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Abstract
Many grant applications have a preliminary stage where only a select group are invited
to submit a full application. Similarly, procurement contracts by governments are often
awarded through a two-stage procedure. We model and analyze such environments
where the designer cares about the style of the application as well as its quality. The
designer has the option of choosing an initial stage, where contestants can enter and
learn about their desirability while the designer learns about their style. We determine
closed form solutions for equilibrium outcomes and designer payoffs and use this to
analyze whether or not a second stage is desirable, different rules for decidingwhowill
advance, and whether or not to communicate the number of contestants that qualify
for the second stage.
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T. R. Kaplan, D. Wettstein

1 Introduction

There are many examples of contests run in two stages. Often grant applications have
a preliminary stage where only some of the applications advance to the second stage.
The Leverhulme Foundation has several funding schemes that require two stages (for
instance for a research project grant): an outline application and a detailed application.1

In 2012, there were 908 applications to this scheme approximately 50% made it to
the second round and 40% of those received funding (20% of the original received
funding). This two-stage process is common for large grants of several UK funding
agencies (NERC, ESRC, etc.) as well as used in the establishment of centers for
research excellence (I-CORE) in Israel. In its ‘Second Wave’ of funding starting in
2013, the latter had 26 out of 67 applications advance to the second stage of which 12
were chosen for funding.

In architecture, it is common to hold a contest for determining a building design.
One of the earliest examples was a contest for the design to rebuild the Houses of
Parliament in 1836 after a fire. A recent prestigious example of such a contest is
when the Mumbai City Museum ran a design competition for a $45 million additional
wing (using Malcolm Reading Consultants to run the competition). Expressions of
interest were received from 104 architects worldwide with 8 teams shortlisted. The
jury, which consisted of 11 distinguished members, chose New York-based Steven
Holl as the winner. There are also a plethora of smaller architecture contests using two
stages. 2

We also note that such a practice is common in advertising. There is a call for
a request for a proposal (RFP) sent to half a dozen ad agencies that asks not only
background questions and who will be on the core team, but creative questions about
approach. After seeing the RFP responses, the top two or three are invited to present
the ideas (perhaps after feedback). 3 Other examples include government procurement,
talent show contests, and television series pilots.

There are two characteristics about these contests that are worth noting: (1) This
practice appears to be most common in areas where a particular preference or style
might be a major factor in selecting the winner. (2) It appears that sometimes (and
sometimes not) the proposed number of finalists is announced.

We find that (1) may be because the contestants are not aware of the preferences of
the designer, who may favor some contestants over others. This can be thought of as
the economics grant committee either preferring theoretical research over empirical
research or vice-versa. The reason for (2) is less obvious and may simply be a feature
of the optimal contest design.

1 The applications to the two stages do not differ in the general idea: there cannot be substantial differences
in the intentions, aims, objectives, personnel or budget between the two applications.
2 The Garden Museum in South London sought an architect to take forward plans to extend the museum
in a second phase of renovation. In a two-stage contest, the value of the contract to the architects was
estimated between £380,000 and £420,000 and expressions of interest were due by January 20, 2013. It was
announced that up to five practices would be shortlisted for the job. In another advertisement, the Tricycle
Theatre in Kilburn, North London sought an architect for its £2.4 million refurbishment. There was no
mention of how many would be shortlisted. See http://www.bdonline.co.uk/home/competitions for other
examples.
3 From personal correspondence with Rachel Greene, a public relations and media relations consultant.
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Two-stage contests with preferences over style

We suppose that style is an exogenous feature of a proposal, but quality is a func-
tion of effort. For simplicity, we assume that the designer’s preference over style is
dichotomous: either preferred or not. We also assume for simplicity that the first stage
is limited in scope such that a contestant can either put in the effort required for the
designer to determine his or her type or not. This matches many real world contests
where the first stage is meant to weed out those with an inappropriate style. It may
not be feasible to put in extra effort or at least have that extra effort visible. Such may
be the case in a two-stage grant proposal where the first stage proposal is limited to a
1000 words.

We model and analyze such environments where the designer wants to maximize
the best overall effort (as opposed to the total effort of the contestants) by a preferred
style. In designing the contest, the designer may choose between a one-stage contest
and a two-stage contest. The advantage of the two-stage contest is that the designer
learns the type of a contestant if that player puts forth some minimal effort. The
disadvantage is that this minimal effort does not contribute to the efforts in the second
stage. If the designer chooses a two-stage contest, the designer also has other options.
He may choose to advance only a specific number of contestants (two) that satisfy his
preferences or anyone that satisfies his preferences.4 He may also choose whether or
not to announce how many made it to the second stage.

Here we use a framework where information is symmetric among contestants and
there is complete information about the value of winning the contest (see Baye et al.
1996, and more recently Kaplan et al. 2003; Siegel 2009). Recently there have been
a number of papers on multi-stage contests (see Cohen et al. 2018; Sela 2011, 2012,
2017; Segev and Sela 2014a, b as well as experiments comparing one-stage to two-
stage (see Sheremeta 2010). There has also been research where the designer has
preferences over style (see Kaplan 2012). Also related to our paper is research on entry
in contestswhere there is potentially anunknownnumber of entrants (seeFu et al. 2011,
2014, 2015; Chen et al. 2017) as well as auctions with a unknown number of bidders
(see McAfee and McMillan 1987). Troncoso-Valverde (2018) studies information
revelation in markets in which auctioneers running second-price auctions compete for
buyers and provides sufficient conditions for the existence of an equilibrium where
information is revealed. The contribution of our paper is adding the possibility of a
two-stage design to a contest where the designer cares about style as well as quality
and can reveal information about the number of contestants.

The paper proceeds as follows. In the next section, we present the model, followed
by the equilibrium analysis in Sect. 3. We rank the possible contest designs in terms
of number of stages, qualification criteria, and revealed information in Sect. 4. We
discuss the robustness of our results in Sect. 5 and conclude in Sect. 6.

