

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Optimization of Dominance Testing in Skyline
Queries Using Decision Trees

Jong-Hyeok Choi1, Fei Hao2, Yoo-Sung Kim3 and Aziz Nasridinov1,4
1Bigdata Research Institute, Chungbuk National University, Cheongju 28644, South Korea
2Department of Computer Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
3Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea
4Department of Computer Science, Chungbuk National University, Cheongju 28644, South Korea

Corresponding authors: Yoo-Sung Kim (email: yskim@inha.ac.kr) and Aziz Nasridinov (e-mail: aziz@chungbuk.ac.kr).

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea

government(MSIT) (No.2019-0-00203, Development of 5G-based Predictive Visual Security Technology for Preemptive Threat Response). This work was

also supported by the Industrial Strategic Technology Development Program (No. 200003991, Development of Korean Wave Convergence Service for AI-

based Motion Evaluation and Learning Technology), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

ABSTRACT Skyline queries identify skyline points, the minimal set of data points that dominate all other

data points in a large dataset. The main challenge with skyline queries is executing the skyline query in the

shortest possible time. To address and solve skyline query performance issues, we propose a decision tree-

based method known as the decision tree-based comparator (DC). This method minimizes unnecessary

dominance tests (i.e., pairwise comparisons) by constructing a decision tree based on the dominance testing.

DC uses dominance relations that can be obtained from the decision rules of the decision tree to determine

incomparability between data points. DC can also be easily applied to improve the performance of various

existing skyline query methods. After describing the theoretical background of DC and applying it to

existing skyline queries, we present the results of various experiments showing that DC can improve

skyline query performance by up to 23.15 times.

INDEX TERMS Database, decision tree, incomparability, query processing, skyline query.

I. INTRODUCTION

A skyline [1] refers to a minimal set of data points that

dominate all other data points in a dataset. Dominance

implies that the skyline points have the same values, or at

least one better value, for all attributes than the remaining

data points. Fig. 1 demonstrates an example of a skyline

query in a database. Fig. 1 (a) lists a given dataset, and Fig.

1 (b) illustrates the skylines of the dataset (i.e., A, G, H).

There has been substantial research interest in developing

efficient skyline query techniques to discover skylines, and

various studies have been conducted to apply these methods

in various fields, including retail [2], load networks [3],

networks [4]–[6], web services [7], [8], and mobile edge

computing [9]. In recent years, the skyline query technique

has also been employed to compress a convolutional neural

network (CNN) for deep learning [10].

The main challenge in such endeavors is to execute the

skyline query in the shortest possible time. This is necessary

to satisfy the time constraints imposed by the underlying user

requests. Since a skyline query spends most of its time

conducting dominance tests, performing pairwise data
(a) example dataset (b) skyline query result

FIGURE 1. An example of skyline query.

2 VOLUME XX, 2017

comparisons to determine dominance, and reducing the

number of dominance tests, can result in a direct

improvement in query performance [1]. Previous skyline

query methods proposed for this purpose have ranged from

sort-based methods [11]–[14] to those using indexing

techniques [15]–[17], dominance relations [18]–[21], and

parallel and distributed processing environments [22]–[28].

In this paper, using a concept called incomparability, we

focus on dominance relations methods to minimize

unnecessary operations between data points, and reduce

dominance tests. Generally, incomparability occurs when

two data points cannot dominate each other [16], [20]. For

example, in Fig. 1, data points A and G are incomparable,

and thus, cannot dominate each other. Existing dominance

relation-based skyline query methods manage the skyline

points based on a tree structure. However, these methods

perform dominance tests using a tree structure, and this

makes it challenging to remove multiple data points from a

skyline query using a single dominance test procedure, as is

the case in point-to-group or group-to-group comparisons [17]

used in index-based methods. In addition, it is difficult to

apply the dominance relation concept to other methods

because of the structural dependencies of existing dominance

relation-based methods.

In this study, we address the above issues by proposing a

new decision tree-based method, known as the decision tree-

based comparator (DC). The proposed method minimizes

the unnecessary dominance tests by using dominance

relations obtained from the decision rules of the proposed

tree structure, to determine incomparability. By reducing the

number of dominance tests in which dominance does not

occur, we can significantly reduce skyline query time.

Furthermore, unlike existing approaches, the proposed

method can be easily applied to improve the performance of

various existing skyline query methods, because of its

unique tree structure. These are the specific contributions of

this study.

 We propose a decision tree structure that can easily

infer the dominance relation between data points.

Specifically, the proposed decision tree structure

contains decision rules that make it easy to classify the

leaf nodes that have a dominance relation with the

current data point by inferring the dominance relation

between the leaf nodes.

 We propose a method known as DC that minimizes the

number of dominance tests in the skyline query. This

method eliminates the leaf nodes that exhibit

incomparability with the current data point, thereby

avoiding unnecessary dominance tests. In addition, we

describe a method to further reduce the dominance

tests by iterating the comparable leaf nodes using a

concept called population, which is the number of

skyline points belonging to a leaf node.

 We demonstrate how DC can be applied to existing

skyline query methods. Applications of DC to Sort

Filter Skyline (SFS) [11], [12], Sort and Limit Skyline

Algorithm (SaLSa) [14], and Branch and Bound

Skyline (BBS) [15], which are widely used skyline

query methods, are explained at an algorithmic level.

 We evaluated the DC method experimentally to

investigate its performance. We first measured and

compared the number of dominance tests required to

complete a skyline search, without DC and when DC

was applied to an existing skyline query. We also

measured and compared the time required to complete

a skyline search with an existing skyline query with

and without DC. The results of these experiments

showed that applying DC reduced the skyline query

time and dominance test calls of existing methods by

up to 95.9% and 95.5%, respectively.

The remainder of this paper is organized as follows.

Section 2 explains the problems of skyline queries and

discusses state-of-the-art skyline query methods. Section 3

presents the proposed method. Section 4 demonstrates the

application of DC to existing skyline query methods. The

experimental results are outlined in Section 5. Section 6

summarizes the paper and highlights future work.

II. RELATED WORK

In this section, we describe related studies. Numerous

methods have been proposed to process skyline queries

efficiently. We classify these methods as sort-based, index-

based, and dominance relation-based skyline query methods.

A. SORT-BASED SKYLINE QUERIES

Early studies related to skyline queries focused on searching

skyline points using naïve methods. For example, Borzsony

et al. [1] proposed the Block-Nested Loop (BNL) and divide-

and-conquer methods to perform skyline queries. These are

naïve methods that scan through a dataset and run a

dominance test for each data point. However, they cannot

search the skyline points monotonically, which results in

many unnecessary dominance tests. Since then, several

extension methods have been proposed that use sorting

techniques to solve the BNL problem. Chomicki et al. [11],

[12] introduced the SFS method. The SFS method first

presorts the data points according to their entropy scores

using a monotone scoring function, and then performs point-

to-point comparisons, similarly to BNL. As the data points

with lower entropy scores are more likely to become skyline

points, the SFS prunes a considerable amount of data points

during the early stage of pairwise data comparisons. Similar

methods that use presorting with early data pruning strategies

have been proposed in [13] and [14]. Linear Elimination Sort

for Skyline (LESS) [13] contains an elimination-filter

window to determine the set of data points that are most

likely to dominate other data points during the sorting

process. Subsequently, a dominance test is conducted with

those data first to identify the data points to be dominated

with small comparisons using the skyline-filter window.

