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Surface wave reflection 
from a metasurface termination
S. J. Berry1*, A. P. Hibbins2 & J. R. Sambles2

The reflection coefficient of a microwave surface wave incident at the termination of a metasurface is 
explored. Two different surface types are examined. One is a square array of square metallic patches 
on a dielectric-coated metallic ground plane, the other a Sievenpiper ‘mushroom’ array. In the latter 
the surface wave fields are more confined within the structure. Comparison of the measured surface-
wave reflection spectra is made with that obtained from analytic theory and numerical modelling. 
The reflection coefficient is shown to be dependent on both the momentum mismatch between the 
surface wave and the freely propagating modes as well as the different field distributions of the two 
modes.

The determination of the reflection coefficient of an electromagnetic surface wave incident upon a discontinuity 
in a surface is important in characterising the performance of surface wave structures and also for the control 
of radar cross sections. Studies have analytically considered the reflection coefficient of surface waves for many 
different types of reflecting  interface1–10. However each solution employs different assumptions to solve the 
analytical equations and these assumptions introduce limitations on their applicability to describe the systems 
investigated within this study. Most importantly, the geometry of the metasurface structure is never fully con-
sidered. Previous works have considered the guiding surface to be a plasmonic  metal5,6,8,9 or represented it by 
an impedance boundary  condition1–3,7. Studies on the reflection coefficient of a surface wave incident upon a 
termination to free space was considered by Chu et al. in the 1960’s1–3, where the reflection and scattering to free 
space of a surface wave was calculated and measured experimentally. An impedance approximation was applied 
to the guiding interface in order to provide the necessary boundary condition for supporting a surface wave, 
whereas in the experiment itself a dielectric-coated metallic ground plane was used as the surface wave guiding 
 interface1. Analytically the reflection coefficient of surface waves has been considered for step changes in the 
guiding  interface8, changing the guiding interface  impedance7, changing the dielectric half  space4–6, gaps in the 
guiding  interface9 and introducing a finite height overlayer  discontinuity10. Experimentally, however, there has 
been little published work in the open literature, and while the studies above utilise an impedance boundary con-
dition, a full-field analysis of the propagation of surface waves on structured metasurfaces appears to be lacking.

The purpose of this present study is to experimentally explore the reflection of microwave surface waves at 
the termination of two different metasurface structures, and to then compare the results with those obtained by 
finite element method (FEM) modelling as well as analytic theory. Furthermore, the scattered electromagnetic 
field at the termination is also experimentally characterised and compared with FEM modelling. It is shown that 
the primary scattered radiation is in the form of a forward-scattered lobe of power, scattered at small angles with 
respect to the plane of the metasurface.

Localised electromagnetic surface waves are supported on many different metasurfaces at microwave 
 frequencies11–15, with the dispersion of these surface waves being defined by the geometry and materials form-
ing the individual elements of the array (“meta-atoms”). One of the first studies of surface waves on metasurfaces 
was undertaken by Sievenpiper who, in his doctoral thesis, explored the dispersion of transverse-magnetic (TM)-
polarised surface waves supported by so called ‘mushroom’ or ‘thumbtack’ arrays, as well as a simpler structure 
without the via connecting the ground plane to the  patch15,16. In this present study these types of metasurface 
are used to study the reflection of surface waves at a free space termination. Unit cells for each of the two struc-
tures explored are shown in Fig. 1 and the surface wave dispersions, predicted using the eigenmode solver in 
a finite element method (FEM) numerical  model17, for both metasurfaces are shown in Fig. 2. The pitch of the 
square array is �g = 1.6 mm, the side length of the patches is a = 1.3 mm and the dielectric thickness t = 787 µm 
in both cases while the via radius rv = 150 µm . Arrays of area 60 cm by 40 cm were fabricated using standard 
print-and-etch circuit-board techniques, and experimentally characterised and explored over the frequency 
range 10 to 30 GHz. 
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In order to determine the reflection coefficient at a straight edge termination at normal incidence a source 
of surface waves with planar phase fronts is required, since in this case the interference between the forward-
propagating incident waves and the backward-propagating reflected waves is analytically trivial. Such a system 
has been realised using an aspherical Perspex lens to shape the emission from a line antenna source (fed from 
a port of a VNA) within a parallel plate waveguide into planar phase fronts, Fig. 3. The fundamental transverse 
electromagnetic (TEM) mode of the parallel plate waveguide is excited from a point within the waveguide by 
attaching the sheath and pin of a coaxial line to the top and bottom plate of the waveguide respectively. The TEM 
mode propagates outwards from this point with cylindrical phase fronts in the xy-plane which subsequently pass 
through a Perspex lens which is uniform in the z-direction and has an aspherical profile described in Eq. (1) in 
the xy-plane.

Here n1 is the refractive index of the material filling the waveguide (air in this case), n2 is the refractive index 
of the material used to make the lens, θ is the angle from the x-axis and r0 is the distance from the point source 
to the front of the lens at θ = 0o . This profile modifies the cylindrical phase fronts produces at the source into 
planar phase fronts at the exit of the lens, which is tapered to avoid reflection within the lens, across a broad 
frequency  range18. The end of this waveguide is then placed in contact with the metamaterial surface in order 
to excite the surface waves via the localised field components produced by diffraction at the waveguide exit.