2 The contest environment

There are N contestants competing for a prize of value V . Style is exogenous and
each contestant independently has a probability p ∈ (0, 1) of having a style that the

4 Westudy these extremes since they are themost prominent to study and appropriate if results aremonotonic
in the number of contestants above two.
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designer desires and (1 − p) of not having a desired style. The contest can be run
in one or two stages. Contestants decide how much effort to exert in each stage. The
designer of the contest cares only about the highest effort exerted in the last stage by a
contestant of a style that he desires. The designer is only able to determine the style of
a contestant if that contestant’s effort is m or above. This makes intuitive sense (one
has to write at least a short proposal). Furthermore, awarding the prize to a contestant
with a non-desired style is prohibitively costly.

As a benchmark, we study a one-stage contest with a minimum effort of m and
compare this benchmark with several two-stage contest designs. In all the two-stage
contests, the first stage requires that contestants put in effort m in order to have the
possibility of advancing. Thus, each contestant doing so has his/her style revealed by
the end of stage one.We note that putting in more effort thanm does not increase one’s
chances of advancing. Thus, the first stage is really about screening contestants. We
assume that V is large enough to ensure that, in the equilibria analyzed in the various
designs, all contestants will choose to enter in the first stage.

The two-stage contests differ along three aspects: whether there is minimal effort
required in the second stage, the criteria to qualify for the second stage, and information
revealed to qualifying contestants. The minimal effort in the second stage can be m
(a 2m environment) or zero (an m environment). (Note that we use this nomenclature
since doing so counts the aggregate minimal effort needed to participate in the second
stage.) Whether it is a 2m or m environment may at times not be a choice of the
designer, but an exogenous feature of the environment.5 The designer can choose
between two qualifying rules: (1) all those that are discovered to have a desired style
advance (all pass), or (2) of the contestants eligible to move to the second stage, two
randomly advance (if there are indeed two) (random two). Finally, after the first stage
but before second stage decisions are made, the designer can choose to inform or not
the contestants about the number of contestants advancing to the second stage (inform
or not inform).

3 Equilibrium analysis

In this section, we derive the equilibrium strategies and outcomes for several possible
contest designs. We start with the benchmark case of a one-stage contest and proceed
to analyze several families of two-stage contests.

3.1 Benchmark case: one stage

Here we examine the equilibrium where all contestants choose effort according to
a distribution function F . We note that unlike Baye et al. (1996), there is a unique
equilibrium (in particular, there are no asymmetric equilibria). See Appendix A.

5 Having a minimum of 0 in the second stage means contestants can just resubmit what they did before,
that is, copy and paste. Having a minimum of m in the second stage means the second stage could be more
elaborate requiring some effort to have a comprehensible proposal. The first logical point to start is that
writing a comprehensible proposal would require the same amount of effort as writing a comprehensible
proposal in the first stage (equal to m). For instance, in the case of auditions, practicing lines for the part.
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Two-stage contests with preferences over style

In order to ensure entry by all contestants, V must satisfy, p(1 − p)N−1V > m.6

This constraint guarantees that a contestant that enters and bids m (which would be
in the support of the equilibrium) would make positive profit. When bidding m, the
contestant would only win if he is the only contestant with a desired style, which
happens with probability (1 − p)N−1 p.

For F to be part of an equilibrium, it must satisfy:

p[pF(x) + (1 − p)]N−1V − x = (1 − p)N−1 pV − m. (1)

The RHS of (1) is the expected profit of putting in effort m . The LHS of (1) is the
expected profit of putting in x ≥ m. The probability of having the preferred style is p
and, given this, the probability of winning is that each other contestant either does not
have the preferred style (with probability 1 − p) or has the preferred style but puts in
less effort (with probability pF(x)).

Solving (1) for F(x) yields:

F(x) =
[
x−m
pV + (1 − p)N−1

] 1
N−1 − (1 − p)

p

=
[(

1 − p

p

)N−1

+ x − m

pNV

] 1
N−1

− (1 − p)

p

with support [m, pV
[
1 − (1 − p)N−1

] + m].
To determine the designer’s one-stage profits, denoted by �one, we proceed to

evaluate the expected value of the highest effort put forth by a contestant with a
preferred style. We define a distribution G(x) by G(x) = pF(x) + (1 − p). The
function G represents the cumulative distribution of preferred effort by an individual
contestant given that we don’t knowwhether or not the contestant has a preferred type.
Hence, we replace the case where effort is not from a preferred type by an atom of size

(1− p) at zero. Now�one = ∫ x
m xdGN whereG(x) =

[
(1 − p)N−1 + x−m

pV

] 1
N−1

and

x = pV
[
1 − (1 − p)N−1

] + m. Hence, �one = m + NpV
2N−1 + (N−1)pV (1−p)2N−1

2N−1 −
(1 − p)N−1(m(1 − p) + pV ).

Next, we consider the first of several two-stage contests.

3.2 Two stages: all pass

With two stages and all pass (denoted by AP in mathematical expressions), all the
contestants that put forward effort m in stage one and have the preferred style pass to
the second stage. A contestant that makes it to the second stage learns that he has the
preferred style. Also, depending upon the information condition, the contestant may
or may not know how many other contestants also have a preferred style. In the latter

6 This full entry condition (and ones that follow in the paper) is sufficient but not necessary since one can
have full entry in the first stage with equality, but equality does not ensure full entry.
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case since all that have the preferred style make it to the second stage, making it to the
second stage does not affect a contestant’s estimate about howmany other contestants
with a preferred style are competing in the second stage.

3.2.1 All pass: 2m, not inform

For full participation in stage one, we require

p(1 − p)N−1V > m(1 + p). (2)

The LHS of (2) is the expected payoff of participating, given by the expected
probability of being alone in the second stage times the prize. The RHS of (2) is the
expected cost of participating, given by the minimum effortm needed in stage one and
the probability of advancing to stage two and again putting in the minimum effort.

