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Virus host shifts are a major source of outbreaks and emerging infectious diseases, and predicting the outcome of novel host

and virus interactions remains a key challenge for virus research. The evolutionary relationships between host species can explain

variation in transmission rates, virulence, and virus community composition between hosts, but it is unclear if correlations exist

between related viruses in infection traits across novel hosts. Here, we measure correlations in viral load of four Cripavirus isolates

across experimental infections of 45 Drosophilidae host species. We find positive correlations between every pair of viruses tested,

suggesting that some host clades show broad susceptibility and could act as reservoirs and donors for certain types of viruses.

Additionally, we find evidence of virus by host species interactions, highlighting the importance of both host and virus traits in

determining the outcome of virus host shifts. Of the four viruses tested here, those that were more closely related tended to be

more strongly correlated, providing tentative evidence that virus evolutionary relatedness may be a useful proxy for determining

the likelihood of novel virus emergence, which warrants further research.
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Impact Summary

Many new infectious diseases are caused by viruses jumping

into novel host species. Estimating the probability that jumps

will occur, what the characteristics of new viruses will be, and

how they are likely to evolve after jumping to new host species

are major challenges. To solve these challenges, we require a

detailed understanding of the interactions between different

viruses and hosts, and metrics that can capture some of the

variation in these interactions. Previous studies have shown

that the evolutionary relationships between host species can

be used to predict traits of infections in different hosts, in-

cluding transmission rates and the damage caused by infec-

tion. However, the potential for different viruses to influence

the patterns of these host species effects has yet to be deter-

mined. Here, we use four viruses of insects in experimental

infections across 45 different host species of fruit fly to begin

to answer this question. We find similarities in the patterns of

replication and persistence between all four viruses, suggest-

ing susceptible groups of related hosts could act as reservoirs

and donors for certain types of virus. However, we also find

evidence that different viruses interact in different ways with

some host species. Of the four viruses tested here, those that

were more closely related tended to behave in more similar

ways, and so we tentatively suggest that virus evolutionary re-

latedness may prove to be a useful metric for predicting the

traits of novel infections, which should be explored further in

future studies.

Virus host shifts, where viruses jump to and establish on-

ward transmission in novel host species, are a major source of

outbreaks and emerging infectious diseases (Cleaveland et al.

2001; Taylor et al., 2001; Woolhouse and Gowtage-Sequeria

2005). Many human infections, including Measles virus, HIV,

and recently SARS-CoV-2, have shifted into humans from other

species and continue to cause significant damage to public health,
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society, and the global economy. (Frank et al. 2019; Miller et al.

2020; Misin et al. 2020; Shereen et al. 2020). Predicting and pre-

venting virus host shifts have consequently become major goals

of virus research (Holmes 2013). Many challenges remain in

achieving these goals, including improving our understanding of

the host, virus, and ecological factors that influence the outcome

of initial cross-species transmission (Olival et al. 2017; Plowright

et al. 2017), and the evolutionary and epidemiological factors that

determine which pathogens become established in novel hosts

(Geoghegan and Holmes 2017).

Several studies have investigated the ability of host evolu-

tionary relatedness to explain variation in the outcome of infec-

tion across host species, where it acts as a proxy for underly-

ing divergence in the immunological and physiological traits that

influence host susceptibility. Greater phylogenetic distance be-

tween the natural (donor) and recipient hosts is associated with

decreased likelihood of cross-species transmission (Gilbert and

Webb 2007; Streicker et al. 2010) and reduced onward transmis-

sion within the novel host species (Guth et al. 2019). Addition-

ally, phylogenetic distance between hosts can explain variation in

virulence after cross-species transmission, which increases when

viruses jump between more distantly related hosts (Farrell and

Davies 2019; Guth et al. 2019; Mollentze et al. 2020). Groups of

closely related hosts have also been shown to share similar levels

of susceptibility to novel viruses, independent of the distance to

the natural host (Longdon et al. 2015; Longdon et al. 2011), and

harbor similar virus communities (Davies and Pedersen 2008; Al-

bery et al. 2020; Shaw et al. 2020).

