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Abstract

Observational studies of star formation reveal spatial distributions of Young Stellar Ob-

jects (YSOs) that are ‘snapshots’ of an ongoing star formation process. Using methods

from spatial statistics it is possible to test the likelihood that a given distribution process

could produce the observed patterns of YSOs. I determine the sensitivity of the spatial

statistical tests Diggle’s G function (G), the ‘free-space’ function (F), Ripley’s K andO-ring

for application to astrophysical data. To do this I applied each test to simulated data con-

taining 2D Gaussian clusters projected on a random distribution of background stars. By

varying the number of stars within the Gaussian cluster and the number of background

stars I determined the ability of the tests to reject complete spatial randomness (CSR) with

changing signal-to-noise. Ripley’s K and O-ring were shown to be much more sensitive

to Gaussian clusters than G and F.

I then apply the O-ring test to determine if column density alone is sufficient to

explain the locations of Class 0/I YSOs within Serpens South, Serpens Core, Ophiuchus,

NGC1333 and IC348. Star formation is known to occur more readily where more raw

materials are available, a relationship that is often expressed in the form of a ‘Kennicutt–

Schmidt’ relationwhere the surfacedensity ofYoungStellarObjects (YSOs) is proportional

to column density to some power, �. Using the O-ring test as a summary statistic, confi-

dence envelopes were produced for different values of � from probability models made

using the Herschel column density maps. four distribution models: the best-estimate of �

for the region, The YSOswere tested against four distributionmodels: the best-estimate of

� for the region, � = 0 (i.e. random) above a column density threshold and zero probabil-

ity elsewhere, � = 1, and the power-law that best represents the five regions as a collective,

� = 2.05 ± 0.20. Serpens South and NGC1333 rejected the � = 2.05 model on small scales

of ∼ 0.15 pc which implies that small-scale interactions may be influencing their distribu-

tion. On scales above 0.15 pc, the positions of YSOs in all five regions can bewell described

using column density alone.
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1

Chapter 1

Introduction

1.1 Aims and Motivations

Star formation is known to occur within molecular clouds and the distributions of young

stellar objects (YSOs) within these clouds are imprints of the underlying processes behind

star-formation. It is possible, then, from the locations of these objects in the early stages of

star formation to infer information about the processes that may affect their distributions.

Observations of young, embedded stars and their dense cloud core precursors sug-

gest that young stars predominantly form within the high column density regions of

molecular clouds. It has also been observed that very little star formation occurs at low

column densities, ≈ 6 × 10
21

NH2
cm
−2

(e.g. Onishi et al. 1998; Johnstone et al. 2004; An-

dré et al. 2010; Lada et al. 2010). This lower-limit is sometimes interpreted as a threshold

column density requirement for star formation, and is related to the critical line density

above which filaments, structures of dense material universally observed within molecu-

lar clouds, collapses and fragments.

However, YSOs are also found at column densities lower than this threshold. In

addition, while YSOs tend to be correlated with column density, other factors can also

influence star formationwithin amolecular cloud, such as turbulence andmagnetic fields.

The aim of this work is to apply methods from spatial statistics in order to investigate the

spatial distributions of YSOs. By doing so it is possible to determine if their distributions
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are consistent with a model of star formation that depends on column density alone, or if

some of these aforementioned factors need to be taken into account.

1.2 Molecular Clouds

Molecular clouds are clouds of gas and dust with masses that vary between ∼ 10
3
and ∼

10
6 "� (Williams and McKee 1997; Shu et al. 1987; Heyer and Dame 2015). Most star for-

mation occurs withinmolecular clouds and the presence of dense, gravitationally collaps-

ing cores indicates that some clouds are still undergoing active star formation. Tracking

the distribution of mass within a molecular cloud is therefore important to understand

how and where stars form within these clouds.

1.2.1 Column Density

Column density is a measure of the amount of mass along the line of sight and because

wemeasure along the line of sight the result is a density per unit area rather than volume.

Sincemost of themass inmolecular clouds is in the formofH2, thenumber ofH2 molecules

is a useful measure for the mass. H2 is, however. not directly visible at cold temperatures

(Lombardi et al. 2014) and so column density tracers are applied in order to map how

the mass in a molecular cloud is distributed. Examples of column density tracers include

molecular-line emission, dust-extinction and thermal dust-emission.

Molecular line emission functions by tracing molecules found within the gas, such

as H2CO, CS, HC3N, NH3 and CO (Shu et al. 1987). These tracers are well suited for

identifying specific features, such as dense gas, because their emission depends on their

excitation and abundances. This specificity, however, does mean that they are less well

suited for tracing the general column density. Dust-extinction traces the cloud material

by tracking how increasing cloud material affects the visibility of objects that are behind

the cloud. An early technique of tracing dust-extinction was to segment the area into a

grid and the compare the counts of stars in the grid squares on the cloud to counts of

stars in areas that are not obscured by the cloud (Lynds 1967). The issue with this star-

counting technique is that it suffers from uncertainties of

√
# , where # is the number of

stars, due to Poisson counting statistics. More recent techniques such as NICE (Lada et
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al. 1994), NICER (Lombardi,M. andAlves, J. 2001), andNICEST (Lombardi 2009)measure

dust-extinction by observing how stars behind the cloud are reddened as a function of po-

sition. Near-infrared red extinction and star-count methods as tracers are limited in their

functionality by the number of detectable background stars behind the cloud (Lombardi

et al. 2014), though this can be improved with the inclusion of mid-infrared observations

such as Spitzer (Heiderman et al. 2010).

Column density can be traced from the spectral energy distribution (SED) of the

emission of the dust. For the Herschel data, this is done by fitting a modified blackbody

function of the form (Könyves et al. 2010)

�E = �E()3)(1 − 4−�E ), (1.1)

where �E is the observed surface brightness at frequency E, �E()3) is the blackbody function

at dust temperature)3 and �E is the optical dust depth. The columndensity,Σgas, is related

to the optical dust depth by �E = �EΣgas, where �E is the dust opacity per unit mass.

For the Herschel column density maps (Könyves et al. 2010) �E is approximated by �E =

0.1 (E/1000 GHz)� cm
2/g and the dust emissivity index, �, is fixed to 2 (Hildebrand 1983).

The column density and dust temperatures for the SED are then estimated to be the values

which produce the best-fitting modified blackbody function. WithHerschel, each position

is measured at five wavelengths (70, 160, 250, 350 and 500 �m), and so SEDs can be fit

for every position within a map (e.g. André et al. 2010; Könyves et al. 2010; Men’shchikov

et al. 2010; Arzoumanian et al. 2011; Harvey et al. 2013) resulting in a column densitymap

such as that in Fig. 1.1.

1.2.2 Filaments

Observations of the column density in molecular clouds have revealed the near ubiqui-

tous presence of elongated, dense structures within the cloud commonly referred to as fil-

aments. Examples of these include the B211/B213 filament in the Taurus molecular cloud

shown in Fig. 1.2, or the filaments in IC 5146 in Fig. 1.3. Filamentary structures are seen

inmost molecular clouds, andwhile their origin is not certain, theoretical models provide

insight into their underlying physics. Ostriker (1964) found that filaments modelled as an
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Figure 1.1: Column density map of Aquila region derived from Herschel data. Figure reproduced from

(Könyves et al. 2010)

isothermal cylinder of gas have a density profile in the outer regions of � ∝ A−4
, where �

and A are the density and radius of the cylinder respectively. This is significantly steeper

than the density profiles observed in filaments which follow a relation of � ∝ A−2
(e.g.

Alves et al. 1998; Arzoumanian et al. 2011; Palmeirim et al. 2013). It was shown by Fiege

and Pudritz (2000) that the inclusion of helical magnetic fields shallows this relationship

to between A−1.8
and A−2

.

In addition to similar density profiles, filaments appear to have a universal typical

inner width of around 0.1 pc (Arzoumanian et al. 2011). The similarity between the char-

acteristic filament width and the scales at which supersonic turbulent motions transition

to subsonic suggests two potential origins: a formation due to the turbulent compres-

sion of interstellar gas, or filaments are structures formed in quasi-equilibrium with the

interstellar medium pressure (Palmeirim et al. 2013).

Filaments show evidence of being highly influential in local star formation, inOrion

A 71% of the pre-stellar population of dust cores are seen to be projected on top of fila-
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Figure 1.2: Herschel/SPIRE 250 �m image of the B211/B213/L1495 region in the Taurus molecular cloud.

Figure reproduced from Palmeirim et al. (2013).

ments (Polychroni et al. 2013). Pre-stellar cores are starless, gravitationally collapsing,

dense cores that will form a protostellar core in future, see section 1.3. If it is the case that

filaments are where most stars form, it is possible that the filaments themselves are a step

in the star formation process.

Whenmodellingfilaments as isothermal andunmagnetised, itwas shown that there

is a critical mass per unit length required for equilibrium, and when this is exceeded the

filaments either fragment or collapse depending on how much larger the line mass is

compared to the critical value

"line & "line,crit ≡ 222

B/� ∼ 16 "�/pc (1.2)

where 2B is the isothermal sound speed for molecular gas at 10 K (Inutsuka and Miyama

1997). Numerical simulations suggest that turbulence is also a significant factor in the

fragmentation of filaments and affects the form in which the filaments fragment. As the

degree of turbulence increases, the length-scales of fragmentation changes to being dom-

inated by the density perturbation scales of the turbulence (Clarke et al. 2017).
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Figure 1.3: Column density map of IC 5146 overplotted withHerschel sources. YSOs are plotted as red stars,

starless cores as blue triangles, and bound starless cores as larger blue triangles. Figure reproduced from

Arzoumanian et al. (2011).

André et al. (2010) observed that almost all of the supercritical filaments in Aquila

showed signs of recent or ongoing star formation, while subcritical filaments were gen-

erally free from signs of star formation. Fig. 1.3 shows an example of a filament with a

mass per-unit length high enough to make it gravitationally unstable (“Filament 6”), with

a greater density of bound starless cores compared to elsewhere in the region. This is

not the case, however, for every molecular cloud. It was found that in Orion A North,

when using a criticality parameter calculated from an isothermal, self-gravitating cylin-

der fromOstriker (1964), there was no correlation between the criticality of a filament and

star formation (Salji et al. 2015).

1.3 YSOs

Young Stellar Objects (YSOs) are astrophysical objects in the earliest stages of star forma-

tion. These sources are often embedded within dense material which absorbs much of

the emission from the central protostar and reemits the radiation in the infrared. It is this
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excess of infrared radiation which, in part, identifies a source as a YSO.

YSO as a term covers a range of ages and evolutionary stages depending on how

thematerial is distributed. Section 1.3.1 describes these evolutionary stages from a deeply

embedded object with an infalling disk and envelope, up to a revealed protostar with only

an optically thin disk. As the protostar evolves and thedistribution of thematerial changes

this affects the shape of the observed spectral energy distribution (SED) of the star. Section

1.3.2 describes how the shape of the SED reflects the evolutionary stage of the YSO.

1.3.1 Stages of YSO formation

YSO formation begins with the fragmentation and collapse of a filament to produce a

slowly rotating dense cores within clouds of molecular hydrogen which, themselves, gen-

tly collapse under gravity. As a cloud core collapses the kinetic energy of the falling gas

is released as heat which gently raises the temperature and density of the central core

until it becomes opaque to the infrared radiation and the temperature rise becomes more

steep. This stage, where the collapsing material is opaque to radiative cooling, is referred

to as the first hydrostatic core and it persists until the temperature of the core reaches a

point where collisional dissociation of the molecular hydrogen begins. In this stage the

energy input required to dissociate the H2 allows the core to continue to collapse without

significantly increasing the temperature. Eventually the core, with regions of atomic and

molecular hydrogen, becomes unstable and collapses once again (Stahler and Palla 2005).

This second period of collapse results in the formation of a protostar in the centre

of the cloud core and triggers the beginning of the next stage of evolution. In this stage

the central protostar is surrounded by an envelope of dust and gas which accretes onto

the protostar in an ‘inside-out’ manner (Larson 1969; Shu 1977). Most of the luminosity

at this stage is due to material from the envelope falling onto the accretion shock at the

surface of the protostar before settling onto the central object. This accretion luminosity

is given by

!acc ≡
�"∗ ¤"
'∗

, (1.3)

where"∗ and '∗ are themass and radius of the protostar respectively, and
¤" is the rate at

which mass accretes onto the protostar. Due to rotation and the conservation of angular
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momentum some of this forms a disk inside of the outer envelope (Terebey et al. 1984)

1. The surface of the accretion disk then forms a part of the accretion shock as increasing

amounts of material fall onto the disk first before making its way to the protostar. Stage

0 and Stage I objects are believed to be in this stage of evolution, where the boundary

between the two is suggested tobewhen themass of the core is equal to that of the envelope

(Andre et al. 1993).

During the next phase of protostellar evolution the material from the envelope be-

gins to preferentially fall onto the disk leading to ‘openings’ at the poles that allow colli-

mated jets and bipolar outflows. As themass of the envelope decreases, it is the remaining

optically thick disk which characterises objects as being in Stage II. And, finally, before

the protostar becomes pre-main-sequence the disk dissipates through processes such as

planetary formation and evaporationmaking the protostar visible with little surrounding

material. These sources with optically thin disks are characterised as Stage III.

1.3.2 YSO classification

As YSOs are deeply embedded within dense gas the evolutionary stage of a YSO is esti-

mated based on properties that can be observed. Beginning with the earliest objects in

star formation, dense cores, sources are distinguished between those without an internal

source of luminosity, ‘starless’ cores, and thosewith, ‘protostellar’ (di Francesco et al. 2007;

Enoch et al. 2008; Könyves et al. 2015). Not all starless cores will become protostars, only

those which are gravitationally bound will form stars in the future. Such objects are re-

ferred to as ‘prestellar’ and can be distinguished from prestellar cores by their detection

at submillimetre or millimetre wavelengths.

Once a central protostar is formed, observed YSOs are assigned a class that approx-

imately follows the evolutionary stages described in Section 1.3.1. YSOs are classified on

the basis of their spectral energy distribution (SED).

Unlike other sources which are reddened by the molecular cloud, photons emitted

by the central protostar are absorbed and reemitted by the surrounding envelope and disk

1. For slowly rotating cores the disk forms after first core, however, in cloud cores that are rotating rapidly

the disk can form before the first hydrostatic core (Bate 2011)
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Figure 1.4: (above) example SEDs for 2 "� objects at evolutionary Stages 1, 2 and 3. (below) the same SEDs

as above except the contributions to the SED from the star (blue), disk (green) and envelope (red) are shown.

Figure reproduced from Robitaille et al. (2006).

until they are degraded to the longer wavelengths which are observed. The contributions

of each of these components (the central protostar, disk and envelope) all contribute to the

shape of the spectral energy distribution (SED) which determines the value of the spectral

index,
IR, given by


IR ≡
3 log(���)
3 log�

, (1.4)

where �� is the flux density at wavelength �, is the gradient of the spectral energy distri-

bution between ∼ 2 − 24 �m. Typical ranges of 
IR given by Greene et al. (1994) are

Class 0/I: 0.3 6 
IR;

Flat: −0.3 6 
IR < 0.3;

Class II: −1.6 6 
IR < −0.3;

Class III: 
IR < −1.6;

How the structure of the surrounding gas affects the SED, and hence the spectral

index, is illustrated in Fig. 1.4 which presents simulated SEDs of YSO at Stages I, II and

III as well as the individual contributions from the protostar, disk and envelope. We can

see how the relative contributions of different structures in Fig. 1.4 reflect the same char-

acteristic properties of Stage I, II and III YSOs.



10 CHAPTER 1. INTRODUCTION

An additional method of classifying YSOs from their emission spectrum is to use

the bolometric temperature, )bol (Myers and Ladd 1993). The bolometric temperature

is the temperature of a blackbody which has the same mean frequency as the observed

continuum spectrum. It was shown by Chen et al. (1995) that )bol increases with the age

of the source, and that each class could be associated with a range of )bol:

Class 0: )bol < 70 K;

Class I: 70 < )bol 6 650 K;

Class II: 650 < )bol 6 2880 K;

Class III: )bol > 2880 K;

Because)bol increaseswith age, it is able to distinguish betweenClass 0 andClass I sources,

whereas 
IR cannot. The negative side of )bol is that because it depends on the mean

frequency of the observed spectrum it can be sensitive to the wavelengths at which data

is available. If a source is lacking longer- or shorter-wavelength data then it will bias )bol

to higher or lower temperatures respectively (Visser et al. 2002; Evans et al. 2009).

Class 0 and Class I YSOs can also be distinguished by the ratio of bolometric lumi-

nosity, !bol, to submillimeter luminosity, !submm (Andre et al. 1993), where !bol is the lumi-

nosity measured across all available wavelengths and !submm, at wavelengths > 350 �m.

Andre et al. (1993) propose that within a given cloud !submm/!bol is approximately pro-

portional to "★/"env – the ratio of the mass of the protostellar core to the mass of the

envelope – and sources with ratio !submm/!bol > 5 × 10
−3

are classified as Class 0 proto-

stars.

It is worth remembering that, ultimately, a YSOs stage and Class are two different

properties. The former is an evolutionary stage while the latter is a label given due to

observed properties, and sowhile classes should ideally represent the stage, theymay not

be accurate. For example, the observed 
 of a YSO is affected by column density along the

line of sight which is higher when the source is obscured by a more massive envelope or

behind a disk. Crapsi et al. (2008) estimate that sources with angles of inclination between

70
◦
and 90

◦
can be misclassified. They also estimate that this could mean as many as 34

per cent of Stage II sources could be mis-classified as class I or flat-spectrum sources due

to orientation alone, though it could be possible to distinguish betweenClass I and II YSOs



1.3. YSOS 11

based on the dust grains in the envelope anddisk. This is because envelopes typically have

cooler temperatures, 10 - 200 K, than disks (30 - 1000 K), and so envelopes are expected to

contain grains coated in ice and disk grains with temperatures above 100 K are not.

1.3.3 Observational Data

As mentioned earlier YSOs spend much of their lifetime surrounded by optically thick

dust and so require wavelength studies in the far-infrared and submillimetre regime to

be detected. In addition, younger YSOs are typically more magnetically active thanmain-

sequence and disk-bearing stars (Preibisch and Feigelson 2005). X-ray measurements can

then be used to distinguish these YSOs from other infrared sources (Kuhn et al. 2014).

X-ray data from the Chandra X-ray Observatory has been combinedwith infrared data from

Spitzer andother sources in theMassiveYoung Star-forming complex in Infrared andX-ray

(MYStIX) project to identify YSOs (Romine et al. 2016).

Beyond identification, spectral data is necessary to classify the YSOs into the differ-

ent classes. As discussed in Section 1.3.2, YSOs are classified using a number of metrics,

including 
IR and )bol. YSOs classified using the spectral index are done so on the gradi-

ent of the SED between 2 - 24 �m, and so require observations in both the near- and mid-

infrared to cover this range of wavelengths. The TwoMicron All Sky Survey (2MASS) has

measured near-infrared data for most of the celestial sphere in three near-infrared bands;

J (1.25 �m), H (1.65 �m) and KB (2.16 �m) (Skrutskie et al. 2006). Mid-infrared data has

been observed in a number of molecular clouds by the Spitzer cores to disks (c2d) survey

(Evans et al. 2003), the Spitzer Gould Belt survey, and the Wide-field Infrared Survey Ex-

plorer (WISE) (Wright et al. 2010). WISE observes at five bands between 3.4 and 22 �m,

an observations with the Spitzer Space Telescope cover the wavelength ranges 3.6 to 8.0 �m

with the Infrared Array Camera (IRAC), and 24 to 160 �m with the Multiband Imaging

Photometer (MIPS) (Werner et al. 2004). Dunham et al. (2015) combine 2MASS, Spitzer

and WISE photometry, in addition to SCUBA 450 and 850 �m data to construct the full

SEDs for, and then classify, 2966 YSOs.