2 VOLUME XX, 2017

However, as SFS and LESS still have to utilize all the data

for the dominance test, SaLSa [14] provides a means of

terminating the skyline query without using all of the data

points. To this end, a new monotone limiting function known

as minC was proposed in [14]. Based on these functions, the

concept of a stop point was proposed, which can confirm that

all unread data points will be dominated. However, it has not

been widely used because of a problem with the efficiency of

the monotone limiting function, which decreases as the

dimensions increase. Also, recently, a method for sorting the

incomplete data was proposed in [29] and has been used in

many skyline queries in index-based or distributed

environments [30].

These sort-based skyline query methods can effectively

reduce dominance testing by enabling the skyline to exhibit

monotonic properties. However, the problem of high cost

computations, such as presorting or point-to-point

comparisons, remains to be solved.

B. INDEX-BASED SKYLINE QUERIES

Index-based skyline query methods can remove multiple data

points with a single dominance test by using an index

structure. Among the early index-based methods the most

representative approach is the BBS [15]. The BBS uses an R-

tree-based indexing structure and performs point-to-group

comparisons of the skyline points and a minimum bounding

rectangle (MBR). This comparison uses the properties of the

data space partitioning in the R-tree. If a specific skyline

point dominates the lower-left corner point of a specific

MBR, all of the data points belonging to the MBR are

dominated by the same skyline point. Using these features,

the BBS can reduce the number of dominant tests because

multiple data points can be removed from the query process

with a single comparison.

To address the problem where the computation required to

construct an R-tree increases significantly as the dataset

dimensions increase, Z-SKY was proposed by Lee et al. [16].

Z-SKY searches the skyline through a ZBtree by combining

a B+-tree and a Z-order curve. The ZBtree divides the Z-

order curve into segments known as RZ-regions which can

be managed according to certain criteria. Z-SKY enables

group-to-group comparisons using a dominance test between

these RZ-regions. However, with the specialization of integer

datasets, the high computational cost of the ZBtree offset the

benefits gained by reducing the number of dominance tests.

More recently, studies are being conducted to search the

skyline by applying an index structure to incomplete data

[30]-[32] or search the skyline in a Hadoop or GPU

environment by applying an index [26]-[28].

The index-based skyline query methods are effective for

skyline queries because they can remove multiple data points

with a single dominance test. However, depending on the

properties of the index technique used for the skyline query,

it may be necessary to solve problems such as availability for

only a specific data type, or the cost of the index structure

will outweigh its advantages.

C. DOMINANCE RELATION-BASED SKYLINE QUERIES

Dominance relation-based skyline query methods reduce the

number of dominance tests so that the skyline can be

managed using lattice or tree structures, and avoid

dominance tests, based on the expected incomparability

through these structures. In the case of the Lattice Skyline

[18], a lattice structure is created using low-cardinality

attributes and the dominance relations between them, and this

structure is used to identify the incomparability. However, a

limitation exists, because the dominance relation can only be

used when low-cardinality attributes exist.

For Object-based Space Partitioning Skyline [19],

BSkyTree [20], and BJR-tree [21], the data points are

partitioned into regions of the multi-dimensional data space

by using a dominance relation that can be identified through

point-to-point comparisons. Thereafter, the dominance

relation between partitioned regions is constructed into a tree

structure to easily determine the incomparability. When a

new data point is input, these trees minimize the dominance

testing by determining the region to which the input data

point belongs, and comparable regions through the tree. The

main advantage of these methods is that they can process the

dominance tests using only the data points belonging to those

regions.

These dominance relation-based skyline query methods

succeed in reducing the number of dominance tests by

effectively utilizing a dominance relation, which is obtained

through the dominance test, and then avoiding dominance

tests for incomparable cases. However, these skyline query

methods can only be used for point-to-point comparisons.

Moreover, it is difficult to apply the dominance relation

concept to other methods, because of the structural

dependencies of the existing dominance relation-based

methods.

III. DECISION TREE-BASED COMPARATOR FOR
SKYLINE QUERIES

The proposed DC is described in this section. The DC is a

novel skyline query method that uses a decision tree structure

to minimize the number of dominance tests. In addition, the

DC can be easily applied to algorithms in conventional

skyline query methods to improve their query performance.

First in subsection A we describe the generation of the

decision tree. We then outline the actual DC procedure in

subsection B. The notations used in this paper are presented

in Table I.

A. DECISION TREE FOR SKYLINE QUERIES

Recall from Section 1 that a data point that has a better value

than the other data points in at least one dimension, while

being equal to or better than the other data points in the

remaining dimensions, is selected as a skyline point. The

2 VOLUME XX, 2017

majority of state-of-the-art skyline query methods use

monotonic functions, such as the entropy score [11]–[13] or

mindist [15], [20] for effective skyline query processing. This

is because, if a data point with numerous better values than

the other data points is preferentially used in a skyline query

through a monotonic function, the skyline can be searched

with fewer dominance tests. That is, a data point with the

lowest score according to the monotonic function has the

highest probability of dominating the other data points, and

all input data points must perform a dominance test with this

data point.

Like the existing methods, we first sort the given data

points according to a monotonic function. We then construct

a decision tree for the sorted data points using a level-by-

level approach, where each level in the tree corresponds to a

dimension of the dataset. When new d-dimensional data is

input to the decision tree, each data point is compared with a

data point that has the lowest score according to the

monotonic function (referred as the top-1 skyline point) in

matching the level of the decision tree. If the input data point

has a smaller value than, or an equal value to, the top-1

skyline point at the same level, it is classified as the left-side

node; otherwise, it is classified as the right-side node.

Example 1. Suppose that a three-dimensional dataset

related to a hotel reservation is provided, as per Table II. We

first normalize the dimensions (i.e., distance, accommodation

cost, and star rating) of the given dataset, and then, sort it

based on the entropy score [11], [12]. A decision tree

constructed based on this dataset is presented in Fig. 2, where

each level in the tree corresponds to the dimensions of the

dataset. Here, hotel b (distance: 0.6, cost: 0.5, rating: 0.25),

which has the lowest entropy score in the dataset, is selected

as the top-1 skyline point and is used to build a decision tree.

Thus, when the rest of the data points are input to the

decision tree, each data point is compared with hotel b when

matching the level of the decision tree, and classified into the

corresponding leaf node. For example, data points having a

distance value less than or equal to 0.6 are classified into leaf

nodes 0 to 3, while the remaining data points are classified

into leaf nodes 4 to 7.

After classifying the input data points into leaf nodes, we

need to identify skyline points using dominance tests. If a

data point is not dominated by any other data point in the

dataset, it is stored in the corresponding leaf node as a

skyline point; otherwise, it is discarded. To minimize

unnecessary dominance tests, we propose a set of

classification rules, where the order of leaf nodes is

expressed in bits. For example, if we express the order of leaf

nodes in bits for the decision tree depicted in Figure 2, the

front four nodes are represented by 000 (0), 001 (1), 010 (2),

and 011 (3), while the following four nodes are represented

by 100 (4), 101 (5), 110 (6), and 111 (7). At this point,

regularity can be observed in the earliest bits: in the first

dimension (marked in red), the data points classified to the

left-side have bits starting with 0 (i.e., 000, 001, 010, and

011), while the other data points have bits starting with 1 (i.e.,

100, 101, 110, and 111). This rule applies equally to the

remaining dimensions. For example, in the second dimension

(marked in green), the comparison is performed with 0.5,

which is the second-dimension value of hotel b. The leaf

nodes classified to the left-side have 0 as the second bit (i.e.,

000, 001, 100, and 101), while the leaf nodes classified to the

right-side have 1 as the second bit (i.e., 010, 011, 110, and

111). Similarly, in the third dimension (marked in blue),

when the comparison is performed with 0.25, the leaf nodes

classified to the left-side have 0 as the last bit (i.e., 000, 010,

100, and 110), while the leaf nodes classified to the right-side

have 1 as the last bit (i.e., 001, 011, 101, and 111). According

to the definition of dominance [1], it can be inferred that only

the data points belonging to the leaf nodes with bits equal to

or smaller than the current leaf node in all dimensions can

dominate the data points of the current leaf node. Thus, by

using the order of the leaf nodes represented as bits, we can

verify incomparability in advance. The procedure of the

proposed decision tree, D-Classifier, is described in

Algorithm 1.

