reactions

(Ghodbane et al., 2013b; Lalo, Pankratov and Mykhaylyk, 1994; Kabuto et al.,

2001; Juutilainen et al., 2018a). These have direct applications to possible new

technological advances in both quantum navigation and ”magnetoceuticals” - the

envisaged use of new non-invasive therapies based on the targeted application of

sub-mT magnetic fields. For these phenomena, the so-called low-field effect (LFE)
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is essential for facilitating the sensitivity to magnetic fields of intensity comparable

to the geomagnetic field (i.e. approximately 50 µT) (Timmel et al., 1998; Maeda

et al., 2008; Maeda et al., 2012; Suzuki et al., 2005; Pauls et al., 2013; Kattnig et al.,

2016b; Kattnig, 2017b; Timmel and Henbest, 2004).

This chapter will first motivate the discussion by briefly reviewing the progress

in the field of spin physics relevant to biological systems. Then, the Radical Pair

Mechanism will be introduced (with the main mathematical discussion saved for

chapter 2), followed by a discussion of the background for some of its more successful

applications aside from magnetoreception - including lipid peroxidation, and other

effects in enzymatic systems. Subsequently, the motivation for a new theory, a new

perspective on the magnetosensitivity of biological spin physics, is provided along

with a qualitative discussion of symmetry and its ubiquity in natural systems. Finally,

the overall structure of the thesis will be detailed.

1.1 Biological spin physics: past, present and fu-

ture developments

1.1.1 Magnetoreception

The phenomenon of avian magnetoreception has been avidly discussed in recent

literature from a range of fields, and would appear to require interdisciplinary research

in order to fully elucidate the mystery. It seems to be generally agreed that migratory

birds have a magnetic compass by which they navigate (see refs. Ritz, Adem and

Schulten, 2000; Solov’yov, Mouritsen and Schulten, 2010; Dodson, Hore and Wallace,

2013, for example), yet the precise mechanism by which it operates remains elusive.

The leading hypothesis is the Radical-Pair Mechanism (RPM), as first proposed by

Schulten (Schulten, Swenberg and Weller, 1978), with this claim based upon the

body of evidence that exists in its favour (see refs. Hore and Mouritsen, 2016; Kim

et al., 2021 for a comprehensive review). However, the magnetite hypothesis, as first

proposed by Lowenstam (Lowenstam, 1962) and later applied in the context of more

complex organisms by Kirschvink (Kirschvink, 1981) also has some support from the
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community.

While neither idea has been unequivocally proven experimentally, recent studies

suggest that both mechanisms are simultaneously present in various species. Different

sensory modalities appear to map to the two mechanisms: magnetite, a map sense,

and the radical pairs, a compass (Munro et al., 1997; Ritz, Adem and Schulten,

2000). Below is a brief summary of the two ideas.

Magnetite: There exist magnetic nanoparticles in the upper beaks of many

species of bird (Falkenberg et al., 2010; Kirschvink, 1981; Munro et al., 1997) - they

are seemingly led by the nose through the geomagnetic field to their destinations.

It has been suggested that birds can use the magnetisation brought about by these

particles to form a kind of ’magnetic map’ by which they navigate. It was argued

that they gain experience using this over time, gradually building up this picture

over several migrational seasons, as juvenile Zosterops lateralis (Australian Silveryes)

were shown not to orient with this technique (Munro et al., 1997).

While there exists some support for this hypothesis (Wiltschko and Wiltschko,

2013), experimental evidence is not abundant. Most notable is the fact that a receptor

for this ’magnetic sense’ has yet to be found in experiment (Nordmann, Hochstoeger

and Keays, 2017), making it difficult to reconcile the mechanism with any kind

of signalling pathway that would actually allow organisms to utilise this magnetic

information. There also exists evidence showing that magnetite alone cannot be

responsible in a recent study by Wiltschko et al. (Wiltschko et al., 2015), where

they anaesthetised the upper beaks (wherein navigational magnetite is believed to

be found) of their subjects as a control. Despite the anaesthesia, they reported

still seeing a preferred direction presented by their test subjects, which could be

interfered with by radio-frequency irradiation. This further suggests that multiple

mechanisms may be in play synchronously for magnetoreception. It should be noted,

however, that this experimental methodology has been disputed with the claim that

the anaesthetic used may be artificially biasing the organisms to behave differently

than they would under natural circumstances, and also that is cannot be guaranteed

that the effects of said anaesthetic would last for the full duration of the study
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Figure 1.1: A schematic of the photocycle of the radical-pair mechanism, assuming the
participant species to be flavin adenine dinucleotide, here abbreviated as F, and the amino
acid tryptophan (abbreviated as WH) The reaction pathways shown are back electron
transfer (BET), which accounts for the geminate recombination, and reaction to form the
signalling state. The circled numbers refer to the stages of the mechanism: stage 1 is
photo-excitation, stage 2 is singlet-triplet inter-conversion and stage 3 is the formation of
the signalling product.

(Engels et al., 2018). As such, there are many uncertainties still surrounding this

question and one cannot claim conclusive proof either way at present.

Radical Pair Mechanism: Fig. 1.1 shows schematically how the RPM proceeds.

The initial precursor state is photo-excited by an incoming photon of sufficient

energy and the radical pair is formed in a coherent and entangled superposition of

spin-up and spin-down: a pure singlet state; this can later evolve into a coherent

superposition of the singlet (S) and triplet (T) spin states. There exist two distinct

reaction pathways: the first is via back electron transfer (BET), thus reforming the

precursor state, and the second is the formation of a signalling product state; this is

sometimes called an ’escape product’, as (for mobile reactants) the geminate pair

either recombines or escapes to the bulk, where it gives rise to free ions.

The reason that a magnetic field effect can occur is the spin-selective recombin-

ation exhibited in this set of reactions - the differing chemical fates of radicals in the

singlet and triplet states permits the possibility of affecting the respective product

formation rates/yields. Hence, by altering the conversion dynamics with an applied

magnetic field (Schulten, 1982) one can tune the yield of the signalling state. The

singlet yield, as shown in Fig. 1.2, is an oft-calculated quantity used to demonstrate

these magnetic field effects. The complement of this quantity, the triplet yield, can

also be readily calculated.
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Figure 1.2: A depiction of how a bird might interpret its orientation to the applied weak
magnetic field; here shown as approximately the strength of the geomagnetic field. The
fraction of radical pairs in the singlet state after photo-excitation is shown as a function
of the time elapsed thereafter, and can be seen to oscillate when aligned parallel to the
field, but this is much less pronounced when perpendicular thereto. This variation could
provide the basis for magnetoreception by the RPM if the singlet-fraction is linked to the
recombination yield of the reaction and thus, indirectly, the signalling state to show that it
could be directly affected by a magnetic field comparable to that of Earth. The structures
on the right represent the anisotropic hyperfine couplings present. The colour represents
the sign thereof; blue is positive, green is negative. The meanings of the colours in the
singlet fraction are: green for the FAD (flavin adenine dinucleotide) anion radical and a
hypothetical radical devoid of hyperfine couplings; blue for the FAD anion radical and the
WC cation radical.

Figure 1.3: Structural representation of a typical cryptochrome, located in the avian
retina (shown: E. Rebecula). Shown are an electron transfer pathway involving three
highly conserved tryptophan residues, and the flavin adenine dinucleotide structure; widely
believed to be contenders for the magnetosensitive radicals involved in the radical pair
mechanism of avian magnetoreception. The distances shown are the edge-to-edge distances
of FAD −WC and FAD −WD, respectively.
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The chemical compass, involving transient reaction intermediates known as

radical pairs, is said to provide information about the inclination to the geomagnetic

field but to be insensitive to the polarity of the field (Wiltschko and Wiltschko, 1972;

Hiscock et al., 2016; Rodgers and Hore, 2009). This is achieved through the presence

of anisotropy in the hyperfine interactions of the radical-pair system, as shown

schematically in Fig. 1.2. A detailed explanation of the mechanism can be found in

references (Rodgers and Hore, 2009; Hore and Mouritsen, 2016), for example.

This inclination compass has been speculated to be found in the cryptochromes

of the avian retinae and to couple to the visual transduction pathway (Ritz, Adem

and Schulten, 2000), allowing the magnetic information produced to be interpreted

neurologically, and the Mouritsen group has tracked this information to cluster N

in the forebrain (Liedvogel et al., 2007b; Zapka et al., 2010). Several behavioural

studies exist that show evidence for the plausibility of the radical-pair mechan-

ism, and provide motivation for further scrutiny of this pathway (Wiltschko et al.,

2014; Zhang, Berman and Kais, 2015; Wiltschko and Wiltschko, 2014; Engels et al.,

2014). Fig. 1.3 shows a structural representation of a cryptochrome, a blue-light

photoreceptor protein (Lin and Todo, 2005) and the putative receptor for magnetore-

ception (Liedvogel and Mouritsen, 2010; Hore and Mouritsen, 2016; Ritz, Adem and

Schulten, 2000; Solov’yov, Chandler and Schulten, 2008). The FAD (flavin adenine

dinucleotide) of a cryptochrome can exist in several states: its fully oxidised form

(FAD), semiquinone form (FADH•), anionic semiquinone form (FAD•−) and the

fully-reduced hydroquinone (FADH−), which could allow it to participate in many

types of redox reaction. Radical pairs that could form the basis of a magnetic sensor

can be generated by the oxidation of the fully reduced form or the photo-reduction

of the oxidised form by suitable electron donors such as aromatic amino acids.

One bone of contention where this mechanism is concerned is the precise nature

of the radicals involved. It is currently widely believed that one of the radicals is

a radical derived from FAD but the identity of the other is as yet uncertain. A

popular controversial suggestion for the second radical is superoxide (Cai, Caruso

and Plenio, 2012; Cai, Guerreschi and Briegel, 2010; Solov’yov and Schulten, 2009;

6



Niessner et al., 2013), but discussions involving this choice often fail to take into

account spin relaxation. Spin relaxation in the radical pair formalism is the process

whereby the excited radicals revert, over a timescale denoted the relaxation time,

to thermal equilibrium with their surroundings (Rodgers and Hore, 2009; Hayashi

and Nagakura, 1984). As a result, doubt is cast upon the choice of superoxide as the

partner radical for FAD since it has a very short relaxation time (< 1 ns) relatively

to the reaction timescale (Hogben et al., 2009); it would need to be of the order of a

microsecond to be sensitive to the geomagnetic field.

Fig. 1.2 shows how the singlet fraction (discussed in more mathematical detail

in chapter 2) can be affected by a magnetic field of strength comparable to the

geomagnetic field which, when considered with the reaction pathway shown in Fig.

1.1, shows that the applied magnetic field can affect the signalling state of the protein.

The low-field effect (LFE), a feature in the singlet yield facilitated by the lifting

of level degeneracy owing to the Zeeman effect (Cintolesi et al., 2003; Solov’yov,

Chandler and Schulten, 2008; Timmel et al., 1998), is central to the phenomenon.

Further, these magnetic field effects can be perturbed by the application of a low-

intensity (as weak as tens of nT (Kavokin, 2009), or even less (Engels et al., 2014;

Schwarze et al., 2016)) magnetic field in the megahertz regime (Hogben et al., 2009;

Efimova and Hore, 2008; Evans et al., 2016), which is further evidence for the

RPM as such an effect could not be predicted by a magnetite-based model, because

the torques involved would be so small as to be both unable to rotate biological

macromolecules and imperceptible to the organism (Kabuto et al., 2001). The LFE

has been observed for radical reactions involving FAD (Evans et al., 2016), and in

in vitro studies of cryptochromes, but not yet for any where its partner radical was

superoxide (Kattnig, 2017b; Maeda et al., 2012).

The tryptophan radical has long since been the strongest contender (Kattnig

and Hore, 2017a; Wiltschko et al., 2015; Solov’yov, Chandler and Schulten, 2007;

Cintolesi et al., 2003) but this idea has been challenged recently by suggesting that

in fact the step in the reaction that governs magnetoreceptive ability occurs later

than originally thought - in the dark reoxidation of FADH− (Gegear et al., 2010;
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Niessner et al., 2014; Wiltschko et al., 2015; Wiltschko et al., 2014; Wiltschko et al.,

2016; Pooam et al., 2019). Parallel to this, Cry4, a weakly oscillating protein hitherto

only found in vertebrates that exhibit magnetic compass behaviour, has been found

to bind flavins and also to contains the Trp tetrad present in DmCry (Müller et al.,

2015; Nohr et al., 2016; Zoltowski et al., 2011; Levy et al., 2013), which is considered

critical for its activation (Günther et al., 2018). Given that, relatively to the strong,

robust, circadian oscillations of Cry1a, Cry1b and Cry2, Cry4 is weakly oscillating,

this suggests that upregulation of Cry4 does something else entirely, which can be

done irrespective of the time of day, such as migration and thus that it may play a

part in the magnetosensitive step of avian navigation, whether this be dark-state or

otherwise (Günther et al., 2018; Niessner et al., 2014; Wiltschko et al., 2016).

Several comprehensive reviews exist that cover the biophysical and physiological

aspects of the RPM (Johnsen and Lohmann, 2005; Kishkinev and Chernetsov, 2015;

Hore and Mouritsen, 2016; Brocklehurst and McLauchlan, 1996; Jones, 2016; Fay et

al., 2019) and describe magnetic effects in chemical systems (Steiner and Ulrich, 1989;

Kim et al., 2021), but the aim of the present work is to address the progress that has

been made in theoretically modelling the problem and, ultimately, to make a more

general remark upon the utility of weak magnetic fields in influencing and amplifying

quantum effects in biological systems (i.e. not only limited to magnetoreception).

The main common problems to theoretical treatments at present are in trying to

predict and justify the remarkable acuity that the avian compass demonstrates in

experiment (Hiscock et al., 2016; Akesson et al., 2001; Lefeldt et al., 2015), while

also creating a model system that is sensitive to weak, oscillating, radio-frequency

magnetic fields and remains sensitive even in low-light conditions (Gauger et al.,

2011; Hiscock et al., 2017; Solov’yov, Mouritsen and Schulten, 2010). This final

point, about dark-state reactions, has been addressed briefly above, but is still listed

here because further evidence is required for conclusivity. Thus, with these issues in

mind, some proposed refinements to the original formulation shall be presented and

discussed herein.

Model systems currently in frequent experimental use for magnetreception
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studies are a photolyase from the bacterium Escherichia coli, and the related (and

structurally very similar) cryptochrome proteins from the plant Arabidopsis thaliana,

fly Drosophila melanogaster (AtCry1 and DmCry, respectively) (Ritz, Adem and

Schulten, 2000; Kattnig and Hore, 2017a), and recently birds Xu et al., 2021.

Theoretical models in the literature have been mostly fuelled by the crystal structures

of AtCry and DmCry. Although this class of protein is highly conserved among

species, (Lin and Todo, 2005; Solov’yov, Chandler and Schulten, 2007), this introduces

additional ambiguity in model calculations since, while they may be similar structures

in terms of conservedness they are not identical to those found in avian retinae.

Recently, however, the structure of pigeon Cry4 has been resolved (Zoltowski et al.,

2019), which could allow more realistic simulations of magnetoreceptive systems to

be undertaken.

Research into the avian magnetic compass is exciting and relevant because once

the mechanism is understood it could be mimicked and harnessed by the technological

industries. Quantum navigation could be applied in many ways. Perhaps the most

intuitive example of use would be sensory applications - for example allowing purely

organic magnetic sensors with applications to the navigational, archaeological and

medical imaging of magnetic fields. One example of such a medical application is the

detection of prenatal congenital heart defects using magnetocardiography (Kahler

et al., 2001). This technique works by detecting changes in the cardiac magnetic

field and thus, if such changes could be detected more sensitively by using techniques

inspired by magnetoreception this would improve non-invasive diagnostic capability.

There is also applicability to quantum information, as one may think of the entangled

(Zhang, Berman and Kais, 2015; Gauger et al., 2011; Cai, Guerreschi and Briegel,

2010) spin states accessible to radical-pairs as being analogous to qubits. If resilience

to relaxation, and hence prolonged coherence lifetimes, as described above, can be

learned from the biological model this would provide motivation for further attempts

to realise it in quantum devices.

While avian magnetoreception is certainly a hot topic in the literature, much

of the more direct evidence in support of cryptochrome having a role in biological
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magnetoreception in fact comes from experiments using Drosophila flies and Monarch

butterflies. For example, flight simulator studies have been performed to show that

Monarch butterflies have an inclination compass and, further, that this compass

appears to be light-dependent in the same wavelength regime as for CRY Guerra,

Gegear and Reppert, 2014. This, coupled with previous behavioural (binary-choice

assay) work showing that Drosophila have a blue-light dependent navigational ability

Gegear et al., 2008; Gegear et al., 2010, forms part of the foundation for the suggestion

that the same protein could be in use for a similar function in birds, as cryptochromes

are highly-conserved between species. Further evidence for CRY’s proposed relevance

in biological magnetoreception can be seen in experiments by the Philips group,

where they show marked difference in the orientational behaviour of Drosphila (and

even a type of salamander) in the presence of blue light when compared with its

absence Phillips and Borland, 1992; Phillips and Sayeed, 1993. While CRY was not

explicitly referenced in the initial work, the link was made more concretely in a later

review Phillips, Jorge and Muheim, 2010.

Seizure response to blue light in Drosophila has been investigated, that was

not observed in those flies in which DmCRy had been knocked out Marley et

al., 2014. Importantly, the authors found that repeating their experiment in the

presence of a 100mT magnetic field significantly increased the magnitude of the

seizures induced by blue light. This is important because it establishes another link

between magnetism and CRY. Further work by the same group studied the blue-light

dependent electrochemical response of (Drosophila) larval membranes, wherein they

showed that magnetic field exposure increased the level of action potential firing, and

thus provides direct evidence that a magnetic field may indeed be able to influence

animal behaviour Giachello et al., 2016. These experimental results, and other

insights from this group, have been summarised in a recent review Bradlaugh et al.,

2021. The Kyriacou group provides some of the first evidence that the classical

tryptophan-mediated RPM may be insufficient to model the animal magnetosensitive

behaviour, even though the presence of CRY and blue light has been established to

be important, as they show that an isolated CRY C-terminus (which does not encode
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tryptophan) is apparently still able to mediate electromagnetic field response in

Drosophila Fedele et al., 2014a; Fedele et al., 2014b. This is important in particular

because it suggests that other partner radicals for the well-established FAD should

certainly be studied, and also that the theoretical basis for magnetoreception is far

from complete - even though the RPM represents an important building block.

However, though magnetoreception is a hot topic at the moment, with much

attention in the literature, the avian compass is not the only interesting application

of biological MFEs. The following two subsections will briefly summarise some other

very interesting and relevant uses of the same fundamental theoretical principles.

1.1.2 Lipid Peroxidation

Many review articles describe lipid autoxidation in great detail and the reader is

referred to those for an in-depth discussion of the phenomenon itself (Spiteller, 1998;

F. Benzie, 1996; Farmer and Mueller, 2013; Yin, Xu and A. Porter, 2011; Ghodbane

et al., 2013b), however a brief summary shall be provided below.

Lipid peroxidation proceeds by a free-radical chain mechanism that involves

peroxyl radicals as the main chain carriers (Spiteller, 1998; Mylonas and Kouretas,

1999; Doktorov, N. Lukzen and Pedersen, 2008; Lalo, Pankratov and Mykhaylyk,

1994; Ciejka and Goraca, 2008; Novitskii et al., 2015). The chain reaction is initiated

by a surplus of oxidising agents such as reactive oxygen species (ROS), which include

superoxide O•−2 and the hydroxyl radical OH• (Giorgio et al., 2007; Gaschler and

Stockwell, 2017; Hogg and Kalyanaraman, 1999; Tejero et al., 2007). The latter

species can be formed, through a Fenton reaction, using hydrogen peroxide H2O2

(Gutteridge, 1986). At a high level of concentration, ROS can cause severe oxidative

stress and damage in otherwise healthy cells, and can even sometimes lead to the

death of the cell (Kannan and Jain, 2000; Ryter et al., 2007). It is, however, worth

noting that reactions involving ROS can be magnetosensitive (Usselman et al., 2014;

Usselman et al., 2016), so there exists the possibility that magnetism could be

used therapeutically one day to mitigate the aforementioned damaging effects. The

reaction scheme shown in Fig.1.4A, summarises the most important reactions that

11



account for initiation, propagation, termination and degenerate chain branching

(Doktorov, N. Lukzen and Pedersen, 2008). Since abstracting bis-allylic hydrogen

atoms is energetically easy, poly un-saturated fatty acids are particularly susceptible

to radical attack and, thus, are key to the process. As detailed in the reaction scheme

in Fig. 1.4A, the chain-carrying peroxyl radicals are typically formed through the

reaction of highly reactive carbon-centred radicals with molecular oxygen or through

degenerate chain-branching (reactions III and IV in Fig. 1.4A). Though it can be slow,

the degenerate chain branching step presents interesting non-linear dynamics. If its

rate approaches the rate of termination, this can result in a strong increase in radical

concentrations, which is often vividly referred to as ”chain ignition” (Emanuel and

Gagarina, 1966). Kipriyanov et al. (Kipriyanov Jr., Doktorov and Purtov, 2015) have

suggested that small alterations made to the radical recombination efficiency could

induce bifurcation transitions between bi-stable steady states. As a consequence, a

small effect putatively exerted by magnetic fields on the chain branching reaction

has the potential to induce huge (i.e. three orders of magnitude) changes in radical

concentrations. It has been argued that the RPM cannot predict MFEs on the

symmetric recombination of peroxyl radicals, because ∆g = 0 and no hyperfine

interactions could be expected, as the spin density of peroxyl radicals centres on the

terminal oxygen, for which all magnetic isotopes have insignificant natural abundance

(for 17O, I = 5/2, but its abundance is only 0.037%). Consequently, previous studies

have associated magnetosensitivity with reactions other than the recombination

of such peroxyl radicals (Lalo, Pankratov and Mykhaylyk, 1994; Kipriyanov Jr.,

Doktorov and Purtov, 2015; Pliss et al., 2017). The same ideas appear to be

implicated in the oxidation of hydrocarbons by molecular oxygen (Pliss et al., 2017).

In Chapter 4 is presented a theoretical study of the RPM and the D3M in the context

of lipid autoxidaton and, for reasons that will become more apparent therein, a focus

on the recombination of the main chain carriers, the lipid peroxyl radicals, is taken.

Many experimental studies have demonstrated that lipid peroxidation reactions

are magnetosensitive, and a correlation between the MFE and levels of oxidative
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Figure 1.4: A: Key reaction steps in lipid peroxidation: initiation (I and II), propagation
(III), degenerate-chain branching (IV) and termination (V-VII). The different Ps stand
for diamagnetic termination products. R represents a lipid backbone. B: The radical pair
mechanism (orange section) specifically linked to lipid peroxidation in this example. The
dashed arrows indicate the action of the electron-electron dipolar interaction with a third
radical, which may induce MFEs via the D3M. kdiff indicates the diffusive encounter rate
constant. For random encounters of radicals, the ratio of triplet to singlet encounter is 3:1.

stress has been determined to exist (Okano, 2008; Ghodbane et al., 2013a; Pratt,

Tallman and Porter, 2011; Lukzen et al., 2020; Mattsson and Simkó, 2014). The

body of evidence includes the level of lipid peroxidation in rats’ blood (Ciejka and

Goraca, 2008), brains (Ciejka et al., 2011), and lymphocytes (Zmyslony et al., 2004;

Jajte et al., 2002), as well as guinea pigs (Coşkun et al., 2008), mouse brains (Lee

et al., 2004; Kabuto et al., 2001), and in radish seeds (Novitskii et al., 2015). Some

in vitro studies have been conducted on simpler model systems, yet the mechanistic

details behind the results have remained elusive. Landoulsi et al. (Hanini et al.,

2017) have used bacterial strain P. aeruginosa and mutants thereof, and found that

the level of lipid peroxidation increased when the bacteria were exposed to a 200 mT
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static magnetic field. Ding et al. (Ding et al., 2004) found that exposing HL-60 cells

to a combination of H2O2 and a weak (5 mT) magnetic field promotes cell death.

Furthermore, it has been shown that by applying a steady magnetic field of 8 mT to

liposomes from 1,2-dioleoylphosphatidylcholine, the rate of lipid peroxidation can be

increased (Lalo, Pankratov and Mykhaylyk, 1994). Kabuto et al. (Kabuto et al.,

2001) showed that, for field strengths between 2 and 4 mT, static magnetic fields had

an inhibitory effect on iron-induced lipid peroxidation, however, the autoxidation of

linoleic acid was increased in a high field of 9.4 T (Inotani, Fukuyoshi and Kusumi,

2001). These fields are evidently stronger than most of the weak background fields

of everyday surroundings. However, even background fields can cause an increase in

oxidative stress (Kıvrak et al., 2017).

1.1.3 Other Biological MFEs

While lipid peroxidation and avian magnetoreception are the two major biological

applications that the publications stemming from the research detailed herein make

reference to, they are by no means the only situations in which MFEs manifest in

biological systems. Indeed, significant research has been undertaken on the presence

of radicals and radicals generations in adenosylcobalamin enzymes (Jones et al., 2007;

Jones et al., 2011a; Chagovetz and Grissom, 1993), and MFEs have been detected in

photo-induced radical pairs generated from adenosylcobalamin reactions (Messiha

et al., 2015; Jones, Woodward and Scrutton, 2009). These enzymes serve as a general

model for how enzymes produce, and regulate, free radicals in vivo and their control

thereof is considered one of the underpinning factors contributing to their catalytic

efficiency of ’unusual’ reconstruction and elimination reactions. See Ref. (Marsh and

Meléndez, 2012) for a review.

While some doubt has been cast on exactly how relevant the RPM might

be to redox enzyme reactions, it would be interesting to know whether the DnM

mechanism, proposed herein to move beyond the conventional RPM model of radical-

pair magnetosensitivity, could provide a theoretical backing to experimental data that

seem to be highly dependent on experimental conditions. The many-radical effects
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considered in the work leading up to the DnM mechanism behave quite distinctly

from a traditional RPM-style reaction, showing the RPM to be a very special case,

albeit a useful one, rather than an exhaustive paradigm to describe magnetic effects

in biological systems.

It is also worth noting that the effects of weak magnetic fields upon reactions

involving organic molecules is primarily the focus of the research presented herein, so

effects that require the presence of high field (e.g. the ∆g mechanism (Karogodina

et al., 2011b; Hughes et al., 2019)), while certainly interesting, are not discussed

here in detail.

1.1.4 Physical origins of Magnetic Field Effects

Broadly speaking, there are three distinct regimes where magnetic field effects may

manifest. These are low-field (comparable to the geomagnetic field of approximately

50 µT), moderate field ( 1−10mT) and high field (fields in excess of 100mT) Hayashi

and Sakaguchi, 2005. Distinction should be drawn between these regions, because

the physical basis of the MFEs observed therein differs.

The low-field effect can be attributed to symmetry-breaking transitions between

the S and T0 states (i.e. where the application of a weak field lifts the degeneracies

between zero-field eigenstates and increases the number of pathways for singlet-triplet

inter-conversion) Lewis et al., 2018b.

Moderate field effects typically occur in radicals pairs due to the hyperfine

coupling mechanism, i.e. hyperfine driven singlet-triplet conversion whereby the

intereconversion efficiency is modulated by the magnetic field through impacting on

energy level spacings.

In the high-field regime, MFEs arise because the strength of the field serves to

energetically decouple the T+ and T− states, reducing the number of pathways by

which singlet-triplet inter-conversion can take place (i.e. only S−T0 inter-conversion

happens appreciably) Jones et al., 2007; Hayashi and Sakaguchi, 2005.

The magnetic field effects on the spin conversion are revealed through the

different chemical fates of singlet and triplet states of the radical pair. This is true
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for both singlet- and triplet-born radicals pairs, though in slightly different ways.

For triplet-born pairs, however, spin-selectivity is typically provided by spin-selective

recombination via the singlet state, leaving the remaining radical pairs in the triplet

state Timmel et al., 1998. It should also be noted that, while singlet-born radical

pairs form the primary focus of the work detailed herein, triplet-born pairs are not

an esoteric special case - they are just as common as singlet-born pairs, but primarily

observed in different contexts to those presented herein. For example, random radical

encounters in solution are a prime example giving rise to triplet-born-like behaviour,

when the singlet recombination quickly depopulates the singlet encounter pairs.

1.1.5 Beyond the conventional Radical Pair Mechanism

In this subsection, some results of the work detailed in this thesis shall be briefly

highlighted.

Remarkable magnetosensitive phenomena can emerge from systems comprising

three radicals instead of the conventionally considered radical pair. If the dominant

interaction among the radicals is their exchange coupling, this brings one to the field

of spin catalysis, which has been reviewed in (Buchachenko and Berdinsky, 2002). If,

on the other hand, the function of the third radical is predominantly to scavenge one

of the radicals of the original pair in a spin-selective side reaction, the “chemical Zeno

effect” becomes observable, which has recently been hypothesised to enhance the

sensitivity of the avian magnetic compass (Kattnig and Hore, 2017b; Kattnig, 2017a;

Letuta and Berdinskii, 2015). As the scavenging reaction immunises the dynamics to

one of the radicals being quickly-relaxing, this scavenging mechanism provides more

realistic prospects for MFEs from systems involving swiftly relaxing species, such as

superoxide, which, in radical pair reactions, preclude magnetosensitivity in the regime

of moderate intensities (i.e. the mT-range) (Hogben et al., 2009; Karogodina et al.,

2011a; Kattnig, 2017a). In Chapter 3, it is shown that for systems of three or more

radicals, MFEs can also result from the mutual electron-electron dipolar coupling

alone (Keens, Bedkihal and Kattnig, 2018). This is noteworthy as this process could,

thus, elicit MFEs in the absence of hyperfine interactions and differences in radical
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g-factors, which are the corner stones of the dyadic RPM. Furthermore, the MFE

can persist in this new formalism for fields comparable to the geomagnetic field. This

mechanism is termed D3M.

A recently-proposed modification to the RPM is that introducing a third

reactant could provide the amplification required to give sensitivity predictions closer

to the experimentally observed values (Kattnig and Hore, 2017a). In contrast to the

two-electron spin systems of the conventional RPM, larger systems have attracted

comparably little attention. To the authors’ knowledge, three-spin systems have only

been discussed in the biological context at time of writing in (Salikhov, Golbeck and

Stehlik, 2007; Kattnig, 2017b; Kattnig and Hore, 2017c). All models mentioned in

this context have disregarded the effects of electron-electron dipolar interactions.

Further afield, systems of three electron spins have been discussed in the contexts of

spin catalysis (Buchachenko and Berdinsky, 1996), the chemical Zeno effect (Letuta

and Berdinskii, 2015; Kattnig, 2017b), quantum teleportation (Salikhov, Golbeck

and Stehlik, 2007), and as a decoherence pathway (Borovkov et al., 2013). In spin

catalysis, the exchange coupling of the radical pair with the spin catalyst is the main

effectual interaction. As the Zeeman part of the Hamiltonian commutes with the

exchange Hamiltonian, it cannot produce MFEs by itself. However, the exchange

interaction can allow for near level-crossings at certain magnetic field intensities,

such that hyperfine-driven spin conversion can proceed efficiently (Magin et al., 2004;

Magin et al., 2005), and may also transmit the effect of a quickly-relaxing third

radical (Hore et al., 1988). Spin coherence transfer in the three-radical system has

been recently realized experimentally (Rugg et al., 2019), so three-spin systems are

certainly worth exploring in more detail.

A schematic of the reaction pathways envisioned from the addition of a third

radical into the RPM framework is shown in the lower half of Fig. 1.5; the upper

half is the original mechanism, by way of contrast. From this, one can see that the

presence of the scavenger opens a new spin-selective channel along which the radical

interactions may progress. This new addition to the system, termed a ’scavenger’,

seems to work in a similar way to the spin catalysis discussed by Berdinskii, (Letuta
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Figure 1.5: Cryptochrome reaction schemes for magnetoreception. (a) The photocycle that
accounts for the magnetic field effect on AtCry1. (b) The same reaction scheme augmented
by a spin-selective reaction of the flavin radical with a scavenger, C•. Abbreviations used
for different states of the protein are: RP, radical pair state; G, ground state; S, signalling
state; X, scavenging product state. Abbreviations used for reaction partners: F, flavin
adenine dinucleotide; WH, terminal residue of the tryptophan triad/tetrad. Superscript
dots indicate radicals. Superscript numbers are spin multiplicities. FH• and W • are
(de)protonated forms of the initially formed radicals, F •− and WH•+. The dashed arrows
indicate processes that regenerate G, typically on a slow timescale, but which are not
essential for the function of the sensor. The photo-excited singlet state of the FAD is not
shown. Image and caption adapted from reference (Kattnig and Hore, 2017a).

and Berdinskii, 2015), but in the presence of anisotropic hyperfine interactions. The

spin-selective reaction of a radical pair with a third scavenger has been shown to boost

anisotropic magnetic field effects (Kattnig and Hore, 2017c) and provide resilience to

spin relaxation in one of the radicals of the triad (Kattnig, 2017b), thereby providing

decisive advantages over the conventional RPM model of magnetoreception.

The exploration of systems with more than two reactive radicals forms a

significant part of the present work, as the realisation that the RPM is in fact a very

special case, as opposed to the general case, lead the author and group members

to re-examine of some fundamental assumptions of the RPM and to propose a new

model, called D3M, that moves beyond the conventional RPM and is detailed fully in
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chapter 3. A resulting insight of the research undertaken is that D3M could underpin

the putative magnetosensitivity of lipid autoxidation, i.e. the oxidative degradation

of lipids, which is covered in chapter 4 (Keens, Bedkihal and Kattnig, 2018). Another

major point of note from this work is that it is shown that the hyperfine interaction

is not categorically required for the observation of MFEs in biological systems

comprising more than two radicals, unlike for the conventional RPM, showing that

the conventional RPM is indeed a very special case. The core distinct ingredient of

D3M is the electron-electron dipolar interaction. This interaction is often neglected

when addressing MFEs within the RPM framework. It is worth noting that the

dipolar interaction is averaged to zero in freely diffusing systems, as is hyperfine

coupling anisotropy, by rapid molecular tumbling (Cintolesi et al., 2003; Lewis,

Manolopoulos and Hore, 2014; Rodgers and Hore, 2009). However, other preliminary

explorations have been conducted and found that electron-electron dipolar coupling

is expected to resemble the exchange coupling, which, as the dominant interaction

in close proximity, suppresses S-T inter-conversion by lifting the near-degeneracy of

triplet and singlet states, reducing their susceptibility to mixing by weak hyperfine

interactions (Zarea et al., 2014), and quenching the LFE (O’Dea et al., 2005).

Efimova et al. proposed that the dipolar interaction could be partly compensated by

the exchange interaction, thereby allowing high sensitivity to the geomagnetic field

despite sizeable electron-electron dipolar coupling interactions (Efimova and Hore,

2008), but this has been shown not to be applicable (Nohr et al., 2017).

Following on from this notion of the dipolar interaction’s importance in radical

reactions for more than two spins, one may ask why this is not so in the special case

of the conventional RPM; the answer: symmetry. Within a radical pair, there is an

obvious permutation symmetry between the interacting radicals, and the presence of

this does not allow the dipolar interaction to take hold. In systems of more than two

spins, however, such permutation symmetries are not so obvious - and indeed are

often absent. It is this absence of symmetry that can lead to many interesting new

MFEs, as is explored in more detail in Chapter 3. Thus, permutation symmetry is

central. In addition, recent work by the author and group members suggests that the
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geometrical symmetry of the radical system can also have significant effects (Keens,

Sampson and Kattnig, 2021). A brief summary of this idea follows.

Symmetry Considerations

One aim of D3M is to relax, or outright remove, some of the stringent assumptions

inherent to the standard RPM, and to provide a new perspective on MFEs in

quantum biology (Keens, Bedkihal and Kattnig, 2018). In order to fully understand

why this might be so, a discussion of symmetry is required.

In many respects, symmetry appears to be fundamental to important processes

in nature. For example, in organisms and structures where maximum macroscopic

efficiency or aesthetic appeal is required, perfectly regular geometry is advantageous.

Symmetry is also central to many branches of mathematics and theoretical physics,

because the discovery (or imposition) of certain symmetries upon a system under

consideration can serve to dramatically reduce the complexity of the required math-

ematical analysis. Thus, symmetry is often the first tool employed when tackling

problems of significant mathematical difficulty, and indeed many such problems

are considered only in special, high-symmetry, configurations due to the analytical

and computational intractability of the general case. This also applies to the spin

dynamics of systems of radicals, which until recently have required a high level of

abstraction and/or symmetry to be tractable (Timmel et al., 1998; Gauger et al.,

2011). Technological advances, such as the creation of more powerful hardware, are

one way in which previously intractable problems can become soluble without the

need for extra assumptions of impositions. Another is the introduction of more

efficient computational methods, such as the MCWF method detailed in Chapter 7,

which does not require external symmetry impositions upon the system.

Though symmetry itself can be a powerful tool, the breaking of symmetry can produce

new and often interesting results. Spontaneous symmetry-breaking is a widely known

phenomenon, fundamental to the Ginzburg-Landau theory of phase transitions,

systems described by the so-called ‘Mexican Hat’ potential, semiconductor quantum

device proposals and indeed present even in some everyday situations (Shaver et al.,
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2007; Rosenstein and Li, 2010; Frost, Pienta and Coffey, 2018).

The above examples shows how technological applications, e.g. in sensing,

can be revolutionised by deliberately breaking symmetries, and the work reported

here suggests that Nature might have done the same for magnetic sensing as it e.g.

pertains to avian magnetoreception (Maeda et al., 2012; Tiersch and Briegel, 2012)

and more generally to spin chemistry (Kattnig, Solov’yov and Hore, 2016; Kattnig,

2017b). In particular, it is argued that a natural symmetry absence may go some

way to explaining the remarkable sensitivity of these systems to weak magnetic fields,

and also how such a truly quantum effect can still be reliably persistent in the ‘hot,

noisy environment’ that is a biological system.

Natural symmetry absence is not a special-case phenomenon. Rather, it is

present in a broad spectrum of fields, from condensed matter physics to medicine

and to the author’s knowledge has never before been studied in this context nor

in explicit and focused detail. A fundamental example of this phenomenon from

both medical biochemistry and anatomy and physiology is that of chirality. This

is essentially the natural absence of a reflection symmetry between two otherwise

atomically identical structures - an intuitive example of a chiral structure is the

human hand. Chirality appears in medical biochemistry because different optical

isomers of the same compound are known to have different pharmacological profiles

(Chhabra, Aseri and Padmanabhan, 2013; Krasulova et al., 2016). More recently,

chirality has been making waves in spin chemistry circles, with the introduction of

the CISS effect (Naaman and Waldeck, 2015), which comes from essentially the same

premise: symmetry (or the lack thereof) is something that is chemically paramount

and its inclusion in theoretical treatment can produce fascinating results.

As such, being able to take advantage of the geometric distinctions between

compounds could allow for the design of organic molecular filters to increase the

potency of drugs that are currently delivered in racemic mixtures (McConathy

and Owens, 2003; Nguyen, He and Pham-Huy, 2006). Experimental procedures to

iteratively test the geometry of a solution already exist and are in wide use, so this

theory could be quickly and readily tested experimentally. The circular dichroism
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technique is one such example, found in both biological and technological applications

(Kelly, Jess and Price, 2005; Wei et al., 2016).

The author and group members have recently shown that natural symmetry

absence can be observed in dipolarly coupled three-spin systems (discussed in chapter

3). The missing symmetry here is a permutation symmetry of two electron spins

poised to recombine to form a diamagnetic state (Keens, Bedkihal and Kattnig, 2018).

In the conventional Radical Pair Mechanism, this symmetry is broken by hyperfine

interactions with magnetic nuclei. Going beyond this well-established mechanism, it

was shown that this symmetry is also naturally broken by the dipolar interaction

in systems of more than two radicals, and that remarkable MFEs result from this

symmetry absence. As such, given that the absence or breaking of symmetries

can produce new and amplified magnetic effects in radical systems, it would be

interesting to see whether the RPM or DnM model could be combined with the

symmetry-breaking inherent to the CISS effect to yield even larger results.

Metastability has also been recently demonstrated biologically, and the metasta-

bility of microbiology can be understood intuitively from one of the oldest biological

and medical precedents: homeostasis. Biological systems have a range of optimality

within which they can function, for example the size and shape of a protein’s active

site, the concentrations of respective ions across cell membranes, or even the core

temperature of the human body. Should this optimality be impinged upon by some

external interference, the system adapts its internal processes in order to restore ideal

function under the newly imposed set of external conditions. However, the trouble

with anything that is metastable is that it, by definition, can only handle small

perturbations to its optimal conditions (Baldwin et al., 2011). Beyond a certain

level, which is system-specific, no sustainable alteration of internal processes can

restore the homeostatic balance quickly enough and so the system starts to fail. Some

human examples of this are: Alzheimers’ disease, diabetic ketoacidosis and cancer

(Baldwin et al., 2011; Córdova-Palomera et al., 2017). These are macroscopic diseases,

with microscopic origin. The aim of any therapeutic intervention is to provide an

external stimulus that aids the immune response to restore the homeostatic balance
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and combat the disease before irreparable damage is done. Medicine continues to

advance, but the advent of quantum biology hints at a completely new form of

non-invasive treatment which one may describe as ’magnetoceuticals’. Given the

effect of weak magnetic fields upon lipid peroxidation reactions, reactions which

themselves, when the homeostatic balance is broken, have been implicated in several

human diseases, one may begin to wonder how this could be amplified to produce a

potent therapeutic effect (Barnes and Greenebaum, 2018; Kabuto et al., 2001; Lalo,

Pankratov and Mykhaylyk, 1994; Ghodbane et al., 2013b; Juutilainen et al., 2018b).

It has been long said that noise and imperfections dampen, and render insignificant,

the quantum biological effects of magnetism. Therapeutically, this would render any

derived treatment no better than placebo. Finding a way to amplify these quantum

effects is the first step toward realizing this new branch of medicine. This is where

symmetry comes to the fore. Or rather, this is where broken symmetries, and indeed

noise in the system, play their role.

It is herein proposed (Chapters 5 and 6), with calculations based on the recently

suggested DnM model, that broken symmetries allow weak magnetic fields to have

far more significant biological effects than have been previously postulated (Keens,

Bedkihal and Kattnig, 2018). It is shown that biologically pertinent spin-systems

can display MFEs which are stronger in cases where a geometric symmetry has been

broken. The model also predicts that noise in the system can enhance biological

MFEs, and offers results that are consistent with some recent experimental studies

on the effects of noise in photosynthetic transport chains. It is shown that noise is

not always detrimental to quantum effects in biological systems, contrary to popular

belief, and also the distortion-dephasing effect shows not only this, but that combined

with the relaxation of geometric symmetry one can observe effects that are amplified.

This is especially remarkable, because the noise source that achieves this is singlet-

triplet dephasing - one of the central concerns people have regarding the efficacy

of the RPM for use in biology, and indeed for the whole idea of quantum biology

in itself. Remarkably, this combined distortion-dephasing consideration shows a

further enhancement to the MFEs over either taken individually. It is encouraging
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that the type of noise which leads to the most pronounced display of this effect is

singlet-triplet dephasing, because this is one of the most biologically and physically

relevant types of noise that can influence radical dynamics. It is hoped that this

work will inspire new theoretical approaches into the relaxation of symmetries in

new and established models. It is further hoped that these results will provide

proof-of-principle to inspire significant new experimental and clinical research into

the widespread effects of weak magnetic fields in vivo.

1.2 Outline of the Thesis

In Chapter 2, fundamental concepts from spin chemistry, quantum mechanics, and

the underpinning equations of radical pair dynamics are introduced. These are

contextualised via their use in the Radical Pair Mechanism (RPM) and the currently

available treatments of the systems described in this chapter. The RPM is discussed

in detail, and the main metric used to measure the magnetosensitivity of a biological

or chemical system in this formalism, the magnetic field effect, is then defined. The

chapter concludes with a discussion of how magnetic field effects can be measured

experimentally, providing the motivation for the theoretical treatment of radical pair

dynamics.

Chapter 3 begins with a discussion of the limitations of the RPM introduced

in Chapter 2. Then, moving beyond this model, the D3M model is introduced and it

is used to show that some of the basic assumptions of the conventional RPM do not

hold for systems of three or more radicals, i.e. interesting new pathways to magnetic

field effects appear possible beyond the notions of the RPM. Results obtained using

the D3M mechanism are presented, and it is shown that in many circumstances

the dipolar and exchange terms are far more important to radical dynamics than

anyone had previously given them credit for. A crucial result of this chapter is the

breaking of one of the axioms of the conventional RPM: that hyperfine interactions,

or differences in g-factors, are categorically required to see biological magnetic field

effects; they are not. This work has been published in PRL (Keens, Bedkihal and

Kattnig, 2018).
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Chapter 4 uses the proposed D3M model to model the reaction dynamics of

lipid autoxidation, and it is found that the model predicts both known results and

the new result that radical recombination depends on radical concentration; this fact

is only apparent once one considers the dipolar interaction within the Hamiltonian,

and so is not predicted by the conventional RPM. Further, it is shown that the

inclusion of the hyperfine interaction within the D3M model (noting that in chapter

three the model was defined in the absence of hyperfine terms) does not lead to

the abolition of effects predicted by D3M and so strengthens D3M as a more viable

model for biological MFEs. This work has been published in PCCP (Sampson, Keens

and Kattnig, 2019).

Chapter 5 introduces a generalisation of the D3M model to DnM, where

n ≥ 3, and considers the effects of spin-system geometry on radical dynamics. The

motivation for this idea was that symmetry is usually imposed upon systems under

theoretical treatments in order to simplify the mathematics, but that in biological

contexts the dynamic form of the protein (or equivalent source of radicals) may have

some bearing on the nature of the MFEs observable. Interestingly, it turns out that

this is true and that distorting the geometry of the system slightly can give rise to

markedly increased MFEs. This was explored for both linear and planar geometries

of up to six spins, in the presence of all terms of the DnM Hamiltonian. This work

has been published in JCP (Keens, Sampson and Kattnig, 2021).

Chapter 6 takes a similar approach to its preceding chapter, but with the further

realisation of the system with the introduction of noise (singlet-triplet dephasing as

the physically relevant test case, and also uncorrelated noise on one spin, then all

spins, for control purposes). This was done for both distorted and perfectly regular

geometries, with the surprising result that geometric distortion and singlet-triplet

dephasing taken together produce an overall enhancement to the MFEs available for

exploitation. This distortion-dephasing effect could challenge the paradigm that the

noise inherent to biological systems is always detrimental to quantum effects, and

this work is currently in preparation for publication.

Chapter 7 introduces a computational method to make the simulations required
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to computationally explore the theoretical systems outlined in previous chapters more

tractable. The method is an extension of the Monte-Carlo Wavefunction approach

to include non-Lindbladian dynamics of the type encountered within the Haberkorn

approach to radical recombination dynamics. This work has been published in New

J. Phys (Keens and Kattnig, 2020).

Finally, Chapter 8 offers an executive summary and overview of the work

presented by way of a conclusion to the thesis.
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2. Theory

Radicals are, often highly reactive, chemical species with an unpaired electron and

are integral to many biological processes (Halliwell and Gutteridge, 2015). The

Radical pair Mechanism (RPM) is a canonical model for the magnetosensitivity of

chemical reaction processes involving such species. For a review of how radical pair

reactions can be affected by magnetic fields, see (Steiner and Ulrich, 1989; Woodward,

2002; Rodgers, 2009). In weak fields, the key ingredient of this model is the hyperfine

interaction that induces a coherent mixing of singlet and triplet electron spin states

in pairs of radicals, thereby facilitating magnetic field effects (MFEs) on reaction

yields through spin-selective reaction channels.

The RPM involves the formation of a radical pair, which can be geminate, i.e.

formed in an elementary reaction from (typically) diamagnetic precursors, or as a so-

called F-pair, i.e. resulting from a random encounter of radicals (Hore and Mouritsen,

2016; Rodgers and Hore, 2009; Steiner and Ulrich, 1989; Hayashi, 2004a; Steiner,

1984; Timmel et al., 1998; Lewis et al., 2018a; Brocklehurst, 2002; Rodgers and

Hore, 2009). Once formed, these radical pairs are generally short-lived, but exhibit

reactivity that is controlled by spin dynamics. They can coherently inter-convert

between the electronic singlet and triplet states under the influence of magnetic

interactions and inter-radical interactions such as the exchange coupling. Specifically,

the mixing of the electron spin states can be instantiated from a difference in the

Zeeman precession frequency (∆g mechanism) or the interaction with intra-radical

magnetic nuclei (hyperfine mechanism). This proceeds most efficiently if the singlet

and triplet energy levels become quasi degenerate, e.g. for distances at which the

exchange coupling has decayed. As an external magnetic field can impact the relative

energy of the energy levels or, in the case of the ∆g mechanism, impact directly upon
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the mixing term, the population of the spin states and their coherent inter-conversion

becomes magnetosensitive. Due to spin-selective recombination reactions, these

MFEs on spin dynamics can eventually be reflected in product/recombination yields.