In these studies, variation across host species is measured ei-

ther with a single virus, or across multiple virus families to detect

broad patterns. However, little is known about the potential for in-

dividual viruses to interact with host evolutionary effects (Long-

don et al. 2011). Within host species, genotype-by-genotype in-

teractions between host and virus can be important determinants

of the outcome of infection (Hudson et al. 2016), with similar in-

teractions seen in bacterial and Plasmodium infections in other

systems (Lambrechts et al. 2005; Hall and Ebert 2012). These in-

teractions alter the rank order of host susceptibility and so reduce

the strength of correlations in susceptibility to different parasites

across hosts. In fungal pathogens of plants (Vienne et al. 2009)

and ectoparasites of mammals (Hadfield et al. 2014), compara-

tive analyses have revealed effects of parasite evolutionary re-

latedness, alongside those of host evolutionary relatedness, and

some evidence exists to suggest similar effects may be found

in viruses. Closely related viruses tend to infect the same broad

host taxa (Kitchen et al. 2011), despite high levels of geographic

range overlap between potential hosts (Jenkins et al. 2013), sug-

gesting they share similar constraints on their host ranges. Both

co-speciation and the preferential host switching of viruses can

support this, given that viruses are overwhelmingly likely to en-

counter other host taxa over the timescales required for speci-

ation. That said, shifts between divergent host species are also

common across every virus family (Geoghegan et al. 2017) and

these exceptions include several human zoonoses of major con-

cern (Guth et al. 2019).

Within virus families, the strength of correlations that exist

between viruses in variable infection traits, and how evolution-

ary relatedness may influence these correlations, has yet to be

firmly established. Despite this, it is common, and at times nec-

essary, to infer the characteristics of viruses from better studied

relatives. This is frequently the case during the early stages of

outbreaks, where primary research on new viruses or variants is

not available. When SARS-CoV-2 first emerged, its character-

istics and epidemiological trajectory were inferred from closely

related zoonotic and endemic coronaviruses (Zhu et al. 2020),

and from other pandemic respiratory viruses such as influenza A

(Petersen et al. 2020). Comparisons to previous outbreaks were

used to parameterize disease models in the 2009 H1N1 pandemic

(Chao et al. 2010; Hsieh 2010), the 2014 Ebolavirus outbreak

(Gomes et al. 2014), and in forecast models of seasonal influenza

(Du et al. 2017). Even for viruses that are not newly emerged,

many experimental models of infection rely on surrogates when

the virus of interest is unavailable, nonpermissive in cell culture

or animal models, or requires considerable adaptation to experi-

mental hosts (Cann et al. 2013; Ruiz et al. 2017).

These comparisons assume that the traits of one virus are

similar to other, related viruses. However, comparisons between

more distantly related viruses, such as bat and canine rabies

viruses (Pérez-Losada et al. 2015) and diverged lineages of in-

fluenza viruses (Zanotto et al. 1996; Buchon et al. 2014; Zhang

et al. 2019), found stark differences across larger evolutionary

scales. Many examples also exist of small genetic changes hav-

ing large phenotypic effects in viruses, including single SNP

changes altering the host range of canine parvoviruses (Alli-

son et al. 2016), the vector specificity of Chikungunya virus

(Tsetsarkin et al. 2007), and the infectivity of naturally occur-

ring Ebolaviruses (Wong et al. 2018). Only three amino acid

substitutions are required to switch receptor specificity of avian

H7N9 influenza from poultry to human cell receptors (de Vries

et al. 2017). Virus evolution is often characterized by high muta-

tion rates and frequent reassortment and recombination (Holmes

2009; Pérez-Losada et al. 2015; Müller et al. 2020). This, along-

side an incomplete sampling of extant viruses (Zhang et al. 2019),

has left many poorly resolved evolutionary relationships between

and within existing virus lineages (Zanotto et al. 1996). Given

these complications, it remains an open question whether com-

parisons between related viruses can produce consistent and ac-

curate inferences of infection traits.

In this study, we have investigated how patterns of host sus-

ceptibility (measured here as the ability of a virus to persist
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and replicate in the host) are correlated between viruses, using

experimental infections of four Cripavirus isolates (family Di-

cistroviridae) across a panel of 45 host species of Drosophilidae.

Drosophila are a well-established invertebrate model of innate

immunity, responsible for major immunological discoveries in-

cluding Toll, and possess both Dicer-mediated antiviral RNAi re-

sponses and genotype-specific immune memory (Buchon et al.

2014; Mussabekova et al. 2017; Mondotte et al. 2020). Three

of the viruses tested here are isolates of Drosophila C virus

(DCV-C, DCV-EB, and DCV-M), a well-studied virus isolated

from Drosophila melanogaster (Johnson and Christian 1999),

and represent the most divergent available isolates of this virus

species. The fourth virus is the closely related Cricket Paraly-

sis virus (CrPV), which was isolated from Australian field crick-

ets (Teleogryllus commodus) and is a widely used model insect

pathogen (Reinganum et al. 1970; Cherry and Silverman 2006;

Bonning and Miller 2010).