Again we look for a symmetric equilibrium with a distribution function F that
represents effort in the second stage. As in the one stage case, this is again the unique
equilibrium.7 For F to be part of an equilibrium, the corresponding G distribution
function must satisfy:

G(x)N−1V − x = (1 − p)N−1V − m. (3)

The RHS of (3) is the expected profit of putting in effort m in which case winning
occurs with probability of (1− p)N−1. The LHS of ( 3) is the expected profit of putting
in effort x ≥ m. Note that as opposed to (1), here at the second stage, each contestant
already knows he has the preferred style. Thus, moving from one stage to two stages
effectively increases the prize from pV to V .

Solving (3) for F(x) yields (by first solving for G(x)):

F(x) =
[

(1−p)N−1V+x−m
V

] 1
N−1 − (1 − p)

p

=
[(

1 − p

p

)N−1

+ x − m

pN−1V

] 1
N−1

− (1 − p)

p

with support [m, V
[
1 − (1 − p)N−1

] + m].
Proceeding similarly to the one-stage environment, we can calculate two-stage

profits, when contestants are not informed and must pay at least m in the sec-
ond stage, denoted by �AP

2m,N I . We obtain �AP
2m,N I = ∫ x

m xdGN where G(x) =
[
(1 − p)N−1 + x−m

V

] 1
N−1 and x = V

[
1 − (1 − p)N−1

] + m. Hence, �AP
2m,N I =

m − m(1 − p)N + NV
2N−1 + (1 − p)N−2V

[
(N−1)(1−p)N+1

2N−1 − (1 − p)
]
.

7 The second stage equilibrium is unique for the same reasons as the one stage equilibrium is. Solving the
game backwards yields the unique overall equilibrium.
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Two-stage contests with preferences over style

3.2.2 All pass: m, not inform

This environment is identical to the previous one except for the fact there is nominimal
bid m required in the second stage. Hence, the expected cost of participating is now
just m. Thus, for full participation in stage one, we now require

p(1 − p)N−1V > m. (4)

Again we look for a symmetric equilibrium with a distribution function F that
represents effort in the second stage. As in the previous two cases, there is a unique
equilibrium. Looking at the second stage, for F to be part of an equilibrium, the
corresponding G distribution function must satisfy:

G(x)N−1V − x = (1 − p)N−1V . (5)

The RHS of (5) differs from the RHS of (3) in that m need not be expended in the
second stage. The LHS of (5) is identical to the LHS of (3).

Solving (5) for F(x) yields:

F(x) =
[

(1−p)N−1V+x
V

] 1
N−1 − (1 − p)

p

=
[(

1 − p

p

)N−1

+ x

pN−1V

] 1
N−1

− (1 − p)

p

with support [0, V (1 − (1 − p)N−1)].
To determine the designer’s profits, denoted by �AP

m,N I , we proceed similarly to

before, to obtain �AP
m,N I = ∫ x

0 xdGN where now G(x) = [
(1 − p)N−1 + x

V

] 1
N−1 and

x = V (1 − (1 − p)N−1). Hence �AP
m,N I = (N−1)(1−p)2N−1−(2N−1)(1−p)N−1+N

2N−1 V .

3.2.3 All pass: 2m, inform

For full participation in stage one, we now require

p(1 − p)N−1(V − m) > m. (6)

The LHS of (6) is the expected payoff to contestant i after entering the contest - the
payoff in the second stage is strictly positive only when one contestant qualifies (and
equals V −m), the probability of which is p(1− p)N−1, while the RHS is the cost of
entering.

With probability Np(1− p)N−1 only one contestant will participate in the second
stage. Since the contestant knows this, the designer will getm . For i ≥ 2, there will be
i contestants in the second stage with probability

(N
i

)
pi (1− p)N−i , and the symmetric

123



T. R. Kaplan, D. Wettstein

equilibrium F(x) must satisfy F(x)i−1V − x = 0 for all x ≥ m. (Note as in Baye
et al. (1996) and similar in form, there are additional asymmetric equilibria when three
or more contestants make it to the second stage. For consistency when comparing to
when there is a unique equilibrium, we focus on the symmetric equilibrium.) Hence,
each contestant bids according to the distribution function:

Fi (x) =
{( x

V

) 1
i−1 if x ≥ m,(m

V

) 1
i−1 x < m.

The designer’s profits, denoted by �AP
2m,I , are then given by �AP

2m,I = ∑N
i=2

(N
i

)

pi (1− p)N−i
∫ V
m xd

( x
V

) i
i−1 +N · p(1− p)N−1m = ∑N

i=2

(N
i

)
pi (1− p)N−i i

2i−1 (V −
m(mV )

i
i−1 ) + N · p(1 − p)N−1m.

3.2.4 All pass: m, inform

For full participation in stage one, we require p(1 − p)N−1V > m.
With probability Np(1− p)N−1 only one contestant will participate in the second

stage. Since the contestant knows this, the designer will get 0 . With probability(N
i

)
pi (1 − p)N−i , there will be i ≥ 2 contestants in the second stage, the symmetric

equilibriumdistribution function F must then satisfy F(x)i−1V−x = 0.As in all pass
2m inform, when there are three or more contestants, there are additional asymmetric
equilibria.

Hence, in equilibrium each contestant bids according to the distribution function:

Fi (x) =
( x

V

) 1
i−1

on the interval [0, V ].

This leads to the following payoff to the designer, denoted by �AP
m,I : �AP

m,I =
∑N

i=2

(N
i

)
pi (1 − p)N−i

∫ V
0 xd

( x
V

) i
i−1 = V

∑N
i=2

(N
i

)
pi (1 − p)N−i i

2i−1 .

