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ABSTRACT 
 

Background and Aims: Quantitative assessment of small nerve fibre damage 

is key to the early diagnosis of diabetic peripheral neuropathy (DPN) and 

assessment of its progression. Corneal confocal microscopy (CCM) is a non-

invasive, in-vivo diagnostic technique that provides an accurate surrogate 

biomarker for small fibre neuropathy. Its diagnostic efficacy has been previously 

validated in several studies. This thesis uses CCM images obtained, for the first 

time, in a large cohort of patients whose CCM examinations were undertaken 

during retinopathy screening in primary care. The following were the primary 

aims of the study: 

1. To determine the prevalence of diabetic peripheral neuropathy, as defined by 

CCM parameters in a cohort of people with diabetes 

2.To assess whether abnormalities in corneal nerve fibre morphology are 

present during the first two years following diabetes diagnosis.  

3. To assess whether abnormalities in corneal nerve morphology are present 

prior to any retinopathy, defined as grade 1 or more. 

4. To assess whether abnormalities in corneal nerve morphology are present 

prior to clinical evidence of diabetic neuropathy, as defined by diabetic 

neuropathic symptom (DNS) scoring of 1 or more 

The hypotheses for these main aims were that firstly, the prevalence of diabetic 

peripheral neuropathy, defined using CCM parameters would be lower in this 

population in comparison to previous CCM studies using patients under the 

hospital eye service to determine prevalence of DPN. There will be evidence of 

abnormalities in corneal nerve fibre morphology in some, but not all, patients 

with diabetic disease duration of less than or equal to 2 years, patients with 

retinopathy and maculopathy grade 0 and patients with a DNS score of 0.  

 

Methods: In this retrospective, primary care, cross-sectional study, 427 patients 

with diabetes (18 T1DM, 407 T2DM, 2 unknown) and 40 healthy controls 

underwent quantification of corneal nerve parameters using both automated 

and semi-automated analysis software. Clinical levels of neuropathy were 

assessed via diabetic neuropathy symptom score (DNS). Diabetic Retinopathy 
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(DR) was graded using the Early Treatment Diabetic Retinopathy Study 

(ETDRS) grading scale. 

Results: Patients with diabetes demonstrated significant differences in all nerve 

parameters in comparison to healthy control subjects (p<0.05). CCM detected 

significant differences in nerve parameters of patients with diabetes in the first 

two years after diagnosis and in those who had no evidence of DR (grade 0) or 

symptomatic DPN (DNS score 0) (p<0.05), in comparison to heathy control 

subjects. Corneal nerve parameters were significantly altered in patients with 

proliferative DR compared to non-proliferative and no DR (p<0.05), however no 

relationship was observed between DNS score and changes to corneal nerve 

fibres (p>0.05). There was no significant difference in any CCM parameters 

between white and black patients with diabetes (p>0.05). Automated software 

showed poor agreement with semi-automated results, with a general 

underestimation for CNFD, CNFL and CNBD. 

Conclusion: In patients attending primary care screening, CCM in a sensitive 

biomarker for DPN. Semi-automated CCM quantification reliably detected 

corneal nerve abnormalities soon after diagnosis of diabetes. Changes in 

corneal nerve morphology were present prior to any neuropathy symptoms or 

retinopathy. CCM measured using automatic software requires development to 

improve agreement with semi-automated analysis.  
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1. INTRODUCTION 
 

1.1 Introduction to Diabetes Mellitus  
 

Diabetes mellitus (DM) has become a global epidemic (Neeland and Patel, 

2019). The International Diabetes Federation reported that in 2014, there were 

463 million people worldwide with diabetes and predicted a rise to around 582 

million by 2035 (Saeedi et al., 2019). 

DM is considered a multifactorial syndrome of several diseases, all of which 

have similar signs, symptoms and associated complications. They may broadly 

be classified by aetiology and pathology into four groups; type 1 diabetes 

mellitus (T1DM), type 2 diabetes mellitus (T2DM), gestational diabetes mellitus 

(GDM) and "other". The class "other" includes monogenic diabetes and 

diseases of the exocrine pancreas (Saeedi et al., 2019). 

The defining feature amongst all groups is the presence of hyperglycaemia due 

to chronic and/or relative insulin insufficiency (Saeedi et al., 2019). T1DM 

aetiology is that of autoimmune destruction of pancreatic β-cells leading to 

subsequent loss of insulin production (Jessup, 2012) and accounts for 5-10% 

(Neeland and Patel, 2019) of the diabetic population . T2DM, in simplified 

terms, is a combination of insulin resistance and insulin deficiency, and affects a 

significantly larger proportion (90%) (Neeland and Patel, 2019) of the diabetic 

population. Both genetics and obesity are considered to play a significant role in 

the development of T2DM, with a weaker association with positive family history 

for patients with T1DM (Jessup, 2012).  

DM is strongly associated with both microvascular and macrovascular 

complications. Macrovascular complications pose a significant risk for 

cardiovascular and cerebrovascular disease, whereas microvascular 

complications can lead to nephropathy, retinopathy and abnormalities of the 

peripheral nervous systems. The abnormalities of the peripheral nerves are 

termed diabetic peripheral neuropathy (DPN) and are the focus of my thesis 

and thus the introduction. 

1.2 The Nervous System 
 

Broadly, the nervous system can be divided into two major regions: the central 

nervous system (CNS); made up of the brain and spinal cord, and 
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the peripheral nervous system (PNS); made up of the nerves lying outside of 

the CNS. 

The PNS is then further divided into the somatic (voluntary) and autonomic 

(involuntary) systems. The somatic system co-ordinates voluntary muscle 

systems via skeletal muscles and is made up of two groups of neurones divided 

by their primary sensory or motor function. Sensory, or afferent, neurones carry 

impulses from a peripheral receptor to the CNS, and have their cell 

bodies located in the dorsal ganglia of the spinal cord (Meskell, 2010). Motor 

neurones, or efferent neurones, carry impulses from CNS to directly or indirectly 

control an effector such as a gland or muscle, and have their cell bodies located 

in the motor cortex, brainstem or the spinal cord (Meskell, 2010). 

The autonomic nervous system has (largely) unconscious control over the 

smooth muscles and glands which influence internal organs and regulate bodily 

functions, such as heart rate, respiration, digestion, pupillary response and 

sexual arousal (Johnson, 2013). The sympathetic division of the autonomic 

nervous system, known as the 'fight or flight' system, typically functions in 

actions requiring quick responses. Antagonistically, the parasympathetic 

division known as the 'rest and digest' system typically functions in actions that 

do not require immediate reaction (Gibbons, 2019). 

Peripheral nerve fibres can be classified using Erlanger and Gasser's 

classification, which defines nerves based on diameter, conduction speed and 

the level of myelination (Table 1). A-fibres have the largest diameter, with the 

thickest myelination and fastest conduction speed, and act as sensory and 

motor fibres within the somatic nervous system (Figure 1). They may be further 

divided into large nerve fibres that have sensory and motor functions (Aα and 

Aβ), and small nerve fibres (Aγ which has motor functions, and Aδ which may 

be autonomic or sensory fibres) (Table 1)(Manzano et al., 2008). 

Group B-fibres (Table 1) are small, with moderate myelination and slower 

conduction velocities that A-fibres. B-fibres act mainly as general visceral 

afferent and pre-ganglionic fibres (Manzano et al., 2008) and are found only in 

the autonomic nervous system (Figure 1, Table 1). 

 

 

https://en.wikipedia.org/wiki/Soma_(biology)
https://en.wikipedia.org/wiki/Soma_(biology)
https://en.wikipedia.org/wiki/Dorsal_ganglion
https://en.wikipedia.org/wiki/Spinal_cord
https://en.wikipedia.org/wiki/Motor_cortex
https://en.wikipedia.org/wiki/Brainstem
https://en.wikipedia.org/wiki/Spinal_cord
https://en.wikipedia.org/wiki/Heart_rate
https://en.wikipedia.org/wiki/Pupillary_dilation
https://en.wikipedia.org/wiki/Sexual_arousal
https://en.wikipedia.org/wiki/General_visceral_afferent_fibers
https://en.wikipedia.org/wiki/General_visceral_afferent_fibers
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Group C-fibres have a small diameter, low conduction velocity and are the only 

unmyelinated group. They act as somatic, afferent fibres that carry sensory 

information relating to temperature and pain, as well as having autonomic 

functions such as the stimulation of the sweat glands (Manzano et al., 2008). 

 

Classification  Myelination Diameter  
(um) 

Conduction  
Velocity 

(m/s) 

Type Function 

Aα ✓ 12-22 70-120 Sensory/motor Proprioception, touch 
sensory, somatic motor 
to extrafusal muscles 

Aβ ✓ 5-12 30-70 Sensory/motor Proprioception, 
touch/pressure sensory, 
somatic motor to 
intrafusal muscles  

Aδ ✓ 1-5 5-30 Sensory Touch and temperature 
sensory, nociception 

Aγ ✓ 2-8 15-30 Motor Somatic motor to 
intrafusal muscles 

B ✓ <3 3-15 Autonomic Visceral afferent fibres 
and preganglionic 
efferent fibres 

C x 0.1-1.3 0.6-2 Sensory/ 
autonomic 

Temperature and pain 
perception, nociception, 
itching 

Table 1: Modified Erlanger and Gasser classification of nerve fibres in the peripheral nervous 

system. Synthesised from (Manzano et al., 2008) 

 

 

         Figure 1: The nerve fibres that makeup the somatic and autonomic nervous systems.     

jjjjjjjjFibre type, properties and function shown for each class of nerve fibres. Adopted from 

        (Vinik and Mehrabyan, 2004) 
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1.3 Diabetic Peripheral Neuropathy 

  

 i) Pathophysiology 
 

Diabetic peripheral neuropathy (DPN) is a neurodegenerative disorder of the 

peripheral nervous system that preferentially targets sensory axons, autonomic 

axons and later, to a lesser extent, motor axons. Initially, chronic 

hyperglycaemia instigates Schwann cell damage, and given the close mutual 

support between these cells and nerve axons, this progresses to alterations in 

the nerves.  

The earliest damage begins in C-fibres (Feldman et al., 2019), resulting in 

progressive retraction of terminal sensory axons in the periphery, with relative 

preservation of the cell bodies (Feldman et al., 2019). It has been theorised that 

initiation of nerve dysfunction and death are due to oxidative stress and 

inflammation which lead to endothelial dysfunction in the capillaries (Feldman et 

al., 2017). This causes axonal hypoxia with resultant reduction in axonal energy 

stores and axonal injury, promoting peripheral neuropathy (Feldman et al., 

2017). More severe cases of DPN tend to include features of demyelination and 

resultant degeneration (Dunnigan et al., 2013), that lead to progressive damage 

in a distal-to-proximal course, characteristic of DPN (Hicks and Selvin, 2019). 

 ii) Prevalence 
 

Diabetic peripheral neuropathy (DPN) is the most common diabetes associated 

complication, occurring in around 50% of individuals with DM (Hicks and Selvin, 

2019). The prevalence of DPN is somewhat higher in patients with T2DM when 

compared to T1DM (Hicks and Selvin, 2019). The 'Action to Control 

Cardiovascular Risk in Diabetes' (ACCORD)(Ismail-Beigi et al., 2010) trial and 

the 'Veteran Affairs Diabetes Trial' (Duckworth et al., 2009) found that DPN was 

present in 42% and 39% of adults with type 2 diabetes, respectively, at baseline 

measurement. Comparatively, the prevalence of DPN in patients with type 1 

diabetes in a study of patients on conventional insulin therapy, has been 

reported as just 8% at baseline, increasing to 20% after 5 years of follow-up 

(Martin et al., 2014).  

A study comparing magnetic resonance imaging (MRI) scans of the sciatic 

nerve in T1DM and T2DM patients with DPN found that the predominant type of 
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nerve lesion differed between the two (Jende et al., 2018). This study found that 

in T1DM, lesions were predominantly associated with poor glycaemic control 

and loss of nerve conduction, whereas in T2DM lesions were associated with 

changes in lipid metabolism. 

This raises the question of whether damage to peripheral nerves results in 

different patterns of nerve damage, and thus would require different types of 

preventive treatment. 

 iii) Classification 
 

The most common type of DPN is distal symmetric polyneuropathy (DSPN), 

which accounts for around 75% of all DPN cases (Pop-Busui et al., 2017).  

DSPN affects the peripheral nerve system, typically beginning distally resulting 

in symptoms and signs that are symmetrical between the left and right side of 

the body. Further classification into primarily small-fibre, primarily large-fibre, or 

mixed can be made depending on which nerve fibres are predominantly 

affected (Pop-Busui et al., 2017). Common symptoms include burning, 

numbness, tingling, pain and/or weakness starting in the distal lower 

extremities. This progresses into more extreme symptoms of neuropathic pain 

in around 10-30% of affected patients (Sloan et al., 2018, Albers et al., 2010). 

Symptoms may be sporadic or constant but can be debilitating and in many 

people lead to depression, sleep disorders and overall reduced quality of life 

(Kioskli et al., 2019).   

Autonomic neuropathies are a class of DPN which share a similar diffuse 

pathophysiology with DSPN, but differ by being largely non-sensory(Hicks and 

Selvin, 2019). These typically affect the cardiovascular, urogenital and 

gastrointestinal systems. Patients may also suffer from sudomotor dysfunction, 

hypoglycaemia obliviousness, and abnormal pupillary function (Pop-Busui et al., 

2017).  

Rare forms of DPN include mononeuropathies, polyradiculopathies and 

treatment-induced neuropathies (Pop-Busui et al., 2017). These atypical forms 

are generally self-limiting, and resolve with medical management and physical 

therapy, usually over several months (Smith, 2014). Mononeuropathies 

commonly affect the peroneal nerve (Smith, 2014) and radiculopathies typically 

involve the lumbosacral plexus, presenting with unilateral thigh pain and weight 
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loss with resultant motor weakness (Pop-Busui et al., 2017). Treatment-induced 

neuropathy is a rare event that can occur following extreme metabolic 

dysregulation (i.e. ketoacidosis) or a sudden and significant change in 

glycaemic control.  

 iv) Risk Factors  
 

In both main types of DM, prevalence and severity of DPN increases with 

duration of diabetes and increasing age (Tesfaye et al., 2005). A large study of 

1172 patients with diabetes assessed for neuropathy at baseline reported that 

patients who had developed neuropathy by roughly 10 year follow-up were on 

average 3.8 years older and had diabetes for 3.3 years longer at baseline 

(Tesfaye et al., 2005). Furthermore, the study found that in both T1DM and 

T2DM, higher haemoglobin A1c (HbA1c) level was a major predictor of the 

development of diabetic neuropathy (Tesfaye et al., 2005) and cardiovascular 

risk factors, such as hypertension, smoking, obesity, and elevated triglyceride 

levels, appeared related to newly diagnosed neuropathy. 

In cohorts of patients with T2DM, several metabolic syndromes such as 

hypertension, abdominal obesity, lower high-density lipoprotein (HDL) levels 

and hypertriglyceridemia have been consistently associated with DPN 

development (Andersen et al., 2018b), with additional independent risk factors 

including alcohol abuse and increased height (Feldman et al., 2019). In a cohort 

of patients with T1DM, the EURODIAB prospective complications (Tesfaye et 

al., 1996) study reported similar modifiable risk factors to those identified in 

T2DM, specifically having an association with raised triglyceride level, obesity, 

smoking and hypertension. Several genes have also been linked to an 

increased risk of diabetic neuropathy, but only ACE (encoding angiotensin 

converting enzyme) and MTHFR (encoding methylenetetrahydrofolate 

reductase) polymorphisms have been confirmed using large patient cohorts in 

multiple populations (Feldman et al., 2019). Research into the role of genetics 

in diabetic neuropathy is currently limited and many more studies are required.  

Significantly lower levels of clinical neuropathy in South Asian patients have 

been reported in comparison to Europeans and Afro-Caribbeans (Abbott et al., 

2005). A recent study found that in a population of people with type 2 diabetes, 

South Asians had significantly better-preserved small nerve fibre integrity than 
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equivalent Europeans (Fadavi et al., 2018). However, this patient cohort was 

recruited from primary care and most patients had no or mild neuropathy, so it 

was not representative of the diabetic population overall. A proposed 

explanation for the reduced risk was the differences in transcutaneous partial 

pressure of oxygen (TCpO2) and height between the ethnicities (Fadavi et al., 

2018). The study suggesting this explanation, however, did not adjust for a 

range of possible confounders such as obesity, alcohol intake and more, 

between ethnicities, all of which are established risk factors for developing DPN. 

A more recent study suggested that the variation may be due to differences in 

height and adiposity between the ethnic groups, as adjustment for these factors 

rendered the difference insignificant (Tahrani et al., 2017).   

 v) Further Complications 
 

Diabetic foot ulceration is usually a result of an interaction between risk factors 

and patient behaviours, but it is often DPN that is the primary, initiating cause 

(neuropathic ulcer) (Singh et al., 2005, Ndip et al., 2012). Damage to motor 

neurones leads to minor muscle wasting, resulting in foot deformities, such as 

claw toes or prominent metatarsal heads that create pressure points 

more prone to ulceration (Ndip et al., 2012). Damage to sensory neurones can 

cause existing ulcers or abrasions to remain undetected due to numbness in 

the feet (Ndip et al., 2012), thus corrective actions are not taken nor advice 

sought at early stages of disease.  

Ulcerations may lead on to irreversible tissue damage and lower limb 

amputation, with almost 50% of all amputations in England being a result of 

diabetic complications (Holman et al., 2012). Amputations in patients with DM 

lead to significant morbidity, with five-year mortality ranging from 52 to 80 

percent after major amputation (Thorud et al., 2016). Furthermore, amputation 

poses a considerable cost to providers of healthcare, while the burden on 

patients and their families can be colossal in countries without a free national 

healthcare service (Ali et al., 2008). Hence, it is important to identify early 

sensory deficits in patients with diabetes to improve the modifiable risk factors 

and limit progression of DPN.   
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 vi) Treatment 

 

There is currently no Food and Drug Administration-approved therapy to 

prevent or reverse human DPN (Hicks and Selvin, 2019), with the current 

approach for management focusing on good glycaemic control, lifestyle 

modifications and management of associated pain. 

Studies have found that improving glycaemic control does not affect 

progression of DPN in patients with T2DM (Ismail-Beigi et al., 2010, Gaede et 

al., 2008). The Diabetes Interventions and Complications (EDIC) trial reported 

that intensive glucose control significantly delayed the development and 

progression of diabetic neuropathy in T1DM patients over time (Martin et al., 

2014). Another study, following a cohort of T1DM patients over 24 years 

confirmed these findings. Patients who had stable, near normal HbA1c levels 

(mean <7.0%) had significantly less deterioration in nerve fibre function when 

measured using electrophysiology and quantitative sensory methods (p<0.05 

for all measures at 24 years follow-up) (Ziegler et al., 2015).  

For patients with T2DM, the focus to prevent or limit progression of neuropathy 

is on lifestyle changes (Feldman et al., 2019). Several studies have 

demonstrated a potential for improved outcomes in patients with diagnosed 

DPN through exercise regimes put in place over a period of 10 weeks (Kluding 

et al., 2012) to 12 months (Smith et al., 2006). Despite insignificant 

improvements in body mass index (BMI), these studies reported a significant 

improvement in objective measures of nerve function as well as reduced 

neuropathy symptoms. Neither of these studies included a control group, which 

is essential to provide a measure of the change in neuropathy which could be 

expected over time without intervention but with the same amount of scrutiny, 

for example additional contact time with healthcare professionals or individuals 

paying more attention to their own health due to taking part in a study. Without 

a control group it is difficult to be sure that the improvements in neuropathy are 

truly due to modifications in exercise regimes alone.  

For cases of confirmed neuropathic pain, medication may be prescribed for 

relief. The consensus from multiple guidelines and systematic reviews is that 

serotonin and noradrenaline reuptake inhibitors (SNRIs), anticonvulsants and 

tricyclic antidepressants (TCAs) have the supportive evidence for their use in 
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neuropathic pain (Waldfogel et al., 2017). Cost and adverse effects also 

strongly influence the best option for each patient (Feldman et al., 2019). 

However, studies comparing these medications and providing guidance on 

appropriate choice for an individual are currently lacking (Feldman et al., 2019). 

Due to an association of a high risk of addiction, opioids are not recommended 

as a first or second-line treatment for treating pain associated with DPN, despite 

the evidence of their efficacy for pain relief (Feldman et al., 2019). 
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2. DIAGNOSTIC TESTS FOR DPN 
 

   
Class of Fibres  

 
 Advantages  

 
Limitations 

 
 
Small Fibre 

Tests 

 

Skin Biopsy 
(IENFD) 

 
Small (C-fibres) 

 Quantitative, Detects early 
nerve changes(Ragé et al., 2011, 

Loseth et al., 2008) 

Invasive, Risk of infection,  
Requires trained personnel and 

special labs(Petropoulos et al., 2018) 

  

 
CCM 

 
Small (Aδ and C-

fibres) 

Non-invasive ,Good 
reproducibility(Ostrovski et al., 

2015), Rapid and 
Objective(Tavakoli et al., 2010, 

Tavakoli and Malik, 2011)  

Requires specialist equipment 
and personnel, manual 

analysis is time 
consuming(Petropoulos et al., 2018) 

 
 
 

Large Fibre 
Tests 

 
 

DPNCheck 

Large, sural nerve 
( Aβ-fibre) 

Quick, 
 Easy to perform,  

Good sensitivity (92-95%) 
compared to NCS(Lee et al., 

2014, Perkins et al., 2006) 

Relies on accessibility of sural 
nerve(Killian and Foreman, 2001) 

Validation studies had small 
patient numbers(Lee et al., 2014, 

Perkins et al., 2006) 

  

NCS 
Large (Aβ-fibres) Sensitive measure of large 

nerve function(shabeeb et al., 

2018), 
Reproducible(Bril, 1994) 

Does not assess early  
neuropathic changes 

Uncomfortable  

  

 
QST 

Large (Aβ-fibres) 
and  

Small (Aδ and C-
fibres) 

Measures small and large 
fibre 

function(Petropoulos et al., 2018) 
Good repeatability(Zaslansky 

and Yarnitsky, 1998) 

Unable to differentiate between 
peripheral and central 

abnormalities(Themistocleous et al., 2014) 
High inter-operator variability(Lin 

et al., 2005a) 

Large and 
Small Fibre 

Tests 

 

 
NDS 

Large (Aβ-fibres) 
and  

Small (Aδ and C-
fibres) 

Does not require specialist 
equipment,  

Assesses large and  
small fibre function(Young et al., 

1993) 

Poor correlation with small fibre 
quantitative tests(Zilliox et al., 2015) 

 

 
 

Questionnaires 
Large (Aβ-fibres) 

and Small (Aδ and 
C-fibres) 

Easy to administer 
Used for monitoring 

symptoms(Petropoulos et al., 2018) 

Subjective  
May not detect early nerve 

changes (Meijer et al., 2002) 

 

 
 

 
Neuropad 

Small (C-fibres) Can be self-administered, 
Non-invasive 

Low specificity (50-
67%)(Tentolouris et al., 2008, Quattrini et al., 

2008, Ponirakis et al., 2014, Perkins et al., 2006, 

Papanas et al., 2005) 

No standardised results 
interpretation 

 
 

Autonomic  
Tests 

 

 
Sudoscan  

Small (C-fibres) Non-invasive,  
Easy to perform, 

Good sensitivity (Yajnik et al., 

2012, Smith et al., 2014, Selvarajah et al., 

2015, Krieger et al., 2018, Casellini et al., 

2013) 

Unclear if measuring 
sudomotor function 

Variable specificity (53-
92%)(Yajnik et al., 2012, Smith et al., 2014, 

Selvarajah et al., 2015, Krieger et al., 2018, 

Casellini et al., 2013) 

  

 

QSART 

Small (C-fibres) Sensitive for SFN 
(82%)(Thaisetthawatkul et al., 2013) 

Gold standard for 
measuring sudomotor 

function 

Time consuming,  
Requires specialist equipment 
and trained personnel(Buchmann et 

al., 2019) 
Uncomfortable 

Table 2: Diagnostic tests available for assessing DPN. Type of nerve fibres assessed, 

advantages and disadvantages summarised for each method. (IENFD) Intra-epidermal nerve 

fibre density, (NCS) Nerve conduction studies, (QSART) Quantitative sudomotor axon reflex 

test, (IVCCM) Corneal confocal microscopy (CCM). (NDS) Neuropathy disability score. (QST) 

Quantitative sensory testing. (SFN) Small fibre neuropathy. 
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There are numerous testing methods available for assessing the structure and 

function of the peripheral nervous system, with each test having their own 

advantages and disadvantages. These are summarised in table 2 and details of 

the tests are provided in the text. 

2.1 Symptoms and Signs 
 

Various clinical scoring systems are available for DPN screening which involve 

symptom scoring, sign scoring or both. These systems may enhance diagnostic 

accuracy through a composite score of different combined tests and are useful 

tools for aiding diagnosis of DPN, along with quantitative measures. Each 

questionnaire has a scoring system which can diagnose, and in some, stratify 

disease severity. The main scoring systems used in research and clinical 

practice are discussed in the current section. 

 i) Symptoms 
 

The Neurological Symptom Score (NSS) is a 17 question, interview-based 

assessment of sensory, motor, and autonomic function used for screening of 

DPN (Asad et al., 2010), but is considered too extensive to be used efficiently in 

clinical practice. The diabetic neuropathy score (DNS) is an adaptation of the 

NSS that is a much quicker screening method, with only 4 questions and still 

offering moderate sensitivity (79%) and specificity (78%), but with slightly lower 

reliability for diagnosing DPN (Meijer et al., 2002) when using a diagnostic score 

of 1 or more.  

Other symptom scoring systems focus only on pain and differentiating 

neuropathic from other causes. Pain descriptors that are used by patients with 

neuropathic pain are commonly recognised by clinicians. The McGill pain 

questionnaire was the first questionnaire designed to offer a multidimensional 

assessment of pain which included an assessment of severity or intensity, 

emotional impact, and significance to the pain sufferer (Melzack and Katz, 

2001). This questionnaire is one of the most commonly used multi-dimensional 

pain scales in the world and a short-form is available for use in screening which 

has shown good agreement with the original version (Melzack, 1987). 
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 ii) Signs  

 

The Neuropathy disability score (NDS) is a commonly used method of clinical 

examination that assesses the signs of neuropathy. Thirty-five items are used 

for both sides which evaluate cranial nerve damage, muscle strength, sensation 

loss and reflex delay/loss (Dyck et al., 1980). However, some items have been 

found not to be strongly related with DPN, and the full scoring system is too 

long to be used in clinical practice, therefore a revised NDS has been created. 

This system is more commonly used and tests for four signs of neuropathy; 

ankle reflex, vibration, pinprick and temperature sensation at both sides of the 

largest toes. A maximum score is 10 and usually ≥6 is considered abnormal 

(Abbott et al., 2002) 

           iii) Composite Scoring Systems 
 

The reliance on symptoms or signs alone may lead to poor diagnostic accuracy 

for the presence of DPN, and results may be made more accurate through a 

combination of both for a more thorough assessment. Several scoring systems 

assess both signs and symptoms of DPN to produce a composite score. The 

Toronto clinical neuropathy score (TCNS) consists of three parts: symptom 

scores, reflex test scores and sensory test scores. The maximum score is 19 

and the test is able to stratify patients into no DPN, mild DPN, moderate DPN 

and severe DPN depending on the overall score (Bril and Perkins, 2002). 

Testing has proven validity and reliability for the diagnosis and staging of DPN 

when compared to electrophysiology measures (Bril and Perkins, 2002). 

The Michigan neuropathy screening instrument (MNSI) is another commonly 

used composite scoring system that includes a questionnaire and a foot 

examination (Feldman et al., 1994). The questionnaire covers history of sensory 

symptoms, cramps and muscle weakness, foots ulcers and amputation. 

Neuropathy can be defined as seven or more positive responses on this 

symptoms section alone (Feldman et al., 1994) but the foot examination is more 

frequently used and encompasses foot appearance (including ulcers), ankle 

reflex and the 128‐Hz tuning fork test. Left and right limbs are independently 

assessed and a score of ≥2 is positive for DPN in this section (Feldman et al., 

1994). One study (Moghtaderi et al., 2006) found a range of sensitivity (35-

79%) and specificity (65-94%) in comparison to NCS depending on the cut -off 
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value used for abnormality in MNSI. The higher specificity values indicate a 

potential high diagnostic impact for MNSI scoring; however, the lower sensitivity 

range indicates that milder cases of DPN are likely to not get picked up. 

Scoring of symptoms and signs is a convenient and easy to perform method of 

screening for DPN. These tests are easily interpreted, making them a useful 

tool in supporting decisions on which patients should be referred on for 

specialist assessment. Quantitative, objective measures should be considered 

when the patient has signs and symptoms other than those rated by the scoring 

test used. 

