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ABSTRACT Skyline queries identify skyline points, the minimal set of data points that dominate all other 

data points in a large dataset. The main challenge with skyline queries is executing the skyline query in the 

shortest possible time. To address and solve skyline query performance issues, we propose a decision tree-

based method known as the decision tree-based comparator (DC). This method minimizes unnecessary 

dominance tests (i.e., pairwise comparisons) by constructing a decision tree based on the dominance testing. 

DC uses dominance relations that can be obtained from the decision rules of the decision tree to determine 

incomparability between data points. DC can also be easily applied to improve the performance of various 

existing skyline query methods. After describing the theoretical background of DC and applying it to 

existing skyline queries, we present the results of various experiments showing that DC can improve 

skyline query performance by up to 23.15 times. 

INDEX TERMS Database, decision tree, incomparability, query processing, skyline query. 

I. INTRODUCTION 

A skyline [1] refers to a minimal set of data points that 

dominate all other data points in a dataset. Dominance 

implies that the skyline points have the same values, or at 

least one better value, for all attributes than the remaining 

data points. Fig. 1 demonstrates an example of a skyline 

query in a database. Fig. 1 (a) lists a given dataset, and Fig. 

1 (b) illustrates the skylines of the dataset (i.e., A, G, H). 

There has been substantial research interest in developing 

efficient skyline query techniques to discover skylines, and 

various studies have been conducted to apply these methods 

in various fields, including retail [2], load networks [3], 

networks [4]–[6], web services [7], [8], and mobile edge 

computing [9]. In recent years, the skyline query technique 

has also been employed to compress a convolutional neural 

network (CNN) for deep learning [10]. 

The main challenge in such endeavors is to execute the 

skyline query in the shortest possible time. This is necessary 

to satisfy the time constraints imposed by the underlying user 

requests. Since a skyline query spends most of its time 

conducting dominance tests, performing pairwise data 
(a) example dataset (b) skyline query result 

FIGURE 1. An example of skyline query. 
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comparisons to determine dominance, and reducing the 

number of dominance tests, can result in a direct 

improvement in query performance [1]. Previous skyline 

query methods proposed for this purpose have ranged from 

sort-based methods [11]–[14] to those using indexing 

techniques [15]–[17], dominance relations [18]–[21], and 

parallel and distributed processing environments [22]–[28].  

In this paper, using a concept called incomparability, we 

focus on dominance relations methods to minimize 

unnecessary operations between data points, and reduce 

dominance tests. Generally, incomparability occurs when 

two data points cannot dominate each other [16], [20]. For 

example, in Fig. 1, data points A and G are incomparable, 

and thus, cannot dominate each other. Existing dominance 

relation-based skyline query methods manage the skyline 

points based on a tree structure. However, these methods 

perform dominance tests using a tree structure, and this 

makes it challenging to remove multiple data points from a 

skyline query using a single dominance test procedure, as is 

the case in point-to-group or group-to-group comparisons [17] 

used in index-based methods. In addition, it is difficult to 

apply the dominance relation concept to other methods 

because of the structural dependencies of existing dominance 

relation-based methods. 

In this study, we address the above issues by proposing a 

new decision tree-based method, known as the decision tree-

based comparator (DC). The proposed method minimizes 

the unnecessary dominance tests by using dominance 

relations obtained from the decision rules of the proposed 

tree structure, to determine incomparability. By reducing the 

number of dominance tests in which dominance does not 

occur, we can significantly reduce skyline query time. 

Furthermore, unlike existing approaches, the proposed 

method can be easily applied to improve the performance of 

various existing skyline query methods, because of its 

unique tree structure. These are the specific contributions of 

this study. 

 We propose a decision tree structure that can easily 

infer the dominance relation between data points. 

Specifically, the proposed decision tree structure 

contains decision rules that make it easy to classify the 

leaf nodes that have a dominance relation with the 

current data point by inferring the dominance relation 

between the leaf nodes. 

 We propose a method known as DC that minimizes the 

number of dominance tests in the skyline query. This 

method eliminates the leaf nodes that exhibit 

incomparability with the current data point, thereby 

avoiding unnecessary dominance tests. In addition, we 

describe a method to further reduce the dominance 

tests by iterating the comparable leaf nodes using a 

concept called population, which is the number of 

skyline points belonging to a leaf node. 

 We demonstrate how DC can be applied to existing 

skyline query methods. Applications of DC to Sort 

Filter Skyline (SFS) [11], [12], Sort and Limit Skyline 

Algorithm (SaLSa) [14], and Branch and Bound 

Skyline (BBS) [15], which are widely used skyline 

query methods, are explained at an algorithmic level. 

 We evaluated the DC method experimentally to 

investigate its performance. We first measured and 

compared the number of dominance tests required to 

complete a skyline search, without DC and when DC 

was applied to an existing skyline query. We also 

measured and compared the time required to complete 

a skyline search with an existing skyline query with 

and without DC. The results of these experiments 

showed that applying DC reduced the skyline query 

time and dominance test calls of existing methods by 

up to 95.9% and 95.5%, respectively. 

The remainder of this paper is organized as follows. 

Section 2 explains the problems of skyline queries and 

discusses state-of-the-art skyline query methods. Section 3 

presents the proposed method. Section 4 demonstrates the 

application of DC to existing skyline query methods. The 

experimental results are outlined in Section 5. Section 6 

summarizes the paper and highlights future work. 

II. RELATED WORK 

In this section, we describe related studies. Numerous 

methods have been proposed to process skyline queries 

efficiently. We classify these methods as sort-based, index-

based, and dominance relation-based skyline query methods. 