More details are found in (Hore and Mouritsen, 2016; Rodgers and Hore, 2009;

Steiner and Ulrich, 1989; Hayashi, 2004a; Steiner, 1984; Timmel et al., 1998; Lewis

et al., 2018a; Brocklehurst, 2002; Rodgers and Hore, 2009).

In this section, some fundamental theoretical concepts underpinning this model,

and all of the coming chapters, will be presented. More specialised derivations will

be presented as necessary within the pertinent chapters, as they are more valuable

in context.

Specifically, this chapter will outline existing interpretations and implementa-

tions of this model, giving a general overview of the idea followed by a more detailed

exposition of the constituent parts and the fundamental concepts from spin chemistry

that underpin the idea. In this exposition, the distinct parts of the RPM Hamiltonian

will be introduced, as well as the Haberkorn approach to modelling recombination,

culminating in the master equation used to describe radical-pair spin dynamics. The

solution of this equation will be discussed, and outlook provided for moving beyond

the currently accepted models. This provides the motivation for chapter 3, where the

new D3M model is introduced to provide a new perspective on biologically relevant

spin systems.

2.1 Theoretical Approaches

The Hamiltonians used to treat the magnetoreceptive systems described in chapter 1

vary among different groups, but it is generally agreed that the hyperfine interaction

is essential if one works within the current formalism of the radical-pair mechanism, as

it drives the singlet-triplet inter-conversion required to observe a magnetic field effect

in weak fields. In the recently suggested three-radical models, such inter-conversion

can also be induced by the Chemical Zeno effect; within this effect, the third radical

is referred to as a spin catalyst (Letuta and Berdinskii, 2015), or scavenger (Kattnig

and Hore, 2017b). Hyperfine couplings are still required to elicit a magnetic field
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dependence in the reaction yield, however. The electron Zeeman interaction is

generally included, though in the geomagnetic field it is typically weaker than the

hyperfine interaction terms by an order of magnitude or more. The nuclear Zeeman

interaction is generally neglected by order-of-magnitude arguments (Schulten, 1982).

The exchange and dipolar interactions are also often removed from calculations

by imposing that the radicals are ’far enough apart’ that they are insignificant in

magnitude, or that the radicals are freely tumbling in solution which averages the

dipolar interaction to zero. For protein-bound radicals, radical separations of less

than 2.0 nm are typically assumed, suggesting that this assumption is violated for at

least the electron-electron dipolar coupling (Kattnig and Hore, 2017a; Efimova and

Hore, 2008). One suggested justification for the removal of both of these terms is

that there may exist conditions under which the exchange and dipolar interactions

cancel each other, at least partially (Efimova and Hore, 2008). However this has been

shown recently not to be applicable, at least for DmCry (Nohr et al., 2017; Babcock

and Kattnig, 2020). Furthermore, radicals may not be separated indefinitely. A

spin-selective reaction is required for this mechanism, meaning that the radicals must

be close enough to actually react; edge-to-edge distances of about 1.5nm are typical

for cryptochrome-bound magnetosenstive radical pairs (Kattnig and Hore, 2017a).

A general Hamiltonian for a radical-pair system is:

Ĥ =
∑
i=1,2

Ni∑
ji

Ŝi · Aji · Îji − γe
∑
i=1,2

B · Ŝi − Ŝ1 · D12 · Ŝ2 − J1,2

(
1

2
+ 2Ŝ1 · Ŝ2

)
(2.1)

where Ŝi are the spin angular momentum vector operators for each electron in the

radical pair, A is a hyperfine coupling tensor and the sum over the subscript ji

accounts for the Ni nuclei that have appreciable hyperfine interactions. γe is the

gyromagnetic ratio and B is the applied magnetic field. Dij and Jij are the dipolar

coupling tensor and the exchange interaction of electron spin i and j, respectively.

Thus, in order of appearance, this Hamiltonian shows the contributions of the

hyperfine, Zeeman, dipolar and exchange interactions.
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To actually measure these quantities experimentally, the most common tech-

nique in use is EPR (electron paramagnetic resonance) spectroscopy, detailed com-

prehensively in (Orton, 1969; Drago, 1992), for example. This method allows one to

measure the splittings induced by magnetic interactions in radicals by measuring the

absorption of microwave radiation of the samples polarized in an external magnetic

field, i.e. by detecting shifts in the transitions of the spin states split by the Zeeman

effect.

When considering the evolution of the system dynamics in time, however, it

becomes necessary to think in terms of density operators and model this evolution

with a master equation. The most common choice is of the form given below.

It combines an expression for the spin-selective recombination due to Haberkorn

(Haberkorn, 1976) with a Lindblad form to account for decoherence effects.

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+
∑
j

γj

[
L̂j ρ̂L̂

†
j −

1

2

{
L̂†jL̂j, ρ̂

}]
− 1

2
kb

[
P̂S, ρ̂

]
− kf ρ̂ (2.2)

where Ĥ is the Hamiltonian, ρ̂ is the spin density operator, γj is the decoherence rate

(defined in integral form in reference (Brasil, Fanchini and Napolitano, 2013)) and the

Lj operators are Lindblad operators; these are a combination of spin operators for

the system, and act to include decoherence. kf and kb are the forward and backward

reaction rate constants as introduced by reference (Haberkorn, 1976). An instructive

derivation of Eq. (2.2) is given by reference (Brasil, Fanchini and Napolitano, 2013).

The Haberkorn form underpins the so-called ’standard approach’ to modelling

radical-pair dynamics, and has garnered much support from the community, but other

approaches do exist. A recent example is the Jones-Hore reaction model (Jones and

Hore, 2010a). This is not vastly dissimilar to the standard Haberkorn approach, but

introduces an extra factor of two into the reaction-induced singlet-triplet dephasing

rate. In essence they have introduced more noise into the system, as other noise

sources are expected to exist in biological environments that exert a similar effect to

those already accounted for. Members of the same group have said, however, that

they do not reject the standard Haberkorn approach and that it should continue to
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be used until a discrepancy is experimentally observed (Maeda et al., 2013).

One major shortcoming of all hitherto proposed models is an inability to predict

the level of sensitivity that the in vivo avian compass demonstrates. Simulations

performed to date (Evans et al., 2016; Kattnig and Hore, 2017a) have shown that

many symmetry-unrelated hyperfine interactions, as well as inter-radical interactions,

tend to reduce the magnitude of the magnetic field effect. From the practical point

of view, this suggests that the least realistic models (i.e. the ones that leave out the

most interactions) would actually give predictions closest in magnitude to what is

required to give sensitive compass navigation (Hiscock et al., 2019) and that the

extra analytical and computational effort required to solve the more complicated

problem of a realistic Hamiltonian may in fact be somewhat wasted within this

formalism as it stands, or at least not supporting of the premise.

Assuming that the mechanism is not wholly incorrect, while acknowledging

that this is of course a possibility, a potential source of the shortcomings is the use

of a faulty assumption. Many assumptions are made when modelling spin-systems of

the kind encountered in the radical-pair mechanism, sometimes without much real

physical justification but for the purpose of simplifying the mathematical task from

computationally nigh-impossible to merely daunting.

A common assumption used is, as briefly mentioned above, that the reacting

radicals are ’far enough apart’ for the duration of their time interacting coherently

(the coherence lifetime) that the exchange and dipolar terms in the spin Hamiltonian

can be safely ignored. This is often coupled with the assumption that the system is

static, hence this separation is maintained (Lambert et al., 2013). These conditions

could be difficult to realise in the ’wet, noisy’ environment that is a biological

system but, even if the protein backbone were to well-confine the radicals in space,

fluctuations of dihedral angles and libration motions will induce spin relaxation

(Hayashi and Nagakura, 1984; Kattnig, Solov’yov and Hore, 2016) which will, in

most cases, deteriorate the observed magnetosensitivity.

The coherence lifetime of the radical pair is usually assumed to be of the

order of microseconds (Cai, Guerreschi and Briegel, 2010; Rodgers and Hore, 2009),
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while for freely-diffusing radicals relaxation times in the range 100-500 ns are often

postulated (Jones and Hore, 2010a; Evans et al., 2016). Coherence lifetimes of the

order of 1 µs are necessary to give the external magnetic field enough time to have a

significant effect on the spins. The relaxation issue still needs to be overcome, but

progress is being made (Kattnig, 2017b).

Anomalous coherence lifetimes, closer to the order of milliseconds, have been

proposed as an attempt to fit the experimental data with the current model (Gauger

et al., 2011; Liedvogel et al., 2007a) and many have speculated as to effects that

may cause the coherence of the system to persist for so long. Such ideas include

interactions between the radical pair’s electron spins and an effective spin bath (the

other moieties of the molecules involved) (Lambert et al., 2013) and the application

of pulses over a static magnetic field to try and mimic an oscillating field (Cai,

Guerreschi and Briegel, 2010). It remains to be seen whether or not this assumed

value range is attainable in reality.

Many assume that the singlet and triplet states of the radical pair decay into

their respective products at the same rate, k rather than distinct rates (cf. Fig.

1.1) Hiscock et al., 2017; Cai, Caruso and Plenio, 2012; Lewis et al., 2018b. While

this significantly simplifies the mathematics of the calculations, and is certainly

convenient, the author can see no general physical basis for this assumption.

Canfield has attempted to apply perturbation theory to this problem (Canfield

et al., 1994; Canfield et al., 1995), but for larger spin systems with more realistic

interactions this approach may be computationally prohibitive to evaluate. Density

functional theory has been employed to provide numerical values for parameters

such as the hyperfine coupling constant (Cintolesi et al., 2003; Efimova and Hore,

2008; Solov’yov, Chandler and Schulten, 2008). The most common package used is

Gaussian, with some iteration of the B3LYP functional, though many others exist.

Variation exists in the values of hyperfine constant acquired, and the neglect of the

protein environment in such calculations may be the primary cause. This is discussed

in detail in a recent paper by Ritz and coworkers (Procopio and Ritz, 2016).
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2.2 Fundamental concepts underpinning quantum

radical dynamics

2.2.1 Spin

Spin is a fundamental property of particles, characterised by an intrinsic angular

momentum, and is a truly quantum property - that is, it has no precise analogue

in classical mechanics. It is for this reason that spin chemistry (and hence mag-

netosensitive radical pair effects) can said to be truly quantum in nature, at least

in a trivial sense. The electronic spin degree of freedom has the same operatorial

properties as those in the orbital angular momentum algebra, but differs in that its

associated quantum number has a fixed magnitude of 1
2
, which can be projected as

positive or negative with respect to an arbitrary axis (known as the quantisation

axis, where traditionally the z-axis is used) and was experimentally verified in the

famous Stern-Gerlach experiment.

For a system of N spins, the total spin S takes a maximal value of N
2

, and its

projection as composed from the ±1
2

from each spin, ranges from −S to S in unit

steps; there are 2S + 1 such unique values.

As radicals are defined by their unpaired electron, it is the electron spin that

will form the primary focus of radical interactions. Spin can be fully represented

by the set of operators {Ŝx, Ŝy, Ŝz}, where Ŝα, α ∈ {x, y, z} represent the individual

components of the Lie group SU(2) that is commonly written, with ~ = 1, as:

Ŝx =
1

2

0 1

1 0

 , Ŝy =
1

2

0 −i

i 0

 , Ŝz =
1

2

1 0

0 −1

 . (2.3)

Equipping this group with the Lie bracket, allows the commutation relations

between these operators to be defined:

[
Ŝx, Ŝy

]
= iŜz,

[
Ŝy, Ŝz

]
= iŜx,

[
Ŝz, Ŝx

]
= iŜy. (2.4)

The total spin operator, denoted Ŝ2, commutes with each element of the algebra
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formed from the SU(2) group and the Lie bracket, and is defined as:

Ŝ2 = Ŝx · Ŝx + Ŝy · Ŝy + Ŝz · Ŝz. (2.5)

This is useful because it allows one to construct simultaneous eigenstates of Ŝ2

and Ŝz (the latter chosen due to the convention of the quantisation axis), which can

then be used to fully describe a set of spin-S particles. Since there are 2S + 1 unique

values that m can take, there are 2S + 1 simultaneous eigenstates, which satisfy the

relations (again, with ~ set to unity for convenience):

Ŝ2 |S,±〉 = S(S + 1) |S,±〉

Ŝz |S,±〉 = ± |S,±〉 .
(2.6)

The creation and annihilation operators for quanta of S are:

Ŝ± = Ŝx ± iŜy, (2.7)

which will be convenient when evaluating expressions between the spin operators

later.

Given that the values of spin projection are ±1
2

for an electron, it is also

possible to construct composite states for the proximity of two such electron spins.

These composite states are the fundamental building block for the discussion of

magnetosensitive radical dynamics, and are the singlet and triplet states. Essentially,

these states are the combinatorial possibilities of the projections of the individual

spins and are given as:

|S〉 =
1√
2

(|+,−〉 − |−,+〉) , S = 0,M = 0

|T0〉 =
1√
2

(|+,−〉+ |−,+〉) , S = 1,M = 0

|T+〉 = |+,+〉 , S = 1,M = 1

|T−〉 |−,−〉 , S = 1,M = −1

(2.8)

where S is the total spin quantum number, M is the sum of the total individual
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projected components, and the + and − states represent the sign of the projected

spin for each individual electron in the composite state. These four individual states

are the singlet state and the three triplet states, respectively.

2.2.2 Zeeman Interaction

Electrons, by virtue of their spin, have magnetic dipole moments that can interact

with an external magnetic field. As itinerant and relativistic electrons are not the

focus of this thesis, but rather those bound in biological compounds, orbital angular

momentum (and hence spin-orbit coupling) will be neglected from the discussion of

the magnetic interactions; the notion of the ∆ − g mechanism manifesting in the

geomagnetic field shall, thus, also not be mentioned further (Uhrig, 2008). This is a

valid approximation to make in the context of the RPM, because the differences in

relativistic scalar quantities within the valence levels of interest to quantum chemistry

(i.e. concerning organic radicals in biological systems) are negligible (Visscher, 2002).

Thus the magnetic moment operator for the electron can be simply written as:

µ̂ = γeŜ, (2.9)

where γe is the gyromagnetic ratio: −µBge/~, µB is the Bohr magneton and ge is the

electron g-factor. The interaction of this operator for an arbitrary electron labelled i

and an external (applied) magnetic field ~B is:

Ĥzee,i =
µBge
~

~̂
Si · ~B. (2.10)

Nuclear spins can also interact in this way with an applied magnetic field

but, due to the inverse proportionality relation between the gyromagnetic ratio and

particle mass, the contribution to the system Hamiltonian due to a nuclear spin is

several orders of magnitude smaller than that of an electron and is thus neglected.

While the effects of weak fields are those in primary focus in the present work,

it is worth noting that very different behaviour can be observed at higher fields (i.e.

hundreds of mT and above). In particular, the Zeeman interaction can cause the T±
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states to be energetically removed from the mixing that the hyperfine interaction

can drive (Kim et al., 2021).

2.2.3 Hyperfine Interactions

While orbital angular momentum, and spin-orbit coupling, can be neglected, the

interaction between the electronic spin angular momentum and the magnetic field

induced by nuclear spin operators cannot. In the case of radical pairs in weak magnetic

fields, this is in fact the dominant contribution to the Hamiltonian. This can be

notationally inconvenient as it requires a formal representation of the nuclear spin

operators, and so to differentiate between the nuclear and electronic spin operators it

is customary in this field to introduce the symbol Î for nuclear spin operators, while

maintaining S for the electronic spin operators. Due to the unfortunate conflict of

this notation with the more standard use of I to refer to the identity operator, the

symbol 1 is used throughout this work to avoid duplication of definition. The nuclear

spin operators obey the same commutation relations as derived above, so they will

not be re-stated here.

The interaction specified above is termed the hyperfine interaction, and can be

written as:

Hhyp =

Ni∑
i,j

Ŝi ·Ai,j · Îj, (2.11)

where Ai,j is the hyperfine tensor of coupling components between a given nuclear spin

and electron spin. In situations where the point-dipole approximation breaks down,

i.e. when electrons and nuclei can no longer be considered ”sufficiently separated”,

it becomes necessary to add the Fermi contact interaction into the above equation

(Fermi, 1930). This, and spin-orbit coupling contributions, can be accommodated

within the hyperfine part of the RPM Hamiltonian but for sufficiently separated S

and I the anisotropic contribution results from the point-dipole approximation; the

isotropic part is due to the Fermi contact interaction, and spin-orbit contributions

are usually negligible for the radicals studied here.

In general this interaction is anisotropic, but for radicals in solution rapid mo-
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lecular tumbling may cause the rotational averaging of the anisotropic contributions

if the tumbling is sufficiently fast compared to the timescale of the interaction. In

this case, the hyperfine Hamiltonian reduces to:

Hhyp =
∑
j

ai,jŜi · Îj, (2.12)

where ai,j are the isotropic hyperfine coupling constants (the average of the diagonal

terms of the hyperfine tensor given above).

2.2.4 Dipolar Interactions

Within the point-dipole approximation, electron-electron magnetic interactions can be

understood by considering the interaction energies between their respective magnetic

fields if the dipoles are a distance r apart. The quantum mechanical picture of

interaction energy between two such electrons is given by the Hamiltonian:

Ĥdip =
µ0γ1γ2

4πr3

(
Ŝ1 · Ŝ2 −

3(Ŝ2 · ~r)(Ŝ1 · ~r)
r2

)
, (2.13)

where Ŝi represents an electronic spin operator as previously defined, and γi the

corresponding gyromagnetic ratio. (Carrington and McLachlan, 1967). This equation

can be more conveniently expressed by isolating the coupling tensor and writing it

in a form similar to the hyperfine Hamiltonian shown previously:

Ĥdip = Ŝ1 ·
(
µ0γ1γ2

4πr3

(
1− 3r ⊗ r

r2

))
· Ŝ2

= Ŝ1 · D̂ · Ŝ2,

(2.14)

where 1 is the identity matrix. This is the form that will be used in later chapters.

For organic molecules involved in magnetosensitive reactions, the HFCs are

typically within the range of tens of MHz (Woodward, 2002; Steiner and Ulrich,

1989). For many of the systems studied in the present work, however, the dipolar

interaction strength is greater than this (≈ 15MHz) - making this the dominant

interaction and one that thus may not be neglected by assumption.
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2.2.5 Exchange Interactions

The final part of the interaction Hamiltonian is the exchange interaction, arising from

correlations between the electron spins themselves and owing to their fermionic nature.

The strength of this interaction is conventionally represented by the parameter J

which coincides with the exchange integral (Van Vleck, 1932):

Jex =
e2

4πε0
〈ψa(r1)ψb(r2)| 1

|r1 − r2|
|ψb(r1)ψa(r2)〉 , (2.15)

where ψi represents a solution to the time-independent Schrodinger equation for the

one-electron problem. The basis states for the representation that follows correspond

to the symmetric and antisymmetric combinations of the orbitals ψi:

Ψ+ =
1√
2
ψa(r1)ψb(r2) + ψb(r1)ψa(r2)

Ψ− =
1√
2
ψa(r1)ψb(r2)− ψb(r1)ψa(r2).

(2.16)

For derivational convenience, let Ei be defined as the corresponding energy eigenvalue

of the solution ψi and E0 = E1 + E2. The degeneracy of the ground state of the

potential well for the two electron problem is lifted by the Coulomb interaction

which, if introduced according to first-order perturbation theory, yields the energies

of the now non-degenerate states from the solutions to the equations arising from

the secular determinant of (Atkins and Friedman, 2011):

E0 +K − ε Jex

Jex E0 +K − ε

 = 0 (2.17)

where ε is the energy adjusted for lifted degeneracy and K denotes the Coulomb

interaction (Weil and Bolton, 2007):

K =
e2

4πε0
〈ψa(r1)ψb(r2)| 1

|r1 − r2|
|ψa(r1)ψb(r2)〉

=
e2

4πε0
〈ψb(r1)ψa(r2)| 1

|r1 − r2|
|ψb(r1)ψa(r2)〉

(2.18)

with all terms as previously defined.
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Two solutions exist for ε, which correspond to symmetric and anti-symmetric

combinations of the spatial electron wavefunctions ψi:

ε+ = E0 +K + Jex

ε− = E0 +K − Jex.
(2.19)

Given that the total electronic (i.e. spin and spatial) wavefunction must be

anti-symmetric under permutation of spins, one can associate the previously defined

singlet state (i.e. anti-symmetric spin function) with the symmetric spatial term (ε+)

and vice-versa for the triplet state. This gives an overall energy difference between

the singlet and triplet states as:

ES − ET = 2Jex. (2.20)

Knowing this overall energy contribution, one can now write a Heisenberg-type

Hamiltonian to describe this interaction (Weil and Bolton, 2007; Van Vleck, 1932):

Ĥex = −2JŜ1 · Ŝ2. (2.21)

The form that will be used herein, however, differs from this slightly as an

extra diagonal term is added into this for convenience as prescribed by Hayashi

(Hayashi, 2004b). Thus the form that shall be considered is:

Ĥex = −J
(

2Ŝ1 · Ŝ2 +
1

2

)
. (2.22)

The addition of this extra term is valid as, because it is diagonal, it will not

affect the equations of motion by more than a systematic global shift in energy and

so will identically describe the evolution of the systems under consideration.

2.2.6 Recombination

Due to the rules regarding allowed transitions between spin states (i.e. selection

rules), radical pair recombination is a spin-selective process. This necessitates a
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non-unitary contribution to any master equation governing the dynamics, in the

form of a recombination superoperator - traditionally labelled
ˆ̂
K.

The action of
ˆ̂
K on the density matrix of the system is given by the anti-

commutator:

ˆ̂Kρ =
{
K̂, ρ

}
. (2.23)

The original formulation of this superoperator was proposed by Haberkorn (Haberkorn,

1976) and, although there have been attempts at redefining it in recent years, no

other approach has yet significantly and reliably outperformed it. Therefore, it is

the Haberkorn approach that will be followed when discussing recombination.

Recombination is considered between nearest-neighbour spins in the proposed

model, with the recombination dissipator given by:

K̂ =
∑
i,j

kS (|rij|)
2

P̂
(S)
i,j , (2.24)

where kS (|r|ij) represents the singlet recombination rate constant between radicals i

and j; exponential scaling assumed. P̂
(S)
i,j is the projection operator onto the singlet

subspace of radicals i and j, with functional form:

P̂
(S)
i,j =

1

4
1− Ŝi · Ŝj. (2.25)

The form of K̂ for a radical pair is:

K̂ =
kS
2
P̂

(S)
1,2 +

kT
2
P̂

(T )
1,2 , (2.26)

where kS,T are the reaction rate constants (often assumed equal in the literature for

mathematical convenience) for the singlet and triplet states respectively, and P̂
(S)
1,2

and P̂
(T )
1,2 are the projection operators onto the singlet and triplet subspaces of the

system. P̂
(T )
1,2 is given by:

P̂
(T )
1,2 = 1− P̂ (S)

1,2 . (2.27)
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With this information, one can now solve the Liouville - von Neumann equation

of motion:

dρ̂

dt
= −i[Â, ρ̂(t)]− kρ̂(t), (2.28)

with Â being the effective Hamiltonian:

Â = Ĥ − iK̂. (2.29)

In the absence of decoherence/dissipation, this allows one to formulate the

time-dependent density matrix as:

ρ(t) = exp(−kf t)exp(−iÂt)ρ(0)exp(iÂ†t), (2.30)

where ke is the escape rate constant. Reactions yields resulting from eq. 2.30 can be

evaluated by finding the eigenvalues and eigenvectors of the effective Hamiltonian,

denoted by λ and T respectively, and then computing the following integral:

∫ ∞
0

ρij(t) =∑
k,l,m,n

Ti,kT
−1
k,l ρ(0)l,m(T−1)∗k,mT

∗
j,n

1

ke + i(λk − λ∗k)
.

(2.31)

Taking these quantities together the singlet recombination yield can be calcu-

lated:

ϕS = 2Tr

[
K̂

∫
ρ(t)dt

]
, (2.32)

where the time-integrated density operator follows from eq. 2.31.

The measure used to quantify the magnetosensitivity of a biological system, or

chemical reaction, is termed the magnetic field effect (MFE) and is defined as the

affectation of the rate of singlet-triplet inter-conversion and product yield subsequent

to the field’s application (Grissom, 1995)). An instructive derivation, for toy radical

pairs, of this quantity was presented by Timmel (Timmel et al., 1998). Eq. 2.32

can be used to quantify the effect that the applied magnetic field has upon the
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recombination yield, which hence allows one to define the MFE as:

χS(B0) =
ϕS(B0)− ϕS(0)

ϕS0
, (2.33)

where ϕS(B0) is the singlet yield at an applied field of intensity B0, and ϕS(0) is the

same quantity at zero field.

In general, the MFE is position-dependent with respect to the recombining

radicals due to the distance-dependence of the dipolar interaction and of the para-

meters kS and J . For the latter parameters, both can often be assumed to have an

exponential fall-off. These take the form:

kS(|rij|) = kS(0)exp(−β(|rij| − 2R)), (2.34)

and:

J(|rij|) = J(0)exp(−β(|rij| − 2R)). (2.35)

In both of the above, the same decay rate, β, has been used and R is representative

of the finite radical radius.

Simulations to further test this model for larger, more intricate, spin systems

than have previously been explored were carried out using local HPC computing

facilities based on code written by the author and group members. This code has been

extensively tested against known, and previously derived, results in order to ensure

the validity and consistency of the acquired new results and conclusions. The specific

methods used were MKL-based calculations of the eignevalues of non-Hermitian

matrices and their eigenvalues.

Solving the master equation is at best difficult and at worst intractable, due to

the nature of the exponential scaling of the Hilbert space with respect to system size.

Even in the special case of radical pairs, one is limited by the number of coupled

nuclei that can be considered. As a result, there are some common assumptions that

are made when addressing biological systems under the RPM formalism:

- Each electron spin has only a few coupled nuclei.

- Dipolar and Exchange terms should be neglected.
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- Singlet and triplet recombination proceeds at the same rate.

While these assumptions may sometimes be considered necessary to make the

problem soluble, there are some flaws in the methodology that need to be addressed.

The most egregious, one may argue, is the neglect of the dipolar and exchange terms.

The argument usually given for this is that the radicals are far enough apart that

their magnitudes do not matter. Challenging this assumption, and presenting an

alternative model that challenges a fundamental requirement of the RPM, is what

the following chapter will address, and the argument proceeds as follows:

Chapter 3 shows that the inclusion of these two terms, in particular the dipolar

term, gives rise to brand new effects that the traditional RPM misses. The reason for

this, is that the two-radical case (i.e. the RPM) is a very special case with a global

symmetry that is not disrupted by the addition of the dipolar term and hence no

MFEs are observed in the absence of hyperfine interactions or difference in g-factors.

However, Chapter 3 shows that for systems of three or more spins this does not hold

and the dipolar interaction causes some fundamental differences in the mathematical

description of the radical dynamics.
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3. Moving beyond the Radical Pair

Mechanism: The D3M Model

The work presented in this chapter is adapted from the following publication: Keens,

R.H., Bedkihal, S. and Kattnig, D.R., 2018. Magnetosensitivity in dipolarly coupled

three-spin systems. Physical review letters, 121(9), p.096001, with permission from

PRL.

Applied to low magnetic fields, for which differences in g-factors/matrices and

thus Larmor precession frequencies are negligible, a key ingredient of the RPM is the

hyperfine interaction that coherently mixes singlet and triplet electron spin states in

pairs of radicals, facilitating magnetic field effects (MFEs) on reaction yields via spin-

selective reaction channels. This chapter shows that the hyperfine interaction is not

a categorical requirement for the magnetosensitivity of radical reactions, especially

to weak magnetic fields. It is proposed that, in systems comprising three (rather

than two) radicals, dipolar interactions provide an alternative pathway for MFEs. By

considering the role of symmetries and energy level crossings, a model is presented

that demonstrates a directional sensitivity to fields weaker than the geomagnetic

field and remarkable spikes in the reaction yield as a function of the magnetic field

intensity; these effects can further be tuned by the exchange interaction.

Here, it is shown that MFEs are absent for a system of two radicals coupled

by electron dipole-dipole interactions alone, i.e. without hyperfine interactions or

g-factor differences. It is then shown that MFEs are absent in a purely exchange

coupled isotropic linear N -spin system on account of SU(2) symmetry. The relevant

commutators are evaluated to demonstrate the SU(2) symmetry of an isotropic,

exchange coupled, linear spin system. It is further shown that the SU(2) symmetry
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is broken when dipole-dipole interactions are included. The necessary and sufficient

conditions to realize magnetic field effects are obtained, and it is shown that the

dipolar interaction mixes singlet-triplet states for most configurations of spin-triad;

there exist only two special cases where no MFEs are observed. Finally, MFEs are

shown for the equilateral triangular and general geometries, and the bond-angle

dependence in isosceles triangular triads.

Thus, simply by including the dipolar and exchange terms alongside the Zeeman

contribution, one can see remarkable MFEs, which suggests that the assumption that

dipolar and exchange terms can be neglected is indeed an assumption that does not

generally hold, and that interesting new MFEs are predicted beyond the convectional

RPM if they are included. The D3M model is the first step in this new paradigm.

3.1 The D3M model

A toy model of three spins in an external magnetic field is considered and subsequently

the MFEs that arise as a consequence of inter-radical interactions are investigated.

The model Hamiltonian is given (in angular frequency units) by

Ĥ = Ĥ0 + Ĥ1 = Ĥdd + Ĥex + Ĥ1

=
∑N

i<j Ŝi ·Di,j · Ŝj −
∑N

i<j Ji,j

(
1
2

+ 2Ŝi · Ŝj
)

+ γ ~B0 ·
∑N

i Ŝi

(3.1)

The individual summands account for the electron-electron dipolar (Ĥdd), exchange

(Ĥex) and Zeeman interactions (Ĥ1). ~B0 denotes the applied magnetic field, B0 its

intensity and γ = gµB
~ . Here, it has been assumed that the Zeeman interaction is

isotropic and identical for all radicals on account of the focus on the MFEs of organic

radicals in weak magnetic fields, i.e. g ≈ 2 and the anisotropies are negligible for

moderate B0. The electron-electron dipolar interactions are treated in the point-

dipole limit. The interaction energy is related to the (supra)-molecular structure of

the spin-triad by

Ŝi ·Di,j · Ŝj = di,j(ri,j)
[
Ŝi · Ŝj − 3

(
Ŝi · ~ei,j

)(
Ŝj · ~ei,j

)]
. (3.2)
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In the above equation, ~ei,j =
~ri,j
|~ri,j | where ~ri,j is the vector connecting radical centres i

and j, di,j = d0
|~ri,j |3 , and d0 = µ0

4π~g
2µ2

B. It is assumed that the three-radical system is

generated in the singlet state of radicals 1 and 2 with the third radical uncorrelated

to the others, i.e. the initial density operator obeys ρ̂(t = 0) = 1
2
P̂

(1,2)
s where

P̂
(i,j)
s = 1

4
− Ŝi · Ŝj = 1

2
(1− P̂i,j) is the singlet projection operator on the i, j- subspace,

and P̂i,j is the permutation operator for spins i and j. Assuming that radicals 1 and

2 recombine with equal rate constant k in the singlet and triplet configurations, the

equation of motion for the spin-triad density matrix becomes

dρ̂

dt
= −i[Ĥ, ρ̂(t)]− kρ̂(t). (3.3)

The quantum yield of the singlet recombination product of radicals 1 and 2 is

ϕs = k
∫∞

0
dτTr[P̂

(1,2)
s ρ̂(τ)], and the powder-averaged singlet yield is

〈ϕs〉 = 1
4π

∫ 2π

0
dφ
∫ π

0
dϑ sin(ϑ)ϕs(B0(ϑ, φ)). The MFEs can then be quantified by χs =

ϕs(B0)
ϕs(0)

− 1; analogous definitions apply to the orientation-averaged yield. In the eigen-

basis of the Hamiltonian, Ĥ, it is such that ϕs = 1
2

∑
i,j

∣∣∣〈i|P̂ (1,2)
s |j〉

∣∣∣2f(k, ωi − ωj),

where f(k,∆ω) = k2

k2+∆ω2 , and |i〉, |j〉 are the eigenstates of Ĥ.

The magnetic field independent part of the Hamiltonian (Ĥ0) is invariant

under time reversal symmetry, i.e. it commutes with the time reversal operator

Θ̂ = eiπŜyK̂ where K̂ denotes complex conjugation in the standard basis, and Ŝy is the

y-component of the total spin-angular momentum operator Ŝ =
∑

j Ŝj . As Θ̂2 = −1,

the eigenstates of Ĥ0 are (at least) two-fold degenerate (Kramers degeneracy (Klein,

1952)). Furthermore, as Θ̂ maps |S(1,2)±〉 into ±|S(1,2)∓〉, pairwise degenerate states

(|i〉, Θ̂|i〉) yield the same expectation value of P̂
(1,2)
s . Note however, that |S(1,2)±〉 is

not an eigenstate of the Hamiltonian, in stark contrast to the well-studied scenarios

of pairs of radicals. This Kramers degeneracy, in spin triads, is broken by an external

magnetic field. Consequently, the energy levels split and, depending on symmetry

properties, can cross and/or anti-cross as a function of the applied field. This gives

rise to prominent MFEs by impacting upon the coupling matrix elements 〈i|P̂ (1,2)
s |j〉

and f(k,∆ω) (through altered energy differences). An example of such degeneracy-

lifting is shown schematically in Fig. 3.1(a). The necessary and sufficient conditions
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Figure 3.1: (a) Schematic correlation diagram of energy level crossings as a function of
the applied field, B0. The labels classify the (anti-)symmetry of the states under P̂1,3. (b)
Yield vs orientation for selected values of B0. Here, the recombination constant k/d1,2

is 0.01. (c) Yield vs B0 for selected orientations; here k/d1,2 is 0.01. (d) Yield vs B0 for
k/d1,2 = 0.001, 0.01, 0.1, 0.5, 1, respectively, and in ascending order. Here the Zeeman field
is along the x-direction. In all of the above figures, J = 0.

to observe MFEs are that (i) [P̂
(1,2)
s , Ĥ0] 6= 0 and (ii) Ĥ0 does not possess the SU(2)

spin rotation symmetry.

For a radical pair (with the Hamiltonian as given in eq. 3.1, i.e. with no

hyperfine interactions), Ĥ always commutes with P̂
(1,2)
s , and no MFEs are observed

due to inter-radical interactions alone. Here, it is argued that dipolarly-coupled spin

triads give rise to MFEs for all configurations except for a peculiar one with the third

(inert) radical placed midway between the recombining radicals (and in the limit

that radical 3 is so remote that it does not affect the spin-evolution of the dyad on

the timescale of its lifetime). On the contrary, a purely exchange-coupled isotropic

spin system does not exhibit magnetosensitivity as a consequence of the retained

SU(2) symmetry of Ĥ0.

First a situation is considered where there is a system of two radicals coupled
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by dipole-dipole and exchange interactions. The Hamiltonian is given by

Ĥ = Ĥ0 + Ĥ1,

with:

Ĥ0 = Ŝ1 ·D1,2 · Ŝ2 − J1,2

(
1

2
+ 2Ŝ1 · Ŝ2

)
, (3.4)

and:

Ĥ1 = γ~B0 ·
(
Ŝ1 + Ŝ2

)
,

where D1,2 is the dipole-dipole tensor coupling spins 1 and 2, J1,2 is the exchange coup-

ling strength and B0 is the intensity of an applied magnetic field. Noting that among

the commutators between the two-spin operators, only those that can be represented

by
[
2Ŝ1,iŜ2,k, 2Ŝ1,jŜ2,k

]
= εi,j,m i Ŝ1,mŜ2,k and

[
2Ŝ1,kŜ2,i, 2Ŝ1,kŜ2,l

]
= εi,l,m i Ŝ1,kŜ2,m

are non-zero, with εi,j,m denoting the Levi-Civita symbol and the summation over

m being implied, the singlet projection operator P̂
(1,2)
S = 1

4
− Ŝ1 · Ŝ2 commutes

with the field-independent Hamiltonian Ĥ0. Furthermore, as Ĥ1, and consequently

Ĥ, commutes with P̂
(1,2)
S , the singlet state is a field-independent eigenstate of the

Hamiltonian and no MFEs on the singlet yield are observed (in the absence of

additional interactions).

Here, the necessary and sufficient conditions to realize MFEs in a system of N > 2

spins are examined. First, consider a purely exchange coupled isotropic spin system

given by the following Hamiltonian,

Ĥ0 =
N∑
i<j

Ji,j[Ŝi,xŜj,x + Ŝi,yŜj,y + Ŝi,zŜj,z]. (3.5)

Let the total spin operator along the respective direction be denoted as Ŝi =
∑

m Ŝm,i
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where i ∈ {x, y, z}. Then, one can evaluate the following commutator

[
Ĥ0, Ŝz

]
=
∑
i,j

Ji,j
∑
m

[Ŝi,xŜj,x + Ŝi,yŜj,y + Ŝi,zŜj,z, Ŝm,z]

=
∑
i,j

Ji,j
∑
m

(
[Ŝi,xŜj,x, Ŝm,z] + [Ŝi,yŜj,y, Ŝm,z] + [Ŝi,zŜj,z, Ŝm,z]

)
.

(3.6)

The above commutator can be further reduced to

[
Ĥ0, Ŝz

]
=

N∑
i,j

Ji,j([Ŝi,xŜj,x, Ŝi,z] + [Ŝi,yŜj,y, Ŝi,z] + [Ŝi,zŜj,z, Ŝi,z]

+ [Ŝi,xŜj,x, Ŝj,z] + [Ŝi,yŜj,y, Ŝj,z] + [Ŝi,zŜj,z, Ŝj,z]).

(3.7)

The first term can be written as

[
Ŝi,xŜj,x, Ŝi,z

]
= −iŜi,yŜj,x. (3.8)

Likewise the remaining commutators in Eq. 3.7 can be simplified to obtain,

[
Ĥ0, Ŝz

]
=

N∑
i<j

Ji,j([Ŝi,x, Ŝi,z]Ŝj,x + [Ŝi,y, Ŝi,z]Ŝj,y + [Ŝi,z, Ŝi,z]Ŝj,z

+ Ŝi,x[Ŝj,x, Ŝj,z] + Ŝi,y[Ŝj,y, Ŝj,z] + Ŝi,z[[Ŝj,z, Ŝj,z])

= i
N∑
i<j

Ji,j(−Ŝi,yŜj,x + Ŝi,xŜi,y + 0 + Ŝi,yŜj,x − Ŝi,xŜj,y + 0)

= 0.

Similarly it can be shown that [Ĥ0, Ŝx] = [Ĥ0, Ŝy] = 0. This implies that an

isotropic exchange coupled spin model has SU(2) symmetry and the eigenstates can

be arranged as SU(2) multiplets. As Ĥ1 commutes with P̂
(1,2)
S , thus MFEs are not

observed for this scenario.

Next, these commutators are examined by adding dipole-dipole interactions of

the form Ĥ0 =
∑

i<j Ŝi ·Di,j · Ŝj . In this case it is found that in general [Ĥ0, Ŝi] 6= 0,

and MFEs are observed if [P̂
(i,j)
S , Ĥ0] 6= 0. Typically, [Ĥ0, Ŝi] 6= 0, but it is remarked

that this is in particular not true for a linear triad aligned along x, with the magnetic

field aligned along the triad axis. In the next section the geometric conditions that
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have to be fulfilled (see below for details) in order to observe MFEs in dipolarly

coupled three-spin systems are discussed.

3.2 MFEs without hyperfine interactions using D3M

In this section, the dipolar interaction is examined in detail in the context of the

D3M model. Here it is shown that the dipolar interaction induces magnetic field

dependent singlet-triplet mixing in all spin configurations except for one special case.

Without loss of generality, it is assumed that the three spins are located at the origin,

displaced along the z-axis (spin 1) and along an arbitrary direction in the x,z-plane

that is inclined with respect to the z-axis by an angle θ (spin 3), respectively. In

units of d1,2, the dipolar coupling tensors are then given by

D1,2 =


1 0 0

0 1 0

0 0 −2

 (3.9)

D2,3 =
1

r3


[3 cos(2θ)−1]

2
0 −3 cos(θ) sin(θ)

0 1 0

−3 cos(θ) sin(θ) 0 − [1+3 cos(2θ)]
2

 (3.10)

and

D1,3 =
1

f(r, θ)3


1−G1(r, θ) 0 G2(r, θ)

0 1 0

G2(r, θ) 0 G1(r, θ)

 (3.11)

where f(r, θ) = (1 + r2 − 2r cos(θ))
1
2 , G1(r, θ) = 2 − 3

(
r sin θ
f(r,θ)

)2

, and G2(r, θ) =

3r(1−r cos θ) sin θ
f(r,θ)2

, and it is assumed that there are no stacked spins (i.e. excluding the

case r = 1 and θ = 0).

With this, the dipolar Hamiltonian becomes

Ĥ0 = Ŝ1D1,2Ŝ2 + Ŝ2D2,3Ŝ3 + Ŝ1D1,3Ŝ3. (3.12)
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Next, examine the commutator [P̂
(1,2)
S , Ĥ] = [P̂

(1,2)
S , Ĥ0]. Using the commutator

identities of the form [ÂB̂, ĈD̂] = Â[B̂, Ĉ]D̂ + ÂĈ[B̂, D̂] + [Â, Ĉ]D̂B̂ + Ĉ[Â, D̂]B̂

and using angular momentum algebra, the above commutators can be written in the

form of triple products of spin operators,

−i[P̂ (1,2)
S , Ĥ0] =

[
1

r3
− 1

f(r, θ)5

](
Ŝ1,zŜ2,xŜ3,y − Ŝ1,xŜ2,zŜ3,y

)
+ λ(r, θ)(Ŝ1,yŜ2,xŜ3,x + Ŝ1,zŜ2,yŜ3,z

− Ŝ1,xŜ2,yŜ3,x − Ŝ1,yŜ2,zŜ3,z) + ...,

(3.13)

where

λ(r, θ) =
3 cos θ sin θ

r3
− 3r sin θ(r cos θ − 1)

f 5
. (3.14)

The sum on the right hand side of Eq. 3.13 comprises a total of 10 different triple

products of the spin operators of radical 1, 2 and 3, which can be collected in 4

groups of unique dependence on r and θ. The spin evolution mixes singlet and triplet

states unless the singlet states are the eigenstates of the Hamiltonian Ĥ0, which

requires the commutator [P̂
(1,2)
S , Ĥ0] to vanish; one can now seek the conditions on r

and θ for which this occurs.

The first set of terms vanishes for θ = ± arccos
(

1
2r

)
. Inserting this into the second

term gives a non-zero contribution except for r = 1/2, which stipulates that θ =

0, π/2, π on account of the first condition. Indeed, only for θ = 0 do all terms in

the commutator vanish simultaneously. Thus, it can be concluded that the dipolar

interaction mixes singlet and triplet terms except for one peculiar configuration,

for which the third (unreactive) radical is placed half-way between the recombining

radicals. Obviously, this corresponds to a scenario that might be difficult to realize

in practice. If, additionally, one takes the exchange interaction into account, an

analogous treatment reveals that the same products of spin operators appear in the

commutator. The coefficients are, however, in part augmented by the difference of

J1,3 and J2,3. A detailed analysis reveals that the commutator vanishes if the above

conditions are fulfilled (r = 1/2, θ = 0) and additionally J1,3 = J2,3.

This exploration is continued by showing that the dipolar interaction gives rise to a
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magnetic field dependence of the singlet recombination yield for most configurations

of three spins. The reaction yield varies with the intensity of magnetic field if Ĥ0

does not commute with the singlet projection operator, as established above, and

Ĥ0 does not commute with Ĥ1. The focus shall now be on this second condition for

the dipolar Hamiltonian. The relevant commutator becomes

−i[Ĥdd, Ĥ1] = −3ω0,x(Ŝ1,zŜ2,y + Ŝ1,yŜ2,z)

+3ω0,y(Ŝ1,zŜ2,x + Ŝ1,xŜ2,z) + ...

(3.15)

The right hand side of above equation contains 20 summands, which are bilinear

in spin operators; ω0,i, with i ∈ {x, y, z}, denotes the Larmor precession frequency

associated with field-component i, and ~ω0 = γ~B0. The form of Eq. 3.15 suggests

that the commutator can only vanish if ω0,x = ω0,y = 0. Assuming this condition

holds one arrives at the simpler expression

−i[Ĥdd, Ĥ1] = ω0,z
3 sin θ cos θ

r3
(Ŝ2,zŜ3,y + Ŝ2,yŜ3,z)

+ω0,z
3r(r cos θ − 1) sin θ

f 5
(Ŝ1,zŜ3,y + Ŝ1,yŜ3,z)

+ω0,z
3 sin2 θ

r3
(Ŝ2,yŜ3,x + Ŝ2,xŜ3,y)

+ω0,z
3r2 sin2 θ

f 5
(Ŝ1,yŜ3,x + Ŝ1,xŜ3,y).

(3.16)

It can be seen that all the terms in the above equations are proportional to sin θ and

vanish for θ = 0 or θ = π. As a result the singlet yield is insensitive to the magnetic

field for a linear configuration of three radicals (including asymmetric configuration)

if the magnetic field is parallel to the distinguished axis. For these orientations,

the Hamiltonian has U(1) symmetry and the magnetization along the distinguished

axis is a conservative quantity. Conversely, except for this peculiar scenario and the

configuration discussed above, MFEs are generally predicted.
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3.3 Specific example cases

In this section, a few specific geometries are considered and their available MFEs

evaluated wihin the framework of the D3M model.

First, a linear symmetric triad is considered, for which d1,2 = d2,3 = 8 d1,3; the

effect of changes to this geometry can be seen below. For a radical pair, Ĥ always

commutes with P̂
(1,2)
s , and no MFEs are observed due to inter-radical interactions.

For the linear case with negligible exchange couplings (Ji,j = 0), Figs. 3.1 (b-d) show

the singlet yield as a function of the magnetic field for selected orientations or as a

function of orientation for selected fields.

3.3.1 Analytical results for the linear geometry

In the case with the magnetic field parallel to the symmetry axis, no MFEs are

observed. The eigenstates and associated energies, which depend linearly on the field

intensity (see Fig. 3.1) can be readily evaluated for this scenario. Further, the singlet

yield can be calculated analytically following the approach as outlined previously.

The following dependence upon the recombination rate constant k is obtained:

ϕS =
841

1816
+

147

908
f

(√
681

16
d1,2, k

)

+

(
681 + 17

√
681
)

3632
f

(
1

32

(√
681− 17

)
d1,2, k

)
+

(
681− 17

√
681
)

3632
f

(
1

32

(√
681 + 17

)
d1,2, k

) (3.17)

where, f(∆ω, k) = k2

k2+∆ω2 as previously. Fig. 3.2(b) shows the dependence of yield

on the recombination rate constant.

For general orientations, an analytical calculation is impractical. An exception is

the high-field scenario (γB0 >> d1,2) with the magnetic field oriented perpendicular

to the distinguished axis, which allows an approximate solution by degenerate

perturbation theory. By representing the Hamiltonian in the eigenbasis of Ĥ1,

followed by diagonalising the degenerate sub-blocks, the following approximate
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expression for the singlet yield can be obtained:

ϕS ≈
841

1816
+

147

908
f

(√
681

32
d1,2, k

)

+

(
681 + 17

√
681
)

3632
f

(
1

64

(√
681− 17

)
d1,2, k

)
+

(
681− 17

√
681
)

3632
f

(
1

64

(√
681 + 17

)
d1,2, k

)
.

(3.18)

Together with Eq. 3.17 this allows one to approximately calculate the MFE for

B0 >> d1,2 and with the magnetic field at a perpendicular orientation. Fig. 3.3

illustrates this MFE as a function of the recombination rate constant. Remarkably,

large MFEs can be realized for recombination rates of the order of 0.1 to 1 d1,2, i.e.

under conditions of relatively fast recombination. In fact, this high-field procedure

can be applied for an arbitrary orientation of the magnetic field. Denoting the angle

between the axis of the three-spin system and the magnetic field by θ, we obtain:

ϕS ≈
841

1816
+

147

908
f

(
1

64

√
681h(ϑ)d1,2, k

)
+

681 + 17
√

681

3632
f

(
1

128

(√
681− 17

)
h(ϑ)d1,2, k

)
+

681− 17
√

681

3632
f

(
1

128

(√
681 + 17

)
h(ϑ)d1,2, k

)
,

(3.19)

where h(ϑ) = 1 + 3 cos(2ϑ). It is noteworthy that the singlet yield is equal to 1 for

the magic angle, ϑ = 1
2

arccos
(
−1

3

)
, for which the secular terms of the dipole-dipole

coupling (cf. below) vanish and thus no singlet-triplet mixing is induced in high

field. Fig. 3.4 shows the directional dependence of the singlet yield as given by Eq.