2.2 Large Fibre Tests 
 

 i) Nerve Conduction Studies (NCS) 
 

The current 'gold standard' for clinical diagnosis of DPN is through nerve 

conduction studies (NCS) by a trained neurophysiologist. In 2010, the Toronto 

Consensus, by an expert panel (Tesfaye et al., 2010) recommended that one 

abnormal finding as part of NCS, in combination with a symptom or sign of 

neuropathy should be used to confirm DPN (Tesfaye et al., 2010). NCS is a 

validated method of assessing large myelinated nerve fibre function, through 

the measurement of the speed and strength of impulses in response to 

stimulation with comparison to normative data for abnormality detection 

(Kazamel and Warren, 2017).  

For reliable NCS results, close attention must be paid to factors such as filter 

setting, limb temperature, and location of the recording, as results can be 

vulnerable to variations. Trials have demonstrated that NCS consistently 

demonstrate excellent intra-observer agreement (Litchy et al., 2014, Dyck et al., 

2010), however poor inter-observer agreement between expert clinical 

neurophysiologists is common (Dyck et al., 2010) when no standardised, 

specific technique is followed. One study (Litchy et al., 2014) assessed the 

results of 4 neurophysiologists, from 4 different centres, testing 8 attributes of 

nerve conduction of the leg. Specific methods of assessment were provided in a 

specially prepared syllabus and a training session was provided beforehand. 

The outcome was a significant improvement in inter-observer agreement with a 

standardised approach, and although not entirely eliminated, levels of 
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disagreement were consequently considered clinically significant for medical 

practice (Litchy et al., 2014).  

Conversely, when considering use of NCS in therapeutic clinical trials, even 

small inter-observer variability may be significant enough to impact results 

through impacting the statistical power of a study and thus the trial's outcomes. 

This may partially explain why previous clinical trials that have used NCS as a 

primary outcome to detect treatment efficacy and have reported failed outcomes 

(Wahren et al., 2016, Ruggenenti et al., 2011, Dyck et al., 2007). Evidence 

supports the use of a single observer to repeat electrophysiological tests on 

each patient in these trials. 

Furthermore, Standard NCS testing is not easily applicable as a screening tool 

for DPN since it is time-consuming, requires a specialist operator and can be 

uncomfortable for the patient (Dyck et al., 2010). Electrodiagnostic studies have 

also been identified as one of the largest drivers of health care costs related to 

neuropathy evaluation (Callaghan et al., 2013) and results are often found to be 

normal in patients with diabetes who have early or small fibre predominant 

neuropathy.  

 ii) DPNCheck 
 

To overcome some of the shortcomings of standard NCS testing, a novel point-

of-care nerve conduction device (DPN-Check, Neurometrix Inc., Waltham, MA) 

has been developed with the potential to serve as an acceptable proxy to 

standard NCS. This test for sural nerve conduction only, is much quicker to 

perform than conventional electrodiagnostic testing and has been validated in 

type 1 and 2 diabetes populations through comparison with the Neuropathy 

Disability Score (NDS)(Killian and Foreman, 2001) and standard NCS (Perkins 

et al., 2006, Lee et al., 2014). These studies have reported a high sensitivity of 

92-95% for detecting abnormalities. However, the cohorts for these studies 

have been small, with two of the three studies assessing very low numbers of 

patients with T1DM (Sharma et al., 2015, Perkins et al., 2006, Lee et al., 2014).  

Such small sample sizes would make it very difficult to confidently conclude 

there was no significant difference in the techniques, as differences as large as 

2 standard deviations would be missed with these group sizes. Furthermore, the 

DPNCheck device is also dependent on the presence of an accessible sural 
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nerve which can be anatomically absent in up to 9% of healthy subjects (Killian 

and Foreman, 2001). 

2.3 Small Fibre Tests 
 

 i) Punch Skin Biopsy 
  

The evidence strongly suggests that in DPN,  damage to small fibres precedes 

damage to large fibres (Umapathi et al., 2007, Quattrini et al., 2007) and punch 

skin biopsy is currently considered the gold-standard single test for diagnosing 

small fibre neuropathy (Lauria et al., 2010b). From these biopsies, a measure 

intra-epidermal nerve fibre density (IENFD) can be quantified which is a method 

of documenting the density of terminal branches of peripheral nerves within the 

epidermis (no/mm2). The European Federation of Neurological Societies has 

published guidelines for its use in the diagnosis of peripheral neuropathies 

(Lauria et al., 2005). IENFD is typically measured from a distal-leg 3-mm punch 

skin biopsy based on the assumption that SFN is a length-dependent process 

with nerve degeneration occurring in a distal-proximal direction (Lauria et al., 

2010b). Published rules state that to be counted, an intra-epidermal nerve fibre 

must cross or originate at the dermal–epidermal junction, and secondary 

branches and fragments should not be included (Kennedy et al., 2005). 

The density of IENF is measured on at least three 50-um thick biopsy sections 

that have been immuno-stained with antibodies against markers expressed by 

peripheral nerve fibres (Lauria and Lombardi, 2007) (Figure 2) 

Two immuno-staining methods have become the most widely used in IENFD 

measurement: indirect immunofluorescence (IF) and bright-field 

immunohistochemistry (BFI). Although IF is considered a slightly more sensitive 

technique due to higher signal/noise ratio (Provitera et al., 2015), the two 

methods have excellent correlation (Nolano et al., 2015) and both can 

comparably detect SFN (Provitera et al., 2015). At present, age-related 

normative values exist only for BFI, published by a multi-national group of 8 

centres (Lauria et al., 2010a). This collaboration found a significant age-

dependent decrease of IENFD values lower densities in men compared to 

women up to 70 years of age,  with equal measures in the older age groups 

(Lauria et al., 2010a). Additionally, they concluded that height did not influence 

IENFD, whereas weight and BMI had a small inverse correlation in men only. 
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Figure 2: Skin biopsy images taken from a healthy control (A), a patient with T1DM and no 

diagnosed DPN (B) and a patient with T1DM and DPN (C). Red arrows point to intra-epidermal 

nerve fibres. Brown areas of staining represent the basement membrane of the epidermis, 

separating it from the dermis (Alam et al., 2017). 

For both IF and BFI techniques, IENFs are typically counted directly through the 

oculars of an epifluorescence microscope, by focussing through the optical 

planes (Provitera et al., 2015). For IF only, the more detailed, but time-

consuming technique confocal microscopy (CM) can be used to analyse optical 

sections of 3-dimensional images using computer software(Provitera et al., 

2015). The 2 techniques have shown excellent correlation (Provitera et al., 

2015) and the latter is usually used when more complex, second level analysis 

is needed. 

IENFD measurements have been shown to detect small fibre neuropathy with 

depletion of IENFD detected in patients with normal NCS and no clinical signs 

or symptoms of neuropathy(Løseth et al., 2008, Ragé et al., 2011). A recent 

study reported a low sensitivity of just 61% when using a cut off of 4.5fibres/mm 

IENFD to diagnose clinical DPN in T1DM patients (Alam et al., 2017). Earlier 

studies have published significantly higher values for sensitivity (80%) (Vlčková-

Moravcová et al., 2008) and specificity (95%) (Chien et al., 2001), however 
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these studies were comparing healthy controls to DPN patients rather than the 

test's ability to identify DPN in a diabetic cohort. Other studies have found a 

decrease in IENFD correlating with progression of neuropathy and duration of 

diabetes (Shun et al., 2004, Lauria et al., 2003) with reports that IENFD may 

also be lower in patients with painful DPN compared to painless DPN 

(Sorensen et al., 2006).  

A 5-year follow-up study investigating progression of DPN in T1DM and T2DM, 

reported a significant reduction of IENFD in T2DM patients, with IENFD 

measurement being the single most abnormal parameter(Løseth et al., 2016). 

Overall, the reduction in IENFD was not significant in T1DM subjects, however 

this may be explained by the lower number of patients in the T1DM group 

making it more challenging to prove statistically significant changes (Løseth et 

al., 2016). 

The main issue with the use of IENFD measurement as a biomarker for small 

fibre neuropathy is that it is an invasive procedure. Obtaining a biopsy can 

cause side effects such as a mild infection due to improper wound management 

or, less commonly, excessive bleeding. Even though reported side effects are 

rare (1.9/1000) (Lauria et al., 2010a), the nature of this technique limits its 

practical use, particularly when a repeat biopsy is required in longitudinal 

studies or clinical intervention trials.  

 iii) Quantitative Sudomotor Axon Reflex Test QSART 
 

The assessment of sudomotor nerve (sweat) function has also been used to 

assess small autonomic c-fibres, as anhidrosis can be characteristic of the 

presence of peripheral autonomic neuropathy. 

The reference standard for measuring sudomotor function is the quantitative 

sudomotor axon reflex test (QSART). This test uses local sweat production, 

measured as a change of relative humidity over time, during and after skin 

activation. Software is used to digitalise, plot and analyse the temporal 

resolution, latency, magnitude and duration of the sudomotor response (Illigens 

and Gibbons, 2008). However, due to highly technical demands and relative 

discomfort of the examination, QSART remains mostly limited to research 

centres and is not considered a potential screening tool for DPN (Buchmann et 

al., 2019) 
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 iii) Neuropad  

 

Neuropad is a non-invasive, painless screening tool that has been created to 

assess the sweat function (small autonomic c-fibres) in the feet of patients with 

suspected neuropathy. An adhesive pad containing cobalt salts is stuck onto 

the plantar aspect of the foot and changes colour from blue to pink within 10 

minutes if sudomotor function is normal (Papanas et al., 2005). If there is 

decreased function, the pad remains blue or turns patchy in colour (Figure 3) 

 

Figure 3: Neuropad test on the plantar aspect of the foot. (A) demonstrates the colour of the 

pad when it is first applied. It also demonstrates an abnormal result, 10 minutes after 

application, due to anhidrosis. (B) also demonstrated an abnormal, patchy result with 

incomplete change of colour. (C) demonstrates a 'normal' result, 10 minutes after application, 

with complete colour change (Neuropad, 2020). 

The main advantage of this test is that patients can self-administer at home, 

which reduces clinical contact time and aims to visually reinforce abnormal 

results to patients. Instructions have been confirmed as clear for patients to 

follow, and the test is easy to use for most patients (Tentolouris et al., 2008). 

However, due to older age, visual and kinetic problems, a fifth of patients still 

needed help when self-testing.  

Studies have found good-excellent (70-97.8%) sensitivity for the detection of 

DPN when comparing Neuropad to a range of different small and large fibre 

diagnostic tests (Tentolouris et al., 2008, Quattrini et al., 2008, Ponirakis et al., 

2014, Papanas et al., 2005). However, studies are not consistent in terms of the 

position of the Neuropad on the foot and the NDS cut-off value chosen to 

indicate clinical DPN presence. Furthermore, some studies graded the 

Neuropad colour change as a percentage (Ponirakis et al., 2014) or score out of 

1 (Quattrini et al., 2008) whereas others simply classified the results as normal 

or abnormal (Tentolouris et al., 2008, Papanas et al., 2005). This highlights a 

need for development of software that can consistently grade the colour change 
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of each test over time, to enable continuous and more accurate monitoring of 

sudomotor dysfunction. The published results for specificity have been 

generally poorer (50-67%) meaning its benefit of a cheap unit cost (NICE, 2018. 

https://www.nice.org.uk/guidance/mtg38/chapter/1-Recommendations) may be 

outweighed by an increase clinic follow-up costs due to 'false positive' results. 

Although Neuropad has shown good potential as a screening tool for DPN, 

recent NICE recommendations have concluded that at present, the case for its 

adoption to detect pre-clinical DPN is not supported enough by the evidence 

(NICE, 2018. https://www.nice.org.uk/guidance/mtg38/chapter/1-

Recommendations).  

 iv) Sudoscan  
 

Sudoscan™ (Impeto Medical) is another quick, simple and non-invasive test 

that aims to assess sudomotor function (small autonomic c-fibres) (Mayaudon 

et al., 2010, Gin et al., 2011). The machine uses a method known as 'reverse 

iontophoresis', which is based on an electrochemical reaction between 

electrodes and chloride ions present in sweat. The subject's hands and feet are 

placed onto two sets of large-area, electrode containing, stainless steel plates 

and a low-voltage current (<4V) is applied (Eh Schwarz et al., 2011, Casellini et 

al., 2013). The current attracts chloride ions from sweat in the glands, which are 

densely concentrated in the palms of the hands and soles of the feet. A 

measurement of electrochemical skin conductance (ESC), expressed in 

microSiemens (uS) is given, which is the ratio between the current generated 

and the constant DC stimulus (4 V) applied to the electrodes (Figure 4). 
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Figure 4: Sudoscan patient set up (Medical, 2020) 

A reduced ESC result, compared to age-corrected normal data, may indicate 

degeneration of small c-fibres which innervate the sweat glands, and therefore 

lead to reduced sweat gland function (Smith et al., 2014). 

The ESC measurements from the feet are considered more sensitive for the 

detection of DPN when compared to the hands(Selvarajah et al., 2015), with 

less variation in results (Bordier et al., 2016). This is likely due to a fluctuation in 

the contact of the hands on the electrodes, whereas the feet are aided by 

gravity to maintain constant pressure on the electrodes throughout the test.  

Reference values in healthy subjects are available from a global collaborative 

analysis comparing different ethnic groups, age, and gender (Vinik et al., 2016). 

This study noted a significantly lower hands and feet ESC for African-American, 

Indian, and Chinese populations compared with the Caucasian population, 

highlighting the need to match groups for ethnicity in electrochemical skin 

conductance studies. The same study also observed no significant difference 

between women and men at the hands or feet, and a weak decline in ESC with 

increased age. 

ESC measurements may also be associated with subjects' weight (Novak, 

2016), perhaps due to a weight-dependent change in sensitivity of the stainless-

steel electrodes, or sweat gland density, when the subject is in the standing 

position. This could also be due to the correlation between higher weight and 

larger feet only (Novak, 2016). These hypotheses are yet to be assessed; 
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however, the findings of these studies emphasise the importance of profile 

matching different subject groups for weight. It should be noted that this did not 

take place in some validation studies (Smith et al., 2014, Casellini et al., 2013). 

Validation studies have reported consistently good values for sensitivity (70-

87.5%) when using foot ESC results to screen for DPN (Yajnik et al., 2012, 

Smith et al., 2014, Selvarajah et al., 2015, Casellini et al., 2013). However, 

there are inconsistencies in the ESC cut-off values used for identifying 

sudomotor dysfunction, ranging from 52uS(Yajnik et al., 2012) to 77uS 

(Selvarajah et al., 2015). This variation along with inconsistencies in the 

neuropathy tests being used as a reference standard are the likely cause of the 

large range in reported specificity of between 53-92% (Yajnik et al., 2012, Smith 

et al., 2014, Selvarajah et al., 2015, Casellini et al., 2013), and highlight the 

need for standardisation of the classification criteria used. Patient cohorts also 

differed in their severity of DPN, with participants in one study (Casellini et al., 

2013) having significantly more advanced in comparison to those in the study 

by Smith and colleagues (Smith et al., 2014), therefore the test performed better 

in the former. 

Overall, Sudoscan appears to be a promising DPN screening test that is non-

invasive, easy to perform and eliminates the subjective component of clinician 

error, demonstrating good correlation with IENFD (Novak, 2016). However, 

there is some doubt over whether both Sudoscan and Neuropad are measuring 

sudomotor function with a recent systematic review concluding that ESC was 

unable to distinguish between patients with DPN and control individuals(Rajan 

et al., 2019). Therefore, longitudinal and larger cohort validation studies are 

needed, along with standardisation of diagnostic criteria before Sudoscan can 

be used as a screening tool for small fibre neuropathy. 

2.4 Quantitative Sensory Testing (QST) 
 

Quantitative sensory testing (QST) has become a common method for 

evaluating the function of small nerve fibres using thermal threshold and 

thermal pain measurements as well as large fibre function using vibration 

thresholds (Lin et al., 2005a). Commonly, the Medoc TSA-II NeuroSensory 

Analyser (Medoc Advanced Medical Systems, Israel) is used to determine 

thermal thresholds. A cheaper, more portable device has been designed, 
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NerveCheck (Phi Med Europe S.L., Barcelona, Spain), which has shown good 

reproducibility (ICC values = 0.79, 0.71 and 0.86 for vibration, warm and cold 

sensation respectively) and comparable diagnostic accuracy (86%, 72% and 

79% for vibration, warm and cold sensation testing respectively) in comparison 

to established QST equipment for the diagnosis of DPN (Ponirakis et al., 2016).  

Cold thresholds can be used to evaluate the function of myelinated A-delta 

fibres, whereas warm thresholds are used to evaluate the function of 

unmyelinated C-fibres. Published normative data sets are available for heat 

threshold detection (Yarnitsky et al., 2012, Rolke et al., 2006b, Rolke et al., 

2006a, Magerl et al., 2010, Dyck et al., 1998, Dyck et al., 1987) and 

recommendations for conducting QST in both clinical practice and research 

have previously been published by The International Association for the Study 

of Pain (NeuPSIG)(Backonja et al., 2013).  

QST has been found to have reasonable repeatability (Zaslansky and 

Yarnitsky, 1998) however inter-operator and inter-patient variability depends on 

a number of factors. Training of both examiner and patient, methodology of 

assessment, baseline skin temperature, stimulus characteristics, location and 

number of stimuli sites and duration of intervals between tests have all been 

found to affect QST measurements(Lin et al., 2005a). Using standardised 

methodology with extensive training has been shown to significantly reduce 

interobserver variability (Attal et al., 2008, Attal et al., 2009), however this may 

be too time consuming to be implemented. 

Another factor to consider is the positioning of the sensor. This has been found 

to affect results, with sensory thresholds of the foot being higher than those of 

the hand (i.e. elevated warm threshold temperatures and reduced cold 

threshold temperatures). This may be due to the pathways from sensory 

receptors to the sensory cortex differing in length. When it comes to the effects 

of body fat on thermal detection thresholds, there are conflicting findings. 

Malmström et al. (2016) failed to detect differences between obese and other 

groups for cold and warm thresholds at the suprailiac site (Malmström et al., 

2016), whereas Pryce and colleagues (Price et al., 2013) found that obese 

participants had significantly higher cold and warm detection thresholds than 

normal BMI participants on the abdomen. 
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Two psychophysical algorithms can be used to determine thermal thresholds. 

These are the method of limits and the method of level, with the method of limits 

used more commonly due to it being less time-consuming (Backonja et al., 

2013). For the method of limits, the machine delivers stimuli of increasing 

intensities from a baseline value, and the subject pushes the button when the 

stimulus is detected. An average of four results is calculated (Meier et al., 

2001). For the method of Level, the intensity of the stimulus is either increased 

or decreased by a fixed ratio depending on the response of the subject to a 

constant stimulus, until a predetermined difference in the intensities is reached. 

The mean of the final two stimuli is considered the threshold (Zaslansky and 

Yarnitsky, 1998). Measurements determined using limits have been reported as 

significantly higher than those measured by Level, irrespective of test location 

(Lin et al., 2005b). However, the two methods correlate well with each other (Lin 

et al., 2005b) and the 2013 consensus concluded that both were 

reliable(Backonja et al., 2013). The major difference between these two 

methods is the effect of reaction time. For the method of limits, a patient has a 

longer reaction time due to age or height (causing a longer sensory pathway) 

which may erroneously give a higher threshold.  

Both warm and cold thresholds can be affected in DPN patients, irrespective of 

how long the course of diabetes is, but the abnormality frequency of warm 

thresholds is significantly higher (Rolke et al., 2006b). A study found that cold 

detection thresholds had a significant trend in reduction from DM patients with 

no DPN, pre-clinical and clinical DPN respectively (Lysy et al., 2014). A 

longitudinal study also found a significant positive correlation between 

deterioration of cold detection thresholds and intensity of pain in painful DN, 

with warm detection thresholds also correlating at non-significant value (Krämer 

et al., 2004). 

One major issue with the use of QST is that it cannot differentiate between 

peripheral and central causes of temperature perception as it involves sensory 

receptors, spinal cord pathways and termination sites in the thalamus. This 

means that if there is poor concentration, a language barrier or cognitive defect, 

this may affect the results obtained from subjects due to its subjective nature 

(Themistocleous et al., 2014). 
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3. CORNEAL NERVES AS A BIOMARKER FOR DPN 
 
3.1 Introduction to Corneal Confocal Microscopy  
 

To summarise the preceding chapter, conventional methods for assessing DPN 

typically evaluate the presence of functional deficits in small and large nerve 

fibres. It has been shown that the earliest damage appears in the small fibres, 

yet most commonly used diagnostics test assesses large fibre dysfunction 

(NCS). Punch-skin biopsy allows a direct examination of unmyelinated c-nerve 

fibres but is an invasive procedure, requiring considerable expertise and 

laboratory procedures are time-consuming.  

Anatomically and developmentally, the eye can be considered as an extension 

of the CNS. The retina for example consists of retinal ganglion cells, whose 

axons form the optic nerve, which in effect are CNS axons (Shah et al., 2017). 

Hence, several neurodegenerative conditions that affect the CNS are known to 

have manifestations in the eye, implying that the eye and brain may share 

common disease-specific mechanisms(London et al., 2013). One major 

advantage of imaging the eye is that visualisation of structures can be made 

non-invasively, in-vivo. This advantage over traditional methods of biopsies 

makes the eye an attractive possible option as a surrogate biomarker for 

systemic disease. 

Corneal confocal microscopy (CCM) is a non-invasive, in vivo ophthalmic 

imaging technique that allows a detailed examination of the cornea, at high 

magnification, on a cellular level (Tavakoli et al., 2008). Through capturing 

multiple two-dimensional images at different depths, CCM imaging can 

delineate the corneal layers of the cornea (Tavakoli et al., 2008), providing 

superior magnification in comparison to standard slit lamp biomicroscopy. 

These properties make CCM an effective tool for the diagnosis and monitoring 

of corneal infection and disease which affect the cornea at any of its layers.  

3.2 Principle of Confocal Microscopy 

 

The overall principle of a confocal microscope is that a single point of tissue is 

illuminated by a point light source and simultaneously imaged by a camera in 

the same plane(Tavakoli et al., 2008)(Figure 5). 
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A specimen is illuminated with a light beam that passes through a light source 

aperture, and beam splitter before being focussed by an objective lens into a 

small spot of light in a small focal volume(Robinson, 2001)(Figure 5).Within this 

illuminated spot of the specimen, the structures in the tissue create differences 

in the reflection and backscattering of light, with highly refractive/reflective 

structures, appearing bright/white providing contrast to surrounding tissue 

(Guthoff et al., 2009). On the path to the detector the signal passes again 

through the beam splitter which separates the reflected light mixture and directs 

the light into the detection apparatus (Tavakoli et al., 2008). Any out-of-focus 

light is essentially removed by passing the emitted light through a pin hole 

apparatus so that light let through by the aperture is coming from the focal point 

of the tissue (Robinson, 2001). This method creates a thin optical section of a 

background free image (Robinson, 2001). Finally, the signal is detected by a 

photodetection device, which transforms the light signal into an electrical signal. 

The method described produces an image with a very high resolution, but 

virtually no field of view due to using a single illumination and detection point 

(Tavakoli et al., 2008). To overcome this problem, the instrument synchronously 

images a small region of tissue with thousands of tiny spots. These can then be 

reconstructed to create an image with high resolution and magnification as a 

usable visual field (Tavakoli et al., 2008). 

 

Figure 5: The optical principle of confocal microscopy implemented in the Heidelberg retina 

tomograph (HRT)‐II with Rostock cornea module (RCM) imaging of the cornea. Image from 

Guthoff et al, (2009). 
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3.3 Corneal Confocal Microscopy Devices 

 

Three main CCM systems have been developed previously: The Tandem 

Scanning Confocal Microscope, the Confoscan 4 (Nidek Technologies Srl, 

Padova, Italy) and the Heidelberg Retinal Tomograph with Rostock Corneal 

Module (HRT-RCM, Heidelberg Engineering, GmBH, Dossenheim, Germany). 

The early generation of CCM systems used a conventional white-light confocal 

microscope such as the TSCM (tandem scanning confocal microscope) and the 

SSCM (slit scanning CM). As the TSCM has not been used for this study, or in 

any of the studies reviewed as part of the literature review, it will not be 

discussed further. Detailed information about this type of CCM can be found 

elsewhere (Lemp et al., 1985). 

 i) Slit Scanning Microscopes  
 

One type of slit-scanning machine that was previously commonly used is the 

Tomey ConfoScan P4 (Erlangen, Germany) in-vivo, real time microscope. In 

this method of confocal microscopy, the moving halogen light-source forms a 

line which is then used to scan the cornea (Givan, 2001). This method of 

scanning is considerably faster than a moving-spot scan, so can produce image 

sets more quickly (Givan, 2001). 

The slit height and width can also be adjusted. The slight height allows the user 

to vary the thickness of the optical section and the slit width adjustment allows 

control of the amount of light reaching the cornea (Guthoff et al., 2009). This 

system is able to capture 25 images per second (Patel and McGhee, 2007). 

The images are reconstructed to create an image offering 1um lateral resolution 

and a magnification of 680x. The cornea can be split into 'optical sections', 

which are viewed en-face and are only 10 um thick observed at any one time 

(Patel and McGhee, 2007). This allows structures of the cornea to be viewed at 

a cellular level, with structures viewed as lighter against a dark background. 768 

pixels × 576 pixels (Efron et al., 2001). Images are viewed in real time on a 

computer screen and are stored on video tape for analysis and subsequent 

examination. 
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 ii) Laser Scanning Microscopes 

 

Based on numerous published studies within the past 10 years, the HRT-RCM 

CCM is now more commonly used. This is due to this system offering higher 

image brightness and contrast of images due to the use of laser scanning to 

create images with a higher signal to noise ratios (Petroll and Robertson, 2015) 

(Figure 6). This system operates using a 670 nm laser beam in a raster pattern 

using a high numerical aperture 63x objective lens (Petroll and Robertson, 

2015). The resultant en-face 2D images are of a lateral resolution of 1.04 

μm/pixel; dimensions, 384 x 384 pixels (~400 μm field of view) (Petroll and 

Robertson, 2015). The images produced have a better axial resolution (7.6 µm) 

than the other in vivo confocal systems (9 µm for the TSCM and 24 µm for the 

Confoscan) (Petroll and Robertson, 2015) and LCSM can produce serial 

images of thin corneal layers (Tavakoli et al., 2008). This means that subtle 

qualitative differences in the appearance of some features of the cornea can be 

observed (Patel and McGhee, 2007, Patel and McGhee, 2009). Using a LSCM, 

Kobayashi et al (Kobayashi et al., 2006) were the first to  report the presence  

of microstructures (called K-structures) at the level of Bowman’s layer in all 

normal subjects that were not evident when using SSCM also suggesting 

significantly clearer and more detailed images with LSCM.  

Another benefit of the laser scanning system is that in addition to collecting 2D 

sections of corneal cell layers, the machine can acquire automated 'Volume 

scans' covering approximated 80 µm of thickness across the z-axis (40 images 

with a 2um step). These “volume scans” have been used to produce 3-D 

reconstructions of the corneal epithelium in humans. (Stachs et al., 2007) 

3.4 Corneal Anatomy   

As discussed, CCM can be used to image the cornea on a cellular level and de-

lineate its layers into distinct zones. This section covers the corneal anatomy 

and the appearance of its layers when viewed using CCM. 

 

 

                

 

B 
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Figure 6: CCM images of the sub-basal nerve plexus acquired using a Tomey ConfoScan P4 

slit scanning device (Tavakoli et al., 2010) (A and B) and the HRT-RCM laser scanning device 

(C and D). Images C and D demonstrate superior image contrast between nerve fibres and the 

surrounded corneal layer. Images A - D taken from 4 different subjects so are not directly 

comparable. 

 

 

Figure 7: Histology of the normal human cornea. The cornea consists of five layers; the 

epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. Original image 

from (Feizi, 2018). 
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 i) Epithelium 

 

The epithelium is the outermost layer of the cornea and is made up of three 

layers of cells - the superficial cells, the wing cells and the basal cells (Eckard et 

al., 2006)(Figure 6).  

Superficial cells (Figure 8A) are typically 40-50um in diameter, polygonal in cell 

pattern, and have an illuminated cytoplasm. Small, bright rounded nuclei, about 

10um in diameter, are also visible in a small number of cells (Efron et al., 2001). 

Large variation in cytoplasmic reflectivity from cell to cell has been observed, 

which is thought to represent different stages of progression towards cell death, 

the darker cells being those about to desquamate(Wilson and Hong, 2000). 

This superficial cell layer is difficult to image using CCM and thus is only 

occasionally captured. It may however become more visible when the 

epithelium has been disturbed, such as in contact lens wear (Efron et al., 2001). 

The cells of the intermediate layer, or wing cells, form a regular mosaic with 

sharp and reflecting cellular borders. These cells are smaller than the superficial 

cells (about 20 um), regular in form (Guthoff et al., 2009) and can be subdivided 

into upper and lower wing cells, with the latter being the smallest in size 

(Guthoff et al., 2009). As with superficial cells, wing cells appear to have varying 

cytoplasmic reflectivity, but the difference is less marked in comparison(Efron et 

al., 2001). Small, bright nuclei, approximately 5-8 um in diameter, are marked 

and visible in the centre of all wing cells (Efron et al., 2001).  

