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Abstract
Continuous time recurrent neural networks (CTRNN) are systems of coupled ordinary differential equations that are simple
enough to be insightful for describing learning and computation, from both biological and machine learning viewpoints. We
describe a direct constructive method of realising finite state input-dependent computations on an arbitrary directed graph.
The constructed system has an excitable network attractor whose dynamics we illustrate with a number of examples. The
resultingCTRNNhas intermittent dynamics: trajectories spend long periods of time close to steady-state, with rapid transitions
between states. Depending on parameters, transitions between states can either be excitable (inputs or noise needs to exceed
a threshold to induce the transition), or spontaneous (transitions occur without input or noise). In the excitable case, we show
the threshold for excitability can be made arbitrarily sensitive.

Keywords Continuous time recurrent neural network · Nonlinear dynamics · Excitable network attractor

1 Introduction

It is natural to try to understand computational properties of
neural systems through the paradigm of network dynamical
systems, where a number of dynamically simple units (i.e.
with attracting equilibria or periodic orbits) interact to give
computation as an emergent property of the system. This is
as much the case for biological models of information pro-
cessing, pattern generation and decision making as it is for
artificial neural networks inspired by these models. A vari-
ety of specific models have been developed to describe the
dynamics and training of recurrent networks comprised of
coupled neurons in biological and artificial settings. The par-
ticular challenge that we address here is the construction of
arbitrarily complex, but specified, dynamical structures that
enable discrete (finite-state) computation in an input-driven
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system that is nonetheless continuous in both state and time.
Clearly, invariant objects of the autonomous system (such as
equilibria, periodic orbits and chaotic attractors) only form
part of the picture and an input-dependent (non-autonomous)
approach such as Manjunath et al. (2012) is needed.

To help understand the response of systems to inputs the
authors introduced in Ashwin and Postlethwaite (2016) a
notion of a “network attractor”, namely an invariant object in
phase space that may contain several local invariant sets, but
also systems of interconnections between them. This gener-
alises the notions of “heteroclinic network” and “winnerless
competition/stable heteroclinic channels” (Afraimovich et
al. (2004)) which have been used to describe a range of
sequence generation, computational and cognitive effects
in neural systems: see for example Rabinovich et al. 2001,
2006; Afraimovich et al. 2004; Rabinovich et al. 2020; Hutt
and beimGraben 2017. Thesemodels connect computational
states, represented as saddles in the dynamics. In the presence
of inputs or noise, the switching between saddles is a useful
model for spontaneous computational processes, but there
are two problems. One of these is that the states are dynam-
ically unstable and so there are spontaneous transitions that
are not noise driven. The other is that heteroclinic chains are
destroyed by arbitrarily small perturbations, unless there are
special structures in phase space (symmetries or invariant
subspaces).
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Network attractors joining stable equilibria (Ashwin and
Postlethwaite 2016) overcome both of these issues. In this
paper, we show that arbitrarily complex network attractors
exist in an idealised class of model called a continuous time
recurrent neural network (CTRNN) (Beer 1995). A CTRNN
is a set of differential equations each with one scalar vari-
able that represents the level of activation of a neuron, and
feedback via a saturating nonlinearity or “activation func-
tion”. These models have been extensively investigated in
the past decades as simple neurally inspired systems that can
nonetheless (without input) have complexdynamics byvirtue
of the nonlinearities present (Beer 1995). They can also be
trained to perform arbitrarily complex tasks depending on
time-varying input (Tuci et al. 2002; Yamauchi and Beer
1994). They are frequently used in investigations of evolu-
tionary robotics (Blynel and Floreano 2003) and (in various
equivalent formulations (Chow and Karimipanah 2020)) as
models for neural behaviour in biological or cognitive sys-
tems. For example, the classical work of Hopfield and Tank
(Hopfield and Tank 1985) considers such systems with sym-
metric weights to solve optimization problems, while more
recently, Bhowmik et al. (2016) discusses CTRNN models
for episodic memory, and several other biological and cog-
nitive applications are discussed in Nikiforou (2019).

CTRNNs are often referred to as “universal dynamical
approximators” (Funahashi and Nakamura 1993), meaning
that the trajectory of a CTRNN can approximate, to arbitrary
precision, any other prescribed (smooth) trajectory in R

n .
However, this does not mean that the dynamics of CTRNNs
are simple to understand, or that it is easy to form the above
approximation. It also raises the question of how a “trained”
CTRNN performs a complex task. Gradient descent or more
general evolutionary training algorithms train the network by
navigating through a high dimensional landscape of possible
feedback weightings and moving these towards a setting that
is sufficiently optimal for the task. It may be possible to give
a clear description of the resulting nonlinear dynamics of
the autonomous (constant input) CTRNN, but we want to
understand not only this but also how inputs affect the state
of the system.

The main theoretical result in this paper focusses on
“excitable network attractors”: these consist of a finite set of
local attracting equilibria and excitable connections between
them (see Appendix A). It was demonstrated in Ashwin
and Postlethwaite (2018) that an excitable network attrac-
tor can be used to embed an arbitrary Turing machine
within a class of purpose-designed coupled dynamical sys-
tem with two different cell types. Rather than relying on
an optimization approach to design the system, that paper
gave a constructive method for designing a realisation of
any desired network attractor. However, this construction
required specialist dynamical cells with quite complex non-
linear couplings between them, and a comparatively large

number of cells. It was recently shown in Ceni et al. (2020)
that trained RNNs in the form of echo-state networks can
realise excitable networks for certain tasks and that structural
errors in the trained network can explain errors in imperfectly
trained systems.

The current paper demonstrates that CTRNN dynamics is
sufficiently rich to realise excitable networks with arbitrary
graph topology, simply by specifying appropriate connec-
tion weights. The construction algorithm in the proof of
Theorem 1 assigns one of only four values to each of the
connection weights to realise an arbitrary graph on N ver-
tices as an excitable network on N states (subject to some
minor constraints on its connectivity), using a CTRNN with
N cells. TheCTRNNwe consider in this paper (see for exam-
ple (Beer 1995), which corresponds to a continuous time
Hopfield model (Hopfield and Tank 1985) in the symmetric
coupling case wi j = w j i ) are ordinary differential equations

ẏi = −yi +
∑

j

wi jφ(y j ) + Ii (t), (1)

where y = (y1, . . . yN ) ∈ R
N is the internal state of the N

cells of the system, wi j is a matrix of connection weights, φ
is a (sigmoid) activation function that introduces a saturating
nonlinearity into the system and Ii (t) is an input. We say
system (1) is input-free if Ii (t) = 0 for all i and t .

We consider two cases for φ, a smooth function

φ(y) = φS(y) :=
[
1 + exp

(
− (y − θ)

ε

)]−1

, (2)

and a piecewise affine function

φ(y) = φP (y) :=

⎧
⎪⎨

⎪⎩

0 y − θ < −2ε,

(y − θ)/(4ε) + 1/2 |y − θ | ≤ 2ε,

1 y − θ > 2ε,

(3)

In both cases, φ is monotonic increasing with

lim
y→∞ φ(y) = 1, lim

y→−∞ φ(y) = 0, φ(θ) = 1/2,

and a maximum derivative at y = θ , equal to 1
4ε . In both

cases, ε and θ are parameters, and we are interested in the
case 0 < ε � 1. In general, the function φ need not be
the same in every component of (1), but here we make a
simplifying assumption that it is.

Note that both activation functions (2) and (3) have piece-
wise constant limits in the singular limit ε → 0. Such
limiting systems are of Fillipov type and have been explored
in various biological contexts, especially for gene regulatory
dynamics. These can also have rich dynamics as discussed in
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the literature (for example Gouzé and Sari 2003; Harris and
Ermentrout 2015), but we do not consider this limit here.

