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Abstract

The 135 Ma Paraná-Etendeka Large Igneous Province (PELIP) is one of the largest areas of continental 

flood basalt (CFB) volcanism in the world and is widely agreed to be a product of intracontinental melts 

related to thermal anomalies from the Tristan mantle plume. The province rifted during the break-up 

of Gondwana, as the plume transitioned into an oceanic geodynamic environment. This study reports 

analyses of plume-derived basalts from the Brazilian side of the PELIP (the Serra Geral Group) to 

investigate major, trace and platinum-group element (PGE) abundances in an evolving plume-rift 

metallogenic setting, with the aim of contextualising metallogenic controls alongside existing 

magmatic interpretations of the region. The chalcophile geochemistry of these basalts defines three 

distinct metallogenic groupings that fit with three modern multi-element magma classifications for 

Serra Geral lavas. In this scheme, Type 4 lavas have a distinctive PGE-poor signature, Type 1 (Central-

Northern) lavas are enriched in Pd, Au and Cu, and Type 1 (Southern) lavas are enriched in Ru and Rh. 

Our trace element melt modelling indicates that the compositional variations result from changes in 

the melting regime between the garnet and spinel stability fields, in response to the thinning and 

‘unlidding’ of the rifting continent above. This process imposes progressively shallower melting depths 

and higher degrees of partial melting. Accordingly, Type 4 magmas formed from small degree melts, 

reducing the likelihood of sulfide exhaustion/chalcophile acquisition at source. Type 1 (Central-

Northern) magmas incorporated components of the sub-continental lithospheric mantle (SCLM)-

derived in higher-degree partial melts; the SCLM was heterogeneously enriched via metasomatism 

prior to plume melting, and this produced enrichment in volatile metals (Pd, Cu, and Au) in these 

magmas. In contrast, the Ru-Rh enrichment in Type 1 (Southern) lavas is attributed to increased spinel-

group mineral and sulphide incorporation from the mantle into higher degree partial melts close to 

the continental rift zone. Our models confirm the importance of contributions from SCLM melts in 

precious metal mineral systems within CFB provinces, and reinforce the role of heterogeneous 

metasomatic enrichment underneath cratons in boosting intracontinental prospectivity with respect 

to ore deposits.
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1. Introduction

1.1. Mantle Plumes and Precious Metals

Many of the world’s important magmatic sulphide deposits are found within continental flood basalt 

(CFB) provinces (e.g. Lightfoot et al., 1993; Naldrett, 1997). Whereas the mineralisation processes at 

work in each CFB are primarily controlled by mid- to upper-crustal differentiation mechanisms (e.g. 

Thompson and Gibson, 1991; Ellam, 1992; Maier and Groves, 2011), the initial geochemical fingerprint 

of CFB magmas can have important implications for metallogenic fertility and understanding how 

metals are mobilised from the mantle (e.g. Hawkesworth et al., 1988; Wooden et al., 1993; Wilson et 

al., 1996; Bierlein et al., 2009). 

Localities with prominent PGE orthomagmatic sulphide deposits share a similar geodynamic setting, 

with plume-derived (i.e. intraplate) magmas interacting with thick continental cratons and their 

margins. Plumes represent buoyant material from mantle discontinuities that rise to the base of the 

crust (e.g. Morgan, 1971; Morgan, 1972; Shannon and Agee, 1998; Jellinek and Manga, 2004; Burke 

et al., 2008; Deschamps et al., 2011; Li and Zhong, 2017), inducing partial melting and magma 

generation in the asthenosphere and lowermost lithosphere (Jerram and Widdowson, 2005 and 

references therein). Decompression models for CFB melting predict ~5 % of the lithosphere 

(particularly the sub-continental lithospheric mantle or SCLM) is involved in melt generation, and this 

contribution is dominant in the early stages of rifting (e.g. McKenzie and White, 1989; White and 

McKenzie, 1995; Turner et al., 1996; Howarth and Harris, 2017). An observed spatial association 

between PGE-rich ore deposits and Archaean lithosphere may indicate that the ‘inheritance’ of 

precious metals play an important role in dictating aspects of the geochemistry of plume-derived 

magmas and mineralisation (e.g. Downes, 2001; Hawkesworth and Scherstén, 2007; Zhang et al., 

2008; Maier and Groves, 2011; Maier et al., 2012; Griffin et al., 2013; Barnes et al., 2015).

Here, we examine the nature of the interactions between plumes and the SCLM and their role as a 

control on PGE (and other metal) content of CFB parental magmas. Work on the North Atlantic Igneous 
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Province (NAIP) demonstrates that plume environments that transition from continental to oceanic 

settings, as well as changes in the thickness and nature of lithosphere above the region of partial 

melting, directly affect the PGE geochemistry of ascending plume-derived magmas (e.g. Andersen et 

al., 2002; Hughes et al., 2015). Continental lavas from Greenland and the British Isles exhibit distinctly 

higher Pt/Pd ratios than oceanic lavas from Iceland, attributed to a shifting “metal basket” (i.e. the 

concentration and variety of precious and/or base metals) and variable SCLM incorporation in partial 

melts (Hughes et al., 2015). In this study, we investigate lavas associated with the Tristan plume and 

the Paraná-Etendeka Large Igneous Province (PELIP) in the South Atlantic in order to test how (if) the 

PGE, Au and base metal geochemistry of the CFB province changed through time and space. The PELIP 

shares a similar transitional continent-to-ocean geodynamic setting to the NAIP. If the inherent 

controls of trace element and isotopic variation in regional magmas reflect distinct geodynamic 

controls, this should be evident in PGE and other chalcophile elements.  New geochemical data for 

onshore South American PELIP flood basalts are compared and used in quantitative geochemical melt 

modelling, to assess how PGE geochemistry changes through the evolution of the CFB province, with 

a focus on the link between variable SCLM properties and resulting partial melt compositions.

1.2. Formation of the Paraná-Etendeka Large Igneous Province (PELIP)

Currently positioned in the centre of the southern Atlantic Ocean, the Tristan plume has migrated 

through a cratonic, to continental margin, to mid-oceanic setting throughout the Cretaceous and 

Cenozoic (Fodor and Vetter, 1984). It is active today under the islands of Tristan da Cunha and Gough, 

but has a >130 million year history of volcanism that spans two continents and the entire width of the 

South Atlantic (Stewart et al., 1996). The plume head stage is thought to be responsible for the 

eruption of the PELIP, one of the largest CFB provinces in the world (Courtillot et al., 2003), in addition 

to the Rio Grande Rise and Walvis Ridge topographic features on the ocean floor (e.g. Camboa and 

Rabinowitz, 1984; O’Connor and Duncan, 1990; Ussami et al., 2013) (Fig. 1a). The Tristan plume is one 

of the world’s “primary hotspots” according to Courtillot et al. (2003), satisfying the criteria of creating 
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linear chains of age-progressive volcanics, exhibiting large flood basalt buoyancy flux, high 3He/4He 

isotope ratios and significant low shear wave velocity anomalies in the mantle below.

The ~1.7 million km3 PELIP is spread asymmetrically between (primarily) Paraná, Brazil and Etendeka, 

Namibia (which were conjoined in the Cretaceous; Fig. 1a), with fifteen times higher volume of lavas 

found in South America than Africa (Fodor et al., 1989). Intraplate magmas are typically chemically 

variable and are derived from relatively undepleted mantle (e.g. Zindler and Hart, 1986; Stracke et al., 

2005; Hawkesworth and Scherstén, 2007).  The Tristan plume arrived at the Gondwanan lithosphere 

under the modern day central Paraná region in Brazil at ca. 135 Ma, inducing partial melting in the 

asthenosphere (Stewart et al., 1996). The duration of eruption of the onshore PELIP has been debated, 

ranging from <1  million years (suggesting a high eruption rate of around 1.5 km3/year; Renne et al., 

1996) to 10 million years (suggesting a much lower eruption rate of under 0.1 km3/year; Stewart et 

al., 1996). Recent studies suggest a conservative 0.8 km3/year for the majority of the flood eruption 

(Beccaluva et al., 2020), comparable to other CFB provinces, such as those that produced the Deccan 

and Karoo traps (Natali et al., 2017 and references therein). The PELIP eruption rate is broadly similar 

to the NAIP (a mean of 0.6 km3/year; Eldholm and Grue, 1994).

From 134 to 128 Ma (Stewart et al., 1996), rifting initiated in the thermally thinned Gondwanan 

continental lithosphere (e.g. McKenzie and White, 1989; Turner et al., 1996; de Wit et al., 2008). 

North-westerly plate movement migrated plume activity to the Etendeka-Angola margin, synchronous 

with the eruption of the south-eastern lavas in Paraná (Beccaluva et al., 2020) (Fig 1b). Following 

significant extension and basin formation as the South American and African continents drifted apart 

(Martins-Ferreira et al., 2020 and references therein), the asthenosphere above the Tristan plume 

continued to undergo partial melting and eruption of lava on the seafloor throughout the Cretaceous. 

Sustained volcanism formed ridges on either side of the mid-oceanic rift, the Rio Grande Rise (west) 

and the Walvis Ridge (east) that connect the PELIP to the modern active hotspot islands of Tristan da 

Cunha and Gough (e.g. O’Connor and Duncan, 1990; O’Connor and Jokat, 2015; Homrighausen et al., 
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2019). Figure 1b summarises the different chemostratigraphic stages of PELIP magmatism with 

respect to congruent rifting.

1.3. Geochemical classification of the Paraná flood basalts

The South American portion of the PELIP erupted over the Botucatu Sandstones and Proterozoic 

basement of the Paraná Basin. The basin is oriented NE-SW with its morphology controlled by three 

major underlying structures – the Ponta Grossa and Rio Grande arcs, and the Torres Trough (e.g. 

