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Abstract: This paper proposes an energy management system (EMS) for battery storage systems in
grid-connected microgrids. The battery charging/discharging power is determined such that the
overall energy consumption cost is minimized, considering the variation in grid tariff, renewable
power generation and load demand. The system is modeled as an economic load dispatch optimiza-
tion problem over a 24 h horizon and solved using mixed integer linear programming (MILP). This
formulation, therefore, requires knowledge of the expected renewable energy power production
and load demand over the next 24 h. To achieve this, a long short-term memory (LSTM) network
is proposed. The receding horizon (RH) strategy is suggested to reduce the impact of prediction
error and enable real-time implementation of the EMS that benefits from using actual generation and
demand data on the day. At each hour, the LSTM predicts generation and load data for the next 24 h,
the dispatch problem is then solved and the battery charging or discharging command for only the
first hour is applied in real-time. Real data are then used to update the LSTM input, and the process
is repeated. Simulation results show that the proposed real-time strategy outperforms the offline
optimization strategy, reducing the operating cost by 3.3%.

Keywords: energy management system; renewable energy; battery energy storage system; MILP;
LSTM; RH

1. Introduction

The development of microgrid (MG) technology has provided the opportunity and the
infrastructure for improving the efficiency of energy consumption [1,2]. Microgrid systems
are typically made up of load and distributed energy resources, such as photovoltaics
(PV) systems, wind turbines, biogas power plants, fuel cells and energy storage systems
(ESS) [3]. A microgrid can operate in a grid-connected or an islanded mode. The hybrid
microgrid system, which comprises different distributed energy resources, has become
promising as it provides an integral part of the development of smart grid systems [4,5].
However, there are still many challenges in implementing and operating the microgrid,
one of which arises due to the intermittent nature of the renewable energy sources (RESs)
because of the stochastic nature of the underlying metrological conditions [6]. A potential
solution to this challenge is the integration of a fast-response energy storage system. Energy
storage is an important component with great prospects in future power systems, as it
plays an important role in alleviating the problem of sudden energy crisis and power
shortage in remote areas [7]. Moreover, the introduction of the hybrid system enhances
self-consumption and offers an opportunity to reduce energy costs. The EMS ensures
the availability of energy resources during longer time intervals, ensuring that the load
demand is met by the total power produced by the distributed energy resources [8].

Extensive research has been reported previously on the management of microgrids,
much of which has focused on mathematical formulations and is usually tested under
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offline scenarios. However, due to the stochastic nature of the RESs, offline optimization
may fail to achieve the optimal result as the uncertainties of the RESs are not considered
in real-time. In [9], a linear mathematical model is suggested to balance the generation
and load of a microgrid by minimizing the total operating cost of the system over 24 h.
To demonstrate the performance of their approach, a tiered power management system
composed of an advisory and a real-time layer was introduced. The advisory layer provided
long-term directives to the real-time layer by solving the RH problem offline using the
predicted PV and load data. However, this approach was not implemented in real-time
using real data; instead, long-term directives from the advisory layer were passed to the real-
time layer. In [10], the economic dispatch problem for total operation and cost minimization
in a DC-MG has been formulated and solved with a heuristic method. However, this
approach does not enhance the design of the EMS architecture so that it can be easily
implemented on a physical system. An intelligent energy management system is defined
in [11] as an architecture that sequentially connected functional modules such as power
forecasting, energy storage management and an optimization module for a day-ahead
optimal operation of the microgrid. However, this system may produce a bottleneck in the
flow of data for real-time operations. These reported works do not deal with the uncertainty
of the RESs generation nor the consumption in real-time. To overcome these challenges,
an online strategy such as the one proposed in [12,13] can be implemented, where energy
management systems are designed and implemented by considering the current status
of the microgrid, but without consideration of future power generation or load demand.
In [14], an optimal energy/power control method is presented for the operation of energy
storage in grid-connected MGs considering forecast electricity usage and renewable energy
generation. However, prediction errors due to long-term predictions were not considered.
In [15], a rolling horizon-based energy management strategy is defined for a specific case
study. The strategy consists of two stages: a deterministic management model is first
formulated, followed by a rolling horizon control strategy. The actions on the microgrid
devices respond to an optimization criterion related to the estimation of the future system
behavior, which is continually predicted by updatable forecasts to reduce uncertainty in
both production capacity and energy demand. However, the proposed optimization model
did not consider the control of the ESS in real-time utilizing the predicted PV generation
and load demand within the 24-hour time horizon. To address this issue, the current work
pays attention to operating the EMS in real-time utilizing the LSTM network, because of its
long-term memory for the prediction of variables in systems such as PV generation and
load demand.