Themain contribution of Sect. 2 is to give, in Theorem 1, a
construction of a connection weight matrix wi j such that the
dynamics of the input-free system (1) contains (or realises:
definition given below) an excitable network attractor, as
defined in Ashwin and Postlethwaite (2016). We prove this
(with details in Appendix B) for the case of the piecewise
affine function φP . In Sect. 3, we present evidence that this is
also true for the smooth caseφS for an open set of parameters.
Qualitatively, this means the system will contain a number
of stable equilibrium states, and small inputs (either deter-
ministic, or noisy) will push the trajectory from one stable
equilibrium into the basin of attraction of another. In this
way, transitions can be made around the network, and the
transition time between states tends to be much smaller than
the residence times of the trajectory in neighbourhoods of the
states. In particular, we can choose wi j so that the network
attractor has (almost) any desired topology. In Appendix A,
we recall formal definitions of network attractors from (Ash-
win and Postlethwaite 2016, 2018).

In Sect. 3, we consider several examples of simple graphs
and demonstrate that the desired networks do indeed exist in
the systems as designed. We also perform numerical bifurca-
tion analysis to demonstrate the connection between periodic
orbits in the input-free deterministic system (1) and excitable
networks in the same system with additive noise, that is, the
system of stochastic differential equations (SDEs):

dyi =
⎛

⎝−yi +
∑

j

wi jφ(y j )

⎞

⎠ dt + σdWi (t), (4)

where Wi (t) are independent standard Wiener processes.
Here, the noise plays the role of inputs that propel the tra-
jectory around the network, although of course this occurs in
a random manner. In Sects. 3.3 and 3.4, we consider graphs
that have multiple edges leading out from a single vertex and
show that additional equilibria may appear in the network
attractor where two or more cells are active simultaneously.
We further show that the existence of these additional equi-
libria can be suppressed by choosing one of the parameters
used in the construction of the weight matrix wi j to be suffi-
ciently large.

Section 4 concludes by relating our results to other notions
of sequential computation. We also conjecture some exten-
sions of the results shown in this paper.

2 Construction of a CTRNNwith a network
attractor

LetG be an arbitrary directed graph between N vertices, and
let ai j be the adjacency matrix of G. That is, ai j = 1 if there

Fig. 1 From left to right, the figures show an order-one loop, an order-
two loop, and a �-clique in a directed graph. The construction we
provide realises an arbitrary graphG, as long of none of these subgraphs
are present in G

is a directed edge from vertex i to vertex j , and ai j = 0
otherwise.

Let� be an invariant set for a system of ordinary differen-
tial equations. We say� is an excitable network that realises
a graph G for some amplitude δ > 0 if for each vertex vi in
G there is a unique stable equilibrium ξi in �, and if there is
an excitable connection with amplitude δ in � from ξi to ξ j
whenever there is an edge in G from vi to v j . The existence
of an excitable connectionmeans that there exists a trajectory
with initial condition within a distance δ of ξi that asymp-
totes in forward time to ξ j (formal definitions are given in
Appendix A).

For the purposes of our construction of a network attractor,
we assume that G contains no loops of order one, no loops
of order two, and no�-cliques. Figure 1 shows each of these
graph components schematically.

In terms of the adjacencymatrix, forG to contain no loops
of order one requires that

aii = 0 for all i; (5)

for G to contain no loops of order two requires that

ai j a ji = 0 for all i, j; (6)

and for G to contain no �-cliques requires that

ai j aika jk = 0 for all i, j, k. (7)

In our earlier work, we have demonstrated a network design
which can admit order-two loops and�-cliques (Ashwin and
Postlethwaite 2016), although this previous construction is
notmotivated by neural networks per se and requires a higher
dimensional system of ODEs (for a given graph) than the one
presented here.

Before we move into the details of the construction, we
briefly discuss our terminology. A graph G has vertices,
which correspond to (stable) equilibria in the phase space
of the dynamical system (1). Also within the phase space,
there exist excitable connections (sometimes abbreviated to
connections) between the equilibria, which correspond to the
edges of the graph. When a trajectory in the phase space
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moves between neighbourhoods of equilibria along a path
close to one of these connections, we say that a transition
between the equilibria has occurred. We refer to each of the
components of the dynamical system (1) as a cell, and say
that a cell j is active if φ(y j ) is close to one.

2.1 Realization of arbitrary directed graphs as
network attractors

We construct a weight matrix wi j that depends only on the
adjacency matrix ai j , and on four parameterswt ,ws ,wm and
wp. It is given by

wi j = wt+(ws − wt )δi j +(wp − wt )a ji +(wm − wt )ai j ,

(8)

where δi j is the Kronecker δ. This choice of wi j ensures
that wi i = ws , wi j = wp if there is a directed edge in
G from vertex j to i (i.e. a ji = 1), wi j = wm if there is a
directed edge inG from vertex i to vertex j (i.e. ai j = 1), and
wi j = wt otherwise. In later sections, we allow for different
weights along different edges by allowing wp to depend on

i and j (i.e. wp = w
i j
p ). We give an overview of how each of

the parameters affect the dynamics of the system in Sect. 2.2.
We write w = (ε, θ, ws, wm, wt , wp) ∈ R

6 to be a vec-
tor of all parameter values. The next result shows that for
the piecewise affine activation function and suitable choice
of parameters, there is an embedding of G as an excitable
network attractor for the input-free system.

Theorem 1 For any directed graph G with N vertices con-
taining no loops of order one, no loops of order two, and no
�-cliques, and any small enough δ > 0, there is an open set
Wex ⊂ R

6 such that if the parameters w ∈ Wex, then the
dynamics of input-free equation (1) on N cells with piece-
wise affine activation (3) and wi j defined by (8) contains an
excitable network attractor with threshold δ, that realises the
graph G.

Recall that by realiseswemean that all edges in the graph
are present as transitions between stable equilibria using per-
turbations of size at most δ.

Proof Wegive themain ideas behind theproof here, deferring
some of the details to Appendix B.We construct an excitable
network attractor in R

N for (1) with piecewise activation
function (3) and weight matrix (8). For any 1

2 > δ > 0, we
show there exist parameters w (with ε > 0 small) and stable
equilibria ξk (k = 1, . . . , N ) that are connected according
to the adjacency matrix ai j by excitable connections with
amplitude δ. Below, we provide an explicit set of parameters
that make such a realisation, and note that the realisation will
hold for an open set of nearby parameters.

We show inAppendixB that the equilibria ξk have compo-
nents (cells) that are close to one of four values YT , YD , YL ,
YA related to the edges attached to the corresponding vertex
k in the graph G. For any 0 < δ < 1

2 , we use the following
parameters:

ε = δ

8
, θ = 1

2
, ws = 1, wt = 0, (9)

and then wp and wm are given by

wp = θ − δ

2
, wm = −(ws − θ) − δ

2
. (10)

We then set

YA := ws, YL := wp = θ − δ

2
,

YT := wm = −(ws − θ) − δ

2
, YD := wt

(11)

We use square brackets and subscripts to identify the com-
ponents of points in phase space, that is, [ξk] j is the j th
component of ξk . Each ξk has:

– Exactly one cell that is Active: [ξk]k = YA

– A number of cells that are Leading: [ξk] j = YL (if akj =
1)

– A number of cells that are Trailing: [ξk] j = YT (if a jk =
1)

– All remaining cells areDisconnected: [ξk] j = YD (akj =
a jk = 0).

Note that the requirement of no loops of order one or two
and no �-cliques implies that this labelling is well defined.

From equilibrium ξk , there is an excitable connection to
any of the equilibria ξl with akl = 1, that is, any of the
Leading cells can become theActive cell. During a transition,
the remaining cells can be classified into six types, which are
identified in Fig. 2, and depend (for each j) on the values
of the four entries in the adjacency matrix a jk , akj , a jl and
al j . We label cell k as AT (Active–Trailing) and cell l as LA
(Leading–Active). Note that the lack of two cycles means
that the cases with a jk = akj = 1 or a jl = al j = 1 (a total of
seven possibilities) cannot occur, and the lack of �-cliques
mean that the cases with a jk = a jl = 1, akj = a jk = 1, or
akj = al j = 1 also cannot occur (which includes the cases
where a cell would switch from Leading to Trailing). The
remaining six possibilities are listed below.

– Type DD: a jk = akj = a jl = al j = 0; the cell is Dis-
connected throughout.

