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Abstract 26 

Ecological communities face a variety of environmental and anthropogenic stressors acting 27 

simultaneously. Stressor impacts can combine additively, or can interact, causing synergistic or 28 

antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and 29 

experiments only consider the effect of a small number of non-interacting stressors at one or few scales 30 

of ecological organisation. This is concerning because it could lead to significant under- or 31 

overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their 32 

source, rather than by the mechanisms and ecological scales at which they act (the target). Here we 33 

argue, first, that a more nuanced classification of stressors by target and ecological scale can generate 34 

valuable new insights and hypotheses about stressor interactions. Second, that the predictability of 35 

multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the 36 

distribution of stressor effects across targets and ecological scales. Third, that a variety of existing 37 

mechanistic and statistical modelling tools can play an important role in our framework and advance 38 

multiple stressor research.  39 
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Introduction 40 

Habitat loss and degradation; pollution; temperature changes and harvesting are some of the biggest 41 

stressors impacting ecosystems around the world1. This list of stressors has become standard throughout 42 

ecology and conservation, from undergraduate teaching to international policy documents, and broadly 43 

groups ecosystem threats by where stressors come from – by their source. This is stated explicitly by 44 

current programmes for classifying the effects of different stressors, like the Living Planet Index and 45 

the IUCN Threats Classification Scheme, which define threats as “synonymous with sources of stress 46 

and proximate pressures” 2,3. Such ‘source-based’ classifications of stressors are certainly necessary for 47 

understanding the economic space in which mitigation can be applied and policy developed. They are 48 

effective, for example, at offering descriptions of how frequently taxa are being impacted by a source 49 

of stress which, in turn, can help make it clear where management actions should be targeted. However, 50 

they provide little insight into the mechanisms and ecological scales through which stressors act, which, 51 

in turn, hinders our ability to identify commonalities in how stressors re-shape ecological communities. 52 

Thus, source-based schemes alone, while valuable, may be insufficient to manage and mitigate threats 53 

to biodiversity and ecosystem function. Consider the example of pollution and temperature change. 54 

These stressors are generally regarded as separate under a source-based classification. However, when 55 

considering the mechanisms via which they operate, pollution and temperature might be grouped 56 

together as stressors that act primarily by altering the metabolism and physiology of individuals. Such 57 

a grouping makes it easier to understand how and why these stressors might interact, leading to more 58 

accurate estimates of the prevalence, magnitude and direction of their combined effects. 59 

Improving our understanding of potential interactions between stressors is critical because stressors 60 

often co-occur in time and space, resulting in more- or less-than additive effects (synergistic or 61 

antagonistic interactions respectively) 2-10. These interactions can occur as interaction chains, where one 62 

stressor increases the level of a second stressor, but the per capita impact of the second stressor does 63 

not change (such as habitat loss increasing introduced species abundance). Alternatively, they can occur 64 

as interaction modifications, where the per capita impact of a stressor changes with the level of a second 65 
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stressor (such as habitat loss changing the per capita interaction strength between native and introduced 66 

species)11. Without quantification of stressor interactions, we risk significantly over- or underestimating 67 

threats to biodiversity. Despite their importance, current understanding of stressor interactions is 68 

limited, with studies generally only considering one or two stressors at a time, often ignoring interactive 69 

effects, and considering only one scale of ecological organisation 12-15. Measuring the magnitude and 70 

distribution of multiple stressor effects across ecological scales thus remains a persistent challenge and 71 

a necessary objective. Ideally, we need a way to understand how accurately impacts of many different 72 

stressors can be forecasted (predictability) and the extent to which there are consistent patterns in 73 

stressor impacts in and among ecological scales (consistency). 74 

Here we argue for classifying stressors by the ecological scales at which they have their impacts, rather 75 

than by their source. We use this mechanistic classification of stressors to advocate focusing on the 76 

distribution of additive versus interactive stressor effects across different scales of ecological 77 

organisation (from the physiology of individuals, to populations, communities and whole ecosystems). 78 

We argue that thinking about this distribution is a common ground for theorists and empiricists alike, 79 

and can be used to quantify the predictability and consistency of multiple stressor effects. Given the 80 

difficulty of large-scale experimentation with multiple stressors, we outline a set of criteria we believe 81 

the next generation of ecological models must satisfy to generate informative predictions for improving 82 

knowledge of the impacts of multiple, interacting stressors. Finally, we review several approaches to 83 

building such model frameworks, alongside statistical approaches for analysing their outputs and related 84 

empirical data. 85 

The ecological scales of environmental change 86 

In nature, there are many different scales at which stressors generate impacts: metabolism/physiology, 87 

individuals, populations, communities and ecosystems (Figure 1). At each of these scales, there are a 88 

number of targets in which we can detect the effects of stressors. Encompassed by a wide range of 89 

ecological theory, these targets include processes regulated by enzymes and metabolic rates at the 90 

physiological scale; the life history traits of individuals; the abundance or biomass of a population; or 91 



 

 

 

5 

the diversity or structure of a community (Figure 1). Targets are thus both the ‘access points’ through 92 

which stressors enter ecological systems, and the response variables used to quantify the additive or 93 

interactive impacts of stressors.  94 

This idea of defining properties of organisms and scales as the targets of a stressor is most well 95 

developed in ecotoxicology by the ‘mode of action’ concept 16,17 and the source-pressure-pathway-96 

receptor models in cumulative risk assessment 18. To a lesser extent, the idea has also been discussed in 97 

ecology, with Schäfer and Piggot recognising three stressor modes of action19, Orr et al. suggesting that 98 

the similarity of stressor modes of action could generate insight into stressor interactions7, and Boyd 99 

and Brown recognising the different scales at which stressor interactions can occur20. Other works have 100 

also laid an important foundation for the mode of action approach21-23, though these tend to be system- 101 

or scale-specific.  102 

There have also been modelling approaches that have provided frameworks to integrate stressors on the 103 

scales of individuals, populations or communities. Such approaches often span ecological scales (e.g. 104 

individual, population, ecosystem function), but typically do not represent diverse networks of 105 

interacting species and predict and evaluate only a limited set of endpoints (targets). As such, they do 106 

not provide the opportunity to assess predictability and consistency. For example, de Laender et al.24 107 

provides a model centred on a single trait (resource uptake), focused on competitive interactions and 108 

derived from core theory in plant ecology and productivity-diversity and diversity-stability research. 109 