The near-field of the surface waves supported on the metasurface has been experimentally characterised using 
a near-field coaxial probe (a terminated length of coaxial cable with the sheath removed from a short length at the 
end), connected to a second port of the VNA. The probe, which provides a measurement of the  Ez-component 
of the field, is scanned across the structure by using a three-axis translation stage. The surface wave fields are 

(1)r(θ) =
r0(n2 − n1)

n2cosθ − n1

Figure 1.  Schematic of a unit cell of the metasurface structures used in this study where the orange represents 
copper and the box outline indicates the dielectric; (a) ‘patch array’: a square array of square metallic patches on 
a dielectric coated metallic ground plane and (b) ‘mushroom’ array: the patch is connected to the ground plane 
with a hollow metal via.

Figure 2.  FEM predictions of the dispersion of the TM surface mode for the square array of square metallic 
patches on a dielectric-coated metallic ground plane (black line) and a ‘mushroom’ array (red dashed line). The 
dispersion of a grazing photon, the light line, is shown (blue dotted line), as is the Brillouin Zone boundary 
(green vertical dash-dot line) arising from the periodicity of the lattice.
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reconstructed from the magnitude and phase of the complex transmission coefficient between the two ports of 
the VNA. From this, the reflection coefficient of surface waves incident upon the termination of a metasurface 
to free space is determined.

The magnitude of the reflection coefficient from a termination depends strongly on the boundary conditions 
associated with the local environment of the  termination1–3. The boundary conditions imposed in this case are 
shown in Fig. 4. A metal boundary extends ‘infinitely’ into the lower half-space connected to the ground plane of 
the metasurface. Practically this has been achieved by electrically connecting the ground plane of the metasurface 
to an L-shaped section of aluminium; the electrical connection was created by using a silver loaded epoxy, and 
then terminating the aluminium with a microwave absorber (Eccosorb VHP-4).

Experimentally determined reflection coefficient
The spatial field maps are used to determine the reflection coefficient of surface waves from the discontinu-
ity by utilising the interference between the incident and reflected surface waves. The instantaneous Ez-field 
is reconstructed by measuring both the time averaged field strength and the phase of the electric field. A fast 
Fourier transform (FFT) performed on the measured instantaneous Ez-field gives the relative amplitude of the 
Fourier components present, see Fig. 5. The amplitude reflection coefficient is simply obtained from the ratio 
of the magnitude of the Fourier component whose wavevector corresponds to the reflected wave equivalent to 
that of the incident wave. This process is repeated for each frequency across the measurement band of interest.

The spatial length of the field map analysed determines the wavevector resolution within the FFT series, and 
the spatial resolution determines the maximum wavevector. However, if wavevector components corresponding 
to the incident and reflected surface waves are not permitted within the FFT series then the incorrect reflection 
coefficient will be measured. To ensure that the required wavevectors are within the FFT series, a peak-finding 

Figure 3.  Schematic of the parallel plate waveguide device used for launching planar phase front surface waves 
onto a metasurface.

Figure 4.  Schematic of the experimental setup including the termination of a metasurface to free space. The 
shaded region indicates the L-shaped metal support. At the left-hand end of the setup is the surface wave 
launching device from Fig. 3. The connections between the VNA, the surface wave launcher and the scanning 
stripped coaxial probe used to map the electric field are also indicated.
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algorithm is used to find the position of the interference peaks in the measured field, which has been passed 
through a smoothing algorithm. The measured field is then truncated at the positions of the first and last peaks 
to ensure that the optimal spectral length is used.

The reflection coefficient of a surface wave incident upon the termination of a metasurface to free space 
is related to the confinement of the surface wave in the z-direction above the metasurface. This confinement 
is defined by the imaginary component of the k-vector perpendicular to the interface, kz , which is given by 
k2z = k

2
0 − (k2x + k2y) where the total k-vector, k0 is fixed by the frequency, ω. FEM predictions of the dispersions 

(ω vs. kx) of the surface waves supported by each of the two metasurfaces are shown in Fig. 2. As the surface 
wave dispersion diverges from the light line (i.e., kx > k0), so the decay length of the mode in the z-direction 
decreases (i.e. ik″z grows). This increasing confinement of the mode increases the mismatch of the wavevector 
in the propagation direction, kx , of the surface wave by comparison with the k-vector of a wave propagating in 
free space. However the reflection coefficient of the surface wave is not simply determined by this mismatch of 
kx but also by the field continuity conditions. There is no electric-field below the metal ground plane at z = 0 of 
the metasurface, in the region x < 0, z < 0, whilst the electric-field in the free space region has non-zero E-field 
within the x > 0, z < 0 region—see Fig. 4. This field distribution plays an important role since even a mode whose 
in-plane wavevector is equal to that of the light line in the microwave domain (i.e. a surface wave on a flat per-
fect conductor) when made incident on such a termination has a non-zero reflection coefficient due to this field 
discontinuity (i.e. a mismatch in wavefunctions at the boundary).