3.3 Two stages: random two pass

We now look at where the designer randomly chooses two contestants among those
that have the preferred style. With random two pass (denoted by ran2 in mathematical
expressions), a contestant advancing to the second stage learns something about the
other contestants. The fact that a contestant was selected means that he is more likely
to be the only one with the preferred style (by Bayes’ rule).

Consider for example the case where N = 3 and p = 0.5. If a contestant has a
preferred style, then there is a 25% chance he is the only one with a preferred style
and 50% chance that there is exactly one other contestant with a preferred style and
a 25% chance that all three contestants have a preferred style. Hence, in all pass, if
a contestant makes it to the second stage, the probability that he is the only one that
advanced is 25% . In random two, if a contestant has a preferred style, he advances
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with a 2/3 probability when there are two others with a preferred style, otherwise,
he would always advance. Thus, the probability of being the only one that advanced
given that one advanced is 25

25+50+ 2
3 ·25 ≈ 27%.

3.3.1 Random two: 2m, not inform

Denote the probability that a contestant advances to the second stage by

Pa = p

[
(1 − p)N−1 +

N−1∑
i=1

(
N − 1

i

)
pi (1 − p)N−1−i 2

i + 1

]
.

Denote the probability that given a contestant advances, there are no other contestants

that advanced by pa = p(1−p)N−1

Pa
= Np

2
(1−p)N−1 −Np−2(1−p)

(using the same logic as

above for N = 3). For full participation in stage one, we require Pa(paV −m) > m.
In equilibrium, in stage 2, F(x) satisfies:

[(1 − pa)F(x) + pa]V − x = paV − m.

Solving for F(x) yields:

F(x) = x − m

(1 − pa)V
.

Note the equilibrium is unique since only one or two contestants advance to the second
stage. The designer’s payoff, denoted by �ran2

2m,N I , is then:

�ran2
2m,N I = Np(1 − p)N−1

∫ x

m
xdF + (1 − (1 − p)N − Np(1 − p)N−1)

∫ x

m
xdF2

= Np(1 − p)N−1(m + 1

2
V (1 − pa)) + (1 − (1 − p)N − Np(1 − p)N−1)

×(m + 2

3
V (1 − pa)).

3.3.2 Random two: m, not inform

For full participation in stage one, we require Pa(paV − m) > 0. In equilibrium, in
stage 2, F(x) satisfies:

[(1 − pa)F(x) + pa]V − x = paV .

Solving for F(x) yields: F(x) = x
(1−pa)V

. The equilibrium is also unique here

and the designer’s payoff, denoted by �ran2
m,N I , is then given by �ran2

m,N I = Np(1 −
p)N−1

∫ x
0 xdF+(1−(1− p)N −Np(1− p)N−1)

∫ x
0 xdF2 = Np(1− p)N−1( 12V (1−

pa)) + (1 − (1 − p)N − Np(1 − p)N−1)( 23V (1 − pa)).
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3.3.3 Random two: 2m, inform

For full participation in stage one, we require p(1 − p)N−1(V − m) > m. If only
one contestant participates in the second stage, then the contestant knows this and the
designer will get m (which is the minimum effort). If there are two contestants in the
second stage and this is commonly known, the unique equilibriumdistribution function
F(x) must satisfy F(x)V − x = 0 for all x ≥ m. Thus, the overall expected profits,
denoted by�ran2

2m,I , are given by�ran2
2m,I = Np(1− p)N−1m+ (1− (1− p)N −Np(1−

p)N−1)
∫ V
m xdF2 = Np(1− p)N−1m+ (1− (1− p)N −Np(1− p)N−1)( 2V3 − 2m3

3V 2 ).

3.3.4 Random two: m, inform

For full participation in stage one, we require p(1 − p)N−1V > m. If only one con-
testant participates in the second stage, then when in the inform design the contestant
knows he is the only contestant that advanced and the designer will get 0. When there
are two contestants in the second stage, the unique equilibrium distribution function
F(x)must satisfy F(x)V − x = 0 for all V ≥ x ≥ 0. The designer’s expected profits,
denoted by �ran2

m,I , are then �ran2
m,I = (1 − (1 − p)N − Np(1 − p)N−1)

∫ V
0 xdF2 =

(1 − (1 − p)N − Np(1 − p)N−1)( 2V3 ).

4 Ranking the designs

We now proceed to compare the various designs from the point of view of the designer.
The designer is interested in the expected highest effort by a contestant with a preferred
style. If there are two stages, then it is the expected highest effort in the second stage
only. We refer to this as designer profit. We start by comparing the two qualification
rules.

4.1 Random two pass versus all pass

Proposition 1 For N > 2, in any of the four two-stage designs, random two pass
generates higher designer profit than all pass, that is, �ran2

2m,N I > �AP
2m,N I , �

ran2
m,N I >

�AP
m,N I , �

ran2
2m,I > �AP

2m,I and �ran2
m,I > �AP

m,I .

Proof The latter two inequalities can be shown to hold by directly looking at the
differences: �ran2

2m,I − �AP
2m,I = (1 − (1 − p)N − Np(1 − p)N−1)( 2V3 − 2m3

3V 2 )−
[∑N

i=2

(N
i

)
pi (1− p)N−i i

2i−1 (V−m(mV )
i

i−1 )] > (1−(1− p)N −Np(1− p)N−1)( 2V3 −
2m3

3V 2 )− [∑N
i=2

(N
i

)
pi (1 − p)N−i 2

3 (V − m(mV )2)] = 0
and

�ran2
m,I − �AP

m,I = (1 − (1 − p)N − Np(1 − p)N−1)( 2V3 ) − V
N∑
i=2

(N
i

)
pi (1 −

p)N−i i
2i−1 >
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Fig. 1 Difference of �ran2
2m,N I −�AP

2m,N I (divided by V ) versus p when n varies from 3 to 12. Higher curve
corresponds to higher n

(1 − (1 − p)N − Np(1 − p)N−1)( 2V3 ) − V
N∑
i=2

(N
i

)
pi (1 − p)N−i 2

3 = 0.