Observations in the far-infrared and submillimeter are required for colder or more

embedded objects. TheHerschel space observatory provides data in both of these regimes,
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with the Photodetecting Array Camera and Spectrometer (PACS) and Spectral and Photo-

metric Imaging REceiver (SPIRE). As discussed in Section 1.2.1,Herschel data can be used

for tracing the gas within a molecular cloud, but it can also be used in the classification of

dense cores. Withdata from theHerschelGouldBelt survey, Könyves et al. (2015) produced

a census of the dense cloud cores in Aquila, classifying if they are either starless (lacking

a compact internal luminosity source (di Francesco et al. 2007)) or protostellar. Similarly,

Kirk et al. (2016) identified dense cores in three subregions of Orion-B (LDN 1622, NGC

2023/2024, and NGC 2068/2071) from the 850 �m emission maps from SCUBA-2.

1.4 YSO distributions within molecular clouds

1.4.1 Prestellar core distributions

As precursors to YSOs, knowledge of the distributions of prestellar cores provides both

insight and comparison to the distributions of YSOs within molecular clouds. Observa-

tions support a filament-first scenario for dense core formation with prestellar cores, and

dense cores in general, preferentially found in regions of high columndensity, for example

it was found in Perseus, Serpens and Ophiuchus that 75% of protostars were found above

�v ≥ 9.5 mag, �v ≥ 10 mag and �v ≥ 25.5 mag respectively (Enoch et al. 2008).

This is potentially due to a threshold column density required for core-formation.

It was found that the core formation efficiency (CFE), the ratio of core mass to cloud mass

within a column density bin, of candidate prestellar cores in Orion B (Könyves et al. 2020)

and Aquila (Könyves et al. 2015) both show a sharp increase at a visual extinction of

�v ∼ 7 mag and afterwards remains roughly constant.

It is argued that this threshold could be related to the critical line mass above which

filaments are thought to become unstable and fragment into cores (André et al. 2010). As

mentioned in section 1.2.2, prestellar cores and embedded protostars are preferentially

observed on top of dense filaments with a mass per unit length above the critical line

mass in Eqn. (Inutsuka and Miyama 1997). 71% of the pre-stellar population in Orion A

were foundon top of filaments (Polychroni et al. 2013) and 60%of prestellar cores inAquila

are observed on top of filaments with a critical or higher line mass (André et al. 2010).
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In addition to a column density dependence of the distribution of prestellar cores,

there is also evidence that prestellar cores form within clusters – a set of stars gathered

in space such that there is a local overdensity. (Kirk et al. 2016) analysed the clustering

properties of dense cores identified from the 850 �m emission maps from SCUBA-2 in

three sub-regions of Orion B: LDN 1622, NGC 2023/2024 and NGC 2068/2071. The clus-

ters were identified finding the minimum spanning trees of the cores (see section 1.5.2)

and then pruning branches of the minimum spanning tree longer than a critical branch

length (Gutermuth et al. 2009). It was found that 69%, 71% and 75% of cores in L1622,

NGC 2023/2024 and NGC 2068/2071, respectively, were associated with clusters. The

two-point correlation function (2PCF) and mean surface density of companions (MSDC)

(explained in detail in section 1.5.3) in these regions also appear to indicate two scales in

clustering, one at a characteristic separation of neighbouring clusters between 2 and 3 pc

and one at a separation of more distant clusters between 4 and 5 pc. A similar application

of the 2PCF in Perseus, Ophiuchus and Serpens indicates that prestellar cores in these

regions are also clustered (Enoch et al. 2008).

1.4.2 Protostar distributions

1.4.2.1 Distributions as a function of age

Using the locations of Class 0/I, Class II &Class III YSOs it is possible to get an impression

of how star formation within a cloud may have evolved over time. Because the different

classes of YSO are expected to have different characteristic time scales, the ratios of the

numbers of YSOs of different classes give a characteristic age for a region. Two ways in

which a change in the distribution as a function of age could be interpreted is that star for-

mation moved throughout the cloud over time as the gas around older stars depletes and

younger stars are forming in newly dense regions of gas, or the older stars have continually

migrated away from these regions over time.

Figure 1.5 shows the surface densities of the different classes of YSOs in the Rosette

Molecular Cloud (RMC) superimposed on top of a column density map produced by

Ybarra et al. (2013) using data from Spitzer and Chandra observations. It is clear from

Figure 1.5 that star formation in the RMC has not been a continuous and uniform process.
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By looking at the ratios of the different classes in the central cloud it appears that star

formation has progressed from being concentrated along the north-west section towards

the central dense region in the north (Ybarra et al. 2013).

As formigration it has been shown in numerical simulations that during the star for-

mation process YSOs can be ejected from their birthplaces due to gravitational interactions

with other stellar objects in an unstable multiple system (Bate et al. 2003; Bate 2009). This

ejection effect should manifest as a difference in velocity between the protostar and the

background molecular cloud. When looking at the radial velocities, the more prevalent

these ejection interactions are, the greater the velocity dispersion of protostars should be,

compared to the velocity dispersions of the molecular cloud. From a sample of 31 Class

I and flat-spectrum YSOs from different clouds, Covey et al. (2006) place a limit on the

effects of the stellar interactions on the radial velocity dispersion of ∼ 2.5 kms
−1
. As the

velocity dispersions of the star-forming regions of the molecular cloud is ∼ 1.4 kms
−1
, the

difference between the cloud andYSOvelcotiy dispersions is sometimes interpreted as the

approximate motion of a protostar with respect to its neighbouring cloud environment.

This difference produces a value of order ∼ 1 kms
−1

(Salji et al. 2015).

In general, the distributions of earlier stage YSOs aremore clustered andmore asso-

ciated with dense gas than their more evolved counterparts(e.g. Mairs et al. 2016) this can

be seen in Fig. 1.5. This has been seen in multiple regions, including in NGC 2264, where,

through application of the ‘INDICATE ’ statistic (See Section 1.5.1), that the cumulative

distribution function of each class was significantly different (Buckner et al. 2020). This

effect can also be seen in Fig. 1.6 which shows how the relative surface densities of YSOs

in different column density bins changes as a function of class in Serpens South. These

young objects are also the most likely to be near the locations in which they formed, given

the short time for migration (0.46 − 0.72 Myr) (Dunham et al. 2015) and their close associ-

ation with high column densities. Indeed, no statistically significant evidence was found

for a diffusion of the YSOs in Orion A, Orion B, California and Taurus from their sites of

formation (Lombardi et al. 2013; Lada et al. 2013).
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Figure 1.5: Stellar surface density maps of the Rosette molecular cloud overlaid on top of visual extinction

maps. The stellar surface density contours are � = 2.6, 4.6, 7.7 and 12.8 stars pc
−2

and the visual extinction

contours are Av = 8, 10, 12, 14, 16, and 20. Figure reproduced from Ybarra et al. (2013)
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Figure 1.6: Surface densities of Class 0/I, flat, Class II and Class III YSOs in different column density bins

in Serpens South. The contours (white) outline the column density bins, and the colour scale shows the YSO

surface density relative to the highest density.
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1.4.2.2 Kennicutt-Schmidt relation in local molecular clouds

As discussed in the previous subsection, young protostars are likely to be close to their site

of formation. We can therefore use the distributions of early-stage YSOs within a molecu-

lar cloud as indicators for where star formation has recently occurred within a molecular

cloud. Such observations allow us to produce and test models to better understand star

formation as a process.

A relationship of particular importance is how column density relates to star for-

mation. Observations clearly support a positive correlation between star formation and

column density. On a galactic scale, the Kennicutt–Schmidt (K–S) law is frequently used

to measure the relationship between star formation rate and column density. The K–S law

proposes a relationship of the form ΣSFR ∝ Σ�
Gas

where ΣSFR and ΣGas are the surface den-

sities of star formation rate and gas respectively, and � is the power-law index. Schmidt

(1959) initially proposed a power-law index of ≈ 2, and later observations suggest a lower

value of ' 1.4 (Kennicutt 1998).

Despite the difference in scale, K–S relations have also been measured in local star

forming regions using the surface densities of YSOs as ameasure ofΣSFR. Values of � vary

between regions thoughmost values lie between � = 1.8 and � = 2.3, which can be seen in

Table 1.1. Variations in � are in part due to differences inmethod, for example Gutermuth

et al. (2011) uses a nearest-neighbour-based method while Lombardi et al. (2013) use a

parametric density model. Some variation is due to a difference in the astrophysical ob-

jects used which, as discussed in section 1.4.2.1, have different typical relationships with

column density. Additionally, some variation is simply due to different power laws being

present in different regions.

It is interesting that these local K–S relations produce such similar values despite the

differences in methodology and region. Furthermore, in sources which look at multiple

regions with the same methodology such as Pokhrel et al. (2020), Lombardi et al. (2013)

and the results in chapter 4 the average power-law measured is ≈ 2.

A value of � describes the general change in surface density of star formation as a

function of column density; however, this does not mean the star formation is distributed
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Table 1.1: YSO Kennicutt-Schmidt power law estimates for different regions.

Region Power-law Source

AFGL 490 1.8 ± 0.3 (Pokhrel et al. 2020)

Aquila North 1.8 ± 0.1 (Pokhrel et al. 2020)

Aquila South 2.3 ± 0.2 (Pokhrel et al. 2020)

Auriga-California Molecular Cloud 4 (Harvey et al. 2013)

California 3.31 ± 0.23 (Lada et al. 2017)

Cep 0B3 2.2 ± 0.1 (Pokhrel et al. 2020)

Cygnus X 1.9 ± 0.1 (Pokhrel et al. 2020)

G305 2.50 ± 0.04 (Willis et al. 2015)

G326.4 1.91 ± 0.05 (Willis et al. 2015)

G326.6 1.77 ± 0.04 (Willis et al. 2015)

G333 2.86 ± 0.03 (Willis et al. 2015)

G351 2.30 ± 0.03 (Willis et al. 2015)

Mon R2 2.1 ± 0.1 (Pokhrel et al. 2020)

MonR2 2.67 ± 0.02 (Gutermuth et al. 2011)

NGC 2264 1.8 ± 0.1 (Pokhrel et al. 2020)

NGC 6634 2.08 ± 0.08 (Willis et al. 2015)

Ophiuchus 1.87 ± 0.03 (Gutermuth et al. 2011)

Ophiuchus 1.9 ± 0.1 (Pokhrel et al. 2020)

Orion A 1.99 ± 0.05 (Lombardi et al. 2013)

Orion A 2.2 ± 0.1 (Pokhrel et al. 2020)

Orion B 2.16 ± 0.10 (Lombardi et al. 2014)

Orion B 2.3 ± 0.2 (Pokhrel et al. 2020)

Perseus 2.4 ± 0.6 (Zari et al. 2016)

Perseus 2.1 ± 0.1 (Pokhrel et al. 2020)

S140 1.8 ± 0.2 (Pokhrel et al. 2020)

Note: Different sources use different methods and different astrophysical

objects to produce power-law estimates.

evenly throughout the entire cloud; for example, in Fig. 1.5 we can see that the class 0/I

YSOs are isolated to two small regions. Column density appears to be a strong predictor

of where stars are forming in molecular clouds; however, if column-density-independent

effects are significant enough they may influence the observed distribution of YSOs in

clouds. Using spatial analysis it is possible to analyse the distributions of YSOs within

molecular clouds to determine if they are consistent with being distributed evenly ac-

cording to a K–S law.

1.5 Methods of Spatial Analysis in Astrophysics

Statistics which describe the spatial distributions of objects in astrophysics are important

for informing models of star formation. The methods described in this section have been

used to examine the distribution of objects relative to one-another and to their environ-
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ment in order to identify types of spatial distributions.

1.5.1 Nearest-neighbour methods

Nearest-neighbour methods utilise the distance between a star and its =th closest neigh-

bouring star. Nearest-neighbour distances are useful as characteristic distances as they

scale naturally depending on the number and separations of objects in the study win-

dow. Since changing = changes the scales of interaction to which the tests are sensitive

nearest-neighbourmethods are sensitive to both large inter-cluster-scale distances, as well

as smaller distances between cluster members. Though the downside of small-= values

is that they are more sensitive to small-scale irregularities within the distribution and so

= is typically a compromise between resolution and sensitivity. The downside of nearest-

neighbour methods is that some stars will be counted more times than others as a given

star can be the nearest-neighbour to multiple stars.

Some nearest-neighbour statistics are used to test local, small-scale patterns by look-

ing at the environment within the =th nearest-neighbour distance for each individual

star. Examples of local statistics include the stellar surface density maps of Gutermuth

et al. (2011) discussed in section 1.4.2.2, where the stellar surface density at grid posi-

tion [8 , 9] is given by Σ(8. 9) = =
�A2

=(8 , 9)
, where A= is the distance to the =th nearest star, and

‘INDICATE’ (Buckner et al. 2019), a statistic which uses the number of stars within a 5th-

nearest-neighbour distance to determine if individual stars are locally clustered compared

to a random field.

Other nearest-neighbour techniques look at the distribution of nearest-neighbour

distances to describe more global features of the data-set. These often include looking

for characteristic scales such as the median distance (Masiunas et al. 2012) or peaks in his-

togramsof nearest neighbourdistributions (Gutermuth et al. 2009). Some studies compare

the distribution of nearest-neighbour distances to distributions measured from random

realisations to compare to randomness (e.g. Teixeira et al. 2006).
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1.5.2 Minimum Spanning Tree

The minimum spanning tree (MST) is the unique set of edges connecting a collection of

stars2 that minimises the total edge length with no cycles, producing a network. The no

cycles condition means that there are no connected loops within the tree, and so each

star is connected to each other star via a single path. Similarly to the nearest-neighbour

methods which look at the distributions of nearest-neighbour distances, global statistics

can be applied to the distribution of branch lengths with a MST. In fact, the MST contains

every first nearest-neighbour distance, with some additional edges to link isolated sub-

clusters, and so should produce similar results.

The advantage of the MST is that it connects every star into a network, effectively

linking members into a single cluster. Clusters can then be separated from the tree by

‘pruning’ specific edges, and, because there are no cycles, each sub-cluster is a MST to

which global statistics can be applied. This means that the results of the global and local

statistics applied to sub-clusters are directly correlated to the methods used to identify

clusters as they both stem from the MST.

Because the MST can identify clusters, methods have been developed that describe

how stars are distributed within a cluster. One example is the Cartwright andWhitworth

Q−parameter (Cartwright andWhitworth 2004), which is the ratio of the normalisedmean

edge length from the MST to the normalised mean point separation. The measured val-

ues of Q then correspond to a different type of structure within the cluster, either fractal

substructure (0.45 . Q < 0.8), a uniform distribution (Q ≈ 0.8), or a smooth radial distri-

bution (0.8 . Q < 1.5).

Another example of a global test statistic is the total edge length of theMST. Cantat-

Gaudin et al. (2018) calculate the total edge length, ;obs, for a cluster and compare it to the

mean total edge length from 2000 random circular distributions with the same number of

stars. If ;obs is smaller than the random mean by more than one standard deviation the

distribution is classified as non-random. I recommend, instead, testing if ;obs is among

the 2:(B + 1)th most extreme total edge lengths measured from the random distributions,

2. In general the objects that are connected with a MST are referred to as nodes but I will use ‘star’ to keep

language consistent between methods.
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where B is the number of random simulations and : = 
/2, where 
 is the desired signif-

icance level of the test (see section 2.3). This method has two main advantages: the first is

that it does not assume aGaussian distribution of total edge lengths in the simulation, and

the second is that it is a two-sided test which can identify both clustering and inhibition.

1.5.3 Pair correlation functions

Pair correlation functions look at the complete set of inter-point distances to describe how

points are distributed relative to one another. The two most common forms of pair corre-

lation function in astrophysics are the two-point correlation function (2PCF) (Davis and

Peebles 1983) and the closely related Mean Surface Density of Companions (MSDC) (Lar-

son 1995).

The 2PCF, F(A), is defined as the excess probability of finding a star at a distance A

from another star, and can be estimated with the natural estimator (using the notation of

Enoch et al. (2008))

F(A) = �B(A)
�A(A)

− 1, (1.5)

where �B(A) is the number of pairs with separation between log(A) and log(A + 3A), and

�A is the number of pairs within the same separation bin for a random distribution. The

MSDC is the surface density of stars as a function of distance from another star; it is related

to the 2PCF by

ΣMDSC(A) = �[1 + F(A)], (1.6)

where � is the average stellar density across the entire study region. Spatial features of

the distribution can then be interpreted directly from the shape of the pair-correlation

function, or by comparison of the results to expecteddistributions under a null hypothesis.

Results from the 2PCF can tell us some direct information about the distribution.

We can see fromEqns. 1.5 and 1.6 the expected values of the 2PCF andMSDC for a random

distribution of stars are 1 and � respectively. If measured values are higher than random-

ness it indicates scales that show clustering, and lower values indicate scales showing

regularity or inhibition. Because pair-correlation functions use all of the inter-star dis-

tances, they are able to cover a large range of spatial scales, and so are particularly good
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at indicating scales with interesting features, like clustering.

What requires care, however, is interpreting the underlying distribution measured

by the pair-correlation function because multiple distributions can produce the same re-

sult. As an example, it was found that the MSDC of the pre-main sequence stars in the

Taurus–Auriga molecular cloud and the Orion Trapezium cluster showed two distinct

power-law slopes with a break at ∼ 0.4 pc (Larson 1995; Simon 1997) and a power-law of

≈ −2 on large-scales. This break in power-law was interpreted as a change from a binary

regime on small scales to a fractal distribution at large scales. It was shown, however, by

Bate et al. (1998) that theMSDCof Taurus–Auriga can also be fit by amodelwith randomly

distributed clusters of stars, and, Orion Trapezium can be fit by a sphere of stars with a

uniform volume density in the core and a volume density proportional to A−2
outside of

the core.

1.5.4 Summary

I have introduced three of the types of methodsmost commonly usedwithin astrophysics

to analyse the spatial distributions of YSOs, and provided examples as to how they have

been applied. As I have shown, each of these methods measure a different property of

the spatial distribution and can be applied in different ways depending on the objective

of the study.

Nearest-neighbour methods are useful for finding characteristic scales associated

with different levels of interaction because, unlike pair-correlation functions which look

at all of the inter-point distances, nearest-neighbour methods use the subset of inter-

point distances defined by =. The MST is a useful tool in studies of clusters – especially

where only a subset of the points within a study region are of interest – and, finally, pair-

correlation functions are good at identifying clustering and regularity at different scales.

While statistics can be constructed for theMST, such as the total branch length, these

are comparable in sensitivity to tests using the first-nearest-neighbour distances except

they require the additional step of constructing the MST. The nearest-neighbour methods

and pair-correlations functions have the additional advantage of analytical solutions for
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uniform random distributions; these allow for easier comparisons of measured distribu-

tions to randomness.

In the next chapter I introduce four methods from spatial statistics, two nearest-

neighbour methods, one pair-correlation function and the integral of the pair-correlation

function. I have chosen these methods as they are statistics designed to analyse complete

spatial locationdata (i.e. they look at every starwithin a study region rather than a subset).

I will also introduce spatial point processes, which are models I can use to distribute points

within a study region, and how, by considering star formation as a spatial point process,

the statistics I have chosen will help in analysing the distributions of YSOs.
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Chapter 2

Introduction to Spatial Statistics

2.1 Introduction

Spatial statistics provides a framework to understand the processes which underlie the

spatial distributions of objects. Methods from spatial statistics have been applied in awide

range of fields including ecology (Barot et al. 1999;Wiegand et al., 2009), geophysics (John-

son 2017) and astrophysics (Davis and Peebles 1983; Larson 1995; Kauffmann et al. 1999).

This chapter will introduce some core concepts of spatial statistics which will be applied

in chapters 3 and 4.