Cordani and Vandoros, 1967; Peate et al., 1992; Besser et al., 2018). On average, the basin-filling lavas 

in the region are >1 km thick, with thicknesses of up to 1.7 km towards the north (Gordon, 1947; Leinz, 

1949; Leinz et al., 1966; Peate et al., 1990). The Paraná lavas, referred to more formally as the Serra 

Geral Group in Brazil (e.g. Licht, 2018; Rossetti et al., 2018), are primarily basaltic to basaltic-andesitic 

and compositionally grouped into synchronous High-Ti (HT) in north-central Paraná and Low-Ti (LT) in 

the south-east. The HT and LT lavas often inter-finger in central Paraná due to their synchronous 

eruptive sequence (e.g. Licht, 2018). Volcanism in the southeast laterally evolved into bimodal mafic-

felsic volcanism, producing significant amounts of silicic lavas (e.g. Peate et al., 1992; Polo et al., 2018).  

Given that the Serra Geral lavas are thought to have erupted simultaneously throughout the province 

via different melting sources rather than by differentiation processes from a single source (Peate, 

1997), the underlying stratigraphy of the Paraná Basin is complex (Turner et al., 1999; Rossetti et al., 

2018). Recent studies suggest that the synchronous HT and LT lavas were erupted from separate sub-

surface magma plumbing systems spawned from plume-derived melting, and followed separate 

magmatic differentiation routes and localised melting processes (Natali et al., 2016; Licht, 2018), with 

rare evidence for minor interaction between HT and LT magmas in plumbing systems (De Min et al., 

2017). LT magmas reflect higher degrees of crustal contamination in contrast to limited (or absent) 

crustal contamination for the HT magmas (e.g. Piccirillo et al., 1988; Peate et al., 1992; Peate and 

Hawkesworth, 1996; Turner et al., 1996; Rocha-Júnior et al., 2013; Natali et al., 2017; Marques et al., 

2018).
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Whereas the mafic Serra Geral lavas are similar in both hand specimen and thin section, the magma-

types exhibit small differences in modal mineralogy and larger differences bulk geochemical 

compositions. Consequently, pioneering studies on the geochemistry of the Serra Geral Group further 

classified the HT, LT and silicic magma-types based on major and trace element, and isotopic variations 

(e.g. Bellieni et al., 1984; Fodor, 1987; Peate et al., 1992; Peate, 1997). With time, increasingly more 

sophisticated distinctions across multi-element parameters have been sought (e.g., the sixteen Si-Ti-

Zr-P divisions introduced by Licht, 2018). A generalised northern and southern stratigraphy for Serra 

Geral is given in Figure 1c, and Table 1 compares the Peate et al (1992) and Licht (2018) classifications, 

with an indication of Si, Zr, Ti and P concentration cut-offs for the latter. In this paper, we address the 

intersection between geochemical characteristics of both naming schemes, with particular emphasis 

on PGE concentrations.

1.3.1.High-Ti Group

The HT basalts are classified into three major magma-types – Paranapanema, Pitanga and Urubici. 

Pitanga and Urubici lavas have the highest TiO2 concentrations (>3 wt.%) (Peate et al., 1992). Pitanga 

and Paranapanema are found exposed almost exclusively in central-northern Paraná, while Urubici 

outcrops primarily intercalated with Gramado (of the LT lavas) (Fig. 1c) (Peate et al., 1999). 

Paranapanema lavas belong to the HT group despite having a lower TiO2 concentration than the other 

two HT members (between Esmeralda and Pitanga at 1.7-3.2 wt.%; Peate, 1997) and being found 

throughout the region. Urubici is significantly enriched in light rare earth elements (LREE) and high 

field strength elements (HFS) in comparison to the other HT magma-types (Peate et al., 1999). Pitanga 

is generally slightly more enriched than Paranapanema in most trace elements, excluding the 

transition metals Ni, Co, Cr and Sc (Rocha-Júnior et al., 2013). Despite major and trace element 

differences, the three magma-types have similar isotopic signatures (with (87Sr/86Sr)i ratios of 0.7048 

to 0.7065 and εNd of -1 to -4; Peate and Hawkesworth, 1996). This led to them being grouped together 

as the “northern basalts” in many early Sr-Nd-Pb isotope studies (e.g. Richardson et al., 1982; Peate 
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et al., 1992; Peate and Hawkesworth, 1996). Licht (2018) classifies Urubici and Pitanga as Type 4 (>2.85 

wt.% TiO2) and Paranapanema as Type 1 (Central-Northern) (<2.85 wt.% TiO2), a significant distinction 

from classic studies (Table 1).

Paranapanema and Pitanga each contribute to 20 % of the total Serra Geral volume, and Urubici 

contributes ~5 %. Urubici lavas are the most sparsely observed at surface, although it is seen in the 

highlands of São Joaquim and as sills interbedded with Vale do Sol in the south-east of the CFB 

province (Besser et al., 2018). Paranapanema overlies Pitanga throughout most of the flood sequence; 

however it underlies Gramado in the very south of the basin (Bellieni et al., 1984). 

1.3.2. Low-Ti Group

The LT basalts to basaltic-andesites (Gramado, Esmeralda and Ribeira) comprise around 50 % of the 

total eruptive volume of the Serra Geral Group and are found in the south of the CFB province (Peate, 

1997). Over a third of the total lava volume belongs to the Gramado magma-type, and 5-10 % to the 

Esmeralda magma-type (Peate et al., 1992). As per Peate (1997), both magma-types see distinctive 

enrichment of heavy rare earth elements (HREE) and large-ion lithophile (LIL) elements relative to HFS 

elements and LREE, and a negative Ti anomaly when normalised against mantle compositions. 

Esmeralda has highly variable εNd (-4 to 4), while maintaining consistent initial Sr isotope values 

((87Sr/86Sr)I = 0.7046-0.7086) (Peate and Hawkesworth, 1996. Gramado lavas have the lowest TiO2 (as 

low as 0.7 wt.%) and εNd (-9 to -4) in the Serra Geral sequence, with higher and much more varied 

(87Sr/86Sr)i ratios (0.7075-0.7167) relative to Esmeralda, which sets it apart from all other mafic lavas 

in the Serra Geral Group (Peate and Hawkesworth, 1996). The Gramado magma-type is considered to 

be formed from the most crustally-contaminated Tristan plume-derived magmas. In the southern 

Paraná Basin, Gramado is normally found on the flanks of the inland Serra Geral escarpment and at 

the coast near Torres, whilst Esmeralda is found on the flatter plateau tops. This reflects their general 

relative positioning within the lava pile as per Figure 1c (Peate, 1997). Recent studies have further 

subdivided Gramado into the Torres and Vale do Sol Formations in the modern framework (Rossetti 
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et al., 2018 and references therein). The Gramado and Esmeralda magma-types comprise the Type 1 

(Southern) classification from Licht (2018) (<2.85 wt.% TiO2; Table 1).

Rarely found exposed at the surface (i.e., sampled primarily via drilling), the LT Ribeira lavas have low 

TiO2 concentrations, but slightly higher Ti/Y than Gramado and Esmeralda (Ti/Y ration has occasionally 

been used in place of TiO2 as a more specialised LT/HT group discriminator - Peate et al., 1992; Peate 

and Hawkesworth, 1996). In contrast, the LT Ribeira (87Sr/86Sr)i signature is more in line with HT 

magma-types (0.7055-0.7060 compared to 0.7046-0.7167 for LT; Peate et al., 1992), but lacks the 

accompanying HFS and LREE enrichment expected of the HT group. Despite having more in common 

geochemically with the LT group, the transitional Ribeira lavas are found interbedded with HT lavas in 

the northern zone (Peate et al., 1992), essentially an intermediate lava overlapping the geochemical 

properties of both HT and LT magma-types (Fig. 1c).

1.3.3. Silicic Group

Mafic lavas in central and southern Paraná are often associated with the silicic lavas of the Chapecó 

and Palmas magma-types, predominantly within the bimodality of south-eastern LT group (Fig. 1c) 

(e.g. Bellieni et al., 1984; Peate et al., 1990; Peate et al., 1992; Garland et al., 1995; Peate, 1997). 

Chapecó lavas are higher in TiO2 than Palmas, and their relative geographic location mimics that of 

the mafic HT/LT split, placing Chapecó further northwest than its counterpart. The rhyolites, dacites 

and related alkali complexes of Paraná have been dated to co-exist with the pre-rift stages of flood 

basalt volcanism, which further reinforces the complexity of the multi-source melting beneath the 

province – the silicic lavas are likely derived from mid- to upper-crustal differentiation processes from 

the source of flood basalt volcanism (e.g. Milner et al., 1995). The Serra Geral silicic rocks have been 

interpreted to be genetically related to their mafic equivalents via fractional crystallisation – Chapecó 

represents partial melt extraction in HT basalts in the lower crust whilst Palmas represents the 

differentiation of LT basalts in the upper crust (Garland et al., 1995). Licht (2018) provided distinctions 

for eight high-Si magma-types with varying Zr, TiO2 and P2O5 concentrations – Palmas fits within Type 
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9 and Chapecó within Type 14, and they contribute to around 20 % of samples classified in the region 

(Table 1). However, as silicic rocks are very rarely associated with PGE mineralisation, the focus of our 

paper lies on the mafic magma-types whilst using these more evolved compositions as reference 

material for geochemical trends. 

       

2. Materials and Methods 

2.1. Sample acquisition

We present a new suite of major, trace and PGE analyses for 85 basalt and 7 rhyolite samples from 

the Serra Geral Group. Samples were collected during two field expeditions, one in the north (focusing 

on HT lavas of Paraná State) and one in the south (focusing on LT and Silicic groups of the Santa 

Catarina and Rio Grande do Sul States). Figure 1c shows the general sample localities within the 

context of the Paraná Basin, with reference to underlying lava group. A complete sample database 

with field descriptions is provided in Supplementary A1. 

2.2. Laboratory techniques

Weathered material and amygdales were removed from all samples prior to preparation, as these 

would interfere with primary geochemical concentrations. Rock samples were crushed to 1-2 mm 

chips using a jaw crusher before being milled in a chrome-steel TEMA mill to produce fine powders, 

which were used in all subsequent bulk geochemical analyses. 