Example 2. Let us continue Example 1 and consider hotel

g as an example. Hotel g is classified into leaf node 6 by

TABLE I

SYMBOLS AND DEFINITIONS

Symbol Definitions

N Number of data points

d Number of dimensions

TOP Top-1 skyline point

TOP[i] i-th dimension value of top-1 skyline point

CUR Current input data point

CUR[i] i-th dimension value of current input data point

NODE_IDX Order of classified leaf node

BRANCH Branch of decision tree

CUR_IDX Order index of current leaf node

TGT_IDX Order index of target leaf node

INCOM Incomparability verification result

LAST Maximum order of leaf nodes

SKYLF Skyline windows conducted on leaf nodes

L_IDX Leaf node order of input data point

population Number of skyline points belonging to leaf node

Div Total number of divisions in population

TABLE II
HOTEL DATASET SORTED BY ENTROPY SCORE [11], [12]

Hotel Distance Cost Rating Entropy Score

b 0.6 0.5 0.25 1.0986

e 0.45 0.6 0.4 1.1780

a 0.9 0.45 0.2 1.1957

i 0.55 0.9 0.15 1.2199

f 0.4 0.95 0.25 1.2274

k 0.7 0.7 0.2 1.2436

c 0.5 0.4 0.8 1.3297

g 0.95 0.95 0.05 1.3844

d 0.75 0.65 0.4 1.3969

h 0.95 0.45 0.85 1.6546

2 VOLUME XX, 2017

comparison with hotel b, which is the top-1 skyline point.

Afterward, it is necessary to check whether it can become a

skyline point through the dominance test. We can see from

the bit value, 110, of leaf node 6 that the hotels of the

corresponding leaf node always have a value less than or

equal to 0.25 in the third dimension. With the bit value, it can

be known in advance that hotels belonging to leaf nodes 1

(001), 3 (011), and 5 (101) with values greater than 0.25 in

the third dimension cannot dominate hotel g. Consequently,

hotels c and e, which cannot dominate hotel g, can be

excluded from the dominance test sooner.

After the dominance test with data points selected as the

skyline points in the previous step (i.e., hotels i, f, a, and k),

we can see that hotel g is not dominated by these skyline

points and thus, will be stored in leaf node 6 as a skyline

point. On the other hand, hotel d, which is a subsequent input

data point, is classified as leaf node 7. However, considering

that hotel d has the worst values in all dimensions compared

with the top-1 skyline point, it is discarded. Hotel h, which is

the last input data point, is classified into leaf node 5. After a

dominance test with the data points in comparable leaf nodes

0, 1 and 4, we can see that hotel h is dominated by hotel c in

leaf node 1, and thus, is discarded.

Fig. 3 shows the leaf nodes that require dominance testing.

Originally, all of the leaf nodes needed to be compared with

leaf node 0. However, since the comparison was already

completed by the classifying process with the decision tree,

further comparison is not required. Similarly, the last leaf

node 7 must be compared with all other leaf nodes. However,

considering that leaf node 7 was already dominated by the

top-1 skyline point belonging to leaf node 0, further

comparison with the other leaf nodes is unnecessary. In

addition, since it is possible to know by the bit value that all

of the leaf nodes located behind the current leaf node have a

larger value in at least one dimension, those unnecessary

dominance tests can also be excluded.

As we saw in Examples 1 and 2, the data points of a leaf

node with 1 in the first bit and 0 in all remaining bits cannot

dominate the data points of all leaf nodes with 0 in the first

bit. This is because all of the data points in the corresponding

leaf node have a larger value in the first dimension than the

data points of all leaf nodes with bits starting with 0. In

contrast, the corresponding leaf node has the potential to

dominate the data of all leaf nodes with the first bit of 1

because all the remaining bits are 0. For this reason,

incomparability only occurs when a bit has a larger bit than

the current leaf node in at least one dimension of the leaf

nodes.

This incomparability can be easily verified by the bitwise

OR operation. To this end, we propose Incmp, an

incomparability verification method, which is described in

Algorithm 2. As shown in line 2, performing a bitwise OR

operation with a leaf node that has a larger bit in one or more

dimensions returns a result that is greater than the current leaf

node order, which enables us easily verify the

incomparability.

From the D-Classifier and Incmp algorithms, we can

observe that the bit value obtained from the order of the leaf

nodes allows us to check incomparability in advance. Using

the proposed algorithms, the total of the 22d dominance

FIGURE 2. Classification of data points in Table II using a decision tree.

FIGURE 3. List of comparable leaf nodes for each leaf node of Fig. 2.

Algorithm 1 D-Classifier

Input:
TOP: Top-1 skyline point
CUR: Current input data point
d: Number of dimensions

Output: NODE_IDX: Index of classified leaf node
Begin
1:
2:
3:
4:
5:
6:

7:
8:

NODE_IDX = 0
for dim = 1 to d do

if CUR[dim] <= TOP[dim] then
BRANCH = 0

else
BRANCH = 1

//Bitwise left shift to apply dimensional order
NODE_IDX = (NODE_IDX << 1) + BRANCH

return NODE_IDX
End

2 VOLUME XX, 2017

relation between leaf nodes, which was necessary when

incomparability was not known, can be reduced to 3d,

meaning that only (3/4)d of the dominance relation is needed

to check incomparability. Furthermore, considering that leaf

node 0 and the last leaf node in the DC do not require

dominance testing, as explained in Fig. 3, the dominance

relation between the leaf nodes is further reduced from (2d –

2)2 to 3d – 2d+1 + 1. This indicates that the unnecessary

dominance tests, where dominance does not occur, are

significantly reduced.

B. DECISION TREE-BASED COMPARATOR

Recall from subsection A that the decision tree is a

classification method that can be used to minimize

unnecessary dominance tests by identifying incomparability

when no dominance occurs between data points. In the DC,

the leaf node to which the current input data point belongs is

classified using the proposed D-Classifier algorithm.

Subsequently, using the proposed Incmp algorithm, the

dominance test is performed by limiting the data points of the

leaf node where no incomparability occurs. If an input data

point is dominated by another data point during this process,

the dominance test for the corresponding input is

immediately terminated. Conversely, if an input data point is

not dominated by any other data points, it is stored in the leaf

node obtained from the D-Classifier. In other words, the data

points stored in the leaf nodes consist of skyline points that

are not dominated by other data points.

However, in this process, moving to the next leaf node

after a comparison with all skyline points belonging to the

comparable leaf node creates the following problems. Firstly,

when a monotonic function is used, there is a higher

probability that a data point which is determined early to be a

skyline point will dominate the other data points, compared

with a skyline point that is determined later. This is because

data points with superior values are preferentially used for

the calculations in monotonic functions. However, when the

dominance test is performed on a leaf node basis, the skyline

points with high dominance probability cannot be

preferentially used. Therefore, cases exist in which data

points that could be dominated earlier are dominated later.

Secondly, to solve such a problem, when using a skyline

window composed of a single list as in conventional methods,

it is necessary to perform Incmp for all skyline points until

the input data point is dominated, which causes unnecessary

computation even in incomparable cases. This subsequently

reduces query performance.