Basal epithelial cells (Figure 8B) have the smallest diameter of the epithelial 

cells (8–10 mm) and are tightly packed as a uniform layer of cylindrical cells 

with bright cell borders, dark cytoplasm and no visible nuclei (Efron et al., 2001, 

Guthoff et al., 2009). 

 ii) Bowman's layer 
 

The Bowman’s layer is an 8–10 um thick, amorphous membrane, that consists 

of randomly arranged collagen fibrils located in between the basal cells and the 

anterior stroma (Guthoff et al., 2009). The location of this layer is apparent 

when focusing posteriorly through the basal epithelial cell layer, as the image 

becomes featureless and grey (Efron et al., 2001). It is within this layer that the 

sub-basal nerve plexus can be imaged as highly reflective c-fibres, running 

parallel to the corneal surface (Figure 8C) (Section 3.2). 
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 iii) Stroma 

 

The corneal stroma is the largest corneal layer, forming 80-90% of the total 

corneal volume (Guthoff et al., 2009). It is primarily made up of collagen fibres, 

keratocytes, nerve fibres and acellular material (Efron et al., 2001). Only the 

keratocytes and nerve fibres can be imaged using CCM, with the acellular 

material and collagen fibres forming the darker non-reflective background. 

Keratocytes are identified by their nuclei, which are seen as discrete bright 

entities forming various shapes dependent on orientation with a range of 

diameter size (5-30um) (Efron et al., 2001).  Keratocytes density is highest in 

the anterior stroma(Figure 6D) (Guthoff et al., 2009). In the posterior stroma 

(Figure 6E), they become less densely packed with the nuclei appearing slightly 

larger and flatter. 

Myelinated Aδ nerve fibres can occasionally be seen within the anterior stroma, 

with their diameter ranging from 4 to 8um (Müller et al., 2003). These are thicker 

and brighter than those in the Bowman's layer, with their size and orientation 

highly variable which makes them difficult to accurately quantify (Tavakoli et al., 

2008). 

 iv) Descemet's Membrane 
 

Descemet’s membrane is a thin (6-10um) featureless basement membrane of 

the corneal endothelium. A normal Descemet's membrane is not visible in 

young subjects but becomes more granular and visible in elderly patients (Efron 

et al., 2001). Confocal images of this structure have a generalised hazy 

appearance with no identifiable cellular structure (Tavakoli et al., 2008). 

 V) Endothelium 
 

The endothelium (Figure 8F) is a monolayer of cells that is arranged in a 

hexagonal pattern as a regular honeycomb mosaic (Guthoff et al., 2009). This 

layer of cells is the opposite polarity of basal epithelial cells demonstrated as a 

lightly reflective cytoplasm with a black, defined cell border with a dark, faint 

nucleus observed in some cells (Efron et al., 2001).  

Irregularities in the endothelial structure become more common with older age, 

where signs such as polymegathism (cell size variability), pleomorphism (cell 
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size and shape variability) and guttate (excrescences) are observed, and may 

be identified using CCM (Efron et al., 2001). 

 

Figure 8: In vivo CCM images of the healthy cornea (A) Superficial epithelial cells (B) Basal 

cells (C) Sub-basal nerve plexus (D) Anterior stroma (E) Posterior stroma (F) Endothelium. 

Adapted figure (Gambato et al., 2015). 

 VI) Dua's Layer 
 

 In 2013 paper by a study by Dua and colleagues (Dua et al., 2013) reported a 

new layer of the cornea, located between Descemet's membrane and the 

stroma that had not been detected previously. Even though this layer is thin (15 

um thick) it is very strong and impervious to air (Dua et al., 2013). However 

there is some disagreement between scientists over the existence of this layer, 

although further studies by different research groups have used Dua's layer with 

their work, (GamalElDin et al., 2016, Costet and Touboul, 2016) other scientists 

met the claim "with incredulity" (McKee et al., 2014). 
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3.5 Corneal Nerve Morphology 

 

The cornea is the most densely innervated tissue in the body and is richly 

supplied by a large number of sensory nerve fibres, as well as a lesser number 

of autonomic fibres (Müller et al., 2003). As mentioned in the preceding section, 

the cornea possesses both unmyelinated C-fibres and myelinated Aδ-fibres for 

sensory innervation, and these fibres are visible on CCM imaging. Corneal 

nerves are derived from the ophthalmic division of the trigeminal nerve and 

enter the corneal stroma at its periphery, in a radial fashion parallel to the 

corneal surface. As the fibres run forward towards the centre of the cornea, they 

lose their myelin sheath; a necessary step to maintain corneal transparency 

(Müller et al., 2003). 

Corneal C-fibres form a delicate three-dimensional network known as the ‘sub-

basal nerve plexus’ (Marfurt et al., 2019)(Figures 8C and 9), which is located 

beneath the basal layer of the corneal epithelium. Mapping of the cornea using 

CCM (He et al., 2010, Kalteniece et al., 2018) has shown that this plexus forms 

a spiral or ‘whorl like’ pattern. The centre of the spiral, often called the vortex, is 

located approximately 2-3 mm inferior and nasal to the corneal apex in humans. 

Due to this arrangement, sub-basal nerves in the superior and apical human 

cornea are oriented vertically, whereas sub-basal nerves in other corneal 

regions may be orientated horizontally or obliquely, consistent with their 

locations within the whorl-like plexus (Kalteniece et al., 2018). 

3.6 CCM imaging of Corneal Nerves  
 

Due to the ability of CCM to acquire high quality, in-vivo, non-invasive images of 

the corneal C-fibres, and the known relationship between damage to these 

fibres and diabetic peripheral neuropathy, potential for using this imaging as a 

surrogate biomarker for DPN has been identified. Since the first two novel 

studies reported the correlation between increasing severity of DPN and 

progressive loss of corneal sub-basal nerve fibres (Malik et al., 2003, 

Rosenberg et al., 2000) in the early 2000s, there has been a huge increase in 

the use of CCM parameters for diagnosing and monitoring DPN.  
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Figure 9: A  Left image adapted from (Cruzat et al., 2017).Diagrammatic representation of 

human corneal nerves showing the position and orientation of the sub-basal nerve plexus (red 

dashed square). The image on the right demonstrates the appearance of a 384x384 pixel, 2D 

image of the sub-basal nerve plexus, taken using an HRT (III) CCM. 

 i) Corneal Nerve Parameters 
 

When analysing the sub-basal nerve plexus, most studies report results from 

four morphological parameters: Corneal nerve fibre density (CNFD) which is the 

total number of main nerve fibres per mm2, corneal nerve fibre length (CNFL) 

which is the sum of the length of all nerve fibres and branches (mm/mm2),  

tortuosity coefficient (TC) which is a unitless measurement that uses deviation 

from a straight line to measure the tortuosity of the main nerve fibres 

independent of their orientation, and corneal nerve branch density (CNBD) 

which is defined as the number of branches emanating from all main nerve 

fibres. There is, however, a discrepancy in how this can be quantified between 

studies. The established protocol for these parameters has been described 

elsewhere (Tavakoli et al., 2010). 

Of these 4 parameters, CNFL has been the parameter with the most interest for 

DPN, with one study reporting superior reliability in comparison with other 

parameters (Hertz et al., 2011). Some studies have assessed the diagnostic 

performance of CCM for DPN and reported the results for CNFL only (Ahmed et 

al., 2012, Pritchard et al., 2015). Hertz et al., (2011) reported that CNFL 

produced the highest intra-observer and inter-observer reproducibility (ICC of 

0.72 and 0.73 respectively), with TC demonstrating the lowest (0.23 and 0.29 

respectively). It must be noted however that this study used a small cohort of 46 

patients with DPN, meaning it would be challenging to determine significant 

differences between the parameters. 
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Two other parameters that have received some interest in research are nerve 

reflectivity (Oliveira-Soto and Efron, 2001) and nerve fibre beading (number/100 

µm) (Maddaloni et al., 2015, Ishibashi et al., 2016). Nerve fibre reflectivity is 

usually assessed using grades as first outlined by Oliveira-Soto and Efron 

(2001)(Oliveira-Soto and Efron, 2001), whereby classification can be split into 

four grades according to a comparison with reference images. Nerve reflectivity 

has be found to have significant correlation in eye conditions such as 

meibomian gland dysfunction severity and resulting dry eye symptom scores 

(Fu et al., 2019). The number of beadings is defined as the number of beadings 

in a length of 100um of sub-basal nerves within a frame (Labbé et al., 2012). 

Both parameters have demonstrated changes in conditions such as dry eye, 

where patients with Sjogren's syndrome have demonstrated significantly higher 

beading than dry eye patients of other primary causes (del Castillo et al., 2004). 

However, both measures require subjective judgement. Beading can be very 

difficult to quantify, and thus may have poor repeatability and reproducibility 

(Labbé et al., 2012). 

More recently, newer corneal parameters have been investigated. These 

include inferior whorl length (IWL) (Petropoulos et al., 2015a) defined as the 

length of the nerves at the inferior whorl of the superficial nerve plexus, nerve 

fibre width (Kowtharapu et al., 2017) and nerve fibre area (Brines et al., 2018). 

All these new measures have previously shown significant differences between 

the non-neuropathic and clinically neuropathic groups in DM (Chen et al., 2017) 

with CNFW and CNFA previously also demonstrating 74% and 66% sensitivity-

specificity at the equal error rate point, respectively when identifying non-

neuropathic patients compared to control subjects (Chen et al., 2017). This 

indicates that these new measures may have the capacity to identify individuals 

with early neuropathy, however research into these new parameters is currently 

limited. 

 ii) Langerhans Cells 
 

Another type of cell that can be found in the sub-basal layer and have been of 

interest in DPN research are dendritic cells. These antigen-presenting cells of 

the cornea are of paramount importance as they play a critical role in activating 

other immune systems in the ocular surface, which influence both suppression 

and induction of inflammation (Dana, 2004, Kalogeropoulos et al., 2020). 
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Langerhans cells are usually up to 15μm in diameter and can be seen in 

various forms (Alzahrani et al., 2017). In their immature form, these cells have 

small dendritic processes or lack dendrites completely and are mainly located in 

the epithelium of the peripheral cornea (Resch et al., 2015). In pathological 

states Langerhans cells mature, form interlocking dendritic processes which 

may form a net-like structure, and migrate from the periphery into the central 

cornea (Resch et al., 2015). 

Cross-sectional studies have shown an increase in the densities of Langerhans 

cells in the central cornea related to conditions such as dry eye with and without 

contact lens wear (Alzahrani et al., 2017, Machetta et al., 2014) bacterial 

keratitis (Su et al., 2006), thyroid eye disease (Wu et al., 2016) and diabetes 

(Zhivov et al., 2005, Tavakoli et al., 2011a)(see Section 3.9). 

3.7 CCM for the Detection of DPN  
 

As mentioned in section 3.3, in the early 2000s, two novel studies reported the 

correlation between increasing severity of DPN and progressive loss of corneal 

sub-basal nerve fibres (Malik et al., 2003, Rosenberg et al., 2000). Rosenberg 

and colleagues (Rosenberg et al., 2000), were the first to report a significant 

reduction in sub-basal nerve fibres in patients with DPN. They found a 

significant reduction in the number of long corneal nerve fibre bundles per 

image in patients with clinically significant neuropathy as determined using 

MNSI scoring system, when compared to both control patients and subjects 

with DM but without neuropathy. However, the results of this study may have 

been affected by the age of the control subjects being somewhat younger than 

the subjects with diabetes, in particular those with neuropathy, as it has been 

shown that CNFL reduces with age (Tavakoli et al., 2015). This was closely 

followed by a similar study published in 2003 (Malik et al., 2003) which found 

that CCM was able to detect abnormalities in the corneal nerves of patients 

deemed to have only mild neuropathy using conventional tests. Corneal nerve 

fibre density, length and branch density were all significantly reduced in patients 

with diabetes compared with control subjects, with a tendency for greater 

reduction in these measures with increasing severity of neuropathy. Similarly, 

Midena and colleagues (Midena et al., 2006) reported a significant decrease in 

corneal nerve fibre and branch number, along with decreased beading in 

patients with diabetes. It should be noted that these three studies used an older 
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confocal imaging device with inferior image quality in comparison to the 

methods now commonly used and that the sample sizes were very small. 

Nevertheless, since these studies were published, there have been many 

studies into the use of CCM as a method of detecting and monitoring DPN, 

which are addressed in subsequent sections. 

 i) Diagnostic Performance for Clinical DPN 
 

Several cross-sectional studies have evaluated the ability of CCM to diagnose 

clinical levels of DPN in comparison to a range of other diagnostic tests (Table 

3). It must be noted that most of these studies assessed patients with T1DM 

only, meaning there is limited published data available for the diagnostic 

sensitivity and specificity values when assessing patients with T2DM. 

Each of these studies used a cut-off point for the reference neuropathy 

test/combination of tests in order to define whether a patient had DPN. 

However, the reference test and cut-off points varied between studies meaning 

there was no universal diagnostic reference criteria. Some studies validated 

CCM against a single test of nerve conduction studies (NCS) (Ahmed et al., 

2012, Alam et al., 2017) or neuropathy disability score (NDS) (Tavakoli et al., 

2010) whereas other studies used a combination of the two (Chen et al., 2015) 

or NCS along with clinical examination (Perkins et al., 2018, Scarr et al., 

2017a). A combination of diagnostic tests will likely increase the efficiency to 

detect DPN in comparison to one test used alone. This is significant as some 

studies are comparing CCM to one single test, which in the case of NDS is not 

the gold standard. NCS, as mentioned previously, only measures large fibre 

function, which are affected later that small nerve fibres in DPN. One study 

(Halpern et al., 2013a), demonstrated that diagnostic ability of CNFL 

measurement in DM patients is significantly worse if using clinical signs and 

symptoms as a reference standard in comparison to electrophysiology, plus one 

sign/symptom as per the Toronto consensus guidelines, which highlights the 

importance of a standardised diagnostic reference(Halpern et al., 2013a). 

To explore which of the many measurements derived from CCM could best 

distinguish patients with and without clinical DPN, as part of each study, the 

same patients were examined using CCM and all nerve parameters were 

derived. For each of the nerve parameters tested, ROC curves were plotted to 
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determine a CCM cut-off point used to distinguish between patients with and 

without DPN in the diabetic cohort only. A range of cut-off points were studied in 

order to identify which gave the best sensitivity/specificity value for diagnosing 

DPN for each nerve parameter.  

CNFL was the most commonly reported nerve parameter for these studies, with 

all eight assessing its diagnostic ability and finding significant differences 

between patients with and without DPN. A range of sensitivity values between 

59 and 86% were found and a specificity range of 61-84%, depending on cut off 

value used for diagnosis. The earliest of these studies (Tavakoli et al., 2010), 

examined patients using a Tomey confoscan CCM. It is well known that these 

images are of poorer quality, making it more difficult to identify nerve fibres 

during analysis. This is likely the explanation for the significantly lower 

diagnostic threshold value reported in this study in comparison to the others 

(Table 3) 

For corneal nerve fibre density (CNFD) all six of the cross-sectional studies 

(table 3) reported a significant reduction in DM patients with DPN compared to 

both DM patients without DPN and healthy controls (Tavakoli et al., 2010, Scarr 

et al., 2017a, Perkins et al., 2018, Chen et al., 2015, Alam et al., 2017, Ahmed 

et al., 2012). These studies reported ranges of sensitivity and specificity as 65-

82% and 41-79% respectively. A significantly higher cut off point of 39.2 

CNFD/mm2 was defined in type 2 DM patients in the consortium study, resulting 

in an increased sensitivity value to 69% (Perkins et al., 2018).This may explain 

why its specificity is the lowest value of only 41%, as a higher cut-off value 

would create more false positive results. 

It is notable that based on their cohort, Scarr et al, (2017) defined the lowest 

thresholds for diagnosis for both CNFD and CNFL out of the studies using the 

Heidelberg retinal tomograph (HRT) (III) CCM. This is likely due to their 

significantly older-aged cohort in comparison to the other cross-sectional 

studies. As CNFD and CNFL have both been shown to reduce with age 

(Tavakoli et al., 2015). 

For corneal nerve branch density (CNBD) all 6 studies again reported a 

significant reduction in DM with DPN compared to without DPN. For diagnostic 

value the sensitivity (17-100%) and specificity (45-96%) values were 
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significantly more varied, suggesting that until now, this parameter has shown 

the least promise for the diagnosis of DPN. A point worth noting about nerve 

branch density measurement as part of these studies is that different methods 

of measurement can be used and there is currently no universally accepted 

method.  

There are several strengths to each of these studies. Three used profile-

matched healthy controls (Ahmed et al., 2012, Scarr et al., 2017a, Chen et al., 

2015), meaning that differences in measurements between the two groups due 

to age should have been accounted for, giving a better representation of 

changes that have occurred due to DPN. Ahmed et al. (2012) also looked at the 

option of combining two corneal nerve parameters for the identification of 

neuropathy. Two of the studies also looked at both manual and automated 

software for diagnosis of DPN (Scarr et al., 2017a, Chen et al., 2015) which is 

significant as the use of automated software for analysis would be required if 

CCM were to be introduced in large-scale screening.  

Perkins et al (2018) in a consortium multi-centre study assessed data from a 

large cohort of 998 subjects. This large cohort of different ethnicities and both 

T1DM and T2DM gave a more accurate representation of the population of 

people with diabetes instead of focusing on one specific sub-group. Another 

strength of the Perkins study was that it suggested an alternative approach of 

using one lower value chosen to more confidently rule in the presence of 

neuropathy (maximise specificity) and one higher value chosen to 

simultaneously, more confidently rule out the presence of neuropathy (maximise 

sensitivity). This combination of decision criteria aims to minimise false positive 

and negative results. The study found that using this criterion increased their 

sensitivity to 88% and specificity to 89% using manual methods of analysis, 

however this method caused 57.8% of subjects to be unclassified as they fell 

between the two limits.  

There were several limitations to these cross-sectional studies. Some did not 

profile match their patients to their controls, with the DPN group in Alam et al., 

(2017) being significantly older, with significantly longer disease duration than 

the T2DM group without neuropathy. Another limitation of two of these studies 

(Scarr et al., 2017a, Ahmed et al., 2012) was that only 1 image per eye was 

used for analysis. One criterion for choosing this image in the Ahmed et al 
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(2012) study was the frame with the most nerves. Using this method to choose 

1 image per eye instead of calculating an average of 3 images or more may be 

less time consuming for analysis, however it is likely to give false elevation of 

measurements per patient instead if representing a true average.  

Another significant issue with these studies is that most of them use the Toronto 

consensus as the diagnostic criteria for DPN (Scarr et al., 2017a, Perkins et al., 

2018, Chen et al., 2015, Alam et al., 2017, Ahmed et al., 2012) i.e. one 

abnormal finding as part NCS, in combination with a symptom or sign of 

neuropathy (Tesfaye et al., 2010). As mentioned previously, NCS assesses 

large fibre function whereas CCM assesses small fibre function.  

Despite the variation in results and limitations of the studies, these findings 

supported the expanded role of CCM in the assessment of diagnostic DPN as a 

supplement to the wide array of neurological tests currently in use. 
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3.8 Early Detection of Mild Neuropathy 

 

As there are currently no therapeutic agents approved for the treatment of DPN, 

early detection is essential in order to modify any risk factors. Several studies 

have specifically investigated CCM findings in early stages of DM and mild 

levels of DPN. 

The published baseline characteristics of T1DM patients as part of the 

LANDMark study (Pritchard et al., 2014) were that corneal nerve fibre length 

was reduced in patients without clinical neuropathy, based on the Toronto 

criteria. Another paper written from the same study (Edwards et al., 2012b) 

assessed the use of CCM for distinguishing between control patients and DM 

patients (156 T1DM, 75 T2DM) with and without clinical DPN, and for the 

patients with DPN, all cases were defined as mild (as defined by QST plus 

neurophysiology). This study reported a significant reduction in CNFL when 

comparing patients with and without mild neuropathy, suggesting that CNFL 

changes may occur early in the course of the disease.  

One study (Ziegler et al., 2014) assessed the corneal sub-basal plexus in 

patients with recently diagnosed T2DM (mean duration 2.1± 1.6 years).This 

study reported significant differences between CNFD, CNBD and CNFL 

parameters when comparing the patient cohort to the control group, with CNFD 

emerging as the most sensitive in detecting corneal nerve pathology, indeed 

21% of the patients fell below the 2.5th percentile of the control group. For this 

study, high-adapted software was used which produced an image of the sub-

basal nerve plexus that was composed from an image stack and reconstructed 

to a combined mosaic image which had an expanded field of view compared to 

standard imaging using CCM. This software is also able to correct for artefacts. 

As this method is not widely used, there is no direct comparison to other studies 

and as far as we are aware, there are no other studies assessing recently 

diagnosed patients with DM (<2 years duration). It must also be considered that 

in this study, even though patients were diagnosed recently, there may have 

been a delay in diagnosis, which could have varied between patients. 

Another study assessing early nerve changes assessed patients with impaired 

glucose tolerance (IGT) (Asghar et al., 2014). This study reported evidence that 

CCM may detect changes in nerve parameters prior to established diabetes. 
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Asghar et al (Asghar et al., 2014) reported that in patients with IGT, CNFD and 

CNBD were significantly reduced with 40.5% of subjects with IGT having 

significant small-fibre damage based on CNFD reduction compared to controls. 

This agreed with a decrease in IENFD and significantly higher warm thresholds 

and vibration perception thresholds in the same cohort. 

3.9 Normative Database  
 

In 2015, a consortium study of six academic clinical centres published a robust 

worldwide normative database from a large cohort of 343 healthy volunteers 

(Tavakoli et al., 2015). This created readily available normative reference 

values for corneal nerve parameters, which could be used in research and 

clinical practice in the study of peripheral neuropathies. This study found a 

significant linear age-dependent decrease in CNFD and a decrease in CNFL in 

both men and women. There was also a significant increase in CNFT per year, 

however no age-related change in CNBD was found.  

3.10 Langerhans Cells in DPN 
 

Although there have been numerous published studies investigating changes in 

corneal nerve fibres in patients with diabetes, the research into the presence 

and density of corneal Langerhans cells is limited, with no published normative 

reference data available for this parameter. As part of a study, Zhivov et al 

(Zhivov et al., 2005) assessed the corneal basal epithelial layer and the sub-

basal nerve plexus for the presence of LCs in healthy subjects and found that 

31% of subjects had LCs present. 

Tavakoli and colleagues (Tavakoli et al., 2011a) were the first to assess 

Langerhans cell density with differing severities of diabetic neuropathy (based 

on NDS scoring compared to controls). This study found a significant increase 

in the proportion of individuals with LCs in patients with T1DM and T2DM 

(73.8%) compared to control subjects (46.1%). The study also found that LC 

density was significantly increased in the patients with diabetes (17.73 ± 1.45) 

compared to control subjects (6.94 ± 1.58). However, with progression of 

neuropathy, patients with moderate and severe neuropathy showed a reduction 

in the LC density in comparison to patients with mild neuropathy and were not 

significantly different from control subjects. This may suggest that LCs have a 

role in the early phase of nerve damage. This study only focused on Bowman’s 
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layer which has been shown to have a lower density of LCs in comparison to 

the  epithelial layer (Hamrah et al., 2002), so is not a true representation of 

overall LC density in the central cornea.  Another limitation of the study was that 

the Tomey Confoscan CCM was used for imaging which has been shown to 

underestimate LC density compared to newer the Heidelberg HRT III CCM 

(Zhivov et al., 2005)and cannot differentiate mature from immature LCs (Zhivov 

et al., 2005). 

A more recent study (Ferdousi et al., 2019), used the HRT (III) CCM to assess 

the density of LCs in a cohort of children and adolescents with diabetes and 

found a higher percentage of patients (85.9%) and controls (69.1%) with LCs 

present when compared to the previous 2 studies (Zhivov et al., 2005, Tavakoli 

et al., 2011a). This study was also able to distinguish between mature and 

immature cells by classing LCs of less than 50 µm in length, without dendritic 

structures as immature cells and those greater than 50 µm with dendritic 

structures were considered as mature cells. A significant increase in both 

mature and immature cells was found as well as a correlation between CNFD 

and LC density (Ferdousi et al., 2019). However, this study only assessed a 

specific group of the diabetic cohort so is not representative of the whole 

diabetic population. Overall, studies investigating LC density in patients with 

diabetes are still limited and more information is required to conclude the effect 

of diabetes on LCs. 

3.11 Comparing CCM and IENFD 
 

Sural nerve biopsy and/or punch skin biopsy are currently considered as gold 

standard for assessing small nerve fibres (Lauria et al., 2010b). Studies have 

found CCM to be comparable with measures of IENFD from biopsies in their 

diagnostic performance for detecting patients with clinical levels of DPN (Alam 

et al., 2017, Chen et al., 2015). Both studies found no significant difference in 

their diagnostic efficacy in patients with T1DM.  

An older study using the Tomoscan confocal microscope (Quattrini et al., 2007) 

also concluded that both IENFD and CCM assessment accurately quantify 

small nerve fibre damage in patients with diabetes. Intraepidermal and corneal 

nerve fibre lengths were also both further reduced in patients with painful 

compared with painless diabetic neuropathy. 
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In comparison, one study's findings, using HRT (III) CCM were notably different  

(Ziegler et al., 2014). This study reported that CCM and IENFD were both able 

to detect nerve fibre loss in recently diagnosed type 2 diabetes, but largely in 

different patients. They therefore suggested a possible patchy manifestation 

pattern of small fibre neuropathy. Only 2.7% of the patients had both abnormal 

CNFD and IENFD. Abnormal CCM with normal IEND was noted in 20.5% of the 

diabetic group and 11.0% for vice versa. No correlation between the CCM 

measures and IENFD were observed. There are possible explanations for these 

contradictory findings. Firstly, the cohort of patients in this study were all 

patients with T2DM, all of who had been newly diagnosed (known diabetes 

duration of ≤1 year). The disease duration was significantly less than that of 

Chen et al, (2015) (DPN+ 39±14 DPN- 23±15 years) and Alam et al, (2017a) 

(DSPN+ 37.2±13.1 DSPN- 17.2±12.0 years). These two studies also used 

comparisons between patients with and without clinical DPN to compare IENFD 

and CCM, whereas Ziegler et al. (2014) only compared patients with T2DM to 

healthy controls. Lastly, Ziegler et al used a different location for the IENFD 

biopsy. This was taken from the lateral calf in comparison to the dorsum of the 

foot. This more proximal site may have been at less risk IENFD changes, or 

may present a different pattern of loss, as DSPN is known to follow a distal-

proximal course. 

One issue with the comparison of IENFD with analysis of the corneal sub-basal 

nerve plexus is that intra-epidermal nerves consist of both unmyelinated C-

fibres (90%) and myelinated A-delta fibres (10%)(Basantsova et al., 2019), 

which are both included in the measurement for IENFD, whereas the sub-basal 

nerve plexus is made up of C-fibres only. This means that a direct comparison 

cannot be made between the two measurements as although the A-delta fibres 

only make up 10% of the total number in the epidermal layer, they may be 

affected differently in DPN than the unmyelinated C-fibres and therefore 

affecting the overall results. 

3.12 Longitudinal Studies - The Use of CCM for DPN 
 

Results from longitudinal studies suggest that CCM has good predictive value 

for subsequent DPN (Halpern et al., 2013a, Halpern et al., 2013b). Longitudinal 

analysis of a T1DM cohort showed a mean 1-year change in CNFL was -1.6% 
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in patients with unstable T1DM, while healthy volunteers showed a 5% increase 

per year (Halpern et al., 2013b) 

As part of a 4-year follow up study, a study (Lovblom et al., 2015) found that 3 

corneal nerve parameters were all significant predictors for the development of 

DPN, with a baseline CNFL of <14.9mm/mm2 being the strongest single 

predictor when compared to 11 other small and large fibre tests. Other studies 

(Edwards et al., 2017, Pritchard et al., 2015) also reported an association 

between lower baseline CNFL and development of DPN. Pritchard et al, (2015) 

found a significant association with longer diabetes duration, higher 

triglycerides, worsening retinopathy and nephropathy, impaired sensation to 

temperature and vibration and slower peroneal and sural nerve conduction 

velocities. However, studies with larger cohorts and patients with type 2 

diabetes are needed to confirm the findings from these studies as well as a 

longer period of monitoring. Studies should also ensure a set number of follow-

ups over a set period as for Lovblom et al, (2015) more than half of the patients 

had just 1 follow up visit, meaning that true progression is statistically difficult to 

prove. 

Another prospective study specifically looked at a group of patients with IGT at 

first visit (Azmi et al., 2015). They found that in subjects with IGT, lower 

baseline CNFD, CNBD, CNFL and lower mean dendritic length of IENF were 

the strongest predictors of progression to T2DM over 3 years. Although 

significance was not recorded, there appeared to be very similar baseline 

HbA1c measures between those patients who remained IGT vs those 

developing T2DM over the 3 years follow up ( 42.8 ± 1.2 and 42.4 ± 1.0 

respectively(mmol/mol), suggesting that corneal nerve parameters may have 

been stronger predictors of conversion to T2DM in comparison to baseline 

HbA1c. Those subjects who returned to normoglycemia showed a significant 

improvement in their CCM parameters while IENF length continued to decline 

during the same period. These findings may suggest that corneal nerve fibres 

regenerate quicker than IENF when glycaemic control is improved (Azmi et al., 

2015).  