A. SORT-BASED SKYLINE QUERIES 

Early studies related to skyline queries focused on searching 

skyline points using naïve methods. For example, Borzsony 

et al. [1] proposed the Block-Nested Loop (BNL) and divide-

and-conquer methods to perform skyline queries. These are 

naïve methods that scan through a dataset and run a 

dominance test for each data point. However, they cannot 

search the skyline points monotonically, which results in 

many unnecessary dominance tests. Since then, several 

extension methods have been proposed that use sorting 

techniques to solve the BNL problem. Chomicki et al. [11], 

[12] introduced the SFS method. The SFS method first 

presorts the data points according to their entropy scores 

using a monotone scoring function, and then performs point-

to-point comparisons, similarly to BNL. As the data points 

with lower entropy scores are more likely to become skyline 

points, the SFS prunes a considerable amount of data points 

during the early stage of pairwise data comparisons. Similar 

methods that use presorting with early data pruning strategies 

have been proposed in [13] and [14]. Linear Elimination Sort 

for Skyline (LESS) [13] contains an elimination-filter 

window to determine the set of data points that are most 

likely to dominate other data points during the sorting 

process. Subsequently, a dominance test is conducted with 

those data first to identify the data points to be dominated 

with small comparisons using the skyline-filter window. 
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However, as SFS and LESS still have to utilize all the data 

for the dominance test, SaLSa [14] provides a means of 

terminating the skyline query without using all of the data 

points. To this end, a new monotone limiting function known 

as minC was proposed in [14]. Based on these functions, the 

concept of a stop point was proposed, which can confirm that 

all unread data points will be dominated. However, it has not 

been widely used because of a problem with the efficiency of 

the monotone limiting function, which decreases as the 

dimensions increase. Also, recently, a method for sorting the 

incomplete data was proposed in [29] and has been used in 

many skyline queries in index-based or distributed 

environments [30]. 

These sort-based skyline query methods can effectively 

reduce dominance testing by enabling the skyline to exhibit 

monotonic properties. However, the problem of high cost 

computations, such as presorting or point-to-point 

comparisons, remains to be solved.  

B. INDEX-BASED SKYLINE QUERIES 

Index-based skyline query methods can remove multiple data 

points with a single dominance test by using an index 

structure. Among the early index-based methods the most 

representative approach is the BBS [15]. The BBS uses an R-

tree-based indexing structure and performs point-to-group 

comparisons of the skyline points and a minimum bounding 

rectangle (MBR). This comparison uses the properties of the 

data space partitioning in the R-tree. If a specific skyline 

point dominates the lower-left corner point of a specific 

MBR, all of the data points belonging to the MBR are 

dominated by the same skyline point. Using these features, 

the BBS can reduce the number of dominant tests because 

multiple data points can be removed from the query process 

with a single comparison.  

To address the problem where the computation required to 

construct an R-tree increases significantly as the dataset 

dimensions increase, Z-SKY was proposed by Lee et al. [16]. 

Z-SKY searches the skyline through a ZBtree by combining 

a B+-tree and a Z-order curve. The ZBtree divides the Z-

order curve into segments known as RZ-regions which can 

be managed according to certain criteria. Z-SKY enables 

group-to-group comparisons using a dominance test between 

these RZ-regions. However, with the specialization of integer 

datasets, the high computational cost of the ZBtree offset the 

benefits gained by reducing the number of dominance tests.  

More recently, studies are being conducted to search the 

skyline by applying an index structure to incomplete data 

[30]-[32] or search the skyline in a Hadoop or GPU 

environment by applying an index [26]-[28]. 

The index-based skyline query methods are effective for 

skyline queries because they can remove multiple data points 

with a single dominance test. However, depending on the 

properties of the index technique used for the skyline query, 

it may be necessary to solve problems such as availability for 

only a specific data type, or the cost of the index structure 

will outweigh its advantages. 

C. DOMINANCE RELATION-BASED SKYLINE QUERIES 

Dominance relation-based skyline query methods reduce the 

number of dominance tests so that the skyline can be 

managed using lattice or tree structures, and avoid 

dominance tests, based on the expected incomparability 

through these structures. In the case of the Lattice Skyline 

[18], a lattice structure is created using low-cardinality 

attributes and the dominance relations between them, and this 

structure is used to identify the incomparability. However, a 

limitation exists, because the dominance relation can only be 

used when low-cardinality attributes exist.  

For Object-based Space Partitioning Skyline [19], 

BSkyTree [20], and BJR-tree [21], the data points are 

partitioned into regions of the multi-dimensional data space 

by using a dominance relation that can be identified through 

point-to-point comparisons. Thereafter, the dominance 

relation between partitioned regions is constructed into a tree 

structure to easily determine the incomparability. When a 

new data point is input, these trees minimize the dominance 

testing by determining the region to which the input data 

point belongs, and comparable regions through the tree. The 

main advantage of these methods is that they can process the 

dominance tests using only the data points belonging to those 

regions.  

These dominance relation-based skyline query methods 

succeed in reducing the number of dominance tests by 

effectively utilizing a dominance relation, which is obtained 

through the dominance test, and then avoiding dominance 

tests for incomparable cases. However, these skyline query 

methods can only be used for point-to-point comparisons. 

Moreover, it is difficult to apply the dominance relation 

concept to other methods, because of the structural 

dependencies of the existing dominance relation-based 

methods. 

III. DECISION TREE-BASED COMPARATOR FOR 
SKYLINE QUERIES 

The proposed DC is described in this section. The DC is a 

novel skyline query method that uses a decision tree structure 

to minimize the number of dominance tests. In addition, the 

DC can be easily applied to algorithms in conventional 

skyline query methods to improve their query performance. 

First in subsection A we describe the generation of the 

decision tree. We then outline the actual DC procedure in 

subsection B. The notations used in this paper are presented 

in Table I. 

A. DECISION TREE FOR SKYLINE QUERIES 

Recall from Section 1 that a data point that has a better value 

than the other data points in at least one dimension, while 

being equal to or better than the other data points in the 

remaining dimensions, is selected as a skyline point. The 
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majority of state-of-the-art skyline query methods use 

monotonic functions, such as the entropy score [11]–[13] or 

mindist [15], [20] for effective skyline query processing. This 

is because, if a data point with numerous better values than 

the other data points is preferentially used in a skyline query 

through a monotonic function, the skyline can be searched 

with fewer dominance tests. That is, a data point with the 

lowest score according to the monotonic function has the 

highest probability of dominating the other data points, and 

all input data points must perform a dominance test with this 

data point.  

Like the existing methods, we first sort the given data 

points according to a monotonic function. We then construct 

a decision tree for the sorted data points using a level-by-

level approach, where each level in the tree corresponds to a 

dimension of the dataset. When new d-dimensional data is 

input to the decision tree, each data point is compared with a 

data point that has the lowest score according to the 

monotonic function (referred as the top-1 skyline point) in 

matching the level of the decision tree. If the input data point 

has a smaller value than, or an equal value to, the top-1 

skyline point at the same level, it is classified as the left-side 

node; otherwise, it is classified as the right-side node.  