3.19 and the dependence of the average singlet yield on k. Fig. 3.5 illustrates the

anisotropy of the singlet yield through polar plots of the deviation of the singlet

yield from the spherical mean. Note that remarkably spiky changes in the singlet

yield can appear at the magic angle if the lifetime is long. For long lifetimes away

from the magic angle, ϕS approaches 841
1816

; for fast recombination no spin mixing

is realised and ϕS approaches 1. Even in the presence of exchange interactions, no

MFEs are observed when the field is along the symmetry axis. For this scenario, and
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Figure 3.2: A linear spin triad with no exchange interaction. a) Energy level scheme for the
field parallel to the molecular axis. b) Dependence of the singlet yield on the recombination
rate constant k for the magnetic field parallel to the z-axis (any field intensity).

j1,2 = j2,3 = j d1,2, and j1,3 = 0, the analytic dependence reads

ϕS =
1

s(j)

[
2 (841 + 160j (24j − 17)) + d(j) (17− 48j + d(j)) f

(
1

32
υd1,2, k

)]
− 1

s(j)

[
d(j) (17− 48j − d(j)) f

(
1

32
υd1,2, k

)
+ 588 f

(
d(j)

16
d1,2, k

)]
(3.20)

where s(j) = 16(227 + 32j(24j − 17)), d(j) =
√

3
√

227− 544j + 768j2, and υ =√
(d(j)− 17− 16j)2.
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Figure 3.3: MFE of the linear spin-triad with the field perpendicular to the triad-axis as a
function of the recombination rate constant k; no exchange; analytical result.
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of the singlet yield, k = {0.01, 0.1, 1} d1,2. b) Powder-averaged singlet yield as a function
of k/d1,2.
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Figure 3.5: Polar plots of the anisotropy of the singlet yield for the linear geometry in the
high-field limit. No exchange was used, and k = {0.01, 0.025, 0.25, 1}d1,2.
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Figure 3.6: Linear spin triad with exchange, J1,2 = J2,3, and J1,3 = 0. a) Singlet yield
as a function of J1,2 = J2,3 for the magnetic field parallel to the molecular axis (any
intensity). k = {0.01 (blue), 0.1, 0.5, 1 (red)} d1,2. b) Dependence of the singlet yield on k
for J1,2 = J2,3 = 1

4d1,2.

In the case where the magnetic field is parallel to the molecular symmetry axis,

z, [Ĥdd, Ĥ1] = 0, i.e. the z-component of the total magnetization is conserved and no

MFE arises. An analytic calculation shows the dependence of the singlet yield on k.

3.4 Further results for the linear geometry

A remarkable sensitivity to k is recognized for j in the range (−1,1), as is shown in

Fig. 3.6. Fig. 3.7 shows the yield as a function of magnetic field for different k values

when the magnetic field is along a perpendicular direction so that [Ĥ0, Ĥ1] 6= 0. It

can be seen that the width of the low field peak broadens as k increases.

In the limit of slow recombination, the yield approaches 841
1816

; for fast re-

combination no spin conversion is observed (ϕS = 1) as expected. For any other

58



-1 0 1

0.4

0.6

0.8

1.0

φ
S

γB  / d0 1,2

Figure 3.7: Linear spin triad with J1,2 = J2,3 = 1
4d1,2 and the field perpendicular to the

molecular axis. k = {0.001, 0.01, 0.1, 0.5, 1} d1,2.

orientation of the magnetic field, the Zeeman Hamiltonian does not commute with

the dipolar part and pronounced MFEs can be observed, as demonstrated in Fig.

3.1(b). With B0||x, a marked spike is observed for B0 ≈ 2.1 d1,2. This peak is

the consequence of the crossing of two energy levels, with different permutation

symmetries but the same spin-inversion symmetry, as is schematically illustrated in

the correlation diagram in Fig. 3.1(a). Ĥ is symmetric with respect to the interchange

of spins 1 and 3. Consequently, six of the eigenstates are symmetric and two are

anti-symmetric with respect to P̂1,3. For B0||x, the latter two are proportional to

|ααβ〉 ± |αββ〉 − |βαα〉 ∓ |ββα〉. These two states cross one of the states of the

symmetric representation at B0 ≈ 0.3812 d1,2 and B0 = 17
8
d1,2. The spike results

from the second of these crossings involving the anti-symmetric state with lower

signs (labelled (2) in Fig. 3.1(a)); for the first one, the matrix element of 〈i|P̂ (1,2)
s |j〉

vanishes by symmetry. This is so because, for B0||x, X̂ = ⊗iσ̂i,x, which exchanges

α and β states, provides another symmetry element. Since
[
X̂, P̂

(1,2)
s

]
= 0, only

crossings of the same X̂-symmetry can alter the MFE. As such, sharp changes in the

reaction yield result from the level crossings between states of different symmetry

provided that the off-diagonal matrix elements of the singlet projection operator do

not vanish.
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3.4.1 On the origin of sharp spikes in the MFE of linear

spin chains

The spin Hamiltonian of linear spins chains with a transverse magnetic field can be

approximately cast into the form of the XXZ model, for which

ĤXXZ = Ĥ0 + Ĥ1

=
N∑
i=1

[Ji,i+1Ŝi,xŜj,x + Ji,i+1Ŝi,yŜj,y + Ji,i+1δJi,i+1Ŝi,zŜj,z] + γB0

N∑
i

Ŝi,x

(3.21)

where Ji,i+1 is a coupling parameter and δJi,i+1 evaluates the anisotropy of this

nearest-neighbour coupling. For δJi,i+1 6= 1 the SU(2) symmetry of R̂x
π is broken

and the model resembles the dipole-dipole coupled spin chain. Then, magnetic field

effects are observed if the singlet projection operator does not commute with Ĥ0.

The sharp peak in reaction yield as a function of magnetic field is a consequence

of crossings of eigenstates with different permutation symmetries. The linear spin

model exhibits rich symmetries such as reflection symmetries and symmetries under

global π rotation around the x axis. The presence of such symmetries may give rise

to sharp peaks in the reaction yield for linear spin systems. For example, a linear

four spin system described by ĤXXZ has a global π rotation symmetry about the

x-axis, i.e [ĤXXZ , R̂
x
π] = 0, where R̂x

π = σ̂1
xσ̂

2
xσ̂

3
xσ̂

4
x. The eigenstate

∣∣ψ(i)
〉

= ci1 |ααββ〉+ ci2 |αβαβ〉+ ci3 |αββα〉+ ci4 |βααβ〉+ ci5 |βαβα〉+ ci6 |ββαα〉

(3.22)

has ci1 = ci6, c
i
2 = ci5, c

i
3 = ci4, corresponding to an eigenvalue of R̂x

π E1 = +1, or

ci1 = −ci6, ci2 = −ci5, ci3 = −ci4, corresponding to an eigenvalue of R̂x
π E2 = −1.

Furthermore, one can define a parity operator for linear spin systems as

P̂ = P̂1,N P̂2,N−1...P̂N
2
,N+2

2
(3.23)

for even N , and

P̂ = P̂1,N P̂2,N−1...P̂N−1
2
,N+3

2
(3.24)
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for odd N . If [Ĥ, P̂ ] = 0, then the parity is conserved and the eigenstates of

the Hamiltonian can be classified as even or odd. For example, an eigenstate∣∣ψ(i)
〉

= ci1 |αβββ〉+ ci2 |βαββ〉+ ci3 |ββαβ〉+ ci4 |βββα〉 the even parity gives ci1 = ci4,

ci2 = ci3 and odd parity gives ci1 = −ci4, ci2 = −ci3. If an eigenstate of a certain

symmetry (e.g. with respect to parity or the global x-rotation), |i〉 undergoes

crossing with another eigenstate |j〉 with different symmetry properties such that

〈i| P̂ (i,j)
s |j〉 6= 0, the sharp spikes occur in the reaction yield. It is indeed interesting

that such an interplay of symmetries, level crossings and many-body interactions

can lead to pronounced MFEs at fields lower than the geomagnetic field.

For arbitrary magnetic field and orientation, the singlet yield has to be evaluated

numerically. For high fields, all but the secular parts of Ĥdd can be neglected and a

perturbation-theoretical treatment yields an analytic expression of the singlet yield

and its orientational dependence as shown above. Its most obvious feature is the

cessation of spin evolution for the magic angle.

3.4.2 Blocked singlet-triplet conversion in the high-field limit

In the high-field limit, the quantisation axis of the spins corresponds to the direction

of the magnetic field. It is then possible to simplify the Hamiltonian Ĥ0 to only

include the secular terms:

Ĥ ′dd =
1

2

∑
i<j

di,j(ri,j)(3 cos θi,j − 1)
(

3Ŝi,zŜj,z − Ŝi · Ŝj
)

(3.25)

where θi,j is the angle between the magnetic field and the vector connecting spins i

and j. The individual terms vanish for the magic angle θi,j = 54.7°, which for the

linear configuration can be used to simultaneously suppress all dipolar couplings,

i.e. Ĥ ′dd = 0 and thus the singlet-triplet mixing vanishes (vide supra). For general

geometries it is not possible to simultaneously fulfil the three magic-angle conditions.

Nonetheless, the more broad condition [P̂
(1,2)
S , Ĥ ′dd] = 0 can be realized for certain

field orientations for which consequently ϕS = 1. Assuming an isosceles triangular

arrangement with bond angle α it can be shown that Ĥ ′dd and P̂
(1,2)
S commute if the

following condition is satisfied:
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1

8
csc3

(
α
2

) (
(1 + 3 cos (2ϑ))

(
2− 6 sin

(
α
2

)
+ 7 sin

(
3α
2

)
− 3 sin

(
5α
2

)))
+

1

8
csc3

(
6 cos (2φ)

(
10 sin

(
α
2

)
− 5 sin

(
3α
2

)
+ sin

(
5α
2

)
− 2
)

sin2 (ϑ)
)

+ 12 cos (φ) sin (α) sin (2ϑ) = 0

(3.26)

Here, the spin-triad has been placed in the x,z-plane (z ≤ 0) and φ and θ are

the polar and azimuthal angle specifying the direction of the magnetic field vector.

Typically, Eq. 3.26 defines 2 closed contours on the θ, φ-sphere. For the linear

configuration (α = π), Eq. 3.26 is tantamount to the vanishing of the three dipolar

couplings. For α < π, the dipolar coupling gives rise to large anisotropies of the

MFE, which typically exceed the anisotropies from hyperfine-induced singlet-triplet

mixing, because the latter lacks this unique switching property.
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3.4.3 Persistence of the effect even within a powder average

For a disordered system, the observed singlet yield represents the average over all

possible orientations of the external magnetic field vector B0, with respect to the

molecular axes of the system. Fig. 3.8(a) shows this powder average of the singlet

yield for the linear, symmetric spin triad over a range of k-values. Interestingly,

the recombination yield does not average to zero even though the average dipolar

interaction of a pair of spins vanishes. The field-dependence is characterized by a

minimum at B0 ≈ d1,2, which is the dominant feature at small k. The field-effect

can be characterised by established measures such as the field of half-saturation B 1
2

(the field for which 〈ϕs(B0)〉 equals 1
2
(〈ϕs(B = 0)〉+ 〈ϕs(B →∞)〉) and the MFEs

associated with characteristic points such as the low-field minimum, which resembles

the LFE documented for the hyperfine mechanism in radical pairs (Timmel et al.,

1998). These parameters are summarized in Figs. 3.8(b) and (c) as a function of k.

For B0 exceeding a few d1,2, huge field effects χ in excess of 30 %, can be realized for

intermediate k of the order of 0.2 d1,2 (Fig. 3.8(c)). The magnitude of the low-field

feature is approximately 12 % for small k-values. For context, at a distance of 17 Å,

d1,2 will be of the order of 10 MHz and k = 0.01 d1,2 would then correspond to a

lifetime of k−1 = 1.6 µs. Under these conditions, the low-field effect in dipolarly-

coupled spin triads is expected to closely match what the hyperfine mechanism gives

for radical pairs (vide infra for a substantial enhancement). Significant MFEs can

also ensue for comparably short coherence times and, thus, quickly-relaxing radicals

could be meaningfully considered in the triad model for small r.

Substantial MFEs can in fact be observed for a variety of geometries of the

spin triad, a concept that is explored further in Chapter 5. Fig. 3.9 shows the

dependence of the powder-averaged MFE and the relative anisotropy, i.e. the largest

orientational spread of the singlet yield, relatively to the mean singlet yield, of general

configurations for a magnetic field intensity of 50 µT (roughly the geomagnetic field).

Assuming that spins 1 and 2 are located at (0, a) and (0,−a), respectively, with

a = 10 Å, the maximum averaged MFE is ≈ 9 % at the location of the third spin

(±1.58 a, ±a). The maximum anisotropy amounts to 21.5 % at (±3.18 a, ±1.35 a),
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which corresponds to inter-radical distances as large as 40 Å. Thus sizeable MFEs are

induced by the dipolar interaction even at relatively large distances, demonstrating

that the effect is not predicated upon infrequent direct three-particle encounters, and

suggesting that it may be practically applicable (Kattnig, 2017b).

The bond angle dependence for randomly oriented isosceles spin-triads is further

discussed. For the geomagnetic field we observe the largest field effect for bond

angles roughly corresponding to a pentagon’s internal angle (144°) or slightly less

than an equilateral triangle’s (60°). For greater field intensities, large effects can be

realized for all bond angles of practical relevance.

Figure 3.9: (a) Absolute value of the MFE. (b) Anisotropy relative to the mean singlet
yield. Here k = 0.0245 d1,2 and B0 = 0.215 d1,2 corresponding to a lifetime of 1 µs and the
geomagnetic field (50 µT) for an inter-radical distance of 20 Å, and J = 0. Spins 1 and 2
are located at (0, a) and (0,−a), respectively with a = 10 Å, and the position of spin 3 is
varied in the containing plane.
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Figure 3.10: Bond angle dependence of the MFE for isosceles triangular spin triads with
an adjacent radical distance of 20 Å and spin 2 at the centre for the Earth’s magnetic
field (B0 = 50 µT ; top-left), γB0 = d1,2 (right) and γB0 = 1000 d1,2 (bottom). The plots
show the orientationally averaged of the MFE for an ensemble of randomly oriented spin
triads and the orientational spread of the MFE. The latter is a measure of the directional
anisotropy of the effect at the given field intensity. A lifetime of k−1 = 1 µs was assumed
throughout.

3.5 D3M magnetic field effects in more general

geometries

Fig. 3.10 illustrates the bond angle dependence of the MFE for isosceles triangular

spin triads. Fig. 3.11 and Fig. 3.12 show the absolute value and anisotropy of the

singlet yield, at fields of B0 = 50 µT and B0 = d1,2 respectively, for more general triad

geometries together with the absolute value of the average MFE and its maximal

absolute MFE value in a particular instance.

Unlike for the linear geometry, it is found that the MFEs of these systems

typically do not decrease with increasing k−1. For the isosceles triangular geometry,

sizeable MFEs for k as large as 10 d1,2 are predicted.
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Figure 3.11: Three spins, various configurations. One spin is at (0,−10) Å, one at (0, 10) Å;
the location of the third spin is varied in the (x,z)-plane; B0 = 50 µT , k−1 = 1 µs. Top:
Absolute value of the change in the orientationally averaged singlet yield, anisotropy of the
singlet yield (i.e. the maximal absolute change divided by the mean effect), absolute value
of the average MFE, and the maximal absolute value of the MFE realized for a particular
orientation.
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Figure 3.12: Three spins, various configurations. One spin is at (0,−7.5) Å, one at (0, 7.5) Å;
the location of the third spin is varied in the (x,z)-plane; B0 = d1,2, k−1 = 1 µs. Top:
Absolute value of the change in the orientationally averaged singlet yield, anisotropy of the
singlet yield (i.e. the maximal absolute change divided by the mean effect), absolute value
of the average MFE, and the maximal absolute value of the MFE realized for a particular
orientation.
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3.5.1 MFEs in the equilateral triangular geometry

The MFEs in an equilateral triangular geometry are further investigated, choosing

the position vectors of the spins as ~r1 = r(1
2
, 0, 0), ~r2 = r(−1

2
, 0, 0) and ~r3 =

r((0, sin(60°)),0, 0). The corresponding dipolar tensors are of the form

D1,2 =


−2 0 0

0 1 0

0 0 1

 d1,2 (3.27)

D2,3 =


1/4 −3

√
3

4
0

−3
√

3
4

−5
4

0

0 0 1

 d1,2 (3.28)

D1,3 =


1/4 3

√
3

4
0

3
√

3
4
−5

4
0

0 0 1

 d1,2 (3.29)

For B0 = 0, the singlet yield can be evaluated analytically. One obtains:

ϕS =
5

13
+

3

26
L

(
3
√

13

4
d1,2, k

)
+

13 +
√

13

52
L

(
3

8

(√
13− 1

)
d1,2, k

)
+

13−
√

13

52
L

(
3

8

(√
13 + 1

)
d1,2, k

) (3.30)

In addition, for the field along the z-direction, the following expression for the

singlet yield can be derived

ϕS =
1

4

(
4− 27

117 + 16r2 + 16b (4b− 3)
− 27

117 + 16r2 + 16b (4b+ 3)

)
−1

4

(
27 (16r2 + 27)

729 + 16r2 (63 + 16r2 + 16b (4b− 3))
− 27 (16r2 + 27)

729 + 16r2 (63 + 16r2 + 16b (4b+ 3))

)
.

(3.31)

Here, b = γB0

d1,2
and r = k

d1,2
. Note that ϕS approaches 1 as B0 →∞.

These observations indicate that geometry indeed plays an important role

(the precursor to the idea presented in chapter 5), and that the MFEs in certain
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geometries may be less susceptible to variations in the lifetime. The system typically

shows avoided crossings of energy levels, which nonetheless can give rise to spiky

features (Hiscock et al., 2016; Sosnovsky et al., 2016).

3.5.2 Effects of the exchange interaction
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Figure 3.13: (a) Yield vs applied field for different exchange interaction strengths, J/d1,2;
here, k/d1,2 = 0.001 and B0||x. (b) Yield as a function of orientation for different B0; here
k/d1,2 = 0.001. (c) The location and amplitude of a low-field peak’s maximum, as a function
of the exchange interaction strength with k/d1,2 = 0.001 and 0.01 (indistinguishable). (d)
The half-width at half-maximum of a low-field peak as a function of J/d1,2, for k as
indicated in the figure.

Further, the effect of an additional exchange interaction on the MFEs is studied.

As Ĥex displays time-reversal symmetry, the eigenstates of the Hamiltonian are still

double degenerate for B0 = 0. Yet, remarkable effects at low field can emerge if

the (anti-)crossings of energy levels are shifted to lower magnetic field intensities.

An illustrative example of this phenomenon is provided by the linear spin-triad for

J = J1,2 = J2,3 and J1,3 = 0, i.e. for the symmetric coupling of adjacent spins, and

with the magnetic field perpendicular to the triad axis. As shown in Fig. 3.13(a),

the singlet yield of this system exhibits a sharp peak, which shifts to lower magnetic

field intensities for exchange couplings approaching 0.25 d1,2. Fig. 3.13(c) then shows

how the amplitude and field-location of the peak vary as a function of the exchange

coupling. For typical dipolar coupling strengths, this feature may occur at field values
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smaller than the geomagnetic field. Formally, for these regions of maximal low-field

sensitivity, the peak shifts from positive to negative magnetic field intensities. As

shown in Figs. 3.13(c) and (d), the peak decreases in amplitude with increasing J

and broadens as the recombination rate constant increases. It remains prominent

for k up to 0.02 d1,2 which, for typical parameters, equates to lifetimes of the order

of microseconds (but could be less for smaller inter-radical distances). The figures

below summarise the dependence of these characteristic parameters of the MFE as a

function of k.

Figs. 3.14 to 3.16 show the powder averages of the singlet yield for dipolarly-

coupled triads in the linear, equilateral triangular and isosceles geometries, respect-

ively. They also depict, for each case, the field of half-saturation, locations of low-field

minima and maxima, and absolute MFE values all as a function of the recombination

rate constant k.

Importantly, the spike does appear in powder averages, suggesting that it

could be relevant to MFEs in the randomly oriented samples implicated in biological

radical reactions. Fig. 3.13(b) shows how a large directional anisotropy can occur

in the low-field regime. Here, J has been fixed to 1
4
d1,2 and one can see that

the spike results from an applied field B0 = 0.0316 d1,2, while comparatively little

directional anisotropy can be seen for other low-field intensities. For negative J , and

J > 2 d1,2, the line shape does not exhibit a pronounced maximum; the main feature

is a minimum at higher field.

It has been shown that remarkable MFEs can emerge in radical triads due to the

dipolar interaction. This realization extends the current understanding of the mag-

netosensitivity of chemical reactions by providing an additional mechanistic pathway.

Unlike the well-established RPM, this three-radical effect does not rely on hyperfine

interactions or differing g-factors. Due to the slow decay of the dipolar interaction

with distance, aspects of this mechanism could be unexpectedly relevant, e.g. in the

context of magnetoreception, the adverse health effects putatively associated with

electromagnetic field exposure, or for purposefully engineered sensing applications,

coherent control, quantum information processing with spins in the solid state and
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Figure 3.14: Powder averages of the singlet yield for a linear spin-triad, with all spins
subject to electron-electron dipolar coupling and adjacent spins additionally subjec-
ted to exchange coupling: J = J1,2 = J2,3 = 0.25 d1,2. Left: Dependence of the
singlet yield on the magnetic field intensity for different recombination rate constants
k = [0.001 (top), 0.00686, 0.0470, 0.322 (bottom)] d1,2. Right: Field of half-saturation (top),
location of (low-field) minima and maxima of the field-dependence of the singlet yield
(centre) and absolute values of MFEs for a saturating magnetic field and at the character-
istic minima (bottom), all represented as a function of the recombination rate constant
k.
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Figure 3.15: Powder averages of the singlet yield for a dipolarly coupled spin-
triad in an equilateral triangular configuration. Left: Dependence of the singlet
yield on the magnetic field intensity for different recombination rate constants k =
[0.001 (top), 0.00686, 0.0470, 0.322 (bottom)] d1,2. Right: Field of half-saturation (top), loc-
ation of (low-field) minima and maxima of the field-dependence of the singlet yield (centre),
and absolute value of the MFEs for a saturating magnetic field and at the characteristic
minima and maxima (bottom), all represented as a function of the recombination rate
constant k.
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Figure 3.16: Powder averages of the singlet yield for a dipolarly coupled spin-triad in an
isosceles triangular configuration, with the third radical at a distance of 2 r1,2 from radicals
1 and 2. Left: Dependence of the singlet yield on the magnetic field intensity for different
recombination rate constants k = [0.001 (top), 0.00686, 0.0470, 0.322 (bottom)] d1,2. Right:
Field of half-saturation (top), location of (low-field) minima and maxima of the field-
dependence of the singlet yield (centre), and absolute value of the MFEs for a saturating
magnetic field and at the characteristic minima and maxima (bottom), all represented as a
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potentially spintronics

The main results of this chapter are:

- Adding a third radical means the hyperfine interaction is no longer categorically

required to see MFEs.

- The dipolar interaction can provide rich new features on its own, which can be

further tuned by the exchange interaction.

- The results are quite different in different geometries.

These results may be tested experimentally using EPR spectroscopy (Orton,

1969; Drago, 1992). For example, one may be able to test for the presence of some

of the new features presented in the figures in this chapter, which do not appear in

standard RPM measurements from the cited literature, by cross-referencing where

these features are forecast to appear with level crossing diagrams such as shown in the

appendix (Fig. 9.10. As EPR spectroscopy is able to detect magnetic splittings, the

spectrum obtained should show new peaks corresponding to the features introduced

into these diagrams by the D3M mechanism that would not be present under the

classical RPM. The tuning of the exchange interaction could also be tested in this way,

by observing shifts in these new features corresponding to changes in the strength of

the exchange.
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4. Lipid Peroxidation

There is a vast amount of literature in existence surrounding the subject of lipid

peroxidation reactions, their potential for deleterious influence on biological systems,

and the possibility of their being influenced by external magnetic fields - including

weak fields like that of the Earth. However, there also exists a fair amount of

controversy in the literature, as not all publications are created equal. It is this

controversy that will be addressed in this preliminary section, such that a critical

eye may be cast.

First, reviews shall be addressed. A review paper ought to critically appraise

the current state of knowledge regarding a given topic, however it is apparent that

in some cases the authors have not in fact read the papers they purport to review,

or, if they have, they are not being as critical in their appraisal as they claim. Ref

(Ghodbane et al., 2013b), is one such example. The authors claim that they provide

a critical review of the literature, yet they appear to report simply the abstracts of

other papers. In one particular case, they fail to highlight some obvious deficiencies

in a paper they are appraising, such as huge error bars and small sample sizes, and

instead simply present their results at face value. When compared with reviews

like those of (Valko et al., 2007; Kohen and Nyska, 2002), which highlight not only

important results but also the experimental methodologies used, limitations therein,

and ways in which future researchers should be careful to avoid falling into some of

the common pitfalls of the delicate experiments they discuss, the schism between

levels of quality becomes quite apparent.

The presence of reviews which fail to highlight limitations in experimental

methodology and results is likely a significant factor in why the controversy sur-

rounding lipid peroxidation still exists. One particular controversy surrounds effects
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involving thiobarbituric reactive species (TBARS), which has arisen due to variable

experimental quality in performing a related assay. TBARS are chemical species (usu-

ally aldehydes) that are produced in the final stage of a lipid peroxidation reaction,

and are commonly used to assay for the presence of peroxidation (Kohen and Nyska,

2002). Ref. (Kabuto et al., 2001) claims to use precisely this assay, and observe that

an external magnetic field has no statistically significant effect on iron-induced lipid

peroxidation reactions, aside from within a small window of effectiveness between

2mT and 4mT. Contrasted with the well-written, well-documented (i.e. reproducible)

study in Ref. (Lalo, Pankratov and Mykhaylyk, 1994) which claims to show that

an external field in the millitesla regime can in fact accelerate lipid peroxidation

reactions, one may quickly run into confusion. However, the former result should be

considered dubious due to their small sample sizes used in their experiments, and

also the staggeringly large error bars on graphs which claim to show a very slight

decrease or no overall trend. It is such deficiencies that Ref. (Ghodbane et al., 2013b)

failed to highlight, and may have inadvertently mislead other researchers.

Another more general area within which controversial results arise is in those

papers which provide little, or no, detail about their methodology. This is a problem

because it does not allow other experimentalists to reproduce, nor verify, the claimed

results and as such conflicting facts can arise. (Pliss et al., 2017), for instance,

presents a potentially interesting result, in that it claims to directly evidence two

magnetosensitive steps in an oxidative chain reaction, but gives no real indication

how the experiment could be replicated. This is a problem for both theoreticians

and other experimentalists, as experimental results which verify a particular theory

can entirely change the direction of a field of research if widely accepted. Avoiding

such an outcome is why it is critical that experiments are reproducible, and that

authors follow the example of, for example, (Lalo, Pankratov and Mykhaylyk, 1994;

Kohen and Nyska, 2002; Valko et al., 2007) in critically appraising and appropriately

documenting the protocols used.

The work comprising the remainder of this chapter is adapted from:

Sampson, C., Keens, R.H. and Kattnig, D.R., 2019. On the magnetosensitiv-
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ity of lipid peroxidation: Two-versus three-radical dynamics. Physical Chemistry

Chemical Physics, 21(25), pp.13526-13538, with permission from PCCP.

This chapter discusses lipid peroxidation reactions, and shows that the radical

dynamics therein are indeed magnetosensitive. The standard Radical Pair Mechanism

(RPM), and the newer D3M mechanism, are compared in the simulation of such

reaction schemes and it is found that while the RPM can produce MFEs in peroxyl

radical recombination, contrary to prior claims in the literature, D3M can give

rise to larger effects. One crucial piece of information that the RPM has not been

conclusively shown to elucidate is that the magnetosensitivity of lipid peroxidation is

concentration-dependent - this fact is only apparent once one considers the dipolar

interaction within the Hamiltonian. Further, it is shown that the inclusion of the

hyperfine interaction within the D3M model (noting that in Chapter 3 the model

was defined in the absence of hyperfine terms) does not lead to the abolition of

effects predicted by D3M. In fact, this generalization shows that the D3M effects can

be significant despite non-zero hyperfine interactions, i.e. in domains traditionally

attributed to the RPM. A final interesting conclusion is that the dipolar contribution

of the D3M model can actually to some degree immunize the MFEs predicted for

lipid peroxidation reactions to the influence of a strong exchange interaction as

expected to be present during, for example, the bond-forming recombination of lipid

peroxyl radicals.

4.1 Modelling Lipid Peroxidation with D3M

The aim of this section is the assessment of the RPM and the D3M with respect

to plausibility and relative importance. In particular, a toy model is provided,

which aims to give a first understanding, while (necessarily) neglecting many of

the intricacies of true reactive radical encounters in membranes. Attention is, in

particular, given to the recombination of lipid peroxyl radicals (reaction V), because

estimates based on established rate constants identify RO•2 as the most abundant

and long-lived (half-life of around 17s) radical species (Kohen and Nyska, 2002).

Fig. 1.4B gives a schematic of the considered recombination process. The radicals
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are assumed to encounter as F-pairs, i.e. with a random initial spin configuration.

Recombination in the singlet state can allow the formation of diamagnetic products

via an unstable tetroxide intermediate (Russell mechanism, reaction V in Fig. 1.4A)

(Russell, 1957). The radicals can undergo singlet-triplet inter-conversion due to

non-zero hyperfine interactions with magnetic nuclei (RPM) or the catalytic effect of

a third radical interacting with the primary radical pair through the electron-electron

dipolar interaction (D3M). If the inter-radical distance is small, this process will be

influenced by the exchange interaction (Adrian, 1979; Keens, Bedkihal and Kattnig,

2018). These coherent processes potentially afford a magnetic field sensitivity to the

recombination yield.

Due to the spin density of the peroxyl radicals being centred on the terminal

oxygen, for which all magnetic isotopes have insignificant natural abundance (again,

for 17O I = 5/2 the natural abundance is only 0.037%), the RPM has been deemed

insufficient for the process shown in Fig. 1.4B. Consquently, previous studies in

this area have associated magnetosensitivity with reactions that do not involve the

abundant peroxyl radicals (Kipriyanov Jr., Doktorov and Purtov, 2015; Pliss et al.,

2017).

In more detail, the model is based on the following observations. Peroxyl

radicals are considered as rigid cylindrical bodies. Based on the known membrane

area per lipid of 0.7 nm2 for 1-palmitoyl-2-oleoyl-sn-glycero-3-phospholipids (Hills Jr.

and McGlinchey, 2016) and a presumed hexagonal densest packing of the cylindrical

lipids in the membrane (packing density of circles on a hexagonal lattice: π
√

3/6 ),

an effective lipid radius of R = 4.5 Å has been estimated. Assuming furthermore that

the hydrophobic peroxyl groups aggregate at the membrane interior, the difference in

vertical position of the radical functionalities across the membrane can be neglected.

This yields an essentially two-dimensional model of circular “peroxyl radicals” on

the membrane plane.

A simple Hamiltonian is employed to calculate the singlet yield based on

multiple parameters, such as the hyperfine, dipolar, exchange and Zeeman interactions.

This Hamiltonian takes the form:
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Ĥ = Ĥhfi + Ĥze + Ĥdp + Ĥex, (4.1)

where Ĥhfi represents the hyperfine interaction, Ĥze represents the Zeeman terms,

Ĥdp represents the electron-electron dipolar interaction between radicals and finally

Ĥex is the Hamiltonian representing the exchange interaction. The interaction of the

magnetic field with the nuclei is not included, as it is negligible relatively to any of

the considered interactions. The functional form for the hyperfine interaction is:

Ĥhfi =
N∑
i=1

ni∑
j

aij Îij · Ŝi, (4.2)

where i labels a radical, Ŝi is the spin vector operator for electron i, N is the total

number of radicals in the system, ni is the number of coupled nuclei in radical i and

Îij is the nuclear spin vector operator of nucleus j in radical i. aij is the related

hyperfine coupling constant (assumed isotropic). The Zeeman Hamiltonian describes

the interaction of the electron spins with the magnetic field and has the following

form (in angular frequency units):

Ĥzee = ω ·
N∑
i=1

Ŝi, (4.3)

where ω is equal to gµB
~ B0 with B0 denoting the applied magnetic field. Here, we

have assumed identical radicals, each of which is associated with the same g-factor

of g ≈ 2. µB is the Bohr magneton and ~ is the reduced Planck’s constant.

The dipolar interaction between electrons is calculated by the point-dipolar

approximation:

Ĥdp =
N∑
i<j

Ŝi ·Dij · Ŝj (4.4)

= d(|rij|)
[
Ŝi · Ŝj − 3

(
Ŝi · nij

)(
Ŝj · nij

)]
, (4.5)

where,
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d(r) =
µ0g

2µ2
B

4π~r3
, (4.6)

rij is the vector connecting radicals i and j and nij is the unit vector parallel to rij.

Finally, the exchange Hamiltonian used is as follows:

Ĥex = −
N∑
i<j

J(|rij|)
(

1

2
+ 2Ŝi · Ŝj

)
, (4.7)

where i and j label radicals, and J(|rij|) is the exchange coupling constant between

the ith and jth radicals.

For the work presented here, it has been assumed that the system is generated

in a random encounter, i.e. ρ̂(0) ∝ 1. To calculate the recombination yields, a process

similar to that laid out in reference (Sosnovsky et al., 2016) has been followed, i.e.

by solving the stochastic Liouville equation of the form:

dρ̂(t)

dt
= −i[Ĥ, ρ̂(t)]− [K̂, ρ̂(t)]+ − keρ̂(t), (4.8)

where the spin-selective recombination is treated using the Haberkorn approach

(Haberkorn, 1976; Fay, Lindoy and Manolopoulos, 2018). ke is the escape rate

constant, which accounts for the diffusive separation of the N -radical system into

the bulk, scavenging and decay processes and all non-recombination processes in an

effective manner; [·, ·]+ indicates the anti-commutator and K̂ is given by

K̂ =
∑
i,j

kP (|rij|)
2

P̂
(S)
ij , (4.9)

where kP (|rij|) represents the singlet recombination rate constant between radicals i

and j (the left depopulation process at the bottom of in Fig. 1.4B). The projection

operator onto the singlet state is:

P̂
(S)
ij =

1

4
1− Ŝi · Ŝj. (4.10)

In terms of the operator
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Â = Ĥ − iK̂ (4.11)

the time-dependent density matrix is given by

ρ̂(t) = exp(−ket) exp(−iÂt)ρ̂(0) exp(+iÂ†t). (4.12)

Eq. (4.12) can be evaluated by finding the eigenvalues and eigenvectors of Â.

Denoting the latter by λ and T, respectively, the time integral over ρ̂(t) is given by:

∫ ∞
0

ρ̂ij(t)dt =
∑
k,l,m,n

Ti,k(T
−1)k,l ˆρ(0)l,m (T−1)∗k,m T ∗j,n

1

ke + i(λk − λ∗k)
. (4.13)

From this, one can calculate the recombination yield according to:

φP = 2Tr

[∫ ∞
0

ρ̂(t)dtK̂

]
. (4.14)

In order to quantify the effect the magnetic field has on the recombination

yield, one can define the MFE (χP ), which is calculated by:

χP (B0) =
φP (B0)− φP (0)

φP (0)
, (4.15)

where φP (B0) is the recombination yield at a magnetic field B0 and φP (0) is the

recombination yield at zero field.

In general, the MFEs depend on the relative position of the radicals and the

orientation of the magnetic field. This is as a result of the dependence of the electron-

electron dipolar (EED) interaction on ri,j as given in eq. (4.5) and the distance

dependence of the exchange coupling constants and recombination rate constants.

Here, an exponential distance dependence is assumed for the latter parameters:

kP (r) = kP,0 exp(−β(r − 2R)) (4.16)

and similarly
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J(r) = J0 exp(−β(r − 2R)), (4.17)

with R denoting the lipid radius. A common decay length β = 1.4 Å−1 is employed

for all exchange and rate terms.

The lateral diffusional displacement of lipids is estimated to be sufficiently small

in a biological membrane, such that it can be neglected during the short time-span

considered here (100 ns) in regard to the production of MFEs. Furthermore, it is

estimated that the spin-rotational relaxation of the lipids considered as rigid bodies is

slower than the characteristic time for the MFEs, as the rotational tumbling motion

is sufficiently slow. An in-depth discussion of these simplifying assumptions can be

found in the Appendix (section 9.2).

4.2 Results

4.2.1 Hyperfine coupling constants in lipid peroxyl radicals

In order to assess the possibility of hyperfine-mediated MFEs in the pairwise re-

combination of peroxyl radicals (reaction V in Fig. 1.4A), the hyperfine coupling

constants of selected peroxyl radicals have been calculated using density functional

theory. The basis set EPR-III and the exchange-correlation functional B3LYP have

been used; details are summarised in the Appendix (Fig. 9.2).

This analysis was undertaken despite discouraging claims in the literature

that the hyperfine-derived MFEs are impossible for RO•2, as the spin density was

exclusively concentrated on non-magnetic oxygen atoms (Kipriyanov Jr., Doktorov

and Purtov, 2015; Pliss et al., 2017). Surprisingly, this study of two peroxyl radicals

derived from the unsaturated fatty acid linoleic acid suggests that this is not the

case. Marked hyperfine interactions of the order of 10 MHz have been found for

the vicinal hydrogen atom, i.e. the hydrogen atom at the location of the peroxyl

group. Two different locations for the peroxide group were tested: carbon 9 and

13, and the stereochemistry of the adjacent double bonds was chosen as e and

z, and z and e, respectively (see Fig. 4.1). Herein, these lipids are referred to
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as 9ez and 13ze. Based on product analyses, these radicals are expected to be

central intermediates of the lipid autoxidation of linoleic acid and its derivative

lipids (Spiteller, 1998). A systematic scan of the dihedral angle that the peroxide

group makes with the backbone has been conducted. This analysis suggests that its

rotation is significantly hindered, even at T = 310 K. The high energy configurations

are 6.8 and 4.8 kJ/mol above the most stable rotamers of 9ez and 13ze, respectively.

The Boltzmann weighted average hyperfine coupling parameters have been evaluated

and are summarized in the Appendix (section 9.5).

For 9ez, the dominant hyperfine interaction at the vicinal hydrogen is character-

ised by a nearly axial tensor with an isotropic value of 13.5 MHz and anisotropy 14.8

MHz. For 13ze, the isotropic contribution and the anisotropy evaluate to 10.3 MHz

and 14.6 MHz, respectively. In addition to the vicinal hydrogen atoms, a few of the

hydrogen atoms in the neighbourhood of the peroxyl group exhibit small hyperfine

interactions (see Fig. 4.1). The isotropic values of these additional interactions are

smaller than 1 MHz in absolute value; the largest principal values approach 6 MHz

(see Appendix Fig. 9.2).

Below, is considered the effect of the isotropic hyperfine coupling constant of

the vicinal proton on the MFEs. For now the anisotropic components are disregarded

for two reasons: Firstly, the anisotropies are expected to be reduced by the molecular

motion. For example, fast rotation of 13ze about the axis of the carbon chain would

reduce the anisotropy from 14.6 MHz to 4.4 MHz (details shown in the Appendix,

Figs 9.3 and 9.4).

Secondly, considering anisotropic hyperfine interactions would unreasonably

complicate the discussion, which here is focused on qualitative description rather

than the quantitative reproduction of a particular MFE. In particular, all calculations

would be dependent upon a multitude of parameters describing the relative orientation

and their internal and rigid body dynamics. Even if this is desirable for a future

study, these parameters cannot currently be described in sufficient detail to warrant

this calculation.
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Figure 4.1: A: The structure of the isomers 9ez (top) and 13ze (bottom) of the linoleic
acid peroxyl radical. Labels indicate the Boltzmann-weighted average isotropic hyperfine
constant (T = 310 K) as the peroxyl group rotates. All coupling constants are shown
in MHz. B: 3D model of the 13ze isomer with graphical representations of the hyperfine
interactions. The left structure illustrates the hyperfine coupling constants at T = 310
K; the right structure shows the hyperfine interaction of the vicinal proton under the
assumption that fast rotation about the carbon backbone (axis shown as black line) averages
the hyperfine interaction (see Appendix Fig. 9.4).

4.2.2 MFEs in radical pairs (RPM)

In Fig. 4.2 are summarised the typical field-dependence of the recombination yield

for the encounter of two or three RO•2 radicals. The model calculations followed

the general layout as discussed above. In the pair-wise reaction of identical radicals

(N = 2), MFEs can only arise from the hyperfine-induced spin evolution. The

electron-electron dipole (EED) interaction and the exchange interaction do not mix

singlet and triplet states and no magnetosensitivity can arise from their action alone.

However, the large hyperfine interaction from the vicinal proton does provide a

magnetosensitive pathway that is unexpected in view of previous literature. This

is evident from model calculations taking into account the isotropic components as

derived in the previous section. In fact, if it were the only spin-coupling mechanism

(Fig. 4.2, left, grey lines), large MFEs with equally large low-field effects (LFE)

would be expected. The sign of the saturated MFE is negative, as expected for an

F-pair with dominant recombination efficiency in the singlet configuration, i.e. the

magnetosensitive spin dynamics resemble that of a triplet-born radical pair. The

LFE results from altered S-T0-mixing due to the alteration of conserved quantities

in the presence and absence of magnetic fields (Timmel et al., 1998; Lewis et al.,
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2018a; Lewis et al., 2018a). Its sizeable magnitude, as revealed by Fig. 4.2 (left),

is in line with the simplicity of the spin system as derived above. More complex

systems with many coupled nuclear spins typically yield smaller LFEs (Rodgers

et al., 2007). For radical pairs in membranes, however, lateral diffusion is slow

compared to the spin evolution, and it is happening in 2D so even fast motion would

not average it to zero. Hence the EED is not averaged out by molecular motion

and its effect of enlarging the singlet-triplet energy gap has a damping effect on

the MFEs. For the magnetic field perpendicular to the membrane plane, in the

presence of electron-electron dipolar coupling at the contact distance, the LFE is

completely suppressed (Figure 4.2, left, blue lines). Conversely, for ensembles of

randomly oriented two-radical systems, the LFE is preserved (Fig. 4.2, left, yellow

lines), albeit shifted to larger field intensities. In any case, marked MFEs for B0 < 1

mT appear possible. This is particularly true as our assumption of radicals at contact

is expected to overestimate the effective electron-electron dipolar coupling. For a

magnetic field comparable to the geomagnetic field (50 µT), MFEs of −3 × 10−5

are predicted by our model (compared to 0.011 without electron-electron dipolar

coupling), when using 10.3 MHz for the hyperfine coupling constant. Effects of the

exchange interaction are discussed below.

4.2.3 MFE caused or modulated by three-radical interac-

tions

In three-spin systems, MFEs can ensue even in the absence of hyperfine coupling

interactions from the electron-electron dipolar coupling. This effect has been shown

to elicit remarkable low-field sensitivity and magnetic field dependencies that can

differ from those inflicted by the RPM (Keens, Bedkihal and Kattnig, 2018). As in

the recombination of RO•2 radicals, the dipolar coupling is the dominant interaction,

and we expected the D3M to strongly impact upon MFEs in lipid autoxidation.

Hence, this possibility has been explored for a range of different scenarios.

In general, it has been assumed that the two radicals, henceforth referred to as

A and B, are at contact and hence the effect of a third radical, radical C, has been
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Figure 4.2: MFEs for two- and three-radical systems. Two radicals are always considered
to be at contact, i.e. at a distance of 9 Å, and thus able to recombine. In the three-radical
systems (panels B and C), the third radical position is scanned across the membrane
plane with excluded volume effects taken into account. For the two-radical system (panel
A), dashed lines indicate an isotropic hyperfine constant of 10.3 MHz for the vicinal
proton; blue solid lines represent 13.5 MHz. Interactions within the Hamiltonian have
been included according to the legend. In the three-radical system (panels B and C), the
blue solid lines indicate the maximum MFE with the location of C varied. Similarly, the
red solid lines indicate the minimum. Panel C applies to the MFE calculated from the
mean recombination yields of systems randomly oriented with respect to the magnetic field.
In each case, the exclusion of (solid lines) and inclusion of (dashed lines) the hyperfine
coupling with a coupling constant of 10.3 MHz (right) was considered. For B, the black
dashed and dashes-dotted lines indicate the maximal and minimal (most negative) MFEs
resulting from the third spin in contact with the radical pair. kP,0 = 0.2 ns−1 and ke = 0.01
ns−1.

investigated in relation to its position. Fig. 4.3 shows the MFE on the recombination

yield as a function of the location of C for the magnetic field oriented perpendicular

to the membrane plane. Graphs are displayed for the field intensities 50 µT, 1 mT

and 10 mT. Additional data for 100 mT are shown in the Appendix (Fig. 9.5); the

MFEs at 100 mT are similar to those at 10 mT, however larger. Here, radical A

has been placed at the coordinate (R, 0) and radical B at (−R, 0) of the membrane

plane, with R = 4.5 Å denoting the particle radius. Results are shown for the first

quadrant; the MFEs for the other quadrants are related by symmetry. The excluded

region surrounding the origin is inaccessible to radical C (likewise of radius R) due

to the finite size of the lipid radicals.

The left column of Fig. 4.3 highlights the effect of the dipolar coupling by

equating the hyperfine terms to zero. Evidently, large MFEs are induced by the mere

presence of the third radical. The effects are maximal for radical C positioned away

from contact by approximately 3 Å. In particular, isosceles triangular arrangements
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Figure 4.3: Dependence of the MFE χP in a three-radical system on the position of radical
C. The vicinal, isotropic hyperfine interaction has been considered (right, a = 10.3 MHz)
or disregarded (left). The magnetic field is perpendicular to the plane of the membrane
and the field strengths are (from top to bottom) 50 µT, 1 mT and 10 mT. Simulation
parameters: kP,0 = 0.2 ns−1 for all pairs of radicals, ke = 0.01 ns−1 and J = 0. χm, the
maximal absolute value of each MFE, is reported for each sub-panel. The colour bar
extends from −χm to χm.

of the radicals with a triangle height of approximately 12 Å appear to yield large

|χP |. For selected positions of radical C, the MFEs are larger than those found for

the radical pair model with hyperfine-induced spin mixing. The maximal MFEs

amount to 0.063 %, 9.03 % and 41.9 % in absolute value for the three shown field

intensities, 50 µT, 1 mT and 10 mT, respectively. While the figures bring to light

the locations of the maximal MFEs, the large effects overwhelm the feature that

significant MFEs can also ensue from rather remote C radicals. For example, for a

magnetic field intensity of 10 mT, χP = -6.5 % results with C at (20 Å, 20 Å), a

remarkable 25.3 Å (5.6R) away from the next closest radical. The inherent reactivity
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of C is inconsequential everywhere but at the boundary of the excluded volume

region. If C is assumed to be unreactive, the negative MFEs at this contact region

are further enhanced (as is shown in Fig. 4.4). A minimal χR of -63.3 % at 100

mT is then achievable compared to -47.9 % for a reactive radical C. Fig. 4.4 shows

the results, when a reactive C (left) or an unreactive C (right) is used. The results

appear to be largely insensitive to the level of reactivity of the third radical, with

only minor differences such as the magnitude of the MFE at contact when using

B0 = 1 mT. The location of the MFE, however, does not change in any significant

way.

If the isotropic hyperfine interactions are re-engaged, the location dependence

of the MFE reflects the simultaneous effects of the RPM and the D3M. With the

noteworthy exception of the low-field region, the predominant effect of the RPM is

the introduce a non-zero MFE when the radical C is moved great distances away

from the radical pair (see Fig. 4.3, right column for B0 > 1 mT). Other than that,

the features of the D3M are still widely present for small C separations. While

the MFEs here again exceed those predicted for the RPM alone, the presence of

the hyperfine interactions slightly attenuates the MFEs compared to the D3M-only

scenario. In particular, for B0 = 100 mT an MFE of maximal absolute value of -43.0

% is found, instead of -47.9 % from above. This discussion applies to moderate to

large field intensities (B0 > 1 mT). At 50 µT the situation is more interesting: As is

evident from Fig. 4.3 (top right panel), the dipolar coupling with radical C facilitates

comparably large and positive MFEs even for large distances (maximal |χR| = 0.066

%); this entails a sign inversion and more than 20-fold increase in magnitude with

respect to the RPM-only MFE (−0.003 %). The large spatial extent of the dipolar

coupling effect is revealed here in the sign change occurring at approximately 44 Å,

above which the RPM-induced effect becomes dominant. Here, we have assumed ai

= 10.3 MHz as suggested for 13ze by our DFT calculations. Qualitatively agreeing

conclusions can be drawn for aiso = 13.5 MHz, i.e. 9ez (see Appendix Fig. 9.5).