There are two important concepts in spatial statistics: the spatial point process and

the spatial point pattern. A spatial point process is amechanismwhich is used to generate

a number of points, called events, in a study region and a spatial point pattern is a realisa-

tion of thismechanism. The objective of applying spatial statistics is to consider properties

of an observed distribution of events and infer details of the spatial point process thatmay

have produced the spatial point pattern. In astrophysics, for example, we can consider star

formation to be a stochastic process and populations of YSOs to be events and ask what

form of spatial point process could have produced observed YSO distributions.

The first spatial point process that is often considered is that of complete spatial

randomness (CSR) (see section 2.4.1). With CSR, the probability of placing an event is

uniform across the entire space, and the number of events within an arbitrary region fol-
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lows a Poisson distribution with mean �|�| where � is the first-order intensity and |�| is

the area containedwithinA.While distributions of objects of interest are typically not ran-

dom, a preliminary comparison to CSR is useful as a comparison to CSR reveals whether

objects are more or less aggregated than random. This can be important as in any ran-

dom distribution of points one would expect to find small areas of aggregation which by

eye could appear significant. A rejection of CSR using spatial statistics then informs us

that processes of interest are present, and whether these processes result in statistically

significant aggregation or regularity.

What follows analysis of CSR is the application of models which are informed by

knowledgeof the system (see Section 2.4). Thesemodels containfirst-order effects, second-

order effects, or some combination of both. First-order effects affect the number of events

as a function of global position, while second-order effects affect the number of events as

a function of position relative to other events.

In section 2.2 four of the most commonly applied summary statistics, Diggle’s G

function (G), the ‘free-space function’ (F), Ripley’s K function (K) and the O-ring statis-

tic (O), are discussed. The generation of global confidence envelopes which are used to

test null hypotheses are introduced in section 2.3 and, finally, the two models which the

distributions of YSOs will be tested against, CSR and the inhomogeneous Poisson point

process in section 2.4.

2.2 Summary Statistics

When examining spatial point patterns, one method of analysis is to calculate a summary

statistic for the pattern anddeterminewhether themeasuredvalue is consistentwith some

null hypothesis. As discussed in Section 4.1, often the first null hypothesis is that of CSR,

a patternwhich can be producedwith a homogeneous Poisson point process. For CSR the

distribution of the number of events in regions s within the study space follows a Poisson

distribution with mean �|s |, where � is the first-order intensity of the process and |s | is

the area contained within s.
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Figure 2.1: Visual schematic of summary statistics G, F, Ripley’s K and O-ring. The stars show locations

of events for one realisation of CSR, the circular markers are the arbitrary positions used by F. The high-

lighted border in G and F shows the regions where stars/positions will be excluded by the edge-correction

method. The shaded areas in Ripley’s K and O-ring are those which intersect between the study region and

the circle/annulus where points are counted for a given A.
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2.2.1 First-Order Statistics

First-order effects produce large-scale variation in the positioning of events, where the

first-order intensity, and therefore the mean number of events per unit area, is a function

of position, �(G)|s |. The first-order intensity is given by the equation (Diggle 2013)

�(G) = lim

|3G |→0

{
E[#(3G)]
|3G |

}
, (2.1)

where �(G) is the first-order intensity at position G, 3G is the small region containing G,

E[#(3G)] is the expected number of events contained within 3G and |3G | denotes the area

within 3G. Processes where �(G) is a constant, �, are called said to be stationary. These

effects are typically environmental as the probability of an event being in region s has no

dependence on neighbouring stars. For CSR the probability of an event having a nearest

neighbour distance less than or equal to F is 1 − 4−��F2

, which can be tested by looking

at the distribution of event-event and position-event nearest neighbour distances using

Diggle’s G function and the free-space function.

The first test, Diggle’s G function, is an estimate of the cumulative probability distri-

bution of nearest neighbour distances between events. For a given distance, w, the uncor-

rected G(w) is the number of events with a nearest neighbour closer than w divided by the

total number of events (Diggle 2013); see Fig. 2.1. However, given that events closer to the

boundaries of the test region have fewer neighbours thanmore centrally located events an

edge correction is needed. For G and F use the bordermethod of edge-correction, wherein

only events with a distance to the closest boundary, bi, greater than w are used to estimate

G(w) (Dale and Fortin 2014). For rectangular-shaped windows this method is relatively

easy to implement. The region where 18 ≤ F is shown in Fig. 2.1 by a green border. It is

worth noting that the border method is one of many edge-correction methods including

the Kaplan-Meier estimator (Baddeley and Gill 1997).

The free-space function (F) is similar to G except it is an estimate of the cumulative

probability distribution of nearest neighbour distances between randomised positions in

the studywindowand their nearest event, whichwill be referred to as xi (see Fig. 2.1). This

makes F more sensitive to patterns with empty space and aggregation, hence the name
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‘free-space’ function. Similar to G, F was also calculated using the border edge-correction

method. In equation form G and F are written as (Gignoux et al. 1999)

G(F) = #{F8 ≤ F, 18 > F}
#{18 > F} (2.2)

F(G) = #{G8 ≤ G, 18 > G}
#{18 > G} , (2.3)

where #{. . . } is shorthand for the number of positions or events that satisfy the condition.

For the case of CSR the expected value for G(F), E[G(F)], has the value, E[G(F)] = 1 −

4−��F
2

(Dale and Fortin 2014; Feigelson and Babu 2012). E[F(G)] is identical. For CSR G

and F are equal, however departures from CSR cause these values to differ due to their

sensitivities to clustering and empty space respectively. G and F may also be combined

to form other measures, such as the Lieshout-Baddeley J function, �(A) = 1−G(F)
1−F(G) which is

less sensitive to edge-effects compared to � and � (Feigelson and Babu 2012).

2.2.2 Second-Order Statistics

Second-order tests look at the distributions of pairs of event, observing the change in

probability compared to a random distribution of an event being within, or at, a distance

A from another star.

Ripley’s K is one of themost commonly used spatial statistics. Multiplying K by the

first-order intensity of the point pattern gives the expected number of events within the

distance A of an arbitrary event excluding the central event (Wiegand andMoloney 2004),

�K(A) = E[#{points in area s}], where s is a circle of radius A centred on an arbitrary event.

Numerically K can be estimated with (Dale and Fortin 2014)

K(A) = |G|
#2

=∑
8=1

8≠9

=∑
9=1

9≠8

ℎ8(A)�A(8 , 9), (2.4)

where # is the number of events, |G| is the area of the test region G, ℎ8(A) is a weighting

allocated to each event for edge-correction purposes and �A(8 , 9) is a selection function

taking the value of 1 if 38 9 ≤ A and 0 otherwise. 38 9 is the distance between points 8 and 9.

In this case ℎ8 = |s|/|G ∩ B8 |, the inverse of the proportion of the circle B8 around event i
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that intersects with G. This area can be calculated algebraically for rectangular windows

and computationally for arbitrarily shaped regions (see Section 2.2.3). Fig. 2.1 presents

(B8∩G) as a highlighted area around point 8, and points inside the highlighted area satisfy

�A(8 , 9). K̂(A) is not visually intuitive, however the difference between K̂(A) and the expected

value if the pattern was CSR, ��A2
, gives a statistic that, while it does not contain more

information, reduces the variance and is more visually intuitive (Dale and Fortin 2014),

L(A) =
√

K(A)/� − A. (2.5)

For this convention, positive values of L(A) imply clustering/aggregation and negative

values imply overdispersion of the points. For this and the next chapter where Ripley’s

K is applied the L function will be used for plotting results, however the results will be

discussed under the name Ripley’s K.

The O-ring statistic, sometimes referred to as the neighbourhood density function

(Perry et al. 2006) or the mean surface density of companions (MSDC) (Larson 1995), is

similar to K except it is calculated using annuli instead of circles. The statistic is ameasure

of the average density that an event would observe at a given distance A,

O(A) = |G|
#2

=∑
8=1

8≠9

=∑
9=1

9≠8

ℎ8(A)�A(8 , 9) (2.6)

where �A(8 , 9) is a selection function, taking the value of 1 if A− @ ≤ 38 9 ≤ A+ @, with @ being

the half-width of the annulus (see Fig. 2.1), and ℎ8 is a weighting for edge correction. ℎ8

is the inverse of the proportion of the area of the annulus that lies within the boundaries.

With , each circle of a given radius contains all of the points thatwere previously counted

at smaller radii and as such each  measurement is not independent of those measured

before it; however, annuli do not need to overlap, and, as such, the values for O(A) are able

to be uncorrelated across the set of radial values A8 . This is true for separations greater

than 2× @. Using non-correlated separations allows an analytical approachwhen creating

confidence envelopes (see Section 2.3). For CSR E[O(C)] = �, so values larger than �

indicate a greater-than-average density at that distance, and vice-versa. O-ring requires
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a choice of width which introduces the problem of binning. A rule of thumb is to begin

with

@ = �/
√
� (2.7)

with � taking values between 0.1-0.2 (Law et al. 2009; Yongtao 2006) and change as appro-

priate to maximise smoothing of the data while minimising loss of information.

2.2.3 Calculating Weights

When analysing spatial statistics it is often not the case that every possible spatial point has

been mapped or labelled within the study window. This causes an artificial discontinuity

at the boundaries of where the data was collected. To counter these edge effects a number

of methods are used. In this section I will explain the methods of computing one method

in particular, the area of the intersect between a circle and a studywindowwhen the circle

is constrained to be centred within the study window.

A general brute-force method suggested in Dale and Fortin (2014) is to place reg-

ularly spaced sectors around the point and then count the number that are within the

boundary. This method works for even irregular boundaries and the accuracy of the so-

lution can be improved by adding more sectors. The negative side of this method is that

a larger number of sectors comes at a greater computational cost, which is made more

severe by patterns withmore events. If the study region is broken up into cells then calcu-

lating the amount of area within the study region is similarly calculated by counting the

area within the cells which both lie within the circle and the study window.

If, however, the study region is a rectangle then I recommend the following analyt-

ical method which provides quicker code times and more accurate solutions. There are

four different ways in which a circle with a radius less-than-or-equal-to half the length of

the shortest side of the rectangle can interact with the boundaries, as shown in Fig. 2.2,

and even more for larger radii. An effective edge-correction algorithm needs to be able

to account for all of these. Fortunately, most of the area calculation can be performed by
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Figure 2.2: The differentways inwhich a circle can overlapwith a rectangular studywindowwhen the radius

of the circle is less than half of the side length.

simply finding the area above a chord,

� =
�A2

2

− A2

arcsin

(
ℎ

A

)
− ℎ
√
A2 − ℎ2

(2.8)

where A is the radius of the circle and ℎ is the height of the chord. The problem is then

simply finding the relevant values of ℎ.

Because the study region is a rectangle finding chords is simply a matter of locating

which boundaries are at a distance less than A with ℎ = 1 − A, where 18 is the distance

to the 8th boundary. When none of the rectangle’s corners have been enveloped by the

circle each segment is isolated and so the area of the circle outside of the study window

is simply the sum of the areas of the individual segments.

In the case where a corner is within the circle, the segments formed by the bound-

aries overlap and the overlapped area is then counted twice. This can be accounted for by

calculating and subtracting the overlapped area, so that it is counted only once. The over-

lapped area can be broken down into a right-angled triangle plus a segment, as demon-
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by

bx

Figure 2.3: Diagram presenting the breakdown of the area contained within an overlapped corner.

strated in Fig. 2.3, where the sides of the triangle are given by

� =
√
A2 − 12

G − 1H (2.9)

� =
√
A2 − 12

H − 1G , (2.10)

where 1G and 1H are the distances between the centre of the circle and two adjacent bound-

aries, and the height of the remaining chord is given by

Ω =

√
1

2

(
A2 + 1G

√
A2 − 12

H + 1H
√
A2 − 12

G

)
. (2.11)

The final algorithm to sum the area outside of the rectangle is to add together the

segments formed by crossing the boundaries of the study region and then subtract the

area outside of each corner. The area inside the rectangle is then �A2
minus the area

outside the rectangle. This works for any size of circle and any number and combination

of corners and edges crossed by circle and can be extended to annuli by simply applying

the algorithm to the inner and outer radii of the annuli.
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2.2.4 Applying to Grids

The equations discussed in Sections 2.2.1 and 2.2.2 require some adaptation to function

when applied to spaces that are not continuous. Such is the case in Chapter 4 where the

O-ring statistic is applied to data stored within arrays. The following methodology by

Wiegand and Moloney (2004) is therefore applied to gridded data to calculate O-ring.

O(A) =
∑#
8=1

Points[RF
8
(A)]∑#

8=1
Area[RF

8
(A)]

, (2.12)

where R
F
8
(A) is an annulus with radius A and width F = 2@ centred on the ith star, and the

operators Points[RF
8
(A)] and Area[RF

8
(A)] count the number of events and area contained

within R
F
8
(A) respectively. If border boundary conditions are applied then only the points

and area within the intersection of R
F
8
(A) and the study region are counted.

The number of events within R
F
8
(A) in a grid is defined by

Points[RF
8 (A)] =

∑
D

∑
E

S(D, E)P(D, E)IA(GD,E , HD,E , G8 , H8). (2.13)

Here, D and E are the rowandcolumn indices of thegrid respectively. S(D, E) is an indicator

function equal to 1 if cell (D, E) is contained within the study window and zero otherwise

and P(D, E) is the number of events contained within (D, E). Finally, IA is another selection

function to determine if a cell is within the annulus. The Area operator within Eqn. 2.6 is

Area[RF
8 (A)] =

∑
D

∑
E

S(D, E)A(D, E)IA(GD,E , HD,E , G8 , H8), (2.14)

where A(D, E) is the amount of area contained within cell (D, E).

2.3 Significance Testing

A summary statistic produces a single value (in this case at a given A) to represent a cho-

sen facet of the data being measured. This value can be compared to the distribution of

values the summary statistic takes under some null hypothesis,�0 to determine if the null

hypothesis can be rejected with some significance level, 
. The distribution of a summary
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statistic under a simple null hypotheses, such as that of CSR, can sometimes be found

analytically (Wiegand et al. 2016); otherwise it may be sampled computationally through

repeated realisations of �0.

To test the significance of a singlemeasurement it is sufficient to find the distribution

of the statistic under the null hypothesis and determine if the measured value is among

the :th-most-extreme values where, for a two-sided distribution,


 = 2:/(= + 1) (2.15)

and = is the number of simulated patterns of �0. However, when distributions are tested

against many spatial scales their significance may be determined by the application of

global confidence envelopes.

2.3.1 Confidence Envelopes

A confidence envelope represents the uncertainty in the summary statistic under �0 as a

function of radial distance. If the confidence envelope is exceeded then �0 is considered

to be rejected with the significance level attributed to the confidence envelopes.

A normal pointwise envelope tests if an observed statistic, )1(A), is among the :Cℎ

most extreme values among the set of )8(A) values for i = 1, . . . , n+1, where n is the number

of simulated patterns for a null hypothesis�0. A pointwise envelope can then reject a null

hypothesis with the probability in Eqn. 2.15 at a single distance scale A if the envelope is

exceeded. This probability is, as discussed earlier, valid for testing only a single distance

scale as every individual spatial scale constitutes its own independent test. The impact of

testing multiple scales is that the probability of rejection increases (above 2:/(= + 1)) with

every additional measurement. Functionally this means that the spatial scale being tested

must be chosen in advance of plotting the envelope. Visually inspecting the pointwise

envelope is equivalent to simultaneously testing every spatial scale looking for examples

of statistically significant results and is an example of data dredging.

Rather than pointwise envelopes global confidence envelopes cover the range of

acceptable values of the summary statistic and, if it is exceeded, rejects �0 with the pre-
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determined significance 
. Unlike a pointwise envelope, a global confidence envelope is

one which allows simultaneous testing of all probed radial distances while keeping the

probability of rejection controlled, meaning that the graphical plot of )1(A) among the en-

velopes is a valid tool for testing hypotheses, as well as looking for scales at which �0

is rejected. The global envelopes described here are directional quantile maximum absolute

difference (MAD) envelope tests, following the description from Myllymäki et al. (2017),

where the lower and upper bounds are given by

)D
low
(A) = )0(A) − D
 |)(A) − )0(A)| (2.16)

)D
upp
(A) = )0(A) − D
 |)(A) − )0(A)| (2.17)

respectively, where )0(A) is the expected value under �0, )(A) and )(A) are the 2.5

per cent upper and lower quantiles of the distribution of )(A) under �0 and D
 is the

parameter used to determine the confidence level of the envelopes. If the distribution of

)(A) is not known then it can be estimated frommeasurements of simulated patterns)8(A),

for 8 = 2, 3, . . . , = + 1.

The D8 values are calculated using,

D8 = max

[
5 (A)−1()8(A) − )0(A))

]
(2.18)

where 5 (A) is

5 (A) =


)(A) − )0(A) if {)(A) ≥ )0(A)}, or

)(A) − )0(A) if {)(A) < )0(A)},
(2.19)

and D
 is the 
(= + 1)th largest value from the collection of D8s.

It is possible to produce global confidence envelopes analytically without requiring

simulation when the distribution of a statistic is known (Wiegand et al. 2016). These ana-

lytical envelopes function best when the tests for each A are independent, which for O-ring
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Figure 2.4: Comparison of analytical (red) vs empirical Monte Carlo (blue) confidence envelopes for O-ring

for CSR with � = 0.133 in a 30x30 arb. units area.

requires that each A position be offset from the previous by at least @ and is not possible for

Ripley’s K due to the nature of the test. While these analytical envelopes were not used,

they validate the empirical envelopes, as shown in Fig. 2.4.

2.3.2 Envelope Examples

Envelopes require three components, a null hypothesis, knowledge of how the chosen

statistic is distributed under�0 and a significance level, 
. Section 2.4 describes twomod-

els which can be used as a basis of a null hypothesis as well as how to produce realisations

of the processes, and Section 2.3.1 describes how to take a set of measured statistics ()8(A),

for 8 = 1, 3, . . . , = + 1) and convert them into a confidence envelope.

Fig. 2.5 demonstrates two examples of spatial point processes, alongwith the results

measured with the methods described above. The left-hand side shows a realisation of

CSRwith � = 1 keeping the number of events constant. In this example all of the statistics

agree that CSR cannot be rejected as a null hypothesis for the spatial point process as they

remain within the confidence envelope.

The right-hand side demonstrates a single centralised cluster produced from a uni-

form circular probability density function with radius ' = 3 – an inhomogeneous Poisson

process with � = 0 outside the circle. Though there is some disagreement about which
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Figure 2.5: Left: (above) Realisation of CSR with � = 1.0, (below) results of G, F, K and O-ring in blue with

95 per cent global confidence envelopes for CSR in red. Right: (above) Realisation of centralised cluster with

� = 1.0 and ' = 3, (below) G, F, K and O-ring results in blue with 95 per cent global confidence envelope for

CSR in red.

spatial scales show this deviation, all four statistics reject CSR for this pattern. K and O-

ring are used to study the second-order effects of the spatial point process; however, the

cluster example in Fig. 2.5 is not a product of second-order effects. This is because the star

positions were drawn from a non-homogeneous uniform probability distribution, and as

such the probability of placing a star was independent of the presence of any existing

stars. The deviations, therefore, are due to large first-order effects which have given the

impression of clustering due to second-order effects: a phenomenon known as virtual ag-

gregation (Wiegand andMoloney 2004). Because of this, when the rejection of CSR using

O-ring and K are discussed, the nature of the effect (either first or second-order) will not

be commented on – only that themeasured pattern is consistent or inconsistent with CSR.

This cluster example also demonstrates how virtual aggregation can manifest due

to the choice of study window. As discussed, the points within the cluster are uniformly

distributed and so a study window contained entirely within the cluster would detect no
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significant deviation fromCSR–assuming�was recalculated for thenewspace. However,

because the window is larger than the cluster the average density assigned to the space is

lower which makes the point spacing within the cluster more statistically significant. It is

therefore important to consider the boundaries when testing for a given null hypothesis.