Example 1. Suppose that a three-dimensional dataset 

related to a hotel reservation is provided, as per Table II. We 

first normalize the dimensions (i.e., distance, accommodation 

cost, and star rating) of the given dataset, and then, sort it 

based on the entropy score [11], [12]. A decision tree 

constructed based on this dataset is presented in Fig. 2, where 

each level in the tree corresponds to the dimensions of the 

dataset. Here, hotel b (distance: 0.6, cost: 0.5, rating: 0.25), 

which has the lowest entropy score in the dataset, is selected 

as the top-1 skyline point and is used to build a decision tree. 

Thus, when the rest of the data points are input to the 

decision tree, each data point is compared with hotel b when 

matching the level of the decision tree, and classified into the 

corresponding leaf node. For example, data points having a 

distance value less than or equal to 0.6 are classified into leaf 

nodes 0 to 3, while the remaining data points are classified 

into leaf nodes 4 to 7. 

After classifying the input data points into leaf nodes, we 

need to identify skyline points using dominance tests. If a 

data point is not dominated by any other data point in the 

dataset, it is stored in the corresponding leaf node as a 

skyline point; otherwise, it is discarded. To minimize 

unnecessary dominance tests, we propose a set of 

classification rules, where the order of leaf nodes is 

expressed in bits. For example, if we express the order of leaf 

nodes in bits for the decision tree depicted in Figure 2, the 

front four nodes are represented by 000 (0), 001 (1), 010 (2), 

and 011 (3), while the following four nodes are represented 

by 100 (4), 101 (5), 110 (6), and 111 (7). At this point, 

regularity can be observed in the earliest bits: in the first 

dimension (marked in red), the data points classified to the 

left-side have bits starting with 0 (i.e., 000, 001, 010, and 

011), while the other data points have bits starting with 1 (i.e., 

100, 101, 110, and 111). This rule applies equally to the 

remaining dimensions. For example, in the second dimension 

(marked in green), the comparison is performed with 0.5, 

which is the second-dimension value of hotel b. The leaf 

nodes classified to the left-side have 0 as the second bit (i.e., 

000, 001, 100, and 101), while the leaf nodes classified to the 

right-side have 1 as the second bit (i.e., 010, 011, 110, and 

111). Similarly, in the third dimension (marked in blue), 

when the comparison is performed with 0.25, the leaf nodes 

classified to the left-side have 0 as the last bit (i.e., 000, 010, 

100, and 110), while the leaf nodes classified to the right-side 

have 1 as the last bit (i.e., 001, 011, 101, and 111). According 

to the definition of dominance [1], it can be inferred that only 

the data points belonging to the leaf nodes with bits equal to 

or smaller than the current leaf node in all dimensions can 

dominate the data points of the current leaf node. Thus, by 

using the order of the leaf nodes represented as bits, we can 

verify incomparability in advance. The procedure of the 

proposed decision tree, D-Classifier, is described in 

Algorithm 1. 

Example 2. Let us continue Example 1 and consider hotel 

g as an example. Hotel g is classified into leaf node 6 by 

TABLE I 

SYMBOLS AND DEFINITIONS 

Symbol Definitions 

N Number of data points 

d Number of dimensions 

TOP Top-1 skyline point 

TOP[i] i-th dimension value of top-1 skyline point 

CUR Current input data point 

CUR[i] i-th dimension value of current input data point 

NODE_IDX Order of classified leaf node 

BRANCH Branch of decision tree 

CUR_IDX Order index of current leaf node 

TGT_IDX Order index of target leaf node 

INCOM Incomparability verification result 

LAST Maximum order of leaf nodes 

SKYLF Skyline windows conducted on leaf nodes 

L_IDX Leaf node order of input data point 

population Number of skyline points belonging to leaf node 

Div Total number of divisions in population 

TABLE II 
HOTEL DATASET SORTED BY ENTROPY SCORE [11], [12] 

Hotel Distance Cost Rating Entropy Score 

b 0.6 0.5 0.25 1.0986 

e 0.45 0.6 0.4 1.1780 

a 0.9 0.45 0.2 1.1957 

i 0.55 0.9 0.15 1.2199 

f 0.4 0.95 0.25 1.2274 

k 0.7 0.7 0.2 1.2436 

c 0.5 0.4 0.8 1.3297 

g 0.95 0.95 0.05 1.3844 

d 0.75 0.65 0.4 1.3969 

h 0.95 0.45 0.85 1.6546 
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comparison with hotel b, which is the top-1 skyline point. 

Afterward, it is necessary to check whether it can become a 

skyline point through the dominance test. We can see from 

the bit value, 110, of leaf node 6 that the hotels of the 

corresponding leaf node always have a value less than or 

equal to 0.25 in the third dimension. With the bit value, it can 

be known in advance that hotels belonging to leaf nodes 1 

(001), 3 (011), and 5 (101) with values greater than 0.25 in 

the third dimension cannot dominate hotel g. Consequently, 

hotels c and e, which cannot dominate hotel g, can be 

excluded from the dominance test sooner.  

After the dominance test with data points selected as the 

skyline points in the previous step (i.e., hotels i, f, a, and k), 

we can see that hotel g is not dominated by these skyline 

points and thus, will be stored in leaf node 6 as a skyline 

point. On the other hand, hotel d, which is a subsequent input 

data point, is classified as leaf node 7. However, considering 

that hotel d has the worst values in all dimensions compared 

with the top-1 skyline point, it is discarded. Hotel h, which is 

the last input data point, is classified into leaf node 5. After a 

dominance test with the data points in comparable leaf nodes 

0, 1 and 4, we can see that hotel h is dominated by hotel c in 

leaf node 1, and thus, is discarded. 

Fig. 3 shows the leaf nodes that require dominance testing. 

Originally, all of the leaf nodes needed to be compared with 

leaf node 0. However, since the comparison was already 

completed by the classifying process with the decision tree, 

further comparison is not required. Similarly, the last leaf 

node 7 must be compared with all other leaf nodes. However, 

considering that leaf node 7 was already dominated by the 

top-1 skyline point belonging to leaf node 0, further 

comparison with the other leaf nodes is unnecessary. In 

addition, since it is possible to know by the bit value that all 

of the leaf nodes located behind the current leaf node have a 

larger value in at least one dimension, those unnecessary 

dominance tests can also be excluded. 