In order to concisely characterize the field dependence of χP whilst withholding

the complexity resulting from the position dependence of the D3M, the extremal
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Figure 4.4: MFEs when the third radical (C) is reactive (left) and unreactive (right) for
different magnetic field strengths. The magnetic field is perpendicular to the membrane
plane. The parameters are as follows: J = 0, kP,0 = 0.2 ns−1, ke = 0.01 ns−1 and
aiso = 10.3 MHz.

(i.e. the largest positive and smallest negative) MFEs shall be focussed upon. Fig.

4.2 (middle and right) gives a representation of the supremal and infimal MFEs

over all C locations as a function of the magnetic field intensity. Here two pertinent

scenarios are focussed upon: D3M-only (a = 0) and the mixed scenario with both

the hyperfine interaction (HFI) and EED included. The HFI-only situation is shown
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in Fig. 4.5).

Figure 4.5: Magnetic field effects (χP ) for a three-radical system when the HFI is included,
but EED is excluded. Parameters: aiso = 10.3 MHz, J = 0, kP,0 = 0.2 ns−1 and ke = 0.01
ns−1.

It merely serves to elaborate on the effect of the hyperfine interaction, but

cannot be physically realised as the electron-electron dipolar coupling does not

average to zero from molecular motion in membranes - at least not on the relevant

time-scale. Comparing the D3M-only and the mixed-mechanism calculations, it

becomes obvious that in the three-radical systems the electron-electron dipolar

coupling is the dominant interaction. While the hyperfine interaction has a small

damping effect on the D3M, it also moves the positive MFE-peak to a smaller

magnetic field intensity of 1.87 mT. Surprisingly, the MFEs generated by the D3M

(in the absence or presence of additional hyperfine interactions) can exceed those of

the hypothetical HFI-only scenario (Fig. 4.5), or the effects predicted for isolated

radical pairs (Fig. 4.2, left). In Fig. 4.2, the minimal and maximal MFE that results

from the three radicals in (pairwise) contact (dashed black lines) have also been

indicated. This analysis suggests that the extremal negative MFEs are generated by

the D3M from configurations with radical C offset from the AB-radical pair. On the

contrary, the maximal positive MFEs are typically generated with C in contact with

one or both of the radicals. These findings are in line with the exemplary positional

dependencies shown in Fig. 4.3.

As the orientational average of the electron-electron dipolar interaction is

zero, the question arises to what extent the D3M can elicit MFEs for ensembles of
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randomly oriented spin systems. The answer to this question is provided by Fig. 4.6,

which shows the dependence of the orientationally averaged MFE on the position

of radical C. The data clearly show that substantial MFEs arise from the D3M

even for randomly configured spin systems. For certain relative positions of the

radicals, MFEs of the order of -25 % at 10 mT are possible, both in the absence

and in the presence of isotropic hyperfine interactions of a = 10.3 MHz. Again,

the additional hyperfine interactions have a small damping effect on the MFEs for

moderate field intensities. For the low field intensities, “large” effects (≈ 4% at 1

mT) appear to result from the equilateral triangular geometry. This is especially

evident for the 50 µT magnetic field, but also visible at 1 mT - in particular for the

D3M-only systems. For 50 µT, in D3M-systems, the MFEs are small for all but this

particular configuration. On the contrary, if the hyperfine interaction is present as

well, MFEs are observed for a wide range of distances. While in this particular case

the MFE is predicted to be slightly larger in the isolated radical pair, in general

the D3M-induced MFEs exceed those of the RPM in pairs of radicals. For example,

for 10 mT, three-radical systems can elicit MFEs of -24.5 % (D3M-only) or -23.5 %

(D3M and HFCs), while -4.5 % resulted from the isolated, randomly oriented radical

pair. Fig. 4.7 provides more details on the orientational dependence of the MFE.

92



Figure 4.6: MFE of the average of the recombination yield when the magnetic field is
oriented randomly with respect to the plane of the radicals. Details as for Fig. 4.3 apply.
Without hyperfine (left) and with hyperfine (right, a = 10.3 MHz), field intensities from
top to bottom: 50 µT, 1 mT and 10 mT.
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Figure 4.7: Dependence of the MFE on the orientation of the magnetic field. The field
is rotated from parallel with z-axis to parallel with x-axis. Top: two-radical, middle and
bottom: three-radical system. Dipolar and hyperfine interactions are included, the latter
with a coupling constant of 10.3 MHz. Middle shows the minimum possible MFE and the
bottom shows the maximum possible MFE for variable positions of the third radical.
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4.2.4 Dependence on the orientation of the magnetic field

Here, it suffices to note that the anisotropy of the MFE, i.e. the maximal orientational

change relative to the mean MFE, can be substantial in the three-radical systems

(see Appendix Fig. 9.6). For the D3M-only systems, anisotropies of 21.5 % and 96.4

% for magnetic fields of 1 mT and 100 mT, respectively are found. Fig. 4.2 (right)

illustrates the field dependence of the minimal and maximal MFEs of randomly

oriented three-spin systems as a function of the magnetic field. It can be seen that

the orientational average favours MFEs at low magnetic fields and the positive MFEs

over those found for the B0-field perpendicular to the membrane plane. In particular,

in the rotationally averaged samples, the MFEs already arise at markedly smaller

field intensities than for the perpendicular field direction, 0.03 vs. 0.3 mT (compare

Fig. 4.2B and C). Fig. 4.7 shows the orientation dependence of the field-dependence

of the MFE. The onset behaviour is not dissimilar to that observed for radical pairs

(in the presence of the EED). However, the MFEs can be larger for the D3M by a

factor of more than 3.

4.2.5 Effects of the Exchange Interaction

The exchange coupling is expected to impact upon the spin dynamics of adjacent rad-

icals. In diradicals in solution, i.e. for averaged electron-electron dipolar interactions

but relatively constant exchange interaction, characteristic MFEs can result from

the S/T±-crossing (Turro and Kraeutler, 1980; Steiner et al., 2018). For immobilized

radical pairs, similar degeneracies of the electronic terms can ensue as a function

of the dipolar coupling and the external magnetic field (Efimova and Hore, 2008).

Here, the exchange coupling could compensate for the non-zero electron-electron

dipolar interaction, thereby boosting MFEs and their anisotropies at low magnetic

fields. Motivated by these findings, the dependence of our model of peroxyl radical

recombination in membranes on the exchange coupling interaction has been analysed.

Fig. 4.8 (A) shows the dependency of the MFE of the radical recombination yield

for the RPM as a function of the magnetic field and the exchange interaction. The

magnetic field was oriented perpendicular to the membrane, i.e. perpendicular to
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Figure 4.8: A: The MFE for the two-radical radical system when exchange is included.
An isotropic hyperfine constant of 10.3 MHz was used and the dipolar interactions were
included. B0 is perpendicular to the radical axis. B: The magnetic field required for a
MFE of 1% (red) and 5% (blue) for the same system as in panel A as a function of the
exchange interaction. C and D: The minimal and maximal MFEs for the three-radical
system when exchange is included. The hyperfine interaction is not included, but the
dipolar interactions were taken into account. B0 is perpendicular to the plane made by
the three-radicals. E: The field intensity for a MFE of 1% (red) and 5% (blue) for the
three-radical system used in C/D.

the RP axis. For large |J |, the MFE is characterized by the crossing of the S state

and a superposition state of T+ and T−. Disregarding the hyperfine interaction, the

crossing field, Bc, can be calculated analytically. It is found that:

gµBBc

~
=

√
4J2 − dJ − 1

2
d2 (4.18)

with J = JA,B and d = dA,B > 0 denoting the largest eigenvalue of the electron-

electron dipolar coupling tensor. For Bc = 0, the crossings occur for J = −1
4
d and

J = 1
2
d, in agreement with (Efimova and Hore, 2008), but using a different convention

for the dipolar coupling parameter.

In Fig. 4.8A, Bc, as given by eq. 4.18, has been overlaid on the MFEs (dashed

lines). It is apparent that the expression predicts the location of the positive MFEs
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for larger, in absolute value, exchange coupling constants. For these regions, the

involved superposition state of T+ and T−, approaches the pure states T− and T+,

for positive and negative J , respectively, suggesting that the scenario is similar to

that for S/T±-crossing in the absence of electron-electron dipolar coupling. For

smaller J , the hyperfine and the exchange coupling have to be treated equally and

complex MFEs ensue. Fig. 4.8B gives the magnetic field intensities that are necessary

to elicit MFEs of 1 % and 5 %, regardless of their sign. Two regions of high low-field

sensitivity are evident around J = −0.53d and J = +0.35d, for which a 1 % MFE

can be induced by magnetic fields as small as 0.24 mT and 0.35 mT, respectively.

For J = 0, a markedly higher field of 1 mT is necessary.

Fig. 4.8C to 4.8E addresses the J-dependence in the three-spin scenario. In

order to highlight the effect due to the D3M mechanism, no hyperfine interactions

have been considered here. The density plots in Fig. 4.8C and 4.8D give the maximal

and minimal MFE realizable through the presence of the third radical. The plots

show a positive peak of the MFE for large |J |, which resembles that found above for

the radical pair scenario and is attributed to a level crossing of S and T+/T−-states.

However, here, it is shifted to weaker field intensities compared to Bc, eq. 4.18, for

the radical pair at contact. Furthermore, the MFEs are found to be larger for the

D3M-coupled three-radical system than for the radical pair. What is, however, even

more remarkable is the fact that the MFEs in the low-field region do not vanish for

large |J |. In particular, Fig. 4.8C and 4.8D shows marked MFEs in the B0 < 1 mT

region regardless of J , which are absent from the RPM model, Fig. 4.8B, except

for the two peculiar Js identified above (i.e. −0.53d, +0.35d). This is even more

prominent in Fig. 4.8E, which plots the field intensities that are necessary to elicit

MFEs of 1% and 5% as a function of J . This plot reveals the following: Firstly,

in general, lower magnetic field intensities are necessary to generate a 1% MFE

for the D3M than for the RPM acting on radical pairs. Secondly, large |J | values

do not necessarily have a detrimental effect on the low-field sensitivity. E.g. a 1%

effect results from Earth-like magnetic field intensities of 56 µT in the presence of

a 385 MHz exchange coupling. Any exchange coupling in the range of 200 to 600

97



MHz gave rise to similar effects. For negative J , slightly larger field intensities are

required, which, however, are still smaller than for the RPM. E.g., for −32 MHz, a

field intensity of 0.1 mT was required for a one percent effect.

4.3 Discussion

D3M offers a pathway to unorthodox MFEs. For systems with non-zero hyperfine

interactions, D3M can both boost and suppress MFEs relative to those expected

from the classical RPM depending on the position of the third radical. For low

fields, it can give rise to MFEs of flipped sign (such as those shown in Fig. 4.3

for B0 = 50 µT). Unlike the RPM in radical pairs, D3M is applicable to radicals

without hyperfine interactions and for ∆g = 0. This is an important realisation, as

it suggests MFEs for a large class of radical reactions that have not been assumed

to be magnetosensitive. One system of this kind where this could be important is

the recombination of two RO•2 radicals. Here, magnetosensitivity was previously

precluded, because of a presumed absence of hyperfine interactions that resulted

from the electron density being concentrated on the oxygen atom (Kipriyanov Jr.,

Doktorov and Purtov, 2015; Pliss et al., 2017). This assumption is contrary to our

investigation as summarised above, which does suggest significant non-zero hyperfine

interactions of the vicinal protons. While this finding does suggest MFEs due to the

conventional pairwise RPM, the D3M mechanism could nonetheless be relevant as it

can produce stronger MFEs and explain a remarkable low-field sensitivity, which is

robust in the presence of large exchange couplings.

As a consequence of the D3M, characteristics of the field dependence of the

recombination yield (size of MFEs, width, LFE) will depend on radical concentration.

We can estimate the required concentrations for the model of a circular “microreactor”

containing a radical pair and an additional radical. We calculate the expectation

value of the MFE if the radical and the radical pair are independently distributed over

this microreactor while conforming to the excluded volume requirements resulting

from the finite size of the radicals:
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χr =
1

V

∫ Ω−R

0

dcddc

∫ 2π

0

dϕc

∫ π/2

0

dϑab

∫ Ω−R

0

dabddab

I(dc, ϕc, dab, ϑab)χr(ra(dab, ϑab), rb(dab, ϑab), rc(dc, ϕc)), (4.19)

where the indicator function I is given by:

I(dc, ϕc, dab, ϑab) = Θ(2R− rac)Θ(2R− rbc)Θ(Ω−R− ra)Θ(Ω−R− rb), (4.20)

with Θ denoting the Heaviside theta function and the location of radical A and B in

the membrane plane, i.e. xy-plane, given by

ra,b(dab, ϑab) = x̂(dab ±R cosϑab)± ŷR sinϑab. (4.21)

Here, the upper sign refers to radical A and the lower to B. The Cartesian unit

vectors have been represented by hatted quantities. The location of radical C is

rc(dc, ϕc) = x̂dc cosϕc + ŷdc sinϕc. (4.22)

The indicator function ensures that the radicals are always separated by at least

2R and that the radicals are confined within the microreactor of radius Ω. V is the

phase space volume, i.e. the value of the integral over the indicator function.

Fig. 4.9 summarizes the dependence of the MFE on the size of the microreactor

for Ω up to 10R. For the scenario that the external magnetic field is perpendicular

to the membrane plane and that the EED coupling is the only relevant interaction

between the radicals (D3M-only), it is found that the MFE decreases to approximately

−30% as the surface concentration increases to approximately 0.5 nm−2. For the

highest possible concentration, which corresponds to an equilateral arrangement of

the three radicals in mutual contact within a microrector of radius Ω = ( 2√
3+1

)R,

the MFE amounts to −32%. However, in many respects the MFEs associated with

the equilateral triangular configuration do not appear as a smooth progression of
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the MFE at a lower surface concentration. It is furthermore noteworthy that the

MFE increases faster at low concentrations, i.e. for surface concentrations below 0.15

nm−2, than for higher concentrations. While large effects are obviously favoured by

high concentrations, for Ω = 10R, which corresponds to a surface concentration of

merely 0.047 nm−2, a respectable MFE of −5% ensues nonetheless. If both EED

interactions and HFIs are considered, the MFEs at high surface concentrations

resemble those for the D3M-only scenario. At low concentrations, on the other hand,

the presence/relevance of the RPM is obvious, which leads to a levelling off of the

MFE at -13% for small concentrations. The trend of the MFE vs. the microreactor

size follows that of the case for the EED system, in that the MFE increases in

absolute value as the surface concentration increases. A surface concentration of

approximately 0.2 nm−1 leads to the doubling of the MFE over that characteristic for

isolated radical pairs and the RPM. For both discussed scenarios the half-saturation

widths, i.e. the magnetic field for which half the saturating MFE is achieved, increases

with increasing surface concentration (see Appendix, Fig. 9.7), but it does so in

a different way depending on whether hyperfine interactions are present or not.

Furthermore, for both scenarios, no marked low-field feature is obvious. In the

Appendix, are also presented data for confined three-radical systems subject to the

HFI only. For this purely hypothetical scenario, a large low-field effect peaks at

B0 ≈ 0.36 mT ensues. Its size, as well as that of the saturated MFE, decreases with

increasing surface concentration (see Appendix, Fig. 9.9).

This analysis has also been extended to spin systems that are randomly oriented

with respect to the external magnetic field (powder average). Remarkably, in this

scenario, a feature resembling the LFE of the RPM is evident from the magnetic field

dependence even in the absence of HFIs, as is shown in Fig. 4.9. While this peak of

positive MFE resembles that of the hyperfine interaction-derived low-field effect, it

here is the result of the EED-mediated process, which gives rise to spiky features at

low fields, as anticipated from (Keens, Bedkihal and Kattnig, 2018). The low-field

peak is located at approximately 0.8 mT and its amplitude increases with increasing

surface concentration up to 0.2 nm−1, beyond which it is approximately constant at
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2%. At higher fields, the usual response and trends as described above apply. As the

saturated MFE grows, in absolute value, faster than the low-field feature, its relative

amplitude decreases as the microreactor radius is reduced. Fig. 9.8 in the Appendix

summarises the characteristics observed for this new kind of LFE.

It is generally remarkable that the third radical can induce effects from a

remote distance. The nature of this effect is position- and orientation-dependent, as

shown in Fig. 4.3 and in the Appendix (Fig. 9.5).

Yet, the net effect does not disappear when the powder average of the system

is taken; cf. Fig. 4.6. Although assumed in our calculations above, the third radical

does not necessarily have to be of the same kind as those forming the reactive radical

pair. In particular, more stable radicals such as those derived from radical scavengers

could act as the third, i.e. “bystander”, radical. Ultimately, this could mean that

radical scavengers, while acting to reduce the effect of dangerous free radicals, could

promote MFEs via the D3M as they give rise to long-lived radical species upon

scavenging ROS, etc. (Lobo et al., 2010). These MFEs could enhance or counteract

the accumulation of free radical damage depending on the relative position, the

properties of the individual radicals and the magnetic field intensity, as outlined

above.

An important property of the D3M is the immunisation to large exchange

coupling, which is evident in Fig. 4.8 (C to E). This property is expected to be

particularly relevant to radical reactions that involve bond formation (and thus

positive Jex), in systems of reduced mobility, for which no efficient pathways for

radical separation and re-encounters are available. This evidently applies to many

radical reactions in membranes or other biological environments. For these systems,

the average exchange interaction of the reactive radical pair is expected to dominate

over magnetic interactions. However, if a third radical were present, comparably large

MFEs could be facilitated even for low fields as shown in Fig. 4.8. This might be one

of the reasons why MFEs in biological systems are often found to be associated with

conditions of oxidative stress. Such effects are, for example, detailed in the review

by Valko et al.(Valko et al., 2007). The magnetosensitivity of such reactions could in
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Figure 4.9: MFEs resulting from the D3M for circular microreactors. For panel A, the
magnetic field of the top and middle rows are perpendicular to the membrane plane. The
top row indicates a system without hyperfine interactions, the middle indicates the case
when the hyperfine coupling constant in all 3 radicals is 10.3 MHz and the bottom row
indicates the orientational average of the top row (dashed lines represent the unique case
of the radicals in an equilateral triangle geometry). Panel A scans the magnetic field,
and panel B shows the MFEs as a function of the surface concentration. All the other
parameters are the same as for Fig. 4.2.

principle have a significant impact on the long-term risk assessment of magnetic field

exposure, as oxidative stress has been linked to the pathogenesis of several human

diseases including, notably, cancer (Barnes and Greenebaum, 2018). Clearly, many
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more experimental and theoretical studies will be necessary to substantiate or refute

this possible link. Here, only one more puzzle piece is provided to the understanding

of which processes are to be considered in the first place.

As a consequence of the possible dependence of MFEs on concentration, as

we propose here, it is suggested that study protocols, in particular in the biological

context, ought to not only control the exposure conditions, but also regulate and

document absolute radical concentrations. Only in this way can the reproducibility of

the results be ensured, the underlying MFE be fully characterized and its mechanism

unequivocally established. Conversely, it is not inconceivable that the irreproducibility

haunting many exposure studies of biological systems resulted from concentration-

dependent shifts in the MFE-generating mechanisms.

In principle, interesting MFEs could also result from the dipolar interaction

between more than three radicals. While the mechanism only requires passing

encounters of radicals, these encounters are obviously progressively less likely as

the number of radicals increases. The exceptions to this are reactions in which

radicals are generated with high local concentrations, e.g. such as in the context of

ionising radiation interacting with biological tissue. In ion-beam therapy, huge local

concentrations of hydroxyl radicals ensue in the surroundings of the so-called Bragg

peak (Desouky and Zhou, 2016; Haume et al., 2018). While their short lifetime

surely required high magnetic fields to induce MFEs, these radical clusters could be

subject to MFEs due to a DnM with n > 3.

On the whole, these results show that, in theory, unusual MFEs are possible

in the oxidative degradation of phospholipids. This could provide an explanation

for the unorthodox MFEs observed in (Kabuto et al., 2001). Yet, we refrain at

this stage from a direct comparison, as high-quality data of the field-dependence

of the MFEs are currently lacking, both, for complex in vivo systems and in vitro

models. However, our calculations do reproduce the conclusion that the rate of lipid

peroxidation of 1,2-dioleoylphosphatidylcholine liposomes increases even with small

fields (Lalo, Pankratov and Mykhaylyk, 1994).
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4.4 Conclusions

Model calculations have been presented that demonstrate that the recombination

of lipid peroxyl radicals is expected to be magnetosenstive. It has been shown that

this magnetosensitvity is underpinned by the classical hyperfine mechanism, i.e. the

RPM, as acting in radical encounter pairs, and, if the local radical concentration is

sufficient, the dipolarly mediated spin dynamics in groups of three radicals (D3M).

The suggestion of an RPM-based MFE of the symmetric recombination reaction

of peroxyl radicals is in deviance with previous suggestions, which opposed this

possibility with reference to the supposedly strong localisation of the spin density on

the oxygen in the peroxyl groups, which precluded significant hyperfine interactions.

Here, DFT calculations have been employed to show that this picture is ill-conceived,

significant HFIs are observed for the vicinal proton and, to a lesser extent, a few

other protons, and that RPM-derived MFEs are possible. These RPM-MFEs are,

however, strongly impacted by the electron-electron dipolar coupling and the exchange

interaction in the radical pair at contact, which suppresses marked effects to weak

magnetic fields, i.e. the well known low-field effect.

It has been shown that the D3M model, previously introduced in (Keens,

Bedkihal and Kattnig, 2018), is relevant to the considered scenario of peroxyl radical

recombination if the local surface concentration is of the order of 0.1 nm−1. This

alternative mechanism has interesting properties: the third radical can induce effects

even if it acts only as a remote “bystander”, and is not involved in the actual

recombination process by means other than its long-range electron-electron dipolar

coupling interaction. A large variety of MFEs can result from this interaction, as

shown above. The D3M could be particularly relevant for the low-field response of

the recombination process. This is the consequence of two surprising effects. Firstly,

in the presence of a third radical, the D3M-MFEs are to some degree immunised

to the effect of strong exchange interactions, which are expected to reign in the

recombination processes under bond-formation. Second, a feature resembling the

low-field effect emerges from the D3M for randomly oriented samples. While this was

anticipated based on a previous study (by the same authors) of idealised three-radical
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systems (Keens, Bedkihal and Kattnig, 2018), it is remarkable that it generalises

to the more realistic conditions (e.g. explicit consideration of recombination) used

here and emerges despite the short lifetime of the three-radical system. This result

demonstrates that, besides the RPM, the D3M is a second mechanism for a dedicated

low-field response of radical reactions. An important conclusion of our study is that

MFEs in lipid autoxidation, as well as more generally, could perhaps depend on the

absolute radical concentrations as a consequence of its impact on the probability of

three-radical encounters. This stipulates that studies of the effect of magnetic fields

on biological systems should also report radical concentrations and procedures to

ensure a constant radical background and antioxidant levels. Any parameter that

impacts radical accumulation, e.g. light exposure, ought to be strictly controlled. In

this context it is interesting to note that biological MFEs, i.e. MFEs on the level of

cells or entire organisms, are often implicated with oxidative stress and/or radical

promoting pre-exposures. Here has been established the plausibility of arguments of

this form, and it is hoped that further experimental studies along these lines will

be conducted, moving the field ever closer to a comprehensive understanding of the

mysteries of MFEs in biology.

The main results for this chapter are:

- D3M effects are not abolished when hyperfine interactions are re-introduced.

- Unlike previous opinion in the literature, the concentration of radicals does in

fact seem to affect the observed MFEs.

- Contrary to some of the controversy in the literature (previously addressed),

lipid peroxidation reactions do indeed seem to have magnetosensitive reaction

pathways.

- Following on from the geometric observation of chapter 3, optical isomerism

has been shown to affect MFEs.

Experimentally, the next stage is to devise some tests that could be performed

to examine these predictions, thus making a clearer link between these results and

both the literature and physical reality. For example, it may be worth trying to
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check that the magnitude of the LFE diminishes as the system gets more complex.

This could be done for both more complex molecular structures, and higher radical

concentrations. The effect of concentration could be taken from a physically relevant

scenario like a radiotherapy protocol, in order to ground these predictions in physical

relevance. There is an expected energy gap enlargement caused by the EED, even

for planar membrane MFEs, so a similar EPR approach to that described at the end

of chapter 3 could be taken here to find said splittings. It might also be interesting

to deliberately use some species, e.g. superoxide, that are known to have no native

hyperfine interactions to see if one can still measure the effects. If the sign of the

MFE can be measured explicitly and reliably under these conditions, this could also

be used as a way to show that the LFE manifests as predicted. Orientational effects

could perhaps be tested by rotating static magnets.
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5. How symmetry-breaking can

amplify MFEs

This chapter is adapted from:

Keens, Robert H., Sampson, Chris and Kattnig, Daniel R. , How symmetry-

breaking can amplify the magnetosensitivity of dipolarly coupled n-radical systems,

The Journal of Chemical Physics 154(9), eprint: https://doi.org/10.1063/5.0041552,

with the permission of AIP Publishing.

In systems of more than two reactive radicals, the radical recombination

probability can be magnetosensitive due to the mere effect of the inter-radical electron-

electron dipolar coupling. Here, it is demonstrated that this principle, previously

established for three-radical systems, generalizes to n-radical systems. The focus is

on radical systems in the plane and the effects of symmetry are explored, in particular

its absence, on the associated magnetic field effects (MFEs) of the recombination

yield. It is shown, by considering regular configurations and slightly distorted

geometries, that the breaking of geometric symmetry can lead to an enhancement of

the magnetosensitivity of these structures. Further to this, it is demonstrated the

presence of effects at low-field that are abolished in the highly-symmetric case. This

could be important to the understanding of the behaviour of radicals in biological

environments, in the presence of weak magnetic fields comparable to the Earth’s, as

well as the the construction of high-precision quantum sensing devices.
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5.1 Introduction

In Chapter 3, D3M, which highlights the electron-electron dipolar (EED) coupling as

a possible source of MFEs on radical recombination reactions in (partly) ordered, i.e.

immobilized, systems of three radicals, was introduced as an alternative mechanism

to offer a new perspective on biologically relevant chemical magnetosensitivity. The

mechanism requires that more than two radicals simultaneously interact via the EED

interaction, which can be the case even at low radical concentrations due to the slow

decay of the dipolar interaction with distance (Keens, Bedkihal and Kattnig, 2018).

D3M is distinct from other three-radical effects, such as the chemical Zeno effect,

its use for quantum teleportation (Salikhov, Golbeck and Stehlik, 2007; Rugg et al.,

2019), etc. as it realises an intrinsic magnetic field-sensitivity independent of hyperfine

interactions. The effect has been suggested, as detailed in the previous chapter, to

explain the putative magnetic field sensitivity of lipid autoxidation (Sampson, Keens

and Kattnig, 2019), which is characterized by the recombination of radicals for which

the hyperfine interaction is small compared to the EED coupling, and to enhance the

cryptochrome compass sensitivity by an nonreactive ”bystander” radical (Babcock

and Kattnig, 2020). These findings are noteworthy insofar as in the RPM the effect

of the EED interaction is well known to suppress MFEs in weak magnetic fields by

energetically uncoupling the singlet and triplet manifolds, thereby suppressing their

coherent interplay. On the other hand, the D3M effects appear to persist in the

presence of both hyperfine and exchange interactions (Keens, Bedkihal and Kattnig,

2018; Sampson, Keens and Kattnig, 2019; Babcock and Kattnig, 2020).

In this chapter, D3M is generalised to treat larger systems of n spins, with

n ≥ 3, which shall be referred to as DnM. To the authors’ knowledge, MFEs in

systems of more than three radicals have not been studied at all in this context, and

it is upon these systems that focus is primarily placed. Three-spin systems have

been considered as a baseline for the DnM mechanism and built upon from there to

observe new, surprising, and potentially biologically-relevant MFEs in these n ≥ 3

systems.

This chapter is structured as follows: In Model and Computation the D3M
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model is generalised to DnM, with n ≥ 3, the pertinent parameters and assumptions

of the model are summarised, and it is detailed how the Liovuille-von Neumann

equation was solved for these systems. A qualitative model for DnM, based on

an equipartitioning argument over accessible states for the case that one radical

pair recombines, is also presented. In Results, characteristic features of DnM for

selected systems are presented, whereby the focus is on planar systems, as inspired

by (Sampson, Keens and Kattnig, 2019). The core theme is that systems with small

geometric irregularities show stronger, more diverse MFEs, including new effects at

low-field, when compared with their counterpart highly symmetric systems. Regular

polygons are explored first, alongside their distorted counterparts, then move on to

the special case of the linear chain.

With regard to the linear chains, the four-spin configuration forms the basis of

the discussion but analogous results for three to six spins are further shown. Finally

the results, their significance, and their potential applications to various areas of

quantum biology are discussed in detail.

5.2 Model and Computation

Here, the premise of the D3M mechanism (Keens, Bedkihal and Kattnig, 2018),

as shown in chapter 3, is used as the starting point, and extended to DnM with

n > 3, where n is the number of interacting radicals. The effect of the oft-neglected

electron-electron dipolar interaction is considered as the main contributor to MFEs.

The DnM Hamiltonian (in angular frequency units) is thus:

Ĥ = Ĥdd + Ĥex + ĤZe

=
∑N

i<j Ŝi ·Di,j · Ŝj −
∑N

i<j Ji,j

(
1
2

+ 2Ŝi · Ŝj
)

+ γB0 ·
∑N

i Ŝi,
(5.1)

where the individual summands account for the electron-electron dipolar (Ĥdd),

exchange (Ĥex) and Zeeman interactions (ĤZe). B denotes the applied magnetic

field, B its intensity and γ = gµB
~ with g denoting the electron g-factor. The

Larmor precession frequency is γB/2π. Here, It has been assumed that the Zeeman
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interaction is isotropic and identical for all radicals on account of the present focus

on the MFEs of organic radicals in weak magnetic fields, i.e. g ≈ 2; the anisotropies

of g are negligible for moderate B.

The dipolar interaction Hamiltonian, calculated within the point-dipole ap-

proximation, is of the form:

Ŝi ·Di,j · Ŝj = di,j(ri,j)
[
Ŝi · Ŝj − 3

(
Ŝi · ei,j

)(
Ŝj · ei,j

)]
, (5.2)

where ei,j is a unit vector in the direction of the vector connecting radical i and j at

distance rij and:

d(rij) =
µ0g

2µ2
B

4π~r3
ij

. (5.3)

Finally, the exchange Hamiltonian is:

Ĥex = −
N∑
i<j

J (|rij|)
(

1

2
+ 2Ŝi · Ŝj

)
, (5.4)

where J (|rij|) is the exchange coupling constant between the ith and jth radical.

Pairwise recombination was considered in this model. Making use of the

Haberkorn approach (Haberkorn, 1976), this gives rise to a master equation of the

form:

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
−
[
K̂, ρ̂

]
+
− keρ̂, (5.5)

where the bracket []+ denotes the anti-commutator and the recombination operator

K̂ is given by:

K̂ =
∑
i<j

kS (|rij|)
2

P̂
(S)
i,j , (5.6)

where kS (|r|ij) represents the singlet recombination rate constant between radicals i

and j. Here, P̂
(S)
i,j is the projection operator onto the singlet subspace of radicals i

and j, which can be written in the form:

P̂
(S)
i,j =

1

4
1̂− Ŝi · Ŝj. (5.7)

.
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Eq. 5.5 allows us to formulate the time-dependent density matrix as:

ρ̂(t) = exp(−ket) exp(−iÂt)ρ̂(0) exp(iÂ†t), (5.8)

where ke is the escape rate constant and Â is a non-Hermitian effective Hamiltonian

operator that accounts for coherent evolution and recombination:

Â = Ĥ − iK̂. (5.9)

In eq. 5.8, an initial density matrix, ˆρ(0) = 1̂/2n, proportional to the identity matrix,

was used to simulate a random initial spin configuration.

The reaction yields can be evaluated by finding the eigenvalues and eigenvectors

of the effective Hamiltonian, denoted by λ and T respectively, and then computing

the time-integrated density matrix from:

∫ ∞
0

ρij(t) =∑
k,l,m,n

Ti,kT
−1
k,l ρl,m(0)(T−1)∗k,mT

∗
j,n

1

ke + i(λk − λ∗k)
,

(5.10)

where subscript indices denote matrix elements. Taking these quantities together,

the singlet recombination yield can be calculated:

ϕS = 2Tr

[∫
ρ̂(t)dtK̂

]
, (5.11)

which was used to quantify the effect that the applied magnetic field has upon the

recombination yield by defining the magnetic field effect (MFE) as:

χS(B) =
ϕS(B)− ϕS(0)

ϕS(0)
, (5.12)

where ϕS(B) is the singlet yield at an applied field of intensity B, and ϕS(0) is the

same quantity at zero-field.

In general, the MFE depends on the geometry of the recombining radicals due

to the distance-dependence of the EED interaction and of the parameters kS and
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J . For the latter parameters, both are assumed to have an exponential fall-off in

keeping with the typical distance dependence of the electron coupling matrix element

dictating electron transfer reactions. These take the form:

kS(|rij|) = kS,0 exp(−β(|rij| − 2R) (5.13)

and

J(|rij|) = J0 exp(−β(|rij| − 2R). (5.14)

In both of the above, the same decay rate, β = 1.4 Å−1 has been used. R is a

reference distance, which can be interpreted as the radical radius; here it was fixed at

7.5 Å. For rij = 2R, d1,2 thus was 15MHz. k−1
S,0 was 200ns, and k−1

e was 1 µs. B was

varied between 0.001 and 1000 mT and it was perpendicular with respect to the plane

of the reacting radicals. Solving eq. 5.5 in has been implemented in Python, whereby

an MKL-based implementation was relied upon for solving the eigenvalue problem

for non-Hermitian matrices. The computer code used is a generalisation of that

described in ref. (Keens, Bedkihal and Kattnig, 2018) for more than three-radicals;

this is included at the end of the Appendix. It covers an arbitrary number of radicals

including all interactions named above, in addition to hyperfine interactions, if

desirable. Being based on the eigenvalue decomposition of the effective Hamiltonian,

it aims at systems of moderate size. Larger systems could in principle by treated by

a Monte Carlo wavefunction approach (Keens and Kattnig, 2020), but are beyond

this presentation.

5.3 A qualitative model of magnetosensitivity of

a radical pair recombining in an environment

of radicals

A qualitative model that accounts for the MFEs of the kind discussed here can

also be offered. To this end, consider a pair of electron spins (radicals devoid of

hyperfine interactions) poised to undergo a spin-selective recombination reaction
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in the singlet state. Assume further that a reactive pair of spins interacts with

an environment of radicals, which are assumed unreactive, e.g. due to being too

distant to react or intrinsically unreactive. All n = ` + 2 radicals are assumed to

interact via EED interactions. Assuming that reactive radical pair is born in the

singlet configuration, it can be asked with which probability it will still be in the

singlet configuration at the moment of reaction. If the radical system is long-lived,

the recombination reaction slow and decoherent channels are insignificant, one can

assume that in first approximation the singlet probability upon recombination is

obtained by equipartitioning the initial population over all accessible spin states. In

weak magnetic fields for a random, i.e. asymmetric, geometric arrangement of spins

with equally arbitrary magnetic field orientation, all spin states will be coupled by

the EED interaction. Consequently, the long-time singlet probability will be 1
4
. This

also applies to an arbitrary, i.e. non-special, spin configuration in a plane. While

here the Hamiltonian can be decomposed into two blocks (assume that the plane is

perpendicular to the z-direction; the EED direction then only couples states with

a difference of total spin projection of ∆M = ±2, giving rise to two blocks), the

singlet probability still turns out as 1
4
. In high magnetic fields, on the other hand,

the Zeeman interaction is dominant and states of different total spin projection

M =
∑

imi are energetically separated such that no spin mixing, i.e. singlet state

redistributing, is possible between these states (while it remains intact within). The

number of ways by which the additional spins (with index 3 to n) can produce a

combined spin projection of M3,...,n =
∑n

i=3mi is
(

`
M3,...,n+ `

2

)
. A particular M can

then be realized by combining the singlet state of the reactive radical pair with the

M3,...,n = M states of radical 3 to n, or combining the T0 state of the reactive radical

pair with the M3,...,n = M states of radical 3 to n, or combining the T+ state of the

reactive radical pair with the M3,...,n = M − 1 states of radical 3 to n, or combining

the T− state of the reactive radical pair with the M3,...,n = M + 1 states of radical 3

to n. Thus, the number of states of projection M is

s(k) =

(
`

k − 1

)
+ 2

(
`

k

)
+

(
`

k + 1

)
, (5.15)
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where k = M3,...,n + `
2
. As the singlet configuration of spin 1 and 2 with projection

specified by k is initially generated in
(
`
k

)
ways, and the total number of initial

singlet states is 2` and only the singlet pairs recombine, the singlet fraction in the

equilibrated system is

pS→S(high field) =
1

2`

∑̀
k=0

1

s(k)

(
`

k

)2

=
`2 + 3`+ 4

4(`2 + 3`+ 2)

=
1

4
+

1

2n(n− 1)
.

(5.16)

Finally, the magnetic field effect is

χs→S =
pS→S(high field)− pS→S(low field)

pS→S(low field)
. (5.17)

This suggests that the MFE ought to decrease with n, which is exactly what

is found here for systems of related geometry. Practically, as can be seen below, in

systems of diverse mutual reaction possibilities and a symmetric or broken symmet-

rical configuration, a rich variety of MFEs ensues, which cannot possibly be grasped

by the argument presented here. Yet, this discussion provides at least a qualitative

description of the origin of the MFEs (in a particular scenario). An analogous

analysis can be carried out for a radical pair born in the triplet configuration and

recombining as a singlet state. As pT→S = 1
3
(1− pS→S), the singlet probability in

low fields is 1
4

and in high fields

pT→S(high field) =
1

4
− 1

n(n− 1)
. (5.18)

The näıvely predicted MFE is

χT→S = − 2

3n(n− 1)
. (5.19)
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5.4 Results

Here, planar systems of up to six radicals have been considered with the magnetic field

applied perpendicular to the plane of the radicals. While it may seem most natural

to consider regular polygons, simplices or an evenly-spaced linear arrangement (spin

chain) when generalizing D3M to more than three radicals, it was found that the

MFE profiles of such systems can be markedly changed, and often enhanced, with

respect to the weak-field sensitivity by the introduction of a small imperfection.

Specifically, regular polygons of up to six spins (point group Dnh), and linear

spin chains of three to six spins have been considered within the present study.

Schematics of the considered geometries and small imperfections introduced into

the regular structures can be seen in Figs. 5.1 (polygons) and 5.2 (linear chains).

The distortions used were small, and enacted upon one spin at a time. An example

pertinent to the distortions in regular polygons is the square systems presented in

Fig. 5.1, which differ geometrically only in the position of one spin. The cases of both

a small tangential distortion (by 0.75 Å or 1.5 Å) and a radial distortion (1.5 Å)

have been explored. The quantity d = 2R is representative of the distance between

radicals, and was fixed to 15 Å for all but displaced neighbouring spins. Similar

small distortions were applied to the other polygons studied. The coordinates of all

geometries are reported in the appendix 9.9.

With regard to the linear chains, two generic cases were considered: that of

a distortion occurring at the end of the chain (Ln,n in Fig. 5.2) and that of a shift

in the chain originating at a location within it (Ln,m (m 6= n) in Fig. 5.2). For the

latter case, for in-axis displacements, all spins following the displaced radical were

likewise rearranged to preserve the inter-spin distances between all but one pair of

spins in the chain (in the same way as moving the end spin would affect only one

pair, i.e. the terminal spin and its only neighbour). For all distortions, the minimal

distance of radicals was 2R. Within these two generic cases, distortions in each axial

direction were considered independently of each other, that is, a distortion along

either x, y, or z, the latter of which agrees with the direction of the applied magnetic

field.
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D6
D6,t D6,r

D5 D5,t D5,r

D4 D4,t D4,r

D3 D3,tD3,rD3,r�

Figure 5.1: Schematics of the distortions introduced into the regular polygon geometries.
The spins highlighted in red show the areas a which a distortion was applied. The shadowy
regions denote the undistorted geometries. The distorted geometries are shown next to
the regular geometries (labelled Dn) to illustrate how minor the applied distortions are
in comparison with the regular structure, with guiding lines between spin pairs included
to highlight subtle changes in the overall symmetry of the shape and thus the interaction
parameters in the spin Hamiltonian. In essence, radial and tangential displacements of one
spin are considered, indicated by the subscript labels ”r” and ”t”, respectively. Here, a
displacement of 0.05 and 0.1 parts of the inter-spin distance (2R) were assumed for the ”t”
and ”r”-variants, respectively. For the triangular geometry both a smaller (0.1× 2R; D3,r)
and a larger radial displacement (0.133× 2R; D′3,r) have been considered.

116



n-21 n-1 n

Ln

Ln,nx

Ln,ny

Ln,(n-1)x

Ln,(n-1)y

x

y

z

Figure 5.2: Schematics of the distortions introduced into the linear chain geometries. The
Ln case at the top shows the generic labelling convention for a linear chain of n spins,
and the spins highlighted in red show the areas a which a distortion was applied. The
shadowy regions highlight the difference between the regular and distorted geometries.
Distortions for which the red spin is displaced perpendicular (labelled as ”y” and ”z”,
which are perpendicular and parallel to the applied magnetic field direction) or parallel
(”x”) to the spin chain axis have been considered. For the x-displacements of the ith spin,
all spins following the ith were also displaced in order to maintain the same inter-spin
distance of 2R for all but the (i− 1, i)-pair.

Analysis is commenced by considering the MFEs predicted for the polygonal

structures. For the square-geometries of four spins, Fig. 5.3 shows the MFE on

the recombination yield in the singlet state, χS(B), as a function of the applied

magnetic field, B, and the exchange interaction J0. The MFE here is reproduced

for the regular square geometry (D4) and the radial (D4,r) and tangential (Dn,t)

distortions. In addition, Fig. 5.4 provides MFE data for the regular and radially

distorted pentagon. It was found that all structures considered exhibit a rich variety

of MFEs, whereby the recombination yield is attenuated in high fields. This is in

line with the predictions of the naive, qualitative model introduced above, provided

that (within this model) the initial state is assumed to be the triplet state of the

recombining pair. While the detailed simulations assumed a random initial spin

configuration, fast recombination in the singlet state is indeed expected to give rise to

spin dynamics resembling that of a triplet-born pair. The detailed calculations also

reproduce the naive prediction insofar as the high-field MFEs are decreasing with

increasing number of interacting spins, n. Indeed, MFEs of up to -0.28, -0.17, -0.11

and -0.06 were found for the regular polygons with n ranging from 3 to 6. What is

unexpected though is the behaviour upon minor geometrical distortions, as described
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next.

With reference to Fig. 5.3 and 5.4 (see Fig. 5.5 for the full version of the

pentagonal case - zoomed in here for ease and closeness of comparison with Fig. 5.3),

it is apparent that for the undistorted geometries, e.g. D4 and D5, the strongest

MFEs are confined to regions of weak exchange, and that there are very few regions,

if any, of low-field sensitivity. However, applying minor geometrical distortions,

such as D4,r, D4,t or D5,r in Figs. 5.3 and 5.4, the emergence of new regions of

strong sensitivity to moderate-to-high field intensities at moderate exchange, and

new regions of weak-field sensitivity, can be seen. In particular, it is remarkable that

the distortions often span new low-field effects below 1 mT and, in part, at field

intensities comparable to the Earth’s magnetic field and lower, that were completely

abolished in the high-symmetry case. What is particularly noteworthy here is that

these low-field effects can emerge for comparably strong exchange coupling constants.

For the distorted D5-geometries, e.g., the low-field effects clearly extend beyond

the considered window of |J0| < 3d1,2 (see Fig. 5.4). In higher fields, it is likewise

found that the primary peak of sensitivity is split to yield several regions of strong

moderate-to-high field sensitivity extending to larger, in absolute value, exchange

coupling. Taken together, these observations suggest that the distortion grants

resilience to the suppressive effects that the exchange interaction usually exerts by

energetically decoupling singlet and triplet states. Of further interest is the fact that

the effects produced by Dn,r, Dn,t, are very different. This suggests that it not only

matters that axes of symmetry are broken, but how this symmetry-breaking occurs.

As for the magnitude of the maximal effects, it is found that in the majority of cases

studied, the maximal |χS(B)| are comparable for distorted and regular geometries.

5.5 Linear Chains

The analysis continues with a discussion of the linear spin chains. Figs. 5.6 - 5.9

shows, for linear systems of between three and six spins (inclusive and respective),

the recombination yield in the singlet state as a function of the applied magnetic field

and the exchange interaction J0 between pairs of spins in both perfect (evenly-spaced)
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a)

b)

c)

D4

D4,t

D4,r

Figure 5.3: Heatplots showing the MFE, χS(B) of the square geometries as a function
of the exchange coupling parameter J0 and the magnetic field flux density, B. Panel a)
shows the profile obtained for the perfect square geometry D4, b) from distortion D4,t and
c) from D4,r. It can be seen that the two distorted geometries show numerous new regions
of sensitivity across all magnetic field strengths and exchange interactions studied.
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a)

b)

D5

D5,t

Figure 5.4: Heatplots showing the MFE, χS(B) of two pentagonal geometries as a function
of the exchange coupling parameter J0 and the magnetic field flux density, B pentagonal
geometries. Panel a) shows the profile obtained from the perfect pentagonal geometry D5

and panel b) that from D5,t. It can be seen that the distorted geometry shows numerous
new regions of sensitivity not available in the highly-symmetric case.

D
5, r

a)

D
5, t

b)

D
5

c)

Figure 5.5: MFE profiles for the pentagonal geometries. a) shows the profile obtained by a
radial distortion of one spin by 1.5Å, b) shows that for a tangential displacement of one
spin by 1.5Å, and c) shows the control case of the regular pentagon.
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and imperfect variations; cf. Fig. 5.2 for illustrations of the nature of the distortions.

The three-spin system has attracted particular interest in the perfect case due to the

emergence of a sharp spike (as discussed in chapter 3) of the singlet yield resulting

from a level crossing in low magnetic fields (Keens, Bedkihal and Kattnig, 2018).

Such spikes in MFE profiles are indicative of a region of high magnetic sensitivity, as

could potentially be realized in an optimized quantum navigational device design.

The linear chains share common features that are evident for all n studied. In

the symmetric case (exemplified by L4 in Fig. 5.7, panel a), the MFE is characterized

by a sharp feature of positive χS for negative J0, which extends to low field intensities,

and a broad plateau of negative χS for positive J0 and large B. With increasing n,

the maximal absolute value of the MFE is reduced (in agreement with the qualitative

model from above), the sharp low-field feature of positive χS is split into an increasing

number of components extending over an increasingly larger range of J0, and the

high-field plateau of negative χS broadens. Again, distortions, even if only minor

(by less than 10 % of the inter-spin distance), can have marked effects on the MFE.

For example, L4,3x (Fig. 5.7, panel d) shows an overall amplification of the MFEs

relative to the symmetric case, as well as a new region of weak-field sensitivity not

accessible for the latter. L4,4x (panel e) also shows new (but different) areas of

weak-field sensitivity, again showing that the particulars of the distortion are actually

important to the alterations in the MFE profile. The y-distortions, e.g. L4,4y (see

Fig. 5.7, panel c) on the other hand are overall attenuating the MFE, but do still

produce a new region of sensitivity to moderate-to-high field intensities at strong

exchange, thus providing exchange resilience not afforded by the symmetric case.

Finally, z-distortions, e.g. L4,3z (Fig. 5.7 panel f), show more subtle effects, the

most significant deviation from the symmetric case consisting in the emergence of

moderate-intensity weak-field effects at strong exchange. Other linear chains show

effects in a similar pattern to that described for L4. For example, for n = 5 too,

the most notable amplifications is provided by the x-distortions, L5,4x and L5,5x (see

Fig. 5.8). In general, considering the combined data, one can see three effects of

small-scale distortions: a) The onset of MFEs is more pronounced and occurs at
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more diverse exchange interactions for distorted geometries. b) Distorted geometries

produce new MFEs at high fields. c) Distorted geometries are more resilient to

strong exchange interactions. As for the mechanistic underpinning of the effect,

one can observe that weak-field MFEs are strongly impacted by quantum level

(anti-)crossings as a function of the applied magnetic field. Distorting the geometry

these interactions become more diverse and in some cases true crossings become

avoided crossings (Keens, Bedkihal and Kattnig, 2018). Such points are the regions

of highest sensitivity, and are represented as the sharpest regions in the MFE profile

of a system. For a qualitative illustration of how level crossings are influenced, see

Fig. 9.10 in the appendix.