While the study uses a multi-species and multi-stressor model, it is essentially focused on a single 110 

trophic level and a narrow set of traits. Goussen et al.25 offer another approach that combines Dynamic 111 

Energy Budget (DEB) theory with an Individual Based Model. The study allows several traits defined 112 

in the DEB to respond to stressors, but focuses on single species. Finally, Liess et al.26 propose a model 113 

focused on a single population level trait (mortality) and propose an additive null model of stressor 114 

effects on a concentration-response relationship. While this is a useful approach to dealing with 115 

toxicants, it is not generalised across multiple traits, stressors and scales.  116 
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These previous works are highly valuable and lay the foundation from which we argue that only by 117 

focusing on targets can we move towards reliably estimating the magnitude and direction of multiple 118 

stressor effects at multiple ecological scales. We thus argue for a multi-trait, multi-species, multi-scale 119 

approach to detecting interactions and evaluating predictability and consistency. By grounding this in 120 

a food web framework we also intrinsically incorporate multiple trophic levels in a community, rather 121 

than just one. Such an approach is distinguished from the taxa-, scale- and system- specific attempts 122 

above by facilitating generalisation and an evaluation of consistency across systems, stressors and 123 

scales.  124 

Visualising the framework 125 

The leftmost column of Figure 1 shows a traditional source-based classification of stressors from the 126 

Living Planet Index, where habitat loss and degradation, invasive species, overexploitation, climate 127 

change and pollution are treated as separate stressors. Assigning these sources of stress to the ecological 128 

scales and targets at which they act reveals several patterns central to understanding the predictability 129 

and consistency of multiple simultaneous threats (Figure 1). 130 

The first pattern to recognise in Figure 1 is that, because most sources of stress directly impact on many 131 

ecological scales27, the scales and their targets reconcile how disparately defined stressors act via similar 132 

mechanisms and on similar targets. This single change in point of view reduces the emphasis on the 133 

identity of the stressor and accentuates the long-standing ecological principles by which they have 134 

impact. This means that seemingly separate stressors entering at the same scale can be evaluated by the 135 

same body of physiological or ecological theory, because the stressors are defined by their targeting of 136 

similar properties, traits or biological mechanisms, rather than their source.  137 

Relevant bodies of theory include energy allocation and dynamic energy budgets 13,28, stress physiology 138 

and ecotoxicology 16 and temperature scaling 29, which all underpin our understanding of how sublethal 139 

effects of contaminants and temperature alter the abundance of species; the functional response 30 which 140 

underpins our understanding of how harvesting (e.g. fishing and hunting) impacts directly on the 141 
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biomass and abundance of species; the concepts of trait- versus density-mediated effects 31,32 which link 142 

these two collections of theory; species interactions, trophic indirect effects, trophic cascades and  143 

stability 32-34, which underpin our assessment of how perturbations to the numbers of individuals in 144 

populations permeate entire communities; productivity-diversity/stability theory 35-38, which underpins 145 

our understanding of how enrichment of producers or whole trophic levels impacts on community 146 

stability and diversity; disturbance theory, beta-diversity and species distribution theory, which speaks 147 

to the temporal scale that stressors operate on (discrete versus continuous stressors events)39; and 148 

species distributions and diversity theory40-43 which facilitates inference about processes operating on 149 

spatial scales.  150 

This breadth of theory is fundamental to framing inference about the magnitude, direction and 151 

distribution of stressor interactions – the theories define the traits and rationale for when and why 152 

interactions arise. As a specific example, consider temperature and sub-lethal concentrations of 153 

pesticides. Both stressors ultimately target metabolic processes that mediate the allocation of resources 154 

to growth and reproduction. At a lower mechanistic level, temperature is affecting all enzymatic 155 

processes while toxins like pesticides are often categorised by reproductive, digestive or neurological 156 

modes of action. However, recognising a common ecological scale and a common currency (energy 157 

allocation13) reveals focused bodies of theory and data on which to frame inference about when and 158 

how interactions might arise, their magnitude, and at what scale they may arise24-26,44,45. In this case, we 159 

might draw on the rich history of resource allocation theory, dynamic energy budget theory and trait-160 

mediated direct and indirect effects theory 46-49 to generate insights that are simply not possible when 161 

thinking about stressors in terms of their source alone.  162 

The second pattern to recognise in Figure 1 is that most sources of stress act via two pathways: they 163 

generate density-mediated effects, that is via directly affecting density and abundance, and trait-164 

mediated effects, that is, ‘sub-lethal’ effects generating change in the abundance and distribution of 165 

organisms via alterations of life history, behavioural traits and traits that define metabolism or 166 

physiology. In our framework, trait-mediated effects encompass changes at the individual scale, such 167 
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as life history and behaviour, and changes at the metabolism/physiology scale, such as enzyme 168 

processes, metabolic rate, energe expenditure, immune system status and toxin processing. Thus, for 169 

example, oxidate stress is treated as a trait-mediated stressor that affects physiological targets. This link 170 

to classic ecological theory synthesises the diversity of ways stressors can exert impacts alone and in 171 

interaction. For example, drought can have density-mediated effects via mortality on single populations 172 