DCV is known to naturally infect at least two Drosophila

species in the wild—D. melanogaster and D. simulans (Comen-

dador et al. 1986; Kapun et al. 2010)—whereas CrPV is not

known to naturally infect any Drosophila species (Christian and

Scotti 1998). Despite this, both DCV and CrPV are shown to be

capable of infecting a broad range of insect taxa in experimen-

tal studies (Scotti et al. 1981). Both cause virulent infections in

adult flies (Longdon et al. 2015; Nayak et al. 2018) and share

similar mechanisms for co-opting the host translation machin-

ery (Majzoub et al. 2014). A major-effect resistance gene called

pastrel increases resistance to DCV in D. melanogaster (Mag-

wire et al. 2012; Cogni et al. 2016; Cao et al. 2017) and has

also been shown to provide cross-resistance to CrPV along with

another gene, Ubc-E2H (Martins et al. 2014). Both DCV and

CrPV are targeted by the host antiviral RNAi pathway and each

encodes a potent suppressor of antiviral RNAi. However, these

suppressors have different functions and target different compo-

nents of the RNAi pathway (van Rij et al. 2006; Nayak et al.

2010). DCV and CrPV also differ in their tissue pathology; DCV

has been shown to infect gut tissues, causing intestinal obstruc-

tion following septic inoculation in D. melanogaster, which was

not observed in CrPV infection (Chtarbanova et al. 2014). Al-

though little is known about the differences between DCV iso-

lates, they have been shown to cause similar levels of virulence

in D. melanogaster (Martinez et al. 2019).

Previous work in this host system has shown that susceptibil-

ity to DCV-C varies across host species, that the host phylogeny

explains a large proportion of the variation in both viral load and

virulence, and that viral load and virulence are strongly positively

correlated (Longdon et al. 2015). The host phylogeny is also an

important determinant of the evolution of DCV-C in novel hosts,

with evidence that mutations that adapt the virus to one host may

also adapt it to closely related host species. This suggests virus

genotype could alter the likelihood of host shifts in Drosophila

(Longdon et al. 2018). Here, we measure correlations in the abil-

ity of four viruses to replicate and persist across host species and

provide evidence of both broad similarities in infection outcome

and differences consistent with virus by host species interactions.

Materials and Methods
FLY STOCKS

Flies were taken from laboratory stocks of 45 different species

of Drosophilidae (for details, see Table SA). Before experiments

began, all included stocks were confirmed to be negative for in-

fection with DCV and CrPV by quantitative reverse transcription

PCR (qRT-PCR, described below). Stocks were maintained in

multigeneration Drosophila stock bottles (Fisherbrand) at 22°C,

in a 12-hour light-dark cycle. Each bottle contained 50 ml of

one of four varieties of food media (Supporting Information

Methods), which were chosen to optimize rearing conditions of

parental flies. Changes in the macronutrients available to adult

Drosophila have been shown to have little effect on the outcome

of viral infection (Roberts and Longdon 2021).

HOST PHYLOGENY

The method used to infer the host phylogeny has been described

in detail elsewhere (Longdon et al. 2015). Briefly, publicly avail-

able sequences of the 28S, Adh, Amyrel, COI, COII, RpL32, and

SOD genes were collected from Genbank (see https://doi.org/10.

6084/m9.figshare.13079366.v1 for a full breakdown of genes and

accessions by species). Gene sequences were aligned in Geneious

version 9.1.8 (https://www.geneious.com) using a progressive

pairwise global alignment algorithm with free end gaps and a

70% similarity IUB cost matrix. Gap open penalties, gap exten-

sion penalties, and refinement iterations were kept as default.

Phylogenetic reconstruction was performed using BEAST

version 1.10.4 (Drummond et al. 2012) as the subsequent phy-

logenetic mixed model (see below) requires a tree with the same

root-tip distances for all taxa. Genes were partitioned into sep-

arate ribosomal (28S), mitochondrial (COI, COII), and nuclear

(Adh, Amyrel, RpL32, SOD) groups. The mitochondrial and nu-

clear groups were further partitioned into groups for codon posi-

tion 1+2 and codon position 3, with unlinked substitution rates

and base frequencies across codon positions. Each group was fit-

ted to separate relaxed uncorrelated lognormal molecular clock

models using random starting trees and four-category gamma-

distributed HKY substitution models. The BEAST analysis was

run twice, with 1 billion Markov chain Monte Carlo (MCMC)

generations sampled every 100,000 iterations, using a birth-death

process tree-shape prior. Model trace files were evaluated for

chain convergence, sampling, and autocorrelation using Tracer
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version 1.7.1 (Rambaut et al. 2018). A maximum clade credibility

tree was inferred from the posterior sample with a 10% burn-in.