As we saw in Examples 1 and 2, the data points of a leaf 

node with 1 in the first bit and 0 in all remaining bits cannot 

dominate the data points of all leaf nodes with 0 in the first 

bit. This is because all of the data points in the corresponding 

leaf node have a larger value in the first dimension than the 

data points of all leaf nodes with bits starting with 0. In 

contrast, the corresponding leaf node has the potential to 

dominate the data of all leaf nodes with the first bit of 1 

because all the remaining bits are 0. For this reason, 

incomparability only occurs when a bit has a larger bit than 

the current leaf node in at least one dimension of the leaf 

nodes.  

This incomparability can be easily verified by the bitwise 

OR operation. To this end, we propose Incmp, an 

incomparability verification method, which is described in 

Algorithm 2. As shown in line 2, performing a bitwise OR 

operation with a leaf node that has a larger bit in one or more 

dimensions returns a result that is greater than the current leaf 

node order, which enables us easily verify the 

incomparability.  

From the D-Classifier and Incmp algorithms, we can 

observe that the bit value obtained from the order of the leaf 

nodes allows us to check incomparability in advance. Using 

the proposed algorithms, the total of the 22d dominance 

 

FIGURE 2. Classification of data points in Table II using a decision tree. 

 

FIGURE 3. List of comparable leaf nodes for each leaf node of Fig. 2. 

Algorithm 1 D-Classifier 

Input: 
TOP: Top-1 skyline point 
CUR: Current input data point 
d: Number of dimensions 

Output: NODE_IDX: Index of classified leaf node 
Begin 
1: 
2: 
3: 
4: 
5: 
6: 

 
7: 
8: 

NODE_IDX = 0 
for dim = 1 to d do 

if CUR[dim] <= TOP[dim] then 
BRANCH = 0 

else  
BRANCH = 1 

//Bitwise left shift to apply dimensional order 
NODE_IDX = (NODE_IDX << 1) + BRANCH 

return NODE_IDX 
End 
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relation between leaf nodes, which was necessary when 

incomparability was not known, can be reduced to 3d, 

meaning that only (3/4)d of the dominance relation is needed 

to check incomparability. Furthermore, considering that leaf 

node 0 and the last leaf node in the DC do not require 

dominance testing, as explained in Fig. 3, the dominance 

relation between the leaf nodes is further reduced from (2d – 

2)2 to 3d – 2d+1 + 1. This indicates that the unnecessary 

dominance tests, where dominance does not occur, are 

significantly reduced. 

B. DECISION TREE-BASED COMPARATOR 

Recall from subsection A that the decision tree is a 

classification method that can be used to minimize 

unnecessary dominance tests by identifying incomparability 

when no dominance occurs between data points. In the DC, 

the leaf node to which the current input data point belongs is 

classified using the proposed D-Classifier algorithm. 

Subsequently, using the proposed Incmp algorithm, the 

dominance test is performed by limiting the data points of the 

leaf node where no incomparability occurs. If an input data 

point is dominated by another data point during this process, 

the dominance test for the corresponding input is 

immediately terminated. Conversely, if an input data point is 

not dominated by any other data points, it is stored in the leaf 

node obtained from the D-Classifier. In other words, the data 

points stored in the leaf nodes consist of skyline points that 

are not dominated by other data points. 

However, in this process, moving to the next leaf node 

after a comparison with all skyline points belonging to the 

comparable leaf node creates the following problems. Firstly, 

when a monotonic function is used, there is a higher 

probability that a data point which is determined early to be a 

skyline point will dominate the other data points, compared 

with a skyline point that is determined later. This is because 

data points with superior values are preferentially used for 

the calculations in monotonic functions. However, when the 

dominance test is performed on a leaf node basis, the skyline 

points with high dominance probability cannot be 

preferentially used. Therefore, cases exist in which data 

points that could be dominated earlier are dominated later. 

Secondly, to solve such a problem, when using a skyline 

window composed of a single list as in conventional methods, 

it is necessary to perform Incmp for all skyline points until 

the input data point is dominated, which causes unnecessary 

computation even in incomparable cases. This subsequently 

reduces query performance. 

To solve these two contradictory problems in the DC, the 

dominance test is conducted in a divide-and-conquer manner 

based on the concept of population, which is the number of 

skyline points belonging to a leaf node. Fig. 4 demonstrates 

the dominance test procedure when it is performed using the 

proposed divide-and-conquer manner.  

Let us assume that skyline points belonging to each leaf 

node are divided into 10 groups according to dominance 

probability, which can be determined using the entropy score. 

Afterwards, the input data point is first compared with the 

top 10% skyline points of all comparable leaf nodes in 

sequential order. Here, if the input data point is dominated by 

one of the top 10% skyline points in the leaf nodes, then it is 

immediately discarded. If the input data point is not 

dominated by any of the top 10% skyline points in any of the 

comparable leaf nodes, then it is compared with the skyline 

points corresponding to the next top 10% skyline points (i.e., 

10%-20% of the skyline points) in all comparable leaf nodes. 

If the input data point is not dominated by any of the skyline 

point in the leaf nodes through this divide-and-conquer 

strategy, then it becomes a skyline point and is stored in the 

corresponding leaf node. When the skyline query is 

processed in this manner, those skyline points with a high 

dominance probability can be used preferentially in each 

comparable leaf node. This enables us to increase the 

probability of the input data points being dominated early. 

The proposed divide-and-conquer strategy can minimize 

the required dominance tests in DC. However, note that when 

a fixed division value (Div) is used, regardless of the 

population, an unnecessary overhead may occur for the 

following reasons. First, as the skyline points increase, the 

number of skyline points that must be compared by 

dominance testing before moving to the next comparable leaf 

node may also increase. Conversely, if there are too few 

skyline points stored in each leaf node, the overhead caused 

by traversing through leaf nodes may increase too. Therefore, 

to avoid unnecessary overhead and keep the dominance test 

running efficiently even as the skyline increases, Div is 

dynamically increased according to the average number of 

skyline points belonging to leaf nodes.  

The DC algorithm and its optimization variants are 

presented in Algorithms 3 to 5. The efficiency of these 

algorithms is demonstrated in Section 5. 