or multiple populations (the community), or act via trait-mediated effects at the individual or 173 

physiological scale, reflecting other outcomes like impaired reproduction, dispersal or diapause. This 174 

also highlights that the spatial and temporal scale that a stressor acts on can affect the ecological scale 175 

and pathway where the impacts of stressors arise50. For example, a discrete extreme heat event might 176 

have density mediated effects at the population and community scales, while continuous ongoing 177 

warming temperatures might initially have trait-mediated impacts acting at the 178 

metabolism/physiological scale. 179 

Finally, the third pattern to recognise is that the effects of stressors can manifest at the scales at which 180 

they enter an ecological system, but can also drive, via higher-order interactions51,52, emergent effects 181 

at other scales. For example, pesticides can impair the foraging behaviour of bumblebees at the 182 

individual scale, which has emergent effects at higher scales by increasing the likelihood of whole-183 

colony failure, impaired pollination services for multiple plant species and, ultimately, the loss of 184 

biodiversity 53. While, in most cases, such emergent effects will occur at higher scales than that where 185 

the stressor entered the system, it is also possible for emergent effects to occur at lower scales. For 186 

example, density effects on populations have been linked to stress hormone levels in surviving 187 

individuals with consequences for their behaviour and life history54-56. Similarly, the arrival of a 188 

specialist invasive species, which enters at the community level by the addition of a new node in the 189 

species interaction network, can, for example, have emergent effects on the population-scale targets of 190 

a competitor57. 191 

The impact of multiple stressors can be studied and modelled in line with the conceptualisation outlined 192 

in Figure 1: embracing the idea that stressors ‘enter’ ecological systems at different scales, generate 193 
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responses in targets and, through ecological complexity, also generate responses at lower and higher 194 

scales. In other words, grouping stressors by what they do, not what they are, and modelling stressors 195 

in terms of the mechanistic targets where they act, not where they have their ultimate effect (e.g. 196 

consider modelling climatic variation as a physiological-scale impact that has emergent effects at the 197 

population scale, rather than as a term applied directly to a parameter in a population dynamics model58). 198 

This allows bodies of ecological theory aligned with scales to cut across stressor identities and provide 199 

the platform on which to generate hypotheses about how and when stressor interactions arise.  200 

Note that Figure 1 represents just one example of a stressor-target mapping, and that other mappings 201 

using different stressor classifications are certainly possible. Additionally, the arrows shown in Figure 202 

1 represent all possible a priori connections between stressors and scales: statistical analyses can 203 

provide valuable information about the relative importance/weighting of each of these arrows and thus 204 

a version of Figure 1 incorporating weights or effect sizes for each arrow would likely have substantially 205 

fewer significant connections and reveal dominant scales at which stressors act. Figure 2 provides a 206 

framework for how such effect sizes can be estimated. 207 

Below we extend the interpretation of Figure 1 with examples of how this framework can synthesise 208 

understanding of multiple stressor effects by ecological scale and the targets at each of these scales. 209 

Metabolism/Physiology and Individual Scales 210 

These two scales are sub-population scales, focusing attention on traits of individuals. At these scales, 211 

ecological theory about trait-mediated effects frames the targets in which we detect how multiple 212 

stressors interact and expectations about the patterns of these effects. These scales are vital 213 

components of a framework for assessing the magnitude and distribution of interactions among 214 

stressors because the strength of these sub-lethal effects is well known to be equal to, or stronger than, 215 

density-mediated effects in numerous communities46,59. 216 

The metabolism/physiology and individual scales also generate a substantial coalescence among 217 

stressors in disparate source categories (Figure 1). For example, theory about thermal performance 218 
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suggests that temperature change as a stressor makes its effects via altering metabolism 29,60-64. This 219 

focus on metabolism and physiology also encompasses, for example, how sub-lethal concentrations of 220 

contaminants can alter physiological processes (e.g. neurological, reproductive and digestive modes of 221 

action sensu ecotoxicological mode of action;16). Responses to these types of stress at these two scales 222 

can generate emergent responses at the higher ecological scales of individual 63-65, population 66-68, and 223 

community 69-72 73-77. For example, temperature or sub-lethal concentrations of pesticides have 224 

consequences on species’ population dynamics by affecting mortality and birth rates; life history traits, 225 

such as growth rates; reproductive performance; community structure; and, potentially, diversity 78-84. 226 

Population Scale 227 

Stressors causing mortality of individuals in specific populations are common and assessments of 228 

stressor impacts on the targets of this scale (e.g. density and biomass) receive significant attention. This 229 

scale also synthesises among stressors from different sources, integrating classical theory about density-230 

independent or density-dependent sources of mortality on populations 85-87. Description of stressors at 231 

this scale are often more specific, with size- or trait-specific targets within a population. They are 232 

usually described as a loss function based on modifications of a functional response 86,87 or reflecting 233 

specific equipment (e.g. fishing gear88,89). The sources of such stressor effects are most often aligned 234 

with the ‘overexploitation’ source (Figure 1; e.g. hunting or fishing 90), but are not limited to these 235 

sources. Lethal concentrations of pollutants17 and climate change can also directly generate mortality 236 

of individuals. As with the individual and metabolism/physiology scales, indirect consequences of 237 

effects at this scale emerge at higher ecological scales 91,92. For example, abundance changes in producer 238 

or predator species are drivers of bottom up and top-down effects, such as trophic cascades, which 239 

represent changes in relative abundance among multiple species at the community-scale. As 240 

exemplified in the fisheries-induced-evolution literature, the effects of harvesting stressors at the 241 

population scale can also emerge at the physiological and individual scale on life history traits88,89,93. 242 