The reconstructed tree was visualized using ggtree version 2.0.4

(Yu 2020).

VIRUS ISOLATES

Virus stocks were kindly provided by Julien Martinez (DCV iso-

lates) (Martinez et al. 2019), and Valérie Dorey and Maria Carla

Saleh (CrPV) (van Rij et al. 2006). DCV-C, DCV-EB, and DCV-

M were originally isolated from fly stocks with origins in three

separate continents; DCV-C and DCV-EB were isolated from lab

stocks established by wild capture in Charolles, France and Ellis

Beach, Australia, respectively, whereas DCV-M was isolated di-

rectly from wild flies in Marrakesh, Morocco (Johnson and Chris-

tian 1999). The CrPV isolate was collected from Teleogryllus

commodus in Victoria, Australia (Johnson and Christian 1996).

Virus stocks were diluted in Ringers solution (Cold Spring Har-

bor Laboratory 2007) to equalize the relative concentrations of

viral RNA and checked for contamination with CrPV (DCV iso-

lates) and DCV (CrPV isolate) by qRT-PCR as described below.

VIRUS PHYLOGENY

Full genome sequences for DCV-C (MK645242), DCV-EB

(MK645239), DCV-M (MK645243), and CrPV (NC_003924)

were retrieved from the NCBI Nucleotide database. Annota-

tions of open reading frames (ORFs) for the replicase polypro-

tein (CrPV: Q9IJX4, DCV: O36966) and structural polypro-

tein (CrPV: P13418, DCV: O36967) were collected from the

UniProtKB database and used to separate the coding and non-

coding regions of each virus. ORF sequences were concatenated

and aligned using the Geneious progressive pairwise translation

alignment algorithm with a Blosum50 cost matrix and default pa-

rameters. Alignments were manually checked for quality and se-

quences aligning to CrPV ORF1 nucleotides 1–387 and 2704–

2728 were removed due to the presence of large indels.

Phylogenetic reconstruction was performed using BEAST

version 1.10.4 with translated ORF sequences fitted to an uncor-

related relaxed lognormal molecular clock model using a speci-

ation birth-death process tree-shape prior. A Blosum62 substi-

tution model (Henikoff and Henikoff 1992) with a gamma dis-

tribution of rate variation with four categories and a proportion

of invariable sites was used. The model was run for 10 million

MCMC generations sampled every 1000 iterations and evaluated

in Tracer version 1.7.1 as above, and a maximum clade credibility

tree inferred with a 10% burn-in.

INOCULATION

Before inoculation, 0- to 1-day-old male flies were kept in vials

containing cornmeal media (Supporting Information Methods)

and were transferred to fresh media every 2 days for 1 week.

Male flies were chosen to avoid any effect of sex or of female

mating status that has been shown to influence the susceptibil-

ity of females to infection with other pathogen types (Short and

Lazzaro 2010; Duneau et al. 2017; Schwenke and Lazzaro 2017).

Vials contained between 5 and 20 flies (mean = 14.5) and were

kept at 22°C at 70% relative humidity in a 12-hour light-dark cy-

cle. Flies were inoculated at 7–8 days old under CO2 anesthesia

via septic pin prick with 12.5-μm diameter stainless steel needles

(Fine Science Tools, CA, USA). These needles were bent approx-

imately 250 μm from the end to provide a depth stop and dipped

in virus solution before being pricked into the pleural suture of

each fly. Inoculation by this method has been shown to follow the

same course as oral infection but is less stochastic (Landum et al.,

2021). Inoculated flies were then snap frozen immediately in liq-

uid nitrogen, providing a 0 days postinfection (dpi) time point,

or maintained in cornmeal vials for a further 2 days ± 3 hours

before freezing, providing a 2 dpi time point. Within replicate

blocks, the 0 and 2 dpi vials for each virus were inoculated on the

same day, and together constituted one biological replicate. We

aimed to collect three biological replicates for each species and

virus combination, with the order of species, vial (0 or 2 dpi), and

virus randomized for each replicate block.

MEASURING CHANGE IN VIRAL LOAD

To measure the change in viral load between 0 and 2 dpi, total

RNA was extracted from flies homogenized in Trizol (Invitrogen,

supplied by ThermoFisher) using chloroform-isopropanol extrac-

tion, and reverse transcribed using Promega GoScript reverse

transcriptase (Sigma) with random hexamer primers. qRT-PCR

was carried out on 1:10 diluted cDNA on an Applied Biosystems

StepOnePlus system using Sensifast Hi-Rox Sybr kit (Bioline).