Algorithm 3 presents DC_Init, which is a leaf node 

initialization function that is required for the DC. In this 

Algorithm 2 Incmp 

Input: 
CUR_IDX: Order index of current leaf node 
TGT_IDX: Order index of target leaf node 

Output: INCOM: Incomparability verification result 
Begin 

 
1: 
2: 
3: 
4: 
5: 

//Bitwise OR between inputs 
if (CUR_IDX | TGT_IDX) > CUR_IDX then 

INCOM = True 
else  

INCOM = False 
return INCOM 

End 

 

FIGURE 4. Example of the DC's dominance test using a divide-and-
conquer manner. 
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function, Incmp is used to identify comparable leaf nodes and 

to store this information. The essential parts of DC_Init are 

lines 1 and 2. The zeroth leaf node can only store the top-1 

skyline point, and a comparison with the top-1 skyline point 

is initially conducted through the D-Classifier. For this 

reason, when searching for a comparable leaf node, it begins 

from the first, and not the zeroth, leaf node. Moreover, as the 

skyline points corresponding to the same leaf node are also 

comparable, the process is repeated until idx is equal to 

CUR_IDX to add itself as a comparable leaf node. 

Algorithm 4 presents the actual DC algorithm. The DC 

behaves as an extension of the dominance test for easy 

application to other skyline query algorithms. The p-ratio in 

line 2 represents the ratio required to preferentially use the 

skyline points with a high dominance probability from each 

leaf node in the dominance test. Lines 3 to 4 are used to 

verify that CUR is dominated by the top-1 skyline point 

using the leaf node order obtained from the D-Classifier. If 

this is not the case, the comparison is repeated with the 

skyline points of the comparable leaf nodes in lines 6 to 17. 

In line 8, the order of leaf nodes is returned so that the 

comparable leaf nodes previously searched with DC_Init can 

be accessed sequentially. Lines 9 to 10 define the start and 

end locations of the skyline points to be compared in each 

comparable leaf node through p_ratio and p_cur. Thereafter, 

the actual dominance test is performed, as per line 12. If 

CUR is dominated by a specific skyline point, the value is 

returned as immediately dominated, according to lines 13 and 

14. At line 15, since all the comparable leaf nodes have been 

cycled, p_cur is increased to access the next sequence of 

skyline points. Lines 16 to 17 check that all leaf node 

populations to be compared have been identified, and if so, 

the comparison ends. Subsequently, in line 18, the True or 

False stored in Dominated is finally returned. 

Algorithm 5 presents the basic structure of the overall 

skyline query that is required to search the skyline with 

DC_Init and DC, which we call DC-basic. Line 3 determines 

the order of the final leaf node. At this time, the actual final 

leaf node is the (2d - 1) leaf node, but since this leaf node is 

dominated by the zeroth to which the top-1 skyline point 

belongs, the leaf node before the actual final leaf node is our 

final leaf node. Therefore, -2 is used here and not -1. The 

skyline is then searched in lines 5 to 19 using the data points 

that have been presorted with the monotonic function. Lines 

7 to 12 use the first input data point to create skyline 

windows known as SKYLF, corresponding to the leaf nodes 

of the DC, and set the variables to store the data point as a 

top-1 skyline point. From the second data point, as per lines 

14 to 15, the D-Classifier determines which leaf node CUR 

belongs to, and verifies whether it is dominant using the DC. 

At line 17, if CUR has not been dominated, CUR is stored as 

a skyline point on the corresponding leaf node via the L_IDX 

obtained in line 14. After that, the necessity of updating Div 

is checked, as in line 18, and Div is increased when the 

average number of skyline points in SKYLF exceeds a certain 

standard. Once the search for all data points has been 

completed, all of the skyline points stored in the leaf node 

SKYLF are confirmed as the skyline, and these are merged 

and returned, as indicated in lines 20 to 22. 

Algorithm 3 DC_Init 

Input: 
d: Number of dimensions 
LAST: Maximum order of leaf nodes 

Output: SKYLF: Skyline windows conducted for leaf nodes 
Begin 

 
1: 

 
2: 
3: 
4: 
5: 

//Leaf nodes and incomparability initialization 
for CUR_IDX = 1 to LAST do 

//Until idx is the same as CUR_IDX  
for idx = 1 to CUR_IDX do  

if not Incmp(CUR_IDX, IDX) then 
SKYLF[CUR_IDX].comparable(IDX) 

return SKYLF 
End 

Algorithm 4 DC 

Input: 

CUR: Current input data point 
L_IDX: Leaf node order of input data point 
LAST: Maximum order of leaf nodes 
Div: Total number of divisions in population 
SKYLF: Skyline windows conducted for leaf nodes 

Output: Dominated: Dominance result of input data point 
Begin 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 

Dominated = False 
p_ratio = 1 / Div  //Population traversal ratio 
if L_IDX > LAST then 

Dominated = True  //CUR dominated by TOP 
else 

p_cur = 0 
while not Dominated do 

foreach IDX ∈ SKYLF[L_IDX].comparable do 
start = SKYLF[IDX].size * p_ratio * p_cur 
end = SKYLF[IDX].size * p_ratio * (p_cur + 1) 
for ptr = start to end do 

if SKYLF[IDX][ptr] dominate CUR then 
Dominated = True 
return Dominated  

p_cur = p_cur + 1 
if p_ratio * p_cur ≻ 1 then 

break 
return Dominated 

End 
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IV. APPLICATIONS OF THE DECISION TREE-BASED 
COMPARATOR 

In this section, we discuss how the proposed DC-related 

algorithms can be applied to the existing state-of-the-art 

skyline query methods, which do not use the incomparability 

concept. To this end, we demonstrate an application of the 

DC algorithms to the sort-based SFS [11], [12], SaLSa [14], 

and index-based BBS [15], which are representative skyline 

query methods that do not use the incomparability concept 

and their own skyline windows. 

A. SFS-DC 

The SFS [11], [12] uses monotonic functions and sorting to 

ensure that the skyline points are not dominated by the 

following sequence of input data points. 

The SFS includes a procedure that stores skyline 

candidates in a separate file when the skyline window is full. 

However, in addition to this feature, the dataset can be 

processed in a manner very similar to that of DC-basic, and 

SFS-DC is achieved by applying DC to the existing SFS, as 

demonstrated in Algorithm 6. This algorithm shows that the 

incomparability concept can be easily applied because there 

is no structural change, other than changing the existing 

dominance test to be performed through the D-Classifier and 

DC. 