Another observational follow up study, (Tavakoli et al., 2011b) examined a small 

cohort of patients with diabetes (15 T1DM and 10 T2DM) at baseline and follow-

up at 2 years. At follow up, an improvement in glycaemic control, cholesterol 
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levels and blood pressure were found, as well as increase CNFD, with a 

significant correlation between decrease in HbA1c and CNFD. This 

demonstrated that improvements in HbA1c may lead to morphological repair of 

corneal nerve fibres, however due to the very small sample size and mixing of 

T1DM and T2DM in analysis, it is unclear if these differences are occurring in 

both types. It must also be noted that this was not planned as an interventional 

study, meaning there were no placebo controls or randomisation, which would 

need to take place to confirm or reject these findings. 

CCM has been used to investigate the changes in the sub-basal nerve plexus in 

patients with T1DM post-simultaneous pancreas and Kidney (SPK) transplant. 

Tavakoli et al, 2013 (Tavakoli et al., 2013) assessed 15 patients at 6 and 12 

months SPK transplant and found a significant improvement in all CCM 

parameters at 12 months. Symptoms, neurophysiology, quantitative sensory 

testing and skin biopsy results remained unchanged in the same patients. A 

similar, earlier study using an older CCM model also reported similar findings, 

with CNFD and CNFL increasing significantly after just 6 months (Mehra et al., 

2007). These studies may demonstrate that CCM can provide a novel non-

invasive means to evidence early nerve repair that is missed by currently 

advocated assessment techniques. However, an alternative interpretation of 

this data could be that corneal nerves respond well to restoration of insulin and 

normoglycemia, whereas other peripheral nerves do not therefore CCM may be 

measuring something unique that is not an accurate biomarker of the condition 

of peripheral nerves.  

3.13 CCM application in Clinical Trials 
   

Several DPN intervention trials have focused on large fibre function and have 

generally had ineffective outcomes. More recently, some studies have instead 

focused on CCM measures as markers for clinical trials of potential new 

treatments. In a recent pilot trial of seal oil omega-3, polyunsaturated fatty acid 

supplementation in patients with type 1 diabetes (disease duration 27±14 years) 

over 12 months (Lewis et al., 2017), there was a significant increase (30.4%) in 

corneal nerve fibre length, with no change found in NCS velocity or sensory 

function. Those subjects at high risk for future DPN and those with already 

diagnosed DPN (as determined by a Toronto clinical neuropathy score of ≥ 1) 

showed the best response to treatment. This study was a single-arm, open-
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label, proof of concept trial, therefore no placebo group was used. A placebo 

group is necessary to reduce the bias of a trial through providing a measure of 

the change in measurements which could be expected over time without the 

intervention but with the same amount of additional scrutiny. 

Another study to determine whether the peptide, ARA 290 improves metabolic 

control and neuropathic pain in patients with type 2 diabetes used CCM 

measurements as a co-primary endpoint. This study found that ARA 290 

treatment was associated with an increase in corneal nerve fibre density which 

were correlated with changes in neuropathic symptoms (Brines et al., 2015). 

This study was a double blind, placebo-controlled investigator-initiated phase II 

clinical trial, whose inclusion criteria were patients with T2DM who also had 

symptoms of small fibre neuropathy. Whether allocation to the treatment and 

placebo groups was randomised was not discussed in the article. Randomised 

assignment would have further reduced any bias in the study and allowed the 

use of statistics to calculate the likelihood that any difference in outcome 

between the treatment and placebo groups was indicated by chance. Another 

limitation of this study was that patients assigned to both groups generally had 

excellent metabolic control (HbA1c = 7.3 ± 0.4 and 6.9 ± 0.2 for treatment and 

placebo groups respectively), which does not truly represent the clinical 

population of patients with T2DM. It may be that this treatment is less or more 

effective for patients with poor metabolic control, comparatively. Finally, disease 

duration was also not mentioned, so it was unclear if there was a significant 

difference between the two groups. 

These trials may be evidence that, similar to small fibre damage occurring prior 

to large fibre damage, small fibres are also the first to start regenerating after 

damage. Trials over a longer period, including other measures of small fibre 

neuropathy are required before these findings can be confirmed. 

3.14 A Potential Limitation of CCM 

One limitation of using standard CCM image acquisition is the limited field of 

view that it provides with each image covering only 2% of the 3mm central 

cornea. This may be overcome by either mapping standard CCM images 

manually or using automated software to create a composite image (Allgeier et 

al., 2011, Edwards et al., 2012a, Turuwhenua et al., 2012), however, this  
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automated software is not widely available and a recent study (Kheirkhah et al., 

2015) found no significant difference in nerve and dendritic cell densities from 

the same participants using either three representative CCM images or wide 

field composite images.   

3.15 Diabetic Retinopathy  
 

Diabetic retinopathy (DR) is a common complication of diabetes, caused by 

microvascular changes in the retina (Heng et al., 2013). Mild diabetic changes 

are typically non-sight threatening and include small microaneurysms and/or dot 

haemorrhages, whereas advanced retinopathy can lead to new fragile vessels 

causing large haemorrhages, retinal detachments and potentially significant 

visual loss (Figure 10). Diabetic changes may also affect the macula, with cases 

of diabetic maculopathy (Figure 10) typically consisting of macular oedema and 

ischaemia (Heng et al., 2013). Once established, the latter becomes 

untreatable and irreversible. 

Different interconnected biochemical mechanisms have been implicated in the 

pathogenesis of DR, including oxidative stress, polyol and hexosamine pathway 

activity, advanced glycation end-product formation and activation of protein 

kinase C isoforms (Heng et al., 2013). Several factors including age, duration of 

DM, and glycaemic control are associated with the onset and progression of 

DR, however, a common factor in all processes is the presence of 

hyperglycaemia.   

 i)  Screening Programme for Diabetic Retinopathy 
 

In the UK, the National Health Service (NHS) offers annual digital fundus 

photography to all patients with diabetes over the age of 12 years as part of the 

Diabetic retinopathy screening programme (DRSS). As part of this screening 

programme, in England, all patients attending have two-field mydriatic digital 

photographs taken of each eye (Scanlon, 2017). The images taken are then 

reviewed and graded remotely by suitably trained clinical staff, based on the 

presence and level of retinopathy. If potentially sight-threatening retinopathy is 

identified, referral to a specialist hospital eye care service is organised where 

further assessment and treatment is available. These robust annual screening 

programmes have been hugely successful, with 2.14 million successfully 

screened in England between 2015-2016 (Scanlon, 2017) and diabetic 
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retinopathy/maculopathy no longer being the leading cause of blindness of the 

working population in the UK (Liew et al., 2014). 

 

 

Figure 10: Four stages of diabetic retinopathy: (a) R1 Background retinopathy with 

multiple microaneurysms and minimal small dot haemorrhages (b) R2 Pre-proliferative 

retinopathy with multiple larger 'blot' haemorrhages and intraretinal microvascular 

abnormalities (IRMAs) (c) R3a Proliferative retinopathy which is similar to (b) but also 

with new abnormal vessels located both at the optic disc (NVD) and elsewhere (NVE), 

(d) M1 Maculopathy with hard exudates and haemorrhages located within the macula. 

Image from (Heng et al., 2013) 

 

 ii) Diabetic Retinopathy and CCM  
 

Diabetic retinopathy is considered one of the earliest microvascular 

complications and can be an indicator of diabetic management in a patient. 

However, during the last decade, numerous studies have suggested that 

corneal nerve changes may precede diabetic retinopathy in patients with both 

T1DM (Szalai et al., 2016, Petropoulos et al., 2015b) and T2DM (Bitirgen et al., 

2014, Nitoda et al., 2012).  

When assessing patients with T1DM, two similar studies (Szalai et al., 2016, 

Petropoulos et al., 2015b) reported a reduction in CNFD, CNFL and CNBD, 
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prior to any retinopathy, when compared  to control subjects. Furthermore, 

patients with apparent retinopathy demonstrated a further reduction in all three 

parameters when compared to patients with no retinopathy. Using ACCMetrics 

automated software for analysis, a study (Szalai et al., 2016) also reported 

significantly higher cornea nerve fibre width (CNFW), in patients prior to 

retinopathy, suggesting that it may be the smaller branches, with the thinner 

width, that are reduced in the early stages of neuropathy. A limitation to this 

study was that it only assessed young patients (mean age 22.86 ± 9.05 years) 

so was not overall representative of the T1DM diabetic population. The patients 

were also not screened for possible other causes of neuropathy meaning that 

there may have been other factors contributing to the nerve changes. 

Studies assessing patients specifically with T2DM also demonstrated significant 

alterations in the corneal nerve fibres with a reduction in CNFL occurring in 

parallel with both DR (Bitirgen et al., 2014, Nitoda et al., 2012) and peripheral 

DPN status (Nitoda et al., 2012). In Nitoda et al, (2012), the mean age of the 

control subjects (61 ± 9 years) and the mean age of the patients with diabetes 

(63 ± 2 years) were said to be age-matched (no p-value given). The mean 

duration of DM was 7± 7 years, 16 ± 7 years, and 20 ±10 years, for no DR, non-

proliferative DR and proliferative respectively, showing an increase with relation 

to DR (no p value given). For the Bitirgen at al study, (2014) the controls and 

patients with DM were again age matched, with control patients having a mean 

age of 60.6± 7.6 and patients with T2DM having a mean age of 60.3 ±8.3. The 

duration of diabetes was significantly lower (as expected) in the group of 

patients with no DR (9.3±5.5 years) when compared to patients with non-

proliferative DR (16.3±7.0) and proliferative DR (16.8 ±6.9 years) (p<0.001 for 

both).  

DR has also been found to correlate with reductions in corneal basal epithelial 

cell, anterior stromal keratocyte and endothelial cell densities (Bitirgen et al., 

2014). A similar study concluded an insignificant difference between corneal 

nerve parameters of patients with and without DR (Zhivov et al., 2013), 

however, this study used automated nerve analysis software and assessed 

different nerve parameters to the two studies using semi-automated analysis. 

The ethnicity of the patients was also not stated in any of the publications and 
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there was a significant lack of recently diagnosed patients (less than <2 years) 

(Nitoda et al., 2012). 

One study (Messmer et al., 2010) assessed patients with both T1DM and T2DM 

(grouped together for analysis) using semi-automated software and found that 

CNFL was significantly reduced between patients without diabetic retinopathy 

and controls (p = 0.028).They also found that in patients with DR, CNFD, CNFL, 

and CNBD all showed a difference with increasing significance compared to 

healthy persons as DR increased from non-proliferative to proliferative.  

Overall, the findings of these studies suggest that CCM may be highlighting 

corneal nerve changes prior to any detected retinopathy and challenges current 

screening strategies used to detect microvascular complications of CM. This 

may suggest that CCM identification of neuropathy may be identifying the 

earliest point at which to intervene and prevent progression of complications. 

3.16 The Potential use of CCM in Screening for Pre-clinical Neuropathy 
 

Previous studies, addressed throughout this section, into the use of CCM to 

detect corneal nerve changes in cohorts of patients with diabetes have 

indicated that it may be a feasible method for the screening of early, pre-clinical 

neuropathy. CCM also shows promise as an instrument to be used as a marker 

to be used in clinical trials in order to assess progress with treatment and pick 

up subtle, early changes in nerve fibres. 

However, until now, the use of CCM has been confined only to research 

departments, typically testing cohorts of patients attending hospital clinics. If 

CCM is to be used as a wider screening tool in the future, it would need to be 

carried out in a clinical environment, ideally within the community to provide 

good access for all patients needing screening. Analysis of images would also 

need to be fully automated in order to allow results to be generated in larger 

numbers of patients in a time-efficient manner.  

In 2015 a study into the implementation of CCM in primary care optometry 

practices for Screening and Early Detection of Diabetic Neuropathy (Tavakoli et 

al., 2016) (See methods section) was set up to assess whether or not it would 

be feasible to introduce CCM screening into community practice, alongside 

diabetic screening.  
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3.17 Aims and Objectives  

The implementation of CCM in primary care optometry practices for Screening 

and Early Detection of Diabetic Neuropathy study recruited 450 patients with 

diabetes who underwent corneal nerve fibre imaging using CCM.  

My study will involve analysing the images from this first large cohort of patients 

screened in primary care using CCM, a cohort more representative of the true 

clinic population in whom CCM could be utilised in the future as a monitoring 

tool. This group represents patients, mostly with T2DM who are not seen in the 

hospital clinical and have less severe complications of diabetes than those who 

have previously been investigated with CCM. It thus provides an opportunity to 

explore CCM as a biomarker for diabetic neuropathy in a novel cohort. Using 

the data, I will address the following aims: 

Primary Aims and Hypotheses: 

1.  Aim: To determine the prevalence of diabetic peripheral neuropathy, as 

defined by CCM parameters in a cohort of people with diabetes, who were 

screened in primary care, compared to age-corrected control subjects. 

     Hypothesis: The prevalence of diabetic peripheral neuropathy, defined 

using CCM parameters will be lower in this population in comparison to 

previous CCM studies using patients under the hospital eye service to 

determine prevalence of DPN. 
 

2. Aim: To assess whether abnormalities in corneal nerve fibre morphology are 

present during the first two years following diabetes diagnosis.  

      Hypothesis: There will be evidence of abnormalities in corneal nerve fibre 

morphology in some, but not all, patients with diabetic disease duration of less 

than or equal to 2 years. 

3. Aim: To assess whether abnormalities in corneal nerve morphology are 

present prior to any retinopathy, defined as grade 1 or more. 

      Hypothesis: There will be evidence of abnormalities in corneal nerve fibre 

morphology in some, but not all, patients with retinopathy and maculopathy 

grade 0. 
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4. Aim: To assess whether abnormalities in corneal nerve morphology are 

present prior to clinical evidence of diabetic neuropathy, as defined by diabetic 

neuropathic symptom (DNS) scoring of 1 or more 

      Hypothesis: There will be evidence of abnormalities in corneal nerve fibre 

morphology in some, but not all, patients with a DNS score of 0.  

Secondary Aims: 

1. To evaluate if automated software can assess corneal nerve parameters with 

no significant differences from manual software and to determine if image 

quality influences the software's accuracy. 

2. To assess the changes in corneal nerve morphology, in relation to diabetes 

duration, in order to determine the relative risk of developing diabetic peripheral 

neuropathy as diabetes duration increases. 

3. To assess if corneal nerve fibre morphology alters with increasing grades of 

retinopathy from 0 to pre-proliferative. 

4. To assess whether there is a significant difference in corneal nerve 

parameters between patients with diabetes of different ethnic backgrounds. 

5. To assess if nerve morphology alters with increasing diabetic neuropathy 

symptom (DNS) from 0-4. 
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4. METHODOLOGY 
 
To address the aims of my thesis I analysed data collected during the study: 

Implementation of Corneal Confocal Microscopy in Primary Care Optometry 

Practices for Screening and Early Detection of Diabetic Neuropathy: a feasibility 

study (Tavakoli et al., 2016). This study was funded by the National Institute for 

Health Research Collaboration for Leadership in Applied Health Research and 

Care (NIHR CLAHRC) Greater Manchester and Heidelberg Engineering UK and 

International as a grant to the chief investigator Dr Mitra Tavakoli. The study 

ethics were granted by the South Manchester research ethics committee (REC 

reference 15/EM/0079, IRAS project ID 149169). 

My involvement in this study commenced after it was completed, and databases 

locked. I was therefore not involved in any of the set-up, management, 

governance, data collection, archiving or close of the study. My role has been to 

take the raw images collected in primary care, analyse the images to derive 

quantitate data and to statistical analyse the data to address the aims above. 

I am extremely grateful to the chief investigator of this study (Dr Tavakoli) who 

is my MPhil supervisor as her data has enabled me to undertake this MPhil 

project. 

 

4.1 Dataset 

Between April 2020- September 2020 I analysed this retrospective dataset, 

originally collected as part of the study to investigate the feasibility of using 

CCM screening in primary care. The full details of this study have been 

published as an NIHR report (Tavakoli et al., 2016). The data were collected 

from a cohort of 450 patients with diabetes who participated in a screening 

program as part of the South Manchester Diabetic Retinopathy Screening 

Service (SMDRSS) at four primary care optometry practices in Manchester, UK 

between 2015-16. The forty healthy control (HC) subjects, analysed in this 

thesis, were recruited previously as part of several REC approved studies, 

including (Tavakoli et al., 2015). These HCs were volunteers who were students 

and staff members at the University of Manchester. These control subjects 

underwent CCM examination and image analysis, but all other clinical tests 

were performed on the patient cohort only. 
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The research adhered to the tenets of the Declaration of Helsinki. Informed 

consent forms were completed prior to assessments. Participant data was 

stored securely, anonymised and randomised to ensure that the individual 

analysing the images was not aware of the centre where the images were 

collected or the patient characteristics. 

4.2 Selection of Practices 
 

South Manchester Diabetic Retinopathy Screening Service (SMDRSS) is one of 

the programmes in the Greater Manchester area delivering diabetic retinopathy 

screening. Four of the 78 practices providing screening as part of the SMDRSS 

during the time of recruitment were approached and agreed to participate in the 

study. These 4 were chosen based on there being a sufficient number of 

patients attending the practice for screening to allow delivery the study within 

the project timeline. They also reflected the different types of optometry 

practices across Greater Manchester, i.e. practices that were part of a multiple 

chain and those that were independent. The patient cohort at each practice 

varied in terms of diversity and ethnicity, socio-economic status and age.  

Each practice gave an estimate of their typical population in terms of age, 

gender and ethnicity. Three of the 4 practices had a patient cohort of majority 

white ethnicity (>90%). The fourth practice had a patient cohort of a majority 

black ethnicity (80%). All four practices saw mostly patients with type 2 diabetes 

(85-95%). For socio-economic factors, data from the national general practice 

profiles was used. This was sourced and reported in the original NIHR report so 

was already available for this study (Tavakoli et al., 2016). It was assumed that 

patients attending for SMDRSS screening would approach a practice in the 

vicinity of their home and therefore recruited patients would likely reflect the 

local population demographics for each of the four practices. 

At each practice, a participating optometrist received in-house training at the 

NIHR-Wellcome Trust Clinical Research Facility in Manchester on how to 

conduct CCM tests as well as associated theoretical knowledge of CCM 

imaging applications and interpretation (Tavakoli et al., 2016). 

4.3 Recruitment 

 

Inclusion/exclusion criteria were set out prior to recruitment (Table 4). 
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Each of the 4 practices were asked to offer to perform CCM on all eligible 

patients and to recruit between100-125 patients. Practices were reimbursed for 

their time at a rate calculated based on hourly rate for optometrists, with 

consideration of the practice's involvement (Tavakoli et al., 2016). 

 

Inclusion Criteria Exclusion Criteria  

Aged 16 years and older Under the age of 16 

Signed written informed 
consent  

Unable to give written consent themselves  

Have type 1 or type 2 
diabetes 

Concurrent ocular inflammation or infection which may affect 
the cornea* 

Participant of SMDRSS  History of ocular or systemic disease that has affected the 
cornea 
 (e.g. keratoconus, corneal dystrophies, refractive surgery)* 

 Wear rigid contact lenses* 

*  Exclusion criteria were applied because of the effect on natural structure/function of, or damage to, the cornea.   

Table 4: Inclusion and exclusion criteria for the original feasibility study. Table adapted from 

original study report (Tavakoli et al., 2016) 
 

Patients with diabetes (T1DM and T2DM) aged 16 years and over were invited 

to take part by each practice administration team when they contacted the 

practice to book their annual retinopathy screening test. In most cases, CCM 

was booked alongside the retinopathy screening appointment; and when this 

was not feasible, CCM was scheduled as a separate appointment on a 

separate day.  

Eligible and interested patients were provided with a participant information 

sheet and invitation letter at least 24 hours prior to their CCM test. At the 

appointment, the optometrist further discussed the study with the patient, 

checked clinical eligibility (Table 4) and took written informed consent (Tavakoli 

et al., 2016) 

Between April and September 2015, 449 of the 716 (63%) patients approached 

across the four practices agreed to take part in the study. Full details of the 

study methods can be found in the NIHR report (Tavakoli et al., 2016) 
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4.4 Patient History 

 

Data were collected regarding gender, age, ethnicity, diabetes type and 

duration. Patients' history was also recorded which included previous laser 

photocoagulation treatment and history of any previously diagnosed; 

retinopathy, foot ulceration, or diabetic neuropathy.  

4.5 Assessment of Clinical Neuropathy 
 

The Diabetic neuropathy symptom (DNS) score (Figure 11) was used to assess 

each subject with diabetes for clinically evident DPN. The DNS score is a four-

item symptom score for assessing diabetic neuropathy, developed by an expert 

panel and has been described in detail previously (Meijer et al., 2002). The 

DNS score assesses the presence of the following four items. (i) un-steadiness 

in walking, (ii) pain, burning or aching at legs or feet, (iii) prickling sensations in 

legs or feet, and (iv) numbness in legs or feet (see figure 1 for published 

guidance). A symptom was marked as present if it was experienced during the 

previous 2 weeks. Presence was scored as 1 for each item, and absence was 

scored as 0. The maximum score was therefore 4 points. A score of 1 or more 

indicated clinically detectable DPN (Meijer et al., 2002).  

 

Figure 11: DNS-score questions and guidelines for symptoms that would indicate a positive 

response to each question. Figure adapted from (Meijer et al., 2002)     

 

4.6 Assessment of Retinopathy  

As part of the SMDRS, all patients with diabetes received screening for diabetic 

retinopathy and maculopathy. A detailed description of the English Diabetic 

Retinopathy Screening Service (DRSS) (Scanlon, 2017) and the retinopathy 

grading criteria (Harding et al., 2003) have been published previously. The aim 

of the English NHS Diabetic Eye Screening Programme is to reduce the risk of 

sight loss amongst people with diabetes by prompt identification and treatment, 
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if necessary, of sight-threatening diabetic retinopathy. All people with diabetes 

aged 12 years and over are invited for annual diabetic retinopathy screening.  

Mydriatic, 2-dimensonal fundus photography was carried out on each patient. 

Two images were taken per eye with one image field centred on the fovea and 

another image field centred on the optic nerve. Images were graded by the 

appropriately qualified, attending optometrist for level of diabetic retinopathy. 

Based on the presence of several distinguishing features first outlined as a 

result of the Early Treatment Diabetic Retinopathy Study (ETDRS)(Solomon 

and Goldberg, 2019), depending on the level of retinopathy present, patients 

with diabetes either continued to be monitored in the DRSS or were referred 

into the hospital eye service (HES). A summary of the features of diabetic 

retinopathy with corresponding grading and management guidelines can be 

seen in Table 5.  

Grading and Typical 

Management Features 

R0 
(Monitor yearly) Normal. No signs of retinopathy. 

R1 'Background' 
 

(Monitor yearly in DRSS) 

• Microaneurysms 

• Dot or flame haems 

• Cotton wool spots in the presence of non-referable DR 

• A venous loop 

R2 'Pre-proliferative' 
 

(Referral to 
ophthalmologist) 

• Multiple blot haems - ref images to decide if warranting referral  

• IRMA on colour and red-free images - not just red free 

• Venous beading  

• Venous reduplication (dilation of a vessel adjacent to and the same calibre 
as the original vein so that they look like a loop/tangled) 

R3A 'Active proliferative' 
 

(Urgent referral to 
ophthalmologist) 

• NVD/NVE 

• Iris rubeosis 

• Pre-retinal/vitreous haemorrhages 

• Pre-retinal fibrosis  

• Tractional RD 

• Reactivation of previously stable R3  

R3S 'Stable proliferative' 
 

(Monitor yearly in DRSS) 

• An image from discharge or within 3 months of discharge needed to 
compare to when screening.  

• Stable NVD/NVE with peripheral scatter laser 

• Stable pre-retinal fibrosis with peripheral scatter laser  

• Stable R1/R2 features with peripheral scatter laser 

M0 No maculopathy 

M1 
 

(Urgent referral to 
Ophthalmologist) 

• Any exudate with 1DD of the fovea  

• A group of exudates (greater than or equal to 1/2 DD in size) all within the 
macula 

• Microaneurysms and/or haems within 1DD of the fovea + VA of less than 
or equal to 6/12 

U • Un-assessable  
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Table 5: The criteria used for grading diabetic retinopathy in England with typical management 

in primary care. Adapted from (Solomon and Goldberg, 2019). 

4.7 Patient Examination with CCM 
 

After retinal photography to assess DR, each subject had their corneal nerve 

morphology imaged using laser CCM (Heidelberg Retinal Tomograph III 

Rostock Cornea Module (HRT III RCM); Heidelberg Engineering GmbH, 

Heidelberg, Germany) by a trained optometrist at each practice. An in-depth 

protocol of this imaging technique has been described previously (Tavakoli and 

Malik, 2011). Briefly, both eyes of each subject were anaesthetised using 0.4% 

benoxinate hydrochloride and Viscotears gel was inserted to both eyes. This 

acted as a coupling agent between the surface of the cornea and the CCM lens. 

The system was adjusted to align the subject's outer canthi with the positioning 

markers before they positioned themselves with their chin placed onto the 

chinrest and their forehead pressed firmly against the headrest. They were then 

instructed to fixate on a fixation target with the eye not being tested, to limit the 

movement of the eyes. The objective lens was moved towards the patient until 

there was very light contact with the cornea. The focal depth was set to 0μm, at 

the corneal epithelial layer, and a scan of the entire depth of the cornea was 

achieved yielding upwards of 100 images. This process was repeated in both 

eyes and took between 5-15 minutes per patient. All resulting images were then 

saved to each patient's file to be used in analysis. 

4.8 Selection of Images  
 

For analysis, images of the sub-basal nerve plexus were evaluated for; clarity, 

resolution, pressure lines, and other artefacts. Based on this evaluation, I 

selected images of the sub-basal nerve plexus, ensuring a minimum of five non-

overlapping images per patient. During selection (and analysis) of CCM images, 

I was blinded to any other parameters relating to the participants. Ideally, 6 

images were selected for analysis per patient, 3 images per eye. If images were 

not of good enough quality to obtain 3 per one eye, then a minimum of 2 

images in total (1 for each eye) were accepted. If less than 2 images of good 

enough quality were available, then this subject was excluded from the 

analysis. If more than 6 images were available, I chose 6 out of the available 

images based on the following: 

a. No pressure artefacts (Figure 12C). 
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b. Good image brightness, avoiding dark corners/edges (Figure 12B). 

c. Minimised overlap of images (if possible) to avoid analysing the 

same nerves. 

d. Avoiding choosing the images with the most nerves, but with the 

highest quality. 

 

             Good Quality                                                   Poor Quality 

 

 

 

 

 

 

 

Figure 12: Representative CCM images of good and poor image quality. All images show 

corneal nerve fibres running parallel to the Bowman’s cell layer. (A) Good image quality with 

main nerve fibres and branches clearly visible throughout the image frame. No artefacts can be 

seen. (B) Poor image quality with the centre of the image much brighter than the periphery. In 

some of the periphery the course of the nerve fibres is not visible. (C) An area of poor image 

quality. The red arrow points to a pressure artefact, which is caused by too much pressure 

being applied to the cornea when capturing the image. 

4.9 Image analysis 
 

 i) Semi-automated Analysis  
 

Numerous manual/semi-automated programmes are available for the analysis 

of the CCM images obtained, with no universally accepted method at present. 

CCMetrics (MA Dabbah; Imaging Science and biomedical engineering, 

University of Manchester, Manchester, UK) (Figure 13) was designed using 

Matlab, and involves manual tracing of nerve fibres and branches, to determine 

corneal nerve fibre length (CNFL), corneal nerve fibre density(CNFD), corneal 

nerve branch density (CNBD) and tortuosity coefficient (TC). A 384 x 384 pixel 

image is analysed which the programme converts into measurements per mm2 

(Dehghani et al., 2014). 

B A C 
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CCMetrics was used in this study to analyse 2-6 bilateral IVCCM images per 

subject (Figure 13). Firstly, I exported each image onto the CCMetrics semi-

automated software (MA Dabbah; Imaging Science and biomedical 

engineering, University of Manchester, Manchester, UK). I analysed all the 

images, and at the time of analysis did not have access to any other information 

about each patient, such as DNS score, date of birth or retinopathy grading. All 

images were analysed using the same Wacom Intuos graphic tablet and tracing 

pen. 

 

Figure 13: An unanalysed 2D image of the corneal sub-basal nerve plexus viewed on 

CCMetrics. Each image is 384 x 384 pixels in size and saved as a Bitmap file. When analysing 

each image manually, the examiner must choose the correct parameter from the options in the 

'Metrics' section of the viewing window. If tracing a main nerve fibre, 'TC and NFD' is chosen 

first. If tracing a nerve branch, 'NFL' is chosen. Main nerve branches/branching points are 

dotted using the 'NBD' option. 

The following corneal nerve parameters were quantified; CNFL (mm/mm2), 

CNFD (no./mm2), CNBD (no. /mm2), CNFT displayed as either of two 

coefficients; implementation or deviation, and Langerhans cell density (LC) 

 (no. /mm2). For each parameter, an average value was calculated per patient.  

A summary of parameter definitions can be found in table 6. 
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Parameter Units Definition 

 
CNFA 

mm2 /mm2                       Total nerve fibre area per mm2. 