Major element oxides were measured using X-ray fluorescence (XRF) (after Kystol and Larsen, 1999; 

Tegner et al., 2009) at Camborne School of Mines, University of Exeter. Dried and ignited samples 

were fused in a furnace in platinum crucibles with lithium borate flux. Ammonium iodide solution was 

added to the molten sample to act as a wetting agent when poured into moulds. Cooled samples were 

analysed at 50-111 mA and 27-60 kV using a Bruker S4 Pioneer XRF spectrometer. Concentrations 
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were corrected to anhydrous values. The AGV-1, BHVO-2, BIR and DNC-1 standards were used in 

analyses and reported alongside new data.

Trace elements were measured using inductively coupled plasma mass spectrometry (ICP-MS) (after 

McDonald and Viljoen, 2006), also at Camborne School of Mines. Powdered samples were dissolved 

using 4-Acid digestion technique (nitric, perchloric, hydrofluoric and hydrochloric acids), and 

elemental concentrations were detected by an Agilent 7700 Series mass spectrometer. The BCR-2 and 

Bir-1a standards were used in analyses and reported alongside new data.

Six PGE (Os, Ir, Ru, Rh, Pt, Pd) plus Au were measured using Ni-S fire assay followed by tellurium co-

precipitation and ICP-MS analysis at Cardiff University (using methods developed by Huber et al., 2001; 

McDonald and Viljoen, 2006). Fifteen gram aliquots of each powdered sample was mixed with 12 g of 

borax flux, 6 g NaCO3, 0.9 g solid sulfur, 1.08 g Ni and 1 g silica, before being melted in a furnace at 

1000°C for 1.5 hours. The sulfide bead separated from the cooled melt was removed, dissolved in 

hydrochloric acid, co-precipitated with Te, filtered and diluted before element detection using a mass 

spectrometer. It should be noted Os was not measured for the northern sample set due to the lack of 

volatilisation-free methods at the time of analyses; samples analysed at a later date were measured 

for Os given the advancement of methodological accuracy. The TBD1 and WPR1 standards were used 

in analyses and reported alongside new data. Detection limits (i.e., lowest recorded blank values) were 

0.0052 ppb for Os, 0.0026 ppb for Ir, 0.0603 ppb for Ru, 0.0152 ppb for Rh, 0.1458 ppb for Pt, 0.0662 

ppb for Pd and 0.0070 ppb for Au. 

Full raw major, trace and PGE-Au data, plus standard measurements for each method (plus published 

values) and detection limits for PGE and Au are provided in Supplementary B. An amalgamated data 

sheet with duplicate measurements is available in Supplementary C. We acknowledge that chrome-

steel mills can introduce small amounts of metal contamination to samples and although this is 

expected to be minimal and non-intrusive to our results (Evans et al., 2013), we have supplied quartz 
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sand procedural blank measurements for PGE analyses alongside Supplementary B, processed 

identically to our basalts.

2.3. Petrology of Samples

In general, basalts from each magma-type are aphyric/fine- to medium-grained with small 

phenocrysts of pyroxene or plagioclase (up to 1 mm), and are exceptionally fresh for lavas of their age 

(alteration information in Supplementary D). In thin section, olivine is notably sparse or absent in most 

mafic rocks, with orthopyroxene (normative 10-30 wt.%), clinopyroxene (normative 5-40 wt.%), 

plagioclase (normative 20-50 wt.%), and spinel-group minerals (normative 1-5 wt.%) dominating in 

the majority of samples. Silicic rocks (rhyolites to dacites; Fig. 2) are fine grain-sized, with plagioclase 

(20-30 wt.%), clinopyroxene (~10 wt.%) and magnetite (1-5 wt.%) phenocrysts, in a plagioclase-quartz-

K-feldspar groundmass. Volcanic glass and quartz-feldspar aggregates (spherulites) are common 

throughout. Chapecó samples have larger and more frequent plagioclase phenocrysts than Palmas. 

There are no visible sulphides in any of our Serra Geral hand specimens, but rare traces (<1 wt.%, <0.1 

mm crystals) can be found in thin sections.

We have used a combination of two classification schemes alongside sampling locations in order to 

utilise the wealth of literature already available describing the characteristics of lavas belonging to 

each magma-type. In this way, we can contextualise subtleties in the dataset according to PGE and Au 

and therefore metallogenic processes in the new precious metal data set. Accordingly, lava samples 

have been classified into their classic magma-types (except Ribeira, which was not sampled) based on 

bulk concentrations of MgO and TiO2, plus Ti/Y and Ti/Zr ratios (established by Peate et al., 1992) and 

MgO vs. Zr, with literature data used for comparison (Fig. 2a-c; Supplementary A2). Classifications 

from Licht (2018) are also given for each sample (denoted by symbology), based on Si, Ti, Zr and P 

concentrations. The inherent issue with classifying samples based on limited bivariate relationships is 

evident – samples SG11-12, SG56 and SG78-79 do not conform to the Peate et al. (1992) classification 
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for example, and thus their designation was assessed subjectively based on adjacent literature data 

clouds for the purpose of this study; Licht (2018) classifications are wider, but more robust.

The sample set is also classified using a total alkali vs. silica (TAS) plot in Figure 2d. The mafic samples 

are predominantly basalts to basaltic andesites, with some Gramado samples classifying as andesites. 

Palmas samples plots within the dacitic field, while the two Chapecó samples plot with trachytes. All 

Paraná lavas analysed fall within the sub-alkaline to transitional alkali-tholeiitic fields.

3. Results

3.1. Major and trace element geochemistry

3.1.1. Major element oxides

Serra Geral basalts tend to have MgO concentrations consistently between 2 and 7 wt.%; silicic lavas 

plot between 1 and 2 wt.% MgO. Concentrations of TiO2 highlight the established literature magma-

types – >3 wt.% for Urubici/Pitanga or Type 4, 1.5-2.5 wt.% for Paranapanema or Type 1 (Central-

Northern), and <1.5 wt.% for Gramado/Esmeralda or Type 1 (Southern), plus the silicic lavas (Fig. 3a). 

All basic lavas exhibit Fe2O3 between 10 and 16 wt.% (Fig. 3b), with HT samples generally higher than 

LT. In Figure 3c, LT lavas exhibit higher Al2O3 concentrations than HT lavas (the opposite to Fe2O3), with 

a slightly positive relationship with MgO; MnO concentrations follow this same slight positive 

relationship but between 0.15 and 0.35 wt.% (Fig. 3d). A distinctly positive correlation between MgO 

and CaO (Fig. 3e), and negative correlations between MgO and Na2O (Fig. 3f), and MgO and K2O (Fig. 

3g) do not show clear HT-LT distribution patterns. Finally, P2O5 exhibits a bifurcated negative trend 

with MgO, with a shallow slope for LT and silicic lavas, and a steeper slope for HT lavas excluding 

Paranapanema, which follow LT trends (Fig. 3h). 

3.1.2. Base metals

Trends in base metal enrichment are limited for the Serra Geral data set, with distinctively low overall 

Ni (<140 ppm; Fig. 4a) and Cr (<160 ppm; Fig. 4d) contents compared to other CFB provinces (e.g., the 
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NAIP where onshore lavas generally exhibit Ni concentrations of 100-1,000 ppm and Cr concentrations 

of 100-2,000 ppm; Hughes et al., 2015). The Paranapanema samples display positive correlations 

between MgO and Ni, Co and Cr concentrations (Fig. 4a, 4c, 4d) that have a similar slope but higher 

concentrations than Gramado and Esmeralda samples; Urubici and Pitanga samples lack strong trends 

in all instances. Enrichment of Ni, Cr and Co (Fig. 4c) follow very similar trends to Fe2O3 relative to MgO 

(Fig. 3b), with HT lavas generally containing slightly higher concentrations. Overall, Cu concentrations 

are better clustered into locality classifications than Ni, Cr or Co, with Paranapanema lavas exhibiting 

the highest mean Cu content at 254 ppm and Esmeralda exhibiting the highest single-sample 

concentrations (Fig. 4b). Unlike the Ni and Cr, concentrations of Cu and Co (Fig. 4b and 4c) are 

comparable to NAIP onshore lavas from Hughes et al. (2015), at around 10-500 ppm for Cu and 10-70 

ppm for Co. 

3.1.3. Rare earth elements and lithophiles

Chondrite-normalised (McDonough and Sun, 1995) REE plots for all Serra Geral magma-types have 

fractionated REE patterns, with LREE > HREE in all samples (Figs. 5a-f). Steeper gradients are observed 

in the HT lavas (Figs. 5a-c), with distinctive light REE enrichment especially in Urubici (Fig. 5a) and 

Pitanga (Fig. 5b); these two magma-types also exhibit parallel arrays, and all HT lavas have a narrower 

spread of concentrations. Paranapanema lavas (Fig. 5c) feature similar enrichment patterns to the LT 

group, not their designated HT group. The LT REE arrays (Figs. 5d-e) have more variable LREE 

concentrations than HT lavas, particularly in the more incompatible REE such as La, Ce, Pr, Nd and Sm. 

Esmeralda is the most depleted magma-type in all element concentrations (Fig. 5d). Silicic and LT lavas 

have prominent Eu troughs, with the Silicic group generally showing more enriched concentrations of 

all elements, particularly Chapecó (Fig. 5f). 

Although some Gramado lavas trend towards high SiO2 concentrations and progressively lower Nb/La 

ratios associated with vectors indicating assimilation and fractional crystallisation (AFC) in CFB 

magmas, the majority of Paraná samples do not share this trend (plots taken from Xiao et al., 2004)  



15

(Fig. 6a). Most HT lavas are associated with OIB (Th/Ta)n, (Sm/Yb)n and (La/Sm)n vectors, whilst LT lavas 

trend towards classic Low-Ti signatures found in Gondwana CFBs (Wooden et al., 1993) (Figs. 6b-c). 

Paranapanema, Gramado and Esmeralda magma-types, or Type 1 from Licht (2018) (Table 1), share a 

strong association in Figures 6b and 6d at (Sm/Yb)n ~2. Urubici and Pitanga lavas (i.e. Type 4 in Licht, 

2018) trend together towards higher (Sm/Yb)n >3. 

The three HT magma-types exhibit similar normalised incompatible element patterns to one another 

and are enriched in Ba, Nd, Hf and Zr, and depleted in Sr and P compared to the LT samples (Fig. 7a-

c). Esmeralda (Fig. 7d) and Gramado (Fig. 7e) samples exhibit a wide range of multi-element 

normalised signatures, primarily lower than all other magma-types, with Ba, Nb, Sr, P and Ti negative 

anomalies and depletions in the most incompatible elements including Hf, Zr, Sm and Tb in particular. 