122



L
3, 3z

L
3, 2z

L
3

L
3, 3x

L
3, 2y

L
3, 3y

a)

b)

c)

d)

e) 

f)

Figure 5.6: MFE profiles for the linear 3-spin geometries. a) shows the control case of the
evenly-spaced chain. b) shows the profile obtained from a 1.5 Å displacement of spin 2 in
the y-direction, c) shows the profile obtained from a 1.5 Å displacement of spin 2 in the
z-direction, and d) - e) show the profiles obtained from a 1.5 Å displacement of spin 3 in
the x-, y- and z-directions respectively.
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Figure 5.7: MFE profiles for the linear 4-spin geometries. a) shows the control case of the
evenly-spaced chain. b) and c) show the profiles obtained from a 1.5 Å displacement of
spin 3 and 4, respectively, in the y-direction, d) and e) show the profile obtained from a
1.5 Å displacement of spin 3 and 4, respectively, in the x-direction, and f) and g) show the
profiles obtained from a 1.5 Å displacement of spin 3 and 4, respectively, in the z-direction.
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Figure 5.8: MFE profiles obtained from distorting the five-spin linear geometry. Panel d)
shows the control case of the evenly-spaced chain, L5. Panels a) - c) show the distortions in
the y-direction: L5,3y and L5,4y, and L5,5y respectively. Panels e) and f) show the distortions
in the x-direction: L5,4x and L5,5x, respectively. Panels g) - i) show the distortions in the
z-direction: L5,3z and L5,4z, and L5,5z respectively.
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Figure 5.9: MFE profiles for the linear 6-spin geometries. a) shows the control case of
the evenly-spaced chain. b) - d) show the profiles obtained from a 1.5 Å displacement in
the y-direction of spins 4, 5, and 6 respectively. e) - g) show the profiles obtained from a
1.5 Å displacement, in the x-direction, of spins 4, 5, and 6 respectively and h) - j) show
the profiles obtained from a 1.5 Å displacement, in the z-direction of spins 4, 5, and 6
respectively.
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Figure 5.10: MFE profiles for the triangular geometries. a) and b) show the profiles
obtained for radial distortions of the apical spin, by 1.5 Å and 2.01 Å respectively. c) The
tangential displacement of one spin by 1.5Å. d) The control case of the perfect equilateral
triangle.
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Figure 5.11: MFE profiles for the hexagonal geometries. a) shows the profile obtained by a
radial distortion of one spin by 1.5Å, b) shows that for a tangential displacement of one
spin by 1.5Å, and c) shows the control case of the perfect hexagon.

5.5.1 Even smaller distortions produce the same effects

In many cases, even minor distortions can somewhat enhance the effect (e.g. for D3,r

the maximal absolute MFEs increases from 0.28 to 0.34 employing only a minor

radial displacement of 5% of the inter-radical distance; similar effects are seen for

the central x-displacements of linear chains; see below).

Similar conclusions can be drawn for the triangular geometry, and larger

polygons, in that applying a small distortion and thus breaking some of the axes of

symmetry again amplifies the effects at low-field and produces sensitivity to fields of

geomagnetic field strength and even lower, at more diverse values of the exchange

parameter. See Figs. 5.10 and 5.11 for figures analogous to the discussed pentagonal

and square cases. See also Figs. 5.12 - 5.14 for an illustration that even a radial
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distortion as small as 0.75 Å is sufficient to produce the effects shown here for

0.75 Å displacements.

5.6 MFE measure

In order to quantitatively capture the observations qualitatively summarised above,

a new measure M(B), is introduced defined by:

M(B) =
1

∆J

∫
|χS(B, J)|dist − |χS(B, J)|perdJ, (5.20)

where |χS(B, J)|dist is the absolute value of the MFE at a particular value of field

B of the distorted geometry, and |χS(B, J)|per is the same quantity for the perfect

geometry. ∆J is the range of exchange values that the integral is evaluated for; the

same exchange region was used as in the density plots above, i.e. J0 ranging from

−3d1,2 to 3d1,2 and, thus, ∆J = 6d1,2. A positive value of M(B) indicates that, at

the magnetic field B, on the average the MFE is enhanced by the distortion for the

considered range of exchange interactions.

M(B) has been evaluated for the analysed geometries (using Simpson quad-

rature). The results are shown in Figs. 5.15 and 5.16. In these figures one can see

that M(B) is almost always positive for weak to moderate magnetic fields. The

dose dependence shown in these figures represents a significant deviation from the

theoretical curves predicted by the conventional RPM (cf. Hayashi and Nagakura,

1984, Fig. 6.2). One can see from the referenced figure that the canonical RPM

predicts a clearly biphasic dose-response, where the two distinct curves were proposed

to allow one to infer the spin of the precursor (i.e. by comparing the experimental

dose-response measurements to these curves, and matching the shape to either the

S- or T- response). The figures in this chapter, however, show a much richer, more

diverse, profile than the simple biphasic response previously predicted, and it is

hoped that these results will allow new ways for experimentalists to interpret their

biological data. It has been shown in previous chapters that the D3M mechanism is

capable of recreating the effects predicted by the conventional RPM. However, here
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Figure 5.12: A comparison showing that, in fact, 0.75 Å is sufficient to realise the observed
effects in the planar geometries studied. The left-hand side of the figure shows the systems
distorted by 0.75 Å, and the right-hand side shows the counterpart to each distorted
instead by 1.5 Å. From top to bottom, the rows contrast the triangular case (tangentially
distorted), the square case (radially distorted), the pentagonal case (radially distorted)
and the hexagonal case (radially distorted).
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Figure 5.13: A comparison showing that, in fact, 0.75 Å is sufficient to realise the observed
effects in the 4-spin linear geometries studied. The left-hand side of the figure shows
the systems distorted by 0.75 Å, and the right-hand side shows the counterpart to each
distorted instead by 1.5 Å. From top to bottom, the rows contrast displacements of spin 4
in the x-direction, spin 3 in the y-direction, and spin 4 in the z-direction, respectively.
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Figure 5.14: A comparison showing that, in fact, 0.75 Å is sufficient to realise the observed
effects in the 5-spin linear geometries studied. The left-hand side of the figure shows
the systems distorted by 0.75 Å, and the right-hand side shows the counterpart to each
distorted instead by 1.5 Å. From top to bottom, the rows contrast displacements of spin 4
in the x-direction, spin 5 in the x-direction, spin 3 in the y-direction, and spin 4 in the
z-direction, respectively.
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Figure 5.15: MFE enhancement measures M(B), calculated using the perfect geometry
as the reference value, shown for the distorted linear chain systems from 3 (a) to 6 (d)
spins in length. Blue, red and orange curves represent displacements in the x-, y- and
z-direction, respectively. Each sub-figure has been averaged over the exchange parameter
for J0 in the range from −3d1,2 to 3d1,2.
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Figure 5.16: MFE enhancement measures, calculated using the perfect geometry as the
reference value, for distorted n-gon system for n between 3 (a) and 6 (d), inclusive. Each
sub-figure has been averaged over the exchange parameter for J0 in the range from −3d1,2

to 3d1,2
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is shown a unique signature (in the much richer response profiles referenced above)

that could be tested with experimental data to verify the presence of D3M effects in

biological systems.

For weak fields - in particular around the Earth’s magnetic field intensity -

the distorted geometry almost always outperforms the perfect geometry. The one

exception to this pattern is the distortion in the y-direction for the special case of the

linear geometry, which is overall detrimental to the weak-field MFEs. In general for

the linear geometries, one can see that M(B) is strongly positive for distortions in the

x-direction, and slightly positive for those in the z-direction across all field intensities.

For the regular polygons, weak field and high-field results are generally positive,

showing the distorted geometry outperforming the perfect geometry. Results are

mixed for moderate field intensities, being the triangular geometry’s most impressive

region of amplification, but an area where the square and pentagonal measures are

negative before returning to positivity at high field; the hexagonal measure is positive

everywhere. The fact that the measures for the different distortions of the same

individual geometries are so varied is further evidence that it is not only the breaking

of the symmetry that matters to the magnetosensitivity of a spin system, but also

how the symmetry is broken. Note furthermore that extending the integral to a

larger J0-range would give a larger M(B) for many of the cases studied.

With this new measure, it is noted that the distorted triangle is a particularly

impressive case, with the distortion reducing the minimum field required to see a

strong effect by a factor of ten (see the Appendix, Tables 9.4 and 9.5) and producing

an Earth-strength MFE where previously this was forbidden by the symmetry.

5.7 Discussion

Though symmetry can be a powerful tool, the breaking of symmetry can produce

new and often interesting results. Spontaneous symmetry-breaking is a widely known

phenomenon, observed e.g. in the Ginzburg-Landau theory of phase transitions,

systems described by the so-called ‘Mexican Hat’ potential, the Jahn–Teller effect

and indeed present even in many everyday situations (Shaver et al., 2007; Rosenstein
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and Li, 2010; Frost, Pienta and Coffey, 2018). Examples of semiconductor quantum

devices (Portnoi et al., 2009), show how technological applications, e.g. in sensing,

can be revolutionized by deliberately breaking symmetries, and the work reported

here suggests that similar principles might apply for magnetic ”sensing” as it e.g.

pertains to biological MFEs or more generally to spin chemical phenomena (Kattnig,

Solov’yov and Hore, 2016; Kattnig, 2017b). In particular, it is argued that a natural

symmetry absence may go some way to explaining the remarkable sensitivity of these

systems to weak magnetic fields, and also how such effects can be sustained under

realistic scenarios involving e.g. large exchange coupling.

It has been shown in the previous chapter that the re-introduction of hyperfine

interactions does not significantly dampen DnM magnetic field effects if the dipolar

interaction is the dominant term of the spin Hamiltonian (which, as also shown in

the previous chapter, it is in the regime of inter-radical separations covered here),

and so one can be confident that the effects shown in this chapter would persist in

the presence of coupled nuclei (Sampson, Keens and Kattnig, 2019).

While highly symmetric structures of n radicals are at this stage of study a

logical extension of the previously explored model it is surprising to realise that virtue

in fact lies in imperfection. One would expect that the geometries from random

encounters of radicals, as well as the average biological structure, are much more

likely to be distorted than perfectly regular - suggesting that the present finding

adds an important piece to the puzzle of understanding biological magnetosensitivity,

where imperfect geometries are statistically far more likely to arise than perfect

order.

It is clear that the simulations detailed in this chapter describe scenarios that

are difficult to realize in practice. Obviously, aligning six spins in a perfect hexagonal

arrangement to then undergo mutually reactive quantum spin dynamics might be

difficult to actualise. However, considering one pair of radicals to be in an initial

singlet state (between which d1,2 would be defined) in the presence of other radicals

acting as an external ’bath’ is not unrealistic. One way to realise this chemically

would be to generate radical pairs in the presence of more stable radicals. As soon as
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the constraint upon perfection (symmetry) is removed, the practicality of realisation

increases significantly, and indeed may even occur naturally or at random. Though

this particular scenario is not considered in the present work, it would be a way to

build up the kind of configurations explored in this chapter. The author hopes this

motivates more experimental research into this idea.

It is interesting to note that the MFEs in radical pairs and dipolarly coupled

n-spin systems can also be viewed a result of the absence of symmetry in their

own right. The missing symmetry here is a permutation symmetry of two electron

spins poised to recombine to form a diamagnetic state(Keens, Bedkihal and Kattnig,

2018). In the conventional Radical Pair Mechanism, this symmetry is broken by

hyperfine interactions with magnetic nuclei. In D3M this asymmetry is provided by

the electron-electron dipolar interaction in systems of more than two radicals. In this

sense, for both scenarios remarkable MFEs can result from this natural symmetry

absence.

Practically, the amplifications observed here could also be used to make

quantum devices more sensitive, easier to make, and easier to control. Quantum

devices made using the principles of this mechanism would not be subject to a

precise positional confinement of the reacting radicals, and so small distortions would

work to the advantage of the engineer. Such devices would be more sensitive due

to the extra features available in the MFE profiles that, as has been illustrated in

this work, appear when a system’s geometric equilibrium is removed. The effects

could furthermore be optimized by tuning the exchange interaction, moving the

anti-crossings responsible for the MFE spikes to lower field values thereby realizing

optimal sensitivity at the projected field intensity.

5.8 Conclusion

DnM treats the oft-neglected electron-electron dipolar interaction as the main con-

tributor to MFEs rather than the conventionally-used hyperfine interaction. This

mechanism thus applies to radicals without dominant hyperfine interactions, but can

impact the spin dynamics in classical radical pair systems with non-negligible hyper-
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fine and/or exchange interactions, as recently demonstrated for lipid peroxidation

and the avian compass. This interaction pattern of three radicals thus provides a

robust additional mechanism for radical systems at concentrations for which three-

radical correlations cannot be neglected. Here, the possibility of this mechanism

has been explored for systems comprising more than the previously considered three

radicals. It has been demonstrated that a rich variety of magnetosensitivity can in

principle ensue for n-radical systems coupled by the long-range electron-electron

dipolar interaction. These effects have been further explored in configurations that

are more statistically likely to occur in nature, by comparing the perfect theoretical

systems of regular geometries with slightly distorted geometries that break various

rotation and reflection symmetries. In the vast majority of cases considered, such

imperfections have enhanced the magneto-sensitivity.

In many respects, symmetry appears as a fundamental principle in nature. In

organisms and structures where minimal inter-site distance, maximal packing density,

or aesthetic appeal, is required, perfectly regular geometry is widespread. Symmetry

is also the first port of call in many theoretical treatments. However, it has here

been shown that the absence of symmetry can be just as effective as its imposition.

It has been found that not only do the distorted geometries provide new regions

of sensitivity for weak magnetic fields to alter the reaction yields, but distorted

geometries appear to often surpass regular geometries in terms of the strength of

onset for the MFEs, and the overall magnitude thereof. In particular, increasing

sensitivity to weak magnetic fields has been observed for selected values of the

exchange parameter and an increase the number and range of exchange parameters

for which low-field sensitivity manifests.

These findings are important because they further suggest that the D3M model

and its generalisation discussed here, DnM, can provide enhanced magnetosensitivity

in a variety of circumstances. The prediction of new MFEs in such systems allows

for the consideration of processes and conditions that had previously been thought

impossible due to the constraints of the RPM, and further inspire experimental

endeavours into the study of magnetic field effects in ordered systems and at high
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radical concentrations or the production of devices that utilize n-spin processes as a

measuring tool. Here, many questions about realisability remain open. However, it

is not the aim of this work to guide future experiments yet, but rather to instigate

the principal possibility to observe magnetic field effects in radical recombination

reactions due primarily to the electron-electron dipolar interactions of three or more

radicals and to highlight that imposing perfect geometries might reduce the sensitivity

towards weak magnetic fields.

The main results of this chapter are:

- Geometry can affect the manifestation of MFEs, as established in chapter 3,

but the effect also generalises to larger systems.

- The breaking of geometric symmetries also allows for richer, and stronger,

effects than in the regular configuration. MFEs can be enhanced, through these

effects.

- It matters not just that geometric symmetries are broken, but how they are

broken is also important.

These observations represent a significant deviation from anything previously

published in the literature, so the next necessary step is for some experimental

observations to be made such that the predictions made here can become grounded

in physical reality. Some ways that the predictions made in this chapter could be

experimentally tested, are as follows: The new, richer, MFE profiles could be tested

in the same way as in previous chapters, with EPR spectroscopy being used in

conjunction with energy level diagrams in an effort to isolate new features predicted

and demonstrated in the figures in this chapter. In order simulate the regular

geometries studied here, artificially immobilised structures would probably need

to be used, which could then be distorted slightly to emulate the perturbations

proposed here. Such an experimental setup could also then be used to introduce

entirely random motion on all axes as a form of control. Linear chains could perhaps

be tested in a similar manner, or by using setups from spintronics. One other way

suggested in this chapter, to actualise the results, is to use a pair of radicals in
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an initial singlet state in the presence of other radicals acting as a sort of ‘bath’,

i.e. generation of a radical pair in the presence of more stable radicals, and then

track the MFE profile as the reaction naturally evolves. This may form part of an

experimental setup designed to test the predictions made here.
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6. Noise in biological systems, and

how it is not always deleterious

In this chapter the idea that environmental noise, the conventional nemesis of

quantum technology, plays a significant role in shaping the magnetosensitive response

is discussed. Considering singlet-triplet dephasing, introduced upon geometrically

regular structures, one finds that noise can enhance MFEs on its own. The case of

completely uncorrelated noise affecting the entire system has also been considered,

which abolishes the enhancements that could be seen in the case of singlet-triplet

dephasing. Thus it is shown that singlet-triplet dephasing, can actually serve

constructively alongside the effects already predicted by the DnM model, rather than

destructively as previously may have been expected.

Finally, taking noise effects together with the slight geometric distortion in the

structure discussed in the previous chapter is shown to lead to unexpectedly large

magnetosensitivity. This could be utilised in the construction of quantum navigational

and sensing devices, and possibly moves us ever closer to understanding the hitherto

elusive avian compass and the sensitivity of biological systems to magnetic field of

intensities comparable to the geomagnetic field.

6.1 Introduction

Noise is a very natural phenomenon, and widely recognised as an integral part of

the ’hot, noisy biological environment’ inherent to living systems. However, noise is

generally considered to be an enemy of quantum mechanical effects, with dissipators

such as singlet-triplet dephasing, as well as uncorrelated noise between spins, being
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considered the primary loss mechanism for information and decoherence in quantum

systems. Thus, noise is often minimised, either by force or by assumption. While

it can be true that noise damps the system, and mutes any effects one might have

been watching, there are less intuitive scenarios where the presence of noise can

actually be beneficial to the system. A model suggesting the inclusion of more S-T

dephasing (due to reaction processes) has been proposed as an alternative to the

standard Haberkorn model of dissipative dynamics (Haberkorn, 1976; Jones and

Hore, 2010a), but the authors themselves admit that their model would be difficult to

experimentally distinguish from the Haberkorn approach and so a detailed discussion

thereof shall not be undertaken here. However, it is shown in this chapter that the

presence of noise can have significant effects upon entangled systems of radicals

that are undergoing inter-conversionary dynamical interactions as described by the

Radical Pair Mechanism (RPM). In particular, it is shown that noise can enhance,

not damp as one might have expected, the strength of the magnetic field effect

(MFE) observed in such systems where there are more than two radicals coupled by

the electron-electron dipolar interaction. In the absence of hyperfine interactions or

differences in g-factors, the insistence on more than two radicals is important for

symmetry reasons, as was explained in chapter 3, and can enhance MFEs as seen in

both the perfect and distorted geometric systems elucidated in chapter 5.

6.2 Noise in DnM

The DnM Hamiltonian and model has been thoroughly explained in Chapter 5, and

shall not be re-stated here. What follows is a discussion of the new consideration:

noise.

A common dismissal of the quantum effects in biology is that noise, for example

that caused by the finite temperatures of living systems, would likely damp any such

effect and possibly render it negligible. This is especially true when the geomagnetic

field is considered, as its low intensity mandates long coherent lifetimes to detect

an effect. Noise is often excluded from in silico simulations for simplicity. However,

some studies have shown that the singlet yield, and hence the resultant MFE,
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of a magnetosensitive reaction is indeed impacted by the level of systemic noise

(Gauger et al., 2011; Poonia, Saha and Ganguly, 2015; Tiersch and Briegel, 2012;

Kattnig, Solov’yov and Hore, 2016; Kattnig, 2017b). By inclusion of the Lindblad

super-operator in the present calculations, noise can be included into the, previously

introduced, DnM model (Kryszewski and Czechowska-Kryszk, 2008; Sampson, Keens

and Kattnig, 2019).

The general form of noise operators considered here is given by the Lindblad

superoperator:

ˆ̂
L = Γ

N∑
i=0

Ŝ ⊗ Ŝ∗ − 1

2

(
Ŝ†Ŝ ⊗ 1 + 1⊗ (Ŝ†Ŝ)T

)
, (6.1)

where Ŝ defines the interaction between the system of interest and an external ‘bath’,

(Kryszewski and Czechowska-Kryszk, 2008). Such a form arises when an open system

can be described as a quantum dynamical semi-group (Hornberger, 2009), which

allows a rigorous formulation of the Markov assumption of quantum theory - namely

that the system and the bath are uncorrelated at all times, i.e.:

ρSB = ρS ⊗ ρB, (6.2)

where the three density operators here represent that of the combined open system,

the system itself, and the external bath, respectively.

In order to select realistic interactions between the system and an external

theoretical bath, two different noise operators were explored. One is labelled xyz

uncorrelated (xyzuc) and the other singlet/triplet dephasing (Puc). There exist both

correlated and uncorrelated forms of noise operators, but uncorrelated noise is the

most physically relevant and experimentally realisable so that is what has been

considered in both cases.

The form of motion noise operator used consists of a sum over each dissipator

acting on the density matrix of the system, individually and distributively. Labelled

as xyzuc, this operator takes the form
∑N

α,n
ˆ̂
L

(n)
α , where N is the number of radicals

in the system, α ∈ {x, y, z} and n ∈ {1, 2, ..., N}.
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The other noise operator used, for singlet-triplet dephasing, is:

Puc =
N∑
α,n

Pα
n,n+1, (6.3)

where P is a projector, α ∈ {S, T}, denoting singlet and triplet respectively, and i

labels the radicals. Note that the seemingly non-existent term arising when i = N is

indicative of the ring-like topology in the planar geometries; for the linear chain, this

final term is set to zero (i.e. the sum ranges to N − 1). The lifetimes were scaled

within the confines of the standard exponential model for recombination rate fall-off.

6.3 Results

For ease of comparison between cases, the enhanced MFE shall be calculated using

the same approach as in the previous chapter (cf. Eq. 5.20), except in this case

instead of contrasting a distorted geometry and a perfect one, the comparison this

time is between the no-noise system and the system in the presence of noise. For

consistency, it has also been ensured that the parameters used in the studies of

Chapter 5 were kept the same for the respective studies in this chapter. The reader

is directed to Chapter 5 for the discussion of rate constants, field direction etc.

The maximum such effects are shown here, with the baseline (i.e. zero) being no

improvement upon the no-noise case. For each case studied, two figures are presented.

The first is the distribution of enhanced MFEs, and the second is the distribution

of values of the noise parameter that produced the maximum effect for each value

of exchange tested. An extensive study has been conducted, producing around a

hundred separate graphs detailing individual results. It would be impractical to try

and show each one of these, so a sample has been included in the chapter proper

and additional results will be shown in the appendix, sections 9.11 and 9.12.

Low and moderate field effects found will be of particular interest to the field

of quantum biology. Such effects can be seen, for example, in the weak-exchange

region of Fig. 6.1, where ten percent enhancements to the noiseless MFE occur at
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sub-mT field strengths.

6.3.1 Linear Chains

Initially, linear spin chains are considered. Across this study, chains of between

three and five spins have been considered. The results for the three-spin case will

be presented in the chapter proper, with the larger cases shown analogously in the

appendix (Section 9.11).

6.3.2 Planar Geometries

Regular n-gons from three to five spins in size have been studied. The triangular

case will be presented in the chapter proper, and the larger systems, as well as some

extra geometries, are shown in the appendix (section 9.11). As with the linear chains

shown in the preceding subsection, one can see enhancements that follow the MFEs

of the noiseless case, which is encouraging as it both shows that the effects of noise

enhancement to MFEs does not come at the cost of established MFEs, and also that

the linear chain is not a special case of this effect.

6.4 Combined Enhancement

It has been shown in Chapter 5 that geometric imperfections introduced into a spin

system can enhance the MFEs observed. Imagining such a structural distortion

(away from the perfection of a regular shape) as geometric noise, these two types

of noise have been used simultaneously in order to elucidate any synergy between

them. It was found that these two additions to the dynamics complement each

other, rather than acting destructively, and synergistically enhance the MFEs of the

systems as shown in the preceding subsections. In this section are presented the

three-spin linear chain, triangle, and square systems, again, but with small geometric

distortions introduced into the structures as done in Chapter 5. Further results,

which would be impractical to show in the chapter proper, are found in the appendix,

section 9.12. The resulting geometries were L3,3x and, D3,r and D4,t (as introduced
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Figure 6.1: Three-spin linear system (L3), under the DnM formalism and in the presence
of exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows the
value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced MFE
in the upper panel. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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Figure 6.2: Three-spin linear system (L3), under the DnM formalism and in the presence
of exchange and xyz uncorrelated noise. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel. Note the abolition of most of the enhancements shown
by S-T dephasing. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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Figure 6.3: Equilateral triangle system (D3), under the DnM formalism and in the presence
of exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows the
value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced MFE
in the upper panel. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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Figure 6.4: Equilateral triangle system (D3), under the DnM formalism and in the presence
of exchange and xyz uncorrelated noise. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel. Note the abolition of most of the enhancements shown
by S-T dephasing. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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in Figs. 5.1 and 5.2), and were treated in conjunction with the introduction of noise

as in their respective previous sections.

6.5 Discussion

For linear chains, by comparing the figures in this subsection, it can be seen that

singlet-triplet dephasing can act to enhance MFEs even at strong values of the noise

parameter, whereas xyz uncorrelated noise tends to abolish these effects. This is

seen most clearly by comparing the panels of Fig. 6.1 and contrasting these with Fig.

6.2. In the former pair of figures (singlet-triplet dephasing), enhancements are seen

especially prominently at moderate to high field that are abolished in the latter pair

of figures (xyz uncorrelated). Thus, for linear chains, it is encouraging to see that the

most physically relevant noise considered is also the one which shows the strongest

enhancements. It should also be noted that the central region (where J/d1,2 ≈ 0.15)

displays a strong feature in both cases, but that this feature is present with and

without these sources of noise, and therefore should be considered an artefact, rather

than a causal feature.

It can be seen in Fig. 6.3 that singlet-triplet dephasing produces significant

MFE enhancements in the planar geometries, consistent with the case of the linear

chain. It can also, again consistently, be noted that xyz uncorrelated noise (Fig. 6.4)

produces no such significant enhancement.

The two frustrations (geometric distortion and S-T dephasing) presented in

the previous chapter, and Figs. 6.1 and 6.3, respectively, have been combined, and

it has been found that, taken together, these two individually nice effects actually

seem to enhance each other synergistically. That is, one can see up to twenty percent

enhancement in the overall MFE. The combined results are shown in Figs. 6.5, 6.7

and 6.9, with the counterpart xyz-uncorrelated cases (the purpose of which are,

again, to verify that noise which should abolish the new MFEs shown does in fact

do so) shown in Figs. 6.6, 6.8, and 6.10.

It is interesting to see that the isosceles triangular system shows its significant

enhancements at moderate to high field, with little improvement in the low-field
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Figure 6.5: Three-spin distorted linear system (L3,3x), under the DnM formalism and
in the presence of exchange and S-T dephasing. The top panel shows regions where the
presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel. In both cases, the x-axis denotes the
exchange parameter J given in units of d1,2.
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Figure 6.6: Three-spin distorted linear system (L3,3x), under the DnM formalism and
in the presence of exchange and xyz uncorrelated noise. The top panel shows regions
where the presence of noise can gives an enhanced MFE relatively to the no-noise system.
The bottom panel shows the value of the noise parameter, Γ (in MHz), that produced
the corresponding enhanced MFE in the upper panel. Note the abolition of most of the
enhancements shown by S-T dephasing. In both cases, the x-axis denotes the exchange
parameter J given in units of d1,2.
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Figure 6.7: Isosceles triangle system (D3,r), under the DnM formalism and in the presence
of exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows the
value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced MFE
in the upper panel. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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Figure 6.8: Isosceles triangle system (D3,r), under the DnM formalism and in the presence
of exchange and xyz uncorrelated noise. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel. Note the abolition of most of the enhancements given
by S-T dephasing. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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Figure 6.9: Distorted square system (D4,t), under the DnM formalism and in the presence
of exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows the
value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced MFE
in the upper panel. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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Figure 6.10: Distorted square system (D4,t), under the DnM formalism and in the presence
of exchange and xyz uncorrelated noise. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel. Note the abolition of most of the enhancements given
by S-T dephasing. In both cases, the x-axis denotes the exchange parameter J given in
units of d1,2.
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region, but the distorted square system shows interesting behaviour only in this

low-field region (cf. Figs. 6.7 and 6.9). Motivated by this disparity, though while

noting that such an investigation is currently computationally prohibitive, it would

be interesting in the future to see if there exists any similarities between a set of

systems with an even number of spins and those with an odd number of spins.

In particular, it is noted that the distortion-dephasing effect moves the peak

enhancement away from the region of zero exchange in both directions each time.

This broadening of the ranges where one can observe the maximum enhancement

provides more configurations which could be experimentally explored and exploited.

These results show that S-T dephasing is a type of systemic noise that can serve

to enhance MFEs in the system. This is particularly relevant for quantum biological

spin systems, where quantum coherence between spins is required for MFEs to occur

within both the conventional RPM model and more recent D3M models.

6.6 Conclusion

In this chapter it has been shown that the strongest noise-enhanced effects broadly

follow the lines of the strongest effects in the absence of noise, which is encouraging

as it has been shown that noise does not simply abolish the pre-existing strong

MFEs - especially at low field and weak exchange, which one may expect to be

the most vulnerable to interference. It is noted that in some cases rather strong

values of the noise parameter produce the maximum enhancements, even at low

field. This is not the case for xyz uncorrelated noise, where the noise seems to

provide no significant enhancement or diversification, but can be seen convincingly

for singlet-triplet dephasing. In the latter case, one can see that at both high and

low field values moderate to strong noise can enhance the MFEs of the system. Thus

it has been shown that the DnM model is not just resilient to systemic noise, but

symbiotically works with it.

The main results of this chapter are:

- Noise can actually be an MFE enhancer rather than purely deleterious.
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- Coupled with geometric distortions, there is a certain synergy that may be

exploited, with singlet-triplet dephasing showing the most promise (and physical

relevance) for this distortion-dephasing effect to be exploited.

The predictions made in this chapter are unlike almost anything proposed thus

far in the literature. The one exception, perhaps, is the Jones-Hore model which

showed that the addition of extra noise into the Haberkorn model of recombination

can still give sensible physical predictions Jones and Hore, 2010a. In order to test

the predictions made in this chapter, and thus ground them more in physical reality,

one could search for the strong peaks and new effects (i.e. new areas of magnetic

sensitivity shown in the MFE profiles given in this chapter) not predicted in the

absence of noise and/or distortion. This could be done by using EPR to (once again)

detect the energy gaps that are predicted to exist in the presence of that level of

exchange (by comparison with energy level profiles), to confirm the value of J for a

given measurement, and then compare the measured MFE with what is expected

based on the geometry used. It would probably also be instructive to search for some

peaks in the spectrum which are not predicted, and to test the addition of entirely

random noise as a control (i.e. to verify that xyz-uncorrelated noise does indeed

abolish the observed effects). Another methodology that may be implementable is to

perform some ultrafast-style experiments, that is, to try to make some measurements

on a timescale where the noise has yet to be effective (i.e. substantially faster than

the expected coherence lifetime for the system in question), and compare these to

longer-timescale measurements where noise has had sufficient time to act.

157



7. The Monte-Carlo Wavefunction

Approach for non-Lindbladian

Master Equations

This chapter is adapted from the work presented in: Keens, R.H. and Kattnig, D.R.,

2020. Monte-Carlo wavefunction approach for the spin dynamics of recombining

radicals. New Journal of Physics, 22(8), p.083064., with permission from the New

Journal of Physics.

The Monte-Carlo wavefunction (MCWF) approach is adapted to treat the open-

system spin dynamics of radical pairs subject to spin-selective recombination reactions.

For such systems, non-Lindbladian master equations are frequently employed, which

account for recombination via the non trace-preserving Haberkorn superoperator

alongside the reaction-dependent exchange and singlet-triplet dephasing terms. This

chapter shows that this type of master equation can be accommodated in the MCWF

approach, by introducing a second type of quantum jump, which accounts for the

reaction simply by appropriately terminating the propagation. In this way, one can

evaluate approximate solutions to the time-dependent radical pair survival probability

for systems that have been considered untreatable with the master equation approach

until now. This chapter explicates the suggested approach with calculations for

radical pair reactions that have been suggested to be relevant for the quantum

compass of birds and related phenomena.
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7.1 Introduction

The general challenge, should one wish to model spin dynamics, is that the size of

Hilbert space grows exponentially with the number of considered spins; this makes full

noise calculations like in the previous chapter incredibly computationally demanding.

It is a particularly stringent constraint for the dynamics of open quantum systems

which do not preserve pure states and thus mandate a formulation in Liouville space,

which scales quadratically in Hilbert space dimension (Breuer and Petruccione, 2002).

This often leaves theoreticians with the choice between modelling small, but often

biologically irrelevant, processes or systems of moderate size that are simplified to

an extent that they are unrealistic. In this chapter, a more efficient approach to

modelling systems of the kind encountered in quantum biology will be developed

and explored.

For typical open quantum systems, i.e. master equations of the standard

Lindblad form, a significant step toward solving (more) realistic problems came with

the introduction of the Monte Carlo Wave Function (MCWF) approach (Mølmer,

Castin and Dalibard, 1993; Kornyik and Vukics, 2019; Plenio and Knight, 1998). The

MCWF method, which is otherwise known as the quantum jump method, replaces

the evolution of the density matrix with an ensemble average over individual quantum

trajectories of wave functions evolved under a pseudo-Hamiltonian and subject to

quantum jumps, i.e. discontinuous modifications of the wavefunction, which together

account for the openness of the system. Unfortunately, the spin dynamics of radical

pairs does not conform to standard Lindblad form if asymmetric (i.e. different in the

singlet and triplet configurations) reactivity is included by the Haberkorn approach

and its recent additions (Haberkorn, 1976; Jones and Hore, 2010b; Jones, Maeda

and Hore, 2011; Fay, Lindoy and Manolopoulos, 2018). This means that the MCWF

approach cannot be robustly applied to solve large spin dynamics problems.

Spin-selective recombination processes are an integral part of the spin dynamics

of radical systems.(Steiner and Ulrich, 1989; Brocklehurst, 2002; Salikhov et al.,

1984; McLauchlan and Steiner, 1991) Various ways to include this aspect in the

master equations have been discussed in the recent literature (Jones and Hore,
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2010b; Jones, Maeda and Hore, 2011; Fay, Lindoy and Manolopoulos, 2018; Kominis,

2009; Kominis, 2015). The traditional approach, due to Haberkorn (Haberkorn,

1976), suggests that singlet (rate constant kS) and triplet (kT ) recombination can be

accounted for by the superoperator

ˆ̂
Kρ = −kS

2
{PS, ρ} −

kT
2
{PT , ρ} , (7.1)

where PS,T are the singlet and triplet projection operators, respectively. This gives rise

to a non-trace preserving equation of motion of the (concentration-weighted) density

operator, for which the trace of ρ gives the survival probability of the radical (pair)

systems. The form of eq. 7.1 has been hotly debated (Purtov, 2010; Kominis, 2009;

Jones, Maeda and Hore, 2011; Jones and Hore, 2010b; Kominis, 2015; Tsampourakis

and Kominis, 2015; Kominis, 2016; Jeschke, 2016) and confirmed (Tiersch et al.,

2012; Jones et al., 2011b; Ivanov et al., 2010). Recently, Fay et al. have suggested a

series of quantum master equations to describe the recombining radical pair, which

they derive from a microscopic description of the electron transfer reaction using the

Nakajima–Zwanzig projector approach (Fay, Lindoy and Manolopoulos, 2018). To

second order in the electronic coupling of radical pair and product states (i.e. in the

nonadiabatic limit), the authors recover the Haberkorn master equation augmented

with an additional reactive exchange coupling term (which was also discussed in

(Kattnig, Rosspeintner and Grampp, 2011)). To the fourth order in the coupling (i.e.

for more adiabatic reactions) an additional singlet-triplet dephasing (S/T-dephasing)

term (Shushin, 1991) of the form

ˆ̂
K ′ρ = −kST (PSρPT + PTρPS) (7.2)

appears, the rate kST of which depends on the specific configuration of the system.

The quantum measurement approach to radical pair recombination by Jones and

Hore can also be understood as a result of the synergistic effect of
ˆ̂
K and

ˆ̂
K ′, in this

case with the particular choice of kST = (kS + kT )/2 (Jones and Hore, 2010b; Jones,

Maeda and Hore, 2011). This suggests a central role of the Haberkorn approach
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augmented by some additional S/T dephasing for the spin dynamics of radical

systems, which is in fact reflected in the widespread use of this combination for

modelling experimental data (Hoang et al., 2018; Shushin, 1991).

If
ˆ̂
K from eq. 7.1 is the only non-coherent term in the master equation, the

spin dynamics of the system can still be evaluated relatively cheaply, as ρ(t) can be

constructed from an approach based on the propagation of wavefunctions under a

non-Hermitian, effective Hamiltonian (of the form given by eq. 7.9 below) (Lewis,

Fay and Manolopoulos, 2016). Thus the simulation process can be handled entirely

in the comparably small Hilbert space. Singlet-triplet dephasing as given by
ˆ̂
K ′ in eq.

7.2, does not allow for this quasi-pure state evolution approach. Using PS = 1− PT ,

one can however rewrite eq. 7.2 in many equivalent ways, one of which is

ˆ̂
K ′ρ = 2kST

(
PSρPS −

1

2

{
P †SPS, ρ

})
. (7.3)

As eq. 7.3 is in the form of a Lindblad dissipator, the dynamics it induces can in

principle be considered within the MCWF approach (Mølmer, Castin and Dalibard,

1993; Kornyik and Vukics, 2019; Plenio and Knight, 1998). However, for this to

provide a feasible approach to the spin dynamics of radical systems, one requires a

means to extend the MCWF approach to also include the non-unitary contributions

associated with the asymmetric recombination of radical pairs as described by eq.

7.1. This is the aim of this contribution.

Quantum trajectories have previously been suggested for the modelling of

radical pair dynamics (Kritsotakis and Kominis, 2014). However, it has been

argued that Haberkorn’s theory cannot be cast in terms of quantum trajectories

(Tsampourakis and Kominis, 2015). The presented extension to the MCWF approach

allows it to be applied to non-Lindbladian master equations resulting from terms of

the form of eq. 7.1. This broadens the applicability of MCWF to the spin dynamics

of radical systems subject to spin-selective reactivity. The approach accommodates

singlet-triplet dephasing, and thus applies to the description of chemical radical

pair reactivity beyond the conventional Haberkorn approach. It is also applicable

to models that apply the Haberkorn reaction operator (or extensions thereof) to
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the dynamics of open quantum systems with a Lindblad form, e.g. random field

relaxation or Redfield type relaxation superoperators of arbitrary genesis (Kattnig,

2017c; Worster, Kattnig and Hore, 2016; Kattnig et al., 2016a; Kattnig, Solov’yov

and Hore, 2016). In the limit of infinite samples, the MCWF model agrees exactly

with the direct integration of the master equation. It is shown that the approach

allows one to obtain estimates of the magnetic field effects of large spin systems,

which are considered (currently) intractable using the direct integration method.

This chapter is structured as follows: first, a derivation of the extended MCWF

approach is presented and the unique steps taken to make it applicable to the non-

Lindbladian recombination term, as shown in eq. 7.1, are explained. Then, some

results obtained with this approach are presented, and their equivalence to those

obtained with the direct integration of the master equation demonstrated, showing

also the comparison between the efficiency and numerical error of both methods.

Finally, applications for the approach, and ways to further increase its capability,

are suggested.

7.2 Derivation

The MCWF method aims to reconstruct the equation of motion of the (spin) density

operator from the ensemble average of stochastic quantum trajectories of state vectors

(Mølmer, Castin and Dalibard, 1993; Kornyik and Vukics, 2019; Plenio and Knight,

1998). The approach predominantly provides a computational tool, the efficiency

of which rests on the reduction in dimensionality (associated with treatment of

Hilbert space state vectors instead of density operators) and the fact that often

a relatively small (relative to the Hilbert space dimension) number of samples is

sufficient to adequately reconstruct the observables of interest. While individual

MCWF trajectories do not necessarily convey reality, they have occasionally been

interpreted to do just that, i.e. to reflect the behaviour of single realisations of
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quantum systems. First, consider the master equation:

dρ

dt
= −i[H, ρ] +

ˆ̂
Dρ+

ˆ̂
Kρ

= −i[H, ρ] +
M∑
m

(
JmρJ

†
m −

1

2
{J†mJm, ρ}

)
− 1

2

N∑
n

{Kn, ρ}

(7.4)

Here, square (curly) brackets denote the (anti-) commutator. The first term accounts

for the coherent evolution under Hamiltonian H (in angular frequency units). The

second term,
ˆ̂
Dρ, is in so-called Lindblad-form and describes decoherence processes in

the Born-Markov approximation (Breuer and Petruccione, 2002). The sum extends

over M quantum jump or collapse operators, Jm, the maximal number of which is one

smaller than the square of the Hilbert space dimension (Huang, Sun and Yi, 2008).

The third term,
ˆ̂
Kρ, here assumed in Haberkorn form, is unique to the treatment of

the spin dynamics of radical systems. It describes chemical transformations of the

radicals, i.e. their spin-selective recombination to form various reaction products.

Typically, the Kn relate to the singlet or triplet projection operators of the reactive

pair (i,j) of radicals:

Kn = k
(i,j)
S,T P

(i,j)
S,T , (7.5)

with

P
(i,j)
S =

1

4
− Si · Sj, (7.6)

and

P
(i,j)
T = 1− P (i,j)

S , (7.7)

where Si denotes the spin vector operator (in multiples of ~) of spin i. For recombin-

ation terms Kn of the form of eq. 7.5, Kn = K†nKn applies and the recombination

operator assumes a form that, except for one term missing, is reminiscent of the

Lindbladian. However, as a consequence of the presence of
ˆ̂
Kρ the dynamics do

not preserve the trace of the ρ, i.e. ρ is actually the density operator weighted by

the probability that the radical system has not yet recombined. In principle, this

peculiarity can be avoided by introducing shelfing states, which allows one to recover
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the classical Lindblad form throughout (Gauger et al., 2011). However, this comes at

the cost of enlarging the Hilbert space by product states, the spin degrees of freedom

of which are assumed unobserved. Also note that by absorbing the singlet-triplet

dephasing in the Jms, eq. 7.4 applies to various approaches to treat reactive radical

systems, including the Jones-Hore model and the quantum master equation approach

(Fay, Lindoy and Manolopoulos, 2018; Jones and Hore, 2010b; Jones, Maeda and

Hore, 2011). The equation of motion can be re-expressed in the form:

dρ

dt
= −i

(
Heffρ− ρH†eff

)
+

M∑
m

JmρJ
†
m, (7.8)

with Heff denoting the effective Hamiltonian:

Heff = H − i

2

N∑
n

Kn −
i

2

M∑
m

J†mJm, (7.9)

which marks the starting point of the MCWF approach. As Heff is non-Hermitioan,

it induces a non-structure-preserving map in the Hilbert space of the system. The

algorithm starts out from an ensemble of state-vectors, {|φ(0)〉} , that appropriately

sample the initial density operator ρ(0). The state vectors are assumed to evolve

under the effective Hamiltonian Heff according to

d

dt
|φ(t)〉 = −iHeff |φ(t)〉 (7.10)

and undergo occasional quantum jumps (to be described below). Closely following

the exposition of (Mølmer, Castin and Dalibard, 1993), the evolution of |φ(t)〉

to |φ(t+ δt)〉 shall be considered, where the time increment δt is arbitrary, but

sufficiently small such that terms including δt of order 2 and higher can be neglected.

Under this assumption, the non-unitary evolution produces the state:

∣∣φ(1)(t+ δt)
〉
≈ (1− iHeffδt) |φ(t)〉 . (7.11)
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The square of the l2 norm of the state decreases during this evolution from its value

at t, 〈φ(t)| φ(t)〉 = l2, to:

〈
φ(1)(t+ δt)

∣∣ φ(1)(t+ δt)
〉

= (1− δp) l2, (7.12)

where to first order in δt:

δp =
iδt

l2
〈φ(t)|Heff −H†eff |φ(t)〉

≡
M∑
m

δpm +
N∑
n

δp′n.
(7.13)

It is later shown that the squared norm l2 cancels, so this is no significant divergence

from the original approach, which assumes l2 = 1. Yet, the more general assumption

of l2 6= 1 was impelled here by the intrinsic non-trace preserving formulation of the

dynamics in the presence of spin-selective recombination processes as described by

eq. 7.4. δp is interpreted as the probability that a quantum jump occurs within time

interval δt. The probability that this jump involves the mth Lindblad term and the

nth reaction term is given by δpm and δp′n, respectively:

δpm =
δt

l2
〈φ(t)| J†mJm |φ(t)〉

δp′n =
δt

2l2
〈φ(t)|K†n +Kn |φ(t)〉

=
δt

l2
〈φ(t)|Kn |φ(t)〉 ,

(7.14)

where the last equality in the expression of δp′n applies for Hermitian Kn (e.g. reaction

terms composed from singlet and triplet projection operators). It is implied here

that δp << 1 (as δt is small), which guarantees that the probability of two jumps

occurring within one timestep δt is negligible. Quantum jumps are introduced into

the time evolution of the state vectors as a stochastic element, thereby mimicking the

physically expected, uncertainty of quantum processes. To this end, a quasi-random

number u between zero and one is drawn from the continuous uniform distribution.
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If, as in the vast majority of cases by construction, δp < u, no jump has occurred and

the state vector is renormalized and propagated on. If, however, δp ≥ u, a quantum

jump is executed. The actual jump process is again selected at random from the M

Lindblad and N kinetic terms, whereby the relative probability is δpm/δp and δp′n/δp,

respectively. This leaves us with three distinct events to consider in the time-evolution

of the state vector: no jump, Lindbladian jump, and recombination/reaction. In

the event of no jump, which occurs with probability 1− δp , the re-normalized state

vector at t+ δt, |φ(t+ δt)〉, can be chosen as

|φ(t+ δt)〉
∣∣∣
no jump

= l

∣∣φ(1)(t+ δt)
〉

|| |φ(1)(t+ δt)〉 ||
. (7.15)

Alternatively, in the event of a jump associated with Jm (occurring with probability

δpm), the re-normalized wavefunction is obtained from

|φ(t+ δt)〉
∣∣∣
jump

= l
Jm |φ(t)〉
||Jm |φ(t)〉 ||

. (7.16)

So far, this entirely equals the established MCWF approaches. The new

case that has been introduced is that of reaction/termination, which occurs with

probability δp′n. As the associated superoperator is not of Lindblad form, this event

requires an approach that differs from MCWF algorithm as traditionally implemented.

it can physically reasoned that a termination reaction should eliminate the trajectory

upon which it occurs, rather than propagating it. Thus is chosen, for the termination

state, the new state vector to be the zero function:

|φ(t+ δt)〉
∣∣∣
reaction

= 0 (7.17)

for t+ δt and all subsequent times. This is equivalent to stating that all expectation

values following the reaction event are equated to zero, i.e. the quantum state is

whence absent from the population weighted ensemble.

Herein is demonstrated the equivalence between this extended MCWF approach

and the master equation approach by showing that the master equation, eq. 7.4, can

be recovered from the ensemble average of MCWF trajectories. One can begin by
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considering a pure state with density operator σ(t) = |φ(t)〉 〈φ(t)|. It is found that

this quantity at the later time t+ δt by averaging over many MCWF trajectories.

This will give rise to the time averaged σ(t+ δt), here denoted σ̄(t+ δt) , as a linear

combination of the state-vector diads from above, each weighted by the associated

probability:

σ̄(t+ δt) = l2(1− δp′)
∣∣φ(1)(t+ δt)

〉 〈
φ(1)(t+ δt)

∣∣
|| |φ(1)(t+ δt)〉 ||2

+
∑
m

l2δpm
Jm |φ(t)〉 〈φ(t)| J†m
||Jm |φ(t)〉 ||2

+
N∑
n

δp′n 0.

(7.18)

δp′n, multiplied by its zero generator, has been deliberately included to make clear

the distinction between this method and the previous MCWF implementation. Using

eqs. 7.11 and 7.17, this simplifies to:

σ̄(t+ δt) =
∣∣φ(1)(t+ δt)

〉 〈
φ(1)(t+ δt)

∣∣
+ δt

M∑
m

Jm |φ(t)〉 〈φ(t)| J†m,
(7.19)

which can be written to first order in δt as:

σ̄(t+ δt) =

(1− iHeffδt)σ(t)
(

1 + iH†effδt
)

+ δt
M∑
m

Jmσ(t)J†m

= σ(t)− iδt
(
Heff σ̄(t)− σ̄(t)H†eff

)
+ δt

M∑
m

Jmσ(t)J†m.

(7.20)

Finally, in the limit δt → 0 one recovers eq. 7.8 for the pure initial state. The

approach also holds for any convex combination of initial states, if the initial state is

sampled from these states and is thus general. This completes the proof.
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In summary, by imposing that a reaction event terminates the trajectory that

is being propagated it has been demonstrated the equivalence between an adapted

version of the MCWF approach and the master equation that governs radical pair

dynamics, or more generally, radical system dynamics, with recombination terms of

non-Lindbladian form.