 
CNBD 

 
no./mm2 Number of main branches per mm2 

 
CNFD 

 
no./mm2 Number of main nerve fibres per mm2 

 
CNFL 

 

mm/mm2 Total length of all main nerves and branches per mm2. 

 
CNFT 

 
-* 

The average deviation of each main nerve from a straight 
line*. 

 
CNFW 

 
mm/mm2 Average width of main nerve fibres per frame. 

 
CTBD 

 
no./mm2              Total number of branch points per mm2.  

 
LC Density 

no./mm2 Number of Langerhans cells per mm2 

 

 * CNFT is given as 2 values: CNFT deviation (between 0-1) and CNFT implementation (≥0) 

Table 6: Summary of corneal nerve parameters reported by CCMetrics and ACCMetrics. 

 

ii) Automated Analysis  
 

Most of the research in the fields of CCM has been completed using semi-

automated analysis, however this is a time consuming, resource intensive 

procedure, even for experienced examiners(Scarr et al., 2017b). This is a key 

barrier to the implementation of CCM, particularly in clinical settings where time 

and resources are more limited. In light of this, fully automated, algorithmic 

defined, software has been developed to eliminate the manual input of analysis 

(ACCMetrics Image Analysis Software v2.0, developed by M. Dabbah and X. 

Chen, University of Manchester). For this protocol, the examiner must choose 
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and upload images per patient for analysis, usually based on a set criterion for 

that specific study.  

Ostrovski et al, 2015 (Ostrovski et al., 2015) also found a reduced 

measurement biased in comparison to manual software when measuring the 

same CCM image. However, some small cohort studies have previously 

reported problems of automated software such as false positive and false 

negative identification of nerve structures (Dehghani et al., 2014, Petropoulos et 

al., 2014). 

Scarr and colleagues (Scarr et al., 2017b) systematically examined the 

measurement bias between automated and manual software. They found that 

the automated protocol provided measures of CNFL that were systematically 

lower than manually derived CNFL for all subgroups. No statistically significant 

difference in the percentage underestimation across the range of values and in 

each subgroup (28-33%underestimation) were found, however CNFL 

measurements between the 2 methods were highly correlated (Rs=0.84). Chen 

and colleagues (Chen et al., 2017) also found that automatic quantification of 

nerve morphology showed a high correlation with previously reported, manually 

measured, features. Again, automated measures were overall lower for CNFL, 

as well as CNFD and CNBD however, no values are given to indicated whether 

this difference was significant. 

If automated software is to be used for analysis, measures should be taken to 

resolve the measurement bias. Ideally, the software will be improved and 

updated to resolve the measurements bias, however as we await technological 

advances, we must either accept the underestimation bias whilst acknowledging 

it is consistent across values and patient characteristics, or re-calibrate 

threshold values adjusted to represent published reference standards for 

manual methods by way of an estimating equation (Scarr et al., 2017b). 

As part of my study, ACCMetrics automated software was also used to analyse 

each subject, including healthy controls. The automated software produces 

three parameters which are comparable to the manual software (CNFL, CNFD 

and CNBD), as well as three additional parameters (Table 6) : CTBD defined as 

the total number of branch points from a main nerve in each frame, CNFA 

defined as total nerve fibre area, and CNFW defined as the average nerve fibre 
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width. As with the semi-automated software, 2-6 images were analysed and 

average values were calculated automatically. Only the average values were 

exported onto the data spreadsheet. 

  

                        Original Image                                              CCMetrics Analysis   

                      

Figure 14: Representative images of original IVCCM images (A,C) alongside their associated                                                                 

semi-automated analyses using CCMetrics software (B,D). Main nerve fibres, nerve branches 

and main branch start, and end points are denoted with red lines, blue lines and green circles, 

respectively. 

   

4.10 Analysis Validation 
 

 i) Analysis Training 
 

Prior to working on this study, I attended a CCMetrics analysis training session 

held at the University of Exeter Diabetes and Vascular Research Centre 

(DVRC). During this session, the study PI went through how to use CCMetrics 

manual software to trace corneal nerves and branches accurately, as well as 

how to identify Langerhans cell presence based on established protocol 

(Tavakoli and Malik, 2011). The study PI used examples of correct and incorrect 

A B 

D C 
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analyses to highlight aspects of images that are commonly analysed 

erroneously. 

Over the course of 3 weeks, I analysed 49 patients from the full SMDRSS 

cohort of these patients and reviewed the annotated images with the CCM 

expert to assess the accuracy. During this meeting I also presented any images 

I had found difficult order to gain expert opinion and resolve any errors.  

In addition to my training as described above to confirm appropriate consistent 

analysis of the study images, the PI, who is the supervisor of my MPhil thesis, 

chose 10% of the images that I had analysed from the patient cohort and 

confirmed that the accuracy of my nerve analysis was acceptable.  

 ii) Inter-observer Agreement  
  

To confirm that my analysis of the images was at an acceptable standard to 

commence analysis of the cohort data, data from 24 subjects were analysed by 

both myself (the investigator) and by a CCM expert, who can be considered as 

the 'reference standard' due to a large amount of experience in CCM image 

analysis. Corneal nerves were assessed by the CCM expert; however, 

Langerhans cell presence and density were not. The CCM expert presented 

CNFT using the implementation value so this value was assessed for tortuosity 

agreement. 

Six images were analysed per patient and an average was calculated for each 

of the parameters. If more than 6 images were available for analysis, observer 2 

chose 6 of these to analyse based on the previously mentioned guidance (see 

section 4.8). Observer 1 then analysed the same 6 images. Both observers 

were blinded to the results of the other until all images had been analysed. 

Statistics were performed in Microsoft Excel for Office 365 (Microsoft Corp, 

Seattle, WA, USA) and SPSS for Windows version 26 (SPSS Inc, Chicago, IL, 

USA). Inter-observer agreement analysis was carried out on the average values 

of the six images analysed for each subject. For both observers' values, the 

mean, standard deviation (SD) standard error of mean (SEM) and range were 

calculated. This was calculated for each nerve parameter. For each patient, the 

difference in values between the two observers was calculated and a T-test was 

carried out to test for significance. A p-value of <0.05 was considered a 

significant difference. A two-way, mixed-effects model intraclass correlation test 
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was conducted for absolute agreement. This was expressed as ICC and 95% 

confidence interval with values: <0.5, 0.5-0.75, 0.75-0.9, and >0.9 indicating 

poor, moderate, good, and excellent reliability, respectively (Table 7). Bland-

Altman plots were created to illustrate the level of agreement between the two 

observers (Figure 14).  

The inter-observer agreement results displayed in Table 7 and Figure 15 

demonstrate a good level of agreement between observers 1 and 2 for all nerve 

parameters with no significant differences found. ICC values indicate excellent 

agreement for all nerve parameters with small 95% confidence interval ranges. 

This good inter-observer agreement statistically confirmed that the investigator 

(myself) could accurately analyse CCM images when compared to the 

'reference' standard. 

 

    NFD NBD NFL TC 

Expert  

Mean 29.49 85.3 18.03 16.87 

±SD 6.98 29.56 3.59 4.69 

SEM 0.29 1.23 0.15 0.20 

Range 28.12 115.03 12.99 16.12 

       

Investigator 

Mean 29.14 82.43 18.60 17.30 

±SD 6.47 33.53 3.98 4.99 

SEM 0.27 1.40 0.17 0.21 

Range 25 137.5 15.01 20.06 

       

 Mean difference -0.35 2.87 -0.57 -0.43 

 p-value  0.63 0.138 0.085 0.418 

 ICC value  0.960 0.974 0.973 0.915 

 
Confidence 

Interval 
0.908-0.983 0.941-0.989 0.936-0.988 0.806-0.963 

 

 

Table 7: Inter-observer agreement of 24 patients using CCMetrics. Values for expert are 

considered the 'reference standard'. P-values calculated using a T-Test and all parameters 

demonstrate a non-significant difference between observers. 
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Figure 15: Bland-Altman plot of differences between observer 1 and observer 2's CCM 

analysis. NFD, NFL, NBD and TC agreement is represented in A, B, C and D respectively. The 

plots display difference between results from Observer 1 and Observer 2 (y-axis) vs. the mean 

of the two results (X-Axis). Each data point represents 1 of 24 patients analysed by both 

observers using CCMetrics. The solid line at the y-axis position represents the mean of all the 

differences between the two observers. The two dashed lines represent the 95% confidence 

intervals, calculated as 1.96 Standard deviations away from the mean value for upper and lower 

limits. 

 ii) Repeatability  
 

To assess the level of repeatability of my analyses using CCMetrics, 12 

subjects were chosen from the 49 subjects previously analysed. Three subjects 

were chosen from each of the four practices to represent each practice equally. 

For random selection, each subject was allocated a number from 1 to N for the 

subjects in each practice. N in this case was dependent on the number of 

subjects in the 'practise' dataset from each optometry practice. An online 

random number generator was used to choose 3 subjects from each practice to 

be analysed for repeatability. 

6 images per subject were analysed and mean values were calculated per 

subject on three separate occasions. The time period between each occasion 
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was 1-2 months to reduce the chance of good repeatability from memory of 

previous analysis. I stored each analysis results separately and remained 

blinded to the previous analysis results until all 3 analyses per patient were 

complete. 

Statistical analysis was performed in Microsoft Excel for Office 365 (Microsoft 

Corp, Seattle, WA, USA), and SPSS for Windows version 26 (SPSS Inc, 

Chicago, IL, USA). Repeatability analysis was carried out on the mean values 

from each subject. SD, SEM, range and Coefficient of Variation (CoV) were 

calculated for the 12 patients for analysis 1-3. These were calculated for each 

nerve parameter. The coefficient of variance F-value was calculated using 

SPSS in order to calculate any significance in results from the 3 analyses. A p-

value of <0.05 was considered a significant difference. A three-way, mixed-

effects model intraclass correlation test was conducted for absolute agreement 

between the 3 analyses for each subject. This was expressed as ICC and 95% 

confidence interval with values: <0.5, 0.5-0.75, 0.75-0.9, and >0.9 indicating 

poor, moderate, good, and excellent agreement, respectively (Table 8).  

All parameters demonstrated excellent agreement with small confidence 

intervals, which meant that I was consistent with my analysis of each of the 

patients and there was not a significant amount of variation when at different 

analyses. 
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    NFD NBD NFL TC TDev LC 

Analysis 
1 

Mean 22.396 64.496 15.996 0.171 18.133 29.774 

±SD 10.477 43.299 7.328 0.034 7.914 32.712 

SEM 0.146 0.601 0.102 0.000 0.115 0.454 

Range 50.000 162.499 32.298 0.136 42.037 
168.74

9 

  CoV  0.468 0.671 0.458 0.197 0.436 1.099 

        

Analysis 
2 

Mean 22.222 66.232 15.961 0.171 17.943 29.427 

±SD 10.110 44.413 7.280 0.032 7.446 33.245 

SEM 0.140 0.617 0.101 0.000 0.108 0.462 

Range 43.750 174.999 31.556 0.147 40.701 
168.74

9 

  CoV 0.455 0.671 0.456 0.189 0.415 1.130 

        

 Mean 22.309 66.319 15.876 0.181 17.938 28.559 

Analysis 
3 

±SD 10.279 44.708 7.121 0.036 7.355 32.935 

 SEM 0.145 0.621 0.099 0.001 0.107 0.457 

 Range  43.750 200.000 30.260 0.150 41.232 
168.74

9 

 CoV 0.460 0.674 0.448 0.199 0.410 1.153 

        

 ICC value  0.993 0.988 0.998 0.939 0.978 0.998 

 
Confidence 

Interval 
0.990-
0.995 

0.982-
0.992 

0.997-
0.999 

0.909-
0.961 

0.968-
0.986 

0.997-
0.999 

        

 
 

Table 8: Analysis of intra-observer repeatability. Results from 3 separate analyses of 12 

patients (72 images) using CCMetrics software.  
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4.11 Statistical Methodology 

 

A sample size of 400 patients with a 95% confidence interval of ±5%, was 

calculated to allow estimations of the proportions on study outcomes. This 

decision was made in consideration of equipment availability and the feasibility 

for the practices to recruit enough participants during the timeframe of the 

original NIHR study.  

For all analysis in the following section (Section 3. Results) statistical analysis 

was performed in Microsoft Excel for Office 365 (Microsoft Corp, Seattle, WA, 

USA), and SPSS for Windows version 26 (SPSS Inc, Chicago, IL, USA). When 

addressing each research aim, data were tested for normal distribution. If, for 

each parameter, data appeared be normally distributed then values are 

expressed as mean ± SD and parametric tests were used to check for 

significance. If data were not normally distributed, values were expressed using 

median with range and non-parametric tests were used.  

If any significant difference between the age distributions of any groups were 

significantly different, analysis of covariance (ANCOVA) was used to evaluate 

whether the values for the dependent variable were equal across ages and 

statistically controlling for the age effects to produce an adjusted p-value. 

For agreement analysis of automated vs semi-automated software, a two way, 

mixed-effects model intraclass correlation test was conducted for absolute 

agreement between the values for each patient/control. This was expressed as 

ICC and 95% confidence interval with values: <0.5, 0.5-0.75, 0.75-0.9, and >0.9 

indicating poor, moderate, good, and excellent agreement, respectively (Table 

8).  

To test if there was a correlation between nerve parameters and age, duration 

of diabetes and DNS score, spearman's correlation analysis was carried out on 

the diabetic cohort. This analysis produced an r value to demonstrate strong, 

weak or no correlation. A p-value was also produced to indicate if this 

correlation should be considered significant. 

For the following sections of this thesis, CCMetrics software will be referred to 

as manual analysis and ACCMetrics will be referred to as automated analysis. 

This is so that when presenting data, it is clear which is being discussed. 



84 

5. RESULTS  
 
This section presents the results of this study, addressing the aims set out in 

section 3.17. Details of the statistical methods used this section can be found in 

the methods chapter.  

5.1 Assessment of corneal CCM image quality obtained in primary care 

whilst considering the reasons for excluded cases. 

 

Before we could address the set out aims, we first had to assess whether the 

images from primary care were of acceptable quality for analysis.  

 i) Grading of CCM images by different examiners 
  

If CCM is to be introduced into primary care screening, then it is imperative that 

corneal images can be taken successfully by trained individuals, in this case 4 

optometrists, and that the images obtained are of satisfactory quality for 

analysis as assessed by the optometrists themselves, myself as investigator 

and a CCM expert (MT). Thus, we firstly assessed the number of patients 

categorised into one of four groups based on image quality. Only patients in the 

'excluded' group were excluded from further analysis. 

At the four participating optometry practices, each optometrist taking the CCM 

images graded image quality for the patients at their practice. For our analysis, 

we have grouped these optometrist's gradings together, and have represented 

them together as one examined represented by 'optometrist', to compare the 

whole dataset to the myself (the investigator) and the CCM expert. More 

detailed analysis of each optometrist's gradings can be found in the original 

NIHR report (Tavakoli et al., 2016). 

The majority of the 450 patients were graded as 'acceptable', by all three image 

assessors (optometrists = 238(52.9%), investigator= 303(67.3%) and expert = 

275 (61.1%) (Figure 15). The CCM expert graded more images as 'excellent' in 

comparison to the optometrist and investigator (optometrist = 116(25.8%), 

investigator=102(22.7%) and expert =142(32.7%)) (Figure 16 and Table 9). The 

'optometrist', representing the clinician obtaining the scans, graded significantly 

more images as 'poor' (optometrist =74(16.4%), investigator =22(4.9%) and 

expert=9(2%)). The assessors excluded a similar number of cases (optometrist 
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= 22 (4.9%), investigator=23((5.1%) and expert =24(5.3%)). When comparing 

the investigator and expert, 338 (75.3%) images were given the same grade 

(Table 1). For 107 (23.8%) of the images there was a one grade difference 

between the examiner and investigator. Seventy-four of these (16.5%) were 

graded higher by the expert and the remaining 33 (7.3%) were graded higher by 

the investigator. There was a two-grade difference in only 5 cases, whereby the 

expert had graded highest in all 4 cases. Twenty of the same cases were 

excluded by both assessors (Table 9). Three cases were excluded by the 

investigator and not the expert, and 4 cases were excluded by the expert and 

not the investigator. 

 

 

 

 

 
 
Figure 16:  The number of patients allocated different grades for image quality by the trained 

optometrists (blue), the investigator (green) and a CCM expert (red).  Data assessed from 450 

subjects. Images that were classed as 'Exclude' by the investigator (n=23) were not included in 

any further analysis. 
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  Investigator 

  
Exclude 
(n=23) 

Poor 
(n=22) 

Acceptable 
(n=303) 

Excellent 
(n=102) 

Expert  

Exclude(n=24) 20 4     

Poor(n=9)  5 4  

Acceptable 
(n=275) 

3 11 236 25 

Excellent (n=142)   2 63 77 

 

 

Table 9: Comparison between investigator and expert grading of each subject. Grey cells 

indicate agreement of image grade between each assessor (n=338). For 107 subjects there 

was a difference of 1 grade between assessors. For 5 patients there was a difference of 2 

grades. 

 ii) Reasons for Exclusion 
 

There were 4 main reasons for exclusion of the 23 cases by the investigator 

(Figure 17). Most patients (65.2%) were excluded as no images were available. 

This was due to unsuccessful scanning of these patients. For 1 patient, only 1 

image was available. Although this image was of reasonable quality, the patient 

was excluded as we were unable to obtain an average value for CCM results 

from just one image of one eye. For 1 patient, insufficient information was 

available regarding demographics and diabetic disease. For the remaining 6 

patients, the quality of images obtained was considered too poor for reliable 

analysis of the sub-basal nerve plexus. 
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Figure 17: The reasons for exclusion of patients by the investigator. Numbers represent the 

number of patients out of a total 23 patients excluded.  

 

5.2 Demographics and Clinical Information 
 

The demographics, relevant patient history, and clinical information for the 

patients and controls are summarised in Table 10. Of the 450 patients recruited 

for the study, 23(5.1%) were excluded, leaving 427 patients with DM for 

analysis. Most of the patients had T2DM (95%) with a small percentage having 

T1DM (4%), as expected from the prevalence of diabetes in the UK. For 1% of 

patients this information was not available (recorded as 'unknown'). The median 

duration of diabetes was 6 years (range 0.1-51). Patients with DM were 

significantly older than control subjects(p<0.001).The majority of patients with 

DM were white(81%), 15% were black, 3% south Asian, 1% mixed and for 1% 

information about ethnicity was not available (recorded as unknown).In the 

patient cohort, there was a higher percentage of males (61%) compared to the 

controls (52%). Seven percent of patients reported a history of diabetic 

neuropathy (DN) with 4% of the cohort reporting history of foot ulcer. For <1% 

of patients, the information was not available for DN or foot ulcer history 

(recorded as 'unknown'). The majority of patients (61%) scored 0 on the DNS 

for, by answering 'no' to experiencing all 4 symptoms as part of the 
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questionnaire. Seventeen percent of patients scored 1, 12% scored 2, 5% 

scored 3 and 5% scored 4, with 4 being the maximum scoring for the DNS.  

Most patients had no history of previous diabetic retinopathy (DR) (64%). Thirty-

four percent of patients had a history of previously recorded retinopathy and 2% 

had received previous retinal laser treatment. For 2% of patients, information 

regarding history of retinopathy was unavailable. On the day of the examination, 

most patients were graded as R0 (67%), and M0 (97%), meaning no detectable 

diabetic retinopathy or maculopathy respectively. Thirty-one percent of patients 

were graded as R1, indicating 'background' levels. One percent were graded as 

R2, or pre-proliferative retinopathy and 1% as R3, or proliferative retinopathy 

which both would have required onward referral to the hospital eye service. 
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Table 10: Summary of the characteristics of the diabetic cohort (Patients) and control subjects 

(Controls). Age and duration of DM are represented by median(range) due to a non-normal 

distribution. Retinopathy grading based on the ETDRS criteria: 0 = no retinopathy, 1= 

background, 2= pre-proliferative, 3=proliferative. Maculopathy grading: 0=no maculopathy 1= 

maculopathy. 'Unknown' represents patients for whom information was not available. Excluded 

cases were those with image quality that was deemed unacceptable, or there were < 2 images 

available for analysis. 

Characteristic  
Patients 
(N=427) 

Controls 
(N=40) 

p-value  

No.  450 40 - 

Excluded Cases 23 0 - 

Gender 
        Female 
        Male 

 
167 (39%) 
260 (61%) 

 
19 (48%) 
21 (52%) 

 
0.30 

Age, years 67.9 (21-93) 37.5 (19-83) <0.001 

Type of Diabetes 
        T1 
        T2 
        Unknown 

 

18 (4%) 
407 (95%) 

2 (1%) 

- - 

Duration of DM, years 6 (0.1-51) - - 

Ethnicity 
        White 
        Black 
        Asian 
        Mixed 
        Other/unknown 

 

347 (81%) 
65 (15%) 
12 (3%) 
2 (1%) 
3 (1%) 

- - 

History of DN 
        Y 
        N 
        Unknown 

 
28 (6.5%) 
397(93%) 
2(0.5%) 

  

History of Foot Ulcer 
        Y 
        N 
        Unknown 

 
16 (4%) 

410 (96%) 
1(<0.5%) 

  

History of Retinopathy 
        Y 
        N 
        Unknown 

 
146(34%) 
273(64%) 

8(2%) 

  

History of Laser Eye 
Treatment  
        Y 
        N 
        Unknown 

 
 

9(2%) 
417(98%) 
1(<0.5%) 

  

DNS Score  
        0 
        1 
        2 
        3 
        4 

 
262 (61%) 
73 (17%) 
49 (12%) 
21 (5%) 
22 (5%) 

- - 

Retinopathy Grading 
        R0 
        R1 
        R2 
        R3 

 

288 (67%) 
132 (31%) 

4 (1%) 
3 (1%) 

- - 

Maculopathy Grading 
        M0 
        M1 

 
414 (97%) 

13 (3%) 
- - 
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5.3 Comparison of corneal nerve data derived using manual and 

automated analysis of the same CCM images in patients with diabetes. 

 

In order to compare agreement between automated and manual corneal nerve 

analysis, values for CNFD, CNFL and CNBD for each method were assessed. 

Image quality grading of the investigator was used for each patient to explore 

the potential effect of image quality on agreement between methods. 

Table 11 : Comparison of automated and manually quantified measurements for CNFD, CNFL, 

and CNBD. Analysis conducted on diabetic cohort (n = 427).  Results reported as mean, 

standard deviation (SD) and standard error of the mean (SEM). Mean difference value 

represents the mean difference between results from each method. Mean % difference 

represents the average difference expressed as a percentage of the manual analysis result (i.e. 

if the manual CNFL result for a parameter was 20mm/mm2 and for automated software is was 

10mm/mm2 then the % difference would be 50% as the difference is 50% of the manual CNFL). 

Two-way mixed-models for ICC are shown with 95% confidence intervals and statistical 

significance reported to represent agreement between manual and automated software. All p-

values calculated with a paired samples T-test. Statistical significance determined by p ≤0.05.  

 i) Corneal Nerve Fibre Density  
 

For most of the patients examined (88.3%), a higher measurement for CNFD 

was obtained manually in comparison to the automated method (Figure 19A). 

Overall, the mean difference between the two measurements was 4.26 

   CNFD(no./mm2) CNFL(mm/mm2) CNBD(no./mm2) 

Manual  
Analysis 

Mean 25.83 19.35 77.3 

±SD 7.08 5.69 37.92 

SEM 0.34 0.28 1.83 

       

Automated 
Analysis 

Mean 21.57 13.62 30.96 

±SD 7.11 3.56 16.45 

SEM 0.34 0.17 0.79 

        

  Mean Difference 4.26 5.73 46.34 

 Mean % Difference 16.49 29.61 59.95 

 P-value <0.001 <0.001 <0.001 

 ICC 0.75 0.63 0.41 

 95% Confidence Interval  0.039-0.912 -0.183-0.876 -0.204 - 0.723 
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(no/mm2) and the mean percentage difference was 16.49%, with a mean higher 

value for manual analysis. ICC values gave moderate agreement (ICC=0.75) 

between the two measures, as defined by Koo et al (2016)(Koo and Li, 2016). 

However, confidence intervals for ICC values were broad. There was no 

correlation between mean CNFD number and the difference between the two 

measurements (Figure 19A).  

Remembering that all unacceptable images had been removed prior to 

analysis, there were only a small number of images which were judged as poor 

quality. These poor-quality images are shown as red dots on the graph below 

(Figure 19A). From these figures it seems that the images of poor quality 

tended to cluster in the group of images which had larger difference between 

the two measures, but they were not the only images with large differences 

between the two measures so some other factors –not identified here -must 

also contribute to the ability of the two methods to accurately replicate data.  

With the small numbers of poor images available in this study it was not 

possible to formally assess these effects. 

 ii) Corneal Nerve Fibre Length 
 

For most patients (97.0%), a higher measurement for CNFL was obtained 

manually in comparison to automated software (Figure 19B). Overall, the mean 

difference between the two measurements was 5.73(mm/mm2) and the mean 

percentage difference between the two measurements was 29.61% with overall 

higher mean for manual analysis. ICC values again gave moderate agreement 

(ICC =0.63)(Koo and Li, 2016) between the two measures, however confidence 

intervals for ICC values were broad (Table 11). There was modest positive 

correlation between mean CNFL and the difference between the two 

measurements (Figure 19B), indicating that the discrepancy between the 

methods becomes greater as the fibre length increases. 

Again, considering that all unacceptable images had been removed prior to 

analysis, with only a small number of images which were judged as poor quality. 

These poor-quality images are shown as red dots on the graph below (Figure 

18B). From this figure it appears that a higher percentage of the poor-quality 

images tended to fall in the group of images which were determined as having 

longer CNFL with automated analysis (difference <0). However, images graded 
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as 'poor' were not the only images for which automated analysis determined a 

larger CNFL (Figure 18), so some other factors –not identified here -must also 

contribute to this difference. Again, with the small numbers of poor images 

available in this study it was not possible to formally assess these effects. 

     iii) Corneal Nerve Branch Density  
 

Overall, the mean difference between the two methods was 46.34 (no/mm2) and 

the mean percentage difference was 59.95%, making CNBD the parameter with 

the largest % disagreement between the two methods. ICC values gave poor 

agreement (ICC=0.41) between the two methods and confidence intervals for 

ICC values were broad (Table 11). There was modest positive correlation 

between mean CNBD and the difference between the two measurements 

(Figure 19C). 

There appears to be no effect of image quality grade on the agreement 

between the two measures (Figure 19C). As with the CNFD and CNFL, poor-

quality images are shown as red dots on the graph below (Figure 18C), but with 

the small numbers of poor images available in this study it was not possible to 

formally assess these effects of image grading on agreement of CNBD. 

The published normative age-related CCM values by Tavakoli and colleagues 

(Tavakoli et al., 2015) were determined using manual CCM software, thus in 

order to compare the current data with these normative values, manual analysis 

will need to be used. The results presented here in section 3.2 have shown a 

general underestimation of CCM parameters when using automated software, 

the subsequent sections of my thesis will initially compare the data outcomes 

using both manual and automated analyses but more detailed statistical 

analysis of the data will concentrate on the data obtained by manual analysis. 
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Figure 18: Images representing manual (B,E,H and K) and automated (C,D,I and L) analysis of 

CCM images, whereby automated analysis gave outputs for longer CNFL in comparison to 

manual results. A, D, G and J represent the original images. A and D represent images graded 

as 'poor' quality. G and J represent images graded as 'acceptable' quality). Main nerve fibres, 

nerve branches and main branch start, and end points are denoted with red lines, blue lines and 

green circles, respectively. 

Original Image  Manual Analysis Automated Analysis 

A B C 

D E F 

G I 

J K L 

H 
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Figure 19: Comparison of automated vs manual (semi-automated) analysis of CNFD (A), CNFL 

(B) and CNBD (C) using Bland-Altman plots. X-axis of each plot represents the mean 

measurement between the two methods of analysis for each subject. Y-axis represents the 

difference in values between the two methods for each subject, calculated by (manual value - 

automated value) for each patient. Data from diabetic cohort used in analysis (n=427). Solid line 

represents the mean difference between the two methods. Dashed lines represent +/- (1.96 x 

2SD). Red, blue and green markers represent images graded as poor, acceptable and excellent 

by the investigator, respectively. 

5.4 The Effect of Age on CCM Parameters 
 

Overall, there was a significant negative age-related correlation with manually 

derived CNFD, CNFL and CNBD (p<0.001 for all 3) (Table 12). Similarly, there 

was a significant negative correlation between age and all three parameters 

measured using automated software (p<0.01 for CNFL and CNFD, p=0.002 for 

CNBD). The only other parameter with a significant negative correlation to age 

was corneal total branch density (CTBD) derived using automated software. 

There was no correlation of tortuosity (using either coefficient), LCs density, 

corneal nerve fibre width (CNFW) and corneal nerve fibre area (CNFA) with 

age. 