Cycle conditions were as follows: initial denaturation at 95°C for

120 seconds, then 40 cycles of 95°C for 5 seconds, and 60°C for

30 seconds.

DCV isolates were measured using the same primer

pair (forward: 5′-GACACTGCCTTTGATTAG-3′; reverse:

5′-CCCTCTGGGAACTAAATG-3′) that targeted a con-

served location and had similarly high efficiencies across

all isolates. For CrPV, the following primers were used:

forward, 5′-TTGGCGTGGTAGTATGCGTAT-3′; reverse, 5′-
TGTTCCGTCCTGCGTCTC-3′. RpL32 housekeeping gene

primers varied by species (Tables SB and SC). For each sample,

two technical replicates were performed for each amplicon (viral

and RpL32).

Between-plate variation in Ct values was estimated and cor-

rected for using a linear model with plate ID and biological repli-

cate ID as parameters, as described elsewhere (Ruijter et al. 2006;

Ruijter et al. 2015). Mean viral Ct values from technical replicate

pairs were normalized to RpL32 and converted to fold-change
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in viral load using the 2–��Ct method, where �Ct = Ct:Virus –

Ct:Rpl32, and ��Ct = �Ct:day0 – � Ct:day2.

Amplification of the correct products was verified by melt

curve analysis. Repeated failure to amplify product, the presence

of melt curve contaminants, or departures from the melt curve

peaks of positive samples (±1.5°C for viral amplicons, ±3°C for

Rpl32) in either the 0 or 2 dpi samples were used as exclusion cri-

teria for biological replicates. In total, of the 180 unique combi-

nations of host species and virus measured, three biological repli-

cates were obtained for 161 combinations, two replicates for 18

combinations, and one replicate for one combination (Drosophila

virilis, CrPV). Power analysis based on the downsampling of pre-

vious data has shown that this provides adequate statistical power

to detect interactions between different experimental treatments

and host species (Roberts and Longdon 2021).

STATISTICAL ANALYSIS

Phylogenetic generalized linear mixed models were used to in-

vestigate the effects of host relatedness on viral load, and to ex-

amine correlations between the different virus isolates. Multivari-

ate models were fitted using the R package MCMCglmm (Had-

field 2010) with the viral load of each virus isolate as the response

variable. The structures of the models were as follows:

yhiv = β1:v + μp:hv + μs:hv + ehiv, (1)

yhiv = β1:v + μp:hv + ehiv. (2)

In these models, yhiv is the change in viral load for virus v in

the ith biological replicate of host species h. The fixed effect β1

represents the intercepts for each virus isolate, the random effect

μp represents the effects of the host phylogeny assuming a Brow-

nian motion model of evolution, and e represents the model resid-

uals. Model (1) also includes a species-specific random effect that

is independent of the host phylogeny (μs:hv). This explicitly es-

timates the nonphylogenetic component of between-species vari-

ance and allows the proportion of variance explained by the host

phylogeny to be calculated. μs:hv was removed from model (2)

as model (1) struggled to separate the phylogenetic and species-

specific traits. Wing size, measured as the length of the IV lon-

gitudinal vein from the tip of the proximal segment to the join of

the distal segment with vein V (Gilchrist et al. 2001), provided a

proxy for body size (Huey et al. 2006) and was included in a fur-

ther model as a fixed effect (wingsizeβ2:hv). This was done to en-

sure that any phylogenetic signal in body size did not explain the

differences seen in viral load between species (Freckleton et al.

2002).

Within each of these models, the random effects and resid-

uals were assumed to follow a multivariate normal distribution

with a centered mean of 0 and a covariance structure of Vp⊗A for

the phylogenetic effects, Vs⊗I for species-specific effects, and

Ve⊗I for residuals, where ⊗ represents the Kronecker product.

A represents the host phylogenetic relatedness matrix, I an iden-

tity matrix, and V represents 4 × 4 covariance matrices describing

the between-species variances and covariances of changes in viral

load for the different viruses. Specifically, the matrices Vp and Vs

describe the phylogenetic and nonphylogenetic between-species

variances in viral load for each virus and the covariances be-

tween them, whereas the residual covariance matrix Ve describes

within-species variance that includes both true within-species ef-

fects and measurement errors. Because each biological replicate

was tested with a single virus isolate, the covariances of Ve cannot

be estimated and were set to 0.