7.3 Implementation

Actually evaluating the MC evolution as a succession of many tiny steps δt, each of

which treated to first-order in time as done above, is tedious. Instead, the following

algorithm was used to simulate a single realization of a quantum system (Plenio and

Knight, 1998). Observe that based on the description from above, the probability of

no-jump after n steps is

Pno(t = nδt) = Πn−1
j=0 ‖(1− iHeffδt) |φ(jδt)〉‖2

= ‖(1− iHeffδt)
n |φ(0)〉‖2

.

(7.21)

In the limit δt→ 0, while nδt = τ , this expression reduces to:

Pno(τ) = ‖exp(−iHeffτ) |φ(0)〉‖2 , (7.22)

and the jump probability is:

P (τ) = 1− Pno(τ) = 1− ‖exp(−iHeffτ) |φ(0)〉‖2 . (7.23)

This can be interpreted as the cumulative distribution function of the waiting time

τ until the next jump. Thus, instead of painstakingly accumulating many δt-steps,

samples are drawn from the waiting time distribution. Practically, this can be

implemented by drawing a uniform random number u ∈ [0, 1) and performing the

non-unitary deterministic time evolution generated by Heff until the squared norm of

the state vector falls below u. At the moment where this happens, a quantum jump
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is executed. The collapse/kinetic operator for the jump can be from the N + M

possibilities at random, where the relative probability of choosing Jm and Kn is

proportional to δpm and δp′n, respectively. This approach increases the efficiency

of solving the problem by allowing one to rely on higher order ordinary differential

equation (ODE) solvers (as opposed to the inefficient Euler method used in the

derivation above), which utilize markedly larger and, possibly, adaptive time steps.

Since the approach is derived from the δt → 0 limit, it also evades the issue of

quantum jumps taking a finite amount of time (see the discussion in (Kornyik and

Vukics, 2019)). The downside is that exact time point of the quantum jump must

be identified. Using state-of-the-art ODE solvers that provide dense outputs, i.e.

representations of the solution as interpolation function in t, this can be realized

efficiently by retracing the solution to the point where the jump condition is met

(Rackauckas and Nie, 2017). It is found that the problems considered here are

efficiently integrated by 5/4 Runge-Kutta methods, such as Dormand-Prince’s and

Tsitouras’ approach (Dormand and Prince, 1986; Tsitouras, 2011), both of which

provide free 4th order interpolants to be used in backtracking and interpolating the

solution on a user-provided time grid (a point every nanosecond was used here). The

performance of the Runge-Kutta methods could even be exceeded by using adaptive

multi-step methods. In particular, the 5th order Adams-Moulton method (using

the 4th order Runge-Kutta approach to calculate starting values) has proved highly

efficient (Schwarz and Köckler, 2013).

Radical pairs that are generated in the singlet electronic state are considered.

The initial state is, hence, an incoherent mixture of singlet states whereby all nuclear

spin configurations are equally probable, since the states are quasi-degenerate and

the temperature is comparably high:

ρ(0) =
1

Z
Ps ⊗i 1i (7.24)

Here, Z is the total number of nuclear spin states and the direct product comprises

all nuclei via the index n. Consequently, the MCWF approach requires one to sample

different nuclear spin states in a way that converges, for every nuclear Hilbert space,
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to the required scaled unity density 1i. This could clearly be realized by iterating

over all Z nuclear spin states e.g. in the canonical basis (i.e. the eigenstates of I2
i

and Ii,z). However, the exponential scaling of Z with the number of nuclear spin

renders this approach impractical for large spin systems, i.e. those that the MCWF

approach aims to cover, since the computational time complexity is not one that can

be practically used for any but the smallest of systems. This exponential scaling can

be avoided by, once again, performing a Monte Carlo sampling over randomly chosen

initial states (Weiße et al., 2006). A study by the Manolopoulos group suggests that,

in the context of the wavefunction-based approach to solving eq. 7.4 without using

Lindblad dissipators, this limitation can be overcome by stochastically sampling

the nuclear spin wave functions in the form of spin coherent states (Lewis, Fay and

Manolopoulos, 2016). This approach promises rapid convergence of expectation

values with the number of sampled states and, importantly, the number of required

states not scaling (or even decreasing) with the size of the Hilbert space (Weiße et al.,

2006). The over-complete set of spin coherent states, parametrised by θ and φ, can

formally be obtained by rotating the Ii,z eigenstate with highest projection, |Ii, Ii〉,

to point in the direction n̂ = n̂(θ, φ) of polar angle θ and azimuthal angle φ, e.g. by

rotating by angle θ around the axis parallel to n̂× ẑ (the hat on classical vectors is

intended to mean normalisation) (Lieb, 1973; Radcliffe, 1971):

|Ωi〉 = |θi, φi〉

= exp
(
iθ̂̂n× ẑ · ~Ii

)
|Ii, Ii〉

= cos

(
θi
2

)2Ii

exp

(
tan

(
θi
2

)
eiφIi,−

)
|Ii, Ii〉 .

(7.25)

As the states satisfy the completeness relation

1i =

∫ π

0

sin(θi)dθi

∫ 2π

0

dφi |Ωi〉 〈Ωi| , (7.26)

the MCWF approach can be realized by randomly sampling the orientation n̂ for

each of the nuclear spins from the unit sphere. As the MCWF is stochastic as such,

the additional spin coherent states sampling is seamlessly integrated.
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Figure 7.1: Transformed survival probability, f1(1) = p1(t) exp(kf t), as a function of time
for the [FAD•− W•+] system with 8 + 8 nuclear spins, subject to S/T-dephasing at the
rate γST = 11 µs−1 and a magnetic field of B = 1 mT. A recombination rate of kb = 0.5
µs−1 was assumed. (a) shows the reconstruction of the time-dependence of f1(t) for many
trajectories using the MCWF approach. The solid red line shows the eventually converged
mean; every gray curve, a single of which has been highlighted in black, corresponds to 80
samples. Here, B = 1 mT is aligned with the ẑ-axis of FAD. (b) summarizes the converged
results for or different field directions in the absence and presence of S/T-dephasing. Note
that S/T-dephasing strongly attenuates the anisotropy of the response to magnetic field.

7.4 Results

The author and group members have implemented the MCWF approach for spin

dynamic calculations on radical pairs as outlined above. Here is presented an

assessment of its performance established in terms of two prototypical radical pair

systems with putative relevance to magnetoreception (Lee et al., 2014; Hiscock

et al., 2016; Maeda et al., 2012). These radical pairs comprise a semi-reduced flavin

adenine dinucleotide, FAD, non-covalently bound in the protein cryptochrome, i.e.

FAD•−, and a partner radical. In vitro, the combination of FAD•− and an oxidized

tryptophan radical, W•+, is known to convey magnetosensitivity (Maeda et al.,

2012; Kattnig et al., 2016b). In vivo, the identity of the second radical is less clear

and currently fiercely debated (Kattnig, 2017c). In model calculations, systems

of so called reference-probe character have been found to elicit large anisotropic

magnetic field effects (Lee et al., 2014; Procopio and Ritz, 2020). The prototypical
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Figure 7.2: f1(t) = p1 exp(kf t) for the [FAD•− W•+] radical pair with 8 + 8 nuclear spins,
kb = 0.5 µs−1 and B = 0, with (blue) and without (orange) S/T-dephasing at a rate of
γST = 11 µs−1.

system of this type is [FAD•− Z•], where the flavin is combined with a radical

devoid of hyperfine interactions, Z•. A radical of this kind could possibly result

from a reoxidation reaction of the fully reduced FAD cofactor with molecular oxygen

(Hammad et al., 2020; Pooam et al., 2019; Wiltschko et al., 2016). Note that many

details of cryptochrome magnetoreception are as yet unknown and no concrete picture

has yet emerged from the combined literature. However, this is not an issue here,

where the purpose is to discuss MCWF approach for recombining radical pairs as

treated within the Haberkorn, respectively quantum master equation, framework.

Radical pair magnetic field effects are attributed to a delicate interplay of the coherent

evolution, predominantly due to hyperfine and the Zeeman interaction, and spin

selective recombination. For oriented systems, the typical Hamiltonian is of the form

H = H1 +H2, (7.27)

where

Hk =
µBgj
~

~B · ~Sk +
∑
i

~Sk · Aki · ~Ik,i. (7.28)

Here, ~B is the applied magnetic field, gk the g-factor (g-anisotropy is neglected

here, because the focus is on organic radicals in comparably weak magnetic fields),

Aki is the hyperfine tensor and ~Sk and ~Ik,i are the individual electron and nuclear

spin operators, respectively. In addition, the exchange and electron-electron dipolar

interaction should be taken into account. These interactions are sometimes the source
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of unexpected effects, but often are found to attenuate MFEs in weak magnetic

fields (Babcock and Kattnig, 2020; Efimova and Hore, 2008). As is commonly done,

these extra terms shall be neglected here for simplicity. Note nonetheless that their

inclusion would not pose an additional difficulty as the effective Hamiltonian, Heff ,

as resulting from eq. 7.28 does not in general allow for a factorisation anyway. The

radical pair systems considered here can either recombine in the singlet configuration

(with rate kb) or proceed in a non-spin selective process to form a reaction product

(rate kf ), which in the context of magnetoreception is thought to involve a protein

structure rearrangement, whence innervating a signalling cascade (Kattnig, Nielsen

and Solov’yov, 2018). The kinetic superoperator
ˆ̂
K is thus of the form

ˆ̂
Kρ = −kb

2
{PS, ρ} − kfρ, (7.29)

which is tantamount to setting kS = kf +kb and kT = kf in eq. 7.1. Here it is assumed

that the radical pairs are subject to S/T-dephasing (see eq. 7.2 above; dissipation

rate kST = γST ) as a result of the reactive encounter process and/or the modulation

of the exchange and electron-electron dipolar interaction terms by molecular motion.

In addition, random field relaxation is assumed, and accounted for by a Lindblad

dissipator with uncorrelated noise associated with the Cartesian spin operators of

the two radicals Jm ∈ {Sk,x, Sk,y, Sk,z} (Kattnig, Solov’yov and Hore, 2016; Kattnig,

2017c). Assuming that the dissipation rates for all directions are equal to γRF,k, this

gives rise to the combined term for radical k of the form

ˆ̂
Rkρ = γRF,k

 ∑
α∈{x,y,z}

Sk,αρSk,α −
3

4
ρ

 . (7.30)

Furthermore, it is assumed that the radical pair is generated in the singlet state,

e.g. by a swift, spin-conserving electron transfer reaction of diamagnetic precursors,

and, thus, ρ(0) = PS/Tr[PS].

The singlet probability, pS(t) = Tr[PSρ(t)] or the survival probability is the

tracked quantity, p1(t) = Tr[ρ(t)] of the radical pair over time, whence the yields of
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the recombination, YS and escape/signalling product, Y1 can be calculated from

YS = kb

∫ ∞
0

ps(t)dt, (7.31)

and

Y1 = kf

∫ ∞
0

p1(t)dt, (7.32)

respectively. Evaluating p1(t) from the MCWF approach is particularly straight

forward, as it is derived from sampling the recombination time only. In particular,

no evaluation of expectation values on a regular time grid (in addition to the usual

following of the trace of ρ for the purpose of identifying the moments of quantum

jumps) is necessary. This allows for a particularly efficient implementation.

Figure 7.3: (a) The test case used here was the [FAD•− Z•] system, with 14 spins under
random field relaxation with rate γRF = 0.2 µs−1 and kb = 2 µs−1. Here, it has been
assumed B = 50 µT, which is of the order of the geomagnetic field at mid-latitude. The
insert shows the dependence of the magnetic anisotropy for this system, evaluated as the
difference of Y1 when the field is in the ŷ and ẑ-direction, respectively, on the forward rate
constant kf . (b) shows f1(t) on a logarithmic scale. tmax = 24 µs and N = 476, 800 Monte
Carlo samples have been collected.

Here are reported some attempts of applying the MCWF approach to the two

radical pair systems [FAD•− W•+] and [FAD•− Z•] subject to the outlined scenario,

whereby a variable number of hyperfine-coupled nuclei was taken into account. The

relevant hyperfine parameters, up to 12 for FAD•− (including two nitrogens with
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Figure 7.4: f1(t) of the [FAD•− Z•] systems with parameters as specified for Fig. 7.3. Solid
lines: calculated using the MCWF approach with N = 3200 samples only. The general
shape of the transformed survival probability is hardly discernible from the converged
result (dashed lines).

Figure 7.5: ∆Y1 for the [FAD•− Z•] described in Fig. 7.3 at B = 50 µT with random field
relaxation as a function of the number N of averaged MC trajectories. The orange, blue
and green data apply to kf = 0.5 µs−1, 1 µs−1 and 2 µs−1, respectively.

I = 1) and up to 8 (one nitrogen) for W•+, are summarized in the appendix, sections

9.13.1 and 9.13.2. For the simulations with a variable number of hyperfine-coupled

nuclear spins reported here, the hyperfine interactions in FAD•− were added in the

order N5, N10, H6, 3 x H8, Hβ1, Hβ2, H9, and 3 x H7. For W•+ the order was

N1, H1, Hβ2, H4, H2, H6, Hβ1, H7 and H5. Figure 7.1 shows exemplary results for

[FAD•− W•+] subject to S/T-dephasing at the rate γST = 11 µs−1 and a magnetic

field of B = 1 mT. Analogous data for B = 0 mT are shown in Fig. 7.2.

A recombination rate of kb = 0.5 µs−1 was assumed, which is typical for this kind

of system. Here is shown the transformed survival probability f1(t) = p1(t) exp(+kf t)

as a function of time, which is independent of kf as by the form of
ˆ̂
K, eq. 7.29, the
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forward reaction induces a simple exponential decay of the density matrix. Typical

values of kf would be of the order of 1 µs−1. Figure 7.1(a) shows how the MCWF

approach reconstructs the time-dependence of an observable from many trajectories;

80 individual runs are combined into one grey line; the eventually converged average

is shown as a red solid line. Figure 7.1(b) shows converged results for different

orientations of the magnetic field with and in the absence of S/T-dephasing. Note

that without S/T-dephasing the dynamics populate states which are part of the

kernel of the Liouvillian and thus do not decay. S/T-dephasing breaks the longevity

of the associated radical pair population. Figure 7.3 features the [FAD•− Z•] spin

system with 14 spins under random field relaxation (cf. eq. 7.30) with rate γRF = 0.2

µs−1. Here, it has been assumed B = 50 µT, which is of the order of the geomagnetic

field at mid-latitude. Figure 7.3(a) shows f1(t) for different orientations of the

magnetic field and the dependence of the magnetic anisotropy, assessed in terms

of the difference of the escape yield for the magnetic field aligned with the ẑ and

ŷ-direction, on the rate kf . To this end, the yield was obtained by numerically

integrating p1(t) up to a cut-off time of tmax = 24 µs. f1(t) for a smaller number of

samples and the convergence behaviour of ∆Y1 for this system are shown in Figs.

7.4 and 7.5. Of particular note here is that the general shape of the transformed

survival probability can be seen to be hardly distinguishable from the converged

result, which attests to the robustness of the methodology used in the present work,

and the validity of the results obtained therefrom.

For smaller spin systems, the accuracy of the method has been compared to

the result obtained from direct integration of the master equation using Tsitouras’

Runge–Kutta pairs of order 5(4) with adaptive time stepping to ascertain a relative

and absolute error of 10−8. For the [FAD•− Z•] problem with random field relaxation

(γRS = 0.2 µs−1) and 10 coupled nuclei (including two nitrogen atoms), Figure 7.6

illustrates the deviation of the direct integration and the MCWF approach when

160, 000 Monte Carlo samples are drawn. The maximal deviations are of the order of

10−3 – invisible to the eye when comparing f1(t) = p1(t) exp(kbt) in the range from

0 to 1. Figure 7.7 shows similar data for [FAD•− W•+] with 4 hyperfine-coupled
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Figure 7.6: (a) Deviation of the direct ME integration and MCWF approach with 160, 000
samples drawn, for the [FAD•− Z•] problem with random field relaxation (γRS = 0.2 µs−1),
kb = 2 µs−1 and 10 coupled nuclei (including two nitrogen atoms) for different orientations
of the magnetic field (B = 50 µT) as indicated. (b) The transformed survival probability
of this system as a function of time. The ME and MCWF approaches are indistinguishable
on the image scale.

nuclear spin in every radical when 16, 000, ten times fewer, samples are averaged in

the MCWF approach. Analogous data for S/T-dephasing are provided in Fig. 7.8.

These data show that the two approaches provide congruent results. Naturally, the

accuracy of the MCWF method depends on the number of accumulated trajectories.

Figure 7.9 shows the root-mean-square error

Ei =

√
1

tmax

∫ tmax

0

(fi,MCWF − fi,ME)2 dt (7.33)

of fi(t) = pi(t) exp(kf t) as a function of the number of MC samples. ME stands for

the direct, i.e. näıve, integration of the master equation. tmax was set to 24 µs. The

error bars indicate twice the standard deviation of the mean of Ei evaluated from 4

to 94 independent repeats (depending on the sample number) of the error calculation.

Both f1 and fS decrease approximately with N−1/2, as is expected for the standard

error of Monte Carlo estimators. Importantly, for the studied systems, no systematic

difference between the MCWF and master equation method became apparent, which

is expected for an implementation based on eq. 7.22 provided that the error tolerances
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Figure 7.7: (a) Deviation of the direct ME integration and MCWF approach with 16, 000
samples drawn, for the [FAD•− W•+] with 4 hyperfine-coupled nuclear spin in every radical,
random field relaxation (γRS = 0.2 µs−1), B = 1 mT and kb = 2 µs−1. (b) The transformed
survival probability of this system as a function of time.

associated with the numerical integration and quantum jump time localisation are

chosen to be sufficiently low. Different approaches of sampling the initial nuclear

spin wavefunction have also been compared. In addition to the spin coherent state

sampling described above, nuclear spin wave functions were randomly picked in the

{I2
i , Ii,z}-basis and used a complete set of basis functions, i.e. all {I2

i , Ii,z}-basis states

were sampled in succession. It was not possible to discern a significant difference in

the error of f1(t), i.e. the standard deviation associated with the sampling process

(which is larger than the indicated standard deviations of the mean of the sampled

error) exceeded the differences of the approaches. This indifference is reassuring,

as it suggests that the error introduced by stochastically sampling the nuclear spin

functions does not lead to undue error compared with complete sampling, where

it is possible. The approach based on spin coherent states is valuable as for large

spin systems drawing less than Z samples is often unavoidable or, in fact, desirable,

which is where this method is expected to offer good convergence (Lewis, Fay and

Manolopoulos, 2016). Based on the results here, however, the question of whether

spin coherent state sampling is superior to the random picking of the finite set of

states cannot be answered. For fS the analogous conclusions apply. It is interesting
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Figure 7.8: Error of the MCWF approach relative to the ME method for a small [FAD•−

W•+] spin system with 4 + 4 coupled nuclear spins subject to S/T-dephasing. N = 16, 000,
kb = 0.5 µs−1, gammaST = 11 µs−1, B = 1 mT. Considered nuclei: N5, N10, H6, H8
in FAD•− and N1, H1, Hβ2, H4 in W•+. The magnetic anisotropy is tiny under the
simulation conditions. For kf = 1 µs−1, Y1 differs by only 0.0051 for the y (blue) and
z-direction (orange); the yield for the z direction is Y1 = 0.88.

to note that for the system analysed here the ratio of the errors ES/E1 appears

to be systematically smaller for the spin coherent state sampling than the other

implemented approaches (whilst the differences are again smaller than the standard

deviations). This might indicate a small inherent advantage of the spin coherent

state when singlet yields are observed. This observation will require more detailed

studies to become conclusive.

The MCWF approach strength lies in its applicability to comparably large spin

system for which the master equation approach cannot realistically be applied. This

advantage becomes obvious when comparing the CPU times to generate a solution for

the two approaches as a function of the number of coupled spins, as it is summarised

in Figure 7.10, with a further result for the S/T-dephasing scenario shown in Fig.

7.11. Here, the starting point was a basic [FAD•− Z•] or [FAD•− W•+] system

that comprised all nitrogen spins. Adding one proton spin at a time, the runtime
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Figure 7.9: RMS error of the transformed singlet and survival probability within the
implementation of the MCWF approach compared to the numerical implementation of
the direct integration of the master equation as a function of the number of Monte Carlo
samples N . (a) applies to the 5 spin system FAD•− W•+] system; (b) collects data for
an 8 spin system of the same type. The errors ES and E1 are shown in green and blue,
respectively. Different sampling strategies of the initial nuclear spin configurations are
encoded by line styles: solid lines: spin coherent state sampling; dashed lines: random
sampling of nuclear spin states in the Zeeman basis; and dotted lines: complete sampling.
The arrow indicates the slope of the expected N−1/2-dependence. Linear fits to the data
are in agreement with this expectation within statistical error. The error bars indicate two
standard deviations of the mean error Ei evaluated from 94 to 4 independent repeats for a
given sample size N . All additional parameters are as for Fig.
7.6.
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Figure 7.10: Comparison of the CPU time required to generate a solution for both the
integration of the ME and the implementation of the MCWF approach, as a function of
the number of coupled spins in the system. Panel (a) shows a [FAD•− W•+] system that
comprised all nitrogen spins and a variable number of proton spins, and panel (b) shows a
basic [FAD•− Z•] system. Simulation parameters are as given in Fig.
1 and 2 for the respective systems. 216 samples have been drawn for the MCWF approach
and tmax = 12 µs. The MCWF method used the Dormand-Prince 5/4 Runge-Kutta method
with an absolute error tolerance of 10−8 and a relative error tolerance of 10−6.
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Figure 7.11: Runtime scaling for the [FAD•− W•+] simulations with fast S/T-depahsing
for the ME (blue) and MCWF (green) approach. Parameters: B = 1 mT, kb = 0.5 µs−1,
γST = 11 µs−1, tmax = 24 µs. Nuclear spins have been added in alternation to FAD•− and
W•+. Simulation parameters as described for Fig. 7.1 apply.

dependence as given in the figure is obtained. For the ME approach, the elapsed

time scales according to O(4n) to O(4.5n), where n is the number of considered

nuclear spins, while for the MCWF approach scales as O(2.4n). Overall, the O(4n)

scaling of the master equation method quickly renders the calculation formidable.

E.g. for only 4 + 4 nuclear spins, the integration of the [FAD•− W•+] system up to

12 µs already requires 31 hours. The direct integration of the systems shown in Fig.

7.1 and 7.3 can be considered intractable by the current means as it would require

48 days for the smaller [FAD•− Z•] system or even 453 years for the [FAD•− W•+]

system (provided the memory requirements could be met). On the other hand, the

weaker O(2.4n) of the MCWF approach found here allows much larger spins systems,

realistically up to 20 spins, to be integrated. Here, the key question is not only the

Hilbert space dimension but in addition the required accuracy of the solution. If

significant accuracy is required, the MCWF method can become arbitrarily expensive

as the O(N1/2) scaling of the error of the averaged quantities mandates potentially

huge sample sizes. As such, for small systems the direct integration is preferred.

7.5 Discussion

The primary advantage of the Monte Carlo wavefunction method for obtaining

time-dependent quantum expectation values is that systems of greater complexity

are amenable to this treatment than can be tackled using the direct integration of
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the master equation. This advantage stems from the fact that the method rests

on the propagation of wavefunctions. For a Hilbert space dimension d = 4Z, the

number of wave function components is equal to 4Z while the number of density

matrix components is equal to d2 = 16Z2. In the worst case, i.e. for dense operators,

the propagation would scale quadratically in the number of components. Practically,

the sparsity of Heff caters for a more favourable scaling (for both approaches). In

particular, one may expect an ideal scaling of O(dlnd) for the propagating of a state

vector, as a) the bilinear combination of spin operators of the form Sk,αIki,β (with

{α, β} ∈ x, y, z) directly couple at most five states and that b) there are O(lnd) such

terms. Regardless of the actual scaling, the MCWF propagation will turn out to be

exceedingly more efficient than directly integrating the master equation, as the latter

requires O(d) applications of Heff and therefore O(d2lnd) operations. Practically, a

scaling of O(d1.26) was found for the MCWF method applied to the [FAD•− W•+]

radical pair and O(d2.2) for the direct integration.

The primary disadvantage of the MCWF method is that the calculated quant-

ities contain a statistical uncertainty, which needs to be reduced to an application-

specific limit. The uncertainty results from the variability of the initial nuclear spin

configuration and the stochasticity of the quantum jumps. It has to be contained by

sampling, which however, comes at a significant cost of computation time, as the

statistical error decreases as N−1/2 with increasing number of samples N . Fortu-

nately, the method inherits a remarkable scaling behaviour from wavefunction-based

approaches to spin dynamics for closed quantum system, which suggest that for large

spin systems significantly fewer than Z samples of the initial nuclear spin configur-

ation are often sufficient to arrive at adequately converged observable trajectories

(Lewis, Manolopoulos and Hore, 2014). Practically, a constant number of samples,

independent of problem dimension, proves to work well, suggesting that the scaling

behaviour as suggested above still applies to the MCWF approach on the whole.

For more than approximately 10 spins, the MCWF method quickly becomes the

only feasible approach to integrate eq. 7.4. For small systems, on the other hand,

the added overhead of averaging a large number of stochastic trajectories to obtain
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the open system dynamics, outweighs the benefit of a moderate memory saving.

Master equation methods are therefore generally more efficient when Hilbert space

dimensions are on the order of a couple of hundred states or smaller.

Alternative approaches to simulate the dynamics of relaxing systems could in

principle be built on the closed-system dynamics of spin systems. To this end, one

would have to engineer a time-dependent stochastic process such that the coherent

dynamics sampled over this process will give rise to the dynamics as predicted by

the master equation 7.4 (Lewis, Fay and Manolopoulos, 2016). Up to second order,

this could e.g. be realised in the framework of the Redfield approach (Breuer and

Petruccione, 2002). However, this strategy does not overcome the difficulty that

many trajectories have to be sampled and comes at the conceptual disadvantage that

a particular, mostly arbitrary, realisation of the stochastic process modulating the

spin Hamiltonian will have to be conjured up. E.g. in order to realise S/T-dephasing,

one could assume a stochastically modulated exchange or electron-electron dipolar

interaction, but the modulation process, interaction strength, etc. would have to

be chosen subjectively (Kattnig et al., 2016a). While the result will, to second

order in the perturbation, only depend on the second moment of the interaction

strength and the correlation time, higher order contributions will be difficult to rule

out in general, which renders the process idiosyncratic. In particular, for systems

for which the microscopic details are unclear, this introduces an unnecessary (and

possibly misleading, if contributions of order higher than 2 should become necessary)

arbitrariness, where a description in terms of effective parameters, as contained in the

Lindblad master equation might be preferred. One will furthermore have to ensure

that the chosen process does not induce other processes, e.g. T/T-dephasing, if this

is not desirable at the stage of the calculation. The advantage of this closed-system

approach lays in the fact that well-established approaches for propagating closed

radical pair systems subject to Haberkorn recombination can be utilised, either

on the quantum level, or, if very large spin systems are to be addressed, on the

semiclassical level (Schulten and Wolynes, 1978; Lewis, Manolopoulos and Hore,

2014; Manolopoulos and Hore, 2013). In fact, the quantum propagation of the closed
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systems is expected to be more efficient than the MCWF approach, as it does not

require the event detection of quantum jumps. Thus, the integration methodology

can be optimised to the sampling of the relevant observables on a regular time grid

instead, which has e.g. been realized efficiently by using exponential integrators based

on the Arnoldi method (Sidje, 1998).

Despite the advents of the MCWF method, the integration of open spin system

is a time-consuming process for all but simplistic systems of only a few spins. The fact

that a large number of trajectories has to be accumulated is, however, offset by the

prospect that these calculations can be carried out in parallel. In fact, as only a few

state-vectors need to be stored, the individual resource requirements are modest and

a massively parallel implementation on high-performance clusters is easily realised.

Furthermore, when the evaluation of time-dependent observables, e.g. p1(t) or pS(t),

is required for the purpose of comparing with experiments, an integration accuracy

of 10−2 to 10−3 might be sufficient (to realise results that are converged when plotted

on the full scale of the calculation/experiment), which can often be realised with as

few as 1000 samples. While this is encouraging, the calculation of reaction yields,

e.g. Y1 and YS, does typically require more samples for convergence to the required

(experimental) precision. In particular, the MCWF method cannot provide a simple

answer to some of the challenges posed by the spin dynamics thought to underpin

magnetoreception. For such systems, long-lived coherences have been postulated,

which in many cases nonetheless only give rise to small anisotropies of the reaction

yields. This is particularly problematic for the prototypical [FAD•− W•+] systems,

which for realistic descriptions of the nuclear spin degrees of freedom (for the closed

system dynamics; open system dynamics have hardly been addressed), give rise to

only tiny relative anisotropies of often markedly less than 1% (Hiscock et al., 2016;

Atkins et al., 2019). In combination with the long lifetimes, this requires a substantial

investment in computing time to resolve these tiny directional effects. Note, however,

that much larger effects can result from the [FAD•− Z•] or some recently introduced

radical triad systems (Kattnig and Hore, 2017c; Kattnig, 2017c; Lee et al., 2014).

It should also be noted that the scaling behaviour of the MCWF approach,
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while growing weaker than that of the master equation approach, is still exponential

in the number of coupled spins. While algorithms for simulating spin dynamics

that scale polynomially in the number of spins have become popular in the field of

theoretical magnetic resonance spectroscopy, these methods do not usually provide

sufficiently accurate solutions for the modelling of radical pair dynamics in weak

magnetic fields. Here, it is expected that the MCWF approach can fill the gap that

exists for open quantum system dynamics between the toy systems that are straight-

forwardly treated by the master equation approach and the realm of semiclassical

approaches (possibly with direct inclusion of the bath degrees of freedom) (Hogben

et al., 2011; Hogben, Hore and Kuprov, 2010; Kuprov, Wagner-Rundell and Hore,

2007).

The disadvantage of having to sample a large number of trajectories can

sometimes emerge to be a virtue. This can be the case if, e.g., the effects of

random stochastic dependent interactions are to be addressed or if a random motion

modulates the spin Hamiltonian, such as is the case if the radical pair undergoes

mutual diffusive motion (Evans et al., 2016). Including these otherwise difficult to

accommodate aspects in the description is straight forward in the MCWF approach,

e.g. by combining the integration of the wavefunction with a stochastic differential

equations solver to accounting for these random processes. This is clearly a field

where one can expect to see much interest in the near future.

For systems where the effective Hamiltonian factors due to the existence of

invariants, e.g. as is the case for isotropic spin systems, large savings of CPU time

can be realised by utilizing the block structure of operators. Likewise, marked

improvements of the time complexity and its scaling are to be expected for problems

for which the effective Hamiltonian can still be diagonalised, but a description of the

open state dynamics is aimed for (e.g. to include the effect of S/T-dephasing). In these

cases, an efficient approach could be realised by implementing the main propagation

step in between quantum jumps in the eigenbasis of the effective Hamiltonian. This

is expected to provide a significant boost to the speed for the large class of systems

of intermediate size, i.e. systems that are non-trivial in terms of the open system
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dynamics but too small to be well-described by semiclassical approaches. While

this idea has not been explored further here, it is expected that future application

focused on actual applications will profit from this or similar tactics. In fact, the

symmetry decomposition of the Hilbert space that could have been realised has not

been considered here, but the three protons in the methyl groups at C7 and C8 of

the flavin radical anion are completely equivalent and could thus be treated in a

coupled spin basis. In this sense, the presented results are representative of the worst

case scenario, where the structure of the effective Hamiltonian cannot be utilised in

any particular way. Actual application might profit from additional efficiency boosts

within the outlined MCWF approach and exceed the current application.

Eventually, while the aim here is not for new insights into the radical pair

dynamics putatively underpinning magnetoreception, but rather for a more efficient

methodology that may be useful for studying them, a novel observation should be

pointed out. As illustrated in Fig. 7.1, S/T-dephasing appears to strongly attenuate

the anisotropy of the magnetic field effect, i.e. in the presence of this relaxation

process with γST = 11 µs−1 the orientational differences in f1(t) are essentially washed

out. While obviously more detailed studies of this effect are required, this once

again highlights the importance of focusing on the study of open system dynamics

to unravel the true nature of biological magnetic field effect. Indeed, hitherto no

credible demonstration of magnetic anisotropy has been realised for the [FAD•−

W•+] radical pair.

7.6 Conclusions

It has been shown that the quantum Monte Carlo wavefunction (MCWF) approach

can be extended to the non-Lindbladian master equations relevant to the spin

dynamics of radical systems. This was achieved by stipulating that when radicals

recombine they are no longer active in the interactions of the system, and thus

the path describing them should be terminated upon a recombination occurring

which was added into the MCWF framework by the introduction of an additional

”quantum jump” to describe the termination step. This new approach has been
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tested against the benchmark of direct integration of the master equation with a

Runge-Kutta approach, and find that the asymptotic time-complexity of the MCWF

approach is O(2.4n) compared to the master equation scaling of O(4.5n), where n is

the number of protons in the system. This speed-boost allows large spin systems

of up to twenty fully-interacting spins to be integrated, where previously this was

computationally intractable. Small spin systems, on the other hand, are better

treated using the traditional, direct integration of the master equation. It is expected

that the MCWF method will become a useful asset in the study of magnetoreception

and other biological magnetic field effects that are discussed in the context of the

emerging discipline of quantum biology. In this context, the complexity of the radical

systems of biological relevance in terms of the large number of hyperfine coupled

nuclear spins has so far precluded the study of open system dynamics for realistic

scenarios. Here, it is expected that the delineated approach to significantly broaden

the range of problems that can be routinely analysed.
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8. Conclusion

The work presented hitherto can be summarised as follows: Chapter 1 provided an

introduction to the field of quantum biology, indicating some of the key questions

of the field, as well as pertinent hypotheses and experimental findings. Chapter

2 supplied the theory to these concepts by presenting the RPM Hamiltonian, the

Haberkorn formalism of recombination, the consequent master equation and some

known hypotheses and methodologies to solve it. This chapter concluded with the

motivation of a new theory - an extension to the RPM. Chapter 3 introduced the

D3M model, and demonstrates that neglecting the dipolar and exchange interactions

from the Hamiltonian leads to the loss of many subtle and interesting effects. Chapter

4 presented a case study of this model in action: the magnetosensitivity of lipid

peroxidation reactions. Chapter 5 generalised the idea of D3M to n spins and shows

that the biological MFEs predicted by DnM can be significantly amplified by the

relaxation of the constraint of symmetry. Chapter 6, introduced noise into the systems

studied in chapter 5 and shows that one can further enhance the effects found from

geometric distortion alone by considering singlet-triplet dephasing. Finally, chapter

7 introduced a method to make the use of DnM more computationally practical

by extending the Monte-Carlo Wavefunction approach to non-Lindbladian master

equations.

Specific key details, insights, and ideas for future work are now given:

This thesis has challenged the conventional wisdom of spin dynamics in bio-

logical systems by exploring notable shortcomings in the hitherto widely accepted

Radical Pair Mechanism. In particular, the categorical requirement that hyperfine

interactions must be present in order to see magnetic field effects in radical spin

dynamics has been shown to be false for systems with three or more radicals. That is,
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the conventional Radical Pair Mechanism is far from a generalised explanation but in

fact a very special case - it holds precisely for pairs of radicals. Furthermore, for such

systems with more than two radicals, the assumption that the dipolar interaction can

be simply neglected from the Hamiltonian has been shown to be a faulty assumption.

As with the previous instance of hyperfine interactions, this conventional assumption

holds precisely for pairs of radicals (i.e. n = 2) due to symmetry but breaks the

moment a third radical is introduced. Given that completely isolated pairs of radicals

are highly unlikely to arise in a realistic biological system, a new mechanism for the

description of biological radical dynamics is necessitated.

D3M is this mechanism. Chapter 3 introduced the D3M model, and demon-

strated that neglecting the dipolar and exchange interactions from the Hamiltonian

leads to the loss of many subtle and interesting effects. D3M has been applied

to radical systems of three or more radicals, initially in the absence of hyperfine

interactions to show their superfluity regarding the realisation of MFEs. New effects

have been demonstrated by this mechanism, including the remarkable emergence of

directional sensitivity to fields weaker than the geomagnetic field - something that

the RPM cannot predict. This work could be progressed further by introducing some

experimental work to test the predictions made and afford a full grounding in reality.

The first of such predictions it would make sense to test is the presence of a new,

richer, MFE profile with the addition of a third radical, and subsequently the effect

of the exchange at tuning this. This could be done by the use of EPR spectroscopy

to locate the energy splittings expected from the inclusion of the dipolar interaction

(which would not be expected to be present under the canonical RPM).

Chapter 4 presented a case study of this model in action: the magnetosensitivity

of lipid peroxidation reactions. The main results of this chapter were that D3M effects

are not abolished by the presence of hyperfine interactions, and that (contrary to

conventional wisdom) radical concentration can affect the magnetosensitive reaction

dynamics. This is important for the study of certain therapeutic treatments, such as

used for the destruction of tumours, because it suggests that the negative impact

could be reduced non-invasively by the application of an appropriate magnetic field.
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This work could be extended by introducing some experimental work to test how far

and to what extent radical concentration really has the predicted effect, which would

also be the first and foremost prediction to test due to its immediate relevance to

real systems: namely, radiotherapy. This is an important real application, because

if the precise physical impact of radical concentration on the magnetodynamics of

lipid peroxidation could be established then one could imagine that physicians could

introduce controlled doses from an external magnetic field as an addition to the

standard therapeutic procedure, with the aim of lessening the well-known deleterious

side effects of such treatments.

Chapter 5 presented a generalisation of D3M to larger systems (i.e. DnM) and

continued the exploration of the importance of symmetry to biological MFEs. The

most surprising finding of this study was that breaking geometric symmetries can

have a significant effect upon the MFE profile of a system. Specifically, it was found

that the biological MFEs predicted by DnM can be significantly amplified by the

relaxation of the constraint of symmetry. In particular, those systems that were only

slightly geometrically different from the high-symmetry case showed MFEs (some at

sub-geomagnetic field) that were abolished by the imposition of geometric symmetry

upon the system. This suggests that, while symmetry may be mathematically

convenient for the study of radical dynamics, its imposition can also lead to the

loss of vital information about the system under consideration. This idea is also

biologically motivated, as the notion that a high-symmetry system would persist

for a meaningful amount of time (between a millisecond and a microsecond for the

conventional RPM to have effect) in the high-energy, so-called ’hot, noisy’ biological

environment is questionable. The main results of this chapter were that D3M effects

are not a special case of three-spin systems, but can actually also be observed in

larger, more complex, systems. Also, the effects of geometry were shown to be

significant in the magnetic response of the system. The work in this chapter could be

extended by running some larger simulations, on some much more powerful hardware,

to see if there exists an even-odd disparity in the number of spins and the MFE

profiles of the resultant geometries. It appears as though this may be the case, from

191



the results in this chapters, but there are not enough data points to draw a conclusive

pattern from.

Chapter 6 then went on to explore the second of the adjectives: ’noisy’.

Noise was introduced into the DnM model, and the systems considered in the

geometric study were once again probed. This chapter presented the result that

noise in the system is not necessarily disadvantageous to the quantum dynamics or

magnetosensitivity thereof, and further that the combination of natural noise, such

as singlet-triple dephasing, and the geometric distortions introduced in chapter 5,

can actually display a certain synergy in that they can (taken together) enhance

the overall MFE observed. The noise types considered were the widely remarked-

upon singlet-triplet dephasing and uncorrelated noise in all operators as a control.

Unsurprisingly, the control abolished the MFEs observed in chapter 5. However,

singlet-triplet dephasing (arguably the most biologically relevant type of noise to

quantum radical dynamics) showed the much more interesting result of not just

preserving the MFEs produced by the geometric considerations of chapter 5 but in

some cases enhancing them. This further bolsters the idea that DnM can provide a

more realistic description of biological radical dynamics than the conventional radical

pair mechanism.

This work could be extended by considering other physically-relevant types

of noise, and perhaps the effects of direct consideration of temperature upon the

quantum magnetodynamics of the system. This would be of direct relevance to

real systems, because biological systems are well-known to operate within a ”hot,

noisy” regime, within which many critics of the field have argued that quantum

effects would be washed out due to their energies being lower than kBT . Since it has

been shown that noise is not always the destructive force that one may expect, the

direct incorporation of physiological temperature into the system would be a very

interesting extension. This would also aid experimentalists in attempting to measure

the effects of noise, because they are unable to simply ”turn off” temperature in

living systems in the way theoreticians conducting proof-of-concept simulations can.

Finally, in chapter 7, the more practical concern of computability was addressed.
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Specifically, a more efficient way of implementing DnM for systems where n goes

beyond the six-spin systems explored as proof of concept which were until recently

considered totally intractable through direct integration of the master equation.

By adapting a method known as the Monte Carlo Wavefunction approach to be

applicable to non-Lindbladian Hamiltonians (such as those discussed in preceding

chapters), it was shown that not only could larger spin dynamics calculations be

done faster than by direct integration but that the numerical error associated with

the results gained was no worse in spite of this speed boost. This approach could

likely benefit from implementation on a GPU, or other similar high-performance

hardware, and this is the next suggested investigation along these lines.
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9. Appendix

This appendix contains supporting details for the various studies carried out during

the preparation of each preceding chapter. Items found herein were not included

in the relevant chapter proper either because they were produced independently

by group members, or it would have been impractical in terms of coherence and

readability to include them.

Section by section, this appendix consists of:

• Pertaining to Chapter 3, a derivation of the dipolar coupling tensors is presented.

• Pertaining to Chapter 4:

- A discussion of lateral diffusion in lipid peroxidation reactions.

- A discussion of the effects of spin-relaxation on lipid peroxidation.

- The g-tensor and hyperfine tensor calculations used.

- A discussion of MFE anisotropies and microreactors.

• Pertaining to Chapter 5:

- A schematic of how energy level crossings are influenced by geometric

distortion.

- The coordinates of spins in the geometries discussed.

- Tables of values showing the minimum field required to see one and five

percent MFEs in the geometries studies, alongside the corresponding

exchange value.

- A collection of results from larger geometries discussed, but not shown, in

the chapter proper.
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• Pertaining to Chapter 6:

- A collation of many additional results from all geometries studied. The

results are analogous to the sample shown in the main chapter, and broadly

support the main results thereof.

• Pertaining to Chapter 7:

- The hyperfine couplings for the FAD and W radicals used in the simulations

detailed in the chapter proper.

- The computational resources used.

• Finally, the code developed over the course of this project for running the

simulations and producing the results, both shown and published, is included

for completeness.

9.1 Dipolar tensor derivation

The following matrices were presented in chapter 3:

D1,2 =


1 0 0

0 1 0

0 0 −2

 (9.1)

D2,3 =
1

r3


[3 cos(2θ)−1]

2
0 −3 cos(θ) sin(θ)

0 1 0

−3 cos(θ) sin(θ) 0 − [1+3 cos(2θ)]
2

 (9.2)

and

D1,3 =
1

f(r, θ)3


1−G1(r, θ) 0 G2(r, θ)

0 1 0

G2(r, θ) 0 G1(r, θ)

 (9.3)

These matrices are given relative to the dipole-dipole interaction in pair (1, 2),

and r here is relative to r1,2. Herein follows a derivation of their matrix elements.
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Figure 9.1: A particular case for how the general geometry considered in this derivation
could look.

The starting point for the derivation is eq. 3.2, which will be re-stated here for

convenience, with all quantities as defined in the chapter proper:

Ŝi ·Di,j · Ŝj = di,j(ri,j)
[
Ŝi · Ŝj − 3

(
Ŝi · ~ei,j

)(
Ŝj · ~ei,j

)]
. (9.4)

Recall that the geometry assumed (without loss of generality) was spins 1

and 2 positioned along the z-axis, with spin 3 located somewhere in the xz-plane,

displaced at an angle θ from the z-axis. A particular example of how this geometry

may look is shown in Fig. 9.1.

9.1.1 Derivation of D1,2

~e1,2 =
~r1,2

|~r1,2|
(9.5)

The matrices in question were all presented in units of d1,2 which, having

divided through by all of the fundamental constants presented in the chapter proper,

amounts to considering |~r1,2| equal to unity in this unit system. As such, ~e1,2 is

simply ẑ.

This simplifies eq. 3.2 to:

Ŝ1,xŜ2,x + Ŝ1,yŜ2,y + Ŝ1,zŜ2,z − 3Ŝ1,zŜ2,z

after having evaluated the scalar products. By orthogonality, this is then just

Ŝ1,xŜ2,x + Ŝ1,yŜ2,y +−2Ŝ1,zŜ2,z. (9.6)
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Comparing this with the LHS of eq. 3.2, one can then see that the matrix

elements of D1,2 are the coefficients of the operators in the above matrix representation

by factoring operators in spin 1 out to the left and operators in spin 2 out to the

right. This can be done due to the commutativity of scalar multiplication. The same

logic applies to D2,3 and D1,3, so only the calculation of the relevant elements will

be presented, rather than their respective matrix representations, for brevity.

9.1.2 Derivation of D2,3

~e2,3 =
~r2,3

|~r2,3|
(9.7)

Let |~r2,3| be denoted as r. ~r2,3 can then be written as (considering Fig. 9.1 by

way of illustration) rcos(θ)ẑ + rsin(θ)x̂, and hence:

~e2,3 = cos(θ)ẑ + sin(θ)x̂ (9.8)

.

Consequently:

Ŝ2 · ~e2,3 = Ŝ2,zcos(θ) + Ŝ2,xsin(θ), (9.9)

and similarly for Ŝ3.

The matrix elements one should expect to see then will come from:

Ŝ1,xŜ2,x + Ŝ1,yŜ2,y + Ŝ1,zŜ2,z − 3
(
Ŝ2,zcos(θ) + Ŝ2,xsin(θ)

)(
Ŝ3,zcos(θ) + Ŝ3,xsin(θ)

)
.

(9.10)

This leads to the following system of equations, each of which corresponds

to the labelled matrix element with xx, for example, corresponding to the Ŝ2,xŜ3,x

coefficient; the operators will be omitted for brevity, since the logic has already been

established in the previous subsection:
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xx = 1− 3sin2(θ)

yy = 1

zz = 1− 3cos2(θ)

xz = −3cos(θ)sin(θ)

zx = −3cos(θ)sin(θ)

(9.11)

All that remains to recover the required matrix elements is standard trigono-

metric manipulations, using the double-angle formulae, in the xx and zz elements.

As a final note, the factor of 1
r3

that appears as a multiplier to the matrix D2,3

as presented is simply a product of the scaling of d2,3 by d1,2 (as mentioned for the

units used here).

9.1.3 Derivation of D1,3

The logic here, again, is identical to the previous two subsections, so only the new

information for this element will be shown here. The unique step in this subsection

is the calculation of the unit vector ~e1,3.

Referring to Fig. 9.1 by way of example, one can see that the three position

vectors form a triangle. Thus, ~r1,3 = ~r1,2 +~r2,3.

As such, again emphasising the units being used here to avoid confusion, one

can see that this is given by ~r1,3 = (1 + rcos(θ))ẑ + rsinθx̂. Hence:

~e1,3 =
(1 + rcos(θ))ẑ + rsinθx̂

(1 + 2rcos(θ) + r2)
1
2

(9.12)

With this information, the exact procedure from the previous subsection can

be followed (albeit with significantly more tedious algebra) to reproduce the matrix

elements, and this will not be repeated here.
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9.2 Assessment of lateral diffusive motion

To the author’s knowledge, no data exist regarding the diffusion of lipid radical

peroxides in membranes. However, it has been shown that the diffusion coefficients

for stable radical molecules are similar to those of the non-radical molecules, whereas

unstable radical molecules have been shown to diffuse slower than their non-radical

counterparts (Donkers and Leaist, 1997; Terazima, Okamoto and Hirota, 1993). In a

review by Machán̈ et al.Machán̈ and Hof, 2010, diffusion coefficients for lipids in giant

unilamellar vesicles are reported to range from 1.4 µm2s−1 to 7 µm2s−1. However,

they are expected to be significantly smaller in actual biological environments. As

lipid peroxides are relatively stable radicalsGaschler and Stockwell, 2017 that are a

similar in size to lipids, it is approximated that the radical species would diffuse at

a rate comparable to that of its non-radical precursor. Based on these facts, it is

estimated that lipid peroxides will undergo a diffusive displacement of significantly

less than the free Brownian diffusion length LD =
√

4Dt calculated with the above

diffusion coefficients. A characteristic time t can be estimated based on a typical spin

relaxation time of an organic radical, because all MFE have to manifest within the

lifetime of the pertinent spin coherences (vide infra). Assuming a coherent lifetime

of 100 ns, it is thus estimated a lateral displacement of less than 1.7 to 0.7 nm.