In this paper, the RH control strategy is utilized to perform the optimization every
hour and the LSTM predicts the PV generation and load data for 24 h. The optimal dispatch
problem is solved using the MILP algorithm and the dispatchable battery commands for
the first hour are applied in real-time. The real data are then used to update the LSTM
input and the process is repeated for future time windows. With this approach, the EMS
can mitigate the undesirable challenges associated with the PV generation’s stochasticity
and real-time power imbalances.

To evaluate the proposed approach, the daily operating cost is compared against
a reference benchmark. The proposed hybrid MILP-LSTM optimization framework is
executed in two different scenarios:

Online Optimization—Execution every hour in real-time using a receding horizon of 24 h.
Offline Optimization—Execution once a day using a single set of LSTM-predicted data.

Simulations have been carried out for different operating conditions covering 12 months.
The microgrid optimal performance is dependent on the ESS charging/discharge

times based on the time of use (ToU) tariff of the grid. It is evaluated in terms of the daily
operating cost of energy [9]. The optimal schedule of the grid-connected microgrid is
performed through the optimization of the microgrid. The MILP optimization approach is
chosen because it presents a flexible and robust method for solving complex problems by
making fast energy management decisions via integer decision variables and identifying
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the best connection between the plants and utilities. It systematically finds the best trade-off
in the operation of the microgrid to achieve maximum resource efficiency and minimum
operating cost while respecting the system operational constraints [16]. We have utilized
the LSTM-MILP-RH control strategy for the optimization of the grid-connected microgrid
while introducing new constraints for controlling the ESS charge/discharge cycle, using the
most up-to-date predictions and the latest information about the system, to adapt to new
events and operating conditions. The LSTM-MILP-RH (online) approach was compared
against the LSTM-MILP (offline) approach, demonstrating that the online optimization
approach outperforms the offline approach, and the results are presented in Section 4.
Table 1 compares the contribution of this paper in terms of other similar methodologies in
the contemporary literature.

Table 1. Table of comparison between proposed method and other methods available in the literature.

References Contribution/Application Method Used

[9] Power management and operating cost
minimization MILP, Tiered Power Management System

[10] Economic dispatch and cost minimization MILP and Heuristic Method
[11] Day-ahead optimal operation of microgrid Mathematical Modeling
[13] Real-time operation of microgrids MILP
[14] Optimal energy/power control Mathematical Modeling

[15] Deterministic management model with two-stage
energy management model Rolling horizon-based energy management strategy, MILP

This paper
Energy management, battery control

(charge/discharge cycle) and operating
cost minimization.

Offline and online optimization approach using MILP
with receding horizon control (LSTM-MILP-RH approach)

The rest of the paper is organized as follows: Section 2 presents the proposed optimal
operation of the battery in a grid-tied microgrid, the MILP formulation and LSTM predic-
tion theory. The RH control strategy implementation is explained in Section 3. In Section 4,
the simulation results are presented, and the conclusion is drawn in Section 5.

2. Optimal Operation of Battery Using MILP

A schematic of the grid-tied microgrid under study is shown in Figure 1. The main
components of the hybrid system are the PV, ESS and local load. The power flow within
the microgrid is illustrated in Figure 2. The grid connection is represented in the first node
and the imported power from the grid, Pg(t), at time t is used for the charging of the ESS
in the third node and directly supplies the load demand in the fourth node. The second
node is the PV supply source, which can also be used to charge the ESS and supply the
load demand. The energy demand at all times is met by a combination of power from the
PV, denoted as Ppv(t) power from the ESS, Pb, and power from the grid, as described in (1):

Pd(t) = Ppv(t) + Pg(t) + Pd
b(t)− Pch

b (t), (1)

The PV generation should supply the energy demand. When it is insufficient, addi-
tional power is imported from the ESS and/or the grid depending on the battery state of
charge (SoC) and the grid tariff.
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Figure 1. Schematic diagram of the EMS with battery storage. The superscript * denotes the
battery commands.

Figure 2. Grid-connected hybrid microgrid model with power flow possibilities.