Chapecó and Palmas have similar normalised incompatible element enrichment trends, with 

pronounced Nb, Sr and Ti negative anomalies, and high Rb, Th, U, K, Hf and Zr concentrations (Fig. 7f). 

Chapecó features slightly higher concentrations overall and a positive Ba anomaly, whilst Palmas 

features a negative one. 

3.2. PGE and Au

Chondrite-normalised PGE and Au plots (McDonough and Sun, 1995) demonstrate a relative 

enrichment of Pd-group PGE (PPGE; Rh, Pt, Pd) and Au compared to Ir-group PGE (IPGE; Os, Ir, Ru) in 

all Serra Geral magma-types (except Palmas, which was not analysed) (Figs. 8a-f). However, the degree 

of enrichment varies significantly across the sample set. This is most obvious between Serra Geral HT 

and LT groups, with HT exhibiting a steep slope from IPGE to PPGE (Figs. 8a-c) and the LT showing 

normalised IPGE concentrations up to an order of magnitude higher than HT samples, producing a 

flatter gradient into PPGE (Fig. 8d-e). Most importantly, Serra Geral LT samples, or Type 1 (Southern) 

samples, frequently display an unusual, distinctive ‘hump’ between Ru, Rh and Pt concentrations and 

significant Pt, Pd and Au depletions compared to the gradual slope seen in the HT plot (with 

particularly high Pd and Au). Paranapanema lavas, or Type 1 Central-Northern, have the highest Pd 
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concentrations as shown by up to 0.1 x chondritic values (compared to 0.001-0.01 x chondrite for 

other lavas) in Figure 8c. 

The highest concentrations of Ir, Ru and Rh (Fig. 9b-d) are found in LT rocks (around 1.2, 13.5 and 5.75 

ppb, respectively), while Pt is most enriched in LT and Paranapanema (up to 30-40 ppb; Fig. 9e). 

Paranapanema lavas are distinctly Pd-rich in most instances (ranging 5-35 ppb compared to 1-15 ppb 

in all other lavas; Fig. 9f). Although Os concentrations are unavailable for HT lavas, LT lavas contain 

concentrations of a similar level to Ir in the same rocks (up to 1.2 ppb; Fig. 9a). Paranapanema lavas 

have the lowest Cu/Pd of the PELIP lavas (Fig. 10a), similar to the majority of NAIP lavas.  Figure 10b 

The IPGE/PPGE enrichment split between LT and HT is such that LT lavas tent to have the lowest Pd/Ir 

ratios (Fig. 10b), in a similar range to most NAIP lavas from Hughes et al. (2015). Urubici and Pitanga 

magma-types evidently contain less PPGE compared to the LT samples in Figure 10b. Figure 10c and 

10d compare PGE ratios to trace element signatures, to help characterise the chalcophile trends 

alongside magmatic differentiation trends from earlier figures.

4. Discussion

4.1. Magmatic trends

Our results show important geochemical trends across both the Peate et al. (1992) and Licht (2018) 

classification schemes that help contextualise precious metal trends, summarised and interpreted 

herein. Low MgO content (2-7 wt.%; Fig. 3a-h) and Ni concentrations (<125 ppm; Fig. 4a) across all 

Serra Geral lavas implies that they are not primary mantle melts and have undergone significant 

differentiation, likely via fractional crystallisation (Xiao et al., 2004). Mineral fractionation vectors in 

Figure 3a-h strongly suggest that olivine, clinopyroxene and plagioclase (plus minor amounts of spinel-

group minerals) were progressively removed from the parent magmas leading to decreases in Fe2O3, 

CaO, MnO and Al2O3, and increases in incompatible Na2O and K2O with decreasing MgO content 

(Fodor, 1987; Peate et al., 1990). As observed in thin section, the dominant mineral in all mafic samples 

is orthopyroxene, with clinopyroxene, plagioclase and spinel-group minerals, and a notable absence 
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of olivine (typically 0-5% of assemblages), likely due to the earlier removal. Most major elements 

exhibit a single fractionation trend for each magma-type with a possible slight change in slope and 

groupings below ~4 wt.% MgO, indicating that the fractionating mineral(s) were reasonably consistent 

for mafic lavas. For TiO2 and P2O5 (Fig. 3a and 3h), the fractionation trends indicate at least two liquid 

lines of descent, with Type 4 lavas (Urubici and Pitanga) exhibiting much more pronounced negative 

slopes with MgO compared with Type 1 lavas (Paranapanema, Esmeralda and Gramado), which are 

weakly negative. These branching fractionation trends indicate differing accessory/minor mineral 

constituents between magma-types and localities. We suggest that Type 4 lavas fractionated TiO2 and 

P2O5-poor accessories such as chromite (which may also explain the more prominent Cr depletion with 

decreasing MgO in this group in Fig. 4d), while Type 1 lavas fractionated magnetite, titanomagnetite 

and/or apatite. 

Olivine fractionation would efficiently remove compatible Ni (  = 7.21) and Co (  = 𝐷𝑜𝑙 ― 𝑚𝑒𝑙𝑡
𝑁𝑖 𝐷𝑜𝑙 ― 𝑚𝑒𝑙𝑡

𝐶𝑜

2.28) (Spandler and O’Neill, 2010). Considering the Serra Geral mafic lavas are particularly olivine-

deficient in thin section and reasonably evolved with respect to SiO2 and MgO concentrations (45-60 

wt.% and 2-7 wt.%, respectively; Fig. 2d and 3a-h), it is likely that a significant amount of compatible 

base metals have been removed from the parent magmas prior to eruption in all magma-types. In a 

similar manner, Cr is depleted in lavas throughout the region, which we attribute to the removal of 

both olivine and chrome spinel. Copper appears to be the only base metal/chalcophile retained in the 

lavas in any significant amount (Fig. 4b), and thus is neither strongly compatible nor incompatible in 

the fractionating silicate and oxide mineral phases. If sulphide fractionation drove chalcophile 

depletion, Cu would be uniformly removed from melts given its strong affinity for sulphide liquids in 

silicate melts (  = 1,470; Mungall and Brenan, 2014). Since this is not the case, we 𝐷𝑠𝑢𝑙𝑝ℎ𝑖𝑑𝑒 ― 𝑚𝑒𝑙𝑡
𝐶𝑢

propose that large degrees of olivine and chromite fractionation experienced by such MgO-depleted 

magmas would effectively remove Ni, Co and Cr while leaving Cu in melts. 
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Trace element concentrations and ratios provide evidence for markedly different geochemical 

processing between magma-types within the Serra Geral Group. Some Type 4 lavas feature as much 

as an order-of-magnitude enrichment in LREE compared to Type 1 lavas (particularly Southern), 

indicating differing degrees of partial melting or assimilation of continental crust (Fig. 5a-f). Combined 

with the trends of HT lavas towards OIB signatures in Figure 6b and high-Ti melts akin to Karoo CFBs 

in Figure 6c, we suggest Type 4 represents more strongly plume-related magmas in agreement with 

Rämö et al. (2016), who attribute HT lava 87Sr/86Sr and εNd signatures to an enriched mantle (EM1) 

component. Given that the HT/Type 4 lavas align with the plume focus ca. 135 Ma (Beccaluva et al., 

2020), their signatures in our study signify the strongest asthenospheric signal.

More pronounced negative Eu anomalies in the LT group than HT lavas (Fig. 5) indicate that a larger 

amount of plagioclase fractionated from the parent magma, signalling a higher degree of crystal 

fractionation (FC) in this group compared to HT. The LT lavas, particularly Gramado, exhibit decreasing 

Nb/La with increasing SiO2 (Fig. 6a), indicating the role of assimilation and fractional crystallisation 

(AFC) in the parent magmas. The depletion in trace element signatures and strongly negative Ta-Nb 

anomalies (Figs. 7d-e) indicate that contamination by continental crust material during magma ascent 

may have been important in their geochemical development, as widely documented by isotopic 

studies of the LT group (e.g. Peate et al., 1992; Rocha-Júnior et al., 2013; Natali et al., 2017; Marques 

et al., 2018). The Ta-Nb anomalies in HT lavas (Fig. 7a-c) are significantly less pronounced, indicating 

a lower degree of crustal contamination in these magmas. Chapecó and Palmas typically trend with 

HT and LT, respectively, in Figures 5f, 6a-d and 7f, suggesting they share a common source and perhaps 

evolved towards silicic compositions from their associated mafic magma-types.

Trace element observations provide an initial indication, prior to quantitative modelling, of melting 

conditions for the Serra Geral magmas. The steeply negative medium to HREE-LREE trends for Type 4 

multi-element patterns in Figures 5a-b, along with Type 4 samples trending towards high (Sm/Yb)n 

values in Figure 6d suggest low degrees of partial melting and HREE retention in residual garnet. This 
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could imply high pressure melting conditions commonly associated with plume melts beneath thick 

continental cratons, where the majority of the melting occurs in the garnet-bearing asthenosphere 

(e.g. Arndt et al., 1998; Jourdan et al., 2007). In comparison, Type 1 lavas are strongly associated with 

trace element trends produced by the melting of spinel peridotite (Fig. 6d) (e.g. White and McKenzie, 

1995), which corresponds with their shallow medium to HREE slopes in Figures 5c-e. Paranapanema 

lavas trend with Type 1 (Southern) towards spinel peridotite melts (Fig. 6d), exhibit medium to heavy 

REE slopes between those Type 1 (Southern) and Type 4, but are grouped with Type 4 OIB sources in 

other discriminant diagrams (e.g. Fig. 6c) and as such must be regarded separately in terms of source 

interpretation, as in Licht (2018). 