– TypeTD:a jk = 1,akj = a jl = al j = 0; the cell switches
from Trailing to Disconnected.
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Fig. 2 Schematic diagram showing a transition in the network attractor
of Theorem 1. Left: a schematic of the directed graph showing the eight
distinct types of vertex. Right: schematic time series; as the Active cell

changes there will be a transition in the connected Leading and Trail-
ing cells as shown. Which cell becomes active is controlled by a small
perturbation to the set of currently Leading cells

– TypeLD:akj = 1,a jk = a jl = al j = 0; the cell switches
from Leading to Disconnected.

– Type TL: a jk = al j = 1, akj = a jl = 0; the cell switches
from Trailing to Leading.

– TypeDT: a jl = 1, a jk = akj = al j = 0; the cell switches
from Disconnected to Trailing.

– TypeDL:al j = 1,a jk = akj = a jl = 0; the cell switches
from Disconnected to Leading.

The right panel in Fig. 2 shows how a transition from cell AT
active to cell LA active will occur in a general network.

To prove the existence of an excitable connection giving
a realisation, we consider a perturbation from ξk to the point

ζk,l = ξk + δel ,

where el is the unit basis vector, and we show in Appendix B
that, for small enough δ, ζk,l is in the basin of attraction of ξl
if akl = 1. This means there is an excitable connection from
ξk to ξl in this case. �	

We believe that for small enough δ and suitable choice
of weights, the realisation of G in Theorem 1 can be made
almost complete in the sense analogous to the similar notion
for heteroclinic networks (Ashwin et al. 2020), namely that
the set

⋃

ξ∈E
Bδ(ξ) \ �E

has zero measure. If a network realization is almost com-
plete, then almost all trajectories starting close to some ξk
will remain close, or will follow a connection corresponding
to the realization. We do not have a proof of this, though
Appendix B.2 shows that for small enough δ, ζk,l is in the
basin of attraction of ξl if and only if akl = 1. This does
not preclude the possibility that there exist perturbations in
Bδ(ξi ) other than ζk,l resulting in trajectories asymptotic to

ξl , or indeed to other attractors. Our numerical investigations
suggest that by choosing wt nonzero and large enough, any
connections to other equilibria can be suppressed. This is
discussed more in Sects. 3.4 and 4.

2.2 Excitable networks for smooth nonlinearities

For small enough ε, the smooth activation function (2) can
be made arbitrarily close to the piecewise activation func-
tion (3), and so we expect Theorem 1 to also apply in the
smooth case, but do not give a proof here. However, through-
out Sect. 3 we use the smooth activation function (2) in our
examples. We use

ε = 0.05, θ = 0.5, ws = 1,

wm = −0.7, wp = 0.3, wt = 0
(12)

as our default parameter set (compare this choice of parame-
ters with that given in equations (9) and (10), with δ = 0.4),
though there will be an open set of nearby parameters with
analogous behaviour. In Sect. 3, we provide several examples
of using this choice of weight matrix to realise a graph G.

From equation (11), we can see that the parameter choices
directly affect the location of the equilibria ξk in phase space.
As we will see in the following sections, the parameters also
have further effects on the dynamics. In particular, the rel-
ative sizes of the parameters wp and θ determine whether
the dynamics are excitable or spontaneous: essentially, for
ε small enough, wp needs to be smaller than θ to observe
excitable dynamics. If wp is too large, then the equilibria ξk
cease to exist: periodic orbits can exist instead. The parameter
wm controls how fast a Trailing cell decays, and the param-
eter wt controls the suppression effects when there is more
than one Leading cell. We discuss the effects of wt in more
detail in Sect. 3.3.

For a smooth activation function such as (2) that is invert-
ible on its range, there is a useful change of coordinates to
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Ji = φ(yi ) (a similar transformation ismade inBeer (1995)).
The input-free equations (1) then become

J̇i = 1

ε
Ji (1 − Ji )

⎛

⎝−φ−1(Ji ) +
∑

j

wi j J j

⎞

⎠ , (13)

where each Ji ∈ (0, 1) (which is the domain of the function
φ−1), and

φ−1(x) = θ − ε ln

(
1 − x

x

)
.

Each vertex of the graphG is realised in the phase space of
the Jk variables by the stable equilibrium with one of the Jk
close to 1 and the remainder close to 0. With a slight abuse of
notation, we refer to these equilibria as ξk . As we will see in
the examples that follow, the parameters can be chosen such
that the dynamics are close to a saddle-node bifurcation. In
general, the system is near a degenerate bifurcationwith codi-
mensiond = ∑N

k=1 Ok , whereOk is the out-degree of the kth
vertex for the graphG. This corresponds to there being simul-
taneous saddle-node bifurcations (with Ok-fold degeneracy)
at each equilibrium ξk corresponding to each of the outgoing
directions. This bifurcation has global connections analogous
to a saddle-node on an invariant circle (SNIC)/saddle-node
homoclinic bifurcation: there are connecting orbits between
the saddle nodes that reflect the network structure.

If parameters are chosen as in Theorem 1 (such that none
of the saddle-node bifurcations have occurred), then for each
k there will be a stable equilibrium ξk and a group of nearby
saddles and sources. A small perturbation near ξk can move
the trajectory out of the basin of attraction of ξk to effect
a transition to another equilibrium: this gives an excitable
connection from ξk .

If parameters are chosen such that all saddle-node bifur-
cations have been passed (for example, by sufficiently
increasing the value of wp), then the flow through the cor-
responding region of phase space near where the sink ξk
was will be slow, and all equilibria in this region will have
been destroyed. However, we will still observe intermittent
dynamics as the trajectory passes through this region (Stro-
gatz 1994, p99). In this case, we refer to a region where (a)
there is a unique local minimum of |ẏ| and (b) a large subset
of initial conditions in this region pass close to this mini-
mum, as a bottleneck region Pk , and refer to a spontaneous
transition past Pk . (This is also called the ghost of a saddle-
node bifurcation in Strogatz (1994).) If all the connections
corresponding to edges in the graph G are excitable, then the
system contains an excitable network attractor. If all connec-
tions are spontaneous, then we typically see a periodic orbit,
although we do not prove this.

For other cases (e.g. where the parameter wp is assumed
to depend on i, j in (8)), some saddle-node bifurcations will
have occurred, but otherswill have not. In this case,we expect
that some connections will be excitable, and for others, tra-
jectories will automatically pass through bottleneck regions.

When there is a choice of two out-going connections,
one of which is excitable and the other of which is sponta-
neous, the one chosen by the trajectory will depend on noise
amplitudes and other effects: we expect there to be a rich
complicated local and indeed global dynamical behaviour,
the analysis of which is beyond the scope of this paper.

3 Examples for the smooth activation
function

3.1 Two vertex graph

For our first example, we consider the connected graph with
two vertices and a single edge joining them, that is a12 = 1,
and ai j = 0 for (i, j) 
= (1, 2).We use bifurcation analysis to
show that the transition between spontaneous and excitable
dynamics is caused by a saddle-node bifurcation and find an
approximation to the location of the saddle-node bifurcation
in parameter space.

The two-dimensional system of equations is:

ẏ1 = −y1 + wsφ(y1) + wmφ(y2), (14)

ẏ2 = −y2 + wsφ(y2) + wpφ(y1). (15)

In the Ji variables, this becomes

J̇1 = 1

ε
J1(1 − J1)

(
−φ−1(J1) + ws J1 + wm J2

)
,

J̇2 = 1

ε
J2(1 − J2)

(
−φ−1(J2) + ws J2 + wp J1

)
, (16)

where (J1, J2) ∈ (0, 1)2. We note the following properties
of the function g : (0, 1) → R, with g(x) = φ−1(x) − ws x :

g′(x) = ε

x(1 − x)
− ws, g′′(x) = ε(2x − 1)

x2(1 − x)2
,

lim
x→0

g(x) = −∞, lim
x→1

g(x) = ∞,

g

(
1

2

)
= θ − ws

2
, g′

(
1

2

)
= 4ε − ws .