Models were run for 13 million MCMC generations, sam-

pled every 5000 iterations with a burn-in of 3 million genera-

tions. Parameter expanded priors were placed on the covariance

matrices, resulting in multivariate F distributions with marginal

variance distributions scaled by 1000. Inverse-gamma priors were

placed on the residual variances, with a shape and scale equal to

0.002. To ensure the model outputs were robust to changes in

prior distribution, models were also fitted with flat and inverse-

Wishart priors, which gave qualitatively similar results.

The proportion of the between species variance that can be

explained by the phylogeny was calculated from model (1) using

the equation vp /(vp + vs), where vp and vs represent the phyloge-

netic and species-specific components of between-species vari-

ance (Freckleton et al. 2002), respectively, and are equivalent to

phylogenetic heritability or Pagel’s lambda (Pagel, 1999; Hous-

worth et al. 2004). The repeatability of viral load measurements

was calculated from model (2) as vp/(vp + ve), where ve is the

residual variance of the model (Falconer 1996). Interspecific cor-

relations in viral load were calculated from model (2) vp matrix as

covx,y/�(varx + vary). If correlations between viruses are close

to 1 (with no change in the variance while the means remain con-

stant), it would suggest there are no host species-by-virus inter-

actions (Hudson et al. 2016). Parameter estimates reported are

means of the posterior density, and 95% credible intervals (CIs)

were taken to be the 95% highest posterior density intervals.

The data files and R scripts used in this study are avail-

able in an online repository: https://doi.org/10.6084/m9.figshare.

13750711.v1.

Results
CHANGE IN VIRAL LOAD IS A REPEATABLE TRAIT

AMONG HOST SPECIES

To investigate similarities between related viruses in the outcome

of infection across host species, as well as the potential for dif-

ferent viruses to interact with host species effects, we experi-

mentally infected 45 species of Drosophilidae with four virus
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Figure 1. Phylogeny of virus isolates. Evolutionary relationships

estimated from open reading frame (ORF) amino acid sequences

presented in a midpoint-rooted tree. Node labels represent the

posterior probabilities of each clade, and the scale bar represents

amino acid substitutions per site.

isolates: DCV-C, DCV-EB, DCV-M, and CrPV. The DCV iso-

lates formed a distinct clade (>93% genome and ORF amino acid

identity, with 265–556 SNPs between isolates), with the clos-

est relationship between DCV-C and DCV-EB. CrPV formed an

outgroup to the DCV isolates (57–59% identity, with over 4000

SNPs between CrPV and each DCV isolate; Fig. 1; Table 1). In

total, 15,657 flies were inoculated, and the change in viral load

after 2 days of infection was determined by qRT-PCR (Fig. 2).

The mean viral load within host species ranged from an approxi-

mately 2.7-billion-fold increase in Drosophila persimilis infected

with DCV-M to a 2.5-fold decrease in Zaprionus tuberculatus in-

fected with DCV-C. Viral loads across host species tended to be

higher for the DCV isolates, with a mean fold-increase of roughly

11,000–19,000, and lower for CrPV, with a mean fold-increase of

roughly 1600.

Phylogenetic generalized linear mixed models were fitted to

the data to determine the proportion of variation in viral load

explained by the host phylogeny (Table 2). The phylogeny ex-

plained 79% of the variation in viral load for CrPV but only

9–21% of the variation for the DCV isolates, with wide cred-

ible intervals on all the DCV estimates. This was due to the

model struggling to separate phylogenetic and species-specific

effects for these viruses. The repeatability of viral load across

host species was high for both CrPV (0.66) and the DCV isolates

(0.92–0.96), with the between-species phylogenetic component

(vp) explaining a high proportion of the variation in viral load

with little within-species variation or measurement error (vr). We

found no significant effect of wing length (a proxy for host body

size) on viral load for any of the included viruses, with all esti-

mates having credible intervals overlapping 0 (Table SD).

CORRELATIONS BETWEEN VIRUSES ARE CONSISTENT

WITH VIRUS BY HOST SPECIES INTERACTIONS

Interspecific correlations in viral load between viruses were then

estimated from the variance-covariance matrices of model (2)

(Fig. 3A). We found strong positive correlations between the

DCV isolates (r > 0.93), with the strongest correlation between

DCV-C and DCV-EB (r = 0.97). Correlations between DCV

isolates and the more distantly related CrPV were positive (r =
0.52–0.59) but weaker than the correlations between the DCV

isolates. The fact the DCV:CrPV correlations (and their 95% CIs)

are not close to 1 is consistent with virus-by-host species interac-

Table 1. Virus isolate sequence similarity. Percentage sequence identity was calculated from multiple- alignment of whole genome

nucleotides (white) or concatenated amino acid sequences of ORFs 1 and 2 (gray). Approximately 92 SNPs and 28 amino acid substitutions

exist for every 1% of sequence divergence.