To solve these two contradictory problems in the DC, the

dominance test is conducted in a divide-and-conquer manner

based on the concept of population, which is the number of

skyline points belonging to a leaf node. Fig. 4 demonstrates

the dominance test procedure when it is performed using the

proposed divide-and-conquer manner.

Let us assume that skyline points belonging to each leaf

node are divided into 10 groups according to dominance

probability, which can be determined using the entropy score.

Afterwards, the input data point is first compared with the

top 10% skyline points of all comparable leaf nodes in

sequential order. Here, if the input data point is dominated by

one of the top 10% skyline points in the leaf nodes, then it is

immediately discarded. If the input data point is not

dominated by any of the top 10% skyline points in any of the

comparable leaf nodes, then it is compared with the skyline

points corresponding to the next top 10% skyline points (i.e.,

10%-20% of the skyline points) in all comparable leaf nodes.

If the input data point is not dominated by any of the skyline

point in the leaf nodes through this divide-and-conquer

strategy, then it becomes a skyline point and is stored in the

corresponding leaf node. When the skyline query is

processed in this manner, those skyline points with a high

dominance probability can be used preferentially in each

comparable leaf node. This enables us to increase the

probability of the input data points being dominated early.

The proposed divide-and-conquer strategy can minimize

the required dominance tests in DC. However, note that when

a fixed division value (Div) is used, regardless of the

population, an unnecessary overhead may occur for the

following reasons. First, as the skyline points increase, the

number of skyline points that must be compared by

dominance testing before moving to the next comparable leaf

node may also increase. Conversely, if there are too few

skyline points stored in each leaf node, the overhead caused

by traversing through leaf nodes may increase too. Therefore,

to avoid unnecessary overhead and keep the dominance test

running efficiently even as the skyline increases, Div is

dynamically increased according to the average number of

skyline points belonging to leaf nodes.

The DC algorithm and its optimization variants are

presented in Algorithms 3 to 5. The efficiency of these

algorithms is demonstrated in Section 5.

Algorithm 3 presents DC_Init, which is a leaf node

initialization function that is required for the DC. In this

Algorithm 2 Incmp

Input:
CUR_IDX: Order index of current leaf node
TGT_IDX: Order index of target leaf node

Output: INCOM: Incomparability verification result
Begin

1:
2:
3:
4:
5:

//Bitwise OR between inputs
if (CUR_IDX | TGT_IDX) > CUR_IDX then

INCOM = True
else

INCOM = False
return INCOM

End

FIGURE 4. Example of the DC's dominance test using a divide-and-
conquer manner.

2 VOLUME XX, 2017

function, Incmp is used to identify comparable leaf nodes and

to store this information. The essential parts of DC_Init are

lines 1 and 2. The zeroth leaf node can only store the top-1

skyline point, and a comparison with the top-1 skyline point

is initially conducted through the D-Classifier. For this

reason, when searching for a comparable leaf node, it begins

from the first, and not the zeroth, leaf node. Moreover, as the

skyline points corresponding to the same leaf node are also

comparable, the process is repeated until idx is equal to

CUR_IDX to add itself as a comparable leaf node.

Algorithm 4 presents the actual DC algorithm. The DC

behaves as an extension of the dominance test for easy

application to other skyline query algorithms. The p-ratio in

line 2 represents the ratio required to preferentially use the

skyline points with a high dominance probability from each

leaf node in the dominance test. Lines 3 to 4 are used to

verify that CUR is dominated by the top-1 skyline point

using the leaf node order obtained from the D-Classifier. If

this is not the case, the comparison is repeated with the

skyline points of the comparable leaf nodes in lines 6 to 17.

In line 8, the order of leaf nodes is returned so that the

comparable leaf nodes previously searched with DC_Init can

be accessed sequentially. Lines 9 to 10 define the start and

end locations of the skyline points to be compared in each

comparable leaf node through p_ratio and p_cur. Thereafter,

the actual dominance test is performed, as per line 12. If

CUR is dominated by a specific skyline point, the value is

returned as immediately dominated, according to lines 13 and

14. At line 15, since all the comparable leaf nodes have been

cycled, p_cur is increased to access the next sequence of

skyline points. Lines 16 to 17 check that all leaf node

populations to be compared have been identified, and if so,

the comparison ends. Subsequently, in line 18, the True or

False stored in Dominated is finally returned.

Algorithm 5 presents the basic structure of the overall

skyline query that is required to search the skyline with

DC_Init and DC, which we call DC-basic. Line 3 determines

the order of the final leaf node. At this time, the actual final

leaf node is the (2d - 1) leaf node, but since this leaf node is

dominated by the zeroth to which the top-1 skyline point

belongs, the leaf node before the actual final leaf node is our

final leaf node. Therefore, -2 is used here and not -1. The

skyline is then searched in lines 5 to 19 using the data points

that have been presorted with the monotonic function. Lines

7 to 12 use the first input data point to create skyline

windows known as SKYLF, corresponding to the leaf nodes

of the DC, and set the variables to store the data point as a

top-1 skyline point. From the second data point, as per lines

14 to 15, the D-Classifier determines which leaf node CUR

belongs to, and verifies whether it is dominant using the DC.

At line 17, if CUR has not been dominated, CUR is stored as

a skyline point on the corresponding leaf node via the L_IDX

obtained in line 14. After that, the necessity of updating Div

is checked, as in line 18, and Div is increased when the

average number of skyline points in SKYLF exceeds a certain

standard. Once the search for all data points has been

completed, all of the skyline points stored in the leaf node

SKYLF are confirmed as the skyline, and these are merged

and returned, as indicated in lines 20 to 22.

Algorithm 3 DC_Init

Input:
d: Number of dimensions
LAST: Maximum order of leaf nodes

Output: SKYLF: Skyline windows conducted for leaf nodes
Begin

1:

2:
3:
4:
5:

//Leaf nodes and incomparability initialization
for CUR_IDX = 1 to LAST do

//Until idx is the same as CUR_IDX
for idx = 1 to CUR_IDX do

if not Incmp(CUR_IDX, IDX) then
SKYLF[CUR_IDX].comparable(IDX)

return SKYLF
End

Algorithm 4 DC

Input:

CUR: Current input data point
L_IDX: Leaf node order of input data point
LAST: Maximum order of leaf nodes
Div: Total number of divisions in population
SKYLF: Skyline windows conducted for leaf nodes

Output: Dominated: Dominance result of input data point
Begin

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

Dominated = False
p_ratio = 1 / Div //Population traversal ratio
if L_IDX > LAST then

Dominated = True //CUR dominated by TOP
else

p_cur = 0
while not Dominated do

foreach IDX ∈ SKYLF[L_IDX].comparable do
start = SKYLF[IDX].size * p_ratio * p_cur
end = SKYLF[IDX].size * p_ratio * (p_cur + 1)
for ptr = start to end do

if SKYLF[IDX][ptr] dominate CUR then
Dominated = True
return Dominated

p_cur = p_cur + 1
if p_ratio * p_cur ≻ 1 then

break
return Dominated

End

2 VOLUME XX, 2017

IV. APPLICATIONS OF THE DECISION TREE-BASED
COMPARATOR

In this section, we discuss how the proposed DC-related

algorithms can be applied to the existing state-of-the-art

skyline query methods, which do not use the incomparability

concept. To this end, we demonstrate an application of the

DC algorithms to the sort-based SFS [11], [12], SaLSa [14],

and index-based BBS [15], which are representative skyline

query methods that do not use the incomparability concept

and their own skyline windows.

A. SFS-DC

The SFS [11], [12] uses monotonic functions and sorting to

ensure that the skyline points are not dominated by the

following sequence of input data points.