If ws > 4ε, then g has local extrema at x+ and x−, where

x± = 1

2
±

√
1

4
− ε

ws
. (17)
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The J1 and J2 nullclines of system (16) are at, respectively

J2 = 1

wm
g(J1) and J1 = 1

wp
g(J2). (18)

In Fig. 3, we show a sketch of the phase space of (16); the J1
nullcline is shown in blue, and the J2 nullcline in red. Solid
dots show stable equilibria, open dots show unstable equilib-
ria, and arrows show the direction of flow.Note thatwe do not
include any nullclines at Ji = 0 or Ji = 1 because they are
not in the domain of equations (16). As wp is decreased (in
the figures, moving from left to right), a saddle-node bifur-
cation creates a pair of equilibrium solutions.

Lemma 1 If θ < ws , and 0 < ε � 1, then a saddle node
bifurcation occurs in system (16) when

wp = wSN
p ≡ ε log ε + θ − ε(1 + logws) + ε2

ws
+ O(ε3).

(19)

To begin the proof, we note that the saddle-node bifurca-
tion will occur when the points A and B (marked by squares
in the left-hand panel of Fig. 3) coincide. These points are
defined as the intersection of the nullclines with the line at
J2 = x− = ε

ws
+ O(ε2), i.e. at the local extrema of the J2

nullcline.
Let the J1 coordinate of A be

J A
1 = 1

wp
g(x−)

= 1

wp

(
ε log ε + θ − ε(1 + logws) + ε2

ws

)
+ O(ε3)

Let the J1 coordinate of B be J B
1 , and write J B

1 = 1−εB ,
for some εB � 1. Substituting this, along with J2 = x−,
into the expression for the J1 nullcline in (18) gives

x− = 1

wm
g(1 − εB)

Expanding in terms of the small quantities ε and εB , this
gives

ε

ws
+ O(ε2) =
1

wm

(
θ − ε(log εB + εB + O(εB

2
)) − ws + εBws

)

which we rearrange to find

log εB = θ − ws

ε
+ ws

εB

ε
+ O(1).

Since we are assuming θ < ws , then εB is exponentially
small, that is εB = O(εn) for all n ∈ N, thus, J B

1 = 1 +
O(εn).

The points A and B collide when J A
1 = J B

1 , that is, when

wp = wSN
p ≡ θ + ε log ε − ε(1 + logws) + ε2

ws
+ O(ε3).

�	
For the default parameters (12), except for wp, we find

wSN
p = 0.3027 (4 s.f.). Note that this means forwp = 0.3we

are close to saddle node and there is an excitable connection
with small δ > 0. More generally, note that for any fixed ws ,
as ε → 0 we have wSN

p → θ as expected from Theorem 1.
The following result gives an approximation of the posi-

tions of the equilibria that are created in the saddle-node
bifurcation. Methods similar to those used in this proof are
used in later sections for larger networks.

Lemma 2 If θ < ws , 0 < ε � 1, and 0 < η � ε
4 , then if

wp = wSN
p − η, the system (16) has a pair of equilibria at

(J1, J2) =
(
1,

ε

ws
±

√
2ηε

ws

)
+ O(ε2).

Recall that x− = ε
ws

+ O(ε2). Thus,

g′′(x−) = −w2
s

ε

√

1 − 4ε

ws
= −w2

s

ε
+ 2ws + O(ε).

Using the earlier results on the location of the J1 nullcline,
we will have equilibria when

g(J2)

wp
= 1 + O(εn).

Expanding g about J2 = x− and writing wp = wSN
p − η

gives,

g(J2) = g(x−) + (J2 − x−)2

2
g′′(x−)

+ O((J2 − x−)3),

= wSN
p − η + O(εn),

(J2 − x−)2 = − 2η

g′′(x−)
+ O(ε3),

where the final line follows because g(x−) = wSN
p . Substi-

tuting for g′′(x−) then gives the result. �	

3.2 Three vertex cycle

Our second example is the cycle between three vertices
shown schematically in Fig. 4. As a heteroclinic cycle
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Fig. 3 Schematic illustration of the phase space and nullclines of the
system (16). The blue curves are the J1 nullclines, and the red curves
are the J2 nullclines. Solid dots show stable equilibria, and open dots
show unstable equilibria. The parameter wp is decreased from left fig-

ure to right figure, creating two further equilibrium in a saddle-node
bifurcation. The squares labelled A and B are referred to in the proof
of lemma 1

Fig. 4 Graph of the three vertex cycle

between equilibria, this system has been studied extensively
in the fields of populations dynamics (May and Leonard
1975), rotating convection (Busse andHeikes 1980) and sym-
metric bifurcation theory (Guckenheimer andHolmes 1988).

We give some numerical examples of the dynamics of this
system as realised by the CTRNN excitable network and use
the continuation softwareAUTO (Doedel et al. 2007) to show
that the transition from excitable to spontaneous dynamics
occurs at a saddle-node on an invariant circle (SNIC) bifur-
cation generating a periodic orbit.

The deterministic equations realising this graph are:

ẏ1 = −y1 + wsφ(y1) + wmφ(y2) + wpφ(y3),

ẏ2 = −y2 + wsφ(y2) + wmφ(y3) + wpφ(y1),

ẏ3 = −y3 + wsφ(y3) + wmφ(y1) + wpφ(y2). (20)

We also consider the noisy case, using the setup given in
equations (4).

Figure 5 shows sample time series for two different param-
eter sets. On the left, we show a noisy realisation with
wp = 0.3, and on the right, a periodic solution in the deter-
ministic system (equations (1)) with wp = 0.305.

Note that in both cases, for this system the yk variables
oscillate between three values: high (yk = YA = ws = 1),
intermediate (yk = YL = wp = 0.3), and low (yk = YT =
wm = −0.7), as the cells shift between Active, Trailing and
Leading. Only the first of these corresponds to Jk ≈ 1, as can
be seen in the time series plots of the Jk variables in the lower
panels of the figure, the other two correspond to Jk ≈ 0.

Wecompute a bifurcation analysis of the system (20) using
the continuation software AUTO (Doedel et al. 1997).

Figure 6 shows a bifurcation diagram of this system as
wp is varied. Stable solutions are shown in red. There is
a saddle-node on an invariant circle (SNIC) bifurcation at
wp = wSN IC

p ≈ 0.30287. For wp < wSN IC
p , the diagram

shows a stable equilibrium solution with y1 ≈ YA = 1 (and
y2 ≈ YL , y3 ≈ YT ). As wp increases through wSN IC

p , this
equilibrium disappears in a SNIC bifurcation creating a sta-
ble periodic orbit. Note that the period of the periodic orbit
asymptotes to∞ as the SNIC bifurcation is approached. Due
to the symmetry, there are of course two further pairs of equi-
libria, one pair with y1 ≈ YT , y2 ≈ YA, y3 ≈ YL , and another
with y1 ≈ YL , y2 ≈ YT , y3 ≈ YA. The symmetry causes
three saddle-node bifurcations to occur simultaneously, cre-
ating the periodic orbit. If we were to instead choose the wp

to be different in each of the lines in (20), the saddle-nodes
would occur independently, and a periodic orbit would exist
only if all three wp’s were greater than wSN IC

p .
The time-series on the left-hand side of Fig. 5 has wp =

0.3 < wSN IC
p . Without noise, at these parameter values,
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Fig. 5 For the three-vertex cycle (20), the top row of figures shows time
series of the yk variables in the excitable (left) and spontaneous (right)
cases. In the left column, wp = 0.3 and σ = 0.05. In the right column,

wp = 0.305 and σ = 0. The bottom row shows the Jk variables. Other
parameters are ε = 0.05, θ = 0.5, ws = 1, wm = −0.7

Fig. 6 For the three vertex cycle with equations (20), the figure shows a
bifurcation diagram aswp is varied. The top panel shows the y1 coordi-
nate of equilibrium solutions, and the maximum value of y1 for periodic
solutions. The lower panel shows the period of the periodic solutions.
Equilibrium solutions are shown by a thin line, and periodic solutions
by a thick line. Stable solutions are shown in red. Bifurcation points are
indicated by various shapes: Hopf bifurcations by circles, saddle-node

bifurcations by diamonds, saddle-node of periodic orbits by triangles,
and saddle-node on invariant circles (SNIC) by squares. Note that there
may be two squares for a single SNIC bifurcation because themaximum
value of y1 on the periodic orbit is not the same as the value of y1 for
the equilibria undergoing the saddle-node bifurcation. The SNIC bifur-
cation labelled at wp = wSN IC

p ≈ 0.30287 is the transition between
excitable and spontaneous dynamics
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2

1

43

Fig. 7 Graph of the four vertex Kirk–Silber network

the system would remain at one equilibrium point indefi-
nitely. The noise acts as inputs pushing the trajectory along
the excitable connections. The time series on the right-hand
side of Fig. 5 has wp = 0.305 > wSN IC

p and shows the
periodic orbit which has resulted from the SNIC bifurcation.