DCV-C DCV-EB DCV-M CrPV

DCV-C 97.10% 94.00% 57.40%
DCV-EB 98.81% 93.90% 57.30%
DCV-M 98.30% 98.20% 57.40%
CrPV 59.00% 58.70% 58.70%

Table 2. Estimates ofmean change in viral load, repeatability, and the proportion of variation explained by the host phylogeny. Estimates

of the mean change in viral load and repeatability are taken from model (2), whereas estimates of the variation explained by the host

phylogeny are taken from model (1).

Virus Mean change in viral load Repeatability Variance explained by phylogeny

DCV-C 11,585 (95% CI: 2304, 60,725) 0.96 (95% CI: 0.93, 0.98) 0.11 (95% CI: 0, 0.35)
DCV-EB 19,083 (95% CI: 2740, 110,985) 0.96 (95% CI: 0.93, 0.98) 0.09 (95% CI: 0, 0.32)
DCV-M 12,678 (95% CI: 1468, 98,648) 0.92 (95% CI: 0.87, 0.96) 0.23 (95% CI: 0, 0.51)
CrPV 1618 (95% CI: 385, 6472) 0.66 (95% CI: 0.46, 0.83) 0.79 (95% CI: 0.50, 1.00)
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Figure 2. Change in viral load across a diverse panel of Drosophilidae host species for different virus isolates. Bar height and color show

the mean change in viral load by 2 dpi on a log10 scale, with error bars representing the standard error of the mean. The phylogeny of

Drosophilidae hosts is presented on the left, with the scale bar representing the number of nucleotide substitutions per site and scale

axis representing the approximate age since divergence in millions of years (my) based on estimates from (Russo et al. 1995) and (Obbard

et al. 2012). The virus cladogram, presented at the top, is based on the evolutionary relationships shown in Figure 1.
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Figure 3. Similarities in infection outcome across host species and interactions between virus and host species. (A) Correlations in viral

load between virus isolates. Individual points represent the mean change in viral load by 2 dpi for each host species on a log10 scale,

and trend lines have been added from a univariate least-squares linear model for illustrative purposes. Correlations (r) are the total

interspecific correlations and 95% CIs from the output of model (2). (B) Differences in the rank order of host species susceptibility between

virus isolates. Bar height and color show the mean change in viral load by 2 dpi on a log10 scale, with error bars representing the standard

error of the mean. The order of species along the x-axis has been sorted in ascending order of viral load during infection with DCV-C.

Deviations from this rank order of host species susceptibility for other viruses are indicative of crossing reaction norms and interactions

between virus and host species. The virus cladogram is based on the evolutionary relationships shown in Figure 1.
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tions on viral load (Hudson et al. 2016). This is further demon-

strated by the notable differences in the rank order of host species

susceptibility for each virus (Fig. 3B), equivalent to a crossing

over of reaction norms for the susceptibility of host species be-

tween different viruses (Ingleby et al. 2010).

DCV-C appears to be slightly more strongly correlated to

DCV-EB than to DCV-M (�r = 0.04; 95% CI: >0.001, 0.09;

PMCMC = 0.04), and more strongly correlated to DCV-M than to

CrPV (�r = 0.40; 95% CI: 0.18, 0.82, PMCMC < 0.001), con-

sistent with an increase in the strength of correlation between

viruses with closer evolutionary relatedness. Point estimates im-

ply a similar pattern for DCV-EB, but the evidence for a stronger

correlation with DCV-C than DCV-M was not well supported

(Table SE).

Discussion
Closely related host species present similar environments to novel

viruses (Freckleton et al. 2002; Poulin et al. 2011), and so tend to

share similar levels of susceptibility to a given virus (Gilbert and

Webb 2007; Streicker et al. 2010; Longdon et al. 2011; Longdon

et al. 2015; Farrell and Davies 2019; Guth et al. 2019; Mollentze

et al. 2020). Likewise, closely related viruses are often assumed

to share characteristics that make their host interactions, trans-

mission, and evolutionary trajectories comparable (Chao et al.

2010; Hsieh 2010; Cann et al. 2013; Gomes et al. 2014; Du

et al. 2017; Ruiz et al. 2017; Petersen et al. 2020; Zhu et al.

2020). Here, we measured the strength of correlations in viral

load between four Cripavirus isolates across 45 host species of

Drosophilidae, to look for similarities between related viruses as

well as evidence of virus-by-host species interactions on the out-

come of infection. We found positive correlations between every

pair of viruses tested, indicating broad similarities in the outcome

of infection across host species, but also evidence for interactions

between virus and host species with changes in the rank order of

host species susceptibility between the different viruses (Fig. 3).