Intuition is that with all pass the profit is strictly lower when three or more
contestants have a preferred style. We now show the first two inequalities hold
for the case of N = 3. The difference for the 2m case is �ran2

2m,N I − �AP
2m,N I =

V [ 2p4(3p3−15p2+26p−15)
15(p2−3)

]. At p = 1/2, this is strictly positive. There are real roots at
0 and 1.28. Thus, the difference for 2m is strictly positive for any p ∈ (0, 1). Like-

wise, the difference for the m case is �ran2
m,N I −�AP

m,N I = V [ p2(3p3−15p2+26p−15)
15(p2−3)

]. At
p = 1/2, this is strictly positive. There are real roots at 0 and 1.58. Again, this shows
that the difference for m is strictly positive for any p ∈ (0, 1).

For N > 3, the exercise is similar. By plotting the difference for both cases in
Figs. 1 and 2, we see that the difference is increasing in N and hence always positive.8

��
Our results for the informed case mirror the results in Serena (2017) and Kaplan

et al. 2003, who both examinemodelswhere the designer’s objective ismaximizing the
highest effort (as opposed to the total effort). Serena (2021) shows in a Tullock contest
that limiting the number of contestants to two is optimal. Likewise,Kaplan et al. (2003),
show in an all-pay auction with complete information, it is also optimal limiting the
number of participants to two. However, a new result implied by Proposition 1 is that
when the contestants are not informed, it is optimal to reduce the expected number of
contestants in the second stage to strictly less than two (by moving from all pass to
random two) and this may be from above two. For instance, when N = 3 and p = 0.8,

8 We have also done this up to N = 200.
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Fig. 2 Difference of �ran2
m,N I − �AP

m,N I (divided by V ) versus p when n varies from 3 to 12. Higher curve
corresponds to higher n

with all pass, the expected number in the second stage is 2.4 while with random two
pass, the expected number is 1.888. This even holds when expected number in all pass
is precisely 2 (as when p = 2/3).

The results from Proposition 1 support the use of random two rather than all pass,
yet we do see instances of the all pass design. This might be due to considerations
outside the scope of ourmodel such asmotivations other than pure effortmaximization:
First, when just two contestants pass, there may be a cooperation between the two,
leading to reduced payoff for the designer. Second, theremight be public outcry against
an arbitrary decision, due to concerns regarding possible discrimination and favoritism
on part of the designer. Next we compare the desirability of requiring aminimum effort
in the second stage as well.

4.2 Minimum effortm versus 2m

Here we find that in the case where contestants are not informed, it is always better
to have a minimum effort in both stages. This contrasts to when the contestants are
informed where it is only worthwhile for small p. Intuitively, for uninformed the
uncertainty regarding the number of competitors has a dampening effect on the desire
to put forth an effort unless it is likely to be the highest, since efforts are sunk. This
effect induces the competitors to put in efforts also between 0 and m when there
is no minimum effort requirement. A minimum effort requirement in stage 2 shifts
the support of equilibrium efforts upwards. (For large enough V , contestants are not
deterred from participating by the minimum effort requirements.)

These two findings are proven formally in the following two propositions.
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Proposition 2 In all pass and not inform, a minimum bid in both stages yields higher
designer profit than a minimum bid in just one stage, that is, �AP

m,N I < �AP
2m,N I .

Proof Note that �AP
2m,N I = ∫ V

[
1−(1−p)N−1

]+m
m xd

[
(1 − p)N−1 + x−m

V

] N
N−1 and

�AP
m,N I = ∫ V

[
1−(1−p)N−1

]
0 xd

[
(1 − p)N−1 + x

V

] N
N−1 . We perform a change of vari-

ables z = x − m to obtain

�AP
2m,N I =

∫ V
[
1−(1−p)N−1

]

0
(z + m)d

[
(1 − p)N−1 + z

V

] N
N−1

,

= �AP
m,N I +

∫ V
[
1−(1−p)N−1

]

0
md

[
(1 − p)N−1 + z

V

] N
N−1

> �AP
m,N I .

��
We now make the comparison for the case of random two.

Proposition 3 In random two pass and not inform, a minimumbid in both stages yields
higher designer profit than a minimum bid in just one stage, that is,�ran2

m,N I < �ran2
2m,N I .

Proof The difference of profits is �ran2
2m,N I − �ran2

m,N I = (1 − (1 − p)N )m > 0.

In the case where contestants are informed regarding the number of contestants
who qualified, the ranking depends on p. We see this in the next two propositions.

Proposition 4 In both random two pass and all passwhen informed, (i) designer profit
with a minimum bid in one stage is smaller than with a minimum bid in two stages
when the chance of having a desired style is sufficiently small, that is, �ran2

m,I < �ran2
2m,I

and�AP
m,I < �AP

2m,I if p is close to 0 (and small enough m to ensure entry); (ii) and the
opposite holds when the chance of having a desired style is sufficiently large, that is,
�ran2

m,I > �ran2
2m,I and �AP

m,I > �AP
2m,I if p is close to 1 (and small enough m to ensure

entry).

Proof Considering first the random two pass, note that �ran2
2m,I− �ran2

m,I = Np(1 −
p)N−1m − (1 − (1 − p)N − Np(1 − p)N−1)( 2m

3

3V 2 ). When p = 1, this expression is
negative and, when p = 0, the expression is 0. The derivative of the expression w.r.t. p
at 0 equals Nm, which is strictly positive.