2.1. The MILP Formulation

The MILP is formulated to solve the economic dispatch problem to find the minimum
operational cost while satisfying the load demand and respecting imposed constraints.
The MILP economic dispatch problem solution results in the optimal power flow through
each connection for each time step in the optimization horizon [17,18]. To formulate
the microgrid scheduling problem, the cost function associated with the MILP and the
constraints are defined in (2) as:

min Z =
T
∑

t=0

N
∑

i=1
C(Pgr(i, t)),

subjected to :
N
∑

t=0
Pgr(i, t) = Pd(t) ∈ ϑ(i),

(2)

where Z is the objective function, N is the number of generators in the power system,
C(Pgr(i, t)) is the cost of the generated power by Pgr and ϑ(i) represents the set of con-
straints for Pgr. The selected optimal solution is implemented on the system equations
and the system response, such as the ESS state of charge, charge/discharge power is
measured [9]. The decision variables for the economic dispatch problem are presented in
Table 2.
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Table 2. Description of the decision variables and binary variables of the economic dispatch problem.

Decision Variable Variable Type Description

Pd
g(t) Continuous Power from the Grid to the Load

Pb
g(t) Continuous Power from the Grid to the ESS

Pd
pv(t) Continuous Power from PV to the Load

Pb
pv(t) Continuous Power from PV to ESS

ych
b (t) Binary On/off state of the ESS charge

yd
b(t) Binary On/off state of the ESS discharge

α(t) Binary Variable for the charging state of the ESS

The state of charge of the ESS and the charge/discharge powers from the ESS, Pd
b , are

calculated in terms of the decision variables and considered as the system state. For each
time step, the total energy of the microgrid system is defined as Pgr(t)× ∆t. It is important
that the optimization process does not schedule ESS charge and discharge simultaneously.
Therefore, an inequality constraint is formulated as an integer in (3) as:

ych
b (t) + yd

b(t) ≤ 1, (3)

Pd
b(t) ≤ P

d
max
b × yd

b(t)

Pch
b (t) ≤ P

ch
max
b × ych

b (t)

, (4)

The power imported from the grid is formulated as:

Pg(t) ≤ Pmax
g , (5)

The grid and PV powers at any time t can be used to charge the ESS and feed the
load. The flow in the network considers the storage capabilities of the ESS and the possible
curtailment of the PV. This is represented by the node balance constraints given in (6)–(9) as:

Pg(t) = Pd
g(t) + Pb

g(t) (6)

Ppv(t) ≥ Pd
pv(t) + Pb

pv(t), (7)

Pch
b (t) = Pb

g(t) + Pb
pv(t), (8)

Pd
b(t) = Pd(t)− Pd

pv(t)− Pd
g(t), (9)

Whenever the PV system produces power greater than the load demand, the excess
power is utilized in charging the ESS depending on the SoC. The inequalities in (10) show
that the power from the grid and the PV can only be positive parameters, represented as:

Pg(t) ≥ 0, Ppv(t) ≥ 0
Pb

pv(t) ≥ 0, Pb
g(t) ≥ 0

}
, (10)

The SoC of the ESS must be kept within a safety limit that is defined based on the
minimum and maximum SoC of the battery, given in (11) as:

βmin
soc ≤ βsoc(t) ≤ βmax

soc , (11)

To enforce (11), further constraints are developed in (12) and (13) relating the SoC to
the capacity of the ESS and the power flows to and from the battery as:

δcβsoc(t) + Pch
b (t)ηc∆t− Pd

b(t)ηd∆t ≤ δc (12)
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δCβsoc(1) = δESB (13)

where, ηd and ηc are the charge/discharge efficiencies of the ESS, respectively. Considering
(12) and (13), the SoC difference equation can be written as:

βsoc(t + 1) = βsoc(t)−φPd
b(t)× ηd(t) +φPb

ch(t)× ηc(t) (14)

where φ is the coefficient that converts the ESS charge/discharge power to the charging
unit, in percentage.