Community scale 243 
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The community scale is defined by a species interaction network, which encompasses species diversity 244 

and the distribution of interspecific interactions that define community structure. At this scale, targets 245 

include network properties like connectance (network complexity), generalism and related descriptors 246 

of degree distributions, modularity, as well as other community-scale targets like the body-size 247 

distribution.  248 

There are at least three ways to frame the effects of multiple stressors at the community scale.  The first 249 

frame centres on threats that directly target multiple populations within functional groups or trophic 250 

levels, but only indirectly the rest of the community. One example is agricultural nitrogen and 251 

phosphorus run-off, which can be classed as acting on entire functional groups or trophic levels that 252 

encompass multiple species, such as primary producers (autotrophs), or ‘basal species’, and 253 

decomposers 94,95 (though notably nutrient enrichment can be a dominant stressor at a range of scales 254 

96). While the source of stress can vary, the targets of such effects are the community-scale distributions 255 

of carrying capacity, growth rates and reproductive traits across species comprising the trophic levels 256 

or functional groups (e.g. physiology stress sensu 13), rather than the values for just one species 257 

population. Such impacts are defined by ecological theory about how enrichment, carrying capacity and 258 

productivity (‘bottom up’ effects) generate impacts on biomass across trophic levels 97,98, ultimately 259 

influencing dynamics and community structure (defined by a species interaction network) 94,95,99,100. For 260 

example, fertiliser run-off has contributed to enhanced primary production and a consequent depletion 261 

of oxygen in bottom waters, resulting in ‘dead zones’ in over 400 marine systems 101. Of course, similar 262 

patterns can happen via broad-spectrum chemical stressors causing trophic cascades by reducing grazer 263 

abundance45,102,103. 264 

The second frame centres on threats that operate across functional groups and trophic levels, such as 265 

habitat loss and fragmentation caused by urbanisation, deforestation, certain types of harvesting (e.g. 266 

fishing) or bushfires.  Again, the sources vary, but the defining feature of such threats is that populations 267 

of several species across functional groups and trophic levels are perturbed or removed from a 268 

community. While challenging, the body of ecological theory that helps us evaluate multiple threats 269 
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centres on the decomposition of the contribution of mortality from multiple stressors on multiple species 270 

and the turnover components of beta-diversity 40,104.  271 

The third frame is invasive species, which are defined by the arrival of a new species in the community. 272 

Invasive species thus operate slightly differently to the majority of community-scale stressors, by 273 

initially directly acting on species richness and network structure (a new node being added) with a 274 

multitude of indirect emergent effects at other scales, such as decreases in a competitor’s fruit set 57. 275 

Ecosystem function scale 276 

Our framework does not include direct effects of stressors on the ecosystem function scale. We define 277 

this scale narrowly as comprising targets, such as nutrient cycling and energy fluxes, that only respond 278 

to stress indirectly as a function of changes to targets at lower scales. For example, deforestation may 279 

change ecosystem-function-level nutrient cycling, but this is an emergent property of a reduction in the 280 

abundance, or change in relative abundance, of multiple tree species populations. 281 

Evaluating the predictability and consistency of multiple stressor effects 282 

Having outlined this classification of stressors, we now introduce how we can use this classification to 283 

understand the predictability and consistency of interactive effects.  284 

Prediction is essential to assess the effects of different threats on ecosystems and to aid policy makers 285 

and practitioners in their decision making about ecosystem management 105,106. A key determinant of 286 

the predictability of stressor effects is whether stressors combine additively or whether they interact 287 

8,107. If stressors combine additively, predicting their effects may be comparatively straightforward 288 

(though nontrivial in absolute terms), only requiring a relationship between the intensity of individual 289 

stressors and their effect size on the target of interest. Conversely, if there are two-, three- or higher-290 

way interactions between stressors, their impacts become substantially more complicated to predict due 291 

to high levels of context dependence and whether the interactions can be defined on a linear scale (such 292 

as by a linear model). For example, if the effects of temperature on a species’ abundance depend on the 293 
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levels of nitrogen and copper, forecasting is more difficult than if temperature acted independently 294 

(additively) of these other stressors. In the context of multiple, simultaneous stressors, we thus define 295 

the predictability of a stressor in terms of how many other stressors it interacts with and the statistical 296 

order of the interactions: for example, if stressors (Si) combine additively, this is not an interaction (or 297 

is a zero-order interaction; S1+S2), and is the most predictable; if two stressors interact, this is a first-298 

order interaction (S1 × S2), which is less predictable; if three stressors interact, this is a second-order 299 

interaction (S1 × S2× S3), and so on. Predictability is thus inversely related to the statistical order of the 300 

interactions in which stressors participate. 301 

Consistency refers to patterns in how stressor impacts are distributed across ecological scales and 302 

among stressors. Below, we introduce three forms of consistency in detail. The first is consistency by 303 

scale which refers to whether there are consistent patterns in how stressor impacts are distributed 304 

across ecological scales. For example, two-way interactions among multiple stressors may represent 305 

the strongest effects at the population scale but additive effects dominate at the community scale. The 306 

second form, consistency by stressor, relates to whether a stressor has a similar magnitude effect on 307 

different targets. For example, temperature having a negative effect of similar magnitude on all targets 308 

that it impacts. The third form, consistency by target, is where a target is impacted similarly by 309 

different stressors: for example, temperature, habitat loss and pollution all having a similar magnitude 310 

of impact on species richness. 311 

 312 

Evaluating predictability and consistency 313 

Evaluating predictability and consistency requires a way to quantify the statistical order (order 0 = 314 

additive, order >0 = interactions), magnitude, direction and distribution among scales of stressor 315 

impacts. Although the focus of this study is on anthropogenic stress, which are generally considered to 316 

have negative impacts, effect sizes allow for both positive and negative impacts of stress (see Figure 317 