Excursions from the envelope represent spatial scales at which the null hypothesis

used to produce the envelope can be rejected. It is important, however, to understand

what the tests are measuring to be able to interpret these regions. O-ring is a measure

of the average density that would be observed at a distance A from an event, therefore an

excursion at a given scale is indicating a significantly over or under-populated region. L,

being a cumulative statistic, is measured up to a given radial distance and describes up to

which scales a pattern rejects the null hypothesis of the envelope. For this reasonO-ring is

typically easier to interpret though both statistics contain the same information, as O-ring

is related to the differential of K. Therefore, any scales indicated by excursions are both a

function of the statistic and the null hypothesis represented by the envelope.

2.4 Models

Measured summary statistics are compared to their distributions under an assumed null

hypothesis spatial point process. Numerous types of models exist within the literature

that encompass different mechanisms by which events may be distributed, these include

clustering, inhibition and environmental mechanisms as well as their combinations.

2.4.1 Complete Spatial Randomness

Complete spatial randomness (CSR) is a stationary Poisson point process where the prob-

ability of placing an event is unaffected by either location or the presence of other events.

One measure of a stationary Poisson point process is that the first-order intensity (given

by Eqn. 2.1) of the process is a constant value across the entire space.

Another aspect of a homogeneous Poisson process is that the counts of events, # ,

within areas, s, follow a Poisson distribution with a mean �s, i.e.

%�s(#) =
(�s)# 4−(�s)

# !

. (2.20)
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Once again, this is because the first-order intensity, �, is a constant across the entire study

region.

Because CSR represents a state of complete non-interaction it is often the firstmodel

which distributions of events are tested against as the rejection of CSR could imply that

the locations of events (or stars) is influenced in some way. For example, a pattern with

an O-ring statistic which exceeds the upper bound of a CSR confidence envelope tells us

that the events are more clustered than would be expected from a random distribution,

as well as the scales at which the events are clustered.

What remains for the homogeneous Poisson processes is an estimate of �. The first-

order intensity can be estimated from the data; however, unless the estimated function, �̂,

is equal to the � of the underlying point process, the simulated patterns will be made by

a different random process to the original. This is possible because the number of events

in a realisation of a Poisson process is expected to follow a Poisson distribution. If �̂ is

not equal to � the Monte Carlo tests are invalid which manifests as a more conservative

test. The alternative is to keep the number of points used in the realisations constant to

produce an exact Monte Carlo test(Baddeley et al. 2014).

2.4.2 Inhomogeneous Poisson Point Processes

Unlike CSR, the first-order intensity of an inhomogeneous Poisson point process is a func-

tion of position, �(G), but is similar to CSR in that the probability of placing an event is

independent of neighbouring events. Because of these two points first-order models are

sometimes attributed to environmental factors, as one might expect to find a gradient

in the concentration of a population following the availability of materials, nutrients or

habitability.

Given a first-order intensity function, the number of events in s follows a Poisson

distribution with a mean number of events given by,

〈#〉 =
∫
|s |
�(G)3G. (2.21)

Simulating an inhomogeneous Poisson process is then equivalent to sampling a pdf given



40 CHAPTER 2. INTRODUCTION TO SPATIAL STATISTICS

by �(G).

Lewis and Shedler (1979) suggests the following algorithm for efficiently producing

realisations of inhomogeneous Poisson point processes by random thinning. First, pro-

duce a realisation of a homogeneous Poisson process with a first-order intensity equal to

the maximum of �(G). Then loop over each of the events with coordinates (-,.), gen-

erating a random number, * , from the interval (0, 1), and retaining the event if * ≤

�(-,.)/�★, where �★ is the maximum of �.

For a study region representedbyagrid, however, I propose the following algorithm

which does not require thinning and allows for cells which cover different areas. First,

produce a normalised pdf by calculating for each cell the probability of finding an event

in D, given that the event has survived placement,

prob(D |S) = �(D)|D |∑
E �(E)|E |

, (2.22)

where D and E are cell indices, |D | and |E | are cell areas and S indicates the event has sur-

vived placement andwas not lost while thinning. Then produce an array by cumulatively

summing over prob(D |S), �D = ΣDE=1
prob(E |S). This maps each cell to an interval between

0 and 1: (0, �1) for D = 1 and [�(D−1) , �D) otherwise. To position an event a random value,

* , is generated and an event is positioned in the cell with the relevant interval.

We can see in Eqn. 2.22 that prob(D |S) is equal to the expected fraction of events

within D and so makes intuitive sense, and I now present the derivation of Eqn. 2.22

to show that it produces the desired behaviour. The joint-distribution to be sampled is

composed of two parts: a probability proportional to area the cell and a probability pro-

portional to the first-order intensity in the cell.

Using the product rule I present the probability of placing an event in D and sur-

viving,

prob(S, D) = prob(S|D) × prob(D), (2.23)

and by applying Bayes’ theorem we can see that the probability of finding an event in D
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given that it survived placement is

prob(D |S) =
prob(S|D) × prob(D)

prob(S) . (2.24)

The likelihood and prior of Eqn. 2.24 are the probability of an event surviving

placement, given that it has has been placed in D and the probability of placing an event

in D due to its area respectively. These two terms are given by

prob(S|D) = �D∑
E �E

, (2.25)

and

prob(D) = �D∑
E �E

. (2.26)

Note that the probability given to survival in Eqn. 2.25 is not that of Lewis and Shedler

(1979) and is instead the normalised first-order intensity.

We can calculate prob(S) by marginalising prob(S, D) over all cells to find

prob(S) = ΣD�D�D
ΣE�EΣE�E

, (2.27)

Substituting Eqns. 2.25, 2.26 and 2.27 into Eqn. 2.24 gives us the final result of Eqn. 2.22.

The left panel of Fig. 2.6 shows the positions of the Class 0/I YSOs in Serpens South

with an example realisation of Eqn. 2.22 with �(D) equal to

�(D) ∝ Σ2.05

Gas,D
, (2.28)

where ΣGas,D is the column density in cell D.
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Figure 2.6: (left) Class 0/I YSOs in Serpens South and (right) random realisation of YSOs with � = 2.05 (see

Section 4.4.4.3) plotted on Herschel 18.2′′ column density maps.
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Chapter 3

Applied Spatial Statistics

3.1 Introduction

In astrophysics, studies of star-formation and how it evolves over time consider the spatial

distributions of young stars with respect to each other and the environment. In general,

earlier stage YSOs are more densely clustered and situated closer to the densest regions

of a cloud, while the more evolved YSOs tend to be more dispersed and further removed

from dense gas (see section 1.4.2.1). However, the process producing this difference is

uncertain.

YSOs which are spatially related are sometimes grouped together into clusters and

properties of these clusters are investigated to provide insights into the physics underlying

the distribution. These clusters often have members being chosen via some algorithm for

example the minimum spanning tree (MST) (Gutermuth et al. 2009) (see section 1.5.2).

Using the methods from spatial statistics introduced in chapter 2 it is possible to identify

the presence of clustering within a dataset, and whether that clustering is statistically

significant.

This can be done by testing if distributions of YSOs are consistent with the spa-

tial point process of CSR. If we assume distributions of YSOs are realisations of a star-

formation spatial point process then a rejection of CSR indicates the presence of clustering

or aggregation greater than onewould expect from a randomdistribution. This is because



44 CHAPTER 3. APPLIED SPATIAL STATISTICS

CSR represents a state of complete non-interaction between stars, and between stars and

their environment.

Within astrophysics, statistics such as the two point correlation function (2PCF) and

MST tend to be used to classify the degree of clusteringwithin a system rather than testing

if the distribution has been produced by a random mechanism. This is not surprising, as

systems within astrophysics are not usually assumed to be entirely random. On the other

handmethods from spatial statistics are applied frequently in ecology and epidemiology,

where it is less clear that features of interest such as trees and disease occurrences could

be correlated and a statistically significant deviation from what is expected from CSR is

cause for further study (Barot et al. 1999; Wiegand et al., 2009; Velázquez et al. 2016).

In this chapter I will apply the four methods introduced in chapter 2 – Diggle’s G

function (G), the ‘free-space’ function (F), Ripley’s K function (K) and the O-ring statistic

(O) – to datasets containing both cluster-members and randomly distributed background

objects. The aim is to determine the ability of each of these tests to detect clustering when

background objects contaminate the data. As a point of comparison I also apply amethod

of testing for CSR using the MST, which was introduced briefly in section 1.5.2 and I de-

scribe in more detail in section 3.3.4.

3.2 Trials

I tested the four statistics for their ability to reject CSR for a single cluster in the presence of

background noise. To set up this experiment, a cluster with population #c was projected

on to a field of background stars of number #bg. The positions of the cluster population

were generated by sampling a two-dimensional Gaussian probability density function

with Gaussian width � = '/2 centred on the midpoint of the study window, where ' is a

characteristic radius chosen for the cluster. The background population were #bg sets of

(x,y) coordinates randomly distributed across the study window.

Multiple realisations of each combination of #c and #bg were tested and their sum-

mary statistics compared to 95 per cent confidence envelopes for a null hypothesis of CSR.

The envelopes were generated using #c + #bg points as described in Section 2.3.2. The
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fraction of realisations that reject CSR are then a measure of the likelihood that a given

pattern with #c cluster members and #bg background points will be correctly identified

as non-random.

For an order of magnitude indication to determine if the tests were functioning

correctly a signal-to-noise calculation was performed for the study region as whole. By

assuming the number of clustered stars can be estimated by subtracting an estimation of

the background population, a possible measure of the SNR for the study window is

SNR =
#2√

#2 + #16

. (3.1)

3.3 Results

The following results display a measure of the efficacy of these statistical tests in rejecting

CSRwhen the number of cluster points, #c, and the total number of points in thewindow,

#total are controlled separately. To produce the confidence envelopes 199 realisations of

CSRwere generated for each value of#total. To test the different numbers of cluster points

and background points 30 simulations of each (#c, #total) combination were generated.

The fraction of simulated observations which reject CSR, from here on referred to as the

rejection fraction, is an estimate of the empirical probability that a given cluster of #c

members projected in-situ with #bg background members would be identified as non-

random. As a metric to compare the different statistics, the total number of detections

was divided by the total number of trials run within a range of #c and #total values and

presented as the detectability score. The detectability score can take values from 0 to 1,

representing the extremes of no trials rejected and all trials rejected respectively. For G, F

and Ripley’s K, the detectability scores were calculated from 10 unique computations of

the entire #c and #total parameter space; for each variation in the annulus width for O-

ring only one computation was produced and so uncertainties are not available for those

values.
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Figure 3.1: The rejection fractionwith %(�
0
) < 5% for Diggle’s G function. The contours show the theoretical

SNR (Eqn. 3.1)

3.3.1 Diggle’s G and the ‘empty space’ function

The results using E[G(F)]-G(F) and E[F(G)]-F(G) are shown in Figures 3.1 and 3.2 respec-

tively. For G, only the largest clusters with the least contamination consistently rejected

CSR, while the results for F appear only weakly correlated with position in the parame-

ter space. This is reflected in their detectability scores of 0.174 ± 0.004 and 0.089 ± 0.001

respectively.

3.3.2 Ripley’s K

Ripley’s K rejects far more clusters than F and G as shown in Fig. 3.3. The improved

rejection fractionmakes has a signal-to-noise effectwhereby a given cluster can bemasked

by the background population. The row with zero cluster members are simply runs of

CSR; with a confidence envelope of 95 per cent the chance of at least one false positive is

80 per cent for each value of#total. The detectability score for Ripley’s Kwas 0.550±0.003.
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Figure 3.2: The rejection fraction with %(�
0
) < 5%) for F. The contours show the theoretical SNR (Eqn. 3.1).

Note that the colour scale is over a much reduced range.
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Figure 3.3: The rejection fraction with %(�
0
) < 5% for Ripley’s K. The contours show the theoretical SNR

(Eqn. 3.1)



48 CHAPTER 3. APPLIED SPATIAL STATISTICS

3.3.3 O-ring

O-ring has an additional parameter compared to the other tests— thewidth of the annuli.

This width determines the amount of area contained within each annulus and therefore

the number of cluster and non-cluster points contained within. The benefit of Equation

2.7 is that the bin widths are decided without prior knowledge of the existence or scale(s)

of the cluster(s) in the study window. The results of using � = 0.1 and 0.2 in Equation 2.7

are shown in Fig. 3.8. The change in detectability scores between the two values can be

seen in Table 3.1.

Having a different annulus width for each total number of points obfuscates the

direct effect of the width on the detectability fraction and so Fig. 3.5 shows the same

region of parameter space except the annulus width has been kept constant across all

positions in the parameter space. Here the annulus width is some multiple of the radius

of the cluster. The radius of the cluster is not a value often known a priori, however this

demonstrates that an annulus with a width larger than the radius of the cluster begins to

degrade the ability of the statistic to reject CSR. As is to be expected, the rejection fraction

is both a function of the degree of clustering and the annulus width. Fig. 3.6 shows the

effect of keeping the annulus width constant and adjusting the characteristic radius of the

cluster. Overall the likelihood of rejection is decreased, shown in Table 3.1.

An alternative method for the annuli width is to use logarithmic widths, where the

ratio of the outer to inner radius of each annulus is kept constant, making the width a

function of the radial distance. Fig. 3.7 demonstrates four of these functions with half-

widths given by

@ = �A (3.2)

for � = 0.1, 0.3, 0.5, and 0.9. While there is an effect on the rejection fraction due to the

bin width, as seen in Fig. 3.7, the results are consistent when � ≥ 0.3. This is a promising

result as thismethod requires no prior knowledge of the clusterwidth and no dependence

on the number of points in the study region.
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Figure 3.4: Rejection fraction as a function of annuluswidth for theO-ring statistic. Annuluswidths decrease

with the total number of points according to Equation 2.7. The contours show the theoretical SNR (Eqn. 3.1).
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Figure 3.5: The rejection fraction with %(�
0
) < 5% for O-ring statistic with fixed annuli widths. The widths

used in each parameter space were given by � × ' with � = 0.1, 0.3, 0.5 and 1.0 respectively and ' is the

radius of the cluster. The contours show the theoretical SNR (Eqn. 3.1).
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Figure 3.6: The rejection fraction with %(�
0
) < 5% for O-ring statistic with fixed annuli widths for cluster

radii 3 and 5. The annuluswidth has been kept constant for both sets of trials, @ = 1.5 arb. units. The contours

show the theoretical SNR (Eqn. 3.1).
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Figure 3.7: The rejection fractionwith %(�
0
) < 5% for O-ring statistic with logarithmic annuli widths. Within

each panel, the annulus width is given by Equation 3.2 and the contours show the theoretical SNR (Eqn. 3.1).

Between panels, � increases from top left to bottom right with (a) � = 0.1; (b) � = 0.3, (c) � = 0.5; and (d)

� = 0.9.
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Figure 3.8: Rejection fraction as a function of annuluswidth for theO-ring statistic. Annuluswidths decrease

with the total number of points according to Equation 2.7. The contours show the theoretical SNR (Eqn. 3.1).

3.3.4 Minimum Spanning Tree

One method of using the MST to test for mass segregation by Allison et al. (2009) has

been adapted to test if a distribution of stars is random. The total edge length of the

MST of an observed sample is compared to the mean total length of 2000 random circular

distributions with the same number of members using (Cantat-Gaudin et al. 2018)

Γ =
; − ;obs

�;
> 1, (3.3)

where ; is themean total branch length calculated from the randomdistributions, �; is the

standard deviation of the randomdistributions and ;obs is the branch length of the pattern

being tested. To adapt this method the stars have been randomly distributed around the

same rectangular region as were used for the other tests. The results of using Equation

3.3 are shown in Fig. 3.9 a). Using the kth most extreme branch lengths can produce a

two-sided significance test as described in Section 2.3, using a 95 per cent confidence level

produces the results shown in Fig. 3.9 b). The detectability scores for the two tests are

shown in Table 3.1.

3.4 Discussion
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Figure 3.9: The rejection fraction for MST tests: a) Equation 3.3 and b) %(�
0
) < 5% for MST total branch

length test. The contours show the theoretical SNR (Eqn. 3.1).

Table 3.1: Detectability scores for tests from Section 3.3.

Cluster Radius Test Variation Score

3 G 0.174 ± 0.004

3 F 0.089 ± 0.001

3 K 0.550 ± 0.003

3 O-ring variable, � = 0.1 0.53

3 O-ring variable, � = 0.2 0.56

3 O-ring fixed, � = 0.1 0.54

3 O-ring fixed, � = 0.3 0.59

3 O-ring fixed, � = 0.5 0.59

3 O-ring fixed, � = 1.0 0.54

3 O-ring logarithmic, � = 0.1 0.49

3 O-ring logarithmic, � = 0.3 0.56

3 O-ring logarithmic, � = 0.5 0.58

3 O-ring logarithmic, � = 0.9 0.56

3 MST Eqn. 3.3 0.478 ± 0.001

3 MST %(�0) < 5% 0.239 ± 0.001

5 G 0.106 ± 0.006

5 F 0.069 ± 0.003

5 K 0.438 ± 0.003

5 O-ring fixed, � = 0.3 0.48

5 O-ring fixed, � = 0.5 0.50

5 MST Eqn. 3.3 0.398 ± 0.001

5 MST %(�0) < 5% 0.179 ± 0.001
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3.4.1 Comparison between methods

All four tests are capable of determining if an underlying process is random through sig-

nificance testing. While additional tests are required to determine what type of clustering

is present, a rejection of CSR due to a higher-than-expected average density is sufficient to

determine the presence of overdensities within the data set, as well as an indication of the

spatial scales. From the results in Section 3.3, the tests which reject randomness for this

scenario the most sensitively are the second-order tests Ripley’s K and O-ring, followed

by G and then F.

G is able to reliably reject CSRwhen the majority of the points belong to the cluster,

but the likelihood of rejection drops off rapidly with increasing number of background

stars, while F is only able to reject CSR in very few cases. The most likely reason for this is

the number of cluster members is relatively low compared to the number of background

stars. G and F test the distribution of observed first nearest neighbour distances to distri-

butions from realisations of CSR and to reject randomness theremust be a significant shift

in the distribution. Clustering produces a shift towards shorter nearest neighbour lengths,

therefore the less-clustered and smaller central clusters have less effect and become more

difficult to detect. G has an advantage in this test as the test positions are the stellar posi-

tions, while F utilises random positions in the window which are not necessarily located

close to, or inside, the cluster.

The results of Ripley’s K andO-ring are comparable, with themain difference being

O-ring’s dependence on bin width. As demonstrated by the detectability scores Ripley’s

K is the most consistent with an average score of 0.550 ± 0.003 while O-ring has a greater

potential of CSR rejection when the bin width is optimised. With regards to choosing

the bin width the results show that the logarithmic bins outperform Ripley’s K and the

variable binwidths for values of� ≥ 0.3, andneither are as effective as abinwidthmatched

to the cluster radius. For situations where a characteristic scale for the cluster is known a

width approximately equal to this scale is preferred.

From the four tests discussed, the best test for CSR rejection is Ripley’s K due to

its lack of dependence on any other parameters. However, the results from Ripley’s K
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are less easy to interpret, as previously described in Section 2.3.2. Therefore, because O-

ring is able to match or exceed this performance with most logarithmic bin widths, and

because the results describe the density at and around a given radial distance, O-ring is

recommended as the preferred test for this situation.

Both of the second-order tests show a characteristic region of consistent rejection of

CSR followedbyagradient towardsnon-rejection. The rejection fraction trends in a similar

fashion to the contours of constant signal-to-noise given by Equation 3.1 even when the

overall detectability decreases due to having a more dispersed cluster, as seen in Fig. 3.6.