Therefore, in good approximation, diffusion shall be neglected during the time-spans

that give rise to the formation of the MFE in a biological membrane.

9.3 Assessment of spin relaxation

MFEs are expected if the spin and reaction dynamics occur on time-scales that are

faster or comparable to spin relaxation times. Thermalized spin systems cannot

convey magnetosensitivity to weak magnetic fields, because the Zeeman interac-

tion energy is small compared to the thermal energy, kBT , and, thus, equilibrium

properties are negligibly affected. Alkyl peroxyl radicals in free solution are subject

to fast spin relaxation as a consequence of large g-anisotropies, which facilitates

efficient spin rotational relaxationW. Atkins and Kivelson, 1966. Consequently,
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EPR spectra of alkyl peroxyl radicals in liquid solution at room temperature are

typically broadForbes et al., 2007; Symons, 1969. Yet, an order of magnitude estimate

suggests that spin rotation will likely not impact the MFEs of lipid peroxyl reactions

in membranes for short-lived, i.e. reactive, encounters, because the deviations of the

g-tensor principal values from the g-factor of the free electron are sufficiently small

and the motional correlation time is sufficiently long. This argument is based on

the rotational diffusion rates from Klauda et al., 2008 (D‖ = 1×107 s−1 and D⊥

= 1×108 s−1) to estimate a typical motional correlation time of the lipid (using

τc = 1/(4D⊥ + 2D‖) ∼ 2 ns) and

T−1
1 = T−1

2 =
1

9τc

∑
a∈{x,y,z}

(gaa − ge)2 (9.13)

to evaluate the order of magnitude of the spin rotational relaxation rates. Here, the

gaas are the principal values of the g-tensor. With g-parameters calculated using

DFT, the presented estimates suggests spin relaxation times exceeding 10 µs. While

this estimate is based on a simplified view of molecular dynamics that neglects

internal degrees of freedom, it shows that even motions that are faster by two orders

of magnitude will not suppress the MFEs discussed here (for an assumed maximal

encounter time of 100 ns). Unfortunately, at the time of writing the author was

not aware of a detailed motional model that would have allowed the estimation of

internal motion at the current stage. In order to put this in context, note that, for

the same τc, the superoxide radical anion is expected to relax faster by a factor of

33. It is important to realize that our assessment applies to the scenario that all

radicals are lipid bound. The cage reaction suggested in Kipriyanov Jr., Doktorov

and Purtov, 2015 involved a free hydroxyl radical, the fast relaxation of which almost

certainly abolishes MFEs due to the RPM for moderate field intensities (estimated

relaxation time: 1 nsVerma and Fessenden, 1976, which is consistent with the EPR

line width in Becker, La Vere and Sevilla, 1994).
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9.4 Calculation of the g-tensor

The g-tensor was calculated for the most stable conformer of the radical isomer

9ez using the Gaussian16 software. The unrestricted B3LYP exchange-correlation

functional was used with a Def2TZVP basis set and a tight convergence criterion for

the SCF iterations. This approach yielded the following shifts relative to the free

electron g-factor:

XX Y Y ZZ

-304.2 5961.6 27887.8

Table 9.1: g-tensor shifts relative to the free electron (ppm)

9.5 Calculating the Hyperfine Interactions

The hyperfine coupling constants of two isomers of linoleic acid peroxyl radical, 13ze

and 9ez, as described in the main text, were calculated by DFT using NWChem 6.8.1.

The dihedral angle that the peroxyl group makes with the backbone chain was scanned

from -180 to 180°with 38 points. At each dihedral angle a geometry optimisation

was performed while holding the selected dihedral angle constant. Each simulation

used the def2-tzvp basis set with the exchange-correlation functional B3LYP, an SCF

threshhold of 1× 10−8 and the xfine grid. Using the resultant optimised structures,

the hyperfine values were calculated using the same exchange-correlation functional

with the EPR-III basis. The largest hyperfine coupling constant was found for the

hydrogen vicinal to the peroxide group.

Fig. 9.2A shows the dependence of the isotropic hyperfine constants on the

peroxyl dihedral angle for several hydrogen atoms of interest in the 9ez and 13ze

isomers. There is evidently a large range of values aiso can take depending on the

orientation of the dihedral angle. To calculate the average interaction, a Boltzmann

average was calculated. The potential energy surface for this rotation is shown in

Fig. 9.2B. With these data, the Boltzmann-weighted average hyperfine coupling

tensor 〈A〉 can be calculated from
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〈A〉 =
∑
i

ziAi, (9.14)

zi =
e−∆Ei/(kBT )∑
j e
−∆Ej/(kBT )

, (9.15)

where Ai is the hyperfine tensor of conformation i after alignment of the backbone

(carbons 1 to 8) to the minimal energy configuration. Ei is the potential energy of

the ith orientation associated with the dihedral angle, kB is the Boltzmann constant

and T is the temperature. Here, was used a temperature of 310 K to be in line with

temperatures within biological systems. By following this method, aiso associated

with 13ze was calculated to be 10.3 MHz. An equivalent process was followed for 9ez

to produce an aiso of 13.5 MHz.

Tables 9.2 and 9.3 show the largest anisotropic hyperfine coupling constants

when the Boltzmann-weighted average is calculated. In both isomers the isotropic

constants are all below 1 MHz with the exception of the hydrogen bonded to the

same carbon as the peroxide group, where the hyperfine coupling constants increase

substantially to over 10 MHz.

The anisotropic hyperfine constants were not considered in the main section

of the article. However, their magnitudes and signs are shown in Fig. 9.3. When

the rotation of the lipid about its backbone is considered, the anisotropy is strongly

reduced. This is shown in Fig. 9.4. As the as the anisotropy fades with molecular

motion, the isotropic model is an appropriate approximation to make for this system.
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Figure 9.2: A: Isotropic hyperfine coupling constants as the peroxide group rotates around
the dihedral angle made with the backbone of the lipid. Each atom label corresponds to
a hydrogen within each lipid peroxide radical where the number represents the carbon
number on the backbone. B: Potential energy surface as the peroxide group rotates around
the dihedral angle made with the backbone of the lipid.
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Atom Number aiso (MHz) anisotropy (MHz) asymmetry

6a 0.155 1.52 0.00805
5b -0.008 2.11 0.0327
7a 0.225 3.93 0.0286
7b 0.371 8.03 0.0493
8b -0.602 8.65 0.188
8a 0.103 4.39 0.105
10 -0.561 9.44 0.135
11 0.441 2.44 0.0878
12 0.008 1.67 0.0482
9 13.488 14.9 0.0465

Table 9.2: 9ez hyperfine coupling constants. Each atom label corresponds to a hydrogen
within each lipid peroxide radical where the number represents the carbon number on the
backbone.

Atom Number aiso (MHz) anisotropy (MHz) asymmetry

8a -0.005 1.70 0.0234
15a 0.223 2.29 0.0537
15b 0.137 2.78 0.0747
16a -0.024 1.61 0.0608
14b -0.925 10.1 0.166
14a -0.343 6.49 0.0951
10 0.353 1.21 0.0488
11 0.372 2.98 0.0567
12 -0.238 8.01 0.158
13 10.317 14.6 0.0385

Table 9.3: 13ze hyperfine coupling constants. Each atom label corresponds to a hydrogen
within each lipid peroxide radical where the number represents the carbon number on the
backbone.
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Figure 9.3: Average hyperfine coupling tensors when the dihedral angle describing the
orientation of the peroxyl group fluctuates in the potential given by Fig. 9.2 for 13ze (left)
and 9ez (right). Blue indicates positive and green negative hyperfine components in the
respective direction.

Figure 9.4: 13ze (left) and 9ez (right) shown with the average hyperfine interaction on the
vicinal hydrogen when it is averaged by fast rotation about the carbon backbone (axis of
rotation indicated by the black line) in addition to the fluctuations of the orientation of
the peroxyl group.
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Figure 9.5: Magnetic field effects (χP ) for three-radical systems when the magnetic field is
perpendicular to the plane of the membrane. The strength of the magnetic field and the
value of the hyperfine coupling constant used is shown in each graph. For all calculations
J = 0, kP,0 = 0.2 ns−1 and ke = 0.01 ns−1.
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9.6 Anisotropies of the MFE

Figure 9.6: Plots of the anisotropies of the MFEs of a three-radical system for 50 µT
(left), 1 mT (middle-left), 10 mT (middle-right), 1000 mT (right). The top and bottom
show the same image from different angles and the numbers indicate the anistropies (%).
Parameters are as follows: kP,0 = 0.2 ns−1, ke = 0.01 ns−1, J = 0, aiso = 0, |r1,3| = 13.7 Å,
|r2,3| = 15.5 Å.

9.7 Microreactors

Figure 9.7: The magnetic field at which the MFE reaches half saturation plotted against
the surface concentration of the lipids. The blue and red lines represent the cases with
a = 0 and a = 10.3 MHz, respectively, both with the magnetic field oriented perpendicular
to the membrane plan. The yellow line shows the rotational average when a = 0.
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Figure 9.8: Characteristics of the low-field effect for orientationally averaged samples
of circular microreactors containing three radicals at variable concentrations. Top: the
magnetic field at which the low field effect occurs as a function of the surface concentration
of the lipid radicals. Bottom: Magnetic field effect at the peak of the low-field feature.
Parameters: kP,0 = 0.2 ns−1 and ke = 0.01 ns−1, J = 0.

9.8 Level-crossing diagrams for chapter 5

As an illustration, here are included level crossing diagrams for the simplest system

studied. Although the crossings and anti-crossing responsible for a rich variety of

MFEs are similarly present in the larger systems, the three-spin triangular geometry

was chosen to illustrate, as the diagrams for the larger systems quickly become

incomprehensible.
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Figure 9.9: Characteristics of the magnetic field effect for circular microreactors containing
three radicals at variable concentrations under the hypothetical scenario that the electron-
electron dipolar interaction is absent. Top: the low field effect as a function of the
surface concentration. Middle: the saturated magnetic field effect as a function of surface
concentration. Bottom: the magnetic field effect as a function of the magnetic field.
Parameters: kP,0 = 0.2 ns−1, ke = 0.01 ns−1, J = 0 and a = 10.3 MHz.
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Figure 9.10: a) to d) Energy level diagrams, i.e. energy eigenvalues as a function of the
applied magnetic field, for the equilateral triangle (a and d) and the radially distorted
triangle D3,r (b and d) for J0 = 0.25d1,2 (left, a, b) and J0 = 0.75d1,2 (right, d, e). c and f)
Magnetic field effects as a function of the magnetic field B for the equilateral (blue lines)
and distorted triangle (solid lines) for J0 = 0.25d1,2 (left, c) and J0 = 0.75d1,2 (right, f). In
the level diagrams, states associated with the two blocks of the Hamiltonian in the Zeeman
basis are drawn as blue and orange lines respectively. For the symmetric triangles in a)
and d), true level crossings of states of the same block are indicated by red circles. No
such level-crossings exist for the distorted geometry (b and e). The circled “crossing” in e)
is in fact an anti-crossing, which gives rise to the peak in the MFE profile at low fields.
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9.9 Coordinates of geometries from chapter 5

All coordinates here are given in Angstroms. For the non-linear geometries, floating-

point approximations to the displacement have been given for readability, but we

note that the exact geometric values were input into the code. For example, for the

radial distortion of the square we kept the common displacement of 1.5 Å radially,

which is 3
√

2
4

Å in both x and y of the Cartesian plane. This has been given as an

additional 1.06 Å, below, for readability only.

• Three-spin linear chain

- L3: [[0, 0, 0], [15, 0, 0], [30, 0, 0]]

- L3,3x: [[0, 0, 0], [15, 0, 0], [31.5, 0, 0]]

- L3,3y: [[0, 0, 0], [15, 0, 0], [30, 1.5, 0]]

- L3,3z: [[0, 0, 0], [15, 0, 0], [30, 0, 1.5]]

- L3,2y: [[0, 0, 0], [15, 1.5, 0], [30, 0, 0]]

- L3,2z: [[0, 0, 0], [15, 0, 1.5], [30, 0, 0]]

• Four-spin linear chain

- L4: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0]]

- L4,3x: [[0, 0, 0], [15, 0, 0], [31.5, 0, 0], [46.5, 0, 0]]

- L4,3y: [[0, 0, 0], [15, 0, 0], [30, 1.5, 0], [45, 0, 0]]

- L4,3z: [[0, 0, 0], [15, 0, 0], [30, 0, 1.5], [45, 0, 0]]

- L4,4x: [[0, 0, 0], [15, 1.5, 0], [30, 0, 0], [46.5, 0, 0]]

- L4,4y: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 1.5, 0]]

- L4,4z: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 1.5]]

• Five-spin linear chain

- L5: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 0]]

- L5,3y: [[0, 0, 0], [15, 0, 0], [30, 1.5, 0], [45, 0, 0], [60, 0, 0]]
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- L5,3z: [[0, 0, 0], [15, 0, 0], [30, 0, 1.5], [45, 0, 0], [60, 0, 0]]

- L5,4x: [[0, 0, 0], [15, 0, 0], [31.5, 0, 0], [46.5, 0, 0], [61.5, 0, 0]]

- L5,4y: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 1.5, 0], [60, 0, 0]]

- L5,4z: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 1.5], [60, 0, 0]]

- L5,5x: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [61.5, 0, 0]]

- L5,5y: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 1.5, 0]]

- L5,5z: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 1.5]]

• Six-spin linear chain

- L6: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 0], [75, 0, 0]]

- L6,4x: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [46.5, 0, 0], [61.5, 0, 0], [76.5, 0, 0]]

- L6,4y: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 1.5, 0], [60, 0, 0], [75, 0, 0]]

- L6,4z: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 1.5], [60, 0, 0], [75, 0, 0]]

- L6,5x: [[0, 0, 0], [15, 0, 0], [31.5, 0, 0], [46.5, 0, 0], [61.5, 0, 0], [76.5, 0, 0]]

- L6,5y: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 1.5, 0], [75, 0, 0]]

- L6,5z: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 1.5], [75, 0, 0]]

- L6,6x: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 0], [76.5, 0, 0]]

- L6,6y: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 0], [75, 1.5, 0]]

- L6,6z: [[0, 0, 0], [15, 0, 0], [30, 0, 0], [45, 0, 0], [60, 0, 0], [75, 0, 1.5]]

• Triangular geometry

- D3: [[0, 0, 0], [15, 0, 0], [7.5, 12.99, 0]]

- D3,r: [[0, 0, 0], [15, 0, 0], [7.5, 14.49, 0]]

- D3,r′ : [[0, 0, 0], [15, 0, 0], [7.5, 14.985, 0]

- D3,t: [[0, 0, 0], [15.75, 0, 0], [7.5, 12.99, 0]]

• Square geometry

- D4: [[0, 0, 0], [15, 0, 0], [0, 15, 0], [15, 15, 0]]
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- D4,t: [[0, 0, 0], [15, 0, 0], [0, 15, 0], [15.75, 15, 0]]

- D4,r: [[0, 0, 0], [15, 0, 0], [0, 15, 0], [16.06, 16.06, 0]]

• Pentagonal geometry

- D5: [[0, 0, 0], [15, 0, 0], [19.64, 14.27, 0], [7.5, 20.65, 0], [-4.64, 14.27, 0]]

- D5,t: [[0, 0, 0], [15.75, 0, 0], [19.64, 14.27, 0], [7.5, 20.65, 0], [-4.64, 14.27,

0]]

- D5,r: [[0, 0, 0], [16.06, -1.06, 0], [21.14, 14.27, 0], [7.5, 20.65, 0], [-4.64,

14.27, 0]]

• Hexagonal geometry

- D6: [[0, 0, 0], [15, 0, 0], [22.5, 12.99, 0], [15, 25.98, 0], [0, 25.98, 0], [-7.5,

12.99, 0]]

- D6,t: [[0, 0, 0], [15.75, 0, 0], [22.5, 12.99, 0], [15, 25.98, 0], [0, 25.98, 0],

[-7.5, 12.99, 0]]

- D6,r: [[0, 0, 0], [16.06, -1.06, 0], [22.5, 12.99, 0], [15, 25.98, 0], [0, 25.98, 0],

[-7.5, 12.99, 0]]

9.10 Tables of values for exchange parameters show-

ing a prescribed MFE intensity
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Table 9.4: The minimum fields required to see a five percent MFE in the listed geometries
and their distorted counterparts. The values are listed alongside the value of the exchange
parameter where it was measured.

Geometry Field (mT) Exchange (d1,2)
G3 0.539 0.250
G3,r 0.050 0.370
G3,r′ 0.127 0.540
G3,t 0.025 0.200
G4 0.243 0.080
G4,r 0.276 1.719
G4,t 0.119 0.520
G5 0.692 0
G5,t 0.708 0.010
G5,r 0.697 0
G6 1.902 0.390
G6,t 1.347 0.480
G6,r 1.256 0.610
L3 0.014 −0.290

L3,x3 0.013 −0.400
L4 0.021 −0.560

L4,x3 0.021 −0.510
L4,x4 0.023 −1.209
L5 0.066 −0.330

L5,x4 0.033 −0.370
L5,x5 0.067 −0.350
L6 0.228 −0.410

L6,x4 0.114 −0.390
L6,x5 0.121 −0.460
L6,x6 0.161 −0.510

G3,r,0.75 0.024 0.210
G4,r,0.75 0.094 0.530
G5,r,0.75 0.664 −0.010
G6,r,0.75 1.522 0.330
L3,x3,0.75 0.013 −0.380
L4,x3,0.75 0.0211 −0.530
L5,x4,0.75 0.021 −0.939
L5,x4,0.75 0.044 −0.360
L5,x5,0.75 0.069 −0.350
L6,x4,0.75 0.159 −0.400
L6,x5,0.75 0.162 −0.520
L6,x6,0.75 0.193 −0.570
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Table 9.5: The minimum fields required to see a one percent MFE in the listed geometries
and their distorted counterparts. The values are listed alongside the value of the exchange
parameter where it was measured.

Geometry Field (mT) Exchange (d1,2)
G3 0.223 0.250
G3,r 0.015 0.360
G3,r′ 0.026 0.540
G3,t 0.008 0.200
G4 0.067 0.500
G4,r 0.010 0.909
G4,t 0.015 −1.759
G5 0.240 −0.720
G5,t 0.043 −2.778
G5,r 0.037 −2.958
G6 0.213 −0.839
G6,t 0.158 −2.369
G6,r 0.118 −2.818
L3 0.006 −0.290

L3,x3 0.005 −0.400
L4 0.008 −0.560

L4,x3 0.007 1.089
L4,x4 0.008 −1.209
L5 0.012 −1.089

L5,x4 0.009 −0.340
L5,x5 0.013 −2.458
L6 0.024 −1.809

L6,x4 0.022 −1.659
L6,x5 0.022 −0.460
L6,x6 0.020 −0.510

G3, r, 0.75 0.008 0.210
G4,r,0.75 0.006 0.720
G5,r,0.75 0.021 −2.438
G6,r,0.75 0.175 −2.259
L3,x3,0.75 0.005 −0.380
L4,x3,0.75 0.008 −0.530
L4,x4,0.75 0.007 −0.939
L5,x4,0.75 0.011 −1.309
L5,x5,0.75 0.012 −1.629
L6,x4,0.75 0.019 −0.979
L6,x5,0.75 0.020 −0.450
L6,x6,0.75 0.022 −0.580
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9.11 Additional results pertaining to chapter 6

This section contains additional results from chapter 6. First, the longer linear chains

discussed in chapter 6 proper are shown, followed by the square

9.11.1 Linear Chains
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Figure 9.11: Four-spin linear system (L4), under the DnM formalism and in the presence
of exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows
the value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced
MFE in the upper panel.
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Figure 9.12: Four-spin linear system (L4), under the DnM formalism and in the presence
of exchange and xyz-uncorrelated noise. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.13: Five-spin linear system (L5), under the DnM formalism and in the presence
of exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows
the value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced
MFE in the upper panel.
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Figure 9.14: Five-spin linear system (L5), under the DnM formalism and in the presence
of exchange and xyz-uncorrelated noise. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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9.11.2 Square, Pentagon, and additional geometries
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Figure 9.15: Square system (D4), under the DnM formalism and in the presence of exchange
and S-T dephasing. The top panel shows regions where the presence of noise can gives an
enhanced MFE relatively to the no-noise system. The bottom panel shows the value of
the noise parameter, Γ (in MHz), that produced the corresponding enhanced MFE in the
upper panel.
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Figure 9.16: Square system (D4), under the DnM formalism and in the presence of exchange
and xyz-uncorrelated noise. The top panel shows regions where the presence of noise can
gives an enhanced MFE relatively to the no-noise system. The bottom panel shows the
value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced MFE
in the upper panel.
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Figure 9.17: Pentagonal system (D5), under the DnM formalism and in the presence of
exchange and S-T dephasing. The top panel shows regions where the presence of noise
can gives an enhanced MFE relatively to the no-noise system. The bottom panel shows
the value of the noise parameter, Γ (in MHz), that produced the corresponding enhanced
MFE in the upper panel.
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Figure 9.18: Pentagonal system (D5), under the DnM formalism and in the presence of
exchange and xyz-uncorrelated noise. The top panel shows regions where the presence of
noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.19: Planar Diamond system (coordinates: [0, 0, 0], [2r, 0, 0], [r, r
√

3, 0], [r,−r
√

3, 0]),
under the DnM formalism and in the presence of exchange and S-T dephasing. The top
panel shows regions where the presence of noise can gives an enhanced MFE relatively
to the no-noise system. The bottom panel shows the value of the noise parameter, Γ (in
MHz), that produced the corresponding enhanced MFE in the upper panel.

226



Figure 9.20: Planar Diamond system (coordinates: [0, 0, 0], [2r, 0, 0], [r, r
√

3, 0], [r,−r
√

3, 0]),
under the DnM formalism and in the presence of exchange and xyz-uncorrelated noise. The
top panel shows regions where the presence of noise can gives an enhanced MFE relatively
to the no-noise system. The bottom panel shows the value of the noise parameter, Γ (in
MHz), that produced the corresponding enhanced MFE in the upper panel.
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9.12 Distortion-Dephasing Additional Results
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Figure 9.21: Three-spin distorted linear system (L3,2y), under the DnM formalism and
in the presence of exchange and S-T dephasing. The top panel shows regions where the
presence of noise can gives an enhanced MFE relatively to the no-noise system. The bottom
panel shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.22: Three-spin distorted linear system (L3,2y), under the DnM formalism and in
the presence of exchange and xyz-uncorrelated noise. The top panel shows regions where
the presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel.
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Figure 9.23: Four-spin distorted linear system (L4,3x), under the DnM formalism and in the
presence of exchange and S-T dephasing. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.24: Four-spin distorted linear system (L4,3x), under the DnM formalism and in
the presence of exchange and xyz-uncorrelated noise. The top panel shows regions where
the presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel.
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Figure 9.25: Four-spin distorted linear system (L4,4x), under the DnM formalism and in the
presence of exchange and S-T dephasing. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.26: Four-spin distorted linear system (L4,4x), under the DnM formalism and in
the presence of exchange and xyz-uncorrelated noise. The top panel shows regions where
the presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel.
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Figure 9.27: Five-spin distorted linear system (L5,3x), under the DnM formalism and in the
presence of exchange and S-T dephasing. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.28: Five-spin distorted linear system (L5,3x), under the DnM formalism and in
the presence of exchange and xyz-uncorrelated noise. The top panel shows regions where
the presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel.
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Figure 9.29: Five-spin distorted linear system (L5,5x), under the DnM formalism and in the
presence of exchange and S-T dephasing. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.30: Five-spin distorted linear system (L5,5x), under the DnM formalism and in
the presence of exchange and xyz-uncorrelated noise. The top panel shows regions where
the presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel.
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Figure 9.31: Distorted pentagon system (D5,t), under the DnM formalism and in the
presence of exchange and S-T dephasing. The top panel shows regions where the presence
of noise can gives an enhanced MFE relatively to the no-noise system. The bottom panel
shows the value of the noise parameter, Γ (in MHz), that produced the corresponding
enhanced MFE in the upper panel.
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Figure 9.32: Distorted pentagon system (D5,t), under the DnM formalism and in the
presence of exchange and xyz-uncorrelated. The top panel shows regions where the
presence of noise can gives an enhanced MFE relatively to the no-noise system. The
bottom panel shows the value of the noise parameter, Γ (in MHz), that produced the
corresponding enhanced MFE in the upper panel.
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9.13 Additional data from Chapter 7

Here is presented supporting data for chapter 7. First, the hyperfine coupling

constants used for FAD are shown, followed by those for the W radical, and finally

the computational resources used for this study are detailed.

9.13.1 Hyperfine Coupling Constants for FAD radical (MHz)

”N5” :


−2.848 0.074 −1.757

0.074 −2.567 0.327

−1.757 0.327 53.686



”N10” :


−0.098 0.002 1.804

0.002 −0.513 −0.509

1.804 −0.509 19.109



3× ”H7” :


−3.779 0.000 0.000

0.000 −3.779 0.000

0.000 0.000 −3.779



3× ”H8” :


11.872 0.000 0.000

0.000 11.872 0.000

0.000 0.000 11.872



”Hβ1” :


8.486 −0.878 −1.223

−0.878 5.566 0.299

−1.223 0.299 5.348



”Hβ2” :


5.301 1.024 −1.091

1.024 2.321 −0.270

−1.091 −0.270 1.939



”H9” :


2.377 0.861 −0.022

0.861 4.165 0.178

−0.022 0.178 0.325



241



”H6” :


−5.314 −1.034 0.256

−1.034 −13.393 −0.201

0.256 −0.201 −11.632
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9.13.2 Hyperfine Coupling Constants for W radical cation

(MHz)

”N1” :


−1.954 −1.606 1.158

−1.606 9.788 −10.461

1.158 −10.461 7.082



”H1” :


−19.481 −3.858 −3.772

−3.858 −9.593 6.495

−3.772 6.495 −6.716



”H2” :


−13.680 6.217 7.082

6.217 −13.304 2.204

7.082 2.204 −14.512



”Hβ1” :


10.543 0.268 −1.718

0.268 5.184 0.292

−1.718 0.292 5.733



”Hβ2” :


24.207 −0.125 −1.419

−0.125 22.955 1.756

−1.419 1.756 27.181



”H4” :


−18.561 −4.989 −5.445

−4.989 −14.908 2.997

−5.445 2.997 −13.069



”H5” :


4.817 0.552 0.251

0.552 1.315 0.752

0.251 0.752 1.545



”H6” :


−3.659 2.102 1.570

2.102 −12.960 −2.362

1.570 −2.362 −14.366
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”H7” :


−7.268 −1.930 −2.309

−1.930 −5.385 2.476

−2.309 2.476 −4.267
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9.13.3 Computational resources used

Computing system used in this study:

- CPU: Intel(R) Xeon(R) CPU E5-2640 v3

- CPU frequency: 2601 MHz

- Cache size: 20480 KB

- Memory: 128 GB

- Programming language: Julia 1.3
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9.14 Code written to implement D3M and DnM

simulations

This section contains the fundamental source code, written independently by the

author, used to implement the new models discussed in the main chapters and to

generate the results published in works contributing. Note: Some lines of code have

been artificially split, as they were too long to fit within a single line of the verbatim

container that LaTeX provides.

9.14.1 Core Class File

import HFI_Dense

import numpy as np

from joblib import Parallel, delayed

import multiprocessing

import Zeeman_Dense

import Dipole_MKII_Dense

import Exchange_MKII_Dense

from point_dipole_dipole_coupling import point_dipole_dipole_coupling

from numpy.linalg import norm

from Linalg_Yields_Dense import Yield

import Projectors_Dense

from Set_up_spin_ops import calculateDoubleSpinOperator

_eps_ = 2.2204460492503131e-16 #Machine epsilon; used for zero-comparisons.

class Particle(object):

246



def __init__(self, j2, index, type, position=None):

self.j2 = j2 # Doubled angular momentum; can handle

1 (spin-1/2) or 2 (spin-1).

self.index = index

self.type = type #’e’ or ’n’, standing for electron or nucleus.

self.position = position

class Operator(object):

def __init__(self, j_2):

self.dimension = j_2 + 1 #The matrix is square, and this is its side length.

#Basic-grade spin operator components.

class SpinOp(Operator):

def Spawn(self, index, j2_list, total_spins):

self.index = index

self.components = {’xcom’: calculateDoubleSpinOperator([’x’],

[self.index -1], j2_list, total_spins),

’ycom’ : calculateDoubleSpinOperator([’y’], [self.index -1],

j2_list, total_spins),

’zcom’ : calculateDoubleSpinOperator([’z’], [self.index -1],

j2_list, total_spins)}

#Dot products of spin operators used in interactions.

#Only electron-electron Exchange uses currently opDP,

so this has not been updated for spin-1.

class SpinOpDP(Operator):

def DPSpawn(self, labels, j2_list, total_spins):

self.PlusMinus = calculateDoubleSpinOperator([’p’, ’m’],

[labels[0]-1,labels[1]-1], j2_list, total_spins)

self.MinusPlus = calculateDoubleSpinOperator([’m’, ’p’],
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[labels[0]-1,labels[1]-1], j2_list, total_spins)

self.ZZ = calculateDoubleSpinOperator([’z’, ’z’],

[labels[0]-1,labels[1]-1], j2_list, total_spins)

self.OoDat = labels

#Similarly here, we only assume e- to combine, so spin-1 not considered.

class RecOp(Operator):

def RecSpawn(self, Spins, RecomData, ND):

j_2vals = [Spins[’ES%d’% RecomData[0]].j2,

Spins[’ES%d’% RecomData[1]].j2]

indices = [RecomData[0], RecomData[1]]

self.name = ’k%d%d’ % (RecomData[0], RecomData[1])

self.matrix = (0.5 * RecomData[3] *

np.transpose(Projectors_Dense.Singlet_Projector(j_2vals,

indices, self.dimension, ND)))#, dtype=np.complex )

#For setting up the parts of the Hamiltonian.

class Hamiltonian(Operator):

#This is my idea for avoiding unnecessary calculations in the Hamiltonain setup.

#Essentially, give it a list of characters for the interactions you

#want calculated, and they will be included. For example [’D’, ’H’, ’Z’]

#would give Dipolar, Hyperfine, and Zeeman terms.

def Jester(self, mask):

self.Mask = mask

self.Faces = {}

def Zeeman(self, SysData, Electrons, Nuclei, Bz, ND):

self.Faces[’Z’] = Zeeman_Dense.ZInt(SysData, Electrons, Nuclei,

ND, Bz=Bz)#Bx=Bz/np.sqrt(2), By=Bz/np.sqrt(2))
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def Exchange(self, SysData, SystemSize, ND):

self.Faces[’E’] = Exchange_MKII_Dense.ExInt_MKII(SysData,

SystemSize, ND)

def Dipolar(self, SysData, SystemSize, ND):

self.Faces[’D’] = Dipole_MKII_Dense.ddInt_MKII(SysData,

SystemSize, ND)

def Hyperfine(self, SysData, Electrons, Nuclears, SystemSize, ND):

self.Faces[’H’] = HFI_Dense.HFInt(SysData, Electrons, Nuclears,

SystemSize, ND)

class Interactions(object):

def __init__(self):

pass

def Dipolar_Data(self, Spins, Electrons):

self.dipolar = {}

for i in range(Electrons):

for j in range(Electrons):

if (i < j):

self.dipolar[’D_%d%d’ % (i+1, j+1)] = np.array(

[point_dipole_dipole_coupling(np.array(Spins[’ES%d’ % (i + 1)].position)

- np.array(Spins[’ES%d’ % (j + 1)].position)) * (2e-3*np.pi)])

def Exchange_Data(self, Spins, J0, dcon_MHz, beta, r, Electrons):

self.exchange = {}

for i in range(Electrons):
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for j in range(Electrons):

if (i < j):

self.exchange[’J_%d%d’ % (i+1, j+1)] = [J0 * dcon_MHz *

(2e-3*np.pi)* np.exp(-beta*

(norm(np.array(Spins[’ES%d’ % (i + 1)].position)

- np.array(Spins[’ES%d’ % (j + 1)].position))

- 2*r)), i+1 , j+1]

#Currently assumes only singlet recombination.

def Recombination_Data(self, Spins, kS0, kSc, beta, r, Electrons):

self.RecomS = {}

#if ’All’ in Targeted_Recom_Pairs:

for i in range(Electrons-1):

self.RecomS[’k_%d%d’ % (i+1, i+2)] = [i+1 , i+2, ’s’, kS0]

self.Scav = [0, 0, ’X’, kSc]

def Hyperfine_Data(self, Spins, Partners, a_iso):

self.hyperfine = {}

for i in range(len(Partners)):

self.hyperfine[’A_%d%d’ %

(Spins[’ES%d’ % Partners[i][0]].index,

Spins[’NS%d’ % Partners[i][1]].index)]

= a_iso*2e-3*np.pi*np.identity(3)#np.ones((3,3))

class Engine(object):

def __init__(self):

pass
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def CalcYield(H_tot, RecomData, Electrons,

Nuclei, Dimensions,

ND, Starting_Singlet=None, Targeted_Yield=None):

yields, Evals = Yield(H_tot, RecomData, Electrons,

Nuclei, Dimensions,

ND, Starting_Singlet, Targeted_Yield)

return yields, Evals

def Geometry(r, Electrons, Nuclei, j_2list):

#The j_2 list is a generalisation to allow spin-1

#to be implemented - j_2 can now be either 1 or 2.

Spins = {} #A dictionary for the spins in the system.

Electrons should

#go first, then nuclei, so that the indexing is definitely correct.

"""

The Pentagon:

"""

#Spins[’ES1’] = Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] = Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] = Particle(j_2list[2], 3, ’e’, [(2 * r) - (r/2) *

(1 - np.sqrt(5)), 2 * r * np.sqrt((5/8) + (np.sqrt(5))/8), 0])

#Spins[’ES4’] = Particle(j_2list[3], 4, ’e’,

[r, r * np.sqrt(5 + (2 * np.sqrt(5))), 0])

#Spins[’ES5’] = Particle(j_2list[4], 5, ’e’, [(r/2) *

(1 - np.sqrt(5)), 2 * r * np.sqrt(5/8 + np.sqrt(5)/8), 0])
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"""

6-spin planar card-tower case:

"""

#Spins[’ES1’] = Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] = Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] = Particle(j_2list[2], 3, ’e’, [4 * r, 0, 0])

#Spins[’ES4’] = Particle(j_2list[3], 4, ’e’, [r, r * np.sqrt(3), 0])

#Spins[’ES5’] = Particle(j_2list[4], 5, ’e’, [3 * r, r * np.sqrt(3), 0])

#Spins[’ES6’] =

Particle(j_2list[5], 6, ’e’, [2* r, 2 * r * np.sqrt(3), 0])

"""

Hexagonal case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [3 * r, r * np.sqrt(3), 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’, [2 * r, 2 * r * np.sqrt(3), 0])

#Spins[’ES5’] =

Particle(j_2list[4], 5, ’e’, [0, 2* r * np.sqrt(3), 0])

#Spins[’ES6’] =

Particle(j_2list[5], 6, ’e’, [-r, r * np.sqrt(3), 0])

"""

6-spin Crystal (Octahedron):
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"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [0, 2 * r, 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’, [2 * r, 2 * r, 0])

#Spins[’ES5’] =

Particle(j_2list[4], 5, ’e’, [r, r * np.sqrt(2), r * np.sqrt(2)])

#Spins[’ES6’] =

Particle(j_2list[5], 6, ’e’, [r, r * np.sqrt(2), -r * np.sqrt(3)])

"""

Square-based pyramid (SBP) case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [0, 2 * r, 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’, [2 * r, 2 * r, 0])

#Spins[’ES5’] =

Particle(j_2list[4], 5, ’e’, [r, r * np.sqrt(2), r * np.sqrt(2)])

"""
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True Diamond (i.e. 5-spins in 3D) case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’,

[r, r * np.sqrt(3), 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’,

[r, r * np.sqrt(3)/3, (2/3) * r * np.sqrt(2)])

#Spins[’ES5’] =

Particle(j_2list[4], 5, ’e’,

[r, r * np.sqrt(3)/3, -(2/3) * r * np.sqrt(2)])

"""

Planar Diamond case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [r, r * np.sqrt(3), 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’, [r, -r * np.sqrt(3), 0])

"""

Tetrahedral case:
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"""

#Beware integer division if using this in python2.

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’,

[r, r * np.sqrt(3), 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’,

[r, r * np.sqrt(3)/3, (2/3) * r * np.sqrt(2)])

"""

Square case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [0, 2 * r, 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’, [2 * r, 2 * r, 0])

"""

Equilateral triangle case:

"""
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#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [r, r * np.sqrt(3), 0])

#Spins[’NS1’] =

Particle(j_2list[3], 1, ’n’, [0, 0, 2 * r])

"""

Almost Square case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2.1 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [0, 2 * r, 0])

#Spins[’ES4’] =

Particle(j_2list[3], 4, ’e’, [2 * r, 2 * r, 0])

"""

UnEquilateral triangle case:

"""

#Spins[’ES1’] =

Particle(j_2list[0], 1, ’e’, [0, 0, 0])

#Spins[’ES2’] =

Particle(j_2list[1], 2, ’e’, [2 * r, 0, 0])

#Spins[’ES3’] =

Particle(j_2list[2], 3, ’e’, [r, r * np.sqrt(4), 0])
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#Spins[’NS1’] =

Particle(j_2list[3], 4, ’n’, [0, 0, 2 * r])

"""

This code is for the (special) linear case:

"""

for i in range(Electrons):

Spins[’ES%d’ % (i + 1)] =

Particle(1, i+1, ’e’, [2 * i * r, 0, 0])

#for i in range(Nuclei): #Check this for j2_list usage.

# Spins[’NS%d’ % (i + 1)] =

Particle(j2_list[i + Electrons], i+1+Electrons, ’n’,

[2 * i * r, 2 * r, 0])

return Spins

def Interaction(Spins, J0, beta, r, a_iso, Partners):

dipolar_constant = -4*np.pi*1e-7 *

(2.0023193043617 * 9.27400968e-24)**2

/(4*np.pi*1e-30)/6.62606957e-34/1e6 #MHz * A^3

dcon_MHz = dipolar_constant/((norm(np.array(Spins[’ES1’].position)

- np.array(Spins[’ES2’].position)))**3)

Friends = Interactions()

Friends.Dipolar_Data(Spins)

Friends.Exchange_Data(Spins, J0, dcon_MHz, beta, r, Electrons)

Friends.Hyperfine_Data(Spins, Partners, a_iso)

return Friends

def ND_ops(Electrons, Nuclei, j2_list):
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#Sets up the spin operators.

#j_2 list is the list of j_2 values corresponding to the sysm spins.

ND = {}

total_spins = Electrons + Nuclei

for spin_number in range(total_spins):

temp = SpinOp(j2_list[spin_number]) #Sets the dimension of the operator.

temp.Spawn(spin_number+1, j2_list, total_spins) #Sets up the operator.

ND["S%s" % str(spin_number+1)] = temp

for counter in range(Electrons-1):

counter+=1

counter2=counter+1

while counter2<=Electrons:

temp2 = SpinOpDP(j2_list[counter])

temp2.DPSpawn([counter, counter2], j2_list, total_spins)

ND[’S%sdotS%s’ % (str(counter), str(counter2))] = temp2

counter2+=1

return ND

def Recom(Spins, kS0, kSc, beta, r, Friends, ND, Electrons, SystemSize):

Friends.Recombination_Data(Spins, kS0, kSc, beta, r, Electrons)

for RecDat in Friends.RecomS:

temp3 = RecOp(SystemSize-1)

#This is only for Electrons, so j_2 hard-coded to 1.

temp3.RecSpawn(Spins, Friends.RecomS[RecDat], ND)

ND[’k_%s%s’ % (str(Friends.RecomS[RecDat][0]),

str(Friends.RecomS[RecDat][1]))] = temp3

return Friends, ND
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9.14.2 Main function

from numpy.linalg import norm

from Sensible_Scratch import Engine

from Sensible_Scratch import Geometry

from Sensible_Scratch import ND_ops

from Sensible_Scratch import Interactions

from Sensible_Scratch import Recom

import numpy as np

from Sensible_Scratch import Hamiltonian

import copy

from joblib import Parallel, delayed

import multiprocessing

import os

"""

This function is for the linear spin chain - specifically the uneven case.

Feed it the spins as set up from the class file, which one you want moved

(it expects just an integer) and how far in the x-direction as a function of

r. To move in the y-direction rather than x, change the option to True.

"""

def uneven_chain(Spinlist, WhichOne, HowFar, r, ymove = False):

if ymove == True:

Spinlist[’ES%d’ % WhichOne].position =

Spinlist[’ES%d’ % WhichOne].position + np.asarray([0, r * HowFar, 0])

print(Spinlist[’ES%d’ % WhichOne].position)

return
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elif WhichOne == 1 or WhichOne == 2:

print(’Unable to move spins 1 and 2, due to the D_12 metric.’)

exit()

else:

for i in range(1, WhichOne):

print(Spinlist[’ES%d’ % i].position)

for i in range(WhichOne,len(Spinlist)+1):

Spinlist[’ES%d’ % i].position =

Spinlist[’ES%d’ % i].position + np.asarray([r * HowFar, 0, 0])

print(Spinlist[’ES%d’ % i].position)

return

_eps_ = 2.2204460492503131e-16

Outfile_Stem = ’041119_3Spin_LinearChain_Uneven_Spin1move_0p1r’

#The name of the file to which the simulation results will be saved.

#The naming system I use is a base stem (e.g. ’SpinChain_Targeted’) and then in the

#parallel loop append the target pair to the end (cont.’SpinChain_Targeted_12’).

a_i = 0 #The isotropic hyperfine coupling constant. Anisotropy not implemented yet.

r = 7.5 #The assumed radius of a radical, in Angstroms.

beta = 1.4 #The decay parameter that goes into all exponentials used.

kS0 = 0.005 #Singlet recombination rate constant, in inverse ns.

kSc = 0.001 #Scavenging rate constant, AKA lifetime.

J0 = -1 #NEW: this should be multiplied by

something NON-POSITIVE to be relevant to LP.

Isotropic exchange coupling strength.
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_Test_Ang_Freq_ = 0.176085970872945 #Dimensional conversion factor.

B0 = np.append(0, np.logspace(-3, 3, 1000)) #Values here in mT.

B0 = _Test_Ang_Freq_* B0 #And now they’re in rad/ns (I think).

num_cores = multiprocessing.cpu_count()

Electrons = 3 #Number of electrons in the system.

Nuclei = 0 #Number of nuclei in the system.

Hyperfine_Pairs = [] #Which electrons and nuclei hyperfine interact.

Targeted_Recom_Pairs = [[’All’]]#, [2,3]], [3,4]],

[4,5], [5,6], [6,7], [7,8]] #Default is all on,

but this specifies pairs of sites that are allowed to recombine

for specific use-cases.

mask = [’D’] #Sets the parts of the Hamiltonian that will be calculated.

#Options: ’H’ : Hyperfine, ’D’: Dipolar, ’E’: Exchange, ’Z’: Zeeman (assumed).

#Order not important.

nuclear_j2vals = []

#A list of the j2-values of any coupled nuclei in the system.

#This is a separate parameter, because we now allow spin-1.

#Acceptable entries here are 1 and 2.

j2_list = []

for i in range(Electrons):

j2_list.append(1)

for j in range(Nuclei):

j2_list.append(nuclear_j2vals[j])

print(j2_list)

SystemSize = 0

for j2 in j2_list:
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if SystemSize == 0:

SystemSize = j2 + 1

else:

SystemSize *= (j2 +1)

print(’Side length of Hamiltonian should be: %d’ % SystemSize)

class Data(object):

def __init__(self):

self.Field_SYield = []

def Add_Result(self, J, B, Answer):

self.Field_SYield.append([J, B, Answer[0]])

def Abbatoir(J, Ham, Rec, H_Base, E_spins, Electrons,

Nuclei, B0, ND, Results, Outfile_Stem, SS=None, Target=None):

Clone = copy.deepcopy(Ham)

Data_Clone = copy.deepcopy(Results)

#print(Outfile_Name)

H_total = H_Base

Outfile_Name = Outfile_Stem + "J_%s_d12units" % J

for B in B0:

Clone.Zeeman(E_spins, Electrons, Nuclei, B, ND)

H_total = np.add(H_Base, Clone.Faces[’Z’])

Answer, Evals = Engine.CalcYield(H_total, [Rec[0],

Rec[1]], Electrons, Nuclei, SystemSize, ND, Starting_Singlet=SS,Targeted_Yield=Target)

Data_Clone.Add_Result(J, B, Answer)

File_Format = np.array([J, B])
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File_Format = np.append(File_Format, Evals)

np.savetxt("%s.csv" % Outfile_Name,

Data_Clone.Field_SYield, delimiter=",")

def Interaction(Spins, beta, r, a_iso, Partners):

dipolar_constant = -4*np.pi*1e-7 * (2.0023193043617 *

9.27400968e-24)**2 /(4*np.pi*1e-30)/6.62606957e-34/1e6 #MHz * A^3

dcon_MHz = dipolar_constant/((norm(np.array(Spins[’ES1’].position)

- np.array(Spins[’ES2’].position)))**3)

Friends = Interactions()

Friends.Dipolar_Data(Spins, Electrons)

#Friends.Exchange_Data(E_spins, J0, dcon_MHz, beta, r)

Friends.Hyperfine_Data(Spins, Partners, a_iso)

return Friends

Spins = Geometry(r, Electrons, Nuclei, j2_list)

uneven_chain(Spins, 3, 0.1, r)

Friends = Interaction(Spins, beta, r, a_iso=a_i,

Partners=Hyperfine_Pairs)

ND = ND_ops(Electrons, Nuclei, j2_list)

Friends, ND = Recom(Spins, kS0, kSc, beta, r,

Friends, ND, Electrons, SystemSize)
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Ham = Hamiltonian(SystemSize-1)

#The -1 is just to make the size consistent

#with how the operator class is currently set up.

Ham.Jester(mask)

if ’D’ in Ham.Mask:

Ham.Dipolar([Spins, Friends.dipolar], SystemSize, ND)

if ’H’ in Ham.Mask:

Ham.Hyperfine([Spins, Friends.hyperfine], Electrons,

Nuclei, SystemSize, ND)

H_Base = []

for face in Ham.Mask:

if H_Base == []:

H_Base = Ham.Faces[face]

else:

if face in Ham.Faces:

H_Base = np.add(H_Base, Ham.Faces[face])

BYield_Array = []

Jset = np.arange(-3, 3.01, 0.01)

dipolar_constant = -4*np.pi*1e-7 * (2.0023193043617
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* 9.27400968e-24)**2 /(4*np.pi*1e-30)/6.62606957e-34/1e6 #MHz * A^3

dcon_MHz = dipolar_constant/((norm(np.array(Spins[’ES1’].position)

- np.array(Spins[’ES2’].position)))**3)

for J in Jset:

print(J)

ExtraClone = copy.deepcopy(Ham)

Friends.Exchange_Data(Spins, J, dcon_MHz, beta, r, Electrons)

ExtraClone.Exchange([Spins, Friends.exchange], SystemSize, ND)

H_Base_Jvar = np.add(H_Base, ExtraClone.Faces[’E’])

Results = Data()

Abbatoir(J, Ham, [Friends.RecomS, Friends.Scav],

H_Base_Jvar, Spins, Electrons, Nuclei, B0, ND, Results, Outfile_Stem)

9.14.3 Absolute MFE measure used in Chapter 5

from Plot_BvarMFE import ReorderColumns

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import scipy

"""

This integral measure is designed to average over the J-dependence of the

heatplots we made and show that, for the subtraction dataframe calculated

between a distorted geometry and its perfect counterpart

"""

def MakeNewOrder(MFE_df):
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cols = MFE_df.columns.tolist()

cols = np.sort(cols)

#print(cols)

#print(df)

negatives = []

positives = []

for col in cols:

#col = col.split(’_’)[0]

if float(col) < 0:

negatives.append(col)

else:

positives.append(col)

neworder = []

for i in range(len(negatives)):

neworder.append(negatives[len(negatives) - i - 1])

for i in range(len(positives)):

neworder.append(positives[i])

return neworder

#The second name in names is the J-value corresponding to a column of singlet yields.

def Make_MFEdf():

counter = 0

for File in os.listdir():

if File.endswith(’.csv’):

with open(File, ’r’) as data:

#headers = [’J’, ’Field’, ’Singlet_Yield’]

if counter == 0:

MFE_df = pd.read_csv(File,
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names=[’Field’, ’%s’ % File.split(’_’)[-2]],

usecols=[1, 2])

MFE_df = MFE_df.set_index(’Field’)

counter += 1

else:

newcol = pd.read_csv(File,

names=[’Field’, ’%s’ % File.split(’_’)[-2]],

usecols=[1, 2])

newcol = newcol.set_index(’Field’)

MFE_df.insert(len(MFE_df.columns),

’%s’ % File.split(’_’)[-2], newcol)

counter += 1

neworder = MakeNewOrder(MFE_df)

MFE_df = ReorderColumns(MFE_df, neworder)

counter2 = 0

#print(df)

for column in MFE_df.columns:

newcol = (MFE_df.loc[0:, column]

- MFE_df.loc[0, column])/MFE_df.loc[0, column]

if counter2 == 0:

ActualMFEs = pd.DataFrame(newcol)

#print(MFEdf)

counter2 += 1

else:

ActualMFEs.insert(len(ActualMFEs.columns),

column, newcol)
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#print(ActualMFEs.head())

return ActualMFEs

#Plot the subtraction df to make sure it looks like

the difference of two heatplots.

def Sanity_Check(MFEdf, Title):

fig = plt.figure(’%s’ % Title)

maxMFE = []

minMFE = []

min_five_percent = [0,0,0,0]

for column in MFEdf.columns:

#print(column)

#print(MFEdf)

maxMFE.append(np.max(MFEdf.loc[0:, column]))

minMFE.append(np.min(MFEdf.loc[0:, column]))

actualmax = np.max(maxMFE)

actualmin = np.min(minMFE)

limit = np.max([actualmax, np.absolute(actualmin)])

h = plt.pcolor(MFEdf, cmap=’RdBu’, vmin=-0.15, vmax=0.15)

plt.xlabel(’J (d_12 units)’)

plt.ylabel(’B (mT)’)

plt.title(Title)

cbar = fig.colorbar(h)

cbar.ax.set_ylabel(’MFE’)

#print(MFEdf.index)

plt.xticks(np.arange(0, len(MFEdf.columns), step=100),

MFEdf.columns[0::100])
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#[’{:.4f}’.format(x) for x in

MFEdf.index[0::167]/0.176085970872945])

#plt.yticks(10**np.logspace(-3, 3, 7))

#plt.yscale(’log’)

path = ’[PATH REDACTED]’

plt.savefig(path + Title + ’.png’, format=’png’)

plt.show()

def MFE_Measure(Subtraction, title):

fields = []

measures = []

for row in Subtraction.itertuples():

fields.append(row[0]/0.176085970872945)

M = scipy.integrate.simps(row[1:])

measures.append(M)

return fields, measures

if __name__ == ’__main__’:

import sys

import os

#dirs = []

title = sys.argv[1]

#dirs.append(sys.argv[2:])

dirs = [PERSONAL DIRECTORIES REDACTED]

MFEdf_dict = {}
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for dir in dirs:

os.chdir(dir) #Make sure it is a filepath,

rather than pardir() - it’s just easier.