We note that this SNIC bifurcation occurs at approxi-
mately the same value of wp as the saddle-node bifurcation
found in Sect. 3.1. This is not surprising; using similar
methods to those in the previous section, we can show that
to lowest order in ε, the SNIC bifurcation occurs when
wp = wSN

p . For wp < wSN IC
p , there thus exists an excitable

network in the sense defined in appendix A.

3.3 Four node Kirk–Silber network

For our next example, we consider a graph with the structure
of the Kirk–Silber network (Kirk and Silber 1994), shown
schematically in Fig. 7. This graph has one vertex which has
two outgoing edges, and the dynamics here are somewhat
different to vertices with only one outgoing edge. The bulk
of this section is devoted to an analysis of these differences,
in particular, the possibility of an additional equilibrium in
the network attractor with two active cells.

The corresponding deterministic equations for this net-
work are (moving immediately into the Ji variables):

J̇1 = 1

ε
J1(1 − J1)

(−φ−1 J1 + ws J1 + wm J2 + wp J3 + wp J4
)
,

J̇2 = 1

ε
J2(1 − J2)

(−φ−1 J2 + wp J1 + ws J2 + wm J3 + wm J4
)
,

J̇3 = 1

ε
J3(1 − J3)

(−φ−1 J3 + wm J1 + wp3 J2 + ws J3 + wt J4
)
,

J̇4 = 1

ε
J4(1 − J4)

(−φ−1 J4 + wm J1 + wp4 J2 + wt J3 + ws J4
)
.

(21)

We can break the symmetry between J3 and J4 by choos-
ing wp3 
= wp4 . In fact, in what follows, we will frequently
writewp3 = wp4 +�w, for�w > 0, and choosewp4 = wp

for simplicity.
We consider first the dynamics near each of the vertices

that have exactly one outgoing edge (vertices 1, 3 and 4

Fig. 8 Schematic illustration of the nullclines of the system (22) system
along the surface J2 = 1. The blue curves are the J3 nullclines, and the
red curves are the J4 nullclines. In the upper panel, wt = 0.05, wp3 =
0.30, wp4 = 0.298. In the lower panel, wt = −0.05, wp3 = 0.306,
wp4 = 0.304. The dashed lines show the where the nullcline would lie
if wt = 0

in the graph; see Fig. 7). Again using the same techniques
that were used in Sect. 3.1 (lemma 2), we can show that for
wp, wm, wt < θ < ws , and wp = wSN

p + η, 0 < η < ε
4 ,

there exist equilibria solutions at, for example

(J1, J2, J3, J4) =
(
1,

ε

ws
±

√
2ηε

ws
, 0, 0

)
+ O(ε2).

That is, there is a transition from excitable to spontaneous
dynamics (in this case between cells 1 and 2, but also between
cells 3 and 1 and cells 4 and 1) as wp is increased through
wSN

p .
The dynamics close to the vertex with two outgoing

connections (vertex 2) is modified by the presence of the
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(a) (b)

(c) (d)

Fig. 9 The figures show time series of simulations of the y j variables in the Kirk–Silber type network (21). In (a), wp = 0.305, and σ = 0; in (b),
wp = 0.3 and σ = 0.05; in (c) wp = 0.315, and σ = 0; in (d), wp = 0.315 and σ = 0.05

additional parameterwt . Consider the three dimensional sub-
system of (21) with J1 = 0, that is:

J̇2 = 1

ε
J2(1 − J2)

(
−φ−1 J2 + ws J2 + wm J3 + wm J4

)

J̇3 = 1

ε
J3(1 − J3)

(
−φ−1 J3 + wp3 J2 + ws J3 + wt J4

)

J̇4 = 1

ε
J4(1 − J4)

(
−φ−1 J4 + wp4 J2 + wt J3 + ws J4

)
.

(22)

We can perform a similar calculation to that shown in
Sect. 3.1 to show that there is a section of the J2 null-surface
which lies asymptotically close to the surface J2 = 1. Equi-
libria solutions exist on this null-surface if the J3 and J4
null-surfaces intersect there, that is, if there are solutions to
the pair of equations

g(J3) = wp3 + wt J4, (23)

g(J4) = wp4 + wt J3. (24)

We assume without loss of generality that wp3 > wp4
(i.e. �w > 0) and then the arrangement of these curves is in
one of the configurations shown in Fig. 8. If wt < 0 (lower
panel), equilibria solutions exist (i.e. the red and blue curves
intersect) for a range of wp3 and wp4 with both larger than
wSN

p : that is, the transition to spontaneous dynamics happens
at a larger value of wp j (than if wt = 0). If wt > 0 (upper
panel), the opposite happens: that is, the transition to spon-
taneous dynamics occurs at a smaller value of wp j . Solving
these equations exactly requires solving a quartic equation,
and the resulting expression is not illuminating. We label

the value of wp at which this transition from spontaneous
to excitable dynamics occurs as wSN ′

p , and note that this is a
function ofwt ,ws , ε, θ as well as more generally, the number
of Leading directions from that cell.

For the specific system (21), with wp3 = wp4 +
�w = wp + �w, we thus have two conditions. If wp <

min(wSN
p , wSN ′

p − �w), then the system is excitable along

all connections. If wp > max(wSN
p , wSN ′

p − �w), then a
periodic orbit will exist. If neither of these conditions holds,
then we will see excitable connections in some places and
spontaneous transitions in others.

In Fig. 9, we show some example time-series of the sys-
tem (21) (in the yk coordinates). In panel (a), parameters are
such thatwp > max(wSN

p , wSN ′
p −�w), sowe see a periodic

solution in the deterministic system.Note that the y3 (yellow)
coordinate becomes close to YA = 1 during this trajectory,
but the y4 (purple) coordinate does not: it switches between
YL = 0.3, YD = 0 and YT = 0.7. In panel (b), parameters
are such thatwp < min(wSN

p , wSN ′
p −�w), so without noise

the trajectory would remain at a single equilibrium solution.
Here, we add noise with σ = 0.05, and the trajectory can be
seen exploring the network. Note that there are some transi-
tions between ξ2 (y2 is red) and ξ3 (y3 is yellow), and some
from ξ2 to ξ4 (y4 is purple). In panels (c) and (d), we increase
wp further away from the saddle-node bifurcation (further
into the regime of spontaneous transitions) and observe some
qualitative differences in the trajectories. In the deterministic
case (c), the periodic solution now transitions from near the
bottleneck region P2 to a region of phase space where y3 and
y4 are both Active. We label this region of phase space as
P3,4. In the noisy case (d) (which is also in the spontaneous
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Fig. 10 Behaviour of periodic orbits in the Kirk–Silber-type four-node
network (21) as the parameterwt is varied. The top panel showsmax(y3)
(blue) and max(y4) (red) along the periodic orbit. The bottom panel
shows the period of the orbit on varying wt

regime), the trajectory makes transitions from the bottleneck
region P2 to each of P3, P4, and to P3,4.

In the above simulations, we have used wt = 0, but
we observe that the type of qualitative behaviour observed
depends both on the parameters wp and wt . Specifically, a
sufficiently negative wt provides a suppression effect, mean-
ing that only a single cell yk can be active at any one time,
but the transitional value ofwt depends onwp. In Fig. 10, we
show maximum values of y3 and y4 along the periodic orbits
as wt is varied. It can be seen clearly here that the transition
between periodic orbits which visit P3 (where max(y3) is
significantly larger than max(y4)) and those which visit P3,4
(where max(y3) ≈ max(y4)) is quite sharp.