2). Importantly, because effect sizes act as a common, standardised currency, they allow comparisons 318 
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to be made among scales, within or between studies, or between theoretical predictions and field 319 

observations. Here we have separated the use of effect size from the estimation of effect size, and we 320 

focus on their use first (See Box 1 for estimation). 321 

Readers are referred to Figure 2 for a set of caricatures of a three-stressor (temperature, nitrogen, 322 

hunting), three ecological scale (population, community, ecosystem) example to complement the 323 

following paragraphs. Note that we focus on three scales purely for visual simplicity; in a real analysis, 324 

the metabolism/physiology and individual scales are also important to include. We chose these three 325 

scales because targets at these scales (e.g. abundance, richness) are the ones most often used in the 326 

context of stressor effects on ecosystems and conservation. It is also important to note that, as shown in 327 

Figure 1 and discussed above, the targets at the ecosystem scale capture emergent responses rather than 328 

being directly impacted by stressors. In Figure 2 we use very broad stressors, such as ‘temperature’. In 329 

a real use case, it would be necessary to be more specific about the spatial and temporal extent of 330 

stressors; for example, clearing a single path of habitat might be distinguished from ongoing habitat 331 

fragmentation, or an individual bushfire might be distinguished from a fire regime (discrete versus 332 

continuous stress, see 50). 333 

Predictability can be seen in Figure 2 in cases where effect sizes for additive effects (stressors occurring 334 

by themselves in columns 1-3) are greater than (darker) those for interactive effects (columns 4-7). For 335 

example, the pattern in Figure 2a suggests that responses at the population scale are more predictable 336 

than at community or ecosystem scales because effect sizes are clustered as additive stressor impacts at 337 

the population scale, but as interactive stressor impacts at higher ecological scales. This extreme 338 

clustering in Figure 2a also defines a strong pattern of consistency by scale: all responses at the 339 

population scale are additive, all community responses are two-way interactions and all ecosystem 340 

responses are three-way interactions. The clustering in Figure 2a also suggests that temperature might 341 

be classed as a ‘dominant driver’ at the population scale, due to its strong effect sizes. Note that this 342 

figure is a caricature to demonstrate different forms of consistency and, while Figure 2a shows 343 
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interactive effects only at the community and ecosystem scales, but not the population scale, in nature 344 

interactive effects may occur at all scales22. 345 

In contrast, Figure 2b shows consistency by stressor. This is where a column – in this case Nitrogen – 346 

has a similar impact across scales and stressor combinations. Regardless of whether Nitrogen is acting 347 

additively, or interacting with other stressors, it consistently generates a strong negative effect size 348 

across targets and scales (in Figure 2b, all columns involving Nitrogen have a strong negative effect 349 

size). Figure 2c shows consistency by target, where impacts on a particular row (i.e. a particular target) 350 

are similarly strong for all stressors or interactions. For example, the abundance of species 3 is 351 

particularly vulnerable to all three stressors combining additively, while species richness is particularly 352 

sensitive to two-way interactions between stressors, and ecosystem biomass is not affected by any of 353 

the stressors. Figure 2d, in contrast to the others, displays limited evidence of predictability or 354 

consistency; it lacks discernible structure in the distribution of effect sizes either vertically or 355 

horizontally. 356 

We believe that thinking about the distribution, magnitude and direction of stressor impacts on targets 357 

in this way will enable important inferences to be made about the predictability and consistency of 358 

multiple stressor effects and interactions, that are relevant to both basic science and applied 359 

management. For example, if a stressor is responsible for strong interactions at multiple scales 360 

(consistency by stressor; e.g. Nitrogen in Figure 2b), this consistency helps to prioritise and target the 361 

allocation of scarce resources to mitigate impacts by focusing on this stressor. Alternatively, if one 362 

target, such as the abundance of a particular species, is consistently affected by multiple stressors 363 

(consistency by target; e.g. Species 1 or 3 in Figure 2c), then conservation action may be directed at 364 

that species. 365 

Absolute Predictability and Consistency 366 

By definition, predictability and consistency may vary with the number and identity of stressors 367 

considered. This means that determining an ‘absolute’ value of the predictability or consistency of 368 
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stressors would require a study that encompasses all main sources of ecosystem stress, such as the LPI 369 

sources in Figure 1. This is particularly feasible in a modelling context. Alternatively, synthesising 370 

across studies with different combinations of stressors can also lead to absolute conclusions about 371 

predictability and consistency. For example, if stressors A and B are found to interact across many 372 

studies, each of which considers a different set of stressors alongside A and B, then this could be 373 

evidence of an ‘absolute’ interaction between A and B, and thus an ‘absolute’ lower level of 374 

predictability than if the stressors combined additively. Similarly, if a stressor, A, is shown to have a 375 

consistent negative impact on a particular target across different studies, each evaluating different sets 376 

of stressors, this could also be evidence of ‘absolute’ consistency. If the different studies consider the 377 

same sets of stressors, then results are comparable and this can be useful to establish consensus across 378 

space and time.  379 

Importantly, determining ‘absolute’ predictability or consistency may not always be an appropriate aim: 380 

all stressors do not co-occur in all places at all times, and thus, in the context of managing a particular 381 

site for conservation, it may be more useful to understand predictability or consistency in situ, by just 382 

considering the set of stressors occurring at a particular site. Moreover, it is valuable in its own right to 383 

understand the context dependence of predictability and consistency. For example, are particular 384 

stressors always hard to predict, or only in the presence of other particular stressors? Or, does a 385 

particular stressor consistently generate negative impacts on a target, or does this only happen when a 386 

certain set of stressors are present? Again, answering questions like these can generate essential insights 387 

for conservation and resource management under environmental change. 388 

Simulation models for studying multiple stressor effects 389 

The framework shown in the first section (Figure 1) outlines conceptually how a modelling approach 390 

for evaluating the impacts of multiple simultaneous stressors could work: stressors enter the system at 391 

a range of ecological scales, with emergent effects on targets at a range of scales. Here, we build on this 392 

framework and propose seven criteria (Figure 3; central box) that simulation models must satisfy to be 393 

able to represent stressors and biology in this way.  These criteria are motivated by a recent specification 394 
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of several critical attributes for predictive models 108 and more general guidance about modelling 395 

ecological communities that can be useful for multiple stressor research 109. As a point of reference, we 396 

also outline in Figure 3 the extent to which several current modelling tools meet our criteria. 397 