The spinel to garnet transition occurs where pressures and temperatures exceed 3 GPa and 1,570°C 

(Milholland and Presnall, 1998; Walter et al., 2002). This translates to depths of 50-70 km in 

asthenospheric regions and 120-180 km in colder sub-cratonic settings (Kent and Fitton, 2000; Ziberna 

et al., 2013). In Cr-rich mantle sources or depleted rocks such as harzburgite, the transition can occur 

at significantly higher pressures (up to 10 GPa) and typically increases the depths at which spinel and 

garnet are both stable simultaneously (Klemme, 2004; Ziberna et al., 2013). The different 

spinel/garnet melting trends exhibited by the Serra Geral lavas reflect either 1) different degrees of 

melting of a garnet-bearing mantle source (with garnet exhaustion in the most extreme cases) or 2) 

separate melting sources and depths (between 50 and 100 km; Gibson et al., 2006) as a function of 

the rapidly evolving geodynamic setting. Both scenarios would require a change in melting depth 

between magma-types, to facilitate differential degrees of partial melting (Beccaluva et al., 2020), and 

polybaric melting processes are favoured by Rämö et al. (2016) in their assessment of Pitanga and 

Paranapanema geochemical differences. We model the trace element geochemistry of Serra Geral 

lavas, including chalcophile elements, in Section 4.2.3, after firstly interpreting PGE enrichments in 

relation to partial melting information. 

4.2. PGE enrichment 
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Trends in PGE enrichment fall consistently into the three major mafic subdivisions established by Licht 

(2018) in Figures 8 and 9 – Pitanga and Urubici in Type 4, Paranapanema in Type 1 (Central-Northern), 

and Gramado and Esmeralda in Type 1 (Southern). As such, it is most appropriate to primarily use 

these newer classifications in lieu of the classic groups when discussing metallogenesis going forward. 

Type 1 (Southern) lavas are more enriched in IPGE than all other lavas (Fig. 8a-f). This is especially true 

for Ru concentrations, which are an order of magnitude higher than typical intracontinental lavas 

(Barnes et al., 2015). Furthermore, Rh, the transitional PGE that shares properties with both IPGE and 

PPGE (Barnes et al., 1985; Holwell and McDonald, 2010 and references therein), is also enriched in 

Type 1 (Southern) lavas, forming a ‘humped’ shape on their plots in Figure 8d-e. Contrasting this trend 

to the notable Pd and Au enrichment (and steep slope in the multi-element diagram) in the Type 1 

(Central-Northern) lavas (Fig. 8c) and general depletion in PGE in Type 4 lavas (Fig. 8a-b), it is clear 

that PGE signature are heterogeneous in the region. The discrepancy with depleted Ni and Co, and 

relatively enriched Cu in Figure 4a and 4b supports preferential fractionation of Ni and Co via olivine, 

in the absence of significant Cu depletion via sulphide removal. As noted in Section 4.1, we suggest 

that sulphide fractionation did not control base metal and PGE concentrations in the PELIP magmas. 

Thus, we must identify different geochemical sources outside sulphide depletion to explain the 

separate Ir-Ru-Rh and Pd-Au-Cu enrichment associations in Type 1 lava varieties that make sense 

when integrated with their major and trace element interpretations.

4.2.1.Palladium in Type 1 (Central-Northern) lavas

The Pd-Au-Cu enrichment in Type 1 (Central-Northern) samples is clearly illustrated by their steep 

multi-element slope in Figure 8c and high Pd/Ir ratios in Figure 10b, which place the lavas as 1-2 orders 

of magnitude more Pd-rich than all other lavas in this study. These lavas often contain up to 30 ppm 

more Pd than any other group (Fig. 9f), particularly Type 4, and contain slightly higher mean Cu and 

Au concentrations than others (Figs. 4b and 10f). Given that Pd, Cu and Au are all mobile incompatible 

chalcophiles commonly associated with each other in fluid-rich environments (e.g. Holwell et al., 2019; 
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Choi et al., 2020 and references therein), we propose that Pd, Cu and Au-bearing material is being 

preferentially incorporated into Type 1 (Central-Northern) melts. This supports Type 1 (Central-

Northern) as a separate compositional group by Licht (2018) despite earlier classification alongside 

Urubici and Pitanga by Peate et al. (1992); the fundamental geochemical controls on Si, Ti, Zr and P in 

Serra Geral magmas established from this study evidently have an impact on PGE concentrations. 

Enrichment in Pd-Cu-Au is unique to Type 1 (Central-Northern) lavas in the PELIP and thus a different 

partial melting model is required to generate the compositional variances from other samples. If, as 

suggested by Rocha-Júnior et al. (2013), the significant stratigraphic and spatial distance between the 

eruption of individual magma-types represents physically distinct sources in the mantle, we would 

expect each of the parental magmas to feature their own set of geodynamic controls on geochemistry. 

The three metals enriched in Type 1 (Central-Northern) lavas - Pd, Au and Cu - are notable for being 

more incompatible in silicate melting environments than the other five PGE and base metals (e.g. 

Mitchell and Keays, 1981; Borisov et al., 1994; Holzheid et al., 2000; Righter et al., 2008; Tassara et al., 

2017). Furthermore, Pd does not form micronuggets like the other PGE, tending to exist in base metal 

sulphides alongside Cu and Au (Holzheid et al., 2000). Metasomatic activity can easily redistribute such 

metals via fluids and melts at the upper mantle and base of the lithosphere in sub-cratonic settings 

over long periods of time (e.g. Zhang et al., 2008; Maier and Groves, 2011). Given that the Paraná 

Basin exists on Proterozoic Gondwanan basement, the SCLM beneath modern day Brazil will have 

been subjected to numerous fertilisation events (Rocha-Júnior et al., 2013) via subduction around the 

cratonic margin (Tassara et al., 2017). Subducting oceanic crust can release mobile elements in 

dehydrating fluids or small-degree melts as the plate descends, and these become concentrated in a 

mantle wedge and SCLM (e.g. Woodland et al., 2002; Griffin et al., 2013; Tassara et al., 2017; Rielli et 

al., 2018; Wade et al., 2019), similar to the origins of Cu-porphyry environments. Metasomatic 

sulphide minerals, and by extension chalcophile elements, can then be scavenged by melts generated 

in an intracontinental setting (Powell and O’Reilly, 2007). Generally, Pd will follow Cu during partial 

melting of the mantle and can be found in similar sulphide phases at upper mantle P/T conditions (e.g. 
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Barnes et al., 1997; Mungall et al., 2005; Lorand et al., 2013 and references therein). If Cu- and Pd-

bearing sulphides are melted and incorporated into magmas interacting with the SCLM, the two 

metals can share a coupled enrichment in resulting volcanic and intrusive products (e.g. Bockrath et 

al., 2004; Alard et al., 2011; Delpech et al., 2012; Lorand et al., 2013; Lorand and Luguet, 2016; 

McDonald et al., 2017; Tassara et al. 2017). 

An alternative theory is that whilst the SCLM still received enrichment via metasomatic processes, 

subduction did not supply the metals. In Figure 11a-b, relative PGE concentrations are compared to 

classic sub-lithospheric rocks from the literature, pyroxenite xenoliths from Cameroon (Abeng et al., 

2012). Here, Type 1 (Central-Northern) samples plot far from classic intraplate xenoliths and instead 

are much more alike the pyroxenites. Thus, the enrichment of PPGE in the parent magma could have 

resulted from pyroxenite (i.e., recycled oceanic crust components) in the melt column and/or SCLM. 

Given the long history of the Gondwanan SCLM likely including many metasomatic and partial melting 

events, and the tendency of mantle plumes to sample both pyroxenite and peridotite from the deep 

mantle, this is plausible, yet would require Os-isotope data to accurately confirm. Regardless of 

mechanism (subduction or mantle component-driven), the Type 1 (Central-Northern) parent magmas 

require enrichment in PPGE, Cu and Au prior to ascent via a metasomatic event to produce such PGE 

signatures.

In a study comparing intracontinental melts from depleted asthenospheric and metasomatised SCLM 

sources in the North China Craton, Wang et al. (2020) determined that the latter were 3-4 times more 

enriched in precious and base metals, likely via efficient extraction of SCLM sulphides during melting. 

Furthermore, spinel lherzolite xenoliths in intracontinental lavas from Ethiopia (Lorand et al., 2003), 

showing evidence of metasomatic deformation and melt percolation, acquired a characteristic 

enrichment in S-Cu-Pd-Au. Given the unique geochemical characteristics of Type 1 (Central-Northern) 

lavas for the PELIP, our metallogenic model must provide a mechanism for differentiating the magma-

type from the others, particularly the Type 1 (Southern) group given that they melt at a similar depth 
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according to garnet-spinel information in Figure 6d. We propose that given the documented 

metasomatic association of Pd and Cu (e.g. Hughes et al., 2014; Tassara et al., 2017; Holwell et al., 

2019; Choi et al., 2020) and potentially Au (although this is less constrained; Maier et al., 2012), and 

the consistently higher concentrations in shallower-derived continental melts from the PELIP (e.g. 

potentially involving more SCLM than asthenosphere), the Type 1 (Central-Northern) lavas obtained 

elevated concentrations of Pd, Cu and Au by the passive melting of metasomatised SCLM by the 

Tristan plume. Indeed, studies of Brazilian mantle xenoliths indicate a protracted metasomatic history 

beneath the craton (e.g. Rivalenti et al., 2000; Carlson et al., 2007), supporting this hypothesis.

4.2.2.Ruthenium and rhodium in Type 1 (Southern) lavas

The plateau between Ru, Rh and Pt in Type 1 (Southern) samples (Fig. 8d-e) likely reflects the source 

minerals included in parental melts. This likely indicates that a Ru-Rh-bearing mineral(s) is being 

incorporated into Type 1 (Southern) magmas from a mantle source in a separate system from other 

magmas. The melting depth and source for Type 1 magmas are different to Type 4 (Rämö et al., 2016; 

Licht, 2018) (Fig. 6d), implying distinct melting processes in the northern and southern basalts 

(Beccaluva et al., 2020) that could explain the groups’ differing metallogenic characters. Overall, the 

PGE behave in a similar manner chemically – in the presence of a sulphide melt portion, all six will be 

overwhelmingly concentrated within it rather than the silicate melt. However, the individual partition 

coefficients of the PGE between silicate minerals and melt vary significantly when not in the presence 

of sulphides (e.g. Peach et al., 1990; Peach et al., 1994; Righter et al., 2004; Park et al., 2017 and 

references therein), and the melting of a sulphide-deficient mantle will facilitate the heterogeneous 

incorporation of PGE into melts. It follows that the enrichment and depletion of PGE in Serra Geral 

lavas must be controlled by silicate or oxide differentiation processes in the magma. If the melts were 

depleted in sulphide, the majority of their PGE basket would also be removed and they would have 

higher Cu/Pd than what is displayed in Figure 10a, more common in NAIP magmas. To add Ru and Rh 
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to Type 1 (Southern) in the quantities observed in Figures 8d-e and 9c-d would require melting of a 

source rich in these PGE alone, or at least in higher proportions than the other PGE. 