We extend these results to show the behaviour as both
parameters wp and wt are varied in Fig. 11. The data in
this figure show the observed behaviours for both noisy and
deterministic systems as the parameterswp andwt are varied.
The red lines are the curves wp = wSN

p (dotted) and wp =
wSN ′

p (dashed). If wp is above both of these lines, then all
transitions are spontaneous, and so a periodic orbit exists in
the system. If wp lies below either one (or both) of these
lines, then at least one of the transitions will be excitable and
so there will be no periodic solutions. The black line shows
the boundary between those periodic solutions which visit
P3 (to the left of the black line) and those which visit P3,4
(to the right of the black line), as determined by the location
of the sharp transition in calculations similar to those shown
in Fig. 10 for a range of wp. The background colours are
results from noisy simulations. The colour indicates the ratio
of transitions to P3,4 to the total number of transitions to
P3, P4 and P3,4. Interestingly, the noisy solutions require a
much larger value of wt than the deterministic ones to have
a significant proportion of transitions to P3,4.

These changes in qualitative dynamics can be explained
in terms of the three-dimensional subsystem with J1 = 0,

given by equations (22). In this three-dimensional system,
there are stable equilibria at

(J2, J3, J4) = (0, 1, 0) + O(ε)

(J2, J3, J4) = (0, 0, 1) + O(ε)

(J2, J3, J4) = (0, 1, 1) + O(ε)

as well as further unstable/saddle equilibria. Recall that these
equilibria are not on the boundaries of the box (which are not
part of the domain). In Fig. 12, we show solutions from the
full four-dimensional system (21) projected onto the three-
dimensional space with J1 = 0. In panel (a), we show the
periodic solutions from the deterministic systems for five dif-
ferent values of wp, ranging from wp = 0.309 (left curve,
dark purple), towp = 0.3096 (right curve, red) in increments
of 0.0002. It can be seen that the first two of these trajectories
approach the saddle equilibria (marked as a blue dot) from
one side of its stable manifold, and the latter three from the
other. The first three thus visit P3, and the latter three visit
P3,4. It is the transition of the periodic orbit across the stable
manifold which results in the rapid change in the qualita-
tive behaviour of the periodic orbit and likely indicates that
a homoclinic bifurcation to this saddle point separates these
behaviours. That is, the sharp transition in T in Fig. 10 should
actually extend to ∞ on both sides. In panel (b), we show
both noisy and deterministic trajectories with wp = 0.315.
Note that only one of the noisy trajectories follows the deter-
ministic trajectory closely: the majority visit P3.

3.4 A ten node network

In this section, we demonstrate the method of construction
described in Sect. 2 for a larger network. Specifically, we
randomly generated a directed graph between 10 vertices,
with the constraints that it contained no one-loops, two-loops
or �-cliques, and such that the graph does not have feed-
forward structure (i.e. you cannot get ‘stuck’ in a subgraph
by following the arrows). The graph we consider is shown in
Fig. 13.

We ran one simulation of the deterministic CTRNN sys-
tem (1), and two simulations of the noisyCTRNN system (4),
and in each case, randomly generated the entries for the wp

in the equation (8). For the deterministic system, the entries
of w

i j
p were chosen independently from the uniform distri-

bution U (0.32, 0.34). For the noisy systems, the entries of
w
i j
p were chosen independently from the uniform distribu-

tion U (0.30, 0.32). The remaining parameters were set at
the default parameter values given in (12) except wt = −0.3
for the deterministic system, and one of the noisy systems,
and σ = 0.01 for the noisy systems. Note that for the deter-
ministic parameter values there are bottlenecks in the phase
space close to the locations in phase space for the excitable
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states that are present for the parameter values used in the
stochastic cases.

The results of the simulations are shown in Figs. 14, 15
and 16. For the deterministic simulation (Fig. 14), we see
that the system has an attracting period orbit, which visits
the nodes in the order 1 → 4 → 7 → 3 → 8. The entries of
w
i j
p were randomly generated as described above, and we do

not give them all here for space reasons, but we note that in
all cases in which a vertex in this cycle has two ‘choices’ for
which direction to leave (in the graph shown in Fig. 13), the
attracting periodic orbit chooses the more unstable direction.
That is, if i is a vertex in the above cycle, and if i → j
and i → k are connections in the directed graph, with i →

j being a part of the attracting periodic orbit, then w
j i
p >

wki
p . Although we do not prove here that this will always be

the case, it is intuitively what one might expect, that is, the
connection from i to j is stronger than the connection from
i to k.

In the noisy simulation with wt = −0.3 (Fig. 15), the
equilibria are not visited in a regular pattern, but random
choices are made at each equilibria from which there is more
than one direction in which to leave. See, for instance, the
transition 3 → 8 at t ≈ 75, and the transition 3 → 10 at
t ≈ 155. The length of time spent near each equilibria is
also irregular; note for instance, the variable amount of time
spent near ξ1 and ξ3. In this simulation, because the transverse

Fig. 11 Behaviour of the Kirk–Silber-type four-node network (21) as
the parameters wt and wp are varied. The red lines are the curves
wp = wSN

p (dotted) and wp = wSN ′
p (dashed; determined numerically

by solving a quartic equation). For wp above, both of these lines peri-
odic solutions exist in the deterministic system. To the left of the black

line, these periodic solutions visit P3, to the right they visit P3,4. The
background colours are results from noisy simulations with σ = 0.05.
The colour indicates the ratio of transitions to P3,4 to the total number
of transitions to P3, P4 and P3,4. The labelled dots give the parameter
values of the time-series plots in Fig. 9

(a) (b)

Fig. 12 The figures show trajectories for the system (21) projected
onto the three-dimensional space with J1 = 0. In panel (a), five peri-
odic trajectories in the deterministic system are shown for different
values of wp , ranging from wp = 0.309 (left curve, dark purple), to
wp = 0.3096 (right curve, red) in increments of 0.002. In panel (b), we
set wp = 0.315 (as in panels (c) and (d) of Fig. 9). Noisy trajectories

(σ = 0.05) are shown in blue, and the periodic orbit of the deterministic
system is shown in purple. In both panels, an equilibrium of the three-
dimensional system (22) is shown by a blue dot. Other parameters are
ε = 0.05, θ = 0.5, wt = 0, ws = 1, wm = −0.5. The arrows indicate
the direction of flow
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Fig. 13 A example of a directed graph between ten nodes with no loops
of order one or two and no�-cliques. Three timeseries from realisations
of this as a network using CTRNNs are shown in Figs. 14–16

parameter wt is sufficiently negative, only one node is active
at any given time.

By contrast, the simulation in Fig. 16 has wt = 0. Here,
the transitions again are made randomly, but without the sup-
pression provided by the transverse parameter it is possible
to have multiple cells active at once. For instance, at around
t = 55, both cells 1 and 5 become active at the same time;
they were both leading cells from the previously active cell
6. As cells 1 switches off, cell 4 becomes active, and as cell
5 switches off, cell 8 becomes active. The system continues
to have two active cells around t = 250, at which point a
third cell also becomes active. If the trajectory was to run for
longer, then the number of active cells could decrease again,
if an active cell suppresses more than one previously active
cells.

The entire excitable network attractor for this level of noise
is clearly more complicated than the design shown in Fig. 13,
in that additional equilibria (with more than one active cell)
are accessible to those encoded and described in Theorem 1.
An interesting extension of this work would be to understand
which additional equilibria appear in a network attractor gen-
erated from a given directed graph in this manner: Fig. 16
suggests that at least seven levels of cell activity are needed
to uniquely describe the states that can appear when more
than one cell becomes “active”. In particular, when a cell is
Trailing to more than one Active cell, the value of y j for that
cell is even lower than YT (compare the top panel of Fig. 16
with the schematic in Fig. 2).