The SFS includes a procedure that stores skyline

candidates in a separate file when the skyline window is full.

However, in addition to this feature, the dataset can be

processed in a manner very similar to that of DC-basic, and

SFS-DC is achieved by applying DC to the existing SFS, as

demonstrated in Algorithm 6. This algorithm shows that the

incomparability concept can be easily applied because there

is no structural change, other than changing the existing

dominance test to be performed through the D-Classifier and

DC.

B. SaLSa-DC

The SaLSa is a method that uses the concepts of a monotonic

function and stop point together, thereby eliminating the need

to access all data points by terminating the query early if a

skyline point can no longer occur through the stop point. To

achieve this, SaLSa performs checks relating to the stop point,

but the skyline is determined by a dominance test between

the skyline points and the current input data point. Therefore,

in SaLSa, by replacing the logic related to dominance tests

with DC-related algorithms, it is possible to use

incomparability and easily improve query performance.

The specific SaLSa algorithm with DC is presented as

Algorithm 7. In this algorithm, a processing procedure is

required, corresponding to lines 8 to 10, which sets the first

input data point as TOP, such as SFS-DC. But in the

subsequent logic, most of the processing proceeds in the

same manner as the existing SaLSa algorithm.

Algorithm 5 DC-basic

Input:
DATA: Ordered dataset by monotonic function
d: Number of dimensions
N: Number of data points

Output: SKYLINE: Set of skyline points by DC
Begin

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

SKYLINE = {}
SKYLF = NULL
LAST = 2d – 2 //Order of last possible leaf node
ptr = 0
while ptr < N do

CUR = DATA[ptr]
if SKYLF equal to NULL then

SKYLF = DC_Init(d, LAST)
Dominated = False
TOP = CUR
L_IDX = 0
Div = 1

else
L_IDX = D-Classifier(TOP, CUR, d)
Dominated = DC(CUR, L_IDX, LAST, Div, SKYLF)

if not Dominated do
SKYLF[L_IDX].add(CUR)
Div = DivUpdateCheck(SKYLF)

ptr = ptr + 1
for IDX = 0 to LAST do

SKYLINE = SKYLINE ∪ SKYLF[IDX]
return SKYLINE

End

Algorithm 6 SFS-DC

Input:
DATA: Sorted dataset by entropy score at Heap
d: Number of dimensions

Output: S: Set of skyline points of DATA
Begin

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

S = {}, SKYLF = NULL, LAST = 2d – 2
unfinished = True
while (unfinished) do

T = open_cursor(DATA)
unfinished = False
while next_data(T, t) do

if SKYLF equal to NULL then
SKYLF = DC_Init(d, LAST)
Dominated = False
TOP = t, L_IDX = 0, Div = 1

else
L_IDX = D-Classifier(TOP, t, d)
Dominated = DC(t, L_IDX, LAST, Div, SKYLF)

if not Dominated then
if “SKYLF is full” then

unfinished = True
break

else
SKYLF[L_IDX].add(t)
Div = DivUpdateCheck(SKYLF)

if (unfinished) then
S = open_new_file(SecondPass)
write(S, t)
while next_data(T, t) do

L_IDX = D-Classifier(TOP, t, d)
Dominated = DC(t, L_IDX, LAST, Div, SKYLF)
if not Dominated then

write(S, t)
free(DATA)
close(S)
Heap = SecondPass
for IDX = 0 to LAST do

S = S ∪SKYLF[IDX]
free(SKYLF)
return S

End

2 VOLUME XX, 2017

C. BBS-DC

BBS is representative of index-based skyline queries, and

performs point-to-group comparisons using the MBR of the

R-tree to remove multiple data points with a single

dominance test. To accomplish this, the BBS performs a

comparison by assuming the lower-left corner as the point for

performing the dominance test with the data point and the

MBR, which is a group of data points. Therefore, even with

an MBR (i.e., an intermediate entry), a comparison with a

data point is made possible in the dominance test by

assuming the value of the lower-left corner to be a point. This

concept has been used in many index-based methods, such as

Z-Sky [16]. In particular, in line 9 of Algorithm 8,

comparisons occur frequently between the skyline point and

MBR, and if the lower-left corner of the MBR is dominated

by a specific skyline point, all of the data in the

corresponding MBR are dominated by the corresponding

skyline point. Therefore, in this case, as indicated in line 10,

the corresponding MBR and its children are removed from

the query. Therefore, even in the case of the MBR, the use of

incomparability makes it possible to reduce unnecessary

dominance tests, where dominance cannot occur.

The BBS algorithm with the DC applied is presented in

Algorithm 8. Although the DC_Init call is different from the

previous case, there was no change in utilizing the

incomparability when the dominance test was changed to the

D-Classifier and DC.

V. PERFORMANCE EVALUATION

In this section, we perform a performance evaluation of the

proposed DC. First, we describe the experimental

environment used to perform the evaluations. Then, we

present the experimental results, where the superiority of the

proposed method is confirmed by comparing the

performance when DC was applied to existing algorithms

and when it was not. We also provide an in-depth analysis of

the experiment results, presenting what led to the

performance improvements.

A. EXPERIMENTAL ENVIRONMENT

In skyline queries performance highly depends on the

characteristics of the dataset, such as the number of

dimensions and the distribution of data points. Therefore, to

experimentally evaluate the skyline queries on various

scenarios, we generated and used synthetic datasets with

various distributions and various dimensions, using the

generator proposed by Borzsony et al. [1]. The generated

datasets had anti-correlated (correlation: −0.5), independent,

and correlated (correlation: 0.5) distributions, and were

organized into 4, 8, 12, and 16 dimensions for each

distribution. Also, the data points belonging to each dataset

consisted of real numbers with ten decimal places in the

range [0, 1] for each dimension. In these synthetic datasets,

the number of skyline points increases as the dimension or

cardinality increases, and the number of skyline points

increases in the order of correlated, independent, and anti-

correlated, even when they have the same dimensions and

cardinality.

Furthermore, to evaluate scalability in relation to dataset

cardinality, the datasets were generated with 10K (ten

thousand), 100K (one hundred thousand), 1M (one million),

and 10M (ten million) data points, respectively. Also, to

evaluate DC using real-world datasets, we evaluated three

types of real-world datasets called Household [20], Gas [33],

Weather [34]. The Household dataset consists of 128K data

Algorithm 7 SaLSa-DC

Input:
DATA: Sorted dataset by minC
d: Number of dimensions

Output: S: Set of skyline points of DATA
Begin

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

S = {}, stop = False, p_stop = undefined, u = DATA
SKYLINE = {}, SKYLF = NULL, LAST = 2d – 2
while not stop and u ≠ {} do

p = u.next_data, u = u.remove(p)
if p_stop_plus ≤ minC(p) and p_stop ≠ p then

stop = True
else

if SKYLF equal to NULL then
SKYLF = DC_Init(d, LAST)
TOP = t, L_IDX = 0, Div = 1

else
L_IDX = D-Classifier(TOP, t, d)

if not DC(p, L_IDX, LAST, Div, SKYLF) then
SKYLF[L_IDX].add(p)
Div = DivUpdateCheck(SKYLF)
if p_plus < p_stop_plus then

p_stop = p
for IDX = 0 to LAST do

S = S ∪ SKYLF[IDX]
return S

End

Algorithm 8 BBS-DC

Input:
R: R-tree of dataset
d: Number of dimensions

Output: S: Set of skyline points
Begin

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

S = {}, SKYLF = NULL, LAST = 2d – 2
insert all entries of root R into heap H
while not H.empty