B. SaLSa-DC 

The SaLSa is a method that uses the concepts of a monotonic 

function and stop point together, thereby eliminating the need 

to access all data points by terminating the query early if a 

skyline point can no longer occur through the stop point. To 

achieve this, SaLSa performs checks relating to the stop point, 

but the skyline is determined by a dominance test between 

the skyline points and the current input data point. Therefore, 

in SaLSa, by replacing the logic related to dominance tests 

with DC-related algorithms, it is possible to use 

incomparability and easily improve query performance.  

The specific SaLSa algorithm with DC is presented as 

Algorithm 7. In this algorithm, a processing procedure is 

required, corresponding to lines 8 to 10, which sets the first 

input data point as TOP, such as SFS-DC. But in the 

subsequent logic, most of the processing proceeds in the 

same manner as the existing SaLSa algorithm. 

Algorithm 5 DC-basic 

Input: 
DATA: Ordered dataset by monotonic function 
d: Number of dimensions 
N: Number of data points 

Output: SKYLINE: Set of skyline points by DC 
Begin 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

SKYLINE = {} 
SKYLF = NULL 
LAST = 2d – 2  //Order of last possible leaf node 
ptr = 0 
while ptr < N do 

CUR = DATA[ptr] 
if SKYLF equal to NULL then 

SKYLF = DC_Init(d, LAST) 
Dominated = False 
TOP = CUR 
L_IDX = 0 
Div = 1 

else 
L_IDX = D-Classifier(TOP, CUR, d) 
Dominated = DC(CUR, L_IDX, LAST, Div, SKYLF) 

if not Dominated do 
SKYLF[L_IDX].add(CUR) 
Div = DivUpdateCheck(SKYLF) 

ptr = ptr + 1 
for IDX = 0 to LAST do  

SKYLINE = SKYLINE ∪ SKYLF[IDX] 
return SKYLINE 

End 

Algorithm 6 SFS-DC 

Input: 
DATA: Sorted dataset by entropy score at Heap 
d: Number of dimensions 

Output: S: Set of skyline points of DATA 
Begin 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 

S = {}, SKYLF = NULL, LAST = 2d – 2 
unfinished = True 
while (unfinished) do 

T = open_cursor(DATA) 
unfinished = False 
while next_data(T, t) do 

if SKYLF equal to NULL then 
SKYLF = DC_Init(d, LAST) 
Dominated = False 
TOP = t, L_IDX = 0, Div = 1 

else 
L_IDX = D-Classifier(TOP, t, d) 
Dominated = DC(t, L_IDX, LAST, Div, SKYLF) 

if not Dominated then 
if “SKYLF is full” then 

unfinished = True 
break 

else 
SKYLF[L_IDX].add(t) 
Div = DivUpdateCheck(SKYLF) 

if (unfinished) then 
S = open_new_file(SecondPass) 
write(S, t) 
while next_data(T, t) do 

L_IDX = D-Classifier(TOP, t, d) 
Dominated = DC(t, L_IDX, LAST, Div, SKYLF) 
if not Dominated then 

write(S, t) 
free(DATA) 
close(S) 
Heap = SecondPass 
for IDX = 0 to LAST do  

S = S ∪SKYLF[IDX] 
free(SKYLF) 
return S 

End 



 

2 VOLUME XX, 2017 

C.  BBS-DC 

BBS is representative of index-based skyline queries, and 

performs point-to-group comparisons using the MBR of the 

R-tree to remove multiple data points with a single 

dominance test. To accomplish this, the BBS performs a 

comparison by assuming the lower-left corner as the point for 

performing the dominance test with the data point and the 

MBR, which is a group of data points. Therefore, even with 

an MBR (i.e., an intermediate entry), a comparison with a 

data point is made possible in the dominance test by 

assuming the value of the lower-left corner to be a point. This 

concept has been used in many index-based methods, such as 

Z-Sky [16]. In particular, in line 9 of Algorithm 8, 

comparisons occur frequently between the skyline point and 

MBR, and if the lower-left corner of the MBR is dominated 

by a specific skyline point, all of the data in the 

corresponding MBR are dominated by the corresponding 

skyline point. Therefore, in this case, as indicated in line 10, 

the corresponding MBR and its children are removed from 

the query. Therefore, even in the case of the MBR, the use of 

incomparability makes it possible to reduce unnecessary 

dominance tests, where dominance cannot occur.  

The BBS algorithm with the DC applied is presented in 

Algorithm 8. Although the DC_Init call is different from the 

previous case, there was no change in utilizing the 

incomparability when the dominance test was changed to the 

D-Classifier and DC. 

V. PERFORMANCE EVALUATION 

In this section, we perform a performance evaluation of the 

proposed DC. First, we describe the experimental 

environment used to perform the evaluations. Then, we 

present the experimental results, where the superiority of the 

proposed method is confirmed by comparing the 

performance when DC was applied to existing algorithms 

and when it was not. We also provide an in-depth analysis of 

the experiment results, presenting what led to the 

performance improvements.  

A. EXPERIMENTAL ENVIRONMENT 

In skyline queries performance highly depends on the 

characteristics of the dataset, such as the number of 

dimensions and the distribution of data points. Therefore, to 

experimentally evaluate the skyline queries on various 

scenarios, we generated and used synthetic datasets with 

various distributions and various dimensions, using the 

generator proposed by Borzsony et al. [1]. The generated 

datasets had anti-correlated (correlation: −0.5), independent, 

and correlated (correlation: 0.5) distributions, and were 

organized into 4, 8, 12, and 16 dimensions for each 

distribution. Also, the data points belonging to each dataset 

consisted of real numbers with ten decimal places in the 

range [0, 1] for each dimension. In these synthetic datasets, 

the number of skyline points increases as the dimension or 

cardinality increases, and the number of skyline points 

increases in the order of correlated, independent, and anti-

correlated, even when they have the same dimensions and 

cardinality.  