The important factor here is the SoC, which is modeled based on (11) and (12). In the
present study, we consider that the ESS consists of a lead-acid battery, and hence it should
be charged fully after a full discharge cycle. This is to prevent the fast rate collapse of the
battery voltage during discharge events. The ESS is charged and discharged subjected to
maximum charging/discharging rates, Pmax

bch and Pmax
bd . The BESS discharge rate will also

not exceed the demand due to constraint (1). To limit the charging/discharging cycle of the
ESS to a predetermined constant, K, additional binary integer variables and constraints are
introduced based on the ESS technology. First, we define α to be a binary integer variable
that represents the charging state of the ESS. The value of α is 0 when Pb ≥ 0 (i.e., the
ESS is charging) and α is 1 when Pb ≤ 0 (i.e., the ESS is discharging). We then define an
additional binary integer variable at each time step, which is 0 if α(t) and α(t− 1) are the
same and 1 if they are different, thereby representing a change in the state of the ESS. The
constraints for the implementation of the limits on the charging/discharging cycle of ESS
can be summarized as (15)–(19), given by:

λ(t) ≤ α(t) + α(t− 1) (15)

λ(t) ≥ α(t)− α(t− 1) (16)

λ(t) ≥ α(t− 1)− α(t) (17)

λ(t) ≤ 2− α(t)− α(t− 1) (18)

T

∑
t=1
λ(t) ≤ K (19)

The cost of energy for each time step, CPTS, can be calculated within the constraints
using (20), as:

CPTS =
(

Pg(t)∆t
)
× Tg(t) (20)

where, Pg = P d
g + P b

g , and it is the power utilized from the grid based on the optimal
schedule of the microgrid using the RH control strategy, as explained in Section 3. Since the
main objective of this paper is to minimize operational cost, safe operation of the ESS and
promote self-consumption, the objective function is formulated as an economic dispatch
problem in (21), as:

min Z =
T

∑
t=1

Pg(t)× Tg(t) (21)

subject to (1), (3)–(19), as constraints.

2.2. Background of LSTM Prediction Networks

This paper uses LSTM-based deep learning for predicting the load demand and the
PV generation for the future, considering one year of historical data from the Ushant
Island in France. LSTM networks are a type of Recurrent Neural Networks (RNNs) with
modules typically referred to as cells rather than neurons, and they contain series of
gates. Each LSTM cell has a form of longer-term memory in the form of a cell state that is
updated throughout time [19]. The LSTM model is trained with the root-mean-squared
error (RMSE) loss function, Adam optimizer and a maximum of 300 epochs with a single
gradient threshold. RMSE indicates the deviation between the predicted value and the
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measured value, and it is a measure of the forecasting error [20]. The PV generation and
load demand are predicted for the last day in each month of the year. Before training
or testing a neural network, the training and testing data must go through a series of
pre-processing steps. Normalization was applied here as the pre-processing method, which
reduces the effect of different scaling of the collected data, including interpolating any
missing data points and organizing the data (historical PV generation and load demand)
in a chronological form [21]. The normalized data are then used as an input to the LSTM
network. The initial predicted PV output power and load demand for the last day of
January, May, August and November are shown in Figures 3 and 4 respectively, with the
RMSE indicating the accuracy of the predictions. To forecast the values of future time steps
of the sequence, the training sequence with values shifted by one time step is specified as
the response. This means that at each time step of the input sequence, the LSTM network
learns to predict the value of the next time step. To predict the next time step, the previous
prediction is used as an input to the function [22].

Figure 3. Real and predicted PV data (from the LSTM prediction network for selected months of the year).
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Figure 4. Real and predicted load demand (from the LSTM prediction network for selected months of the year).

3. Receding Horizon Control

The RH strategy is a concept adopted from model predictive control (MPC), which
operates by using online model-based optimization to determine the current control ac-
tion [23]. It is a general-purpose control scheme that involves repeatedly solving a con-
strained optimization problem, using predictions of future generation and demand over a
moving time horizon to choose the control action. The RH control handles constraints, such
as limits on control variables, directly and naturally, and generates precisely calculated
control actions, respecting the constraints. The basic RH policy is very simple. At time t,
we consider an interval extending T steps into the future: t, t + 1, . . . , t + T, as shown in
Figure 5. We then carry out several steps. For power system scheduling problems with high
dependency on the forecasted values of renewable energy productions and demand, this
method has been found to effectively correct errors in the prediction of renewable energy
generation and load in future iterations [24]. At each hour, the economic dispatch of the
battery is obtained using 24 h data of predicted future renewable energy production and
demand using the LSTM network, as explained in Section 2.2. The optimization outputs
are 24 h of dispatch commands, as summarized using the matrix in (22) as:

Pd
g(1) Pd

g(2) Pd
g(3) · · · Pd

g(T)
Pb

g(1) Pb
g(2) Pb

g(3) · · · Pb
g(T)

Pd
pv(1) Pd

pv(2) Pd
pv(3) · · · Pd

pv(T)
Pb

pv(1) Pb
pv(2) Pb

pv(3) · · · Pb
pv(T)

 (22)

Here, only the dispatch commands for the next hour are shown (the first column of
the matrix is implemented in real-time, and the rest are discarded).