#Second argument none because the zero case

has already been handled for the data.

MFEdf_dict[’{}’.format(dir.split(’/’)[-1])]

= Make_MFEdf()

#MFEdf_dict[’%s’ % dir.split(’/’)[-1]]

= HeatPlot(’MFE_plot_%s’ % dir.split(’/’)[-1], None)

#print(MFEdf_dict.keys())

"""

for i in range(len(MFEdf_dict[’3_Spin’].columns)):

column1 = MFEdf_dict[’Spin3Move0p1r’].columns[i]

column2 = MFEdf_dict[’3_Spin’].columns[i]

column3 = MFEdf_dict[’Spin2Move’].columns[i]

col1 = MFEdf_dict[’Spin3Move0p1r’].loc[:,

column1].abs() - MFEdf_dict[’3_Spin’].loc[:, column2].abs()

col2 = MFEdf_dict[’Spin2Move’].loc[:,

column3].abs() - MFEdf_dict[’3_Spin’].loc[:, column2].abs()

colname1 = column1

colname2 = column3

if i == 0:

subtraction1 = pd.DataFrame(col1)

subtraction2 = pd.DataFrame(col2)

else:

subtraction1.insert(len(subtraction1.columns),

colname1, col1)
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subtraction2.insert(len(subtraction2.columns),

colname2, col2)

"""

Sanity_Check(MFEdf_dict[’4_Spin’], ’4_Spin’)

Sanity_Check(MFEdf_dict[’Spin4Move’], ’Spin4Move’)

Sanity_Check(MFEdf_dict[’Spin3Move’], ’Spin3Move’)

#fields, s2move = MFE_Measure(subtraction1, ’s2move’)

#fields, s3move = MFE_Measure(subtraction2, ’s3move’)

#The MFEdf here is the new_measure_to_be df,

from the subtraction above.

"""

plt.semilogx(fields, s2move, label=’Spin3Move0p1r’)

plt.semilogx(fields, s3move, label=’Spin2Move’)

plt.legend()

plt.xlabel(’B (mT)’)

plt.ylabel(’MFE measure’)

path = ’’

plt.savefig(path + title + ’.pdf’, format=’pdf’)

plt.show()

"""

9.14.4 Primary plotting function for MFE profiles

"""

Arguments expected: A file stem for the output template, and a graph title stem.

By file stem, I mean something like 22719_Linear_3Spin_BfixedEarth_Jvar_
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which is descriptive of the simulation and should be present in all files of

a given simulation.

And by title stem, I mean something similar but that can apply to the graph(s)

that this will produce:

- The position (in terms of Jvalues) of the maximum MFE as a function of field.

- As above, but the minimum MFE.

- The MFE profile as a function of the exchange for a given field.

If you feed it just two files, the MFE profile will run.

If you feed it a set of files, it will run the other two comparative cases.

"""

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import seaborn as sns

#Takes an array of csv files, and some labels, then makes a graph.

def Makedf(Files): #Creates a DataFrame from a bunch of files for processing.

counter = 0

for File in Files:

with open(File,’r’) as data:

if counter == 0:

headers = [’J’, ’Field’, ’Zero Yield’]

df = pd.read_csv(File, names=headers)

counter += 1

#df = ReorderColumns(df, [’Field’, ’J’, ’Singlet_Yield’])
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else:

pass

return df

def Profile(df, x_axis, y_axis, Title):

MFEs = []

for i in range(len(df)):

mfe = (df.loc[i, "Singlet Yield"]

- df.loc[i, "Zero Yield"]) / df.loc[i, "Zero Yield"]

MFEs.append(mfe)

fig = plt.figure(’%s_MFEs’ % Title)

plt.plot(df.loc[0:, ’J’], MFEs)

plt.xlabel(x_axis)

plt.ylabel(y_axis)

plt.title(Title + "_MFEprofile")

plt.legend()

plt.show()
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def ReorderColumns(df, column_order):

#Feed me a DataFrame and an array containing

#the names of the columns in the order you want them.

df = df[column_order]

return df

def HeatPlot(Title, stem): #The graph title you want, that is.

Files = []

import os

"""

This section has been commented for use in integral measure.

if (stem + "J_0.0_d12units.csv") in os.listdir():

Files.append(stem + "J_0.0_d12units.csv")

else:

print("You’re going to get an error.

Problem: a lack of a zero file.")

print(stem + "J_0.0_d12units.csv")

"""

for File in os.listdir():

"""

if File == Files[0]:

pass

else:

Files.append(File)

"""

Files.append(File)

df = Makedf(Files)

df = df.drop(’J’, axis=1)

df = df.set_index(’Field’)

274



cols = df.columns.tolist()

cols = np.sort(cols)

negatives = []

positives = []

for col in cols:

#col = col.split(’_’)[0]

if float(col) < 0:

negatives.append(col)

else:

positives.append(col)

neworder = []

for i in range(len(negatives)):

neworder.append(negatives[len(negatives) - i - 1])

for i in range(len(positives)):

neworder.append(positives[i])

df = ReorderColumns(df, neworder)

counter2 = 0

for column in df.columns:

newcol = (df.loc[0:, column] - df.loc[0, column])/df.loc[0, column]

if counter2 == 0:

MFEdf = pd.DataFrame(newcol)

#print(MFEdf)

counter2 += 1

else:

MFEdf.insert(len(MFEdf.columns), column, newcol)

#print(MFEdf)
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fig = plt.figure(’%s’ % Title)

maxMFE = []

minMFE = []

for column in MFEdf.columns:

maxMFE.append(np.max(MFEdf.loc[0:, column]))

minMFE.append(np.min(MFEdf.loc[0:, column]))

actualmax = np.max(maxMFE)

actualmin = np.min(minMFE)

limit = np.max([actualmax, np.absolute(actualmin)])

h = plt.pcolor(MFEdf, cmap=’RdBu’, vmin=-limit, vmax=limit)

plt.xlabel(’J (d_12 units)’)

plt.ylabel(’B (mT)’)

plt.title(Title)

cbar = fig.colorbar(h)

cbar.ax.set_ylabel(’MFE’)

plt.xticks(np.arange(0, len(MFEdf.columns), step=100),

df.columns[0::100])

plt.yticks(np.arange(0, len(MFEdf.index), step=125),

[’{:.4f}’.format(x) for x in MFEdf.index[0::125]/0.176085970872945])

plt.show()

return MFEdf

#Plot MFEs across a spectrum of J-values

for a multitude of fields on the same graph.

#Changes into each dir in dirs to look for files to use.

#Expects pathways to folders containing MFE
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data that needs to be on the same graph.

def MultiProfile(dirs, Title):

for dir in dirs:

os.chdir(dir)

aSortMe = []

bSortMe = []

cSortMe = []

for file in os.listdir():

with open(file, ’r’) as File:

Jval = float(file.split(’_’)[-2])

#The J-value of relevance

counter = 0

for line in File:

if counter == 0:

zeroval = float(line.split(’,’)[2])

counter +=1

#elif re.search(’8.819103834202368652e-03’,line):

#aTargetVal = float(line.split(’,’)[2])

#FiftyuTmfe = (aTargetVal - zeroval) / zeroval

#elif re.search(’8.880296345656722712e-02’,line):

# bTargetVal = float(line.split(’,’)[2])

# Zp5mTmfe = (bTargetVal - zeroval) / zeroval

elif re.search(’8.819103834202373093e-01’,line):

cTargetVal = float(line.split(’,’)[2])

FivemTmfe = (cTargetVal - zeroval) / zeroval
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#aSortMe.append((FiftyuTmfe, Jval))

#bSortMe.append((Zp5mTmfe, Jval))

cSortMe.append((FivemTmfe, Jval))

#aSortMe.sort(key=lambda x:x[1])

#bSortMe.sort(key=lambda x:x[1])

cSortMe.sort(key=lambda x:x[1])

FiftyuT_MFEs = []

Zp5mT_MFEs = []

FivemT_MFEs = []

Jvals = []

#for item in aSortMe:

# FiftyuT_MFEs.append(item[0])

for item in cSortMe:

FivemT_MFEs.append(item[0])

Jvals.append(item[1])

#for item in bSortMe:

# Zp5mT_MFEs.append(item[0])

labelstem = dir.split(’/’)[-1]

alabel = labelstem + ’50uT’

blabel = labelstem + ’0p5mT’

clabel = labelstem + ’5mT’

#plt.plot(Jvals, FiftyuT_MFEs, label=alabel)

plt.plot(Jvals, FivemT_MFEs, label=clabel)

#plt.plot(Jvals, FivemT_MFEs, label=clabel)

plt.xlabel(’J_d12Units’)

plt.ylabel(’MFE’)

plt.legend()

plt.title(Title)
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plt.show()

#This function now reproduces the graphs as in the paper.

if __name__ == ’__main__’:

import sys

import os

import re

stem = sys.argv[1] #This should be the Outfile_Stem from the run file.

Title = sys.argv[2]

Order = sys.argv[3]

Location = sys.argv[4] #Target directory

dirs = [Location]

if Order == ’heat’ or Order == ’Heat’:

HeatPlot(Title, stem)

elif Order == ’Profile’:

Files = []

for item in sys.argv[4:]:

Files.append(item)

df = Makedf(Files)

Profile(df, ’J’, ’MFE’, Title)

elif Order == ’FixB’:

Files = []

for item in sys.argv[4:]:

Files.append(item)

df = Makedf(Files)

else:
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MultiProfile(dirs, Title)

9.14.5 Hamiltonian Components

Hyperfine

"""

The overall purpose of this function is to

calculate the hyperfine contribution

to the Hamiltonian and return it,

in matrix form, to main for processing.

"""

import numpy as np

import SXS_Dense

from Die_KeyError_Die import KeyBlade

_eps_ = 2.2204460492503131e-16

def HFInt(SysData, Electrons, Nuclears, SystemSize, ND):

if not(SysData):

print("Error - please provide coupling data.")

exit(-1)

#print(SysData)

idxpairs = []

j_2vals = [-1]

#newDict = {**SysData[0], **SysData[1]}

for item in SysData[0]:

print(item)
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print(SysData[0][’%s’ % item].index)

#if not(item[0] == ’N’):

Nuclear exchange interaction to be neglected.

if j_2vals[0] == -1:

j_2vals[0] = SysData[0][’%s’ % item].j2

#This uses nuclear J - assume e- is always 1.

else:

j_2vals = np.insert(j_2vals,

len(j_2vals), SysData[0][’%s’ % item].j2)

counter = 0

XcomParts = {}

for item in SysData[1]:

counter += 1

NameEnding = ’%d’ % counter

Name = ’Part’ + NameEnding

XcomParts[Name] = SysData[1][’%s’ % item]#.reshape(3,3)

for i in range(Nuclears):

#Currently assumes ESi interacts with NSi.

if idxpairs == []:

idxpairs = np.array([SysData[0][’ES%s’ %

(i + 1)].index, SysData[0][’NS%s’ % (i + 1)].index])

else:

#key = list(SysData[1][’%s’ % nucleus].index)

idxpairs = np.append(idxpairs, np.array([SysData[0]
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[’ES%s’ % (i + 1)].index, SysData[0]

[’NS%s’ % (i + 1)].index]))

idxpairs = idxpairs.reshape(int(len(idxpairs)/2), 2)

print(idxpairs)

print(j_2vals)

#print(XcomParts)

H_hyp = SXS_Dense.SXSTensorProd(XcomParts, j_2vals,

idxpairs, SystemSize, ND)

for i in range(SystemSize):

for j in range(SystemSize):

if np.absolute(H_hyp[i][j]) > _eps_:

print(i, j, H_hyp[i][j])

return H_hyp

Zeeman

"""

The overall purpose here is to set up the Zeeman

part of the Hamiltonian.

Assumes isotropy of g-factor.

"""

import numpy as np

from scipy import sparse

def ZInt(SysData, Electrons, Nuclears, ND, Bx=0, By=0, Bz=0):
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Ziamat = []

for spin in SysData:

if ’e’ in SysData[’%s’ % spin].type:

for component in [’x’, ’y’, ’z’]:

FCom = eval("B%s" % component)

Zcom = sparse.csr_matrix(-FCom *

ND["S%d" % SysData[’%s’ % spin].index].

components[’%scom’ % component])

if Ziamat == []:

Ziamat = np.asfortranarray(Zcom.todense())

else:

Ziamat = np.add(Ziamat,

np.asfortranarray(Zcom.todense()),

dtype=np.complex_)

typevec = np.full((1,Electrons + Nuclears),’’)

return Ziamat

Dipolar

"""

User manual for ddInt_MKII:

The overall purpose of this function is

to calculate the Hamiltonian element

that corresponds to the electron-electron

magnetic dipolar interaction.
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"""

import numpy as np

import SXS_Dense

_eps_ = 2.2204460492503131e-16

def ddInt_MKII(SysData, SystemSize, ND, IdxPairs=[]):

if not(SysData):

print("Error - please provide dipolar coupling data.")

exit(-1)

idxpairs = []

j_2vals = [-1]

for item in SysData[0]:

if j_2vals[0] == -1:

j_2vals[0] = SysData[0][’%s’ % item].j2

else:

j_2vals = np.insert(j_2vals, len(j_2vals),

SysData[0][’%s’ % item].j2)

counter = 0

XcomParts = {} #As in, components of the matrix

X in the SXS tensor product.

for item in SysData[1]:

counter += 1

NameEnding = ’%d’ % counter

Name = ’Part’ + NameEnding
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XcomParts[Name] = SysData[1][’%s’ % item].reshape(3,3)

if IdxPairs == []:

if idxpairs == []:

idxpairs = np.array([int(item[2]),

int(item[3])])

else:

idxpairs = np.append(idxpairs,[int(item[2]),

int(item[3])])

idxpairs = idxpairs.reshape(int(len(idxpairs)/2), 2)

else:

idxpairs = IdxPairs

H_dd = SXS_Dense.SXSTensorProd(XcomParts, j_2vals,

idxpairs, SystemSize, ND)

return H_dd

Exchange

"""

Calculates the exchange interaction Hamiltonian, given system data.

"""

import numpy as np

from scipy import sparse

from OpDotProd_Dense import opdotprod

def ExInt_MKII(SysData, SystemSize, ND):
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if not(SysData):

print("Error - please provide information about the spin system.")

exit(-1)

j_2vals = [-1] #Sets the doubled quantum number to an unphysical default.

for item in SysData[0]:

if j_2vals[0] == -1:

j_2vals[0] = SysData[0][’%s’ % item].j2

else:

j_2vals = np.insert(j_2vals, len(j_2vals), SysData[0][’%s’ % item].j2)

Hex = [] #To become the exchange Hamiltonian matrix.

for item in SysData[1]:

SysData[1][’%s’ % item][0]

if Hex == []:

Hex = np.asfortranarray(SysData[1][’%s’ % item][0] *

(0.5 * np.asfortranarray(sparse.identity(SystemSize).todense())

+ 2* opdotprod([j_2vals[SysData[1][’%s’ % item][1]-1],

j_2vals[SysData[1][’%s’ % item][2]-1]],

[SysData[1][’%s’ % item][1], SysData[1][’%s’ % item][2]], ND)))

else:

Hex = Hex + np.asfortranarray(SysData[1][’%s’ % item][0] *

(0.5 * np.asfortranarray(sparse.identity(SystemSize).todense())

+ 2* opdotprod([j_2vals[SysData[1][’%s’ % item][1]-1],

j_2vals[SysData[1][’%s’ % item][2]-1]],

[SysData[1][’%s’ % item][1], SysData[1][’%s’ % item][2]], ND)))

return Hex

9.14.6 Utility Functions
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#Calculate the point-dipole coupling

import numpy as np

from numpy.linalg import norm

def point_dipole_dipole_coupling(r):

"""Takes in a 3x1 vector (in list format)

distance between 2 points

and returns a 3x3 matrix for the dipolar

coupling between the 2 points"""

dipolar_constants = -4*np.pi*1e-7 * (2.0023193043617 *

9.27400968e-24)**2 /(4*np.pi*1e-30)/6.62606957e-34/1e6

if np.isscalar(r):

dipolar_distance_constants = dipolar_constants/r**3

dipolar_matrix = np.diag([-dipolar_distance_constants,

- dipolar_distance_constants, 2*dipolar_distance_constants])

else:

norm_r = norm(r)

dipolar_distance_constants = dipolar_constants/norm_r**3

normalised_vector_r = (r / norm_r).reshape(3, 1)

dipolar_matrix = dipolar_distance_constants *

(3*np.kron(normalised_vector_r, normalised_vector_r.transpose())

- np.identity(3))

return dipolar_matrix

#Calculate composite spin operators
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def calculateDoubleSpinOperator(spin_op, pos, j2_list, number_of_spins):

"""Takes in an array of spin operators (each being a character),

an array of positions and the total number of spins

returns the correctly set up spin operator"""

op = {}

posit = {}

for counter in range(len(spin_op)):

if j2_list[pos[counter]] == 1:

op["op%d" % counter] = SpinOp(spin_op[counter])

elif j2_list[pos[counter]] == 2:

op["op%d" % counter] = Spin1(spin_op[counter])

I = SpinOp(’I’)

I3 = Spin1(’I’)

for counter in range(len(pos)):

posit["pos%d" % counter] = pos[counter]

if len(posit)<2:

posit["pos1"] = np.nan

#print(posit)

#print("Nan?")

#print(np.isnan(posit["pos1"]))

if posit["pos0"]==0 and posit["pos1"]==1:

#print("case1")

ops = np.kron(op["op0"], op["op1"])

elif posit["pos0"]==0 and posit["pos1"]!=1:

if not(np.isnan(posit["pos1"])) and

j2_list[posit["pos1"]] == 2:
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#print("case2a")

ops = np.kron(op["op0"], I3)

elif not(np.isnan(posit["pos1"])) and

j2_list[posit["pos1"]] == 1:

#print("case2b")

ops = np.kron(op["op0"], I)

else:

if j2_list[1] == 1:

ops = np.kron(op["op0"], I)

elif j2_list[1] == 2:

ops = np.kron(op["op0"], I3)

elif posit["pos0"]==1:

if j2_list[posit["pos0"]] == 1:

#print("case3a")

ops = np.kron(I, op["op0"])

elif j2_list[posit["pos0"]] == 2:

#print("case3b")

ops = np.kron(I3, op["op0"])

else:

print("Case3 failed.")

else:

if not(np.isnan(posit["pos1"])):

if j2_list[posit["pos0"]] == 1 and

j2_list[posit["pos1"]] == 1:

ops = np.kron(I, I)

elif j2_list[posit["pos0"]] == 1 and

j2_list[posit["pos1"]] == 2:

ops = np.kron(I, I3)
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elif j2_list[posit["pos0"]] == 2 and

j2_list[posit["pos1"]] == 1:

ops = np.kron(I3, I)

elif j2_list[posit["pos0"]] == 2 and

j2_list[posit["pos1"]] == 2:

ops = np.kron(I3, I3)

else:

if j2_list[0] == 1 and j2_list[1] == 1:

ops = np.kron(I, I)

elif j2_list[0] == 2 and j2_list[1] == 2:

ops = np.kron(I3, I3)

elif j2_list[0] == 1 and j2_list[1] == 2:

ops = np.kron(I, I3)

elif j2_list[0] == 2 and j2_list[1] == 1:

ops = np.kron(I3, I)

else:

print("Something has gone horribly wrong.")

exit()

#print("ops before the larger loop is:")

#print(ops)

if number_of_spins>2:

#print("Spins: %d" % number_of_spins)

#print(len(j2_list))

counter=2

#print(len(ops))

while counter<number_of_spins:

if posit["pos0"]==counter:

ops = np.kron(ops, op["op0"])
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elif posit["pos1"]==counter:

ops = np.kron(ops, op["op1"])

else:

if j2_list[counter] == 1:

ops = np.kron(ops, I)

elif j2_list[counter] == 2:

ops = np.kron(ops, I3)

#print(len(ops))

counter+=1

#print(spin_op)

#print(ops)

return ops

#Linear Algebra function for calculating yield

import numpy as np

from scipy import sparse

from scipy import linalg

import math

import Projectors_Dense

_eps_ = 2.2204460492503131e-16

def Yield(H, Sysdata, Electrons, Nuclears, Dimensions,

ND, Starting_Singlet, Targeted_Yield):

K1_total = []

#K2_total = []

for k in Sysdata[0]:

#print(k)

291



if K1_total == []:

K1_total = ND[’%s’ % k].matrix

#print(k)

else:

K1_total = np.add(K1_total, ND[’%s’ % k].matrix)

#print(k)

#K_ST = K1_total + K2_total

#Triplet recom (K2) is currently assumed nonpresent

- generalise at some point.

H_eff = H - (1j * K1_total) #+ ND[’K2’]))

Evecs = np.linalg.eig(H_eff)[1]

Evals = np.linalg.eig(H_eff)[0]

Lambda = np.asfortranarray(sparse.spdiags(Evals, 0,

Dimensions, Dimensions).todense())

Evec_Inverse = np.linalg.inv(Evecs)

if Starting_Singlet == None:

rho_0 = np.reshape(np.matmul(Evec_Inverse,

np.transpose(np.conj(Evec_Inverse))),

(len(Evecs)**2, 1))

else:

rho_0_soon = Evec_Inverse @ ND[’k_%d%d’ %

(Starting_Singlet[0], Starting_Singlet[1])].matrix

rho_0 = np.reshape(rho_0_soon @

np.transpose(np.conj(Evec_Inverse)) ,

(len(Evecs)**2, 1))

#rho_0 = np.reshape(np.matmul(Evec_Inverse,

np.transpose(np.conj(Evec_Inverse))),
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(len(Evecs)**2, 1))

G = np.full((len(Evals), len(Evals)), 0.0 + 0.0j)

for i in range(len(Evals)):

for j in range(len(Evals)):

testG = 1j *(Evals[i] - np.conj(Evals[j]))

G[i][j] = testG

G = np.reshape(G, (len(Evecs)**2, 1)) + Sysdata[1][3]

LS_rhoS = np.divide(rho_0,G)

rho_S = np.reshape(LS_rhoS, (int(math.sqrt(len(LS_rhoS))),

int(math.sqrt(len(LS_rhoS)))))

temp = np.matmul(rho_S, np.conj(np.transpose(Evecs)))

rho_S = np.matmul(Evecs, temp)

yields = np.zeros(2)

if Targeted_Yield == None:

yields[0] = 2 * np.sum(np.real(np.sum(np.multiply(

K1_total, np.transpose(rho_S)))))

else:

yields[0] = 2 * np.sum(np.real(np.sum(np.multiply(

ND[’k_%d%d’ % (Targeted_Yield[0],

Targeted_Yield[1])].matrix, np.transpose(rho_S)))))

#yields[1] = 2 * np.sum(np.real(np.sum(np.multiply(

K2_total, np.transpose(rho_S)))))

yields[1] = Sysdata[1][3] *

np.trace(np.real(rho_S))

yields = np.divide(yields, Dimensions)

#print("Yields: %s" % yields)

Maybe_Evals = []
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for i in range(len(Evals)):

Maybe_Evals.append(np.real(rho_S[i][i]))

#print(Maybe_Evals)

return yields, Maybe_Evals

#Projectors

import numpy as np

from scipy import sparse

_eps_ = 2.2204460492503131e-16

def Singlet_Projector(j_2, idx, SysSize, ND):

P_s = ((0.25 * np.asfortranarray(sparse.identity(SysSize).todense()))

- ND["S%sdotS%s" % (str(idx[0]), str(idx[1]))].ZZ

- 0.5 * ( ND["S%sdotS%s" % (str(idx[0]), str(idx[1]))].PlusMinus

+ ND["S%sdotS%s" % (str(idx[0]), str(idx[1]))].MinusPlus ))

#print(P_s)

return P_s

def Triplet_Projector(j_2, idx, SysSize, ND):

P_t = (0.75 * np.asfortranarray(sparse.identity(SysSize).todense())

+ ND["S%sdotS%s" % (str(idx[0]), str(idx[1]))].ZZ

+ 0.5 * ( ND["S%sdotS%s" % (str(idx[0]), str(idx[1]))].PlusMinus

+ ND["S%sdotS%s" % (str(idx[0]), str(idx[1]))].MinusPlus ))

return P_t
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pp. 01 –09. issn: 1806-1117. url: http://www.scielo.br/scielo.php?script=

sci_arttext&pid=S1806-11172013000100003&nrm=iso (Cited on page 30).

H.-P. Breuer, F. Petruccione et al. (2002). The theory of open quantum systems.

Oxford University Press on Demand (Cited on pages 159, 163 and 184).

B. Brocklehurst (2002). ‘Magnetic fields and radical reactions: recent developments

and their role in nature’. In: Chem. Soc. Rev. 31.5, pp. 301–311 (Cited on pages 27,

28 and 159).

B. Brocklehurst and K. A. McLauchlan (1996). ‘Free radical mechanism for the effects

of environmental electromagnetic fields on biological systems’. In: International

journal of radiation biology 69.1, pp. 3–24 (Cited on page 8).

J. C. Brookes (2017). ‘Quantum effects in biology: golden rule in enzymes, olfaction,

photosynthesis and magnetodetection’. In: Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences 473.2201, p. 20160822 (Cited

on page 1).

A. L. Buchachenko and V. L. Berdinsky (1996). ‘Spin Catalysis of Chemical Reactions’.

In: J. Phys. Chem. 100.47, pp. 18292–18299 (Cited on page 17).

A. L. Buchachenko and V. L. Berdinsky (2002). ‘Electron Spin Catalysis’. In: Chem.

Rev. 102.3, pp. 603–612 (Cited on page 16).

296

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100003&nrm=iso
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000100003&nrm=iso


C. Y. Cai, Q. Ai, H. T. Quan and C. P. Sun (2012). ‘Sensitive chemical compass

assisted by quantum criticality’. In: Phys. Rev. A 85 (2), p. 022315. doi: 10.

1103/PhysRevA.85.022315 (Cited on page 1).

J. M. Cai, F. Caruso and M. B. Plenio (2012). ‘Quantum limits for the magnetic

sensitivity of a chemical compass’. In: Physical Review A 85.4. issn: 1050-2947.

doi: ARTN04030410.1103/PhysRevA.85.040304. url: <GotoISI> ://WOS:

000302602500001https : / / journals . aps . org / pra / abstract / 10 . 1103 /

PhysRevA.85.040304 (Cited on pages 6 and 32).

J. M. Cai, G. G. Guerreschi and H. J. Briegel (2010). ‘Quantum Control and Entangle-

ment in a Chemical Compass’. In: Physical Review Letters 104.22. issn: 0031-9007.

doi: ARTN22050210.1103/PhysRevLett.104.220502. url: <GotoISI>://WOS:

000278477500002https : / / journals . aps . org / prl / abstract / 10 . 1103 /

PhysRevLett.104.220502 (Cited on pages 6, 9, 31 and 32).

J. M. Canfield, R. L. Belford, P. G. Debrunner and K. J. Schulten (1994). ‘A

Perturbation-Theory Treatment of Oscillating Magnetic-Fields in the Radical Pair

Mechanism’. In: Chemical Physics 182.1, pp. 1–18. issn: 0301-0104. doi: Doi10.

1016/0301- 0104(93)E0442- X. url: <GotoISI> ://WOS:A1994NF44100001

(Cited on page 32).

J. M. Canfield, R. L. Belford, P. G. Debrunner and K. Schulten (1995). ‘A Perturb-

ation Treatment of Oscillating Magnetic-Fields in the Radical Pair Mechanism

Using the Liouville Equation’. In: Chemical Physics 195.1-3, pp. 59–69. issn:

0301-0104. doi: Doi10.1016/0301-0104(95)00049-T. url: <GotoISI>://WOS:

A1995RE02300005 (Cited on page 32).

A. Carrington and A. D. McLachlan (1967). ‘Introduction to magnetic resonance:

with applications to chemistry and chemical physics’. In: (Cited on page 37).

A. M. Chagovetz and C. B. Grissom (1993). ‘Magnetic Field Effects in adenosylcob

(III) alamin photolysis: relevance to B12 enzymes’. In: Journal of the American

Chemical Society 115.25, pp. 12152–12157 (Cited on page 14).

297

https://doi.org/10.1103/PhysRevA.85.022315
https://doi.org/10.1103/PhysRevA.85.022315
https://doi.org/ARTN 040304 10.1103/PhysRevA.85.040304
<Go to ISI>://WOS:000302602500001 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.040304
<Go to ISI>://WOS:000302602500001 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.040304
<Go to ISI>://WOS:000302602500001 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.85.040304
https://doi.org/ARTN 220502 10.1103/PhysRevLett.104.220502
<Go to ISI>://WOS:000278477500002 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.220502
<Go to ISI>://WOS:000278477500002 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.220502
<Go to ISI>://WOS:000278477500002 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.220502
https://doi.org/Doi 10.1016/0301-0104(93)E0442-X
https://doi.org/Doi 10.1016/0301-0104(93)E0442-X
<Go to ISI>://WOS:A1994NF44100001
https://doi.org/Doi 10.1016/0301-0104(95)00049-T
<Go to ISI>://WOS:A1995RE02300005
<Go to ISI>://WOS:A1995RE02300005


N. Chhabra, M. L. Aseri and D. Padmanabhan (2013). ‘A review of drug isomerism

and its significance’. In: International journal of applied and basic medical research

3.1, p. 16 (Cited on page 21).

E. Ciejka and A. Goraca (Feb. 2008). ‘Influence of low magnetic field on lipid

peroxidation’. In: Pol. Merkuriusz Lek. 24, pp. 106–8 (Cited on pages 11 and 13).

E. Ciejka, P. Kleniewska, B. Skibska and A. Goraca (2011). ‘Effects of extremely low

frequency magnetic field on oxidative balance in brain of rats’. In: J. Physiol.

Pharmacol. 62, pp. 657–661 (Cited on page 13).

F. Cintolesi, T. Ritz, C. W. M. Kay, C. R. Timmel and P. J. Hore (2003). ‘Anisotropic

recombination of an immobilized photoinduced radical pair in a 50-mu T magnetic

field: a model avian photomagnetoreceptor’. In: Chemical Physics 294.3, pp. 385–

399. issn: 0301-0104. doi: 10.1016/S0301-0104(03)00320-3. url: <GotoISI>:

//WOS:000186265200015 (Cited on pages 7, 19 and 32).

J. Clausen, G. G. Guerreschi, M. Tiersch and H. J. Briegel (2014). ‘Multiple re-

encounter approach to radical pair reactions and the role of nonlinear master

equations’. In: J. Chem. Phys. 141.5, p. 054107 (Cited on page 1).
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D. R. Kattnig, E. W. Evans, V. Déjean, C. A. Dodson, M. I. Wallace, S. R. Mackenzie,

C. R. Timmel and P. Hore (2016b). ‘Chemical amplification of magnetic field

effects relevant to avian magnetoreception’. In: Nat. Chem. 8.4, p. 384 (Cited on

pages 2 and 171).

K. V. Kavokin (2009). ‘The puzzle of magnetic resonance effect on the magnetic

compass of migratory birds’. In: Bioelectromagnetics 30.5, pp. 402–410 (Cited on

page 7).

308

<Go to ISI>://WOS:000410739000138 http://www.nature.com/articles/s41598-017-09914-7.pdf
<Go to ISI>://WOS:000410739000138 http://www.nature.com/articles/s41598-017-09914-7.pdf


R. H. Keens, S. Bedkihal and D. R. Kattnig (2018). ‘Magnetosensitivity in dipolarly

coupled three-spin systems’. In: Physical review letters 121.9, p. 096001 (Cited

on pages 16, 19, 20, 22, 23, 24, 79, 86, 100, 104, 105, 108, 109, 112, 121, 122 and

136).

R. H. Keens and D. R. Kattnig (2020). ‘Monte-Carlo wavefunction approach for

the spin dynamics of recombining radicals’. In: arXiv preprint arXiv:2005.04417

(Cited on pages 26 and 112).

R. H. Keens, C. Sampson and D. R. Kattnig (2021). ‘How symmetry-breaking

can amplify the magnetosensitivity of dipolarly coupled n-radical systems’. In:

J. Chem. Phys 154.9, p. 094101. doi: 10.1063/5.0041552. eprint: https:

//doi.org/10.1063/5.0041552. url: https://doi.org/10.1063/5.0041552

(Cited on pages 20 and 25).

S. M. Kelly, T. J. Jess and N. C. Price (2005). ‘How to study proteins by circular

dichroism’. In: Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics

1751.2, pp. 119–139 (Cited on page 22).

Y. Kim, F. Bertagna, E. M. D’Souza, D. J. Heyes, L. O. Johannissen, E. T. Nery,

A. Pantelias, A. Sanchez-Pedreño Jimenez, L. Slocombe, M. G. Spencer et al.

(2021). ‘Quantum Biology: An Update and Perspective’. In: Quantum Rep. 3.1,

pp. 80–126 (Cited on pages 1, 2, 8 and 36).

A. Kipriyanov Jr., A. Doktorov and P. Purtov (2015). ‘Magnetic field effects on bista-

bility and bifurcation phenomena in lipid peroxidation’. In: Bioelectromagnetics

36.7, pp. 485–493 (Cited on pages 12, 79, 83, 98 and 200).

J. Kirschvink (1981). ‘Biogenic magnetite as a basis for magnetic field sensitivity

in animals’. In: Biosystems 13, pp. 181–201. url: http://ci.nii.ac.jp/naid/

10029117395/en/ (Cited on pages 2 and 3).

D. A. Kishkinev and N. S. Chernetsov (2015). ‘Magnetoreception systems in birds:

A review of current research’. In: Biology Bulletin Reviews 5.1, pp. 46–62. issn:

2079-0872. doi: 10.1134/S2079086415010041. url: https://doi.org/10.

1134/S2079086415010041 (Cited on page 8).

309

https://doi.org/10.1063/5.0041552
https://doi.org/10.1063/5.0041552
https://doi.org/10.1063/5.0041552
https://doi.org/10.1063/5.0041552
http://ci.nii.ac.jp/naid/10029117395/en/
http://ci.nii.ac.jp/naid/10029117395/en/
https://doi.org/10.1134/S2079086415010041
https://doi.org/10.1134/S2079086415010041
https://doi.org/10.1134/S2079086415010041


E. G. Kıvrak, K. K. Yurt, A. A. Kaplan, I. Alkan and G. Altun (2017). ‘Effects of

electromagnetic fields exposure on the antioxidant defense system’. In: J. Microsc.

Ultrastruct. 5.4, pp. 167 –176 (Cited on page 14).

J. B. Klauda, M. F. Roberts, A. G. Redfield, B. R. Brooks and R. W. Pastor (2008).

‘Rotation of Lipids in Membranes: Molecular Dynamics Simulation, 31P Spin-

Lattice Relaxation, and Rigid-Body Dynamics’. In: Biophys. J. 94.8, pp. 3074

–3083 (Cited on page 200).

M. J. Klein (1952). ‘On a degeneracy theorem of kramers’. In: Am. J. Phys. 20.2,

pp. 65–71 (Cited on page 46).

R. Kohen and A. Nyska (2002). ‘Oxidation of Biological Systems: Oxidative Stress

Phenomena, Antioxidants, Redox Reactions, and Method for Their Quantification’.

In: Toxicol. Pathol. 30, pp. 620–650 (Cited on pages 76, 77 and 78).

I. K. Kominis (2009). ‘Quantum Zeno effect explains magnetic-sensitive radical-ion-

pair reactions’. In: Phys. Rev. E 80.5, p. 056115 (Cited on page 160).

I. K. Kominis (2015). ‘The radical-pair mechanism as a paradigm for the emerging

science of quantum biology’. In: Modern Phys. Lett. B 29.Supplement 1, p. 1530013

(Cited on page 160).

I. Kominis (2016). ‘Reply to the comment on “Quantum trajectory tests of radical-pair

quantum dynamics in CIDNP measurements of photosynthetic reaction centers”

by G. Jeschke’. In: Chem. Phys. Lett. 648, pp. 204–207 (Cited on page 160).

M. Kornyik and A. Vukics (2019). ‘The Monte Carlo wave-function method: A robust

adaptive algorithm and a study in convergence’. In: Comput. Phys. Commun.

238, pp. 88–101 (Cited on pages 159, 161, 162 and 169).

K. Krasulova, M. Siller, O. Holas, Z. Dvorak and P. Anzenbacher (2016). ‘Enan-

tiospecific effects of chiral drugs on cytochrome P450 inhibition in vitro’. In:

Xenobiotica 46.4, pp. 315–324 (Cited on page 21).

M Kritsotakis and I. Kominis (2014). ‘Retrodictive derivation of the radical-ion-

pair master equation and Monte Carlo simulation with single-molecule quantum

trajectories’. In: Phys. Rev. E 90.4, p. 042719 (Cited on page 161).

310



S. Kryszewski and J. Czechowska-Kryszk (2008). ‘Master equation - tutorial approach’.

In: (Cited on page 142).

I. Kuprov, N. Wagner-Rundell and P. Hore (2007). ‘Polynomially scaling spin dynam-

ics simulation algorithm based on adaptive state-space restriction’. In: J. Magn.

Reson. 189.2, pp. 241–250 (Cited on page 186).

U. Lalo, Y. Pankratov and O. Mykhaylyk (1994). ‘Steady Magnetic-Fields Effect

on Lipid-Peroxidation Kinetics’. In: Redox Rep. 1, pp. 71–75. doi: 10.1080/

13510002.1994.11746959 (Cited on pages 1, 11, 12, 14, 23, 77 and 103).

N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen and F. Nori (2013).

‘Quantum biology’. In: Nat. Phys.ics 9.1, pp. 10–18 (Cited on pages 1, 31 and

32).

A. A. Lee, J. C. Lau, H. J. Hogben, T. Biskup, D. R. Kattnig and P. Hore (2014).

‘Alternative radical pairs for cryptochrome-based magnetoreception’. In: J. R.

Soc. Interface 11.95, p. 20131063 (Cited on pages 171 and 185).

B. Lee, H. Johng, J. Lim, J. H. Jeong, K. Y. Baik, T. J. Nam, J. H. Lee, J. Kim,

U. D. Sohn, G. Yoon et al. (2004). ‘Effects of extremely low frequency magnetic

field on the antioxidant defense system in mouse brain: a chemiluminescence

study’. In: J. Photochem. Photobiol., B 73.1, pp. 43 –48 (Cited on page 13).

N. Lefeldt, D. Dreyer, N. L. Schneider, F. Steenken and H. Mouritsen (2015).

‘Migratory blackcaps tested in Emlen funnels can orient at 85 degrees but not

at 88 degrees magnetic inclination’. In: Journal of Experimental Biology 218.2,

pp. 206–211 (Cited on page 8).

A. S. Letuta and V. L. Berdinskii (2015). ‘Chemical Zeno effect—A new mechanism

of spin catalysis in radical triads’. In: Dokl. Phys. Chem. 463.2, pp. 179–181

(Cited on pages 16, 17 and 28).

C. Levy, B. D. Zoltowski, A. R. Jones, A. T. Vaidya, D. Top, J. Widom, M. W.

Young, N. S. Scrutton, B. R. Crane and D. Leys (2013). ‘Updated structure of

Drosophila cryptochrome’. In: Nature 495.7441, E3–E4 (Cited on page 8).

311

https://doi.org/10.1080/13510002.1994.11746959
https://doi.org/10.1080/13510002.1994.11746959


A. M. Lewis, T. P. Fay, D. E. Manolopoulos, C. Kerpal, S. Richert and C. R. Timmel

(2018a). ‘On the low magnetic field effect in radical pair reactions’. In: J. Chem.

Phys. 149.3, p. 034103 (Cited on pages 27, 28, 85 and 86).

A. M. Lewis, T. P. Fay and D. E. Manolopoulos (2016). ‘An efficient quantum

mechanical method for radical pair recombination reactions’. In: J. Chem. Phys.

145.24, p. 244101 (Cited on pages 161, 170, 178 and 184).

A. M. Lewis, D. E. Manolopoulos and P. Hore (2014). ‘Asymmetric recombination

and electron spin relaxation in the semiclassical theory of radical pair reactions’.

In: J. Chem. Phys. 141.4, p. 044111 (Cited on pages 19, 183 and 184).

A. M. Lewis, T. P. Fay, D. E. Manolopoulos, C. Kerpal, S. Richert and C. R. Timmel

(2018b). ‘On the low magnetic field effect in radical pair reactions’. In: The

Journal of chemical physics 149.3, p. 034103 (Cited on pages 15 and 32).

E. H. Lieb (1973). ‘The classical limit of quantum spin systems’. In: Commun. Math.

Phys. 31.4, pp. 327–340 (Cited on page 170).

M. Liedvogel and H. Mouritsen (2010). ‘Cryptochromes—a potential magnetoreceptor:

what do we know and what do we want to know?’ In: Journal of The Royal

Society Interface 7.Suppl 2 (Cited on page 6).

M. Liedvogel, K. Maeda, K. Henbest, E. Schleicher, T. Simon, C. R. Timmel, P. J.

Hore and H. Mouritsen (2007a). ‘Chemical magnetoreception: bird cryptochrome

1a is excited by blue light and forms long-lived radical-pairs’. In: PloS one 2.10,

e1106 (Cited on page 32).

M. Liedvogel, G. Feenders, K. Wada, N. F. Troje, E. D. Jarvis and H. Mouritsen

(2007b). ‘Lateralized activation of Cluster N in the brains of migratory songbirds’.

In: European Journal of Neuroscience 25.4, pp. 1166–1173 (Cited on page 6).

C. T. Lin and T. Todo (2005). ‘The cryptochromes’. In: Genome Biology 6.5. issn:

1465-6914. doi: ARTN22010.1186/gb-2005-6-5-220. url: <GotoISI>://WOS:

000228864300005https://genomebiology.biomedcentral.com/track/pdf/

10.1186/gb-2005-6-5-220?site=genomebiology.biomedcentral.com (Cited

on pages 6 and 9).

312

https://doi.org/ARTN 220 10.1186/gb-2005-6-5-220
<Go to ISI>://WOS:000228864300005 https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2005-6-5-220?site=genomebiology.biomedcentral.com
<Go to ISI>://WOS:000228864300005 https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2005-6-5-220?site=genomebiology.biomedcentral.com
<Go to ISI>://WOS:000228864300005 https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2005-6-5-220?site=genomebiology.biomedcentral.com


V. Lobo, A. Patil, A. Phatak and N Chandra (2010). ‘Free radicals, antioxidants

and functional foods: impact on human health’. In: Pharmacogn. Rev. 4 (8),

pp. 118–26 (Cited on page 101).

H. A. Lowenstam (1962). ‘Magnetite in Denticle Capping in Recent Chitons (Poly-

placophora)’. In: Geological Society of America Bulletin 73, p. 435. doi: 10.1130/

0016-7606(1962)73[435:MIDCIR]2.0.CO;2 (Cited on page 2).

N. N. Lukzen, K. L. Ivanov, V. M. Sadovsky and R. Z. Sagdeev (2020). ‘Magnetic

field effect on recombination of radicals diffusing on a two-dimensional plane’. In:

The Journal of chemical physics 152.3, p. 034103 (Cited on page 13).

R. Machán̈ and M. Hof (2010). ‘Lipid diffusion in planar membranes investigated by

fluorescence correlation spectroscopy’. In: Biochim. Biophys. Acta, Biomembr.

1798.7, pp. 1377–1391 (Cited on page 199).

K. Maeda, P. Liddell, D. Gust and P. J. Hore (2013). ‘Spin-selective recombination

reactions of radical pairs: Experimental test of validity of reaction operators’. In:

Journal of Chemical Physics 139.23. issn: 0021-9606. doi: Artn23430910.1063/

1.4844355. url: <GotoISI>://WOS:000329191300024http://aip.scitation.

org/doi/pdf/10.1063/1.4844355 (Cited on page 31).

K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell,

D. Gust, C. R. Timmel and P. Hore (2008). ‘Chemical compass model of avian

magnetoreception’. In: Nature 453.7193 (Cited on page 2).

K. Maeda, A. J. Robinson, K. B. Henbest, H. J. Hogben, T. Biskup, M. Ahmad,

E. Schleicher, S. Weber, C. R. Timmel and P. Hore (2012). ‘Magnetically sensitive

light-induced reactions in cryptochrome are consistent with its proposed role as a

magnetoreceptor’. In: Procs. Nat. Acad. Sci. 109.13 (Cited on pages 2, 7, 21 and

171).

I. M. Magin, P. A. Purtov, A. I. Kruppa and T. V. Leshina (2005). ‘Peculiarities

of magnetic and spin effects in a biradical/stable radical complex (three-spin

system). Theory and comparison with experiment’. In: J. Phys. Chem. A 109.33,

pp. 7396–7401 (Cited on page 17).

313

https://doi.org/10.1130/0016-7606(1962)73[435:MIDCIR]2.0.CO;2
https://doi.org/10.1130/0016-7606(1962)73[435:MIDCIR]2.0.CO;2
https://doi.org/Artn 234309 10.1063/1.4844355
https://doi.org/Artn 234309 10.1063/1.4844355
<Go to ISI>://WOS:000329191300024 http://aip.scitation.org/doi/pdf/10.1063/1.4844355
<Go to ISI>://WOS:000329191300024 http://aip.scitation.org/doi/pdf/10.1063/1.4844355


I. Magin, P. Purtov, A. Kruppa and T. Leshina (2004). ‘Modeling magnetic field

effects in multispin systems’. In: Appl. Magn. Reson. 26.1-2, p. 155 (Cited on

page 17).

D. E. Manolopoulos and P. Hore (2013). ‘An improved semiclassical theory of

radical pair recombination reactions’. In: The Journal of chemical physics 139.12,

p. 124106 (Cited on page 184).

R. Marley, C. N. Giachello, N. S. Scrutton, R. A. Baines and A. R. Jones (2014).

‘Cryptochrome-dependent magnetic field effect on seizure response in Drosophila

larvae’. In: Scientific reports 4.1, pp. 1–4 (Cited on page 10).

E. N. G. Marsh and G. D. R. Meléndez (2012). ‘Adenosylcobalamin enzymes: Theory

and experiment begin to converge’. In: Biochimica et Biophysica Acta (BBA)-

Proteins and Proteomics 1824.11, pp. 1154–1164 (Cited on page 14).
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