This highlights the importance of considering both host and virus

traits in understanding the outcomes of virus host shifts.

The strong positive correlations between DCV isolates are

likely due to relatively high levels of sequence conservation re-

sulting in only small differences in their ability to infect different

host species. However, in other viruses a small number of mu-

tations have been shown to allow successful infections in novel

hosts (Allison et al. 2016; de Vries et al. 2017). We find a few

instances of such effects here. For example, in Zaprionus davidi,

DCV-EB shows a decline in viral load, suggesting it is failing

to replicate and persist in this host species, whereas the other

isolates show an increase in viral load in the same host. Simi-

larly, Scaptodrosophila pattersoni is among the least susceptible

to DCV-M but has relatively high viral loads for the other virus

isolates.

A greater number of these effects can be seen when com-

paring hosts infected with DCV isolates to those infected with

CrPV, where multiple species have markedly different suscepti-

bilities depending on the virus infecting them. For example, both

Drosophila ananassae and Drosophila sturtevanti are within the

five most susceptible species to DCV-C, but also the eight least

susceptible to CrPV. The weaker correlations that exist between

DCV and CrPV may be due to interactions with different host

traits that vary in their patterns across the host phylogeny. CrPV

and DCV are known to have distinct methods of suppression of

the host antiviral RNAi pathway (van Rij et al. 2006; Nayak et al.

2010) and cause pathology in different tissues (Cogni et al. 2016).

Additionally, their relatively high levels of sequence divergence

(57–59% identity) may have resulted in changes in the ability of

each virus to bind to host cell receptors, use host replication ma-

chinery, or avoid host immune defences (Rothenburg and Bren-

nan 2019).

The existence of correlations between viruses suggests that

host susceptibility is not specific to individual viruses and that

certain host clades may be broadly susceptible to infection. These

hosts may share cell surface receptors with high affinity for both

DCV and CrPV surface proteins, have a low efficiency or eas-

ily suppressed antiviral RNAi response, or have functionally di-

verged forms of other cellular processes linked to viral replication

and persistence. Divergences in these immunological traits are

possible candidates driving the large amount of variation in sus-

ceptibility we have detected across Drosophilidae host species.

Host species that are permissive to multiple viruses and virus

genotypes may allow for the persistence of increased genetic

diversity in the virus population, allowing viruses to generate

and maintain mutations that make them more likely to emerge

in novel host species (Woolhouse et al. 2012; Woolhouse et al.

2014). They also have the potential to act as “mixing vessels,”

providing increased opportunities for virus reassortment and re-

combination (Zhang et al. 2020), which has been proposed as a

possible route for several viruses to acquire pandemic potential.

(de Silva et al. 2012; Goldstein et al. 2021). Broadly susceptible

host clades may therefore act as common reservoirs and donors

of emerging infectious diseases and identifying them in relevant

systems could inform control and prevention strategies (Streicker

and Gilbert 2020).

The differences in correlation strength between pairs of

viruses tended to follow differences in their evolutionary di-

vergence, such that more closely related pairs of viruses were

more strongly correlated in the outcome of infection across host

species. This provides some tentative evidence that the ability of

a virus to infect a novel host may be inferred based on its evo-

lutionary relatedness to other viruses. A greater number of more
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diverged isolates from this virus family would have allowed this

potential phylogenetic effect to be investigated more conclu-

sively, although to our knowledge the viruses included here repre-

sent the most diverged viruses of this genus that are readily avail-

able for study. The pathogen phylogenetic effects seen here have

also been observed in other pathogen and parasite systems (Vi-

enne et al. 2009; Hadfield et al. 2014), including genetic distance

effects seen in other Drosophila parasites (Perlman and Jaenike

2003). However, the rapid mutation rates and small genomes of

RNA viruses may cause these effects to exist, and become per-

turbed, across shorter time scales than for other pathogens. Nu-

merous examples exist where a small number of genetic changes

in viruses cause large phenotypic differences (Tsetsarkin et al.

2007; Allison et al., 2016; de Vries et al. 2017; Wong et al.,

2018), which would be exceptions to any link between correlation

strength and evolutionary relatedness (Housworth et al. 2004).

Nevertheless, virus phylogenetic effects may still prove to

be a useful proxy for determining the likelihood of novel virus

emergence. Further work is now needed to expand the findings of

this study to broader groups of viruses, and to test the importance

of the virus phylogeny in determining the potential outcomes of

virus host shifts.
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