4 Discussion

The main theoretical result of this paper is Theorem 1, which
states that it is possible to design the connection weight

matrix of a CTRNN such that there exists a network attractor
with a specific graph topology embedded within the phase
space of the CTRNN. The graph topology is arbitrary except
for minor restrictions: namely there should be no loops of
order one or two, and no �-cliques. Theorem 1 assumes
a piecewise affine activation function, but the examples in
Sect. 3 suggest that the results generalise to CTRNN using
any suitable smooth activation function.More generally, note
that the coupled network is in some sense close to N simul-
taneous saddle-node bifurcations. However, the units are not
weakly coupled and indeed this is necessary to ensure that
when one cell becomes active, the previous active cell is
turned off.

Theorem 1 proves the existence of an excitable network
with threshold δ where not only the connection weights,
but also ε and θ (properties of the activation function) may
depend on δ. We believe that a stronger result will be true,
namely that δ can be chosen independent of properties of the
activation function, and also that this can be made an almost
complete realisation by appropriate choice of parameters.

Conjecture 1 Assume the hypotheses on the directed graph
G with N vertices as in Theorem 1 hold. Assume that ε > 0
is small and θ > 0. Then, there is a δc(ε, θ) > 0 such that
for any 0 < δ < δc there is an open set Ŵex ⊂ R

4. If
the parameters (ws, wm, wt , wp) ∈ Ŵex, then the dynamics
of input-free equation (1) with N cells and piecewise affine
activation function (3) and wi j defined by (8) contains an
excitable network attractor with threshold δ that gives an
almost complete realisation of the graph G.

The construction in Theorem 1 uses a comparatively
sparse encoding of network states—each of the N vertices in
the network is associated with precisely one of the N cells
being in an active state. Indeed, the connection weights (8)
assign one of only four possible weights to each connec-
tion, depending on whether that cell can become active next,
was active previously or neither. Other choices of weights
will allow more dense encoding: and many more than N
excitable states within a network of N cells. However, the
combinatorial properties of the dynamics seem to be much
more difficult to determine and presumably additional con-
nection weightings will be needed, not the just four values
considered in Theorem 1.

Section 3 illustrates specific examples of simple excitable
networks for smooth activation function (2) on varying
parameters—this requires numerical continuation to under-
stand dependence on parameters even for fairly low dimen-
sion. For this reason, we expect that a proof of an analogous
result to Theorem 1 for the smooth activation function may
be a lot harder. These examples also give some insight into
bifurcations that create the excitable networks.

In general, there is no reason that the realisation con-
structed in Theorem 1 is almost complete (in the sense that
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Fig. 14 Trajectories of the CTRNN network for the directed graph
shown in Fig. 13, using the deterministic model (1). The top panel
shows the y j coordinates, where the colours correspond to the node
colours in Fig. 13. In the lower panel, each horizontal row corresponds

to one node (as labelled on the vertical axis), and the colour is blue when
the corresponding J j coordinate is close to zero, and yellow when it is
close to one. That is, the yellow segments indicate when each node is
active. Parameters are as described in the text

Fig. 15 Trajectories of the CTRNN network for the directed graph shown in Fig. 13, using the stochastic model (4). Lines and colours are described
in Fig. 14. Parameters are as described in the text, here wt = −0.3
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Fig. 16 Trajectories of the CTRNN network for the directed graph shown in Fig. 13, using the stochastic model (4). Lines and colours are described
in Fig. 14. Parameters are as described in the text, here wt = 0

almost all initial conditions in Bδ(ξk) evolve towards some ξl
with akl = 1, analogous to (Ashwin et al. 2020, Defn 2.6)).
If it is not, then other attractors may be reachable from the
excitable network. Conjecture 1 suggests that the realisation
can be made almost complete for small enough δ: we expect
that for this we will requirewt to be sufficiently negative. If δ
is too large, we cannot expect almost completeness: there are
other stable equilibria (notably the origin) that can be reached
with large perturbations, and the simulation in Fig. 16 shows
that other equilibria may be reachable from the network. It
will be a challenge to strengthen our results to show that the
excitable network is an almost complete realization. How-
ever, the examples studied in Sect. 3 confirm that, at least for
relatively simple graphs, this conjecture is reasonable.

Our theoretical results are for networkswith excitable con-
nections. We expect much of the behaviour described here is
present in the spontaneous case, if the coupling weights are
chosen such that equilibria are replaced with bottlenecks. In
the absence of noise, we expect to see a deterministic switch-
ing between slowmoving dynamics within bottlenecks. This
dynamical behaviour is very reminiscent of the stable hetero-
clinic channels described, for example, in (Afraimovich et al.
2004; Rabinovich et al. 2020). However, stable heteroclinic
switching models require structure in the form of multiplica-
tive coupling or symmetries that are not present in CTRNN
or relatedWilson–Cowan neural models (Wilson and Cowan
1972) (see Chow and Karimipanah 2020 for a recent review
of related neural models). Other models showing sequential

excitation include (Chow and Karimipanah 2020): this relies
on a fast-slow decomposition to understand various different
modes of sequential activation in a neural model of rhythm
generation. It will be an interesting challenge to properly
describe possible output dynamics of our model in the case
of bottlenecks.

We remark that asymmetry of connection weights is vital
for constructing a realisation as an excitable networks—
indeed, the lack of two-cycles precludes a jk = akj = 1.
While this may be intuitively obvious, it was not so obvious
that we also need to exclude one-cycles and �-cliques in the
graph to make robust realisations.

Finally, although we do not consider specific natural or
machine learning applications ofCTRNNhere, the structures
found here may give insights that give improved training
for CTRNN. In particular, it seems plausible that CTRNN
may use excitable networks to achieve specific input-output
tasks (especially those requiring internal states). For exam-
ple, recent work (Ceni et al. 2020) demonstrates that echo
state networks can create excitable networks in their phase
space to encode input-dependent behaviour. It is also likely
there are novel optimal training strategies that take advan-
tage of excitable networks, for example, choosing connection
weights that are distributed close to one of the four values
we use.
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A Definition of excitable network

This appendix (which extends ideas in Ashwin and Postleth-
waite (2016)) gives formal definitions for excitable networks
considered in this paper. We say a system has an excitable
connection for amplitude δ > 0 from one equilibrium ξi to
another ξ j if

Bδ(ξi ) ∩ Ws(ξ j ) 
= ∅,

(where Bδ(ξ) is the open ball of radius δ centred at ξ ) and
this connection has threshold δth if

δth = inf{δ > 0 : Bδ(ξi ) ∩ Ws(ξ j ) 
= ∅}.

We define the excitable network of amplitude δ > 0 between
the equilibria E = {ξi } to be the set

�E =
N⋃

i, j=1

{t (x) : x ∈ Bδ(ξi ), t > 0} ∩ Ws(ξ j ).

Wesay the excitable network�E for amplitude δ realises a
graph G if each vertex vi in G corresponds to an equilibrium
ξi in �E and there is an edge in G from vi to v j if only if
there is a connection in �E for amplitude δ from ξi to ξ j .

B Proof of Theorem 1

As in equations (9) and (10), for any δ < 1
2 we choose

ε = δ

8
, θ = 1

2
, ws = 1, wt = 0, (25)

and then wp and wm are given by

wp = θ − δ

2
, wm = −(ws − θ) − δ

2
. (26)

Fig. 17 Illustration of a connection (shown in red)with amplitude δ > 0
from ξk to ξl , projected in the coordinates yk and yl . The points ξk , ξl
and 0 are linear sinks. The point ζk,l is within δ of ξl and limits to ξl in
forwards time. The grey areas are regions of width 4ε centred around
yk,l = θ where φP (yk) and φP (yl ) are non-constant: these contain
saddle and other equilibria (not shown)

We define equilibria ξk as in Sect. 2.1, where we write the
j th component of the equilibrium as [ξk] j :

[ξk] j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

YA if j = k,

YL if akj = 1,

YT if a jk = 1,

YD if akj = 0 and a jk = 0,

(27)

where

YA := ws = 1, YL := wp = θ − δ

2
,

YT := wm = −(ws − θ) − δ

2
, YD := wt = 0,

are the values of the Active, Leading, Trailing and Discon-
nected components, respectively. Note that

YT < YD < YL < θ − ε/2 < θ + ε/2 < YA. (28)

Asmentioned before, the hypotheses ofTheorem1 imply that
this labelling iswell defined andFig. 2 shows howa transition
from cell 1 active to cell 2 active will occur in a general
network. It is simple to check that (27) is an equilibrium
solution of (1) with activation function (3). Moreover, ξk is
linearly stable with n eigenvalues −1. We define [Jk] j :=
φP ([ξk] j ) then note that (28) implies that

[Jk] j := δk j ,

in terms of the Kronecker δk j .
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We consider two cases. Case 1 is where akl = 1 and we
expect to see a connection from ξk to ξl . Case 2 is akl = 0
and we do not expect a connection.