The generation and demand input data to the LSTM are updated to include that of the
generation and demand at the current hour t. The LSTM is then used to predict data for
the next 24 h, and the process is repeated in real-time for each time step. If the time step,
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∆t, is one hour, the algorithm is repeated T/∆t times, which represents the number of time
steps,ω, for 24 h of the day. The RH final solution is the optimal schedule of the renewable
energy source and the grid power for supplying the load and charging the battery.

Figure 5. Illustration of the RH control strategy.

The RH control strategy allows for the improvement of the forecasting errors for each
iteration of the economic dispatch problem, since the feasibility of economic dispatch and
optimality depends on the accuracy of prediction of the renewable generation in power
systems [9].

4. Simulations and Results

To solve the optimization problem, a case study was developed considering data
from the Ushant Island project in France under the Intelligent Community Energy (ICE)
program to test the proposed approach for the real-time operation of the microgrid energy
sources [25]. The proposed energy management system simulation was performed in
MATLAB with a 32 GB 64-bit operating system computer, dual core i7, 2.70–2.90 GHz. The
average computational time of the simulation was about 8.89 ± 2.12 s using this computer,
over 12 months. Figure 1 illustrates the Ushant Island model, which has the following
parameters: 3 MW PV system, grid connection and 2400 kWh battery ESS capacity. The
daily ToU electricity tariff rate is shown in Table 3. The characteristics of the ESS, such as
the capacity, the SoC limits or bounds and the initial SoC, are shown in Table 4.

Table 3. Daily time of use (ToU) electricity tariff.

Time of Day Hour Price

Off-peak time 22:00–5:00 0.05 £/kWh

Mid-peak time 12:00–17:00 0.08 £/kWh

Peak time 6:00–11:00, 18:00–21:00 0.17 £/kWh

Table 4. Characteristics of the lead-acid battery parameters.

Battery Parameters Typical Values

Rated depth of discharge (DOD) % 50

Maximum charging power (kW) 300

Battery charge efficiency (%) 100

Battery discharge efficiency (%) 100

Maximum state of charge (%) 100

Nominal battery capacity at 100% SoC (kWh) 2400

To evaluate the proposed real-time energy management of the microgrid, the simula-
tion was carried out considering two scenarios. For the first scenario, as seen in the EMS
flow model in Figure 6, the optimization is performed in real-time considering the RH
technique using the real-time and predicted data simultaneously, with the real-time data
used to update the input of the LSTM. The optimal daily operating cost for the 24 h horizon
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is recorded, while in the second scenario, as seen in Figure 7 it considers a day-ahead offline
optimization using predicted data only, the ESS command is applied online with real data
and the optimal daily operating cost is recorded.

Figure 6. EMS flow model for scenario 1 (real-time operation with the RH control strategy). The
superscript * denotes the battery commands.

Figure 7. EMS flow model for scenario 2 (offline optimization using predicted data). The superscript
* denotes the battery commands.

The available historical data were utilized on a monthly basis by predicting the PV
generation and load demand of the last day of every month. The BESS operation starts
from its minimum SoC of 50%, with a maximum charging/discharging power of 300 kW.

The results of the simulations for the microgrid dispatch are shown in Figure 8 when
the battery charge/discharge cycle was limited to two for January, May, August and
November, representing the four seasons of the year, with background colors representing
the ToU tariff regions. Since the battery charge/discharge cycle is limited to two using
(15)–(19), the battery starts charging at the beginning of the day when the ToU tariff is at
its lowest rate (the green region), discharges when the ToU tariff is at its highest rate (the
red region) and starts charging again when PV power becomes available or during the
mid-peak ToU tariff (pink region), and finally discharges during the second peak of the
ToU tariff. This charge/discharge pattern of the battery is consistent throughout the year
and makes it easy to calculate the life of the battery ESS based on the standard lifecycle vs.
the depth of discharge (DOD) curve of batteries.
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A day-ahead schedule based on an offline optimization was performed with the
predicted PV power and load demand for the second scenario using the MILP optimization
approach. The MILP module, as shown on the EMS flow model in Figure 7, calculates
the set-points for the dispatchable resources 24 h ahead based on predicted resources.
The grid and the ESS are the dispatchable energy resources, which means the power
output can be controlled while the PV system and the load demand are varying resources
or non-dispatchable resources. The ESS command obtained from the offline day-ahead
optimization was implemented in real-time on real data, as shown in Figure 7. The daily
operating cost for the 24 h horizon was calculated. To evaluate the effectiveness of the
proposed approach, the simulations were performed for the last day of every month, the
monthly historical data were trained using the LSTM network and the last day of the month
was predicted. Both scenarios were tested every month, and the daily optimal operating
cost was compared against a benchmark in which the forecasted data are the same as the
real data. This is a non-practical situation, but it will help us to evaluate the effectiveness
of the two scenarios. Figure 9 shows the daily optimal operating cost of the microgrid for
the last day of every month of the year, for the benchmark, the real-time with RHC and the
offline optimization using predicted data. The simulation results show that the operating
cost of the proposed real-time strategy outperformed the offline optimization strategy by
3.3%. The details of the total percentage difference between the two scenarios and how
close they were to the benchmark are shown in Table 5.
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Figure 9. Optimal cost comparison between the benchmark, real-time and offline optimization.