e = H.pop() //read and remove top entry of H
if SKYLF equal to NULL then

L_IDX = 0, Div = 1
else

L_IDX = D-Classifier(TOP, e, d)
if DC(e, L_IDX, LAST, Div, SKYLF) then

discard e
else //e is not dominated

if e is an intermediate entry then
foreach child i of e do

L_IDX = D-Classifier(TOP, i, d)
if not DC(i, L_IDX, LAST, Div, SKYLF) then

H.push(i)
else //e is a data point

if SKYLF equal to NULL then
SKYLF = DC_Init(d, LAST)
TOP = e

SKYLF[L_IDX].add(e)
Div = DivUpdateCheck(SKYLF)

for IDX = 0 to LAST do
S = S ∪SKYLF[IDX]

return S
End

2 VOLUME XX, 2017

points in 6 dimensions and consists of US census data on

expenses such as electricity and mortgage. The Gas dataset

consists of 929K data points in 10 dimensions and contains a

record of a gas sensor array composed of eight metal oxide

gas sensors, and temperature and humidity sensors for

monitoring home activity. Lastly, the Weather dataset had

566K data points in 15 dimensions and consisted of average

monthly precipitation totals and elevation at over half a

million sensor locations obtained from the University of East

Anglia climatic research unit. In Table III, the previously

mentioned datasets are summarized once again.

To evaluate the DC, the first experiment shows the

difference in the performance of the DC-basic skyline query

when Div was used and when it was not. The second

experiment shows the results of the comparison experiments

with and without DC applied to existing skyline queries. For

this comparison, we conducted experiments using the DC

algorithm applications for SFS, SaLSa, and BBS proposed in

Section 4. And in the last experiment, a comparative

experiment was conducted using three real-world datasets.

 Lastly, all the skyline query methods were implemented

using C++ 14, and the experiments were carried out on an

Intel Core i7-6700 3.4 GHz processor with 64-bit Windows

10 Pro and 16 GB of main memory.

B. EXPERIMENTAL RESULTS

In this subsection, we present the results of experiments,

using Div, skyline computation time, and dominance test

calls to evaluate DC from various aspects.

The first experiment shows the skyline query performance

improvement based on Div usage. To do this, we

experimentally show the difference in the performance of the

DC-basic skyline query when Div was fixed to 1, to check all

of the skyline points in the leaf node without division, and

when Div for division was increased based on the number of

skyline points. In this experiment, the Div was increased by

one whenever the average number of skyline points in the

leaf nodes increased by 64. In addition, to evaluate the

difference in performance due to Div from various aspects,

the experiment was configured to vary the dimensions for the

1M dataset, using various distributions, or to vary the number

of data in 8-dimensions with the various distributions.

Fig. 5 shows the query time and dominance test reduction

rates according to dimensions in various data distributions

when Div was used. In this experiment, since the number of

average skyline points per leaf node did not satisfy the Div

increase criterion in 16-dimensions, there was no difference

with the use of Div. However, in the other dimensions, the

query time decreased from 1.2% to 37.3%, and the

dominance test call decreased from 1.2% to 50.6%. The

largest difference was shown in the 8-dimensions, where the

average number of skyline points was the largest. This shows

that even when the number of unnecessary dominance tests is

minimized through incomparability, it is important to first

use the skyline points with the high dominance probability

for dominance tests, to eliminate data that are not selected as

skylines early.

In addition, in this experiment, there was greater

performance improvement with the independent dataset than

with the correlated or anti-correlated datasets. This is because

in the correlated dataset, the number of skyline points is

small, so the value of Div is not frequently used. And, in the

anti-correlated dataset, the probability of dominance between

the data is very low, so that new data must be compared with

most of the skyline points selected early. Accordingly, there

was no significant difference in performance according to

Div. However, a larger Div was used for the dataset with

independent distribution, because the number of skylines was

greater than that of the correlated dataset, and data could be

removed early because the dominance probability between

the data was higher than that of the anti-correlated dataset.

Therefore, the performance improvement when using Div

was most noticeable in the dataset with independent

distribution.

Fig. 6 shows the query time and dominance test reduction

rates according to cardinality when using Div. The

experimental results show that as the cardinality of the

dataset increased, the reduction in query time and dominant

test calls with Div also increased. This occurs because an

increase in cardinality leads to an increase in skyline points,

and an increase in skyline points leads to an increase in Div.

TABLE III

SPECIFICATIONS OF DATASETS

Category Dataset Dimensionality Cardinality

Synthetic Correlated {4, 8, 12, 16} {10K, 100K, 1M, 10M}

Synthetic Independent {4, 8, 12, 16} {10K, 100K, 1M, 10M}

Synthetic Anti-correlated {4, 8, 12, 16} {10K, 100K, 1M, 10M}

Real Household 6 127,931

Real Gas 10 928,991

Real Weather 15 566,268

FIGURE 5. The reduction rates in various dimensions when using Div.

2 VOLUME XX, 2017

This increased Div makes it possible to quickly eliminate

data that cannot be skylines by allowing the skyline points

with high dominance probability to be more preferentially

used for dominance tests. Therefore, as the cardinality

increases, the performance improvement due to Div also

increases.

In the second experiment, to evaluate performance

improvements when DC was applied to existing skyline

query methods, the difference in the performances of the

existing methods without the DC algorithm, and when DC

was applied to them, was compared using various aspects.

Fig. 7 shows the skyline query time results for each

dimension for SFS, SaLSa, and BBS, which are current

skyline query methods, and SFS-DC, SaLSa-DC, and BBS-

DC, when DC was applied to them, using a log scale. This

experiment showed that the skyline query time was reduced

in most cases for the methods that applied the DC algorithm.

Specifically, the DC-applied methods significantly reduced

the skyline query time from at least 50.5% to a maximum of

95.9% in 8-dimensions or more, compared with the existing

methods. Also, in most cases, there was a more prominent

reduction in the skyline query time of SaLSa and BBS than

that of SFS. This is because, in the case of SaLSa, the time

required to reach the stop point was significantly reduced

because the unnecessary dominance test between data sorted

through minC could be reduced through DC. And in the case

of BBS, using DC, the point-to-group comparison, which is

conducted at the beginning of the query, can be performed

with a smaller number of skyline points. As a result, the large

number of data belonging to the MBR can be eliminated

more quickly, so that the skyline query time is significantly

reduced.

Fig. 8 shows the number of dominant test calls that

occurred when the same experiment shown in Fig. 7 was

conducted. In this experiment, the number of dominant test

calls decreased in all cases, and the reduction rate ranged

from a minimum of 11.8% to a maximum of 95.5%. Notably,

the correlated and independent datasets showed at least a

73.6% reduction in dominant test calls over 8-dimensions.

However, in the anti-correlated dataset, only 24.5% to 83%

reduction in dominant test calls occurred, because even with

DC, as the number of skylines increased, the dominance tests

needed to confirm skyline points also accumulated.

FIGURE 6. The reduction rate in various cardinalities when using Div.

(a) Correlated

(b) Independent

(c) Anti-correlated

FIGURE 7. Skyline query time according to dimensionality.

2 VOLUME XX, 2017

Fig. 9 shows the difference in skyline query time for the

existing methods and DC applied methods according to

cardinality. In this experiment, except for the anti-correlated

datasets, as the cardinality increased, the degree of decrease

in skyline query time declined due to DC. In addition, in the

anti-correlated dataset, there were cases where the degree of

decrease in query time declined compared to previous

performance, for certain cardinalities depending on the

method, but most of them increased. And, for advanced

cardinality of 100K or more with increased Div, the skyline

query time decreased from a minimum of 55.2% to a

maximum of 94.9%.