B.1 Case 1

Suppose akl = 1 (recall that the lack of 1-cycles means that
k 
= l), and then we define two regions of phase space, which
we label Rl and Rkl , as follows:

Rl =
{
y | y j > θ + δ

4
, j = l; y j < θ − δ

4
otherwise

}
,

Rkl =
{
y | y j > θ + δ

4
, j = l, k; y j < θ − δ

4
otherwise

}
.

The regions and the dynamics within them are shown
schematically in Fig. 17.

Within Rkl , if akl = 1, then the dynamics are governed
by the equations

ẏ j = f (b)
j := −y j + φ

(b)
j ,

where

φ
(b)
j :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ws + wm if j = k, (AT)

ws + wp if j = l, (LA)

wp if (ak j , a jk , al j , a jl ) = (1, 0, 0, 0), (LD)

wm if (ak j , a jk , al j , a jl ) = (0, 1, 0, 0), (TD)

wp if (ak j , a jk , al j , a jl ) = (0, 0, 1, 0), (DL)

wm if (ak j , a jk , al j , a jl ) = (0, 0, 0, 1), (DT)

wm + wp if (ak j , a jk , al j , a jl ) = (0, 1, 1, 0), (TL)

0 if (ak j , a jk , al j , a jl ) = (0, 0, 0, 0), (DD)

(29)

where the type of coordinate (see Fig. 2) is given in paren-
theses on each line. Within Rl , the dynamics are governed
by the equations

ẏ j = f (c)
j := −y j + φ

(c)
j , (30)

where

φ
(c)
j :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wm if j = k, (AT)

ws if j = l, (LA)

wp if al j = 1 and j 
= l, (DL/TL)

wm if a jl = 1, (DT)

0 if al j = 0 and a jl = 0, (LD/TD/DD)

(31)

The equilbrium ξl lies in the interior of the region Rl ,
whereas ξk lies in the interior of the regionRk . We show that
there is a connection of amplitude δ from ξk to any ξl with
akl = 1, by considering a trajectory starting at

ζk,l = ξk + δel ,

where el is a unit vector in the l-direction: clearly |ζk,l−ξk | =
δ (see Fig. 17). Note that

[ζk,l ] j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

YA if j = k,

YL + δ if j = l,

YL if akj = 1 and j 
= l,

YT if a jk = 1,

YD if akj = 0 and a jk = 0,

(32)

where YA, etc. are given in equation (11), and YL + δ =
θ + δ/2 > θ . We define [Jk,l ] j := φP ([ζk,l ] j ), and then

[Jk,l ] j = δ jk + δ jl .

Now, we note that ζk,l ∈ Rkl . We next show that a trajec-
torywith initial condition at ζk,l will asymptotically approach
ξl . We show first that the trajectory enters Rl in finite time.
Then, since inRl , the flow is linear, with stable equilibrium
ξl , all trajectories inRl eventually approach ξl .

Define Skl to be the region between Rl and Rkl , namely,

Skl =
{
y | θ − δ

4
≤ yk ≤ θ + δ

4
; yl > θ + δ

4
; y j < θ − δ

4
for j 
= k, l

}
.

First, consider the dynamics of all y j , with j 
= k, l. This
means that y j < θ−δ/4 for all points inTkl ≡ Rkl∪Skl∪Rl .
While the trajectory remains in Tkl , it can be shown that ẏ j
is negative along the line with y j = θ − δ/4. Hence, none of
the y j will leave Tkl .

Within Skl , the dynamics of yk and yl are governed by

ẏk = − yk + wm + φP (yk), (33)

ẏl = − yl + ws + wpφP (yk). (34)

Consider the equation for ẏk inRkl , Skl andRl , namely:

ẏk =

⎧
⎪⎨

⎪⎩

−yk + ws + wm if y ∈ Rkl ,

−yk + φP (yk) + wm if y ∈ Skl ,

−yk + wm if y ∈ Rl .

Recall that wm = −(ws − θ) − δ
2 , and 0 ≤ φP (yk) ≤ 1. We

can use these bounds to show that

ẏk ≤

⎧
⎪⎨

⎪⎩

−3δ

4
if y ∈ Rkl ,

− δ

4
if y ∈ Skl ,

Furthermore, if y ∈ Rl and yk > 0, then ẏk < −wm < 0.
In particular, we note that for y ∈ Tkl , with yk > 0, ẏk is
negative and bounded below zero.
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Now, consider the equation for ẏl in Rkl , Skl and Rl ,
namely:

ẏl =

⎧
⎪⎨

⎪⎩

−yl + ws + wp if y ∈ Rkl ,

−yl + ws + wpφP (yk) if y ∈ Skl ,

−yl + ws if y ∈ Rl ,

We use this to compute ẏl along the lower boundary of the
three regions, Rkl , Skl and Rl , that is, the line yl = θ + δ

4 ,
and we find

ẏl =

⎧
⎪⎨

⎪⎩

ws − 3δ
4 if y ∈ Rkl ,

ws − θ − δ
4 + (

θ − δ
2

)
φP (yk) > ws − 3δ

4 if y ∈ Skl ,

ws − θ − δ
4 if y ∈ Rl .

Since ws > 3δ
4 and ws > θ + δ

4 , we see that ẏl > 0 in all
three cases.

Combining our knowledge of ẏl and ẏk tells us that a tra-
jectory which starts inRkl , or more specifically, a trajectory
starting in a small neighbourhood of ζk,l will havemonotonic
decreasing yk component until (at least) yk = 0. Further-
more, the yl component cannot decrease below yl = 1

2 + δ
4 .

Thus, the trajectory will move through Skl and into Rl in a
bounded time.

WithinRl , ξl is a linearly stable fixed point. In summary,
we have demonstrated that if akl = 1, then there is a con-
nection from a δ-neighbourhood of ξk to ξl . Moreover, as the
equilibria are linearly stable and having a connection is an
open condition, the realisation will persist for an open set of
parameters.

B.2 Absence of excitable connections for edges
absent from G

Now, suppose that alk = akl = 0. Then, the dynamics for xk
and xl is shown schematically in Fig. 18. Equilibria are shown
with dots, and all equilibria shown in this figure are linearly
stable. Note that the equilibrium ξk has yk = YA = 1, and
yl = YD = 0. It is clear that there are no small perturbations
which allow for a connection between ξk and ξl .

For θ = 1/2, if δ < 1/4, then for any k and j 
= k such
that akj = 0, all trajectories starting in

ζk,l = ξk + aek + bel ,

with a2 + b2 ≤ δ2. In particular, perturbations of the form
(32) will return to ξk . This is because this set remains in the
region of validity for the equivalent of (30) for which the
only attractor is ξk . In the case, akl = 0 and alk = 1 a similar
argument holds as the phase portrait corresponds to Fig. 17
reflected in the diagonal.

This shows that no perturbations of amplitude δ within
the (xk, xl) plane that give a connection from ξk to ξl of

Fig. 18 Schematic diagram showing the dynamics in the yk -yl plane
when akl = alk = 0. Equilibria are shown with dots, and all equilibria
are linearly stable

amplitude δ. However, we cannot rule out the existence of
connections from other locations in Bδ(ξk) to ξl . This would
be needed to prove that the realisation is almost complete.
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