This is indicative of the way the tests function. By using all of the interpoint distances the

effect on the density up to or at a given distance due to a cluster will be lessened by having

a larger cluster which is more dispersed. Similarly, by increasing the size of the study

region to include more background stars the average measurement for K and O-ring will

be reduced closer to the background valuemaking itmore difficult to exceed the envelope.

3.4.2 Comparison to other tests

Part of determining the ability of these tests is comparing them to established tests within

the literature. Two of the most commonly used methods to determine clustering or ran-

domness in astrophysics are the two-point correlation function (2PCF) and the minimum

spanning tree (MST).

3.4.2.1 Two-Point Correlation Function

The O-ring test (also known as Mean Surface Density of Companions (MSDC)) is related

to the 2PCF �(A) by (Cressie 1993)

O(A) = (1 + �(A))�. (3.4)

The tests are therefore equivalent and it is the usage of the test that is the main difference.

The results of the 2PCF are generally used to ascertain a radial dependence on density,

and by inspecting this radial dependence describe the underlying mechanism that could

have produced the results. In contrast the methods used in this paper simulate an un-

derlying mechanism and determine how well the results of the mechanism fit the data.
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For example, the MSDC for the Taurus, Ophiucus and Orion Trapezium star forming re-

gions shows two distinct clustering regimes (Simon 1997), one for small-scale clustering

of binaries and another for larger scale clustering, between which is a break point that

varies for each star forming region. This is consistent with an underlying fractal struc-

ture over a subset of stellar densities, however, as Bate et al. (1998) demonstrates, different

distributing processes can produce MSDC lines that fit the data equally well.

3.4.2.2 Minimum Spanning Tree

The total branch length of a MST can be used to test for CSR. Using a significance level of


 = 0.05 produces a detectability comparable toDiggle’s G function. This is to be expected

as the minimum spanning tree contains all of the star-star nearest neighbour edges – as

well as a number of edges to ensure that it is a spanning tree – and G uses just the star-star

nearest neighbour distances. Compared to O-ring and Ripley’s K the test is less sensitive

even with the reduced significance level of 0.16. In addition to a change in 
 another

difference between the results of Eqn. 3.3 and theMonte Carlo method from Section 2.3 is

that the tests are one-tailed and two-tailed respectively. Thismeans that Eqn. 3.3 is unable

to reject CSR when the pattern shows inhibition between stars and so care must be taken

in interpreting its results when CSR is not rejected.

While it is less sensitive than the second-order tests, the MST does have some ad-

vantages which make it worth investigating further. As mentioned earlier there exist hi-

erarchical clustering techniques to generate clusters (Yu et al. 2015) which can identify

cluster members which is something G, F, K and O-ring cannot do in the form described

in this paper. Further, there are measures of the MST that exist such as the graph distance

matrix, a symmetric matrix containing the number of edges on the path between any pair

of points in the tree, which to my knowledge have not yet been applied to significance

testing but could be useful in cluster identification and significance testing.

3.4.3 Observing Cluster Scales

As discussed, with the O-ring test it is possible to identify a characteristic scale of the

cluster by measuring at which point the function re-enters the CSR confidence envelope.
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However, this observed scale is dependent on many factors including how centrally con-

densed the cluster is, the noise level in the background, and thewidth of theO-ring annuli.

As a test, I determined the characteristic scale for the runs used in � = 0.3 subplot of Fig.

3.7, which has an input cluster radius of 3, and present these in the top plot in Fig. 3.10.

The scales in this figure represent the shortest length scale at which the measured O-ring

statistic re-entered the confidence envelope after exceeding it. To improve readability and

confidence I have ignored any radiusmeasurementswhere fewer than 10 successful radius

measurements were found. We can see from this figure that the observed characteristic

radii are all representative of the input cluster, being within a factor of ≈ 2. This is espe-

cially promising when considering that these clusters were both Gaussian in nature and

projected on a noise background.

To investigate how the observed scale is a function of SNR, the middle and bottom

plots in Fig. 3.10 show estimates of the SNR at the scale observed in the top plot. The

centre plot shows the estimated SNR within a circle centred on the cluster with radius ',

and the bottom plot shows the estimated SNR for an annulus centred on the cluster with

radius ' with width � × '. For both of these plots, ' is the scale in the detected radius

(top) plot. The circle estimate SNRapproximates the overall cluster SNRwhile the annulus

SNR approximates the SNR thatmay be perceived by theO-ring test. We can see from this

figure that, while the absolute SNRvalues are not equal, the apparent distributions of SNR

values are similar and even share a similar relative range of approximately a factor of 2

between the highest and lowest observed SNR. It is interesting to note that an annulus SNR

of at least 1 is required to produce consistent and representative radius measurements.

However, we can also see that the SNR for both methods increases with observed radius,

and so it appears, therefore, that while there is potentially a minimum SNR, there is no

SNR threshold which causes the O-ring statistic to re-enter the confidence envelope.

3.5 Application to Astronomical Data

In addition to the simulated data, three sets of astrophysical data were tested. The first

was the locations of Young Stellar Objects around the Serpens South star forming region

(Gutermuth et al. 2008) from the Dunham et al. (2015) catalogue, using the limits 277.2 ≤
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Figure 3.10: Top: Average output cluster radius measurement for O-ring test with logarithmic widths with

� = 0.3 measured on cluster with radius ' = 3. Middle: Signal to noise ratio in circle at the scale indicated

in the top figure. Bottom: Signal to noise ratio at the scale indicated in the top figure. For this figure sections

with fewer than 10 successful radius measurements have been ignored.
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RA ≤ 277.7 and −2.25 ≤ Dec ≤ −1.75. Fig. 3.11 shows the locations of the YSOs and the

results of applying G, F, K and O-ring. Each summary statistic exceeds the 95 per cent

confidence envelope, therefore rejecting CSR as an appropriate model for the distribution

of the YSOs with 95 per cent confidence.

The second test on real data was performed on members of the Spitzer catalogue 1

that were randomly chosen (without replacement) from the same field as the YSOs in the

previous test.

Within this region there are 2601 Spitzer Sources identified with the object type

‘star_F0I’, and this number represented a good compromise between computational time

and number of sources tested. Ripley’s K is invariant to random thinning and so this

allows for a less-computationally intensive method of testing the region as a whole. Fig.

3.12 (left) shows the positions of the randomly chosen members as well as the results. K

and O-ring both reject CSR with 95 per cent confidence, and both statistics also display

clustering followed by inhibition. It is likely that this is due to the extinction of the cloud;

the outline of which can be faintly seen in Fig. 3.12 (left) when compared to Fig. 3.11.

The third test was on 2601 random Spitzer Sources from a region of equivalent area

that was translated in declination by 0.5◦ with respect to the previous two. Unlike the

previous two tests, these sources, shown in Fig. 3.12 (right), were chosen from an off-

cloud region. The results show that CSR cannot be rejected as a null hypothesis for the

distribution of these randomly chosen members.

The rejection of CSR runs for the YSO distribution was to be expected and demon-

strates that the tests are able to reject genuinepatterns thatwerenot producedby randomly

distributing stars in a window. It is interesting to note that O-ring shows the presence of

two subsets of radial distances which exhibit overdensities though the effect causing this,

either first or second-order, is not known as the distribution is not homogeneous and

isotropic, so the appearance of clustering could be due to virtual aggregation as discussed

in Section 2.2. The rejection of CSR for the random on-cloud members due to extinc-

1. The full Spitzer Gould Belt Survey catalogue of infrared sources produced using the Spitzer Cores to

Disks (c2d) methodology: see Harvey et al. 2007; Evans et al. 2007 available from https://irsa.ipac.caltech.

edu/data/SPITZER/C2D/doc/c2d_del_document.ps

https://irsa.ipac.caltech.edu/data/SPITZER/C2D/doc/c2d_del_document.ps
https://irsa.ipac.caltech.edu/data/SPITZER/C2D/doc/c2d_del_document.ps
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tion shows that these tests function not only for clustering processes but for inhibiting

processes, while the off-cloud random members demonstrates that there are examples of

astrophysical data which are consistent with CSR.

3.6 Previous tests on spatial statistics

The work in this chapter sits among a number of other works that have explored the effi-

cacy of spatial statistical tests. In a similar way to how I have tested the sensitivity of G,

F, K and O to detecting clusters in the presence of noise, other works typically choose a

facet of spatial statistics and explore how this would impact their results when applied to

real-world data.

The results in this chapter fit amongworkswhich similarly look to quantify the sen-

sitivity of these tests when presented with data that contains clustering or regularity (e.g.

Diggle 1979; Gignoux et al. 1999; Thönnes, Elke and van Lieshout, Marie-Colette 1999;

Ho and Chiu 2006; Ho and Chiu 2009). Diggle (1979) performed one of the earliest tests

on these spatial statistics to determine their sensitivities to clustering and regularity. This

early test was performed by generating 100 realisations of two spatial point processes.

The first was a Poisson clustering process where cluster centres are randomly generated

and offspring randomly generated from these centres in a normal distribution. The sec-

ond was a sequential inhibition process where points may only be generated further than

some minimum distance, �, from all previously positioned points. Gignoux et al. (1999)

nicely summarise the findings of Diggle (1979) in the form of a hierarchy: "against ag-

gregation power(F) > power(K) > power(G) and power(K) > power(G) > power(F) against

regularity." While regularity was not tested in this chapter, my results disagree for aggre-

gation and would place F as the least powerful of the tests; this difference is likely due

to the difference in model tested. Unlike most studies I have tested a parameter space

of two mixed spatial point processes: a centralised cluster with a CSR background. This

is because I am interested in testing which of the statistical tests is the most sensitive to

clustering with the presence of background noise.

Other works focus on different aspects of applying spatial point processes, such as
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Figure 3.11: (above) Positions of YSOs within Serpens South, (below) results of G, F, K and O-ring with 95

per cent global confidence envelopes for CSR.
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Figure 3.12: Left: (above) Positions of 2601Spitzer cataloguememberswithin Serpens South; (below) results of

G, F,KandO-ringwith 95per cent global confidence envelopes forCSR.Right: (above)Positionsof 2601Spitzer
catalogue members offset from Serpens South by 0.5◦ in Dec (277.2 ≤ RA ≤ 277.7 and −1.75 ≤ Dec ≤ −1.25);

(below) G, F, K and O-ring results with 95 per cent global confidence envelope for CSR.
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the important problem of edge-correction. In this work I use the border method for G and

F and the weighted area method for Ripley’s K and O-ring; however, there are arguments

for the use of different methods, or even not applying edge-correction at all. It is clear that

different methods of edge-correction change, and in some cases improve, the estimate of

the statistic(e.g. Baddeley and Gill 1997; Bate et al. 1998; Baddeley et al. 2000; Yamada

and Rogerson 2003). However, when it comes to the detection of clustering or regularity

in the dataset it has been shown that edge-correction may provide no advantage in the

case of Ripley’s K (Yamada and Rogerson 2003). Or, for G and F, the loss of information

by excluding the points may outweigh this improvement, particularly at low number of

points (between 10 and 30) (Gignoux et al. 1999).

3.7 Conclusion

I have adapted spatial statistics methods for testing distributions of stars from ecology

and them tested for their ability to reject randomness. Centralised clusterswere generated

and projected on top of a population of randomly distributed background members and,

by varying the number of stars in the cluster and background, a parameter space of the

empirical probability of CSR rejection was produced for each statistical test.

(i) The rejection of randomness for a given cluster radius approximately follows con-

tours of signal-to-noise calculated over the parameter space of the number of stars

in the cluster and background. A larger cluster radius over the same region of pa-

rameter space shows a decrease in the likelihood of rejection.

(ii) The O-ring test is equivalent to the two-point correlation function and Ripley’s K

and O-ring are better tests for CSR than the total branch length of the minimum

spanning tree.

(iii) Three example star fieldswere tested against complete spatial randomness. The null

hypothesis of randomness was rejected for the distribution of young stellar objects

within Serpens South, as well as randomly selected Spitzer sources from the same

region. The statistics from randomly selected Spitzer sources sampled from an off-

cloud region were not consistent with complete spatial randomness.
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For future applications the recommended test is the O-ring test using logarithmi-

cally spaced overlapping bins. Ripley’s K and the O-ring test with a constant bin width

show a slightly reduced detectability compared to O-ring with logarithmic bins, making

them both good tests but not optimal. I take this result forward into the next chapter

where I use the O-ring statistic with logarithmically spaced bins as a summary statistic

when analysing the distributions of Class 0/I YSOs.
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Chapter 4

Protostellar Distributions

4.1 Introduction

Star formation is known to occur within molecular clouds and it is has been found that

star formation occurs more readily in regions of greater gas column density where more

material is available for star formation. This effect can be observed on larger scales such

as giant molecular clouds and galaxies where Kennicutt–Schmidt (K–S) relations show a

higher surface density of star formation rate at higher column densities (Kennicutt 1989).

It is observable on molecular cloud scales with similar star formation surface density re-

lations (Heiderman et al. 2010), and finally, smaller, filamentary scales where prestellar

cores aremore frequently observed coincident on the skywith high-density filaments (An-

dré et al. 2010). Since star formation surface density is correlated with column density,

is it possible to describe the distribution of where star formation has occurred using only

column density information?

The answer to this question requires a quantification of the amount that star forma-

tion is enhanced by increasing column density as well as amodel for how this leads to star

formation being distributed throughout a cloud. As described in chapter 1, the K–S law

is a method of relating the surface density of star formation rate to column density and is



4.1. INTRODUCTION 65

often presented in the form of a power-law,

ΣSFR = �rΣ
�
Gas
, (4.1)

where ΣSFR is the star formation rate surface density and ΣGas is the gas surface density.

The parameters �r and � quantify the relation between the surface densities of star forma-

tion and gas. Table 1.1 presents some previous measurements of � in local star forming

regions. Most � values typically range between 1.5 and 2.5 (Heiderman et al. 2010; Guter-

muth et al. 2011; Lombardi et al. 2014; Pokhrel et al. 2020) with somemore extreme values

with � > 3 (Lada et al. 2017).

A value of � describes the change in the surface density of star formation as a func-

tion of column density, but it is missing information as to how the star formation is dis-

tributed throughout the cloud. To illustrate this point Fig. 4.1 presents twodistributions of

early-stage Young Stellar Objects (YSOs) which share the same value of �. The YSOs in the

left-hand cloud are evenly distributed throughout the cloud according to column density,

while those on the right are biased towards the lower-right of the region. A distribution

such as that in the right-hand cloud could be due to a column-density-independent effect

which has strongly influenced the distribution of star formation, such as magnetic fields

or stellar feedback. If such effects are significant column density may not be sufficient to

describe the distribution of star formation on local scales.

In Chapter 3 the efficacy of the summary statistics G, F, Ripley’s K and O-ring were

tested and then applied to the locations of the YSOs in Serpens South to determine if they

were consistent with complete spatial randomness (CSR). It was shown that the YSO lo-

cations were found to be inconsistent with CSR, and this chapter expands on this result

by using the O-ring summary statistic to test different inhomogeneous Poisson Point Pro-

cesses where the probability of placing a star at a given location is affected by the local

column density. In doing so it will be possible to determine if Class 0/I YSO positions,

and therefore locations of star formation, are equivalent to randomly sampling a two-

dimensional probability distribution based on the observed gas density.

While spatial statistics are useful for testing models, I employ Bayesian statistics
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Figure 4.1: Illustration of two populations of YSOs with the same power-law relationship with column den-

sity. The YSOs in the cloud on the left are evenly distributed throughout the cloud while those on the right

are clustered towards the lower-right portion of the cloud.

for parameter fitting. For this reason, I introduce a Bayesian method of estimating � by

measuring the surface density of Class 0 and Class 1 Young Stellar Objects (YSOs) within

column density bins in Section 4.2.

Class 0/I YSOs are used in this chapter as a tracer of star formation as they are the

in the earliest stage of YSOs evolution. This can be observed in the relative distributions

of YSOs where the Class 0 and Class I YSOs whose positions tend to be more correlated

with dense cloud than the more evolved Flat and Class II and Class III sources (Mairs

et al. 2016; Buckner et al. 2020) (see section 1.4.2.1). Prestellar cores would likely be good

tracers for star formation, but unfortunately it is not easy to determinewhich starless cores

are likely to evolve to become stars and so Class 0/I YSOs are the youngest objects that are

identifiable as definite precursors to stars. In this chapter I will look at the YSOs in five

local star forming regions which, due to their proximity and number of YSOs, are good

laboratories for testing distribution functions: Serpens South, Serpens Core, Ophiuchus,

NGC1333 and IC348.

By applying the Bayesian method described in Section 4.2, the parameter � was

measured for each region individually aswell as for the set of regions as awhole to estimate

a global value of �, the results of which are presented in Section 4.4.1. In addition to

measuring � for each region, I apply the same Bayesian method to find the best-estimates

of �r for each region in Section 4.4.2.
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Using these results, in Section 4.4.4 I test the distributions of YSOs in each of these

regions against Eqn. 4.1 with the estimated values of � for each region. I will also present

the results of testing the distributions of YSOs for general models with � = 0, � = 1 and

the global value of � = 2.05. Each of these models test for a different potential physical

description for how the distribution of stars is correlated with column density. The first

model uses� = 0 above a threshold visual extinctionAv = 6 to test if there is a relationship

between the amount of column density and surface density of YSOs, or if, once some

threshold is reached, the YSOs are simply dispersed randomly. The second model, � = 1,

is motivated by the distribution of prestellar cores which appear to be linearly correlated

with column density (Könyves et al. 2020). With this model I look to determine if the

observed distribution of YSOs is consistent with the distribution they may have had at an

earlier stage in their evolution. The third model is to explore howwell, or even if, a single

power-law, can simultaneously represent multiple star-forming regions.

It was found that, when considering the number of regions that reject themodel, the

region-specific � values were the most successful at describing the distributions of Class

0/I YSOs. As for the general models, the best-performing model was the global model of

� = 2.05 which was consistent with 3 out of the 5 regions it was applied to, and the worst

performing model was � = 1 – which was rejected by every region. As a further test I

apply the � = 2.05 model to the Class II YSOs in all five regions in Section 4.4.5. This is to

show that these statistics have enough discriminatory power to distinguish between two,

potentially similar, distributions within the same study region.

Finally, the discussion of these results is presented in Section 4.5. There I discuss,

based on my results, how effective a column-density-only model is at describing the dis-

tributions of YSOs. I also explore how the rejection of the � − 1 model by Class 0/I YSOs

could imply an environmental dependence on the evolutionary time-scales for prestellar

cores and/or Class 0/I YSOs.
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4.2 Bayesian Statistics

From inspection of Eqn. 4.1, �, for a single region, can be estimated from the straight-

line gradient in a plot of log(ΣSFR) versus log(ΣGas) (Heiderman et al. 2010; Gutermuth

et al. 2011). A plot of the YSO surface density versus column density for the five regions

studied in this chapter is presented in Fig. 4.2 and from this it is clear that there is a

correlation between YSO surface density and column density in each of these regions.

The gradients, � values, are not dissimilar and the effect of different �r values can be seen

where the YSO surface density functions have different y-intercepts in different regions.

One problem with measuring gradients is that the number of YSOs in each Av bin are

small enough that care needs to be taken when dealing with the uncertainties. Care must

also be taken when estimating � values that represent multiple regions as combining area

and YSO counts to find an average density assumes every region has the same value of �r,

which is not always true. For these reasons a Bayesianmethod of estimating � is described

in this section which can be extended to calculate joint values of � for sets of regions.

To model the distribution of Class 0/I YSOs with respect to the observed column

density in a star forming region I introduce the following equation,

�̂(NH2
) = �r ×NH2

� , (4.2)

where �̂(NH2
) is the estimate of the number density of Class 0/I YSOs at column density

NH2
, �r is a region-specific constant that normalises the number of Class 0/I YSOs such

that Eqn. 2.21 is satisfied for a given region, and � is the global power law affecting the

distribution of YSOs with respect to the column density. We then look to find the most

likely values of �r and �.