Type 1 (Southern) and (Central-Northern) lavas follow a liquid line of descent commonly associated 

with the melting of spinel peridotites at shallower depths and lower pressures than Type 4 magmas 

(Figs. 6d). Experimental studies found Ru and Rh to be compatible in spinel-group minerals 

(Capobianco and Drake, 1990; Barnes and Picard, 1993; Pitcher et al., 2009), with spinel-silicate melt 

partition coefficients of 400-900 (Righter et al., 2004). This synchronises well with our trace element 

ratios (Fig. 6) – by melting a source with normative spinel-group mineral content, the generated 

magma would contain relatively high concentrations of the two PGE. In the mantle, Os, Ir, Ru and Rh 

are also highly compatible in sulphides, platinum-group minerals (PGM) and alloys, different mineral 

phases from the base metal sulphides, tellurides and arsenides that Pt and Pd are commonly found in 

(e.g. Mitchell and Keays, 1981; Alard et al., 2000; Helmy and Bragagni, 2017; Helmy and Fonseca, 

2017). As such, the variety of sulphide compositions in the mantle source can be a crucial factor in 

fractionating the PGE from each other and isolating an IPGE and Rh rich mineral phase (i.e.  Ni-

sulphides, alloys or even spinel) for preferential melt incorporation (e.g. Keays et al., 1982; Barnes and 

Picard, 1993; Rehkämper et al., 1997; Maier et al., 2003). A combination of spinel-group minerals and 

IPGE-sulphides at source may provide the necessary PGE signatures to Type 1 (Southern) melts. 

However, Type 1 (Central-Northern) sample trace element signatures also indicate spinel peridotite 

as a melting source in Figure 6d, cluster with Type 1 (Southern) in Figure 6b, and sit distinct from the 

other magma-types in the Licht (2018) study. Type 1 (Central-Northern) lavas do not have the 

characteristic Ru-Rh enrichment in Figures 8c and 9c-d. This suggests that although all Type 1 lavas 

likely formed by the partial melting of spinel peridotite mantle, the melting processes for the Southern 

and Central-Northern varieties must have been different to incorporate a different suite of PGE, or 

the mantle sources being melted exhibited different metasomatic characters. 

4.2.3. Modelling melt compositions
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Based on the interpretations of all Type 1 lava PGE signatures, we forward-modelled melt 

compositions appropriate for melting of primarily spinel peridotite in a sub-lithospheric setting, using 

mass balance calculations from Shaw (1970) and experimental melting mode values from Johnson 

(1998) (Fig. 12a-b). Mineral-melt partition coefficient sources are given in Figure 12 and Table 2. 

Starting with bulk concentrations of Co, Ni, Cu, PGE and Au from i) metasomatised arc, ii) normal arc, 

iii) cratonic, and iv) off-craton peridotite xenoliths collated by Barnes et al. (2015), and the mineral 

mode (X) and melt mode (p) values displayed in Table 2, we successfully generated chondrite-

normalised multi-element PGE plots representative of the Serra Geral Type 1 magmas (summarised in 

Figure 12; see Supplementary E for further details). Metasomatised and normal arc xenoliths 

represent re-enriched and depleted upper mantle sources in our Type 1 (Central-Northern) models, 

respectively. On-craton xenoliths are generally from kimberlites within the thickest area of a craton 

block whilst off-craton are from kimberlites in thinner mobile belts surrounding cratons (e.g. Wildman 

et al., 2017); these represent a progressively thinning intracontinental setting in our Type 1 (Southern) 

models. 

An important caveat for our models is that strongly chalcophile elements (such as the PGE) will 

preferentially stay in sulphide minerals until the phase is melted entirely, and as such, sulphide melting 

strongly controls the concentration of PGE in the resulting magmas. In order to attain PGE 

concentrations contained in any of our samples (between 0.0001 and 0.1 x chondritic; Fig. 8a-f), the 

sulphide phase, if present in the source (~1 wt.% in our model), must be exhausted. Similarly, for IPGE 

and Rh compatible in spinel, this mineral phase must be entirely melted to release the metals into 

magmas. Given the spinel-melt partition coefficients for IPGE are often 3-4 orders of magnitude 

smaller than those for sulphides (Table 2), the effect on resulting concentrations pre-exhaustion is 

much less pronounced. Further, it must be noted that chalcophile sulphide-melt partition coefficients 

can be highly variable from experiment to experiment, so we have maintained those found by Mungall 

and Brenan (2014) for consistency whilst acknowledging the challenges of modelling sulphide melts. 
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PGE, Cu, Co and Ni concentrations progressive melting are given in bivariate plots in Supplementary E 

for each scenario, in support of Figure 12.

To generate Type 1 (Central-Northern) magmas, our models (Fig. 12a) show that elevated bulk Cu, Pt, 

Pd and Au concentrations in the source strongly influence the resulting melt enrichment. 

Metasomatised continental arc xenoliths (as in Wilson et al., 1996) typically feature such enrichment 

of Cu, Pt, Pd and Au. Beneath ancient cratons, the SCLM can be pre-conditioned by repeated 

subduction events throughout history (e.g. Mitchell and Keays, 1981; Powell and O’Reilly, 2007; Zhang 

et al., 2008; Hughes et al., 2014; Hughes et al., 2015; Holwell et al., 2019). The model predicts that at 

melting degrees of around 20 %, metasomatic sulphides in an arc-like mantle will be exhausted at the 

conditions from Table 2, releasing chalcophile elements into the melt (‘metasomatised arc’ in Fig. 12a). 

Identical melting conditions with a less Pt, Pd, Au and Cu-enriched source would produce chondrite-

normalised plots with shallower gradients (‘normal arc’ in Fig. 12a, also from Wilson et al., 1996), 

indicating that bulk source composition is the key factor in melt enrichment. Further, a mantle source 

without sulphide in the mineral mode cannot sufficiently produce melts with elevated Pt, Pd or Au 

concentrations, as the elements in question do not partition strongly into the remaining silicate or 

oxide mineral phases. It should be noted that PGM and alloys are also known to host small amounts 

of the SCLM’s PGE budget (e.g. Hughes et al., 2015; González-Jiménez et al., 2020), but our model 

does not account for these phases. If Brazilian SCLM does host Pd-bearing PGM this would only work 

to boost our model further and reinforce the idea of metasomatically-enriched Pd-Au-Cu SCLM 

components.

Cratonic (Maier et al., 2012) and off-cratonic (Schmidt et al., 2003) peridotite xenoliths have a more 

even distribution in PGE concentrations, but in most cases are enriched in Ir, Ru and Rh, and depleted 

in Pt, Pd and Au with respect to arc sources (Table 2). Our models predict that once sulphides are 

exhausted, the resulting on/off craton melts produce nearly flat chondrite-normalised PGE-

enrichment patterns (Fig. 12b), but not the Ru-Rh ‘hump’ from Fig. 8d-e. However, given that evidence 
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shows that Type 1 lavas were derived from melts nearer the locus of lithospheric rifting (Beccaluva et 

al., 2020), we assume a higher-degree (i.e 25 %) melt fraction in the off-craton setting (i.e. thinner 

lithosphere, shallower/higher degree partial melts) as a best fit the PGE patterns in our Gramado and 

Esmeralda samples. This allows more spinel to be melted which increases Ir, Ru and Rh concentrations 

to match Type 1 (Southern) patterns (Fig. 8d-e). In the absence of sulphide, our model can produce 

similar PGE enrichment curves, implying that these lavas, unlike Type 1 (Central-Northern), do not rely 

on metasomatic sulphides in the melting system. Elevated source bulk concentrations in the relevant 

metals are the key driver in resulting melt composition in all models, provided the host phase can be 

sufficiently melted. 

Our modelling demonstrates that Type 1 (Central-Northern) magma compositions are best explained 

by a mantle source region with metasomatic sulphides which become exhausted during partial 

melting, while Type 1 (Southern) magmas can be generated by higher degrees of partial melting to 

exhaust both sulphides and spinel-group minerals (if sulphides were present at all). Locally 

heterogeneous SCLM beneath Brazil (Fodor et al., 2002; Carlson et al., 2007), as exists in other CFB 

provinces worldwide (Karoo in Jourdan et al., 2007; Emeishan in Song et al., 2008; the North Atlantic 

in Hughes et al., 2015; and South Australia in Wade et al., 2019), can generate diverse PGE signatures 

in melting signatures.

4.3. Melt components and the role of the SCLM in CFB metallogenesis

A unifying metallogenic model for Serra Geral must incorporate aspects of geodynamic, mineralogical 

and melting models to explain major and trace element signatures in the region. The variable 

enrichment and depletion of PGE and Au in Paraná CFB magma-types immediately characterises Type 

4 (the highest-Ti magma-type of the HT group) as relatively deficient in all seven precious metals. In 

contrast, the Type 1 mafic magma-types contain the modelled enrichments in two different sets of 

PGE/chalcophiles – Pd, Au and Cu in Type 1 (Central-Northern), and Ru and Rh in Type 1 (Southern). 

The concentrations can be explained by variable element compatibility and mineral assemblages 
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expected in the melting region (Figs. 12a-b), which in turn implies changing conditions beneath the 

Tristan plume. Between the generation of Type 4 and Type 1, the mantle source has changed to 

distinctly spinel lherzolite (Fig. 6d) (in agreement with Rämö et al., 2016). This indicates a progressive 

shift to shallower melting depths, which may have allowed higher degrees of partial melting (i.e. 20-

25 %, as modelled in Fig. 12a-b), permitting access to different zones and/or greater amounts of the 

SCLM as a melting source. We propose a multi-component metallogenic model (Fig. 13) to describe 

the incorporation of variable PGE assemblages throughout the geochemical magma-types in the 

Paraná CFB, in line with the region’s geodynamic development in the Cretaceous (135-128 Ma; Fig. 