 398 

Models that meet the seven criteria are the platform for generating robust, simulated data for improving 399 

knowledge of the impacts of multiple, interacting stressors (though they must also be linked to empirical 400 

data and experiments, see Box 2). The seven criteria are specifically associated with modelling that 401 

generates times series of biomass or abundance for multiple individuals or species who are embedded 402 

in some representation of a community. This means that the simulated data can be analysed to produce 403 

effect sizes that populate the statistical and graphical framework presented in Figure 2; thus, the 404 

simulated data are central to generating theory about predictability and consistency. Ultimately, the 405 

predictability and consistency framework detailed by Figure 2 emerges from statistical analysis of 406 

simulated time series produced by a model (or empirical data). Models can be parameterised, for 407 

example, based on allometries and known environment response curves (such as temperature), and then 408 

used in numerical, fully-factorial, in silico experiments about effects of multiple simultaneous stressors 409 

13,70,71,110. While the Figure 2 framework can be used with either empirical or simulated data, the 410 

difficulty of large-scale empirical experimentation with multiple stressors (e.g. combinatorial explosion 411 

of stressor combinations and difficulty in detecting biotic interactions) means that simulation models 412 

play a key role in improving understanding, generalisations and developing theory.  413 

 414 

A common feature of all models in Figure 3, is that they meet criterion 1, which encompasses the ability 415 

of stressors to impact targets at different ecological scales (Figure 3, ‘access’ row in the table). This is 416 

a particularly important feature because quite often stressors have been modelled generically, acting at 417 

scales that are different to how they may actually enter ecosystems. For example, environmental 418 

perturbations might be modelled by adding stochastic noise terms to population dynamics equations, 419 

even if these perturbations are meant to represent stressors that primarily act at lower or higher scales.  420 

Such a decision may limit inference about how and why interactions arise because the biology through 421 

which two stressors interact (e.g. how higher order interactions emerge) is not defined. 422 
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We note that no model in Figure 3 currently incorporates adaptive foraging processes that allow species 423 

to rewire their connections in the network as the biomass of resources change or species go extinct or 424 

arrive, such as through invasion (criterion 4) 111-114. The central hypothesis is that species that can adjust 425 

their diets might persist and buffer ecological communities against stress. There exist several rewiring 426 

models for food webs that could be incorporated into existing modelling frameworks. Historically, 427 

rewiring has been explored via rules of thumb, inspired by concepts of foraging biology 115,116.  More 428 

recently, optimal foraging theory has emerged as a formal principle for wiring and rewiring networks, 429 

specifically via The Allometric Diet Breadth Model 113,117,118. The ADBM uses optimal foraging theory 430 

and allometries of foraging variables to predict food web structure. The model predicts which resources 431 

a consumer should choose based on which food items maximise energy intake, subject to foraging 432 

constraints, such as encounter rates and handling times. The model performs well on empirical data, 433 

correctly predicting up to ~85% of links 119, and has been used in topological modelling of primary and 434 

secondary extinctions 113.  435 

The Allometric Trophic Network Model and Size Spectra models both meet all criteria except 436 

incorporating rewiring (criterion 4), and thus offer extensive opportunities. The bioenergetic food web 437 

model 120 is an established, mechanistic model of biomass dynamics of species in food webs that 438 

integrates metabolism, body size, intraspecific density-dependence and interspecific interactions. In the 439 

model, parameters specifying metabolism, production of biomass (reproduction, population growth) 440 

and consumption are determined by body size via a set of allometries (each with a constant and 441 

exponent). These parameters determine rates of change in species’ populations – modelled as 442 

collections of biomass – via a set of ordinary differential equations solved numerically. Size-spectrum 443 

models offer a size-structured alternative and are primarily used in the marine environment 121-123. A 444 

size spectrum is the relationship between log individual size (body mass) and log abundance, which is 445 

roughly –1. Size spectrum models thus conceptualise food webs as a gradient of individuals, organised 446 

by size and other traits, where individuals grow by eating smaller individuals and die by being eaten by 447 

larger individuals 121,124. The core of the model is a set of equations (partial differential equations) that 448 

model the density per unit mass per unit volume for organisms of mass m at time t. Both these modelling 449 
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platforms are temporally resolved and structured around some characterisation of multi-species 450 

community structure.  This mix of temporal resolution and structure is central to making inference about 451 

predictability and consistency and for developing theory about the effects of discrete versus continuous 452 

stress outlined by Jackson et al. 50 (such as the distinction between the gradual increase in mean 453 

temperature change and extreme temperature events). 454 

 455 

Finally, we note that relying on a single model to generate theory and inference about predictability and 456 

consistency of multiple stressor effects can be risky; it may be beneficial to amalgamate inference from 457 

an ensemble of models to establish consensus. Many of the models discussed in Figure 3 can share 458 

common state variables and thus could be used as part of an ensemble modelling approach. Ensemble 459 

modelling helps deal with three main forms of uncertainty: process uncertainty, caused by the variation 460 

and stochasticity inherent to ecosystems; model uncertainty, related to the components of a particular 461 

model; and future/scenario uncertainty, related to predictions being made, such as from uncertainty 462 

about future conditions109. Ensemble modelling has recently been gaining traction in ecology and has 463 

already been used to evaluate the impacts of multiple stressors on particular targets, including explicitly 464 

building relationships between stressors into the models 125,126. To capture a final type of uncertainty, 465 

known as parameter uncertainty (uncertainty related to the parameter values used in a model109), 466 

ensemble modelling can be combined with global sensitivity analysis. Global sensitivity analyses can 467 

help understand the sensitivity of results and conclusions to changes in model parameters by, for 468 

example, running models with parameter values obtained from bootstrap resampling from parameter 469 

distributions109,127. Thus, ensemble modelling could potentially have a large part to play in multiple 470 

stressor research in the future. 471 

  472 
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BOX 1: Estimation of effect sizes 473 