First, consider a sub-region,<, of the star-forming region that has an approximately

constant column column density, NH2 ,< . If we assume the probability that this sub-region

contains a number of YSOs, #< , follows a Poisson distribution, it can then be shown that

the probability of counting #< YSOs is given by

prob(#< |�< ,NH2 ,< , �r , �) =
(�rNH2 ,m

��<)#< 4−(�rNH
2
,m

��<)

#<!

, (4.3)
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Figure 4.2: YSO surface density measurements within column density bins in Serpens South, Serpens Core,

Ophiuchus, NGC1333 and IC348. Uncertainties on Ophiuchus are the Poisson uncertainty on YSO counts to

give an idea of YSO surface density uncertainties.
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where � is the area of <. Repeating the experiment with " different sub-regions of the

star-forming region results in the probability

prob({#}|{�}, {NH2
}, �r , �) =

"∏
<=0

(�r(NH2 ,<)��<)#< 4−(�r(NH
2
,<)��<)

#<!

, (4.4)

where {#} is a vector of# , etc. Given the condition of similar columndensities, this equa-

tion functions with any form of subdivision of the star-forming region. For this chapter I

use contours of column density for each sub-region.

If we assume a uniform prior for � and a Jeffrey’s prior for �r, we find that the naïve

prior of � and �r is inversely proportional to �r, i.e.

prob(�r , �) =


1

�r

for �r ≥ 0 and � ≥ 0,

0 otherwise.

(4.5)

With Bayes’ theorem we may then construct an equation that can be used to find the

probability associated with a combination of �r and �:

prob(�r , �|{#}, {�}, {NH2
}) ∝ 1

�r

"∏
<=0

(�r(NH2 ,<)��<)#< 4−(�r(NH
2
,<)��<)

#<!

. (4.6)

This joint pdf can be marginalised to find the marginal probabilities of � and �r for the

star-forming region separately.

As an extension, we may then question if the power in Eqn. 4.2 is not specific to a

single star-forming region, but is instead a universal property shared across different star-

forming regions, each with unique values of �r. It would be desirable, then, to combine

themeasurements frommultiple star-forming regions, eachwith their own sub-regions, to

produce a single best-estimate for �. These measurements can be included by modifying

the prior in Eqn. 4.5 to be proportional to the inverse of the product of �r values,

prob({�r}, �) ∝
# s.f . regions∏

8=1

1

�r ,8
, (4.7)
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and adding the measurements to the product in Eqn. 4.6 to produce the equation

prob({�r}, �|{#}, {�}, {NH2
}) ∝

# s.f . regions∏
8=1

1

�r ,8

"∏
<=0

(�r ,8(NH2 ,<)��<)#< 4−(�r ,8(NH
2
,<)��<)

#<!

.

(4.8)

The addition of more regions increases the number of dimensions of the pdf which in-

creases the computational difficulty of sampling the pdf without the use of techniques

such as Markov chain Monte Carlo (MCMC) (Hastings 1970; Goodman and Weare 2010;

Foreman-Mackey et al. 2013).

4.3 Spherical Projection

The column density data used in this chapter are sections of the celestial sphere which

have been stored in a tangent plane projection. This type of projection, also known as the

gnomonic projection, affects the areas contained within pixels and the distances between

YSOs. Both of these quantities must be taken into account in order to measure the O-

ring statistic, estimate the quantity � using the methodology in Section 4.2 and accurately

reproduce first-order spatial point processes.

These projected maps are stored in the FITS file format (Wells et al. 1981) which

contains the keywords necessary to convert pixel coordinates to coordinates in the pro-

jection projection plane or celestial sphere. The set of keywords that allow for coordinate

conversion are known as the FITS “world coordinate system” (WCS) and with these the

pixel coordinates of most maps can be converted to projection and celestial coordinates

(Calabretta and Greisen 2002; Greisen and Calabretta 2002). Software is available to per-

form transform between these coordinates systems; the results in this work use the library

wcslib 1.

While it is possible to use projection coordinates entirely, they are representations of

sections of a spherical surface and so it may bemore simple and intuitive to use the native

spherical coordinates. For example, with spherical coordinates the angular distance, Δ�,

1. https://www.atnf.csiro.au/people/mcalabre/WCS/wcslib/
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between two points can be calculated using the haversine formula,

Δ� = 2arcsin

√
sin

2

(
Δ�
2

)
+ cos�1cos�2sin

2

(
Δ

2

)
(4.9)

where 
 and � refer to the right ascension (RA) and declination (Dec) in radians.

Some projections distort the shape or size of areas on the sphere and so the amount

of angular area represented by a given pixel on themap is not necessarily consistent across

the projection plane. The Herschel maps used in Section 4.4, use the gnomonic projection

which is designated the AIPS code ‘TAN’. A gnomonic projection is produced by pro-

jecting points on the surface of a sphere onto a tangential plane from the perspective of

an observer at the sphere’s centre. With this type of projection the amount of distortion

increases as a function of latitude measured from the tangent point, �. This distortion

increases the projected area covered by objects on the sphere by 1/cos
3(�) and, therefore,

decreases the amount of area on the sphere covered by a pixel in the projection by cos
3(�).

Finally, the amount of area covered by a pixel is given by,

|D | = |$ |cos
3(�D), (4.10)

where |D | is the area covered by pixel D, |$ | is the area of a pixel at the tangent point

and �D is the latitude of D. The angle �D is equal to Δ� between the tangent point and D.

Unlike angular distance, which requires only the angular coordinates for two points, the

area covered by a pixel depends on the type of projection. As a general solution, however,

it may be possible to calculate the world coordinates of the corners of each pixel and use

those to approximate the areas, though this assumes the pixels are small enough to be

approximately flat.

4.4 Application to Star-Forming Regions

In this chapter � values are determined for the star-forming regions Serpens South, Ser-

pens Main, Ophiuchus, NGC1333 and IC348, as well as a joint � value for all regions. The

joint � value and � = 0 and � = 1 were then tested using 95 per cent confidence envelopes

as described in Chapter 2.
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Table 4.1: Summary of cloud properties used in this chapter.

Region No. of RA limits Dec limits Distance (pc)

Class 0/I

YSOs

Serpens South 44 277.2° ≤ RA ≤ 277.7° −2.25° ≤ Dec ≤ −1.75° 484
a

Serpens Core 16 277.4° ≤ RA ≤ 277.6° 1.18° ≤ Dec ≤ 1.38° 484
a

Ophiuchus 24 246.0° ≤ RA ≤ 248.5° −25.2° ≤ Dec ≤ −23.8° 144
a

NGC1333 32 52.0° ≤ RA ≤ 52.8° 31.0° ≤ Dec ≤ 31.8° 293
b

IC348 12 55.8° ≤ RA ≤ 56.4° 31.9° ≤ Dec ≤ 32.5° 321
b

a
(Zucker et al. 2019)

b
(Ortiz-León et al. 2018)

The Dunham et al. (2015) YSO catalogue was used for YSO position and classifica-

tion for all regions. YSOs classified as Class 0/I are those with a corrected spectral index

value greater than or equal to 0.3 and)bol < 650K. Using a single catalogue and classifying

with corrected spectral index and)bol may lead tomissing andmisclassified sources; how-

ever, it provides a simple and consistent method of identifying YSO populations which

can be compared between clouds. The column density data used for the different regions

were the Herschel 18.2′′ resolution maps (André et al. 2010; Palmeirim et al. 2013). Table

4.1 lists the number of Class 0/I YSOs and distances to each cloud, as well as the RA and

Dec boundaries used to extract the regions.

4.4.1 Estimations of �

In this section Ipresent the results of estimating thepower lawusing theBayesianmarginal-

isation described in Section 4.2. The joint-probability distributions for �r and �were cal-

culated using the number of YSOs and the area contained within column density bins in

each region the results of which are presented in Fig. 4.4. These joint-probability distri-

butions were then marginalised over �r to find the pdfs for � for each region, the results

of which are shown in Fig. 4.5 and Table 4.2.

To determine if these joint-probability distributions were reasonable Eqn. 2.21 was

used to find the solutions where 〈#〉 was equal to the observed number of YSOs in each

region. Presented in Fig. 4.4 as a dashed line are the solutions where 〈#〉 is equal to the

observed number of YSOs in all regions. The intersection between Eqn. 2.21 and the high

probability density regions of the joint probability distribution demonstrates that Eqn. 4.6
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Figure 4.3: Column density images of Serpens South, Serpens Core, Ophiuchus, NGC1333 and IC348 plotted

with Class 0/I YSO positions. Column density data is plotted using a logarithmic scale to improve visibility

of low and high column density data.
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Table 4.2: � estimates for all regions.

Region Best estimate of � 95 per cent confidence interval

Serpens South 2.39 2.06 ≥ � ≥ 2.70

Serpens Core 2.06 1.45 ≥ � ≥ 2.76

Ophiuchus 1.78 1.28 ≥ � ≥ 2.20

NGC1333 1.66 1.28 ≥ � ≥ 2.04

IC348 3.00 2.03 ≥ � ≥ 4.04

All regions 2.05 1.85 ≥ � ≥ 2.25

is consistent with producing �r and � values that approximate the number of YSOs used

to calculate the joint-distribution. As can be seen in the figure, this overlapping of the two

functions is consistent across all regions.

To find the most likely value of � over all regions the YSO and area measurements

were combined into a single 6-dimensional joint-probability distribution: one dimen-

sion for each of the five regions’ �r values and one for �. This distribution was sampled

andmarginalised using the MCMC functionality of the Python package emcee (Foreman-

Mackey et al. 2013) to find the pdf for �. The best-estimate for the global power law was

found to be � = 2.05 ± 0.20, using a 95 per cent confidence interval as the uncertainty.

A value of � = 2.05 sits within the 95 per cent confidence intervals for Serpens Core,

Ophiuchus and IC348 and only marginally outside those of Serpens South andNGC1333.

While further testing is required to determine if the distributions of the YSOswithin these

regions are consistentwith a global power law, the global power lawappears to adequately

describe the distribution of these YSOs as a set.

4.4.2 Estimations of �r

In this section I present the results of estimating the region-specific constants for each

of the five regions. The best-estimates for �r were produced by marginalising the joint-

probability distributions over �, as demonstrated in Fig. 4.4. These results are presented

in Table 4.3 as �′
r
values, which are related to �r by

�′
r
= �r × 10

22�
(4.11)
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Figure 4.4: Joint-probability distribution of Eqn. 4.6 for Class 0/I YSOs in the labelled star-forming regions

with the marginalised probability density functions for � and �′
r
. The contours outline the 50 and 95 per cent

cumulative probabilities and the dashed line follows the solutions to Eqn. 2.21. The x-axis is �′
r
(Eqn. 4.11),

because the joint-probability distributions have been calculatedusing columndensity values scaled by a factor

of 10
−22

. This reduces the span of �r values and allows the structure in the joint-probability distribution to

be distinguishable. See Section 4.4.2



4.4. APPLICATION TO STAR-FORMING REGIONS 77

Serpens South Serpens Core Ophiuchus NGC1333 IC348
Region

1.5

2.0

2.5

3.0

3.5

4.0 Global 
Best Estimate
50 per cent confidence interval
95 per cent conidence interval

Figure 4.5: Marginalised distributions for � for Serpens South, Serpens Core, Ophiuchus, NGC1333, IC348

and global estimate. The box and whiskers present the best estimate and the 50 and 95 per cent intervals.

The orange lines present the best estimate and the 50 and 95 percent intervals for the global � value.

or, equivalently,

�̂(NH2
) = �′

r
×

(
NH2

10
22

cm
−2

)�
. (4.12)

The results arepresented in this formbecause�r values scalewithNH2

−�
, andwith column

density values of order ∼ 10
22

cm
−2

the uncertainties in � lead to a large range in the

magnitudes of potential �r values. It is because of such large ranges of potential �r values

that the joint-probability densities of Fig. 4.4 were presented using �′
r
.

While �r (and �
′
r
) values are important for estimating the amount of star formation

within a region with Eqn. 4.2, �r does not affect where in a cloud the stars will be po-

sitioned in the model – as can be seen by substituting Eqn. 4.2 into Eqn. 2.22 – and the

observed number of YSOs in a region can be usedwhen simulating a spatial point pattern.

In addition, care must be taken in the interpretation of the meaning of the values. If we

take the logarithm of Eqn. 4.2,

log(ΣSFR) = log(�r) + � log(ΣGas), (4.13)
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Table 4.3: Estimates of �′
r
from marginalisation over � for all regions.

Region Best estimate of �′
r

95 per cent confidence interval

(stars pc
−2)

Serpens South 0.56 0.31 ≥ �′
r
≥ 0.94

Serpens Core 1.26 0.25 ≥ �′
r
≥ 3.93

Ophiuchus 5.36 2.71 ≥ �′
r
≥ 9.31

NGC1333 8.31 4.10 ≥ �′
r
≥ 14.73

IC348 2.53 0.48 ≥ �′
r
≥ 7.5

we can see that for a given value of �, �r is equal to the expected YSO surface density

when the gas density measure is equal to one, in this case ΣGas = 1 cm
−2
. From this we

can see that to compare �r values is to compare expected YSO surface densities at unitΣGas

and since ΣGas can be any density measure, �r can be measured at any column density.

Fig. 4.6 shows the expected YSO surface densities using the best-estimates from

Tables 4.2 and 4.3 – this is reasonable as, in these regions, the best individual estimates

of � and �r are approximately equal to the best joint estimates for � and �r. From this

figure it can be seen that the YSO surface density in these regions is well represented by

a power-law with column density using the results of Eqn. 4.8. As discussed, since �r is

the expected YSO surface density at a chosen reference column density, we can also see in

Fig. 4.6 how the region with the highest �r depends on this choice of reference.

While it is not possible to remove the � dependence from �r, it is possible to find

the best-estimates for �r in each region assuming the same value of � across all regions.

Table 4.4 presents the best estimates of �′
r
assuming � = 2.05, and Fig. 4.7 shows the

new expected YSO surface density functions. We can see from these results the effect

of different star-formation efficiencies on regions which are assumed to have the same

column density dependence.

I

4.4.3 Application to simulated protostar spatial distributions

In this sectionwe apply theO-ring statistic with 95 per cent global confidence envelopes to

two sets of simulated YSO distributions in Serpens South, presented in Fig. 4.8. Both sets

of simulateddata contain the samenumber of YSOpositions asClass 0/IYSOs observed in



4.4. APPLICATION TO STAR-FORMING REGIONS 79

1022 1023
100

101

102

103

104

1022 1023

Serpens South

1022 1023
100

101

102

103

104
Serpens Core

1022 1023

Ophiuchus

1022 1023
100

101

102

103

104
NGC1333

1022 1023

IC348

Column density (NH2cm 2)

De
ns

ity
 o

f Y
SO

s p
er

 p
ar

se
c2

Figure 4.6: YSO surface density measurements within column density bins in Serpens South, Serpens Core,

Ophiuchus, NGC1333 and IC348 with straight lines showing best estimates of � and �r in each region. Un-

certainties on Ophiuchus are the Poisson uncertainty on YSO counts to give an idea of YSO surface density

uncertainties
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Figure 4.7: YSO surface density measurements within column density bins in Serpens South, Serpens Core,

Ophiuchus, NGC1333 and IC348 with straight lines showing best estimates of �r assuming � = 2.05 in each

region. Error bars are the Poisson uncertainty on YSO counts to give an idea of YSO surface density uncer-

tainties
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Table 4.4: Estimates of �′
r
for all regions for � = 2.05.

Region Best estimate of �′
r

95 per cent confidence interval

(stars pc
−2)

Serpens South 0.88 0.64 ≥ �′
r
≥ 1.16

Serpens Core 1.27 0.74 ≥ �′
r
≥ 1.93

Ophiuchus 3.91 2.50 ≥ �′
r
≥ 5.62

NGC1333 4.50 3.06 ≥ �′
r
≥ 6.22

IC348 6.50 3.11 ≥ �′
r
≥ 10.85

Serpens South andwere generated using Eqn. 4.2with � = 2.05 using theHerschel column

density data for Serpens South. The left-hand, or unbiased, distribution was generated

using a probability distributionwhich spanned the entire study region, while the right, or

biased, distribution was generated using a probability map covering only the south-west

portion of the map.

Using the same methods applied to the star forming regions in Section 4.4.1, �was

measured for the unbiased and biased distributions to find � = 2.06 and � = 2.01 respec-

tively. Similar to the illustration in Fig. 4.1, Fig. 4.8 presents two distributions of YSOs

with similar values of � that have been produced from different models.

The lower portion of Fig. 4.8 presents the results of using the O-ring statistic to test

for Eqn. 4.2 with � = 2.05. We can see from these results that the unbiased distribution

did not reject, and so is consistent with, this model – this is to be expected as the unbiased

distribution is a realisation of said model. We can also see that the biased distribution

rejects this model as the O-ring statistic exceeds the envelope. These results show how

the O-ring test is able to reject the spatially biased distribution of YSOs, whereas a power-

law measurement like � does not have this type of discriminatory power.

4.4.4 Application to protostar spatial distributions

The distribution of protostars in Perseus, Ophiuchus and Serpenswere tested against four

distribution models: a minimum threshold of 6× 10
21

NH2
cm
−2

for YSOs to be placed but

with no other dependence on column density, a power law dependence of � = 1, a power

law dependence of � = 2.05, and a power-law equal to the Bayesian-estimated power-law

for the region. The distributions of protostars were tested for their consistency with a

distribution model using the O-ring statistic as a summary statistic and 95 per cent global
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Figure 4.8: Two distributions of YSOs generated using the Herschel column density data for Serpens South

and Eqn. 4.2 with � = 2.05 with the 95 per cent confidence envelope tests for Eqn. 4.2 with � = 2.05. The

left-hand distribution was generated using the entire study region, while the right, was generated using a

probability map covering only the south-west portion of the map.

confidence envelopes.

The O-ring statistic for the distribution of Class 0/I YSOs were measured in each

region at a set of spatial scales,

A = {G |G = =ΔA, G ≤ ' , = ≥ 1}, (4.14)

where ΔA = 0.03 pc and ' is equal to the half the length of the shortest axis (either RA or

Dec). In other words, A values are linearly spaced in intervals of ΔA from A = ΔA up to the

largest scale that is less than, or equal to, half of the length of the shortest axis. Following

the results fromChapter 3, the widths of the annuli used in the O-ring test are logarithmic

and are equal to

F = 0.6 × �, (4.15)

where � is the set of spatial scales for each region, A, converted into degrees.

Confidence envelopes were generated for each of the four models described ear-
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lier using 99 realisations of the first-order processes. Each realisation was produced by

sampling the first-order intensitymap a number of times equal to the number of YSOs ob-

served in the region. The O-ring statistic was measured for each realisation at the spatial

scales A with annuli widths F.

All of the confidence envelopes, along with the measured O-ring statistic for the

Class0/I YSOs, are presented in Fig. 4.9 and discussed in the following subsections. The

y-axis of the subplots in Fig. 4.9 are the measured O-ring statistic divided by the YSO

density of the study window encompassing the star forming region i.e.

�̄ =

∑
D

∑
E P(D, E)∑

D

∑
E A(D, E) . (4.16)

As such the y-axis represents howmany more times clustered, or less clustered, the YSOs

are compared to CSR in the same window.

The envelopes applied in this section are unlike those that were applied in Chapter

3 in that they are produced by inhomogeneous Poisson Point processes, rather than CSR.

This subtle difference makes the interpretation of the scales at which the confidence en-

velope is exceeded more difficult to interpret as they simply only indicate the scales on

which the models are an inadequate description of the data. And so, while the scales at

which the envelopes are exceeded indicate scales at which interesting physics may be oc-

curing, because we are not comparing against CSR we don’t expect the scales of rejection

to necessarily correspond to a cluster size.