Considering the all pass, we have �AP
2m,I − �AP

m,I = −
N∑
i=2

(N
i

)
pi (1 − p)N−i i

2i−1

(m(mV )
i

i−1 ) + N · p(1 − p)N−1m. Now similarly to random two pass, when p = 1,
this expression is negative and, when p = 0, the expression is 0. The derivative of the
difference w.r.t. p at 0 equals Nm, which is strictly positive. We note that when p is
close to 0 or p is close to 1, the range of m that allows entry in both stages converges
to 0 as well. However, such cases are feasible since one can construct examples by
fixing p and choosing m accordingly to guarantee entry. ��
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The intuition for Proposition 4 is thatwhen informed that there is only one contestant
that advanced, that contestant would put effort at the minimum bid (or zero if there is
no minimum bid). When p is close to 0, a contestant that advances is most likely to
be alone, thus, in this case it is better to require a minimum effort in the second stage.
If informed that more than one contestant has advanced, the second-stage contestants
would put a positive mass on exerting zero effort when a minimum bid is required.
This would not happen without a minimum bid. When p is close to 1, there is likely
to be more than one contestant, thus, in this case it is better to refrain from imposing
a minimum bid in the second stage.

We remark that it is plausible that in some types of contests the designer cannot
choose between the two environments of m and 2m. For instance, the designer may
prefer a 2m design, but politically it would be difficult not to award a contract when
there is a contestant with a suitable style and the designer knows this.

We now proceed to compare informing and not informing contestants.

4.3 Informing or not informing

Here we answer the question of whether or not the designer should let contestants
know how many advance to the second stage. McAfee and McMillan (1987) show
thatwith standard auctions and risk-neutrality there is no difference in revenue between
informing and not informing, but with constant absolute risk-aversion, not informing is
superior. As opposed to the auction literature, in our setup all the contestants pay their
costs. With contests unlike auctions (where effort is only expended by the winner),
there is a distinction between the objective of maximizing the highest effort and the
objective of maximizing the total effort. Serena (2021) also looks at information reve-
lation in contests but with the objective of maximizing total effort and the information
is about the rival’s types.

We note that a “not informing” policy must be credibly committed to, that is, no
information is revealed regardless of the actual number of participants who make it
to the second stage. Otherwise, simply not revealing the information, might be taken,
to mean that the designer, who is now aware of the actual number of participants, is
better off not disclosing it. For instance, if N = 2, when both make it to the second
stage it is worthwhile to say so. If only one makes it to the second stage, then it is
better to not to reveal it (assuming that the contestants believe there is a chance that
two advanced). Hence, in the absence of a credible commitment to keep the number of
contestants secret, non-disclosure would unravel. We now proceed to rank the inform
and not inform policies for the various scenarios and start with the all pass design.

Proposition 5 (i) With all pass, minimum bid only in the first stage, designer profit is
higher not informing than informing for two contestants or a small enough chance of
having a desired style, that is, �AP

m,I < �AP
m,N I for N = 2 or N > 2 and small p (and

small enough m to ensure entry). (ii) The opposite holds for a high chance of a desired
style and three or more contestants, that is, �AP

m,I > �AP
m,N I for N > 2 and large p

(and small enough m to ensure entry).
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Proof We note that for N > 2, we have �AP
m,I = �AP

m,N I for p = 0 and p = 1.

Furthermore at p = 1, the derivative of the difference (�AP
m,N I −�AP

m,I ) is positive and
at p = 0, the derivative of the difference is 0 with a positive second derivative. While
we still must have p ∈ (0, 1) and p(1− p)N−1V ≥ m, by continuity there must exist
a p′ ∈ (0, 1) such that �AP

m,N I − �AP
m,I > 0 for all p, 0 < p ≤ p′ and a p′′ ∈ (0, 1)

such that �AP
m,N I −�AP

m,I < 0 for all p, 1 > p ≥ p′′. We can then find a small enough

m′ such that p(1 − p)N−1V > m′ for p = p′ and p = p′′. Thus, we have a range of
probabilities where the Proposition holds. ��

A similar result is obtained in the 2m environment.

Proposition 6 (i) With all pass, minimum bid in both stages, designer profit is higher
not informing than informing for two contestants or a small enough chance of having
a desired style, that is, �AP

2m,I < �AP
2m,N I for N = 2 or N > 2 and small p and m. (ii)

The opposite holds for N > 2 contestants, large p, and a small minimum bid, that is,
�AP

2m,I > �AP
2m,N I for N > 2, large p, and small enough m.

Proof Note that as m goes to 0, �AP
2m,I → �AP

m,I and �AP
2m,N I → �AP

m,N I . Hence, the
results of the previous proposition will hold here as well. ��

The intuition in this case is that when p is almost zero, a contestant that qualifies
puts in positive effort in the uninformed case since he is not certain of being the only
contestant that qualified. However in the informed scenario when p is almost zero with
a very high probability a contestant will be informed that he is the only one and in
such a case will put in zero effort. When p is large a contestant that qualifies is almost
certain that everyone qualified in the uninformed case and thus puts in little effort.
However when informed, he learns with high probability there are less contestants
than he expected (but still two or more) and will put in more effort. In other words,
when N > 2, with high likelihood, informing reduces effort when p is small and
increases effort when p is large.

As we see in the above propositions, the ranking is ambiguous when N > 2 in
that it depends upon p. However, as we now see in the random two pass environment,
the ranking is unequivocal in favor of not informing. We state this in the following
proposition.

Proposition 7 With random two pass, designer profit is higher in not inform, that is,
�ran2

m,N I > �ran2
m,I and �ran2

2m,N I > �ran2
2m,I .

Proof Looking at the difference �ran2
m,N I − �ran2

m,I =
Np(1 − p)N−1( 12V (1 − pa)) + (1 − (1 − p)N − Np(1 − p)N−1)( 23V (−pa))

= V
Np(2(1 − p) + (1 − p)N (1 − 3( 1

1−p )N−1 + p(N − 1))

3(1 − p)(2 − 2( 1
1−p )N−1 + p(N − 2))

.