1a-b) and modelling from Figure 12.

Firstly, we must establish the evolving geodynamic setting in Cretaceous Brazil as the mechanism 

behind the differing PGE enrichment. Prior to extension, a thick continental lithospheric ‘lid’ 

suppressed the degree of melting beneath the Gondwanan continent and confined CFB melt 

generation to deeper in the upper mantle (i.e. at the plume head), firmly within the upper mantle 

garnet lherzolite stability field (as in Arndt et al., 1993; White and McKenzie, 1995; Turner et al., 1996; 

Kerr, 1997). Following lithospheric thinning as a consequence of thermal weakening by the underlying 

mantle plume and the onset of continental rifting from the south-east ca. 134 Ma, the underlying 

mantle decompressed and enabled partial melting at shallower depths i.e. within the spinel lherzolite 

stability field (e.g. Ellam, 1992; Stein and Stein, 1992). This thinning would be most prevalent in south-

eastern Paraná, near the future Atlantic coast, forming geographically-bound differences in 

lithospheric thickness and melting depth (Turner et al., 1996), decreasing from the north-west (HT 

lavas) to the south-east (LT lavas) (Beccaluva et al., 2020). This echoes the geodynamic setting of the 

Palaeogene proto-Icelandic rift-plume system in the North Atlantic – magmas from under the intact 

Greenlandic lithosphere and magmas at/near the developing Atlantic rift zone record different depths 

of melting and markedly different melt geochemistry as a result (e.g. Saunders et al., 1997; Kent and 

Fitton, 2000; Hughes et al., 2015; Lindsay et al., 2020). The transition from thick North Atlantic Craton 

to rifted lithosphere resulted in high- then low-Ti continental magma generation (Momme et al., 
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2006), reflected in their apparent depth and degree of melting, and garnet/spinel source signatures. 

In the case of Paraná, we propose that partial melts that are generated at the garnet-spinel transition 

as a function of lithosphere extension can directly control the variable metal baskets in the Serra Geral 

magma-types as modelled (in line with Kerr, 1995; Klemme and O’Neill, 2000; Gibson et al., 2006). 

Although Serra Geral lavas generally follow the classic stratigraphy of Gramado to Esmeralda and 

Palmas (with minor Urubici intercalated) in the south and Pitanga to Paranapanema and Chapecó in 

the north (Fig. 1c), it must be reiterated that the lavas are synchronous across the Paraná Basin. 

Evidence for synchronicity includes mixing between Esmeralda and Pitanga (De Min et al., 2017), 

Urubici occurrence between successive Gramado layers (Turner et al., 1996) and Paranapanema 

underlying the ‘older’ Gramado in places (Turner et al., 1999). The ongoing development and 

diversification of the magmas does not necessarily equate to their complex temporal and spatial 

surface distribution sequence. 

The smaller degree of crustal contamination and more enriched mantle melt signatures place Type 4 

lavas as close to a plume component as possible in the region, such that Urubici and Pitanga lavas are 

enriched in LREE and incompatible elements (Figs. 5a-b and 7a-b). Through time, as the lithosphere 

thinned, the melting region shifted to shallower depths in response to the lid effect, producing Type 

1 (Central-Northern) magmas from a HT source (albeit with a drop in bulk TiO2 concentration), 

evidenced by the transition from garnet to garnet-spinel to spinel lherzolite (Fig. 6d) (Rämö et al., 

2016). These melts successfully incorporated metasomatised (i.e. Pt, Pd, Au and Cu bearing) SCLM 

sulphides given the presumed increased degree of melting possible at reduced depths, modelled in 

Figure 12a. Silicic Chapecó magmas that were formed by small degree partial melt extraction from the 

HT magmas would not inherit the Pd, Au or Cu concentrations contained within Type 1 (Central-

Northern) because their subsequent upper crustal development would have fractionated such 

elements into early crystals and removed them from the felsic system. It is unclear whether the 

differences in melting depth were a) progressive from a single evolving and shallowing melting site or 
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b) spatially distinct despite the general ‘northern’ HT source. Given the synchronous nature of Serra 

Geral lavas, we opt for the latter view.

Further to the east, Type 1 (Southern) magmas were sourced from beneath thinner lithosphere still, 

near the Atlantic rift and further from the plume focus – this produced higher degree partial melts 

within the spinel lherzolite mantle (Fig. 6d) with much more dilute TiO2 concentrations (Fig. 3a). These 

higher-degree melts were able to exhaust sulphide and spinel, to produce the IPGE and Rh dominant 

signatures in Figures 8d-e and 12b. Beccaluva et al. (2020) suggest that where HT magmas were less 

viscous and were able to rise to the surface with minor assimilation of crustal material, LT magmas 

stalled in subsurface chambers prior to eruption. All LT Type 1 (Southern) lavas consequently exhibit 

geochemical evidence for contamination, such as high 87Sr/86Sr, low εNd and crustal U-Th-Pb isotopic 

signatures (Peate, 1997). The transition from Gramado to Esmeralda within Type 1 (Southern) did not 

visibly affect PGE concentrations (Figs. 9a-f). Palmas lavas formed from protracted upper crustal 

development of LT lavas, in this case with more extensive AFC than the mafic melts (Garland et al., 

1995; Milner et al., 1995), which may explain the loss of PGE from parental Type 1 magmas.

Overall, the shifting melting depth imposed by the Tristan plume in response to the breakup of 

Gondwana drives regional metallogenesis. It is highly likely that the SCLM beneath Brazil is 

heterogeneous in terms of precious metal content hosted in metasomatic sulphide phases in the 

mantle. Whilst Type 4 magmas did not receive ‘spiked’ PGE signatures from increased degrees of 

melting, the shallower-sourced Type 1 melts exhausted sulphides and, for the Southern magmas, 

spinel-group minerals to attain elevated precious metal contents. The scale of the PELIP, localised 

nature of metasomatism, and synchronicity of geochemically diverse regional lavas reinforces the idea 

that a variety of concurrent magmatic systems worked in unison to produce the complex stratigraphy 

of Serra Geral.

5. Conclusions
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The bulk major and trace element, PGE and Au data and quantitative modelling presented in this 

chapter support a progressively thinning lithosphere in response to thermal uplift from the upwelling 

Tristan plume and congruent crustal extension. This in turn directly affects the depth and source of 

Paraná intracontinental partial melts and their resulting metal baskets.

1. Serra Geral Type 4 lavas (i.e., Urubici and Pitanga) do not contain any significant enrichment in 

precious metals, primarily due to their origin as deeper asthenospheric melts with plume-derived 

trace element enrichments but no obvious precious metal contribution from the SCLM.

2. Serra Geral Type 1 (Central-Northern) lavas (i.e., Paranapanema) contain elevated Pd 

concentrations, coupled with higher mean Au and Cu than the other magma-types, which we 

attribute to a shallower melting environment, but still primarily within the asthenosphere, 

promoting the incorporation of metasomatically-enriched Proterozoic SCLM.

3. Serra Geral Type 1 (Southern) lavas (i.e., Gramado and Esmeralda) display unique Ru-Rh 

enrichment that can be linked to shallow SCLM melting at the developing rift zone, and spinel 

and/or sulphide incorporation from the melting source. 

4. The heterogeneous PGE enrichment of cratonic SCLM by metasomatism in intracontinental 

settings, as exhibited beneath the North Atlantic Igneous Province, the North China Craton and 

Ethiopia, promotes variable metallogenic characters throughout CFB provinces. This highlights the 

crucial role of plume-SCLM interaction as a potential precursor to the generation of PGE ore 

deposits in the upper crust from intracontinental magmas.
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Figure Captions -

Figure 1 - a) Schematic map showing the eruption of the Paraná-Etendeka flood basalts over the 

conjoined South American and African continents (135 Ma) and their current formation with the Rio 

Grande Rise (RGR), Walvis Ridge (WR) and Tristan-Gough islands (TG) in between. b) Representative 

summary timeline of eruptive products of the PELIP with incipient rifting. c) Sample map for this study 

(Paraná region) with High-Ti and Low-Ti provinces and CFB boundaries. Markers denote sample 

localities – see Supplementary X for further sample details. Representative stratigraphy is given for 

the north and south with magma-types classified as: north - Pitanga (PN), Paranapanema (PP) and 

Ribeira (RI); south - Gramado (GR), Esmeralda (ES), Urubici (UR) and Silicic (S), based on (Turner et al., 

1999).

Figure 2 - Classification diagrams based on Peate et al. (1992): a) MgO vs. Zr; b) MgO vs. TiO2; c) Ti/Y 

vs. Ti/Zr. d) Total Alkali vs. Silica (TAS) petrological/geochemical discriminant diagram for the Serra 

Geral sample set. Colours refer to Peate classifications and symbols for Licht classifications as per the 

legend in 2a. Dashed lines for approximate HT/LT division are from Peate (1997). Dashed lines for 

approximate Type 1 and 4 division (2.85 wt. % TiO2) from Licht (2018). Arrows refer to approximate 

development trajectory. In the key, dashes indicate that no data was available for that particular 

magma-type either in this study (large coloured markers) or the literature (small greyscale markers). 

Literature database with references is provided in Supplementary A2. S – Southern, C-N – Central-

Northern.

Figure 3 - Harker bivariate plots for Serra Geral lavas: MgO vs. a) TiO2, b) Fe2O3, c) Al2O3, d) MnO, e) 

CaO, f) Na2O, g) K2O, h) P2O5. With fractionation vectors for evolving liquid compositions for Fo – 

forsterite, Fa – fayalite, Aug – augite, En – enstatite, Diop - diopside, an – anorthite, Al – albite, Sp – 

spinel, Uv – ulvospinel, Mg – magnetite, Cr – chromite, Ru – rutile, Im – ilmenite, Bi – biotite, Ho – 

hornblende, KF – K-feldspar. S – Southern, C-N – Central-Northern.