Furthermore, to evaluate scalability in relation to dataset 

cardinality, the datasets were generated with 10K (ten 

thousand), 100K (one hundred thousand), 1M (one million), 

and 10M (ten million) data points, respectively. Also, to 

evaluate DC using real-world datasets, we evaluated three 

types of real-world datasets called Household [20], Gas [33], 

Weather [34]. The Household dataset consists of 128K data 

Algorithm 7 SaLSa-DC 

Input: 
DATA: Sorted dataset by minC 
d: Number of dimensions 

Output: S: Set of skyline points of DATA 
Begin 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

S = {}, stop = False, p_stop = undefined, u = DATA 
SKYLINE = {}, SKYLF = NULL, LAST = 2d – 2 
while not stop and u ≠ {} do 

p = u.next_data, u = u.remove(p) 
if p_stop_plus ≤ minC(p) and p_stop ≠ p then 

stop = True 
else 

if SKYLF equal to NULL then 
SKYLF = DC_Init(d, LAST) 
TOP = t, L_IDX = 0, Div = 1 

else 
L_IDX = D-Classifier(TOP, t, d) 

if not DC(p, L_IDX, LAST, Div, SKYLF) then 
SKYLF[L_IDX].add(p) 
Div = DivUpdateCheck(SKYLF) 
if p_plus < p_stop_plus then 

p_stop = p 
for IDX = 0 to LAST do  

S = S ∪ SKYLF[IDX] 
return S 

End 

Algorithm 8 BBS-DC 

Input: 
R: R-tree of dataset 
d: Number of dimensions 

Output: S: Set of skyline points 
Begin 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

S = {}, SKYLF = NULL, LAST = 2d – 2 
insert all entries of root R into heap H 
while not H.empty 

e = H.pop()  //read and remove top entry of H 
if SKYLF equal to NULL then 

L_IDX = 0, Div = 1 
else 

L_IDX = D-Classifier(TOP, e, d) 
if DC(e, L_IDX, LAST, Div, SKYLF) then  

discard e 
else  //e is not dominated 

if e is an intermediate entry then 
foreach child i of e do 

L_IDX = D-Classifier(TOP, i, d) 
if not DC(i, L_IDX, LAST, Div, SKYLF) then 

H.push(i)  
else  //e is a data point  

if SKYLF equal to NULL then 
SKYLF = DC_Init(d, LAST) 
TOP = e 

SKYLF[L_IDX].add(e) 
Div = DivUpdateCheck(SKYLF) 

for IDX = 0 to LAST do  
S = S ∪SKYLF[IDX] 

return S 
End 
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points in 6 dimensions and consists of US census data on 

expenses such as electricity and mortgage. The Gas dataset 

consists of 929K data points in 10 dimensions and contains a 

record of a gas sensor array composed of eight metal oxide 

gas sensors, and temperature and humidity sensors for 

monitoring home activity. Lastly, the Weather dataset had 

566K data points in 15 dimensions and consisted of average 

monthly precipitation totals and elevation at over half a 

million sensor locations obtained from the University of East 

Anglia climatic research unit. In Table III, the previously 

mentioned datasets are summarized once again. 

To evaluate the DC, the first experiment shows the 

difference in the performance of the DC-basic skyline query 

when Div was used and when it was not. The second 

experiment shows the results of the comparison experiments 

with and without DC applied to existing skyline queries. For 

this comparison, we conducted experiments using the DC 

algorithm applications for SFS, SaLSa, and BBS proposed in 

Section 4. And in the last experiment, a comparative 

experiment was conducted using three real-world datasets. 

 Lastly, all the skyline query methods were implemented 

using C++ 14, and the experiments were carried out on an 

Intel Core i7-6700 3.4 GHz processor with 64-bit Windows 

10 Pro and 16 GB of main memory. 

B. EXPERIMENTAL RESULTS 

In this subsection, we present the results of experiments, 

using Div, skyline computation time, and dominance test 

calls to evaluate DC from various aspects. 

The first experiment shows the skyline query performance 

improvement based on Div usage. To do this, we 

experimentally show the difference in the performance of the 

DC-basic skyline query when Div was fixed to 1, to check all 

of the skyline points in the leaf node without division, and 

when Div for division was increased based on the number of 

skyline points. In this experiment, the Div was increased by 

one whenever the average number of skyline points in the 

leaf nodes increased by 64. In addition, to evaluate the 

difference in performance due to Div from various aspects, 

the experiment was configured to vary the dimensions for the 

1M dataset, using various distributions, or to vary the number 

of data in 8-dimensions with the various distributions.  

Fig. 5 shows the query time and dominance test reduction 

rates according to dimensions in various data distributions 

when Div was used. In this experiment, since the number of 

average skyline points per leaf node did not satisfy the Div 

increase criterion in 16-dimensions, there was no difference 

with the use of Div. However, in the other dimensions, the 

query time decreased from 1.2% to 37.3%, and the 

dominance test call decreased from 1.2% to 50.6%. The 

largest difference was shown in the 8-dimensions, where the 

average number of skyline points was the largest. This shows 

that even when the number of unnecessary dominance tests is 

minimized through incomparability, it is important to first 

use the skyline points with the high dominance probability 

for dominance tests, to eliminate data that are not selected as 

skylines early. 

In addition, in this experiment, there was greater 

performance improvement with the independent dataset than 

with the correlated or anti-correlated datasets. This is because 

in the correlated dataset, the number of skyline points is 

small, so the value of Div is not frequently used. And, in the 

anti-correlated dataset, the probability of dominance between 

the data is very low, so that new data must be compared with 

most of the skyline points selected early. Accordingly, there 

was no significant difference in performance according to 

Div. However, a larger Div was used for the dataset with 

independent distribution, because the number of skylines was 

greater than that of the correlated dataset, and data could be 

removed early because the dominance probability between 

the data was higher than that of the anti-correlated dataset. 

Therefore, the performance improvement when using Div 

was most noticeable in the dataset with independent 

distribution. 

Fig. 6 shows the query time and dominance test reduction 

rates according to cardinality when using Div. The 

experimental results show that as the cardinality of the 

dataset increased, the reduction in query time and dominant 

test calls with Div also increased. This occurs because an 

increase in cardinality leads to an increase in skyline points, 

and an increase in skyline points leads to an increase in Div. 

TABLE III 

SPECIFICATIONS OF DATASETS 

Category Dataset Dimensionality Cardinality 

Synthetic Correlated {4, 8, 12, 16} {10K, 100K, 1M, 10M} 

Synthetic Independent {4, 8, 12, 16} {10K, 100K, 1M, 10M} 

Synthetic Anti-correlated {4, 8, 12, 16} {10K, 100K, 1M, 10M} 

Real Household 6 127,931 

Real Gas 10 928,991 

Real Weather 15 566,268 

 

FIGURE 5. The reduction rates in various dimensions when using Div. 
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This increased Div makes it possible to quickly eliminate 

data that cannot be skylines by allowing the skyline points 

with high dominance probability to be more preferentially 

used for dominance tests. Therefore, as the cardinality 

increases, the performance improvement due to Div also 

increases. 