For N = 2, this equals V times p2(1 − p)/3. For N = 3, this equals V times

(1 − p)2 p2(3 − 2p)

3 − p2
.
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Fig. 3 Difference of �ran2
m,N I − �ran2

m,I (divided by V ) versus p when n varies from 2 to 12. Higher n
corresponds to a left shift

For N = 4, this equals V times

2(1 − p)3 p2(6 − 8p + 3p2)

3(2 − p2(2 − p))
.

These expressions (for N = 2, 3, 4) are strictly positive for 0 < p < 1. For N > 4,
the exercise is similar. By plotting the difference in Fig. 3, we see that the difference
is positive.9

We also have �ran2
2m,N I − �ran2

2m,I =
Np(1−p)N−1( 12V (1−pa))+(1−(1−p)N−Np(1−p)N−1)(m− 2

3V (pa)− 2m3

3V 2 ) =
(�ran2

m,N I−�ran2
m,I )+(1−(1−p)N−Np(1−p)N−1)(m− 2m3

3V 2 ) > �ran2
m,N I−�ran2

m,I > 0
(for 0 < p < 1). ��

Here the intuition for why not informing is better for the designer is that whether
or not the contestants are informed they on average put in the same expected effort.
However, when they are informed, relatively more of this effort is spent when there
are two contestants in the second stage. Since the designer cares about the maximum
effort, more effort is wasted when the contestants are informed. This is similar in logic
to two contestants choosing a random effort uniform in [0,1] half the time and 0 the
other half of the time. It is best for the designer to have each effort used when the other
contestant uses 0 effort since then on average he would have 1/2 while if the efforts
were put in together, the designer would have 2/3 but only 1/2 the time.

9 We have also done this up to N = 200.
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4.4 One stage versus two stages

We finally address the basic design question of whether or not the contest should be a
one or two stage competition.

Proposition 8 With all pass, a minimum bid only in the first stage, and not inform,
for small enough m relative to p, the designer’s profit is larger than in a one stage
contest, that is, �AP

m,N I > �one. For large m, it is possible that �AP
m,N I < �one.

Proof When m → 0, we have �AP
m,N I − �one = V [ N

2N−1 (1 − p) + (N−1)(1−p)2N

2N−1 −
(1 − p)N ]. When N = 2, this reduces to p2(3 − p)(1 − p) 13 , which is positive
between 0 and 1. Similar to before, by plotting the differences for N ≥ 3, we can
see the relationship continues to hold. For the second part, when N = 2, m = 1/4,
p = 1/2, v = 1, we find �one − �AP

m,N I = 1
12 . ��

The advantage of having two stages is that it avoids having the effort put in the sec-
ond stage when a style isn’t desirable. A contestant knowing that his style is desirable,
increases the effort that he is willing to put in. The disadvantage of two stages is that
if there is no minimum bid in the second stage, then efforts are lower. For small m,
this disadvantage is negligible, but not so for larger m.

Proposition 9 With all pass, a minimum bid in both stages and not inform, the
designer’s profit is larger than in a one stage contest, that is, �AP

2m,N I > �one.

Proof We can also show this directly by noting

�one =
∫ pV

[
1−(1−p)N−1

]+m

0
xd

[
(1 − p)N−1 + x − m

pV

] N
N−1

whereas

�AP
2,2m,N I =

∫ V
[
1−(1−p)N−1

]+m

m
xd

[
(1 − p)N−1 + x − m

V

] N
N−1

.

Since p < 1, the inequality follows by first-order stochastic dominance. ��
Intuitively, when there is a minimum bid in both stages of all pass, the only differ-

ence between one stage and two stages is that a contestant with a desired style knows
that he has a desired style. This effectively increases the size of the prize since without
this knowledge a contestant perceives the reward of having the highest effort as pV
while with this knowledge the contestant knows the reward is V . Since the effective
reward is higher, the designer’s profit is larger.

Proposition 10 With all pass and inform, for small enough m relative to p , the
designer’s profit is larger than in a one stage contest, that is, �AP

m,I ,�
AP
2m,I > �one.

For large m, it is possible that �AP
m,I ,�

AP
2m,I < �one.
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Proof The proof follows similar lines to that of Proposition 8. ��
Proposition 11 The designer’s profit in random two pass with minimum bids in both
stages and not inform is larger than in a one stage contest, that is,�ran2

2m,N I > �one. In
the other cases of random two, profit is larger than the one stage with a small enough
m relative to p, �ran2

m,N I , �ran2
2m,I , �ran2

m,I > �one. For large m, it is possible that profit

is less, that is, �ran2
m,N I , �ran2

2m,I , �ran2
m,I < �one.

Proof Combining Proposition 9 with Proposition 1 shows that �ran2
2m,N I > �one. For

the small m cases, we can combine the above Propositions with Proposition 1. For
large m, since when N = 2, the random two case and all pass case are identical, there
is also a possibility that profit is less than the one stage. ��

The above findings from all the sections show that �ran2
2m,N I is the largest profit the

designer can obtain. However, to obtain this profit will require the designer to be able
to commit to both not inform contestants about the number making it to the second
stage as well as being able to commit to a minimum bid in the second stage.

5 Robustness

Cumulative efforts: In our model, effort in the first stage is not only sunk, but wasted
in the sense that it does not count towards the second stage effort. Here we ask what
happens if the effort is cumulative. Since a contestant does not know whether or not
he has a preferred type, it is relatively cheaper to put in effort in the second stage since
there is a chance of at least (1 − p) that the contestant would not advance. Hence,
first stage efforts, should still be at the minimum. When a minimum effort is only
required in the first stage, this will not affect results since the first stage effort is still
sunk and everyone in stage two has already put the effort in. Likewise, if an additional
minimum effort is required in the second stage (and the first stage effort does not
count towards this) then again, there would be no change. Finally, in the environments
where the additional minimum effort is required but the first stage effort can count
towards this, then the equilibrium will be identical to our model when only a stage
one minimum effort is required, that is, the 2m environments with cumulative efforts
will be equivalent to the m environments without cumulative efforts.