Fig. 10 shows the number of dominant test calls obtained

with the same experiment as the one in Fig. 9. The rate of

reduction in dominance test calls seen in this experiment was

generally similar to the reduction rate for skyline query time.

This is because most of the time consumed in the skyline

query occurs in the dominance test. This confirms that the

(a) Correlated

(b) Independent

(c) Anti-correlated

FIGURE 8. Number of dominance test calls according to
dimensionality.

(a) Correlated

(b) Independent

(c) Anti-correlated

FIGURE 9. Skyline query time according to cardinality.

2 VOLUME XX, 2017

reduction in skyline query time with DC can be largely

attributed to the reduction in dominance test calls.

In the final experiment, a comparative experiment was

conducted using three real-world datasets called Household,

Gas, and Weather.

Fig. 11 shows the skyline query time results using the

three types of real-world datasets. In this experiment, all the

DC-applied methods showed a reduction in skyline query

time compared with the existing methods, and the skyline

search was accomplished with a maximum of 94.4% less

time. Fig. 12 shows the number of dominant test calls

obtained in the same experiment using real-world datasets, as

shown in Fig. 11. This experiment showed that when DC was

applied, it was possible to search the skyline with fewer than

16.5% to 81.8% of the dominance test calls compared with

the existing method. The results of these experiments show

that by using DC it is possible to reduce the skyline query

time and dominance test calls that occur in the existing

skyline query methods. These results are consistent with the

experimental results using the synthetic datasets.

The various experimental results indicate that when DC is

used, the number of unnecessary dominance tests performed

in existing methods can be effectively reduced, using

incomparability obtained from the decision tree. As a result,

(a) Correlated

(b) Independent

(c) Anti-correlated

FIGURE 10. Number of dominance test calls according to cardinality.

(a) Household

(b) Gas

(c) Weather

FIGURE 11. Skyline query time according to real-world datasets.

2 VOLUME XX, 2017

with the proposed method, we can minimize dominance tests,

leading to a reduction in skyline query time. This result can

be particularly helpful to solve the known problems with

skyline queries, which have limitations at high dimensions

and with high cardinality data.

VI. CONCLUSION

In this paper, we have proposed a decision tree-based

comparator (DC) to optimize dominance tests for skyline

queries. There were three key findings. First, the proposed

DC allowed us to eliminate leaf nodes and their data points

when they exhibited incomparability with the current data

point, thereby avoiding unnecessary dominance tests. Second,

the proposed DC method was easily applied to improve the

performance of various existing skyline query methods

because of its unique tree structure. Third, using various

experiments, we demonstrated that DC can reduce skyline

query time and dominance test calls in existing methods by

up to 95.9% and 95.5%, respectively.

It is important to note that further considerations are

required when applying the proposed DC to distributed and

parallel processing environments, or incomplete data as

mentioned in Section 2. Thus, in future work, we plan to

conduct research to demonstrate the effectiveness of the

proposed DC for reducing dominance testing that occurs

while searching for local and global skylines in a distributed

and parallel processing environment. We are also planning to

conduct a study that utilizes the concept of incomparability

with the proposed DC method, even with incomplete data.

REFERENCES
[1] S. Borzsony, D. Kossmann, and K. Stocker, “The Skyline

operator,“ in Proc. 17th ICDE, Heidelberg, Germany, 2001, pp.
421–430, DOI: https://doi.org/10.1109/ICDE.2001.914855.

[2] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou, “Parallel

distributed processing of constrained skyline queries by
filtering,“ in Proc. 24th ICDE, Cancun, Mexico, 2008, pp.

546–555, DOI: https://doi.org/10.1109/ICDE.2008.4497463.

[3] Y. Chen and C. Lee, “Skyline Path Queries With Aggregate
Attributes,“ IEEE Access, vol. 4, pp. 4690–4706, Aug. 2016,

DOI: https://doi.org/10.1109/ACCESS.2016.2602702.

[4] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi, “Skyline queries
against mobile lightweight devices in MANETs,“ in Proc. 2nd

ICDE, Atlanta, GA, USA, 2006, p. 66, DOI:
https://doi.org/10.1109/ICDE.2006.142.

[5] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu, “Efficient

skyline query processing on peer-to-peer networks.“ in Proc.
23rd ICDE, Istanbul, Turkey, 2007, pp. 1126–1135, DOI:

https://doi.org/10.1109/ICDE.2007.368971.

[6] A. Nasridinov, S.-Y. Ihm, Y.-H. Park, “Skyline-based
aggregator node selection in wireless sensor networks,” Int. J.

Distrib. Sens. Netw., vol. 9, Sept. 2013, Art no. 356194, DOI:

https://doi.org/10.1155/2013/356194.
[7] W. T. Balke, U. Güntzer, and J. X. Zheng, “Efficient

distributed skylining for web information systems,” in

Advances in Database Technology – EDBT 2004, E. Bernito et
al., Eds. Springer, Berlin, Heidelberg, 2004, pp. 256–273, DOI:

https://doi.org/10.1007/978-3-540-24741-8_16.

[8] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking
and clustering web services using multicriteria dominance

relations,” IEEE Trans. Serv. Comput., vol. 3, no. 3, pp. 163–

177, July-Sept. 2010, DOI:
https://doi.org/10.1109/TSC.2010.14.

[9] Y. Zhang, J. Li, Z. Zhou, and X. Liu, “Efficient dynamic

service maintenance for edge services,” IEEE Access, vol. 6, pp.
8829–8840, Feb. 2018, DOI:

https://doi.org/10.1109/ACCESS.2018.2806391.

[10] C. Yu, X. He, H. Ma, X. Qi, J. Lu, and Y. Zhao, “S-DenseNet:
A DenseNet compression model based on convolution grouping

strategy using skyline method,” IEEE Access, vol. 7, pp.

183604–183613, Dec. 2019, DOI:
https://doi.org/10.1109/ACCESS.2019.2960315.

[11] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with

presorting,” in Proc. 19th ICDE, Bangalore, India, 2003, pp.
717–719, DOI: https://doi.org/10.1109/ICDE.2003.1260846.

[12] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with

presorting: Theory and optimizations,” in Intelligent
Information Processing and Web Mining, M. A. Kłopotek, S. T.

Wierzchoń, and K. Trojanowski, Eds. Springer, Berlin,

(a) Household

(b) Gas

(c) Weather

FIGURE 12. Number of dominance test calls according to real-world
datasets.

2 VOLUME XX, 2017

Heidelberg, 2005, pp. 595–604, DOI: https://doi.org/10.1007/3-

540-32392-9_72.

[13] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector

computation in large data sets,” in Proc. 31st VLDB,
Trondheim, Norway, 2005, pp. 229–240.

[14] I. Bartolini, P. Ciaccia, M. Patella, SaLSa: computing the

skyline without scanning the whole sky, in Proc. 15th CIKM,
New Yor, NY, USA, 2006, pp. 405–414, DOI:

https://doi.org/10.1145/1183614.1183674.

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and
progressive algorithm for skyline queries,” in Proc.

SIGMOD/PODS03, San Diego, CA, USA, 2003, pp. 467–478,

DOI: https://doi.org/10.1145/872757.872814.
[16] K. C. K. Lee, W.-C Lee, B. Zheng, H. Li, and Y. Tian, “Z-SKY:

an efficient skyline query processing framework based on Z-

order,” VLDB J., vol. 19, no. 3, pp. 333–362, Jun. 2010, DOI:
https://doi.org/10.1007/s00778-009-0166-x.