The amplitude reflection coefficient from experiments of the surface wave incident upon the termination of 
the metallic patch array is shown in Fig. 6 and for the Sievenpiper ‘mushroom’ array in Fig. 7. In each of these 
diagrams the reflection coefficient obtained experimentally is shown as open circles whilst the reflection coef-
ficient obtained by using the analytical theory of Chu et al.1 is shown by the lines. This analytic theory utilises an 
auxiliary function which satisfies both the impedance boundary condition and the perfect conductor boundary 
condition to solve for the electric field around the terminated impedance boundary.

In both cases, at the lower frequencies nearly all of the surface wave is transmitted to free space notwith-
standing the very large discontinuity at the edge termination. As the frequency is increased and the surface 
wave becomes more confined, this transmittance starts to reduce but even at 30 GHz in the patch array case the 
amplitude reflection coefficient is still around 0.15. Of course, Fig. 2 shows that the wavevector of the surface 
wave is still within 10% of that of a free photon so this slow decrease of reflectivity with frequency is perhaps to 

Figure 5.  Example of the Fast Fourier Transform (FFT) of the Ez-field showing the relative amplitudes of the 
forward and backward propagating waves. Inset: Corresponding Ez-field measured using the near-field coaxial 
probe reconstructed from the time averaged field amplitude and the phase.

Figure 6.  Reflection coefficient on a metallic patch array of the surface wave normally incident on the straight 
edge termination of the metasurface to free space—experiment (circles) and analytic  theory1 (line). Inset: 
Schematic diagram of the unit cell of the square array of square metallic patches.
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be expected. More strikingly, as revealed by an inspection of the dispersion curve in Fig. 2 for the Sievenpiper 
case, above about 22 GHz the surface wave dispersion approaches its asymptote and therefore the rate of increase 
with frequency of the wavevector of the surface wave increases. This leads to an increased mismatch between 
the wavevector of the surface wave and that of a grazing photon and so the rate of increase in the reflection 
coefficient correspondingly rises. The agreement between the analytic theory and experimentally determined 
reflection coefficient for the metallic patch array is good. However the agreement between the analytic theory 
and experiment for the mushroom-array surface is poor except at low frequencies. FEM models have also been 
analysed to determine the reflection of the surface waves by modelling the whole metasurface structure in a 
single strip with appropriate boundary conditions (perfect magnetic) to simulate an infinitely wide structure. 
In this model the surface wave is launched using a parallel plate waveguide to simulate the experimental plane 
wave launcher and the field analysed in the same way as for the experiment. The FEM modelling, shown by the 
blue line in Fig. 7, agrees with the analytic theory at low frequencies but also diverges at higher frequencies while 
remaining in reasonable agreement with the experiment. The reason for the disagreement is that the impedance 
boundary condition does not take into account the power flowing below the interface of the metamaterial. This 
power flow is much greater for the Sievenpiper mushroom structure than for the patch array studied previously 
and therefore the impedance boundary simplification is less suitable.

Further note that there is a significant increase in the non-radiative loss of the surface mode on the mushroom 
array as the dispersion curve diverges from the light line (Fig. 2) which prevents the accurate determination of 
the reflection coefficient at high wavevectors using the current method. The analysis used in our calculation of 
the reflection amplitude assumes that the loss associated with the propagation of the surface wave is negligible, 
i.e. Im (kx) ≈ 0 . Once the in-plane wavevector, kx = k′′x + ik′′x , has a significant imaginary part then determin-
ing the reflection coefficient from the FFT is no longer trivial. This is due to the broadening of the peaks in the 
FFT spectrum such that their relative ratios are no longer equal to the amplitude reflection coefficient. In addi-
tion, due to losses, the strong interference that yields the reflection coefficient is found only very near the end 
termination. This effect gives rise to the apparent decrease in the measured reflection coefficient above 22 GHz 
in Fig. 7, which is not in agreement with either the analytic theory or the FEM modelling.

Conclusions
The normal incidence surface wave reflection coefficient at the termination of a metasurface to free space for both 
an array of metallic patches on a dielectric coated ground plane and a mushroom array has been determined. 
For the patch-array metasurface both an analytical model and finite element predictions agree well with the 
experimental data. However for the mushroom metasurface the analytical model and the FEM model diverge 
from the experimental data at higher frequencies. This divergence is caused by the surface wave properties of the 
mushroom metasurface, most notably the decrease in the surface wave propagation length at frequencies close 
to the asymptote of the fundamental TM mode. The current method for measuring the surface wave reflection 
assumes that the propagation length of the surface wave is much larger than the sample length. The reflection 
coefficient of amplitude is rather small, about 5% at 10 GHz for both structures, and increases with the progres-
sive confinement of the surface mode at higher frequencies. This increase in the reflection coefficient is caused 
by both the momentum mismatch of the surface wave compared with the freely propagating modes and the 
different field distributions of the two modes.
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