 

 

C 



96 

Statistic   Age (Years) Diabetes Duration (Years) DNS Score 

    n Rs p-value Rs p-value Rs p-value 

CNFD Manual 427 -0.26 <0.001 -0.14 0.003 -0.02 0.80 

(no/mm2) Automated  427 -0.27 <0.001 -0.167 0.001 0.02 0.70 

CNBD Manual 427 -0.2 <0.001 -0.16 0.001 0.007 0.80 

(no./mm2) Automated 427 -0.15 0.002 -0.1 0.04 0.03 0.50 

CNFL Manual 427 -0.24 <0.001 -0.13 0.008 0.003 >0.90 

(mm/mm2) Automated 427 -0.2 <0.001 -0.14 0.004 -0.02 0.70 

TC (0-1) 427 0.07 0.10 0.1 0.04 0.001 >0.90 

 (0-20) 427 0.07 0.20 0.06 0.20 0.1 0.04 

LCs Density (no./mm2)  427 0.09 0.06 -0.009 0.90 -0.08 0.10 

CTBD 

(no./mm2 ) 
  427 -0.12 0.02 -0.08 0.10 -0.005 0.90 

CNFA 

(mm2/mm2) 
  427 0.002 >0.90 -0.03 0.60 0.02 0.70 

CNFW 

(mm/mm2)  426 0.02 0.70 -0.002 >0.90 0.02 0.70 

 

Table 12: Spearman’s correlation (Rs) and statistical significance (p-value) of manual and 

automated CCM image analysis with age,  disease duration and DNS score.  Data analysed 

from patient cohort and included patients with T1 and T2 DM.  Significant correlations are 

highlighted in red.  

5.5 Prevalence of DPN in a cohort of people with diabetes, as defined by 

CCM parameters, compared to age-corrected control subjects. 

 

 i) Comparison of CCM parameters in patients with diabetes  

    compared to controls 

 

In order to assess whether there were any significant corneal nerve changes 

that may be related to diabetes, the results for CCM parameters from the 

patient and control groups were compared. 

Corneal nerve fibre density (CNFD) was significantly lower in patients with 

diabetes compared to control subjects for both manual (p<0.001) and 
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automated (p<0.001) analysis methods (Table 13). Similarly, corneal neve fibre 

length (CNFL) (p<0.001 for both methods) and corneal nerve branch density 

(p<0.001 and p=0.01 for manual and automated respectively) were both 

significantly lower in patients with diabetes (Table 13). Tortuosity of the main 

nerve fibres, determined using manual analysis, was significantly higher in 

patients with diabetes vs control subjects, when using both tortuosity coefficient 

(TC) values (p<0.001 for both) (Table 13). Langerhans cells were detected in 

97.7% of patients with diabetes compared to 87.5% of control subjects, 

however this difference was not statistically significant (p=0.06) and there was 

no significant difference in LC density between the two groups (p=0.91). 

 

CCM Parameter  Patients 
(N=427) 

Controls 
(N=40) p-value  

CNFD (no./mm²) 
        Manual 
        Automated 

 
25.84 ± 7.08  
21.6 ± 7.10 

 
33.90 ± 6.27 
26.26 ± 6.71 

 

<0.001 
<0.001 

CNFL (mm/mm²) 
        Manual 
        Automated 

 
19.37 ± 5.68 
13.62 ± 3.55 

 
25.08 ± 4.79 
16.66 ± 2.76 

 
<0.001 
<0.001 

CNBD (no./mm²) 
        Manual 
        Automated  

 
75.00(0-212.50) 
29.16(0-82.29) 

 
113.54(12.50-252.08) 

37.50(8.33-89,58) 

 
<0.001 

0.01 

TC (0-1) 0.20(0.12-0.26) 0.17(0.13-0.22) <0.001 

TC (0-20) 16.90(9.60-24.02) 14.91(8.18-32.66) <0.001 

CNFW (mm/mm²) 0.21(0.02-0.03) 0.21(0.02-0.03) 0.60 

CNFA (mm²/mm²) 0.006(0.00-0.01) 0.007(0.00-0.01) <0.001 

CTBD (no./mm²) 46.87(0-138.5) 59.89(15.62-117.20) 0.005 

LCs Presence 
        Y 
        N 

 
417(97.7%) 

10(2.3%) 

 
35(87.5%) 
5(12.5%) 

 
0.06 

LCs Density (no./mm²) 22.92(8.18-32.66) 19.27(0-391.70) 0.90 

 

Table 13: Summary of CCM parameters calculated using manual and automated methods. 

Results are for the cohort with diabetes (Patients) and the control group (Controls). Values for 

CNFD and CNFL are represented by the mean (±SD) and p-values were calculated using an 

unpaired t-test due to a normal distribution. LC presence is represented by the number of 'yes' 

or 'no' results for each cohort. All other parameters are represented by the median(range), with 

Mann-Whitney U-test used to calculate p-value, due to a non-normal distribution. 
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  ii) Comparison of CCM parameters in patients with diabetes   

  compared to controls - age adjusted analysis 

 

It is clear from table 2 that the control group, although well matched for gender 

was significantly younger than the patient group. In order to assess whether the 

differences observed above in section 5.4i) were due to age differences rather 

than diabetes, the analyses were repeated with adjustment for age as a 

confounder. After adjusting for age, using analysis of covariance (ANCOVA), 

the manually derived parameters; CNFD(p<0.001), CNFL(p=0.001), 

CNBD(p<0.001) and TC  (P=0.04) continued to demonstrate a significant 

difference between the patient cohort and control subjects (Table 14). LC 

density was not significantly different between the two groups with (p=0.09) or 

without (p=0.01) adjustment for age difference. 

 

  N Age 
(years) 

CNFD 
(no/mm2) 

CNFL 
(mm/mm2) 

CNBD 
(no/mm2) TC (0-20) LC Density 

(no/mm2) 

Controls 40 37.5 
(19-83) 

33.90 ± 
4.79 

25.08 ± 
4.79 

113.54 
(12.5--252.08) 

14.9 
(8.18-32.66) 

19.27 
(0-391.70) 

Patients 427 67.9 
(21-93) 

25.84 ± 
7.08  

19.37 ± 
5.68 75(0-212.50) 16.9 

(9.60-24.02) 
22.92 

(8.18-32.66) 

p-value - <0.001 <0.001 <0.001 <0.001 <0.001 0.90 

Adjusted  
p-value - - <0.001 0.001 <0.001 0.04 0.09 

 

Table 14: Comparison of manually derived nerve parameters between control subjects 

(Controls) and cohort with diabetes (Patients). N represents the number of subjects in each 

group. For CNFL and CNFD the mean ± SD is given, and an unpaired t-test was used to test 

significance, due to a normal distribution of data. Median values are given for all other 

parameters with Mann-Whitney U test used to test significance. Data shows a significant 

difference between the average age of the groups, therefore an adjusted p-value calculated for 

each nerve parameter using analysis of covariance. After adjustment all parameters, except LC 

density demonstrated a significant difference between the two groups. 
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 iii) Comparison of CCM parameters in patients compared to 

 normative published values 

 

Section 5.4 presents the comparison between the CCM data in patients with 

diabetes and a smaller, younger group of individuals without diabetes collected 

by the same investigators. An alternative opportunity to assess whether the 

patients' data differ to those expected in healthy individuals arises from the 

publication of an age-segregated normative range by an international 

consortium in six different countries in 2015 (Tavakoli et al., 2015).   

Tables 15 and 16 display the median values for the male and female subjects 

with diabetes, separated into 6 groups, based on age at the point of 

examination. Data are presented for manually derived CNFD and CNFL only, 

compared to the published normative median values for each age group. All 

age groups in the cohort of male individuals with diabetes demonstrate a 

median value for CNFL less than that of the normative published data (values 

shown in red) (Table 15). This was also true for all but one of the age groups in 

the female cohort (Table 16), where the median of the 56-65 age group was 

0.57mm/mm2 higher than that of the published normative median.   

For both male and female patient groups, the median CNFD was lower than the 

normative published median CNFD for the three youngest age groups; 16-25, 

26-35 and 36-45. In contrast, the median CNFD was higher than the normative 

published median CNFD for males and females in the three oldest age groups; 

46-55, 56-65 and over 65.  

Age-corrected values at which CNFL may be considered abnormal have 

previously been published (Tavakoli et al., 2015). When compared to these 

values, 35 (13.46%) of males in the patient cohort were below the CNFL cut-off, 

that is abnormally low (Table 9). Of these 35 males, 2 had T1DM and 33 had 

T2DM. Overall, 20% of males with T1DM and 13.25% of males with T2DM were 

classed as being abnormal using CNFL alone (Table 17). 

For females, overall, a lower percentage were classified as abnormal in 

comparison to the males. Twenty (11.98%) were below the CNFL cut-off. Of 

these 20 females, 2 had type 1 diabetes and 18 had type 2 diabetes. Overall, 
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25% of patients with T1DM and 11.39% with T2DM were classed as being 

abnormal (Table 18). 

        

Table 15: Male Data. Comparison of 2 corneal nerve parameters (CNFD and CNFL) with age-

matched published normative values (Tavakoli et al., 2015). 'Cohort Median' represents the 

median value for the males in each age group of the patient cohort (n=260)..'Normative Median' 

represents the published median values for males in each age group (Tavakoli et al., 2015). 

The difference between the normative and cohort medians were calculated as (Normative 

median - Cohort median). Positive values are represented in red whereas negative values are 

shown in black.(* unable to calculate median as n=1) 

 

 

 

 

 

 

 

 

 

Table 16: Female Data. Comparison of 2 manually derived corneal nerve parameters (CNFD 

and CNFL) with age-matched published normative values (Tavakoli et al., 2015). 'Cohort 

Median' represents the median value for the females in each age group of the patient cohort 

(n=167). 'Normative Median' represents the published median values for females in each age 

group (Tavakoli et al., 2015). The difference between the normative and cohort medians were 

calculated as (Normative median - Cohort median). Positive values are represented in red 

whereas negative values are shown in black. (* unable to calculate median as n=1) 

    CNFD CNFL 

Age  n 
Cohort 
Median 

Normative  
Median 

Difference  
Cohort 
Median 

Normative 
Median 

Difference 

16-25 2 22.40 31.85 9.45 16.07 26.43 10.36 

26-35 1* 20.83 30.20 9.37 13.24 25.45 12.21 

36-45 5 26.04 28.56 2.52 21.84 24.37 2.53 

46-55 29 30.21 26.91 -3.3 21.87 23.28 1.41 

56-65 36 27.08 25.27 -1.81 22.77 22.20 -0.57 

>65 94 23.96 23.54 -0.42 18.86 21.11 2.25 

Total 167        
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MALES n 
CNFL Cut-off 

Value 
(mm/mm2) 

< CNFL Cut-off 
(no) 

< CNFL Cut-
off (%) 

16-25 1 15.93 0 0 

25-35 3 14.05 1 33.33 

36-45 9 13.2 1 11.11 

46-55 26 13.01 3 11.54 

55-65 66 13.12 7 10.61 

>65 155 13.15 23 14.84 

Type of Diabetes 
                1 
                2 
                Unknown 

 
 10 
249 

1 - 

2 
33 
0 

20% 
13.25% 

0% 

Total 260 - 35 13.46%  

Table 17: Classification of males within the patient cohort as having pathological CNFL length, 

that is less than the suggested cut-off value. Subjects were classified based on their age group. 

The manual CNFL value for each subject was compared to published cut-off values (Tavakoli et 

al., 2015) (0.05th quantile of normative database). 'n' represents the number of male subjects 

within each age group. The number and % of subjects classified as having pathological CNFL is 

given for each age group as well as overall for males. 

FEMALES n 
CNFL Cut-off 

Value 
(mm/mm2) 

< CNFL Cut-off 
(no) 

< CNFL Cut-off 
(%) 

16-25 2 15.08 1 50.00 

25-35 1 13.17 0 0.00 

36-45 5 12.48 1 20.00 

46-55 29 12.48 1 3.45 

55-65 36 12.9 3 8.33 

>65 94 13.67 14 14.89 

Type of Diabetes 
                1 
                2 
                Unknown 

8 
158 

1 

- 
2 

18 
0 

25% 
11.39% 

0% 

Total 167 - 20  11.98% 

Table 18: Classification of females within the diabetic cohort as having pathological CNFL. 

Subjects were classified based on their age group. The manual CNFL value for each subject 

was compared to published cut-off values (Tavakoli et al., 2015) (0.05th quantile of normative 

database). 'n' represents the number of female subjects within each age group. The number 

and % of subjects classified as having pathological CNFL is given for each age group as well as 

overall for females. 
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5.6 CCM parameters of patients with diabetes, diagnosed ≤ 2 years, 

compared to healthy control subjects. 

 

In order to assess whether there may be any corneal nerve changes early in the 

course of diabetes, a group of patients within the cohort who were diagnosed 

with diabetes ≤ 2 years ago were compared with the control cohort. 

When comparing the group of patients with ≤ 2 years duration of diabetes (2 

T1DM and 98 T2DM) to the control subjects (n=40), the patients were 

significantly older (p<0.001) (Table 19). The percentage of males and females 

in each group did not differ significantly (p=0.09). After adjustment for age 

difference, the manual CNFL of the patient group, in comparison to the control 

subjects, was significantly lower (p<0.001). Overall, 9.18% of patients with short 

duration of disease were classified as below the age-corrected published cut-off 

point for CNFL (Tavakoli et al., 2015) and would have been considered 

abnormal for this parameter alone. Similarly, the patient group had significantly 

lower CNFD (p=0.01) and CNBD (p<0.001). Values for tortuosity and LCs 

density were higher in patients compared to controls, however the differences 

between the 2 groups were not significant (p=0.50 and 0.49 for TC and LCs 

density respectively) (Table 19).  

Due to the very small number of patients with T1DM (n=2), the patients with 

T2DM were also considered alone, for this group of patients (n=98). When 

testing without the patients with T1DM, there was no change to the results 

showing significant differences in CNFD (p=0.01), CNFL(p=0.01), 

CNBD(p<0.001), compared to controls but no significant differences in TC 

(p=0.70) or LC density (p=0.61). 
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  Controls ≤ 2 Years DM p-value Adjusted p-value 

n 40 100 - - 

Age (years) 37.5 (19-83) 60.85(21-89) <0.001 - 

Type of Diabetes 
        1 
        2 
        Unknown 

- 
2 

98 
0 

- - 

Gender 
        F 
        M 

19(48%) 
21(52%) 

40(40%) 
60(60%) 

 
0.09 

- 

Ethnicity 
        White 
        Black 
        Asian 
        Mixed 
        Other  

- 

81(81%) 
15(15%) 

3(3%) 
1(1%) 

0 

- - 

DNS Score 
        0 
        1 
        2 
        3 
        4 

- 

73(73% 
13(13%) 

7(7%) 
3(3% 
4(4%) 

- - 

Retinopathy Grade 
        R0 
        R1 
        R2 
        R3 

- 
78 (78%) 
22(22%) 

0 
0 

- - 

Maculopathy Grade 
       M0 
       M1 

  97(97%) 
3(3%) 

- - 

CNFD (no/mm2) 33.90 ± 4.79 27.74 ± 6.93 <0.001 0.01 

CNFL (mm/mm2) 25.08 ± 4.79 20.79±5.40 <0.001 0.004 

CNBD (no/mm2) 
113.54(12.50-

252.08) 
79.17(6.25-

194.79) 
<0.001 <0.001 

TC (0-20) 
14.91(9.60-

25.02) 
16.42(10.86-

31.33) 
0.01 0.50 

LCs Density 
(no/mm2) 

19.27(0-391.66) 28.85(0-225) 0.60 0.50 

Table 19: Comparison of manually derived nerve parameters between control subjects and 

patient group with DM of duration ≤ 2 years. N represents the number of subjects in each group. 

Retinopathy grading based on the ETDRS criteria: 0 = no retinopathy, 1= background, 2= pre-

proliferative, 3=proliferative. Maculopathy grading: 0=no maculopathy 1= maculopathy. For 

CNFL, Age and CNFD the mean ± SD is given, and an unpaired t-test was used to test 

significance, due to a normal distribution of data. Median values are given for all other 

parameters with Mann-Whitney U test used to test significance. Data show a significant 

difference between the average age of the two groups; therefore, an adjusted p-value was 

calculated for each nerve parameter using analysis of covariance. CNFL and CNBD 

demonstrated a significant difference between the two groups. When adjusted for age-

difference, CNFD, TC and LCs density were not significantly different. 
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5.7 Comparison of CCM parameters in patients with different duration 

since diagnosis of diabetes. 

 

Section 5.6 shows that within the first two years of diabetic life, abnormalities in 

CCM parameter can be demonstrated. In this section, we assessed whether 

there are significant differences in CCM parameters between patients based on 

the time since their diabetes diagnosis. In section 5.4, Table 12 demonstrates 

an overall significant correlation between CNFD, CNFL, and CNBD with disease 

duration, when analysed using both manual and automated software. The 

tortuosity, measured using the TC 0-1 parameter, was significantly positively 

correlated with disease duration. Langerhans cells (LCs) and three parameters 

measured only using automated software (CTBD, CNFA, CNFW) all showed no 

significant correlation with diabetes duration. It must however be noted that age 

differences between the patients was not adjusted for when calculating 

correlation in Table 12. 

In order to explore this further and to assess if increased duration of diabetes 

increase the risk of corneal nerve degeneration, the patient cohort was split into 

groups depending on duration of diabetes. Due to the small number of patients 

with T1 diabetes (n=18) and considering the difference in disease aetiology 

between the two types, patients with T1DM were excluded for this section and 

focus was placed solely on the effect of duration of diabetes on the cohort with 

T2 diabetes (n=408). 

When split into 5 groups, according to disease duration, a significant difference 

in age was found, with a significant trend in older age relating to longer disease 

duration (p<0.001) (Table 20). After adjustment for age differences, patients 

demonstrated no significant difference in CNFD, CNFL, CNBD, Tortuosity 

(Figures 20 and 21) or LCs density (p=0.47) between the 5 groups. This 

indicates that in this cohort, none of these parameters changed significantly in 

relation to diabetes duration. The percentage of patients falling below the 

normative published cut-off value were similar across the middle three duration 

groups (12.05-13.74%) (Table 20). The group with the shortest duration had a 

smaller percentage of patients falling below the cut-off value (9.18%) and the 

group with the longest duration of diabetes (>20 years) had the highest 
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percentage of patients falling below the cut-off value (15.38%) however this 

difference was not significant (p=0.47). 

 

  ≤ 2 Years 2-5 Years 5-10 Years 10-20 Years >20 Years p-value 

n 98 83 131 82 13 - 

 
Age (years) 60.85(21-89) 

 
63.30(34-87) 

 
69.10(45-92) 

 
72.45(46-93) 

 
77.20(57-86) 

 
<0.001 

Gender 
        F 
        M 

39(40%) 
59(60%) 

32(39%) 
51(61%) 

53(40%) 
78(60%) 

27(33%) 
55(67%) 

7(54%) 
6(46%) 

  

Ethnicity 
        White  
        Black 
        Asian 
        Mixed 
        Other 

 
79(81%) 
15(15%) 

3(3%) 
1(1%) 

0 

65(78%) 
15(18%) 

3(4%) 
0 
0 

110(84%) 
16(12%) 
2(1.5%) 
1(1%) 

2(1.5%) 

65(79%) 
13(16%) 

4(5%) 
0 
0 

9(69%) 
4(31%) 

0 
0 
0 

- 

DNS Score 
        0 
        1 
        2 
        3 
        4 

71(72.5%) 
13 (13.5%) 

7(7%) 
3(3%) 
4(4%) 

51(61.5%) 
12(14.5%) 

6(7%) 
10(12%) 

4(5%) 

70(53.5%) 
29(22.5%) 
20(15%) 

3(2%) 
9(7%) 

45(55%) 
15(18%) 
13(16%) 

4(5%) 
5(6%) 

9(69%) 
1(8%) 

2(15%) 
1(8%) 

0 

- 

Retinopathy 
Grade 
        R0 
        R1 
        R2 
        R3 

78(80%) 
20(20%) 

0 
0 

63(76%) 
20(24%) 

0 
0 

94(72%) 
36(27%) 

1(1%) 
0 

41(50%) 
39(48%) 

2(2%) 
0 

5(38%) 
7(54%) 

0 
1(8%) 

- 

Maculopathy 
Grade 
       M0 
       M1 

 
 

95(97%) 
3(3%) 

82(99%) 
1(1%) 

130(99%) 
1(1%) 

77(94%) 
5(6%) 

11(85%) 
2(15%) 

- 

No of patients < 
CNFL cut-off 9(9.18%) 10(12.05%) 18(13.74%) 11(12.20%) 2(15.38%)  

 

Table 20: Summary of the known characteristics and clinical grading information for patients 

with T2DM, split into 5 age groups and control subjects (Controls). Age is represented by 

median(range) due to a non-normal distribution. Retinopathy grading: 0 = no retinopathy, 1= 

background, 2= pre-proliferative, 3=proliferative. Maculopathy grading: 0=no maculopathy 1= 

maculopathy. See methods section for detailed grading characteristics. 'Unknown' represents 

patients for which information was not available. Number of patients <cut-off was calculated 

using published age-corrected values (Tavakoli et al., 2015) 
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Figure 20: Comparison of manual CNFD (A) and CNFL (B) across 5 groups, allocated 

depending on duration since diagnosis of diabetes (years). Central marker represents the mean 

value for each group. Error bars represent +/- 2SD. For the 5 duration groups, n=100 for ≤2 

years, n=85 for 2-5 years, n=135 for 5-10 years, n=90 and n=17 for >20 years. *The p-value 

calculated using ANOVA, and was adjusted for the effect of the significant difference in age 

between the groups 

*p=0.54 

*p=0.08 

A 

B 
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Figure 21: Comparison of CNBD (A) and TC (B) across 5 groups, allocated depending on 

duration of diabetes (years). Central line represents the median value for each group. Coloured 

area represents the interquartile range (IQR) Error bars represent Q1-IQR and Q3+IQR. For the 

5 duration groups, n=100 for ≤2 years, n=85 for 2-5 years, n=135 for 5-10 years, n=90 and 

n=17 for >20 years.  17. Outliers are plotted as white circles with a black border. *p-value 

calculated using Krystal-Wallis ANOVA and was adjusted for the effect of the significant 

difference in age between the groups. 

 

 

B 

*p=0.50 

*p=0.20 

A 
A 



108 

 

5.8 CCM parameters in patients with no clinical levels of diabetic 

retinopathy, compared to healthy control subjects. 

 

According to the ETDRS Grading of diabetic retinopathy (Solomon and 

Goldberg, 2019) R0 and M0 represent no detectable retinopathy and 

maculopathy, respectively on screening for retinopathy. Therefore, the group of 

patients meeting these criteria were compared to the control patients in order to 

assess if any corneal nerve parameters were significantly altered prior to 

detectable retinopathy. 

 

In comparison to controls, patients were significantly older (Table 21) (p<0.001). 

The patient group consisted of mainly patients with T2DM (97.5%), with no 

significant difference between the number of males/females between the two 

groups (p=0.26). Most of the patient group had a DNS score of 0 (65%), with 

35% of patients scoring positively on the DNS scale for symptoms of 

neuropathy (Score 1-4).After age adjustment, CNFD (p<0.001) and CNBD 

(p=0.001) were both significantly lower in the patient group. Similarly, CNFL 

was significantly lower in the patient group (p=0.01) when compared to control 

subjects. Based on CNFL length alone, 11.89% of patients were below the age-

dependent published cut-off point, suggesting that 11.89% of patients with no 

evidence of retinopathy may have significant corneal nerve fibre length 

reduction.LC density and tortuosity were higher in the patient cohort, however 

when age adjusted, this difference was significant for LC density only (p=0.03). 
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  Controls 
Retinopathy Grade 

0 
p-value 

Adjusted p-
value 

n 40 286 - - 

Age (years) 
37.5 (19-83) 

 
60.85(21-89) 

 
<0.001 

- 

Type of 
Diabetes 
        1 
        2 
        Unknown 

- 5(1.5%) 
279(97.5%) 

2(1%) 

- - 

Duration of 
DM(Years) 

- 6(0.10-51) - - 

Gender 
        F 
        M 

19(48%) 
21(52%) 

109(38%) 
177(62%) 

 
0.30 

 
- 

DNS Score 0 
11111 
22222 
33333 
44444 

- 

185(65%) 
44(15%) 
30(10%) 
13(5%) 
14(5%) 

- - 

CNFD (no/mm2) 33.90 ± 4.79 26.18 ± 7.03 <0.001 0.01 

CNFL 
(mm/mm2) 

25.08 ± 4.79 19.7 ± 5.65 <0.001 0.02 

No. Patients  
<CNFL Cut-off 
        T1DM 
        T2DM 

    Unknown  
 TOTAL 

- 

 
 

1 (20%) 
33(11.74%) 

0 
11.89% 

- - 

CNBD (no/mm2) 113.54(12.50-252.08) 77.08 (0-212.50) <0.001 0.001 

TC (0-20) 14.91(9.60-25.02) 16.77 (0.13-31.33) <0.001 0.20 

LCs Density 
(no/mm2) 

19.27(0-391.66) 22.92 (0-225) 0.90 0.03 

     

Table 21: Comparison of manually derived nerve parameters between control subjects and 

patient group with diabetic retinopathy grade 0. N represents the number of subjects in each 

group. For CNFL, Age and CNFD the mean ± SD is given, and an unpaired t-test was used to 

test significance, due to a normal distribution of data. Median values are given for all other 

parameters with Mann-Whitney U test used to test significance. Data shows a significant 

difference between the average age of the two groups; therefore, an adjusted p-value was also 

calculated for each nerve parameter using analysis of covariance. After adjustment, TC was the 

only parameter that did not demonstrate a significant difference between the two groups 
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5.9 CCM parameters in patients with increasing grades of retinopathy 

from none to proliferative 
 

As there were significant alterations in some nerve parameters observed prior 

to retinopathy, next, in order to assess if CCM parameter abnormalities 

increased retinopathy grade, the patient cohort was split into groups depending 

on this. 

The median age of patients decreased from groups R0-R3, however there was 

no significant difference between the 4 groups overall (p=0.49), with no 

significant difference in number of male/female (p=0.46). Interestingly, the 

percentage of T1DM patients in each group increased with increasing grade of 

retinopathy (Table 22) (p<0.001). This was also the case for duration of 

diabetes, with a significant increase in duration correlating with increasing 

retinopathy (p<0.001) as expected. There was no obvious trend in DNS score 

between the groups, however when comparing looking at the number of 

patients scoring 0 on the DNS score, there were higher percentage of patients 

in the R0 group (64.5%) in comparison to R1 (55%) and R2 (50%). For R3 this 

increased to 100% scoring 0 on the scoring system. There was a significant 

difference in the maculopathy gradings between the 4 groups, with the 

percentage of patients with M1 increasing from between retinopathy grades R0-

R2 however, for the R3 group, 0 patients had any maculopathy.  

 

There was a significant difference in CNFD across the four groups (ANOVA 

p=0.002). When testing the significance between the groups, paired, significant 

differences were only found when comparing the R3 group with the R0 and R1 

groups, R3 having significantly lower CNFD in comparison to groups R0 and R1 

(p<0.001 for both). When compared pairwise, groups R0-R2 show no significant 

difference, with only a very small decrease in mean values (R0 vs R1 p=0.37, 

R0 vs R2 p=0.40, R1 vs R2 p=0.60) Similarly, CNFL demonstrated this trend 

(Figure 22B). There was an overall significant difference between the groups 

(ANOVA p=0.004) when compared to control subjects. Across groups R0-R2 

there was only a small, non-significant decrease in CNFL(R0 vs R1 p=0.19, R0 

vs R2 p=0.59 R1 vs R2 p=0.77) mean length, with R3 being significantly shorter 

than the first three groups (R0 vs R3 p= 0.04, R1 vs R3 p= 0.04, R2 vs R3 

p=0.04). When assessing against the published, age-corrected cut off point for 
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each group, 11.81% of patients with R0 fell below the cut-off point, this 

increased to 13.64% in the R1 group and 100% in the R3 group, however none 

of the R2 group fell below the cut-off point.  