4.4.4.1 CSR in gas above cutoff value

The simplest null hypothesis is that there is no correlation between molecular cloud ma-

terial and YSOs. CSR is unlikely to be a successful model as protostars and prestellar

cores are known to be associated with dense material within molecular clouds (André et

al. 2010), the measured power laws in Section 4.4.1 are greater than zero and it was shown

that Serpens South is inconsistent with this model in Fig. 3.11. A more sensible, simple

relationship between column density and YSOs is one in which somematerial is required

for stars to form but the amount of material has no impact on the number of YSOs.
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The impetus for thismodel is the potential existence of a threshold density required

for star formation, which has been measured in Taurus, Ophiuchus and Perseus (Onishi

et al. 1998; Johnstone et al. 2004; André et al. 2010). As such the spatial point process used

for the confidence envelopes uses a uniform probability for forming stars in any pixel

with a visual extinction above Av = 6 (assumed to be equal to 6× 10
21

NH2
cm
−2
) and zero

otherwise.

The study windows covered in this work are too limited in size to come to any con-

clusions on the existence, or value of, a star-formation column density threshold. A more

complete study of star-formation thresholds would require a greater array of thresholds,

and study windows covering more low-column density space; however, this is outside

of the scope of the work in this chapter which is primarily interested in determining the

suitability of powers of �.

The envelopes for this model, presented in the first column of Fig. 4.9, are exceeded

by every region except NGC1333. For most regions this model produced too few pairs of

YSOs at small scales, as evidenced by the measured O-ring statistics exceeding the upper

bound of the envelope. The O-ring statistic for IC348, however, exceeds the lower bound

of the confidence envelope at a separation of 0.7 pc, due to too fewYSOs at that separation.

4.4.4.2 Envelopes with � = 1

A power law of � = 1 means that the surface density of Class 0/I YSOs is directly pro-

portional to the column density. This is a worthwhile test to perform as it is the simplest

relationship in which the surface density of YSOs increases with column density. It is

also of interest as within Orion B the distribution of prestellar cores have been observed

to follow a linear relationship with column density above a visual extinction threshold of

Av ∼ 7 (Könyves et al. 2020).

The results of applying this model are presented in the second column of Fig. 4.9.

Serpens South, Serpens core, Ophiuchus and IC348 all exceed the envelope at small scales

due to YSOs being more clustered at that scale than typically measured with a � equal to

1. NGC1333 also exceeds the envelope though at a more intermediate scale of 1.3 pc.
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4.4.4.3 Envelopes with � = 2.05

Following the results discussed previously in Section 4.4.1 the third model tested was

that of the global value of � = 2.05. This power is the best estimate of a model where the

distribution of Class 0/I protostars is proportional to column density with a consistent

power across the five star-forming regions examined in this chapter.

The 95 per cent confidence envelopes presented in the third column of Fig. 4.9

show that Serpens South andNGC1333 both exceed the envelopes at spatial scales around

0.15 pc and therefore reject the model. IC348, Serpens Core and Ophiuchus remain en-

tirelywithin the envelopes and are therefore consistentwith themodel. While still rejected

by two regions, this was the most successful value of � tested.

4.4.4.4 Envelopes with best estimate for �

The final test performed on each region was using the best-estimate for � calculated in

Section 4.4.1. Unlike the previous models where one value of � was applied to all of the

regions, with this test each region was tested against a different value for �.

Confidence envelopes were produced for each region using the best-estimates of �

presented in Table 4.2 and the results are presented in Fig. 4.10. Serpens South, Serpens

Core, NGC1333 and IC348 all remain within their respective envelopes, however Ophi-

uchus rejects the model on small scales of 0.06 pc.

4.4.5 Application to Class II YSOs

Class II YSOs are more evolved than Class 0/I sources and tend to be less associated with

the dense gasmaterial (Mairs et al. 2016); it is likely, then, that the surface-density of Class

II YSOs should follow a different power lawwith column density to Class 0/I YSOs, if any

at all. To show that the O-ring statistic with 95 per cent confidence envelopes has enough

discriminatory power to distinguish between YSO surface-density models the � = 2.05

model was applied to the Class II YSOs in each region.

TheClass II YSOswere selected from theDunhamet al. (2015) cataloguewith−1.6 ≤


 < −0.3 and)bol > 100K. Due to there beingdifferent numbers ofClass II YSOs compared



86 CHAPTER 4. PROTOSTELLAR DISTRIBUTIONS

0.0 0.5 1.0 1.5 2.0
r (pc)

0

5

10

15

O/

Serpens South
NH2 > 6 × 1021cm 2

0.0 0.5 1.0 1.5 2.0
r (pc)

Serpens South
= 1

0.0 0.5 1.0 1.5 2.0
r (pc)

Serpens South
= 2.05

0.1 0.2 0.3 0.4
r (pc)

0

20

40

O/

Serpens Core

0.1 0.2 0.3 0.4
r (pc)

Serpens Core

0.1 0.2 0.3 0.4
r (pc)

Serpens Core

0.0 0.5 1.0 1.5
r (pc)

0

10

20

O/

Ophiuchus

0.0 0.5 1.0 1.5
r (pc)

Ophiuchus

0.0 0.5 1.0 1.5
r (pc)

Ophiuchus

0 1 2
r (pc)

0

5

10

O/

NGC1333

0 1 2
r (pc)

NGC1333

0 1 2
r (pc)

NGC1333

0.0 0.5 1.0 1.5
r (pc)

0

10

20

O/

IC348

0.0 0.5 1.0 1.5
r (pc)

IC348

0.0 0.5 1.0 1.5
r (pc)

IC348

Figure 4.9: Measured O/�̂ vs A for Class 0/I YSOs in Serpens South, Serpens Core, Ophiuchus, NGC1333

and IC348 with 95 per cent confidence envelopes for different YSO surface-density models.
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Figure 4.10: Measured O/�̂ vs A for Class 0/I YSOs in Serpens South, Serpens Core, Ophiuchus, NGC1333

and IC348 with 95 per cent confidence envelopes using the best-estimate for � in each region from Table 4.2.
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to Class 0/I the confidence envelopes were recalculated using 99 realisations.

Presented in Fig. 4.11 are the measured O-ring statistics and � = 2.05 model con-

fidence envelopes for the Class II YSOs in each region. The measured $/�̄ values show

that, except for NGC1333, Class II YSOs are less clustered compared to CSR at small scales

than Class 0/I YSOs within the same region. Serpens South, Serpens Core, Ophiuchus

and IC348 exceed the 95 per cent confidence envelopes and therefore reject the � = 2.05

model, while NGC1333 stays within the envelopes.

4.5 Discussion

In Sections 4.4.1 and 4.4.2 terms relating to possible power law relationships between the

column density and the surface density of Class 0/I YSOswere estimated. In Section 4.4.4

methods from spatial statistics were used to determine if, and how many, star forming

regions from the set were consistent with the stellar distribution models tested. These are

complementary and independent methods as one does not necessarily imply the other;

the first test assumed a model and found the parameters that best fit the model, while the

spatial statistics tests determined the suitability of the proposed models.

4.5.1 Measured YSO surface density relations

The power-law relationship between the surface density of Class 0/I YSOs and column

density was measured in Serpens South, Serpens Core, Ophiuchus, NGC1333 and IC348,

the results of which are presented in Tables 4.2 and 4.3. The power, �, was estimated

by marginalising the joint-probability distributions of Eqn. 4.6 for each region over the

region-specific constant,�r andvice-versa. Asdiscussed,�defines the relative likelihoods

of forming YSOs at different column densities within a region, and �r is a region-specific

constant which normalises the number of YSOs formed within the region.

The region-specific constants were measured for the individual regions, as dis-

cussed in Section 4.4.2; however, it was also discussed that because the region-specific

constants depend on � and the units of ΣGas, comparison of �r between regions of differ-

ent � is difficult to interpret. The dependence on � can be mitigated by considering �r
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Figure 4.11: Measured O/�̂ vs A for Class II YSOs in Serpens South, Serpens Core, Ophiuchus, NGC1333 and

IC348 with 95 per cent confidence envelopes for a � = 2.05 YSO surface-density model.
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values when regions are assumed to have the same �, and it was shown in Fig. 4.7 that

different regions which have the same value of � can have different values of �r. Such dif-

ferences in �r are due to factors external to column densitywhich cause different amounts

of star-formation, for example age, magnetic fields, turbulence and different cloud orien-

tations or geometries. And so, while �r is important for estimating the YSO densities

using Eqn. 4.2, the column density dependence is what is being tested using the O-ring

statistic and so discussion will be focussed on �.

Values of � measured for the star forming regions in this work are consistent with

studies looking for YSO surface density relationships in other star-forming regions (Guter-

muth et al. 2011; Rapson et al. 2014; Willis et al. 2015; Lada et al. 2013; Lombardi et al. 2013;

Lombardi et al. 2014; Pokhrel et al. 2020). Even high values of�, such as that of IC348, have

been measured such as Perseus with � = 3 (Hatchell et al. 2005) and � = 3.8 (Gutermuth

et al. 2011) and the California Nebula with � = 3.31 (Lada et al. 2017) – though it is shown

in Fig. 4.9 and Table 4.2 that IC348 is consistent with a much lower value of �. There is

some overlap between the regions tested in this chapter and those tested in other works:

Ophiuchus with a � of 1.78 is exceptionally close to the value of 1.87 and 1.9 measured

by Gutermuth et al. (2011) and Pokhrel et al. (2020) respectively, and IC348, within the

Perseus molecular cloud shows a similar power law to Gutermuth et al. (2011), though

NGC1333 does not. It is interesting that these power laws show such similarity given

the differences in themethods of measuring the power law, the column density measures,

identifying the YSOs and the star-forming regions used. There is even potential that some

of the higher values of �, such as that of IC348, may be reduced in future with increasing

resolution as happened with Orion B (Lombardi et al. 2014).

In addition tomeasuring� for each region, Eqn. 4.8was used to estimate the power-

law value which best represents the YSO distributions in all five regions simultaneously

by marginalising over the region-specific constants: � = 2.05. Unlike taking an average

value of �, which requiresmeasured values of � and an assumption as to how they should

beweighted, thismethod directly uses the available data to estimate the parameter. Given

this difference, it is interesting how similar this value is to the weighted mean � = 2.06 ±

0.14 (with 95 per cent confidence intervals) for these regions and the mean value of � ∼ 2



4.5. DISCUSSION 91

for the 12 regions studied in Pokhrel et al. (2020).

Compared to the individual estimates of �, presented in Table 4.2 and Fig. 4.5,

� = 2.05 appears to represent the ensemble of Bayesian fitted � values well. While this

is to expected, given that this value of � was estimated using the YSO and area counts

that were used to produce the values of � for each region, it did not use the values of �

themselves and so demonstrates that the combination of measurements produces a value

that is reasonable and representative. We can also see in Fig. 4.7 that for most regions � =

2.05, combinedwith the appropriate estimate of�r, provides a good, visual representation

of the YSO surface density measurements despite not being the best-estimate for the most

regions.

4.5.2 Testing YSO distributions against spatial distribution models

Ameasured � value describes how the surface density of YSOs changes in general across

the entire study region. Measuring a power-law, however, does notmean that theYSOs are

evenly distributed according to column density throughout the cloud. This was demon-

strated in Section 4.4.3, where a value of � measured from an evenly distributed popu-

lation of YSOs could be reproduced in a population of stars distributed over only half of

the cloud. From this it is reasonable to say that � is a useful metric to describe YSO distri-

butions but is not enough on its own to say whether YSOs have a relationship with cloud

material of the form Eqn. 4.2. By utilising the spatial information, spatial statistics can

test if observed distributions of YSOs are consistent with a power-law relationship with

column density.

4.5.2.1 Class 0/I YSOs

One should expect the surface density of YSOs to be affected by column density. From

a physics standpoint this makes sense as a greater reservoir of material has the potential

to form more stars, and from an observational standpoint the values of �measured star-

forming regions are all greater than zero. The O-ring tests confirms this as Serpens South,

Serpens Core, Ophiuchus and IC348 all have Class 0/I YSO populations inconsistent with

YSOs positioned independently of columndensity aboveAv = 6. It was also confirmed by
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the O-ring test that this relationship is likely superlinear as all five regions rejected � = 1

and subsequent tests with higher values of � all had fewer rejections.

Each region was also tested against the global estimate of � = 2.05, the 95 per cent

confidence envelopes for which are presented in Fig. 4.9. These results show that of the

five regions tested, Serpens Core, Ophiuchus and IC348 have Class 0/I YSO populations

that are consistent with the � = 2.05 model. While it is unsurprising that Serpens Core

is consistent with � = 2.05, given its power law was estimated to be � = 2.06, this is a

more interesting result for Ophiuchus and IC348 as their estimates for � were 1.78 and

3.00 respectively.

Serpens South and NGC1333 rejected the � = 2.05 model. This was due to over-

clustering and regularity for Serpens South and NGC1333 respectively. Interestingly, the

outcome of the envelope tests – with Serpens South and NGC1333 rejecting the � = 2.05

model while the other regions do not – is mirrored in the � values measured in Table

4.2. The power � = 2.05 is within the 95 per cent confidence intervals for Serpens Core,

Ophiuchus and IC348 individually while it is marginally outside the interval for Serpens

South andNGC1333. It is perhaps due to the proximity of 2.05 to the 95 percent confidence

intervals of Serpens South andNGC1333 that the O-ring values exceed the confidence en-

velopes over such a small set of spatial scales at ∼ 0.15 pc.

Finally, each regionwas tested against its best-estimate for �. Unlike the othermod-

els which assume a single value of �, this model contains � as an adjustable parameter for

each region. By having five additional adjustable parameters in total, one should expect

the number of YSO distributions that are consistent with the model to increase. This was

observed in Fig. 4.10 where it was found that Serpens South, Serpens Core, NGC1333

and IC348 all have YSO populations consistent with their best-estimates of �. From these

results then we can see that Eqn. 4.2, using the Bayesian estimates of �, is generally sup-

ported by spatial statistics. Though Ophiuchus rejected � = 1.78 at 0.06 pc, on similar

scales to the regions which rejected � = 2.05.
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4.5.2.2 Class II YSOs

While � values were not measured for the Class II YSOs in these regions, by looking at the

measured O-ring statistic and � = 2.05 envelopes in Fig. 4.11 it is clear that the two popu-

lations are not equally dependent on column density. The Class II YSOs in Serpens South,

Serpens Core, Ophiuchus and IC348 are all inconsistent with the a � = 2.05 model, while

those in NGC1333 remain within the envelope. This increase in rejection by older YSOs,

in combination with lower $/�̄ values and generally flatter O-ring results as a function

of radial separation, shows that there is a change in the separation of YSOs as a function

of their age. These results also demonstrate that these tests have enough discriminatory

power to distinguish between two distinct but related populations within the same region

- Class 0/I and Class II YSOs.

4.5.3 Potential for a universal column density model

A question proposed at the beginning of this chapter was if it is possible to describe the

locations of YSOs within a molecular cloud with a model that only uses column density.

After applying four different models to the Class 0/I YSOs in five star forming regions ev-

ery regionwas found to be consistentwith at least onemodel. The answer to this question,

therefore, appears to be ‘yes’ as the parameters for a given model can be tweaked in order

to be consistent with a given set of YSOs. Given that an individual region can be described

using a column density model, the next question is whether it is possible to describe the

distributions of YSOs within multiple molecular clouds using the same column density

model.

Themost successful of the fourmodels testedwas that in which the best-estimate of

� calculated for each regionusing the Bayesianmethodology fromSection 4.2was applied.

Using this model, four out of the five regions were found to have YSO distributions con-

sistent with being distributed throughout the cloud according to column density alone.

It is possible, therefore, that if YSOs are distributed following column density alone that

� simply varies between star-forming regions and that there is no universal power-law

distribution. However, not all of the regions were consistent with their best-estimate of

� and it is difficult to say whether this increase in consistency with the data is significant
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enough to justify the addition of an adjustable parameter to the model.

As discussed in Sections 4.4.4.3 and 4.5.1, multiple regions can be consistent with

the same power-law despite the best estimate of their � values not being equivalent. Fig.

4.7 shows how a YSO surface density proportional to column density to the power of

� = 2.05 represents the data quite well, and using the O-ring statistic the � = 2.05 model

is able to describe the YSO distributions of Serpens Core, Ophiuchus and IC348 across

all of the tested spatial scales. Out of the three models tested using a single value of

�, � = 2.05 performed the best with three regions out of five being consistent with the

distribution. Thefirst testwith� = 0 abovea columndensity thresholdwasonly consistent

with NGC1333 and � = 1 was not consistent with any of the regions.

While the Class 0/I YSOs in Serpens South and NGC1333 rejected the � = 2.05

model, this rejectionwas only over a small set of spatial scales between 0.12 pc and 0.18 pc,

and on other scales the distribution was consistent with the model. This can be seen in

Fig. 4.12 which shows the measured O-ring data from Fig. 4.9 for A > 0.18 pc; the O-ring

statistics in Fig. 4.12 remain within the envelope across all scales and so appear consistent

with the� = 2.05model. It isworth emphasising that,while the envelopes inFig. 4.12have

been adjusted to retain a 95 per cent significance level, the envelopes have been calculated

using the same null hypothesis data from Fig. 4.9 and so is not an independent test. Fig.

4.12 does show, however, that remainingwithin the envelopes at larger A values is a feature

of the data and not due to the envelopes beingwidened by theO-ring valueswhich exceed

the envelopes. From this we can say that the large-scale behaviour of the Class 0/I YSOs

in all of these regions is well described by the same power-law relationship with column

density.

4.5.4 Alternative universal models

Using both spatial statistics and Bayesian statistics it was shown that a power-law model

with � = 2.05 provides a good approximation to the data. It is interesting to note that

while Eqn. 4.2 appears to fit the measured YSO surface density data in Serpens South

and NGC1333, as shown in Fig. 4.7, these regions both exceed the confidence envelopes.

This could imply a situation like that discussed in Section 4.4.3 where column-density-



4.5. DISCUSSION 95

0.5 1.0 1.5 2.0
r (pc)

0.0

2.5

5.0

7.5

10.0

O/

Serpens South

0.20 0.25 0.30 0.35 0.40
r (pc)

0

10

20
O/

Serpens Core

0.5 1.0 1.5
r (pc)

5

0

5

10

15

O/

Ophiuchus

0.5 1.0 1.5 2.0 2.5
r (pc)

0

5

10

O/

NGC1333

0.5 1.0 1.5
r (pc)

0

10

20

O/

IC348

Figure 4.12: ThemeasuredO/�̂ vs A forClass 0/IYSOs in Serpens South, SerpensCore, Ophiuchus,NGC1333

and IC348 from Fig. 4.9 with 95 per cent confidence envelopes for a � = 2.05 YSO surface density model,

using A > 0.18 pc.
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independent effects resulted in star formation being unevenly distributed throughout the

cloud.

The surface density of YSOs is not necessarily proportional to the column density

to some power and so some modification of the first-order model Eqn. 4.2 may produce

better results. The number of different models which could be simulated are potentially

unlimited; however, the excursions from the � = 2.05 envelope were brief and otherwise

are consistent with the power law and so any additional changes to the model should not

have a large effect on the power-law relationship. Furthermore the scales on which these

additional parameters influence the star formation need only be limited to small scales.

The results in Fig. 4.9 show that Serpens South and NGC1333 reject the model at

scales close to 0.15 pc due to the over-clustering and under-clustering respectively and are

otherwise consistent with the model. At most scales, therefore, the distribution of YSOs

in Serpens South and NGC1333 behave similarly to this simple power-law relationship –

except at a spatial scale of 0.15 pc. From Fig. 4.9 is not possible to determine exactly what

this rejection means without further testing, however some possibilities will be discussed

here.