In the second experiment, to evaluate performance 

improvements when DC was applied to existing skyline 

query methods, the difference in the performances of the 

existing methods without the DC algorithm, and when DC 

was applied to them, was compared using various aspects. 

Fig. 7 shows the skyline query time results for each 

dimension for SFS, SaLSa, and BBS, which are current 

skyline query methods, and SFS-DC, SaLSa-DC, and BBS-

DC, when DC was applied to them, using a log scale. This 

experiment showed that the skyline query time was reduced 

in most cases for the methods that applied the DC algorithm. 

Specifically, the DC-applied methods significantly reduced 

the skyline query time from at least 50.5% to a maximum of 

95.9% in 8-dimensions or more, compared with the existing 

methods. Also, in most cases, there was a more prominent 

reduction in the skyline query time of SaLSa and BBS than 

that of SFS. This is because, in the case of SaLSa, the time 

required to reach the stop point was significantly reduced 

because the unnecessary dominance test between data sorted 

through minC could be reduced through DC. And in the case 

of BBS, using DC, the point-to-group comparison, which is 

conducted at the beginning of the query, can be performed 

with a smaller number of skyline points. As a result, the large 

number of data belonging to the MBR can be eliminated 

more quickly, so that the skyline query time is significantly 

reduced. 

Fig. 8 shows the number of dominant test calls that 

occurred when the same experiment shown in Fig. 7 was 

conducted. In this experiment, the number of dominant test 

calls decreased in all cases, and the reduction rate ranged 

from a minimum of 11.8% to a maximum of 95.5%. Notably, 

the correlated and independent datasets showed at least a 

73.6% reduction in dominant test calls over 8-dimensions. 

However, in the anti-correlated dataset, only 24.5% to 83% 

reduction in dominant test calls occurred, because even with 

DC, as the number of skylines increased, the dominance tests 

needed to confirm skyline points also accumulated. 

 

FIGURE 6. The reduction rate in various cardinalities when using Div. 

 
(a) Correlated 

 
(b) Independent 

 
(c) Anti-correlated 

FIGURE 7. Skyline query time according to dimensionality. 
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Fig. 9 shows the difference in skyline query time for the 

existing methods and DC applied methods according to 

cardinality. In this experiment, except for the anti-correlated 

datasets, as the cardinality increased, the degree of decrease 

in skyline query time declined due to DC. In addition, in the 

anti-correlated dataset, there were cases where the degree of 

decrease in query time declined compared to previous 

performance, for certain cardinalities depending on the 

method, but most of them increased. And, for advanced 

cardinality of 100K or more with increased Div, the skyline 

query time decreased from a minimum of 55.2% to a 

maximum of 94.9%. 

Fig. 10 shows the number of dominant test calls obtained 

with the same experiment as the one in Fig. 9. The rate of 

reduction in dominance test calls seen in this experiment was 

generally similar to the reduction rate for skyline query time. 

This is because most of the time consumed in the skyline 

query occurs in the dominance test. This confirms that the 

 
(a) Correlated 

 
(b) Independent 

 
(c) Anti-correlated 

FIGURE 8. Number of dominance test calls according to 
dimensionality. 

 
(a) Correlated 

 
(b) Independent 

 
(c) Anti-correlated 

FIGURE 9. Skyline query time according to cardinality. 
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reduction in skyline query time with DC can be largely 

attributed to the reduction in dominance test calls. 

In the final experiment, a comparative experiment was 

conducted using three real-world datasets called Household, 

Gas, and Weather. 

Fig. 11 shows the skyline query time results using the 

three types of real-world datasets. In this experiment, all the 

DC-applied methods showed a reduction in skyline query 

time compared with the existing methods, and the skyline 

search was accomplished with a maximum of 94.4% less 

time. Fig. 12 shows the number of dominant test calls 

obtained in the same experiment using real-world datasets, as 

shown in Fig. 11. This experiment showed that when DC was 

applied, it was possible to search the skyline with fewer than 

16.5% to 81.8% of the dominance test calls compared with 

the existing method. The results of these experiments show 

that by using DC it is possible to reduce the skyline query 

time and dominance test calls that occur in the existing 

skyline query methods. These results are consistent with the 

experimental results using the synthetic datasets. 

The various experimental results indicate that when DC is 

used, the number of unnecessary dominance tests performed 

in existing methods can be effectively reduced, using 

incomparability obtained from the decision tree. As a result, 

 
(a) Correlated 

 
(b) Independent 

 
(c) Anti-correlated 

FIGURE 10. Number of dominance test calls according to cardinality. 

 
(a) Household 

 
(b) Gas 

 
(c) Weather 

FIGURE 11. Skyline query time according to real-world datasets. 
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with the proposed method, we can minimize dominance tests, 

leading to a reduction in skyline query time. This result can 

be particularly helpful to solve the known problems with 

skyline queries, which have limitations at high dimensions 

and with high cardinality data. 

VI. CONCLUSION 

In this paper, we have proposed a decision tree-based 

comparator (DC) to optimize dominance tests for skyline 

queries. There were three key findings. First, the proposed 

DC allowed us to eliminate leaf nodes and their data points 

when they exhibited incomparability with the current data 

point, thereby avoiding unnecessary dominance tests. Second, 

the proposed DC method was easily applied to improve the 

performance of various existing skyline query methods 

because of its unique tree structure. Third, using various 

experiments, we demonstrated that DC can reduce skyline 

query time and dominance test calls in existing methods by 

up to 95.9% and 95.5%, respectively. 

It is important to note that further considerations are 

required when applying the proposed DC to distributed and 

parallel processing environments, or incomplete data as 

mentioned in Section 2. Thus, in future work, we plan to 

conduct research to demonstrate the effectiveness of the 

proposed DC for reducing dominance testing that occurs 

while searching for local and global skylines in a distributed 

and parallel processing environment. We are also planning to 

conduct a study that utilizes the concept of incomparability 

with the proposed DC method, even with incomplete data. 
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