 

CNBD followed the same trend as CNFL and CNFD (Figure 23A). There was an 

overall significant difference across the groups (ANOVA p=0.03) when 

compared to control subjects. Groups R0-R2 demonstrated only a small, non-

significant decrease in CNBD (R0 vs R1 p=0.14, R0 vs R2 p=0.21 R1 vs R2 

p=0.33) with R3 being having significantly lower density than the first two 

groups (R0 vs R3 p=0.02, R1 vs R3 p= 0.03. There was no significant 

difference between groups R2 and R3 (p=0.48). For tortuosity there was no 

overall significant difference between the groups (Figure 23B) (ANOVA p=0.42) 
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Retinopathy Grade 

         
R0 R1 R2 R3 p-value 

n 288 132 4 3 - 

Age (years) 68.35(23-92) 67.50(21-93) 65.90(30-69) 50.40(41-77) 0.50 

Type of DM 
        T1 
        T2 
        Unknown 

5(2%) 
281(97.5%) 

2 (0.5%) 

10(7.5%) 
122(92.5%) 

0 

1(25%) 
3(75%) 

0 

2 (66.5%) 
1(33.5%) 

0 

  

Duration of DM 6(0.10-51) 9(0.20-35) 14(6-20) 21(11-35) <0.001 

Gender 
        F 
        M 

109(38%) 
179(62%) 

54(41%) 
78(59%) 

3(75%) 
1(25%) 

1(33.5%) 
2(66.5%) 

 
0.50 

Ethnicity 
        White 
        Black 
        Asian 
        Mixed 
        Other 

233(81%) 
42(14.5%) 

9(3%) 
2(0.5%) 
2(0.5%) 

106(80.5%) 
23(17.5%) 

3(2%) 
0 
0 

4 (100%) 
0 
0 
0 
0 

3 (100%) 
0 
0 
0 
0 

0.70 

DNS Score 
        0 
        1 
        2 
        3 
        4 

186(64.5%) 
44(15%) 

30(10.5%) 
14(5%) 
14(5%) 

72(55%) 
29(22%) 

18(13.5%) 
7(5%) 

6(4.5%) 

2(50%) 
0 
0 
0 

2(50%) 

2(66.5%) 
0 

1(33.5%) 
0 
0 

0.20 

Maculopathy Grade 
       M0 
       M1 

286(99.5%) 
2(0.5%) 

125(94.5%) 
7(5.5%) 

0 
4(100%) 

3(100%) 
0 

<0.001 

No of patients < 
CNFL cut-off  

34(11.81%) 18(13.64%) 0 3(100%) 
 

      

Table 22: Summary of the known characteristics and clinical grading information for patients, 

assorted into 4 groups, based on retinopathy grade, as well as controls. Age and duration of DM 

are represented by median(range) due to a non-normal distribution. Retinopathy grading: 0 = no 

retinopathy, 1= background, 2= pre-proliferative, 3=proliferative. Maculopathy grading: 0=no 

maculopathy 1= maculopathy. See methods section for detailed grading characteristics. 

'Unknown' represents patients for which information was not available. The number of patients 

below cut-off was calculated using published age-corrected values (Tavakoli et al., 2015) 
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Figure 22:  Comparison of CNFD (A) and CNFL (B) across 4 groups, allocated depending on 

grade of retinopathy. Error bars represent ± 1 SD from the mean value. Both graphs show a 

subtle decrease in CNFL and CNFD across the groups. For the groups R0-R3 n= 288, 132, 4 

and 3 respectively. *One-way ANOVA used to test for significant differences across groups. 

 

A 

B 

*p=0.002 

*p=0.004 
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Figure 23: Comparison of CNBD (A), TC (B) and LC density (C) across 4 groups, allocated 

depending on grade of retinopathy. Central horizontal line represents the median value for each 

group. Coloured area represents the interquartile range (IQR) Error bars represent Q1-IQR and 

Q3+IQR. Outliers are plotted as white circles with a black border. For the groups R0-R3 n= 288, 

132, 4 and 3 respectively. *Krystal-Wallis on way ANOVA used to test for significance of 

differences across groups. 

 

 

*p=0.03 

*p=0.40 

 B 

A 
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5.10 Comparison of CCM parameters of patients with diabetes and 

different ethnicities 

 

Cornea nerve parameters were compared between white and black patients 

within the cohort of diabetes. (Due to the very small number of patients of Asian 

(n=12), mixed (n= 2) or other (n=3) ethnicities, these were excluded from 

analysis for the following section.) 

White and black ethnic groups did not differ significantly with respect to age 

(p=0.58) and duration of DM (n=0.74) (Table 23). Most patients in both ethnic 

groups had T2DM, (95%, 97% for white and black respectively) and there was 

no significant difference in the percentage of males and females in each group 

(p=0.07). Significantly more patients (p<0.001) of black ethnicity had a DNS 

symptom score of 0 (85%) compared to white patients (56%), therefore a 

positive result on the DNS scoring system of 1 or more was more common in 

white patients (44% vs 15%). There was no significant difference in retinopathy 

gradings (p=0.98) overall, however only the white group contained patients 

graded with R2 or R3 retinopathy. Similarly, only the white group contained 

patients with detectable maculopathy(M1) (4%). No black patients would have 

fallen into the criteria for referral to the hospital eye service based on 

retinopathy screening guidelines. For all manually derived CCM parameters, 

there was no significant difference found (Table 23). 
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                         * Black British/Caribbean/Afro-Caribbean/African/Black other 

Table 23: Comparison of manually derived nerve parameters between patient groups based on 

their ethnicity. N represents the number of patients in each group.  Retinopathy grading based 

on the ETDRS criteria: 0 = no retinopathy, 1= background, 2= pre-proliferative, 3=proliferative. 

Maculopathy grading: 0=no maculopathy 1= maculopathy. For CNFD and CNFL the mean ± SD 

is given, and an unpaired t-test was used to test significance, due to a normal distribution. 

Median values are given for all other parameters with Mann-Whitney U test used to test 

significance. Data shows no significance between age and duration of DM. All p-values for CCM 

parameters show no significant difference.  

 

 

 
 

Ethnicity   

  White Black* p-value 

n 346 65 - 

Age (years) 68.4 65.7 0.60 

Type of Diabetes 
        1 
        2 
        Unknown 

16(5%) 
328(95%) 
2(<1%) 

2(3%) 
63(97%) 

0 

  

Duration of DM(Years) 6(0.1-51) 6(0.2-30) 0.70 

Gender 
        F 
        M 

139(39%) 
207(61%) 

24(37%) 
41(63%) 

0.07 

DNS Score 
        0 
        1 
        2 
        3 
        4 

193(56%) 
65(19%) 
49(14%) 
20(6%) 
19(5%) 

56(86%) 
6(9%) 

0 
1(2%) 
2(3%) 

<0.001 

Retinopathy Grade 
        R0 
        R1 
        R2 
        R3 

 
233(67%) 
106(31%) 

4(1%) 
3(1%) 

42(65%) 
23(35%) 

0 
0 

>0.90 

Maculopathy Grade 
       M0 
       M1 

333(96%) 
13(4%) 

65 (100%) 
0 

  

CNFD (no/mm2) 25.67±7.08 26.59±7.39  0.30 

CNFL (mm/mm2) 19.2± 5.72 19.83± 5.51  0.50 

CNBD (no/mm2) 75.1(0-200) 75.1(8.33-191.25) 0.90 

TC (0-20) 17.04(8.18-32.66) 16.01(8.85-30.04) 0.20 

LCs Density (no/mm2) 22.92(0-225) 26.04(0-212.50) 0.30 
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5.11 Comparison of CCM parameters between healthy control subjects 

and patients with diabetes but no clinical evidence of diabetic peripheral 

neuropathy, as defined by diabetic neuropathic symptom scoring of 1 or 

more. 

 i) Prevalence of Symptoms  

For DNS scoring of symptoms of diabetic peripheral neuropathy (DPN), the 

majority of patients (61%) scored 0 i.e answered 'no' to experiencing any of the 

four symptoms as part of the questionnaire. Seventeen percent of patients 

scored 1, 12% scored 2 and 10% scored 3 or 4 combined, with 4 being the 

maximum scoring for the DNS.The percentage of patients that reported 

experience of each individual symptom are displayed in Figure 24. The 

symptom with the highest percentage of patients responding with 'yes' was 

burning (23.65%). Prickling was the least common with 14.05% reporting 

experience of this symptom. Very similar numbers of patients reported 

experiencing unsteadiness (18.97%) and numbness (18.74%). 

 

 
Figure 24: Percentage of patients answering 'yes' and 'no' to each of the four symptom 

questions of the DNS scoring system, relating to symptoms of peripheral neuropathy. For each 

of the four charts, n=427. 
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    ii) CCM and DNS Score 0 

In our cohort, as DNS scoring was used to determine clinical neuropathy, a 

score of DNS 0 represented no clinical neuropathy. The group of patients 

meeting this criterion were compared to the control patients in order to assess if 

any corneal nerve parameters were significantly altered prior to experiencing 

symptoms. 

The group of patients with DNS score of 0, were significantly older than the 

control subjects (Table 24) (p<0.001). The patient group consisted mainly of 

patients with T2DM (94%). There was no significant difference between the 

number of males and females in each group (p=0.19). Most patients (71%) 

were given a retinopathy grade of 0 after assessment, with 97% having no 

maculopathy (m0). When adjusted for age differences between groups, CNFD 

(p<0.001) and CNBD (p<0.001) were both significantly lower in the patient 

group. Similarly, CNFL was significantly lower in the patient group (p<0.001) 

when compared to control subjects. Based on CNFL length alone, overall 

11.35% of patients with DNS score 0, were below the age-dependent published 

cut-off point (Tables 25 and 26) suggesting that 11.35% of patients with no 

evidence of clinical neuropathy may have significant corneal nerve fibre length 

reduction.LC density and tortuosity were both higher in the patient cohort, 

however when age adjusted, this difference was not significant for either 

measure (p=0.18 and p=0.06 respectively). 
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  Controls DNS Score 0 p-value 
Adjusted p-

value 

n 40 262 - - 

Age (years) 37.5 (19-83) 66.95(21-89) <0.001 - 

Type of Diabetes 
        1 
        2 
        Unknown 

- 14(5%) 
246(94%) 

2(15) 

- - 

Duration of 
DM(Years) 

- 6 (0.17-51) - - 

Gender 
        F 
        M 

19(48%) 
21(52%) 

96 (37%) 
166 (63%) 

0.20 - 

Ethnicity 
        White 
        Black 
        Asian 
        Mixed 
        Other 

- 

193(74%) 
56(21%) 
11(4%) 

0 
2(1%) 

- - 

Retinopathy Grade 
        R0 
        R1 
        R2 
        R3 

- 
186(71%) 
72(27%) 
2 (1%) 
2 (1%) 

- - 

Maculopathy Grade 
       M0 
       M1 

  254(97%) 
8(3%) 

- - 

CNFD (no/mm2) 33.90 ± 4.79 25.84 ± 7.08 <0.001 <0.001 

CNFL (mm/mm2) 25.08 ± 4.79 19.37 ± 5.68 <0.001 <0.001 

CNBD (no/mm2) 
113.54(12.50-

252.08) 
75(0-194.79) <0.001 <0.001 

TC (0-20) 14.91(9.60-25.02) 16.9(8.85-31.67) <0.001 0.20 

LCs Density 
(no/mm2) 

19.27(0-391.66) 22.92(0-212.50) >0.90 0.06 

Table 24: Comparison of manually derived nerve parameters between controls and patients 

with DPN grade 0 (DNS 0). N represents the number of subjects in each group. Retinopathy 

grading based on the ETDRS criteria: 0 = no retinopathy, 1= background, 2= pre-proliferative, 

3=proliferative. Maculopathy grading: 0=no maculopathy 1= maculopathy. For CNFL and CNFD 

the mean ± SD is given, and an unpaired T-test was used to test significance, due to a normal 

distribution of data. Median values are given for all other parameters with Mann-Whitney U test 

used to test significance. Data shows a significant difference between the average age of the 

two groups; therefore, an adjusted p-value was also calculated for each nerve parameter using 

analysis of covariance. After adjustment, TC and LC density did not demonstrate a significant 

difference between the two groups. CNFD, CNFL and CNBD all demonstrated a significant 

difference with and without adjustment for age. 

Tortuosity (0-20), measured manually, was weakly correlated with DNS score (r  
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Table 25:  Classification of males within the diabetic cohort, and with a DNS score of 0, as 

having pathological CNFL length or not. Subjects were classified based on their age group. The 

manual CNFL value for each subject was compared to published cut-off values (Tavakoli et al., 

2015) (0.05th quantile of normative database). N represents the number of male subjects within 

each age group. The number and % of subjects classified as having pathological CNFL is given 

for each age group and overall for males. 

Table 26: Classification of females within the diabetic cohort, and with a DNS score of 0, as 

having pathological CNFL length or not. Subjects were classified based on their age group. The 

manual CNFL value for each subject was compared to published cut-off values (Tavakoli et al., 

2015) (0.05th quantile of normative database). n represents the number of female subjects 

within each age group. The number and % of subjects classified as having pathological CNFL is 

given for each age group and overall for females. 
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5.12 To assess whether changes in corneal morphological nerve 

parameters correlate with DNS scoring 

 

As there were significant alterations in some corneal nerve parameters 

observed prior to reported symptoms, in order to assess if increased corneal 

morphological abnormalities increased with increased DNS score, the patient 

cohort was split into groups by DNS.  

In section 3.3, tortuosity (0-20), measured manually, was weakly correlated with 

DNS score (r = 0.1) (p=0.04) (Table 27). This was the only parameter that 

demonstrated a significant correlation. This correlation was very weak, and 

most likely a result of chance given the multiple statistical tests being 

undertaken. Had DNS score been correlated across more CCM parameters one 

would have had more confidence that this was a true finding. 

The current section sought to demonstrate if there were differences between 

groups when divided according to DNS scores. There was no significant 

difference between the groups of varying DNS score with respect to age 

(p=0.11), duration of diabetes (0.63), gender (0.63) or type of diabetes (0.51). 

Testing for significance did, however indicate a difference between the ethnicity 

makeup of each group (p=001).There was no obvious trend in retinopathy as 

DNS score increased(p=0.45) however when comparing DNS score 0 to scores 

1-4, there were a higher proportion of patients with R0 grade retinopathy in the 

DNS 0 group (71%)(Table 27) suggesting that a positive result on the DNS 

scoring system may relate to detectable retinopathy. There was a higher 

percentage of patients with maculopathy in the groups with the highest DNS 

scores (3 and 4) compared to groups with DNS score 0-2.There was no 

significant difference across the groups for CNFD (p=0.86), CNFL (p=0.79), 

CNBD (p=0.97) or tortuosity (p=0.09) (Figures 25 and 26),  however, when 

determining patients that fell below the age-corrected published normative cut 

off point for CNFL, the groups with higher DNS scores (3 and 4) contained a 

higher percentage of patients falling below the cut-off, in comparison to the 

other 3 groups(Table 27) 
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 0 1 2 3 4 p-
value 

n 262 73 49 21 22   

Age (years) 66.95(21-89) 68.50(47-89) 69.80(28-93) 69.60(49-91) 65.20(52-83) 0.10 

Type of DM 
        T1 
        T2 
        Unknown 

14(5%) 
246(94%) 

2(1%) 

3(4%) 
70(96%) 

0 

1(2%) 
48(98%) 

0 

0 
21(100%) 

0 

0 
22(100%) 

0 

0.50 

Duration of 
DM 6(0.17-51) 7(0.1-25) 8(0.3-28) 5(1-22) 8(0.1-16) 0.60 

Gender 
        F 
        M 

96(37%) 
166(63%) 

32(44%) 
41(56%) 

19(39%) 
30(61%) 

9(43%) 
12(57%) 

11(50%) 
11(50%) 

0.60 

Ethnicity 
        White 
        Black 
        Asian 
        Mixed 
        Other 

193(74%) 
56(21%) 
11(4%) 

0 
2(1%) 

65(89%) 
6(8%) 

1(1.5%) 
1(1.5%) 

0 

49(100%) 
0 
0 
0 
0 

20(95%) 
1(5%) 

0 
0 
0 

19(86.5%) 
2(9%) 

0 
1(4.5%) 

0 

0.001 

Retinopathy 
Grade 
        R0 
        R1 
        R2 
        R3 

186(71%) 
72(27%) 
2 (1%) 
2 (1%) 

44(60.5) 
29(39.5%) 

0 
0 

30(61%) 
18(37%) 

0 
1(2%) 

14(66.5%) 
7(33.5%) 

0 
0 

14(63.5%) 
6(27.5%) 

2(9%) 
0 

0.50 

Maculopathy 
Grade 
       M0 
       M1 

254(97%) 
8(3%) 

72(95.5%) 
1(1.5%) 

49(100%) 
0 

19(90.5%) 
2(9.1%) 

20(91%) 
2(9%) 

0.09 

No of patients 
< CNFL cut-off 
Value 

31(11.83%) 9(12.33%) 6(12.24%) 5(23.8%) 4(18.18%) 
 

       

 

Table 27:  Summary of the known characteristics and clinical grading information for patients, 

assorted into 4 groups, based on DNS score. Age and duration of DM are represented by 

median(range) due to a non-normal distribution. Retinopathy grading: 0 = no retinopathy, 1= 

background, 2= pre-proliferative, 3=proliferative. Maculopathy grading: 0=no maculopathy 1= 

maculopathy 'Unknown' represents patients for which information was not available. The 

number of patients below cut-off was calculated using published age-corrected values (Tavakoli 

et al., 2015) 
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Figure 25: Comparison of CNFD (A) and CNFL (B) across 5 groups, allocated depending on 

DNS score. Error bars represent ± 1 SD from the mean value. For scores 0-4, n= 262, 73, 49, 

21 and 22 with increasing score. Both graphs show no obvious increase or decrease in 

parameters across the 5 groups. One-way ANOVA was used to test for significant differences 

across the groups. 

B 

A *p=0.90 

*p=0.80 
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Figure 26: Comparison of CNBD (A), TC (B) across 5 groups, allocated depending on DNS 

scoring. Central horizontal line represents the median value for each group. Coloured area 

represents the interquartile range (IQR) Error bars represent Q1-IQR and Q3+IQR. Outliers are 

plotted as white circles with a black border. For scores 0-4, n= 262, 73, 49, 21 and 22 with 

increasing score. Krystal-Wallis one-way ANOVA was used to test for significance of differences 

across the groups. 

 

   

*p= >0.90 

*p=0.09 

A 

B 



125 

 i) A comparison of CCM parameters in patients with no symptoms 

 compared to patients with symptoms of burning. 

 

As there was no significant difference found between the groups with increasing 

DNS scores, for any of the 4 nerve parameters, the group of patients who had 

reported experiencing burning symptoms, either as an isolated symptom or 

along with others, were compared to the group with DNS score 0. This was due 

to burning being the only symptom that is part of the DNS score representing 

small fibre function which are the fibres CCM examines and thus may be a 

more meaningful comparison. 

There was no significant difference in age (p=0.09), duration of DM (p=0.67) 

and number of males/females (p=0.19) between the two groups. Both groups 

consisted mainly of patients with T2DM (Table 28). There was no significant 

difference in retinopathy or maculopathy grades.  

 

None of the CCM nerve parameters were significantly different between the two 

groups (Table 28). LCs density was lower in patients experiencing burning 

(p=0.03). 
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  DNS Score 0 Burning (+) p-value 

n 262 101 - 

Age (years) 66.95(21-89) 68.40(48-93) 0.09 

Type of Diabetes 
        1 
        2 
        Unknown 

14(5%) 
246(94%) 

2(1%) 

2(2%) 
99(98%) 

0 

- 

Duration of 
DM(Years) 

6 (0.17-51) 6(0.10-28.0) 0.70 

Gender 
        F 
        M 

96 (37%) 
166 (63%) 

49(49%) 
52(51%) 

 
0.20 

Ethnicity 
        White 
        Black 
        Asian 
        Mixed 
        Other 

193(74%) 
56(21%) 
11(4%) 

0 
2(1%) 

95(94%) 
4(4%) 
1(1%) 
1(1%) 

0 

- 

Retinopathy Grade 
        R0 
        R1 
        R2 
        R3 

186(71%) 
72(27%) 
2 (1%) 
2 (1%) 

69(68%) 
30(30%) 
2(2%) 

0 

0.06 

Maculopathy Grade 
       M0 
       M1 

254(97%) 
8(3%) 

 
97(96%) 
4(4%) 

 
0.08 

CNFD (no/mm2) 25.84 ± 7.08 25.81±7.44 0.90 

CNFL (mm/mm2) 19.37 ± 5.68 19.50±6.24 >0.90 

CNBD (no/mm2) 75(0-194.79) 72.92(0-212.50) 0.70 

TC (0-20) 16.9(8.85-31.67) 16.70(8.98-29.72) 0.07 

LCs Density 
(no/mm2) 

22.92(0-212.50) 15.62(0-224.50) 0.03 

 

Table 28: Summary of the known characteristics, clinical grading information, and manual CCM 

parameters for patients with no symptoms of peripheral neuropathy (DNS 0) and patients 

reporting 'yes' to experiencing burning. For CNFL and CNFD the mean ± SD is given, and an 

unpaired t-test was used to test significance, due to a normal distribution of data. Median values 

are given for all other parameters with Mann-Whitney U test used to test significance. 

Retinopathy grading based on the ETDRS criteria: 0 = no retinopathy, 1= background, 2= pre-

proliferative, 3=proliferative. Maculopathy grading: 0=no maculopathy 1= maculopathy. 

'Unknown' represents patients for which information was not available. LCs Density was the 

only parameter significantly different between the two groups. 
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6. DISCUSSION 

 

The overarching aim of this thesis was to assess a large cohort of patients with 

diabetes screened in primary care, using CCM alongside retinopathy screening 

to assess the prevalence and severity of neuropathy (DPN). This novel study, to 

our knowledge, is the first to assess these features in this cohort of patients 

attending routine DR screening. The main findings are reviewed and discussed 

here along with considering this work in the context of understanding corneal 

nerve changes, related to diabetic peripheral neuropathy (DPN) in patients with 

diabetes (DM). The primary care clinicians produced high quality images with 

very few patients having to be excluded, this was facilitated by the fact that their 

training enabled them to understand which images produced were of an 

acceptable quality for analysis. 

6.1. Evaluation of automated methods for assessing corneal nerve 

parameters, compared to manual methods, whilst also determining if 

image quality influences automated method accuracy. 

 

Automated software is significantly quicker when analysing images in 

comparison to manual software. This indicates that it would be the only viable 

option for analysis if using CCM to screen for neuropathy in the future. In our 

study when comparing results from automated and manual analysis, the results 

for CNFD, CNFL and CNBD were all significantly lower. This is in agreement 

with previous studies, also finding an underestimation when using ACCMetrics 

automated software (Scarr et al., 2017b, Petropoulos et al., 2014). 

The largest percentage difference between the two methods was found for 

CNBD (59.95%). This can partially be explained as CNBD being the most 

subjective to quantify of the three, producing the most variation between 

examiners (Petropoulos et al., 2013b). Another strong contributing factor is that, 

CNBD was measured using slightly different methods. ACCMetrics determines 

CNBD by identifying the number of branching points from each main nerve, 

whereas for CCMetrics the method of marking each main branch twice, at its 

branching point and end, was used. This means that all main branches were 

marked twice whereas for ACCMetrics, if a main branch only intercepted with a 

main nerve once, then it was marked and counted as one branch. 
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Standardisation is required so that direct comparisons can be made between 

studies in the future, and clear normative ranges can be set out. 

CNFD was the parameter with the smallest mean difference between the two 

methods (16.49%). The difference in CNFD between the two methods did not 

correlate with mean CNFD (Figure 18A) between the two methods, suggesting 

that it may be appropriate to compute a correction factor for CNFD when using 

ACCMetrics that can be applied across a range of CNFD values. For CNFD and 

CNBD, poor image quality did not significantly affect the agreement between 

the two methods, which again, provides support for a CNFD correction factor 

that may be used even for poor image quality. 

For CNFL, the mean difference between the two methods was 29.61%, which is 

very similar to the Scarr et al study (Scarr et al., 2017b) who reported between 

28-33% difference, irrespective of level of clinical neuropathy. There was 

correlation between the mean CNFL and the difference between the two 

measures, making the potential use of a single correction factor difficult.This 

also implies that if CNFL and CNFD are small/low the methods agree better but 

if CNFL/CNFD is large/high the methods do not agree as well, the automated 

system undercounts, which will mean that differences between groups will be 

minimised. Unlike for CNBD and CNFD, image quality grade influenced which 

method measured the longer CNFL. For images graded as poor, 6/22 were 

measured with longer CNFL using automated software. This was a higher 

percentage of images in comparison to that of grades acceptable or excellent. 

This may be due to images of poor-quality containing artefacts such as 

pressure lines, which the automated software erroneously identifies as a nerve 

fibre (Figure 27). 

Both automated and manual methods did show similar correlations for the 

important findings of duration of diabetes and age, which demonstrates some 

utility of automated analysis. However, due to the underestimation of measures 

compared to manual methods, clinicians and researchers must carefully 

consider the question they are seeking to address when deciding which method 

to use. 

If automated software is to be used for DPN screening, software needs to be 

improved and updated to resolve the measurements bias. As we await these 
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technological advances, adjustment factors must be put in place to compare to 

manual analysis as well features that identify and report poor image quality to 

evaluate reliability of the output. 

 

Figure 27. Representative image of original CCM images (A) with its associated automated 

analyses (B). Main nerve fibres, nerve branches and main branch points denoted with red lines, 

blue lines and green dots, respectively.  Pressure line (yellow arrow) mistakenly identified as a 

nerve fibre by the software.     

6.2 The prevalence of diabetic peripheral neuropathy in the cohort of 

people with diabetes, as defined by CCM parameters, compared to age-

corrected control subjects. 

 

Corneal confocal microscopy (CCM), as a measure of the corneal sub-basal 

nerve plexus, provides a potential surrogate biomarker for assessing small 

nerve fibre changes in patients with DM. Several studies which recruited 

patients from hospital clinics have confirmed CCM's ability to detect nerve 

alterations when compared to healthy controls, (Ahmed et al., 2012, Alam et al., 

2017, Chen et al., 2015, Perkins et al., 2018, Scarr et al., 2017a, Tavakoli et al., 

2010, Ziegler et al., 2014) as well as to distinguish between patients with and 

without clinical DPN (Scarr et al., 2017a, Chen et al., 2015, Alam et al., 2017). 

CCM has shown promise for predicting future neuropathy from baseline 

measurements (Lovblom et al., 2015, Pritchard et al., 2015) and has detected 

nerve regeneration post-therapeutic intervention (Tavakoli et al., 2013).  

In our study, when adjusted for age, patients in the diabetic cohort 

demonstrated significantly lower corneal nerve fibre density (CNFD) and 

corneal nerve fibre length (CNFL) in comparison to healthy controls. This 

supports several published studies (Ahmed et al., 2012, Alam et al., 2017, Chen 
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et al., 2015, Perkins et al., 2018, Scarr et al., 2017a, Tavakoli et al., 2010) that 

have also reported significant differences between these two cohorts. 

With reference to CCM published normative values (Tavakoli et al., 2015), 20 

females (11.98%) and 35 (13.46%) males were classified as having abnormal 

CNFL that could be considered clinically significant (12.88% overall). This 

implies that in our cohort, 12.88% of patients may be deemed to have small 

fibre neuropathy if using CNFL as a single diagnostic measure. This percentage 

is less than that of Anderson et al (2018) (Andersen et al., 2018a), who in a 

cohort of patients with T2DM, found a prevalence of 19% DPN when using the 

Toronto consensus for diagnosis. CCM is identifying small fibre damage, which 

has been shown to precede large fibre changes (Umapathi et al., 2007, 

Quattrini et al., 2007) thus, we would expect a higher percentage of abnormality 

in this study, identified using CCM in comparison to Andersen and colleagues 

(Andersen et al., 2018a). This highlights the problematic nature of comparing 

prevalence of DPN across studies using a range of definitions to classify DPN. 

The impact of varying diagnostic testing procedures on the percentage of 

identified DPN, was exemplified by the Diabetes Control and Complications 

Trial (DCCT) data. In this cohort, the prevalence of DPN at baseline varied from 

0.3% (abnormalities of reflexes, sensory examination  and  neuropathic  

symptoms) to 21.8% (abnormal nerve conduction in at least two nerves) 

depending on the criteria used for detection (DCCT, 1995). 

Furthermore, studies are never identical with respect to demographics of their 

patients, with a significant factor for our study being that patients were tested 

during community screening. Although this would need to be confirmed with 

further studies, it is likely that the relative stability of patients attending 

community retinopathy screening would make them less susceptible to 

developing diabetic complications such as DPN, and associated reduction in 

corneal nerve fibres. 

The significantly lower corneal nerve branch density (CNBD) in patients with 

diabetes compared to control subjects is something that has been reported in 

several studies using hospital cohorts (Tavakoli et al., 2010, Scarr et al., 2017a, 

Chen et al., 2015, Alam et al., 2017). The use of CNBD as a diagnostic tool for 

DPN has, however, been challenged and the pathophysiological importance is 

uncertain. This is largely due to reports of high variability (Petropoulos et al., 
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2013b) and inadequate validity when diagnosing DPN (Ahmed et al., 2012, 

Alam et al., 2017, Chen et al., 2015, Scarr et al., 2017a). Nonetheless, CNBD 

can be informative when assessed in conjunction with CNFL to identify early 

corneal nerve pathology (that is, "pruning" of nerves), as both parameters may 

represent changes in the most distal peripheral nerves, prior to any changes in 

CNFD. CNBD has also been identified as the first parameter to show 

regeneration post-simultaneous pancreas-kidney transplantation in patients with 

T1DM(Tavakoli et al., 2013), suggesting that it may be a useful parameter in the 

use of clinical trials to identify early therapeutic responses.  

Main nerve tortuosity (TC0-20) was significantly higher in my patients from 

primary care compared to controls. This supports early studies, with much 

smaller cohorts from a hospital setting, which reported similar findings (Mocan 

et al., 2006, Kallinikos et al., 2004). Mocan et al. (2006) studied patients with 

T2DM, whereas Kallinikos et al (2004), studied patients with both T1DM and 

T2DM. The physiological significance of changes in tortuosity are not currently 

well understood and more recent studies have found no significant difference 

between patients with DM and healthy controls (Ziegler et al., 2014, Ahmed et 

al., 2012). However, one of these studies specifically examined patients with 

T2DM who were newly diagnosed (Ziegler et al., 2014), therefore changes in 

tortuosity may have been too mild to detect or may occur later in the disease 

process. 