The first option is that a global first-order model for star formation between clouds

requires a different power law. This appears unlikely as the O-ring statistic shows over-

clustering in Serpens South and under-clustering in NGC1333. Any increase in � would

lead to increased clustering at smaller scales while a decrease in � would have the op-

posite effect, neither of which would necessarily represent Serpens South and NGC1333

simultaneously. Fig. 4.9 shows the results for a power law of � = 1 which consistently

under-represent the density in Serpens South while NGC1333’s O-ring statistic is consis-

tent at small scales. Extrapolating the envelopes between the first and second columns of

Fig. 4.9 provides some evidence against power laws less than 2, though more simulations

would be required to conclusively determine this to be true.

A second option would be to add more parameters to the surface density model.

One parameter of particular interest is a column density threshold for star formation.

Indeed, from Fig. 4.9 it was shown that the YSOs within NGC1333 are consistent with
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being positioned randomly in pixels with a column density greater than 6 × 10
21

cm
−2
.

Lombardi et al. (2013), hereby LLA, introduced a Bayesian method related to that in this

chapter which uses the positions of protostars and the visual extinctions at those posi-

tions to estimate parameters in their model for protostellar surface densities. The surface

density model in LLA is similar to Eqn. 4.2, except with two parameters in addition to

�r and � (in their notation � and � respectively): � and �0. � is a diffusion coefficient

term which allows for some amount of travel between the protostars’ site of formation

and observation and �0 is a star formation threshold density. Lada et al. (2013) applied

the method of LLA to Orion A, Orion B, California and Taurus, and found that there was

no significant measurement of a diffusion coefficient and that a star-formation threshold

may be more due to the distribution of material in the cloud – suggesting that the model

is scale free. From the results in this work it is not possible to come to a conclusion on a

model which uses both a power law and a threshold; no such model was tested and the

number of YSOs from low column density regions in this work is insufficient to provide

much insight on YSO distributions at low column densities. However, given the results

of LLA the effect of including a column density threshold would be likely be limited.

A third option is that the power-lawmodel cannot be applied to small spatial scales.

This could be due to data-related problems, for example resolution. The spatial sepa-

rations used start at, and are separated by, an interval of 0.03 pc, at these small spatial

scales resolution effects become more prominent which in turn increases the likelihood

that close, separate sources will be counted as a single source or a vice-versa. This is a

particular problem at small radii where a small change in the number of YSOs has a large

impact on the density. It could also be that the distributions of YSOs are affected by dif-

ferent physics at small-scales than large scales. The scales at which Serpens South and

NGC1333 reject the global power law are at scales close to the filament scale of 0.1 pc (Ar-

zoumanian et al. 2011), and average core separations in filaments of 0.14 pc (Könyves et

al. 2020). Given that YSOs formwithin collapsing filaments it is possible that the structure

of the filaments in which these Class 0/I YSOs form affects their distributions.

Finally, itmayalso be the case that amodelwith second-order components is needed

to capture the nature of the distribution of star formation in star-forming regions. In a first-
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order model the clustering of YSOs is a product of a general increase in YSO density due

to a change in environment, in this case column density. It is also possible that clusters

of protostars are not simply a function of increased density but are instead a product

of a cluster-formation process which preferentially generates clusters in higher-density

regions. Such behaviour can be represented through application of second-order effects

which raise or lower the probability of forming a star as a function of distance fromanother

star. This could be a YSOdisrupting the columndensity of its immediate surroundings for

example inNGC1333 (Knee and Sandell 2000), or it could be clusters of protostars forming

within a dense core or filament for example in Perseus (Tobin et al. 2016).

4.5.5 Changing evolutionary timescales with column density

As discussed in Section 4.4.4.2 the surface density of prestellar cores in Orion B has been

observed to follow a linear relationship with column density above a visual extinction

threshold of Av ∼ 7 (Könyves et al. 2020) and observations have found that the YSOs in

Orion B follow a power-law with � ≈ 2 (Lombardi et al. 2014; Pokhrel et al. 2020). Fig. 4.9

shows that the YSOs in Serpens South, Serpens Core, Ophiuchus, NGC1333 and IC348 are

not consistent with a linear model and so, while Orion B was not explored in this work, it

is unlikely the YSOs in Orion B will be consistent with the linear power-law followed by

the prestellar cores.

This leads naturally to the question of why these should be different if prestellar

cores are expected to evolve into Class 0 YSOs. One reason for this could be that the

prestellar cores and Class 0/I YSOs have time-scales that are affected by environment in

different ways, or, the converse argument, for these distributions to be the same it would

require the evolutionary time-scales of prestellar cores and Class 0/I YSOs to share the

same dependence on the environment.

To see why this is the case a simple model of the rates of change of surface density

over time, similar to that in nuclear decay, is introducedusing a subset of eqns. (2)–(7) from

Kristensen andDunham (2018). Assumingprestellar cores are produced at a constant rate,

� (which may be a function of local column density), and evolve into Class 0/I YSOs with
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a lifetime �PC the change in prestellar core surface density is

dΣPC

dC
= � − ΣPC(C)

�PC

, (4.17)

where ΣPC is the surface density of prestellar cores. Similarly, assuming Class 0/I YSOs

evolve into Flat or Class II YSOs with a lifetime �
0/I the surface density of Class 0/I YSOs,

Σ
0/I, is

dΣ
0/I

dC
=
ΣPC(C)
�PC

−
Σ

0/I(C)
�

0/I
. (4.18)

The solutions to Eqns. 4.17 and 4.18 are

ΣPC = ��PC

(
1 − 4−C/�PC

)
, (4.19)

and

Σ
0/I = ��

0/I

(
1 − �PC

�PC − �0/I
4−C/�PC −

�
0/I

�
0/I − �PC

4−C/�0/I

)
(4.20)

respectively, where it is assumed that at C = 0 the surface density of prestellar cores and

protostars are zero.

Everything inside the brackets of Eqns. 4.19 and 4.20 is unitless and column density

independent. The columndensitydependence of a population, therefore, is definedby the

product of prestellar core formation rate and the lifetime of the population. For simplicity

the solutions to the steady-state condition, where Eqns. 4.17 and 4.18 are both equal to

zero, are

ΣPC = ��PC (4.21)

and

Σ
0/I = ��

0/I. (4.22)

From inspection it can be seen that for ΣPC and Σ
0/I to share the same column density

dependence, their lifetimes must also be equally dependent on column density. In other

words, if the prestellar cores and Class 0/I YSOs in a region have different column density

dependences this could be due to different column density dependences of the evolution-

ary timescales of prestellar cores and protostars.



100 CHAPTER 4. PROTOSTELLAR DISTRIBUTIONS

As discussed, observations in Orion B find that ΣPC is linearly proportional to ΣGas

while Σ
0/I is proportional to ΣGas to a power of about two; additionally, measurements

in Monoceros R2 show ΣPC ∝ Σ2

Gas
(Sokol et al. 2019) and Σ

0/I ∝ Σ2.67

Gas
(Gutermuth et

al. 2011). And, while the power-law relations between column density and the surface

densities of prestellar cores and protostars were not measured, the two-point correlation

function (2PCF)was applied to the prestellar cores and protostars in Serpens South, Ophi-

uchus and Perseus by Enoch et al. (2008). The 2PCF showed that the protostars in these

regions were more clustered than the prestellar cores and that, while the prestellar cores

were not as clustered, their relative densities fell off more slowly as a function of spatial

separation. This clustering behaviour is what would be expected from protostars that

have a higher � than prestellar cores: greater clustering on small scales near high-density

material compared to a more dispersed population. And so, while the exact values of

� may differ between regions these observations, combined with Eqns. 4.21 and 4.22,

strongly suggests that �PC and �
0/I must have different dependences on column density

due to interactions with the environment such as on-going accretion.

To gain some insight into how the relative time-scale depends on column density

in Orion B I substitute in the observed relations of Σ
0/I ∝ Σ2

Gas
– from this and other

measurements discussed in Section 4.5.3 – and ΣPC ∝ ΣGas from Könyves et al. (2020):

��PC ∝ ΣGas , (4.23)

��
0/I ∝ Σ2

Gas
(4.24)

and

�PC

�
0/I
∝ Σ−1

Gas
, (4.25)

where Eqn. 4.25, the ratio of ΣPC and Σ
0/I, states that the difference in column density de-

pendence between �PC and �
0/I is a factor ofΣGas. This suggests that prestellar cores evolve

more quickly at higher column densities than Class 0/I YSOs. There are different ways to

interpret this: (i) prestellar cores evolve on shorter time-scales at higher column densities;

(ii) Class 0/I YSOs remain embedded in their envelope longer at higher column densities;

(iii) alternatively, both are column density dependent in some form with prestellar cores
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ultimately evolving faster than Class 0/I YSOs at higher column densities.

It is very likely that both �PC and �
0/I are column density dependent. For prestellar

cores their lifetime is often compared to the free-fall time of a spherically-symmetricmass:

tff ∝ �−1/2 , (4.26)

where � is the density of the sphere. Eqn. 4.26 shows that, since free-fall time is propor-

tional to volume density to a power −1/2, higher density objects collapse more quickly.

Numerical simulations have shown that Bonner–Ebert spheres have higher central den-

sities and are quicker at collapsing within higher density environments (Kaminski et

al. 2014). It appears possible that �PC is lower at higher column densities.

For Class 0/I protostars to take longer to evolve at higher column densities it would

require that they remain embedded within their envelopes for longer compared to their

lower-column-density counterparts. It may be the case that Class 0/I protostars are able

to remain embeddedwhilematerial is available for accretionwhichwould result in longer

lifetimes in regions that are more dense. This is in part supported by numerical simula-

tions where it was found that the accretion rate onto protostars was equivalent between

two simulated clouds of different densities (Bate and Bonnell 2005). Assuming this to be

true, a change in �
0/I with respect to column density could be observable in the relative

masses in protostars in regions of different column density. Indeed some evidence of this

has been observed in mass segregation in YSOs and dense cores, where the most massive

sources were found within regions with higher densities of sources and towards the cen-

tral location of the cluster (Kirk andMyers 2011; Kirk et al. 2016). It was also noted in Bate

and Bonnell (2005) that objects formed within a denser cloud showed a greater variation

in the time taken for an object to accrete. As a counter argument, the same simulations

also showed that dynamical interactions between objects were the dominant force in ter-

minating accretion and objects were more likely to be ejected sooner in a higher density

cloud (Bate 2012). This would imply that �
0/I is smaller in higher column densities. These

are, however, results from numerical simulations and observational evidence is currently

insufficient to convincingly support either lengthening or shortening lifetimes.
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Ultimately, from these ratios it is not possible to determine which of the terms �,

�YSO or �
0/I are column density dependent, but at least two of the termsmust be functions

of column density, one of which must be an evolution time-scale for prestellar cores or

Class 0/I YSOs. This is true for any region in which ΣPC and Σ
0/I are measured to have

different dependencies on column density.

4.6 Conclusions

In this chapter the distribution of Class 0/I YSOs in Serpens South, Serpens core, Ophi-

uchus, NGC1333 and IC348 were tested against a spatial distribution model of the form

�̂(NH2
) ∝ NH2

� , (4.27)

where �̂(NH2
) is the estimate of the surface density of Class 0/I YSOs at a column density

NH2
, and � is some power.

(i) It was found that four of the regions had Class 0/I populations inconsistent with

� = 0 when combined with a threshold column density of 6 × 10
21

NH2
cm
−2

and

zero probability elsewhere – implying that star formation is not decoupled from

column density (Section 4.4.4.1).

(ii) The Class 0/I YSOs in all of the tested regions were also found to be inconsistent

with � = 1 – the power law associated with the surface densities of prestellar cores

(Section 4.4.4.2).

(iii) The power law index � was measured for each region individually in Section 4.4.1,

the results of which are tabulated in Table 4.2, and by combining the YSO surface

density data from all regions a global � value was measured to be 2.05± 0.20 where

the reported uncertainty is the 95 per cent confidence interval.

(iv) The best value of � tested was that of the global � value 2.05 in Section 4.4.4.3, with

only the YSOs in Serpens South and NGC1333 rejecting the model between 0.12 pc

and 0.18 pc. It was shown that all five regions were consistent with � = 2.05 when

considering radial separations greater than 0.18 pc.
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Table 4.5: Table of Symbols

Symbol Description


 significance level

= number of simulated patterns

s arbitrary areas in study region

F star-star nearest neighbour distance

G position-star nearest neighbour distance

A radius, radial separation

G study region

@ half-width of annulus

� multiplicative factor for annulus width

' cluster radius

ΣSFR star formation rate surface density

ΣGAS gas surface density

�r region-specific constant

� power-law index of SFR surface density relation

� first-order intensity

NH2
column density cm

−2

# number of YSOs

#c number of points in cluster

#bg number of background points

#total total number of points

D,E cell indices

Δ� angular distance


 right ascension (RA), significance level

� declination (Dec)

�0 null hypothesis

= number of simulated patterns

� area

(v) Serpens South and NGC1333 rejected the � = 2.05 model at a radial separation

of ∼ 0.15 pc. This could be due to physical effects such as a preferential scaling

for filament collapse or small-scale interactions between YSO or data-related issues,

such as resolution. However, because of the generally good fit to the model any

modification should be limited to small spatial scale interactions.

(vi) Class 0/I YSOs were shown to have a different relationship to column density than

Class II YSOs (Section 4.4.5) showing that this relationship is not consistent over

time.

(vii) In Section 4.5.5, using a toy evolution model it was determined that column density

plays a role in at least two of the three terms: prestellar core formation rate, prestellar

core evolutionary time-scale and Class 0/I evolutionary time-scale.



104

Chapter 5

Conclusion

5.1 Summary

In this thesis I tested the sensitivity of four methods from spatial statistics to clustering in

the presence of background noise: Diggle’s G function (G), the ‘free-space’ function (F),

Ripley’s K (K) and the O-ring statistic (O). By applying these tests to Gaussian clusters

projected on a background of random stars it was found that the second-order statistics

K and O were more consistently able to reject CSR than the first-order statistics G and F.

While Ripley’s K and the O-ring statistic performed similarly I recommended O-ring for

future applications.

I then investigated the spatial distributions of Class 0/I YSOs in the local star-

forming regions Serpens South, Serpens Core, Ophiuchus, NGC1333 and IC348, with re-

spect to column density. Using a Bayesianmethod I estimated the power-law relationship

between the surface density of YSOs and column density for each region individually and

the power-law which represents all of the regions as a collective, ΣYSO ∝ Σ2.05

Gas
.

The Class 0/I YSOs in these five regions were tested then for their consistency

against three commonmodels, and one individual model. From the set of commonmod-

els, the most successful model was � = 2.05. The YSOs in all five regions appear to be

consistent with this model on large scales, however at small scales (∼ 0.15 pc) the Class

0/I YSOs in Serpens South and NGC1333 were shown to be inconsistent with this model.
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The most successful model overall was using the best-estimate for � for the individual

region which was only rejected by Ophiuchus. However, it unclear if this improvement

is significant enough to justify the addition of five adjustable parameters – one for each

region.

5.2 Proposed future work

5.2.1 Class II YSOs

The positions of Class 0/I YSOs are indicative of where they initially formed within the

cloud, and so from their distribution it is possible to infer information about recent star

formationwithin the cloud. However, as discussed in chapter 1, YSOs become less densely

clustered and less associated with dense gas with increasing class. It is possible that this

evolution of distributions is due to a change in the morphology of the molecular cloud

over time, or the later-class YSOs have travelled further from their sites of formation. Ap-

plication of the methods discussed in this work could provide some insight into what

causes these distributions to change over time.

If this evolution is due to a change in the morphology of the molecular cloud then

we would expect the locations of more evolved YSOs, such as the Class IIs, to have had a

relationshipwith columndensity similar to that of Class 0/Is at the time of formation. The

way to test this is to produce first-order intensitymaps that are estimations of earlier cloud

morphologies and produce confidence envelopes for these models. One potential option

to explore is estimating the first-order map based on the current distribution of Class II

YSOs. Wiegand and Moloney (2004) achieve this by calculating the first-order intensity

within amoving kernel of a given radius. Fig. 5.1 shows the estimated first-order intensity

maps for the Class 0/I and Class II YSOs in Serpens South using a square kernel. We can

see from this figure how spatially different the distributions of each class are. Fig. 5.1 also

shows the limitations of this method where the density of points is low and the kernel

becomes more granular.
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Figure 5.1: Estimated first-order intensity maps for Class 0/I YSOs (left) and Class II YSOs (right) in Serpens

South using a square kernel.

5.2.2 Column density threshold

Another area in which this work can be extended is in the estimation of a column density

threshold. The study regions which are looked at in chapter 4 were selectively chosen to

test K–S relations, and so including low column density regions with few YSOs were not

strictly necessary. However, by extending the study region to contain more low column

densitymaterial it is possible tomeasure the YSO surface density and observe the K–S law

at column densities below the typical threshold of Av ≈ 6. In addition, with the inclusion

ofmore lower columndensity regions it becomespossible to test columndensity threshold

models using the methods in Chapter 4.

5.2.3 Numerical simulations

Another possible extension of this project is in the use of these methods to aid, and be

aided by numerical simulations of star formation such as those of (Bate 2011). Numerical

simulations of star formation are able to consider the three-dimensional structure of the

cloud, whereas the results of this thesis apply to the two-dimensional projection of the

cloud. As such, themethods in thiswork couldbeuseful as ameans for testing thephysical

accuracy of three-dimensional simulations by looking at the spatial distributions of the

simulated YSOs when projected into 2D.

The analysis of such a work would follow a similar path to that in Chapter 4. First,

checking if the best-estimate of� is similar to that of observed distributions, and then com-

paring against confidence envelopes for simulations with this newly-calculated estimate
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of �, and � = 2.05. A rejection of either, or both, of these models may not be a signifi-

cant result; however, a significant and consistent deviation from the confidence envelopes

could indicate that the simulation may be missing some key physics. This is because the

excursions from the envelopes in Fig. 4.9 were brief and over only small scales.

On the other side, numerical simulations could help inform as to how projection

affects can alter observed power-laws. In addition, by including the radial distances to

objects, it would be possible to produce similar models that relate the star-formation rate

to the volume density of star-forming material.

5.2.4 Cluster scales

Statistics such as the pair-correlation function have expected values under a null hypoth-

esis and comparison to these values can indicate scales at which clustering or regularity

is present. However, even a random pattern will contain some degree of clustering sim-

ply due to random fluctuations of points within the space. Comparison to these values

is therefore not a reliable indicator that the pattern contains significant clustering. We

can, however, use global confidence envelopes of CSR as tests for general clustering, and

the regions at which the statistic exceeds the envelope are those that contain significant

clustering.

To illustrate this, I have reproduced Fig. 5.2 showing only the results of O-ring.

From this figure we can see that there is an initial region of clustering which ends at an

angular separation of ∼ 0.1◦ and another region with a peak at ∼ 0.2◦. Comparing these

values to the YSOs in Fig. 5.2 these separations coincide with the size of the individual

subclusters and thedistance between the subclusters. Features such aspeaks in correlation

functions are already used to identify characteristic clustering scales, however the global

confidence envelope provides a new threshold, and a means to identify sets of scales that

are above it. Applying this method of calculating scales to YSO distributions would be an

interesting extension to the work in this thesis.
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Figure 5.2: (above) Positions of YSOs within Serpens South, (below) O-ring statistic with 95 per cent global

confidence envelopes for CSR.
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5.2.5 Marked spatial point process analysis

The spatial analysis methods applied in chapters 3 and 4 use only the location data of the

YSOs. Another direction in which this work could be expanded is to include the quantita-

tive data, or mark, attached to the YSOs, such asmass, )bol or 
. Points which contain data

are called amarked variable and the process is called amarked point processes (Feigelson

and Babu 2012). The marks will not necessarily follow the same distribution as the YSOs.

Analysis of the marked processes could indicate features such as a strong correlation in

mass on small scales where more massive YSOs are more centrally concentrated.
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