Calculating the effect sizes necessary to populate the grid framework in Figure 2 can be accomplished 474 

with a variety of approaches, outlined below. The capacity for the Figure 2 grid to deliver inference on 475 

predictability and consistency, however, requires attention to two details. First, the targets (row names) 476 

must be well defined and be distributed across multiple ecological scales. Second, the effect sizes must 477 

capture both magnitude and directionality. 478 

One approach builds from Piggott et al.’s8 directional classification system of stressor interactions 479 

through to specific null model frameworks, such as the use of ecotoxicological null models of 480 

concentration addition and independent action19,129. There are several examples of the use of the 481 

response ratios that define these null models to analyse empirical experiments13. For example, Galic et 482 

al.13 present an example of how these effect sizes can be used to make inference about the predictability 483 

and generality of multiple stressor effects. They used an Individual Based Model (IBM) to explore the 484 

impacts of multiple ‘physiological’ stressors on individual traits with consequences estimated at 485 

biomass and ecosystem function scales. This framework typically requires an a priori experimental 486 

design that allows response ratios to be constructed using appropriate null models or control conditions. 487 

It is useful for both empirical and simulated in silico experiments.  488 

An alternative to experimental approaches is to use effect sizes from standardized coefficients of linear, 489 

generalised linear and mixed effects models. For example, Tabi, et al. 130 combined this approach with 490 

the Piggott, et al. 8 framework to analyse the combined effect of temperature and productivity, aligning 491 

classic statistical definitions of interactions with estimations of effect sizes from coefficients. Meta-492 

analyses are another approach, where studies can be synthesised to estimate interaction effect sizes. For 493 

example, and O’Brien et al.131 use meta-analysis to estimate interactions between two stressors detected 494 

in targets classified by structure and function.  495 

Multivariate Auto-Regressive State Space (MARSS) models132-135 offer an additional toolbox for 496 

empirical time series data, empirical spatial data or data derived from stochastic simulations. MARSS 497 
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models fit multiple regression equations simultaneously to each response variable, using the values of 498 

other variables (e.g. species) and environmental covariates (the stressors) from previous time steps as 499 

predictors. A matrix of environmental covariate effect sizes (main and interactions) on response 500 

variables is recovered. These effect sizes are, by definition, associated with main effects of, and 501 

interactions among, stressors and thus are suitable for use in the Figure 2 grid concept. The MARSS 502 

models have an additional advantage in that they are good at partitioning uncertainty to understand its 503 

specific sources. 504 

Didham et al. 11 and Geary et al. 136 have argued for expanding our understanding of the mechanisms 505 

of stressor interactions – beyond simply additive, synergistic or antagonistic – to also include different 506 

interaction pathways. The main two pathways are chain interactions, where one stressor alters the 507 

prevalence of another stressor directly, and modification interactions, where one stressor changes the 508 

prevalence and per capita effect of another stressor. Geary et al. 136 put forward additional statistical 509 

tools we can use to understand these pathways in the form of the ‘threat web’ approach, which uses a 510 

network approach to understand co-occurrence patterns among threats. The co-occurrence network can 511 

be analysed to gain quantitative insight into stressor-stressor interactions, and their causative or 512 

coincidental associations. In turn, this can frame our understanding of spatial and temporal threat co-513 

occurrence 136.  514 

  515 



 

 

 

22 

BOX 2: The models - experiments interface 516 

Model development (where models are defined as simulation models like those discussed in ‘Simulation 517 

models for studying multiple stressor effects’) must be linked with empirical data and experiments. 518 

While there is a rich history of empirical work linked to such efforts on multiple stressors (see 519 

Introduction), there remains a substantial set of biases along with major differences in semantics and 520 

design constraints that often limit the contribution of empirical work to these kinds of models 7,14. We 521 

suggest that recognising at least three facets of the model-experiments interface can help reduce these 522 

biases, generate common semantics and maintain a strong relationship between models and data. 523 

One facet of the interface between models and experiments focuses on experiments that produce data 524 

to parameterise models. Experiments help evaluate assumptions made by modelling and refine the 525 

identity and functional forms of mechanisms embedded in models. This is embodied, for example, in 526 

recent meta-analyses and synthesis of data on metabolism and functional response parameters, which 527 

are then directly used by simulation models 29,137,138.  528 

A second facet of the interface is to align model predictions with experiments. Our grid approach in 529 

Figure 2 requires effect sizes to populate the matrix elements. These effect sizes can be generated by 530 

analysing data produced by experiments and by simulation models. For experimental data to be 531 

compatible with our approach, we have four key recommendations. First, experiments must incorporate 532 

three or more stressors. Second, they must incorporate three or more scales of ecological organisation. 533 