Asymmetry:Allowing for asymmetry ex-ante falls outside the scope of our model,
however, the qualitative results we obtain do not hinge on the symmetry assumption.
For instance consider the following asymmetric environment:

Contestant 1 has prize value 6 and probability 1/2 of having the desired style,
contestant 2 has prize value 4 and probability 1/3 of having the desired style.

In the all pass not informed scenario with m = 0, the equilibrium distribution
functions of the contestants, F1 and F2 for contestant 1 and 2 respectively, are given
by F1(x) = F2(x) = x

2 with support [0, 2]. The designer’s payoff is given by: 1
2 ·

2
3

∫ 2
0

x
2dx + 1

2 · 1
3

∫ 2
0

x
2dx + 1

2 · 1
3

∫ 2
0

x2
2 dx = 13

18 .

The first (second) term is the payoff in the case only contestant 1 (2) has the desired
style, the third term is the payoff in the case both have the desired style, payoff when
neither has the desired style is 0.
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In the all pass informed scenario withm = 0, the designer’s payoff is positive only
when both contestants have the desired style. In this case the equilibrium distribution
functions of the contestants in the second stage after having been informed both passed
are: F1(x) = x

4 and F2(x) = 1
3 + x

6 with support [0, 4].
The designer’s payoff is then given by: 1

2 · 1
3

∫ 4
0 x · d( x4 · ( 13 + x

6 )) = 11
27 .

Hence the designer is better off not informing in this asymmetric environment as
well. A full analysis of the asymmetric case is left for future work but we believe it
will not invalidate the insights derived from examining the symmetric case.

6 Discussion and conclusion

We analyzed contest environments where the designer cares about the style and quality
of the winning effort. We considered four design issues: whether to use one stage
or two, requiring a minimum bid in both stages, whether to advance all qualified
contestants or to place a limit, and whether or not to inform contestants about the
number of contestants that advance to the second stage. These, for the most part, can
be observed in actual contests run.

We found closed form solutions for the equilibrium strategies and expected
designer’s profits for the various contest designs. We then examined rankings between
several design options. While some can be unequivocally ranked, other rankings were
dependent upon the parameters defining the environment. Overall, we found that the
design maximizing the highest effort is a random two design where there is no infor-
mation given about the number that make it to the second stage and there is a minimum
bid in each stage.

While some of our assumptions were deliberately extreme in order to allow us to
solve the model, in particular with the desired style, there are cases in which desired
style is really a fit or doesn’t fit. This is often seen in acting where one fits the part or
doesn’t.10 With acting, one can also see an example where two finalists were chosen.
The actors and actresses playing the children in the Brady Bunch were first narrowed
down to two sets of children where two children competed for each part. The final
selection was a combination of the sets.11

We also rank designs beyond the optimal since in practice we often see contests
with more than two finalists. Possibly this could be due to unmodelled factors such as
a concern about favoritism on part of the designer.

There are manyways to expand our work.While the purpose of this work is to focus
on screening by having a two-stage mechanism, it is possible to look at parameters
where the contestants’ willingness to enter in the first stage is not ensured. It is also
worthwhile to have contestants with heterogeneous abilities. In this case, it may be
superior to allow more than two contestants to advance. Also, one can examine social
welfare issues and different objective functions of the designer (such as total effort).

10 This can bewhere someone is needed for a body double. Also, it could bewhere height is a consideration.
Consider casting a musical version Mary Poppins. If the director already selected an actor for Michael, the
actress playing his sister Jane must be taller than that actor since Jane is supposed to be older.
11 Originally the two sets were to have matching hair color to their parent, but they dyed the hair of the
actor playing Bobby in order to combine the sets.
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Finally, one can change the model to a scenario where the chance of having a desired
style depends upon the effort put forth in stage one.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
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Appendix A: uniqueness proof for the one-stage contest

Here we prove uniqueness of the equilibrium in the benchmark, one-stage contest.
While this proof is for the one-stage equilibrium, it is possible to prove uniqueness in
a similar fashion for the other equilibria where there is a minimum effort in the second
stage and three or more contestants. (Without a minimum bid the equilibrium is not
unique for three or more contestants.)

Let Fi , i = 1, ..., n, constitute an equilibrium profile of distribution functions of the
contestants i = 1, ..., n. The equilibrium profit of each contestant is strictly positive
since bidding m yields each contestant a strictly positive payoff by the assumption
that p(1 − p)N−1v > m.

Using standard arguments it can be shown that the distribution functions must be
atomless. Also, all contestants must have the same payoff in equilibrium. If contestant
i has a higher payoff than contestant j , contestant j can bid at the top of the support
of contestant i and increase his payoff. Again, using standard arguments it can be
shown that equal profits imply the distribution functions of contestants coincide over
common supports. Each bid (strictly greater than m) in the support of a contestant i
must be in the support of at least one other contestant j 
= i otherwise contestant i
could increase his payoff by bidding lower.

Let z be the set of bids x that belong to the support of at least two contestants. By
standard arguments z must be connected. Let Z(x) be the distribution function of the
two (or more) contestants which have x in their support. By standard arguments Z(x)
must be strictly increasing on the common support.

If for some contestant, i , we have an x ′ such that Fi (x ′) > Z(x ′), then Fi cannot be
increasing to the left of x ′, if it were, the point where it starts to increase must be in z
but Fi cannot then increase to be strictly above Z at this point t since Fi is is atomless.

Also if there is an x ′ for which Fi (x ′) < Z(x ′), then Fi cannot be increasing to the
right of x ′, since if it were, the point where it starts to increase must be in z but Fi
cannot equal Z at this point since Fi is atomless.

Hence Fi (x) equals Z(x) for all i and x in z. This implies the unique equlibrium
is given by the solution to Eq.1.
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