[17] J.-H. Choi, F. Hao, and A. Nasridinov, “HI-Sky: Hash index-

based skyline query processing,” Appl. Sci., vol. 10, no. 5, Mar.
2020, Art no. 1708, DOI: https://doi.org/10.3390/app10051708.

[18] M. Morse, J. M. Patel, H. V. Jagadish, “Efficient skyline

computation over low-cardinality domains,” in Proc. 33rd
VLDB, Vienna, Austria, 2007, pp. 267–278.

[19] S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable skyline

computation using object-based space partitioning,” in Proc.
SIGMOD, Providence, RI, USA, 2009, pp. 483–494, DOI:

https://doi.org/10.1145/1559845.1559897.
[20] J. Lee and S. Hwang, “Scalable skyline computation using a

balanced pivot selection technique,” Inf. Syst., vol. 39, pp. 1–

21, Jan. 2014, DOI: https://doi.org/10.1016/j.is.2013.05.005.
[21] K. Koizumi, P. Eades, K. Hiraki, and M. Inaba, “BJR-tree: fast

skyline computation algorithm using dominance relation-based

tree structure,” Int. J. Data Sci. Anal., vol. 7, pp. 17–34, Feb.
2019, DOI: https://doi.org/10.1007/s41060-018-0098-x.

[22] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E.

Abbadi, “Parallelizing skyline queries for scalable
distribution,” in Advances in Database Technology – EDBT

2006, Y. Ionnidis et al., Eds. Springer, Berlin, Heidelberg,

2006, pp. 112–130, DOI: https://doi.org/10.1007/11687238_10.
[23] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based

space partitioning for efficient parallel skyline computation,”

in Proc. SIGMOD, Vancouver, Canada, 2008, pp. 227–238,
DOI: https://doi.org/10.1145/1376616.1376642.

[24] G. Valkanas and A. N. Papadopoulos, “Efficient and adaptive

distributed skyline computation,” in SSDBM 2010, M. Gertz
and B. Ludächer, Eds. Springer, Berlin, Heidelberg, 2010, pp.

24–41, DOI: https://doi.org/10.1007/978-3-642-13818-8_4.

[25] A. Nasridinov, J.-H. Choi, and Y.-H. Park, “A two-phase data
space partitioning for efficient skyline computation,” Cluster

Comput., vol. 20, no. 4, pp. 3617–3628, Dec. 2017, DOI:

https://doi.org/10.1007/s10586-017-1070-6.
[26] C. Kalyvas and M. Maragoudakis, “Skyline and reverse skyline

query processing in SpatialHadoop,” Data Knowl. Eng., vol.

122, pp. 55–80, Jul. 2019, DOI:
https://doi.org/10.1016/j.datak.2019.04.004.

[27] W. Wang, “A scalable spatial skyline evaluation system

utilizing parallel independent region groups,” VLDB J., vol. 28,

no. 1, pp. 73–98, Feb. 2019, DOI:

https://doi.org/10.1007/s00778-018-0519-4.

[28] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi and M. Ouzzani,
“Efficient Parallel Skyline Query Processing for High-

Dimensional Data,” IEEE Trans. Knowl. Data Eng., vol. 30, no.

10, pp. 1838-1851, Feb. 2018, DOI:
https://doi.org/10.1109/TKDE.2018.2809598.

[29] K. Zhang, H. Gao, X. Han, Z. Cai and J. Li, “Modeling and

Computing Probabilistic Skyline on Incomplete Data,” IEEE
Trans. Knowl. Data Eng., vol. 32, no. 07, pp. 1405-1418, Mar.

2020, DOI: https://doi.org/10.1109/TKDE.2019.2904967.

[30] Y. Gulzar, A. A. Alwan and S. Turaev, “Optimizing Skyline
Query Processing in Incomplete Data,” IEEE Access, vol. 7, pp.

178121-178138, Dec. 2019, DOI:

https://doi.org/10.1109/ACCESS.2019.2958202.

[31] Y. Gulzar, A. A. Alwan, S. Turaev, S. Wani, A. B. Soomo and

Y. Hamid, “IDSA: An Efficient Algorithm for Skyline Queries

Computation on Dynamic and Incomplete Data With Changing

States,” IEEE Access, vol. 9, pp. 57291-57310, Apr. 2021, DOI:
https://doi.org/10.1109/ACCESS.2021.3072775.

[32] L. Ding, X. Zhang, H. Zhang, L. Liu and B. Song, “CrowdSJ:

Skyline-Join Query Processing of Incomplete Datasets With
Crowdsourcing,” IEEE Access, vol. 9, pp. 73216-73229, May.

2021, DOI: https://doi.org/10.1109/ACCESS.2021.3079324.

[33] R. Huerta, T. Mosqueiro, J. Fonollosa, N.F. Rulkov, and I.
Rodriguez-Lujan, “Online decorrelation of humidity and

temperature in chemical sensors for continuous monitoring,”

Chemom. Intell. Lab. Syst., vol. 157, no. 15, pp. 169–176, Oct.
2016, DOI: https://doi.org/10.1016/j.chemolab.2016.07.004.

[34] S. Chester, D. Šidlauskas, I. Assent, and K. S. Bøgh, “Scalable

parallelization of skyline computation for multi -core
processors,” in Proc. 31st ICDE, Seoul, South Korea, 2015, pp.

1083-1094, DOI: https://doi.org/10.1109/ICDE.2015.7113358.

JONG-HYEOK CHOI received the B.Sc. degree

in computer education from Chungbuk National
University, South Korea, in 2015, and the M.Sc.

and Ph.D. degrees in computer science from

Chungbuk National University 2017 and 2021,
respectively. He is currently a member of the

Data Analysis Laboratory led by Professor Aziz

Nasridinov and a postdoctoral researcher at the
Bigdata Research Institute of Chungbuk National

University. His research interests include

traditional databases, big data analysis, artificial intelligence, computer
vision, and e-learning solution for K-12 students and teachers.

FEI HAO received the B.Sc. degree in

Information and Computing Science and the M.Sc.
degree in Computer Software and Theory from

Xihua University, China, in 2005 and 2008,
respectively, and the Ph.D. degree in Computer

Science and Engineering from Soonchunhyang

University, South Korea, in 2016. Since 2016, he
has been with Shaanxi Normal University, Xi’an,

China. He is currently taking a Marie

Sklodowska-Curie Individual Fellowship at the

2 VOLUME XX, 2017

University of Exeter, Exeter, United Kingdom. His research interests

include social computing, ubiquitous computing, big data analysis and

processing and mobile cloud computing.

YOO-SUNG KIM is a professor of Department

of Artificial Intelligence Engineering at Inha

University. He received BS in computer sciences

in 1986 from Inha University, MS in computer
sciences in 1988 and PhD in computer sciences in

1992 from KAIST (Korea Advanced Institute of

Science and Technology), respectively. He
worked at Samsung Electronic as a researcher

from 1990 to 1992 and at Purdue University in

1996 as a visiting scholar, and at Indiana
University in 2005 as a visiting research professor. His research areas are

multimedia database, data mining, and intelligent video surveillance

systems.

AZIZ NASRIDINOV received the B.Sc. degree

from the Tashkent University of Information
Technologies, Uzbekistan, in 2006, and the M.Sc.

and Ph.D. degrees in computer engineering from

Dongguk University in 2009 and 2012,
respectively. He is currently an Associate

Professor in Data Analytics Laboratory,

Department of Computer Science, Chungbuk
National University. He has also served as a

program committee member and co-organizer for

numerous top-tier conferences, including ACM SAC, IEEE Big Data,
IEEE Globecom, AAAI and CHI, and also served on the editorial board of

several international journals. His research interests include traditional

databases, big data analytics with machine learning, and computer vision.