Tortuosity as a measurement can be highly variable, with poor inter and intra-

observer variability (Hertz et al., 2011). Such variability might at least in part 

explain differences between studies. Our study found excellent inter-observer 

(ICC=0.915) and intra-observer (ICC= 0.978) agreement when measuring TC 

using manual software. This may be due to graphic tablet-based analyses, 

which allows better control during manual analysis in comparison to using a 

computer mouse; however, this has not been proven and is beyond the scope 

of this study. Such good repeatability would have facilitated the detection of 

small differences between groups and might explain the positive findings in my 

results compared to other negative studies. The use of tortuosity measurement 

in patients with DM currently remains disputed. 

I found no significant difference between the presence (p=0.06) and density 

(p=0.91) of Langerhans cells. This finding contrasts that of two studies, which 
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have reported increased LC density within the sub-basal nerve plexus of the 

cornea in patients with diabetes (Tavakoli et al., 2011a, Ferdousi et al., 2019). 

Ferdousi and colleagues (2019) examined 64 children, all with T1DM (age: 

14.6 ± 2.5 years, duration diabetes: 9.1 ± 2.7 years). This cohort is very different 

to the cohort in this thesis, which was predominantly patients with T2DM and 

adults, thus results cannot be directly compared. 

However, Tavakoli and colleagues (2011) examined a cohort with similar 

demographics to those examined for this thesis. They examined 128 patients 

with predominantly T2DM (106/128), aged 58 ± 1 years with a mean diabetes 

duration of 15 ± 1 years. Thus, it is unclear why there was a difference between 

this published study and my findings with respect to Langerhans cells. Although 

Tavakoli and colleagues did not describe how their patients were recruited, an 

average HbA1c level of 8.16 ± 0.14 was given for their cohort. This may indicate 

that their patients generally did not have well-controlled diabetes which may 

have been less controlled in comparison to my primary care screening cohort, 

thus having a more significant effect on Langerhans cells density. I had no 

access to HbA1c information for this thesis, meaning a further study including 

HbA1c measurement along with CCM measures would be required to test this 

theory.  

The potential implication of Langerhans cells to provide insight into immune-

mediated inflammation and neuronal damage in patients with diabetes has not 

been established. Further longitudinal studies are imperative for understanding 

the potential importance of neuro-immune responses and interactions in the 

corneas of people with diabetes. 

6.3 Changes in corneal nerve fibre morphology, detected by CCM, during 

the first two years following diabetes diagnosis. 

 

To assess the potential role of CCM to identify early nerve changes in patients 

with diabetes, it was important to compare control subjects with patients of 

duration ≤ 2 years since diagnosis. This was to determine if corneal changes 

were occurring early in diabetes. 

Our results suggested that significant changes had occurred in CNFD, CNFL 

and CNBD as all measurements were significantly lower in the patient group 
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(p=0.01, p=0.004 and p<0.001 respectively, with age adjustment). This 

indicates that even during the earliest stages of diabetes, nerve degeneration 

occurs in small peripheral fibres, as detected using CCM. Tortuosity and 

Langerhans cells density did not differ significantly between the two groups. Our 

findings support Ziegler et al, (2014a) who reported that in a group of 86 

patients with duration of T2DM 2.1± 1.6 years, there was a significant reduction 

in CNFD, CNFL and CNBD when compared to age-matched controls.  

Ziegler et al (2014a) concluded, using their own control cohort that CNFD was 

the most sensitive parameter for detecting neuropathy in patients with diabetes, 

as it detected 21% of patients who fell below the 2.5th percentile of the control 

group. CNFL was the second most sensitive with 17% falling below the 2.5th 

percentile (Ziegler et al., 2014). This percentage for CNFL abnormality is 

significantly higher than that of abnormal CNFL, in patients with diabetes, found 

in our study (9.18%), in comparison to age-corrected published values (Tavakoli 

et al., 2015). It is likely that the significantly lower comparative percentage is 

largely due to a difference in percentile cut-off points used to define an 

abnormality. As mentioned, Ziegler et al (2014a) used the 2.5th percentile of 

their control group, whereas we used the 0.5th percentile, therefore identifying 

less patients as outside of this range.  

It is difficult to directly compare the results of these two studies as although 

sample sizes were similar (86 vs 100), our study evaluated only patients with ≤ 

2 years disease duration whereas the mean disease duration of the patients in 

the Ziegler et al (2014) study was 2.1± 1.6 years. The longer duration of 

diabetes in some of their cohort may have caused more significant corneal 

nerve changes. Furthermore, due to frequent delays in diabetes diagnosis, the 

exact time of disease onset is uncertain. Patients classed as having disease 

duration of ≤ 2 years may be wildly different from the precise time since disease 

onset, thus erroneously suggesting more significant changes to corneal nerve 

fibres early on. 

Lastly, high-adapted software was used for the Ziegler et al (2014) study, which 

produced an image of the sub-basal nerve plexus composed from an image 

stack, reconstructed into a combined mosaic image. This had an expanded field 

of view in comparison to standard imaging using CCM. This software is not 
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widely used, and the different technique would likely cause no image overlap, 

so may be a better representative of a wider area of the cornea. 

One recently published study (Lyu et al., 2019) found that there was no 

significant difference in CNFL between a patient groups with T2DM of duration 

<10 years (5+/-3) and control subjects. This contradicts the findings of our study 

and that of Ziegler and colleagues (Ziegler et al., 2014), however this may be 

attributed to the study's strict inclusion/exclusion criteria - patients with Hba1c 

levels of >7.8%, or history of proliferative retinopathy were excluded.   

Despite the limited research into patients during the very early stages of 

diabetes, our findings suggest that corneal nerve fibre changes may be 

occurring very early on and may be an indicator of changes in the sensory 

nervous system overall.  

6.4 Changes in corneal nerve morphology, in relation to time since 

diagnosis of diabetes, in order to determine the relative risk of developing 

diabetic peripheral neuropathy as diabetes duration increases. 

 

Increased duration of diabetes is a known risk factor for developing DPN 

(Tesfaye et al., 2005), so it would be reasonable to predict a decrease in CNFD, 

CNFL and CNBD across the patient groups when divided based on disease 

duration. A recent cross-sectional study (Lyu et al., 2019) found a significant 

decrease in CNFL when comparing T2DM patients with <10 years disease 

duration (5 ± 3) and > 10 years disease duration (19 ± 6). The groups did not 

differ with respect to age or Hba1c, which suggests that disease duration is 

contributing factor. However, this study only assessed Chinese patients, and 

may not apply to other ethnicities.  

A longitudinal study (Pritchard et al., 2015) found that longer disease duration at 

baseline visit (p=0.002) was a predictor of 4-year incidence of clinically evident 

DPN in T1DM patients. Conversely, a similar study (Lovblom et al., 2015) found 

no significant association between the same two factors. An explanation for this 

may be due to the latter cohort lacking patients with a short duration of diabetes 

(mean 18 ± 12 years). Their study followed a cohort of patients with T1DM, but 

no clinical DPN at baseline, over 3.5 ± 0.9 years. At the end of the period, 

patients were classified as new onset DPN or DM control group depending on 
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the development of DPN during the monitoring period. The 11 (17%) new-onset 

cases of PN were similar, at baseline, to the 54 (83%) DM controls in age, 

diabetes duration, gender, glycated haemoglobin levels and electrophysiologic 

parameters (p≥0.20). However, cases of new onset clinical DPN had 

significantly lower baseline CNFL and CNBD (p<0.05), again providing more 

evidence for CCM as an early predictor of peripheral nerve changes. 

In our cohort, we found no significant difference in any of the manually derived 

corneal nerve parameters when assessing T2DM patients divided into 5 groups 

based on duration of diabetes, the first being <2 years. This may suggest that in 

this cohort of patients a longer duration of diabetes is not a risk factor for 

developing DPN or was not evident in this cohort perhaps due to cohort 

characteristics. When assessing CNFL alone, the percentage of patients falling 

below the published cut off point for pathological length, increased from 9.18% 

to 15.35% when comparing <2 years to >20 years disease duration. It must be 

noted that the number of patients in the >20 years group was very small in 

comparison to the other 4 groups, so this percentage may be misleading, as 

one abnormal patient would represent a much larger percentage in this duration 

group. Furthermore, this increase in percentage was not significantly significant 

(p=0.47).  

Similarly, Dehghani et al, (2016), found that in T1DM patients, there was no 

significant correlation between corneal nerve parameters, measured using 

CCM, and duration of diabetes (Dehghani et al., 2016). These patients were 

monitored across a period of 4 years and were described as having stable 

health, with stable clinical parameters throughout the study visits. This likely 

reflected a desirable level of diabetic care and good diabetic education among 

the participants. 

Our cohort, recruited solely from community screening, are monitored within the 

screening programme because of their stability with regards to retinopathy. Any 

patients with uncontrolled diabetes or retinopathy above R1/M0 grade are 

referred onto the hospital eye service for monitoring and management. Thus, 

the findings of our study may be indicative of these patients' good diabetic 

control. However, this suggestion is speculative as no HbA1c levels were 

recorded during the study to confirm this. 
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In our cohort, the percentage of patients with diabetic retinopathy grade 0 

decreased as the duration of diabetes increased. This may suggest that in this 

cohort of patients in screening, progression of retinopathy from grade 0 to 

detectable levels is related to disease duration which has been found previously 

in patients with T2DM (Bitirgen et al., 2014, Nitoda et al., 2012). It suggests that 

neuropathy and retinopathy may follow different patterns of progression through 

increasing disease duration as DNS score also did not increase with disease 

duration. However, the counter argument to this may be that retinopathy 

screening is more sensitive to picking up changes that DNS scoring and that 

other methods of DPN assessment might have detected change in neuropathy 

with increasing disease duration. 

6.5 CCM in the detection of subclinical diabetic peripheral neuropathy 

prior to any retinopathy (defined as grade R1/M1 or higher) 

 

At present, retinal photography is a successful screening method for diabetic 

retinopathy (DR) and can detect early microvascular changes. Our findings 

suggest that changes in corneal nerves may precede detectable retinopathy. 

Measurements for CNFD (p=0.01), CNFL (p=0.02) and CNBD (p=0.001) were 

all significantly less in patients with retinopathy and maculopathy grades 0, in 

comparison to control subjects.  

These finding confirm those of (Bitirgen et al., 2014), which also reported in 

patients with T2DM and no DR, a significant reduction in CNFD (p<0.001), 

CNFL (p=0.02) and CNBD (p =0.001), when assessed using automated 

software. An earlier study (Nitoda et al., 2012) found a significant difference in 

all three parameters, however this study used their own custom written routines 

in MATLAB, rather than a commonly used software such as CCMetrics. Like our 

findings, Nitoda et al (2012) found no significant difference in main nerve 

tortuosity between these two groups. 

When assessing patients withT1DM, two similar studies (Szalai et al., 2016, 

Petropoulos et al., 2015b) also reported a reduction in CNFD, CNFL and CNBD, 

prior to any retinopathy. However, Szalai et al, (2016) only assessed young 

patients (mean age 22.86 ± 9.05 years), which was not overall representative of 
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the T1DM diabetic population. This cohort was very different to ours which was 

(1) mainly T2DM patients and (2) of significantly older age. 

Our study into this area is novel in that we have assessed patients in primary 

care along with DR screening. This has allowed us to assess a larger cohort of 

286 patients with no retinopathy, larger than that of the previous studies. Of 

these patients, 31 (11.98%) had a CNFL measurement that was less than the 

published age-corrected reference value. This may suggest that there are 

several patients, who do not meet the referral criteria based on retinopathy but 

may require further investigation and closer monitoring of peripheral nerve 

changes. More studies are needed to investigate the cost-effectiveness of this 

increase in referrals and the benefits to the patients.  

Although our study demonstrates good agreement with the current literature, 

the four previous studies discussed were completed in a hospital setting, by a 

trained expert, thus were not representative of a cohort attending community 

DR screening. There was also a significant lack of recently diagnosed patients 

(less than <2 years), most notably in one of these studies in particular (Nitoda et 

al., 2012). Nevertheless, the findings of these, and our study challenges the 

current screening strategies deployed to detect the complications of diabetes. 

Using CCM to identify corneal nerve changes may be the earliest window of 

opportunity to intervene and prevent the progression of the triad of 

microvascular complications; nephropathy, neuropathy and retinopathy. 

6.6 Corneal nerve fibre morphology in relation to increasing grades of 

retinopathy from 0 to proliferative. 

 

Our findings confirm that of Nitoda et al (2012) and Bitirgen et al (2014), both of 

which reported significant changes in nerve parameters of T2DM patients, 

without diabetic retinopathy, in comparison to those with proliferative diabetic 

retinopathy (grade R3). However, when Bitirgen et al (2014) tested for DPN 

using electrodiagnostic and clinical examination testing, all patients with 

proliferative DR had clinical levels of DPN so could be detected without the use 

of CCM. 

In our study we found only a small decrease in CNFD, CNFL and CNBD across 

the first 3 retinopathy grades (R0-R2), with a significant difference in CNFD 
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(p=0.002), CNFL (p=0.004) and CNBD (p=0.03) only evident in patients with 

proliferative DR (R3)(n=3). The two previous studies (Nitoda et al., 2012, 

Bitirgen et al., 2014), in contrast found a significant change in nerve parameters 

in parallel with increasing DR grade, however these studies grouped grade 1 

and grade 2 together as 'non-proliferative', whereas our study assessed the 

groups individually. As our study took place in community screening, there was 

a very small number of patients with grade 2 retinopathy in our cohort (n=4). 

This may explain the insignificant difference of CCM parameters in comparison 

to grade 0. With such a small number of patients it would be difficult to find 

statistical significance if the difference was only small.  

A very recent study (Wang et al., 2020) also found a significant difference 

between CNFD (p=0.015) and CNFL(p=0.015) in T2DM patients with and 

without DR. However, this study did not specify their classification of DR, so it is 

unclear if what proportion were at different levels of retinopathy.  

Although studies, including ours have found a significant reduction of corneal 

nerve parameters in patients with proliferative DR (R3), it is questionable, 

whether these changes are due to the diabetes. In our cohort, 2/3 of the 

patients with R3 retinopathy reported a history of retinal laser treatment. 

Similarly, in Bitirgen et al.'s (2014) study, 23 patients (71.9%) of the patients 

with R3 grade retinopathy had previously undergone retinal laser. It has 

previously been suggested that pan-retinal argon laser photocoagulation may 

directly cause corneal hypoesthesia, linked to associated with damage to the 

short ciliary nerves. In two studies, patients with proliferative DR who had 

received previous laser treatment had significantly lower cornea nerve fibres 

compared to patients with proliferative DR and no previous laser (Cillà et al., 

2009, Bitirgen et al., 2014). This may indicate that in our cohort, the significant 

reduction in nerve fibres in patients with grade 3 retinopathy may be directly 

caused by the treatment itself. Our patient number was too small to divide into 

patients with and without laser for grade 3 retinopathy, so we were unable to 

confirm whether significant changes were related to the retinopathy grade 

alone. 
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6.7 Corneal nerve parameters of patients with diabetes and differing 

ethnicities. 

 

In the UK population, amputation risk in patients with diabetes is reduced in 

African-Caribbean men by around two-thirds, when compared to white men 

(Abbott et al., 2005, Leggetter et al., 2002). As peripheral neuropathy is the 

single most important contributor to diabetic foot ulceration and amputation 

(Khanolkar et al., 2008), we may therefore predict that CCM parameters would 

be more reduced in the white population of our study. CCM measures have 

previously been compared between white and south-east Asian populations 

(Fadavi et al., 2018). This ethnic group is also reported to have less lower limb 

amputations (Fadavi et al., 2018), even though they are at significantly higher 

risk of developing T2DM and ischemic heart disease (Mather et al., 1998). This 

previous study reported significantly lower CNFL (p=0.04) and CNBD(p=0.02), 

however no difference in CNFD (p=0.76) or CNFT (p=0.16) in Europeans when 

compared to age‐ and sex‐matched south east Asians (Fadavi et al., 2018). 

Interestingly, there was no difference between measures of small nerve fibre 

function; warm and cold perception thresholds. Measures of sural nerve 

conduction, which assesses large fibre function, were higher in South-East 

Asians, suggesting they may have less sural nerve damage (p=0.006).   

In our study, we found no significant difference between any CCM parameters 

of white and black patients. Interestingly, our data does demonstrate a higher 

percentage of white patients having a history of both DN and foot ulcer, as well 

as having >0 DNS score at the time of visit. This is in line with the literature, 

reporting that African-Caribbean's have less history of foot ulcer, and lower 

NDS scores (Abbott et al., 2005). Also carried out in a community screening 

setting, this previous study found a significant difference in vibration perception 

threshold(VPT), which measures large nerve fibres, with a significantly lower 

rate of abnormality in African-Caribbeans vs Europeans (13.2% vs. 23.6% p < 

0.0001)(Abbott et al., 2005). Despite this, there was no difference in 

temperature sensation, which would be a measure of small nerve fibre 

functions.  

Taking previous, albeit a limited number of, studies into consideration, there 

may be several possible explanations for our findings. Firstly, this is the only 
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study, to our knowledge, investigating the difference in CCM parameters 

between white and black populations with diabetes in the UK. There may be no 

significant difference in corneal nerves between these groups. Taking Abbott et 

al's (2005) study into account, perhaps a significant difference in large nerve 

fibres increases the risk of foot ulcer in white populations, thus variations in 

neuropathy prevalence occurring between the ethnic groups are dependent on 

the nerve fibre type tested, for reasons yet unknown. This would need further 

investigation using neurophysiology as a quantitative, objective measure of 

large fibre function to confirm or dismiss this idea. 

It must again be highlighted that our cohort attend primary care screening, so 

doesn't include any patients under the hospital eye service and is not 

representative of the whole diabetic population. As these patients are typically 

stable, and appropriate for community screening, differences of corneal nerve 

parameters may be too mild to detect between the ethnicities at this stage. 

Furthermore, when making conclusions, we must consider established risk 

factors for diabetic neuropathy. These include increased height, heart rate, 

smoking, alcohol intake, insulin resistance, BMI, severity of microvascular 

disease and most significantly, glycaemic control (Tesfaye et al., 2005). None of 

this information was available for the cohort of patients in our study; therefore, 

we cannot estimate their influence on the risk of neuropathy. A recent study 

suggested that the variation in neuropathy between white populations and 

South-east Asians is due to differences in height and adiposity between the 

ethnic groups, as adjustment for these factors rendered the difference 

insignificant (Tahrani et al., 2017). There is therefore a need for future studies 

with these independent factors recorded and, if necessary, adjusted for. 

6.8 Corneal nerve morphology in patients with no clinical evidence of   

diabetic sensory peripheral neuropathy, as defined by diabetic 

neuropathic symptom scoring of 1 or more. 

 

Our results have demonstrated significant differences between CCM measures 

of small nerve fibres using CCM (<0.001 for CNFD, CNFL and CNBD) when 

comparing controls to patients with no symptoms of neuropathy (DNS score 0). 

This suggests that changes may be occurring prior to any symptoms of DPN, 
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which supports the potential use of CCM as a tool to identify pre-clinical small 

fibre neuropathy. It is known that symptoms alone are not sensitive for detecting 

mild DPN, as in early stages, patients are often asymptomatic (Tesfaye et al., 

2010). It is difficult to compare these finding to that of the literature, as studies 

typically use a clinical examination (signs and symptoms) or electrodiagnostic 

tests along with symptoms to classify and stratify patients, as this is the current 

recommended method for identifying clinical levels of DPN (Tesfaye et al., 

2010). As this information was not available to us for this study, a direct 

comparison was not possible.  

When comparing this group of patients to age-corrected published normative 

values, 13.25% of males and 10.42% of females were below the cut off point for 

CNFL. This may suggest that there is a percentage of patients with no 

symptoms that have abnormal CNFD and may need further investigation for 

early stages of neuropathy. These patients may fall into the classification of 

'subclinical DPN' which Tesfaye et al. (2010) previously described as 'the 

presence of no signs or symptoms of neuropathy are confirmed with abnormal 

NCs or a validated measure of small fibre neuropathy'. 

Interestingly, a higher percentage of the T1DM patients with no symptoms on 

the DNS score were below the cut-off point in comparison to T2DM (28.5% vs 

11.38%). This may suggest that that T1DM patients may not experience any 

neuropathy symptoms until damage is more pronounced. Studies with larger 

cohorts are needed before this can be confirmed.  

6.9 Corneal Nerve Morphology in patients with diabetic neuropathy 

symptom score, from 0-4. 

 

Of the four symptoms assessed by the DNS, burning is the only one that is 

thought to be caused by small fibre neuropathy (Cazzato and Lauria, 2017). It 

would therefore be reasonable to predict that when developing this symptom, 

small corneal C-fibres may have also changed significantly in comparison to 

pre-symptoms, causing an onset of burning sensation. However, we found no 

significant difference for any of the nerve parameters between the group of 

patients with a DNS score of 0 (no symptoms) and those experiencing burning. 

We may also predict that CCM parameters would reduce as DNS score 
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increases. We, however, did not find any difference between any of the groups 

with DNS score 0-4 (p≥0.09 for CNFD, CNFL, CNBD and CNFT). 

Several studies have found a significant reduction in CNFL in patients with 

diabetes, and DPN (Alam et al., 2017, Chen et al., 2015, Scarr et al., 2017a, 

Wang et al., 2020), compared to no DPN, so our findings could not confirm 

these. There are several possible reasons for the discrepancy between our 

findings and these studies. Firstly, three of the studies assessed a cohort of 

patients with T1DM only, with only Wang et al (2020) assessing T2DM patients, 

similar to our study which was majority T2DM (95%). Another significant 

difference was that the cohort in the Scarr et al. (2017a) study had significantly 

longer disease duration (median 54 years) and focused only on a cohort of 

older patients (65 ± 7 years). Similarly, the disease duration for the patients was 

also longer for the Chen et al. (2015)(Chen et al., 2015) study (23±16 (DPN-) 

39±14 (DPN+). Most significantly, these previous studies used the Toronto 

consensus for evaluating the presence of clinic DPN. This meant that they used 

a quantitative measure of large nerve conduction studies (NCS) along with 

assessment of symptoms and scoring. Chen et al. (2015) classified their 

patients as having DPN if there was an abnormality of electrophysiology using 

nerve conduction studies along with either a score of ≥ 1 on DNS scoring or ≥ 5 

on the neuropathy disability score. In comparison, we relied on a single 

measure of DNS scoring as this was all that was feasible in the setting of 

primary care screening centre.  

A very recent study (Yan et al., 2020) assessing T2DM patients only, found a 

progressive- stepwise decline in CNFD, CNFL, CNBD and inferior whorl length 

(IWL) as severity of peripheral neuropathy increased. This study used the total 

neuropathy score (TNS) to stratify severity of neuropathy, which assesses both 

quantitative signs as well as symptoms of neuropathy.  

The DNS score is a fast and easy to perform symptom score which has 

previously been validated using standard clinical methods (Meijer et al., 2002). 

However, there are issues with using the DNS alone as an indicator of 

neuropathy. Firstly, as part of the original study, DNS scoring was validated 

against the diabetic neuropathy exam (DNE), Monofilament and VPT. Of these 

3 tests, VPT is the only quantitative measure used, and all measures were 

subjective, either from the patient of the examiner. Furthermore, these tests 
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detect large fibre neuropathy, but not small fibre changes. Validation against 

electrodiagnostic which are considered the gold standard for large nerve fibre 

changes has not taken place. This makes us question the validity of the DNS 

score. The original validation also reports a sensitivity of 79% when detecting 

clinical levels of DPN as determined by the DNE. In comparison, VPT sensitivity 

was a superior 81% sensitive, even though it assesses large fibres only. The 

authors of the study themselves advise that DNS may be too short to provide 

reliable follow-up when used alone and recommend its use along with another 

diagnostic tests (Meijer et al., 2002). 

When tested against nerve conduction studies (NCS), DNS lacked sensitivity in 

patients without any evidence of clinical neuropathy (using DNE score). It was 

also unable to detect mild neuropathy in T2DM patients (Khan et al., 2015). 

Ideally, patients should have DNS scoring along with other tests such as NCS 

when looking at clinical levels of neuropathy. As CCM levels are pre-clinical it is 

difficult to correlate this with DNS score. We cannot directly compare DNS 

symptoms score with CCM as they are very different methods for assessing 

nerve fibres. CCM is objective, quantitative and measuring small fibre structure.  

The DNS score is simply yes or no, subjective and is focused on neuropathy 

function rather than structure (Meijer et al., 2002). A more comprehensive 

assessment of neuropathic symptoms such as using a presence/absence 

symptoms questionnaire along with a scalar measure of intensity may have 

provided a more in detail assessment of neuropathic symptoms. For example, a 

very recent study (Kalteniece et al., 2020),used a small fibre neuropathy 

symptom inventory questionnaire (SFN-SIQ) along with the neuropathic pain 

scale (NPS) to assess symptoms of neuropathic pain, and found that there was 

a significant association between all CCM parameters and the severity of 

painful neuropathic symptoms. 

We must emphasise that carrying out this study in a primary care setting, within 

an optometry practice meant that there were time restraints and limitations to 

resources. Electrophysiology must be carried out and interpreted by a 

neurophysiologist which was not available in primary care, and more 

comprehensive assessments of signs and symptoms would have been 

impractical for the nature of the study.  
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Another explanation for the lack of significant change in CCM parameters 

across the DNS scores may be that corneal nerve changes are the very earliest 

to occur in the early stages of disease, but then stay constant in our specific 

cohort of patients. As mentioned previously, because these patients are 

attending screening programmes, they are transferred out of the programme 

and into the hospital service if there are any concerns, leaving only stable 

patients in the screening programme.  

Another previous study also demonstrated that corneal nerve fibres change 

significantly from no neuropathy to severe neuropathy in T1DM and T2DM 

patients grouped together. In this study, patients were grouped into having no, 

mild, moderate and severe neuropathy based on the Toronto classification.  

However, when comparing patients with mild and no neuropathy, there were no 

overall significant differences in CCM parameters between these two groups.  

Only when DPN changes were classed as moderate or severe was CCM able 

to distinguish them from no neuropathy (Petropoulos et al., 2015b, Petropoulos 

et al., 2013a) . This may support our findings as, we generalise from our cohort 

that patients are stable, and therefore have generally mild levels of retinopathy 

and likely neuropathy due to them attending community screening. However, an 

explanation for Petropoulous et al. (2013) is that this study used only small 

number for patients with mild neuropathy (n=26), therefore making it difficult to 

detect small differences between this group and the group with no neuropathy. 

6.10 Limitations  

 

For practical reasons, we were unable to age-match the control subjects with 

the patient cohort. Although this was corrected for statistically, this method was 

an estimate of the effect of age within these cohort. Age-matching the control 

cohort may have automatically controlled for the confounding role of age in 

changing CCM parameters and allowed a more direct comparison between the 

two groups. 

Another limitation of the study was that there was no available information 

regarding height, triglyceride levels or Hba1c levels, which have previously 

been associated with increased risk of neuropathy (Tesfaye et al., 2005). A very 

recent study by Wang et al (2020), found that patients with T2DM and DPN had 

significantly higher levels of HbA1c(p=0.035), high-density lipoprotein(p=0.003) 
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and fasting blood glucose(p=0.026). This meant that we were unable to 

confidently conclude that any changes we found/did not find, between 

subgroups of patients with DM, were down to the grouping factor and no other 

independent factors such as HbA1c control.  

Furthermore, our cohort was made up of mainly older patients with T2DM in the 

screening population. This may be considered partially as a limitation, as we 

were unable to confidently analyse data from younger patients and patients with 

T1DM. However, it may be that our cohort, in Manchester, mirrors the 

demographic of patients attending the retinal screening service in the UK, and 

therefore adequately acts as a representative population of this specific group. 

Lastly, the use of DNS only, as a measure of clinical neuropathy is a limitation 

for addressing questions regarding level of DPN. Symptoms alone are not a 

sensitive enough measure of DPN, especially in mild cases (Tesfaye et al., 

2010). It is also subjective and not quantifiable, therefore future validation 

against quantitative measures of small fibre structure/function would be 

necessary in a screening cohort in order to confirm some of the findings. 

6.11 Conclusions 

 

This study has been the first to use CCM to assess a large cohort of patients 

with diabetes in primary care screening. Our study presents robust evidence 

that CCM can be used in the primary care community to accurately detect 

corneal nerve abnormalities in recently diagnosed patients with T2DM, prior to 

evident retinopathy and prior to symptoms of neuropathy. The findings overall 

support the current literature that CCM is a sensitive surrogate biomarker for 

DPN.  In line with current literature, the data in this thesis have highlighted the 

significant underestimations made by current automated software when 

assessing corneal nerves but recognise that before CCM may be implemented 

in primary care, developments in automated software are imperative. Further 

research should therefore focus on developing this software and validating its 

diagnostic validity for detecting early DPN in larger, age-matched cohorts in 

primary care. 
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