These two recommendations are an essential progression beyond the one scale and two stressors studies 534 

that currently dominate14. Third, studies must adopt a multifactorial experimental design that examines 535 

different stressor combinations. Fourth, the experiment must be based around time series, as these are 536 

necessary to capture population dynamics which are then analysed to calculate the effect sizes required 537 

by the grid framework in Figure 2. This also allows different stressor temporal trends to be incorporated, 538 

such as sudden versus ongoing changes in temperature50. 539 
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Recent work suggests that experiments are increasing in design complexity and the number of stressors 540 

and scales evaluated 139,140. There are already a number of studies which adopt our recommendations 541 

and which would be suitable for our framework. For example, Rillig, et al. 139 experimentally 542 

manipulated soil communities, applying up to 10 stressors. They found complex changes in soil 543 

properties, soil processes, and microbial communities (i.e. multiple scales of response) and decreasing 544 

predictability as the number of stressors increased (interactions were pervasive). Tabi, et al. 130 545 

experimentally manipulated temperature and productivity in microbial communities, where targets at 546 

multiple scales were monitored through time. The authors combined this experiment with an effect size 547 

analysis of the multiple stressor effects to estimate predictability and consistency across scales. 548 

Experiments like these are critical to match similar advances occurring in the mathematical modelling. 549 

A third facet relates to ‘fitting models to data’ which can prove challenging, but beneficial, in cases 550 

where the complexity of the required experiments to estimate parameters is high. There are emerging 551 

methods that link large-scale empirical survey data with models to help parametrise them. These include 552 

‘inverse methods’ or state-space models141,142 (often now Bayesian with priors to appropriately capture 553 

uncertainty). This is perhaps the least developed sphere of the model-experiment interface for the 554 

models in Figure 3. However, it is also one with great potential as we move toward leveraging the 555 

insight from models to help manage natural resources and biodiversity in the future. 556 

  557 
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Figure legends 921 

Figure 1: Conceptual diagram of the ecological scale-target-based classification of stressors to quantify the 922 

impact of multiple simultaneous stressors on ecological communities. We align the Living Planet source-based 923 

categories of stressors with a classical view of ecological scales and the target metrics at each scale. The 924 

framework (and models, see below) highlights targets and ecological scales that coalesce the impacts of stressors 925 

by what they do, not what they are.  For example, pollution and climate stressors both can generate direct effects 926 

on species’ abundance by killing individuals, but also via trait-mediated effects acting on growth and 927 

reproduction. As different ecological scales are connected by higher-order interactions, outputs at higher and 928 
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lower levels of ecological organisation can emerge. Note that we define the effects of a stressor at the individual 929 

scale as those that act within, rather than between, individuals. Thus, a harvesting process, such as hunting, can 930 

have individual-scale effects by altering stress hormone levels in individuals, which has consequences for 931 

demography and thus the population. However, hunting primarily acts by killing individual animals or plants, 932 

which affects directly properties of the population (abundance/biomass), not properties of the individual. Note, 933 

this figure is a first attempt designed to illustrate our framework and is by no means comprehensive. 934 

 935 

Figure 2: A framework for assessing the consistency and predictability of stressors. Rows represent targets at 936 

different scales of ecological organisation. These are the variables that may be of interest when assessing the 937 

response of ecosystems to multiple, simultaneous stressors. Columns represent different stressors or their 938 

combinations. When a stressor is by itself (for example, Temperature), this means that the stressor combines 939 

additively with other stressors. When a stressor occurs with another (for example, Temperature × Nitrogen), this 940 

means the effects of one stressor depend on the other (interaction). Colours represent the magnitude and direction 941 

of the effect of a stressor, or combination of stressors, on each target. (a) Stressors are more predictable at the 942 

population scale because they all combine additively, whereas prediction may be harder at the community and 943 

ecosystem scales due to complex two- and three-way interactions. Consistency by scale is also visible: at a given 944 

scale, all stressors combine in the same way. For example, all stressors combine additively at the population 945 

scale, and all stressors are involved in two-way interactions at the community scale. (b) Shows consistency by 946 

stressor, where a stressor has a similar effect on targets, whether combining additively or interactively with other 947 

stressors. In this case, nitrogen consistently has a strong negative effect (all columns involving the nitrogen 948 

stressor have the same strongly negative effect size). (c) Consistency by target, where targets are affected similarly 949 

by different stressors. For example, the abundance of species 3 is similarly affected by temperature, nitrogen and 950 

hunting. (d) No pattern of consistency or predictability. Note that this figure is a caricature to demonstrate 951 

different forms of consistency and there is no intention to suggest the specific patterns shown are likely to occur 952 

in nature. For example, interactive effects can occur at all scales, not just at the community and ecosystem scales 953 

as shown in Figure 2a. Moreover, we focus on three scales purely for visual simplicity; in a real analysis, the 954 

metabolism/physiology and individual scales are also important to include.  955 
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Figure 3: We propose seven criteria (central blue) that models must satisfy to generate informative, simulated 957 

data from which effect sizes can be estimated to quantify the impacts of multiple, interacting stressors. Models 958 

that meet these seven criteria provide a platform for developing a general theory for the predictability and 959 

consistency of multiple stressor effects. The criteria are motivated by a recent specification of several critical 960 

attributes for predictive models 108.  We are currently unaware of any model that meets all seven criteria; here 961 

we present four that have been used to evaluate multiple stressor effects on ecological communities and that 962 

possess several of the criteria.  The Allometric Trophic Network (e.g. Bioenergetic Food Web Model 120) and the 963 

Size-Spectra modelling frameworks 123 are two that offer extensive opportunities because they meet many of the 964 

criteria and may also potentially accommodate rewiring – the re-allocation of network links associated with 965 

loss or gain of species in the network (see text). The Trophic Network and IBM examples are notable because of 966 

the detail specified on how various stressors might impact at different ecological scales. Motivating references 967 

for each criteria: Access 120; Biodiversity 120,128; Interaction Diversity 120,128; Rewiring 111,113,114,116; Scalable 120; 968 

Predictions 13,71,110; Feedback 120,128. 969 
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Example: Rosenblatt et al 2017 
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