Table 5. Optimal cost comparison with average % difference between the two scenarios.

Months Optimal Cost (£)
(Benchmark)

Optimal Cost (£) (Online
Optimization)

Optimal Cost (£) (Offline
Optimization)

% Difference between the
Two Scenarios

Jan 2043.30 2079.20 2086.30 0.342

Feb 1870.20 1906.20 1961.20 2.804

Mar 1202.90 1216.56 1241.80 2.033

Apr 1227.11 1227.11 1306.60 6.083

May 524.81 534.58 632.19 15.440

Jun 375.99 404.13 449.78 10.149

Jul 395.75 410.54 484.39 15.246

Aug 363.68 370.92 386.68 4.076

Sep 392.50 395.69 448.09 11.694

Oct 1167.38 1167.38 1195.80 2.376

Nov 2308.70 2335.77 2345.60 0.419

Dec 3404.80 3422.77 3457.30 0.998

Total Cost 15,277.123 15,470.853 15,995.771

% Closeness to the benchmark 1.252 4.493

Total Cost % Difference B/W the Two Scenarios 3.3

5. Conclusions

This paper presented an EMS to minimize the daily operating cost and control the
charge/discharge cycle of ESS in a grid-tied microgrid, while guaranteeing the security of
supply and respecting imposed constraints. The optimality of this approach was evaluated
based on the daily operating cost of energy. Furthermore, the result from simulation studies
carried out on the two scenarios considering different sets of data throughout the year
shows that the online optimization adopting the LSTM-MILP-RH (online) control strategy
was more effective in terms of reducing the daily operating cost when compared to the
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LSTM-MILP (offline) optimization approach, with the benchmark daily operating cost set
as a reference. The approach is general enough to be used with different ToU tariff models
and could be applied to commercial, residential and standalone microgrids.

Finally, since ESS degradation depends largely on the charging/discharging cycles,
this approach guarantees a longer life for the ESS as the utilization of the ESS charg-
ing/discharging cycle limiting constraint is implemented in both scenarios. In this case,
the charging/discharging cycle has been limited to two cycles.

Further research needs to be carried out in sensitivity analysis, distributed demand
side management, considering different ToU tariffs (i.e., UK economy 7, UK economy 10
and UK standard tariff), to observe the effect of the ToU tariff on the battery charge/discharge
cycle limits and how a change in the battery charge/discharge cycle limit will affect the
daily operating cost of the microgrid.
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Nomenclature

Description
βsoc ESS state of charge (SoC)

βmin
soc ,βmax

soc ESS minimum and maximum SoC

δC ESS capacity
δESB Initial energy stored in the ESS (kWh)
ηc,ηd ESS charge/discharge efficiencies
∆t Time interval
CPTS Operational cost per time step (£)
K ESS charge/discharge limiting constant
λ The constraint that controls the startup of the ESS charge and discharge
Pd Load demand

P
ch
max
b , P

d
max
b Maximum charge/discharge power (kW)

Pch
b , Pd

b ESS charge/discharge power (kW)
Pg Grid power (kW)
Ppv PV power (kW)
T Optimization horizon (h)
Tg Grid tariff (£/kWh)
ω Number of time steps
Pgr(t) Total power generated by the microgrid (kW)
φ The coefficient for the conversion of the ESS charge/discharge power to the

same unit as the battery SoC
ϑ(i) Represents a set of constraints for Pgr(t)
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