Figure 4 - Bivariate plots for base metal concentrations in Serra Geral lavas: MgO vs. a) Ni, b) Cu, c) Co, 

d) Cr. With fractionation vectors for evolving liquid compositions for Ol – olivine, Pyx – pyroxene, Sul 

– sulphide, and Cr – chromite. S – Southern, C-N – Central-Northern.

Figure 5 - Chondrite-normalised (McDonough and Sun, 1995) rare earth element plots for Serra Geral 

lavas: a) Urubici; b) Pitanga; c) Paranapanema; d) Esmeralda; e) Gramado; f) silicic Palmas and 

Chapecó. Grey shaded area – Urubici magma-type for reference. S – Southern, C-N – Central-Northern.

Figure 6 - Selection of lithophile and REE ratio discriminant plots for Serra Geral lavas. a) SiO2 vs. 

Nb/La, b) (Th/Ta)n vs. (Sm/Yb)n; c) (Th/Ta)n vs.(La/Sm)n; d) (Sm/Yb)n vs. (La/Sm)n. (Annotations for 
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6b and 6c based on Wooden et al., 1993; for 6a and 6d based on Xiao et al., 2004). S – Southern, C-N 

– Central-Northern.

Figure 7 - Trace element concentrations normalised by Primitive Mantle values (McDonough et al., 

1992), arranged according to increasing compatibility, for the Serra Geral lavas: a) Urubici; b) Pitanga; 

c) Paranapanema; d) Esmeralda; e) Gramado; f) silicic Palmas and Chapecó.  Grey shaded area – 

Urubici magma-type for reference. S – Southern, C-N – Central-Northern.

Figure 8 - Chondrite-normalised (McDonough and Sun, 1995) PGE plots for Serra Geral lavas and 

locations. a) Urubici; b) Pitanga; c) Paranapanema; d) Esmeralda; e) Gramado; f) Chapecó. Grey shaded 

area – Urubici magma-type for reference. S – Southern, C-N – Central-Northern.

Figure 9 - PGE Bivariate plots of Serra Geral lavas for MgO vs a) Os, b) Ir, c) Ru, d) Rh, e) Pt and f) Pd. S 

– Southern, C-N – Central-Northern.

Figure 10 - Bivariate plots for PGE concentrations as ratios for Serra Geral lavas. a) Pd vs. 

(Cu/Pd)*1000; b) Ir vs. Pd/Ir with vectors for incompatible fractionation and olivine accumulation, and 

markers for Primitive Upper Mantle and Skaergaard compositions from Hughes et al. (2015); c) Pd/Ir 

vs. Ti/Y; d) Ru/Pd vs. (Sm/Yb)n. Literature data used in 10a and 10b from: Lightfoot et al. (1997); Philipp 

et al. (2001); Momme et al. (2002); Momme et al. (2003); Hughes et al. (2015).

Figure 11 - Bivariate plots of a) Rh/Pd vs. Rh/Ir and b) Ru/Pd vs. Ru/Rh, demonstrating the differences 

between the Serra Geral lava PGE ratios, with comparison data for intraplate xenoliths (Maier et al., 

2012), Iceland (Momme et al., 2003) and Cameroon pyroxenites (Abeng et al., 2012) 

Figure 12 – Melt modelling for Serra Geral magma PGE and Au concentrations based on the 

parameters from Table 2. a) Arc xenolith starting compositions, representing Type 1 (Central-

Northern) magma generation. Metasomatised mantle sources can produce the characteristic Pt-Pd-

Au enrichment in the corresponding Paranapanema samples at ~20 % partial melting. b) Cratonic and 

off-cratonic xenolith starting compositions, representing Type 1 (Southern) magma generation. 

Magma produced at 20 % partial melting (i.e. sulphides exhausted) releases PGE to roughly the 

chondrite-normalised concentrations in Gramado and Esmeralda samples, but the Ru-Rh ‘hump’ is not 

achieved until spinel is also exhausted (25 % partial melting). 

Figure 13 – Metallogenic model for the Serra Geral flood basalts and their parent magmas based on 

geochemical interpretations, literature information and modelling (Fig. 11). Thinner lithosphere above 

the Tristan plume, either situated nearer to the future Atlantic rift (ie. south-east Paraná and 

Etendeka) or from progressive craton extension (i.e. north-west Paraná) promotes higher degrees of 
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partial melting at shallower depths. Type 4 magmas diversify mainly by partial melt extraction and 

fractional crystallisation (FC) from a plume-proximal source with minimal crustal contamination. Type 

1 (Central-Northern) magmas, generated when the HT source begins melting in shallow SCLM regions 

(F = 0.2), incorporate Pd, Au and Cu from metasomatic sulphides. Type 1 (Southern) lavas diversify by 

assimilation and fraction crystallisation (AFC), and mafic varieties contain elevated Ru and Rh content 

via higher degree melts (F = 0.25) of SCLM spinel and sulphides. Based on work by Beccaluva et al. 

(2020); Rämö et al. (2016); Turner et al. (1999). S – Southern, C-N – Central-Northern.

Table Captions –

Table 1 – Summary of geochemical classification schemes used in this study (Peate et al., 1992 and 

Licht, 2018). The classification criteria for Peate et al. (1992) is referred to in Figure 2, whilst the 

geochemical concentrations used for the sixteen types in Licht (2018) are given in this table along 

with a rough proportion of the total Serra Geral volume. Gra – Gramado, Esm – Esmeralda, Par – 

Paranapanema. 

Table 1 – Parameters used in melting models. a Spinel peridotite melt modes from Johnson (1998) and 

Kinzler (1997), with addition of sulphide. b D-values for olivine from Brenan et al. (2003) and Spandler 

and O’Neill (2010). c D-values for orthopyroxene from Beattie et al., (1991) and Liu et al. (2014). d D-

values for clinopyroxene from Hill et al. (2000) and Righter et al. (2004). e D-values for spinel from Liu 

et al. (2014), Park et al. (2017) and Righter et al. (2004). f D-values for sulphide from Mungall and 

Brenan (2014).  g Arc xenolith concentrations from Wilson et al. (1996). h Craton xenolith 

concentrations from Maier et al. (2012). I Off-craton xenolith concentrations from Schmidt et al. 

(2003). Italicised values were unavailable in the literature for silicates, but assigned neutral values 

based on olivine values, given their lesser significance to melt composition compared to spinel and 

sulphide.
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Supplementary Items –

Supplementary A1 - Sample data base for Serra Geral samples collected for this study including sample 

localities, properties and hand specimen descriptions.

Supplementary A2 – Literature data base used in Figure 2, including full references

Supplementary B – Raw bulk geochemical data for major (XRF), trace (ICP-MS) and PGE-Au (fire assay), 

produced directly from labs. Includes standard measurements, instrument details, duplicates, and (for 

PGE-Au) detection limits.

Supplementary C – Merged bulk geochemical data sheet used in all further analyses, including 

classifications via Peate et al. (1992) and Licht (2018) schemes and various ratios.

Supplementary D - Bivariate plots for alteration indicators in Serra Geral lavas. a) MgO vs. Loss-On-

Ignition (LOI); b) Alteration Index vs. Chlorite-Carbonate-Pyrite (CCP) Index. Alteration vectors and 

‘least alteration box’ from Large et al. (2001).

Supplementary E – Modelling sheets for Figure 11. Includes full working calculations, plots and all 

parameters used in modelling. Discussed fully in Section 4.2.3 of article.
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Peate et al. 
(1992) Licht (2018) Proportion 

SiO2 
(wt%)

Zr 
(ppm)

TiO2 

(wt%)
P2O5 

(wt%)
Gra, Esm, Par Type 1 (S and C-N) 49.94% <0.413
- Type 2 1.94% <2.85 >0.413
- Type 3 3.85% <0.413
Pitanga, Urubici Type 4 22.48% <522.15 >2.85 >0.413
- Type 5 0.06% <0.413
- Type 6 0.03% <2.85 >0.413
- Type 7 0.03% <0.413
- Type 8 -

<62.02

>522.15 >2.85 >0.413
Palmas Type 9 15.59% <0.413
- Type 10 0.42% <2.85 >0.413
- Type 11 0.03% <0.413
- Type 12 0.03% <522.15 >2.85 >0.413
- Type 13 2.79% <0.413
Chapecó Type 14 3.79% <2.85 >0.413
- Type 15 0 <0.413
- Type 16 0

>62.02

>522.15 >2.85 >0.413
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Setting Mode (X)a Melt Mode (p)a

Arc
Olivine 0.52 -0.06
Opx 0.27 0.28
Cpx 0.17 0.62
Spinel 0.03 0.11
Sulphide 0.01 0.05
Craton
Olivine 0.52 -0.06
Opx 0.27 0.28
Cpx 0.17 0.62
Spinel 0.03 0.12
Sulphide 0.01 0.04

Element D olivine/liqb D opx/liqc D cpx/liqd D spinel/liqe D sulphide/liqf

Co 2.28 3 1.3 5 230
Ni 7.21 5 2.6 10 500
Cu 0.14 0.09 0.23 0.77 1470
Os 1.2 0.05 0.01 30 740000
Ir 0.77 0.4 0.5 132 458000
Ru 0.23 3 4.27 871 415000
Rh 1.94 0.2 0.25 400 205000
Pt 0.009 1 1.5 0.1 317000
Pd 0.12 0.1 0.1 0.14 190000
Au 0.12 0.01 0.01 0.076 10000

Source (C0) Meta. Arcg Normal Arcg Cratonh Off-Cratoni

Co (ppm) 80 100 100 108
Ni (ppm) 810 1980 2159 2240
Cu (ppm) 168 30 16.7 6.1
Os (ppb) 0.49 0.76 2 1.43
Ir (ppb) 0.31 1.26 2.33 2.3
Ru (ppb) 2 0.82 3.369932 3.43
Rh (ppb) 0.9 0.41 0.840309 1.21
Pt (ppb) 14.96 1.97 3.891727 6.91
Pd (ppb) 6.42 0.86 1.857811 3.28
Au (ppb) 14.3 1.69 1.06642 0.79


