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Einstein equivalence principle (EEP), as one of the foundations of general relativity, is a fundamental test
of gravity theories. In this paper, we propose a new method to test the EEP of electromagnetic interactions
through observations of black hole photon rings, which naturally extends the scale of Newtonian and post-
Newtonian gravity where the EEP violation through a variable fine structure constant has been well
constrained to that of stronger gravity. We start from a general form of Lagrangian that violates EEP, where
a specific EEP violation model could be regarded as one of the cases of this Lagrangian. Within the
geometrical optical approximation, we find that the dispersion relation of photons is modified: for photons
moving in circular orbit, the dispersion relation simplifies, and behaves such that photons with different
linear polarizations perceive different gravitational potentials. This makes the size of black hole photon ring
depend on polarization. Further assuming that the EEP violation is small, we derive an approximate
analytic expression for spherical black holes showing that the change in size of the photon ring is
proportional to the violation parameters. We also discuss several cases of this analytic expression for
specific models. Finally, we explore the effects of black hole rotation and derive a modified proportionality
relation between the change in size of photon ring and the violation parameters. The numerical and analytic
results show that the influence of black hole rotation on the constraints of EEP violation is relatively weak
for small magnitude of EEP violation and small rotation speed of black holes.
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I. INTRODUCTION

The Event Horizon Telescope (EHT) has captured the
first image of a supermassive black hole [1–6]. This
provides us possibilities of probing new physics in a strong
gravitational field. In the center of the galaxy M87, the
compact radio source is resolved as an asymmetric bright
emission disk, which encompasses a central dark region. In
the current literature, although the details remain to be
examined, it is pointed out that there could exit a strong
lensing structure which is called “photon ring” behind the
dominated direct emission profile from the accretion disk
[7,8]. With the help of sufficient high-resolution imaging,
complexities from astrophysical effects can be mitigated,
as the size and shape of the photon ring are totally
determined by the instabilities of photon orbits predicted

by geodesic equations, which makes black hole photon ring
become a potential probe to test gravity and related new
physics [9–13].
The high spatial resolution image taken by the EHT and

the great potential of the photon ring on testing gravity have
inspired a series of work. One type of the works focuses on
the possible contamination of the perfect vacuum environ-
ments around the black hole, which could arise from the
coupling of gravity to other background fields and the
accumulation of dark matter due to accretion. Such novel
physics modify the black hole metric and leave observable
effects on the black hole photon ring [14–20]. On the other
side, the question is about testing gravity theories. Some
modified gravity theories could have different black hole
solutions from those of the general relativity and thus lead
to different patterns of photon motion [21–37]. We refer
readers to [38] for constraints on gravity theories under a
parameterized post-Newtonian formalism. For these two
types of works, in addition to mass, spin and electric
charge, more parameters are introduced to describe the

*chunlong@mail.ustc.edu.cn
†hz4@st-andrews.ac.uk
‡yifucai@ustc.edu.cn

PHYSICAL REVIEW D 104, 064027 (2021)

2470-0010=2021=104(6)=064027(16) 064027-1 © 2021 American Physical Society

https://orcid.org/0000-0002-8075-5395
https://orcid.org/0000-0003-0706-8465
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.064027&domain=pdf&date_stamp=2021-09-08
https://doi.org/10.1103/PhysRevD.104.064027
https://doi.org/10.1103/PhysRevD.104.064027
https://doi.org/10.1103/PhysRevD.104.064027
https://doi.org/10.1103/PhysRevD.104.064027


spacetime around black holes. These lines of works can
thus be effectively regraded as theories that violate the no-
hair theorem of black holes.
Besides violation of no-hair theorem, another manifes-

tation of new physics beyond general relativity is the
breakdown of Einstein equivalence principle (EEP). In
standard general relativity, the unique gravitational field
described by the metric is minimally coupled to the cos-
mic components including matter and interactions. This
means gravity plays the role of a geometrical background:
in a local free-falling frame where geometrical effects are
canceled by the local transformations of reference frames,
the fundamental nongravitational physics return to those
without gravity [39–41]. If the cosmic components are non-
minimally coupled to gravity, or coupled to other unknown
background fields, the coupling effects generally cannot be
canceled by local transformations of the reference frame,
and thus the EEP is not valid anymore. Therefore, whether
EEP is established or not contains the information about the
coupling among different components of the Universe to
gravity, which allowing us to test possible new physics. We
refer readers to [40] for a more precise introduction of the
EEP and other kinds of equivalence principle.
One of the main challenges of modern physics is the

confirmation of the EEP at different scales and different
contexts both from the theoretical and the experimental
points of view [42–51]. However, the current experiments
on testing EEP are mainly conducted on the scale of
Newtonian or post-Newtonian gravity [52–61]. As for
more extreme gravitational field such as that around the
horizon of black holes, whether EEP holds or not is still
unknown.
Black hole photon ring provides us with the opportunity

to test EEP in the extremely strong gravitational filed. It is
the lensed image of unstable spherical orbits of photons
around a black hole. For Schwarzschild black hole, these
orbits are circular with their radius equals to only three
times the gravitational radius. Therefore, black hole photon
ring, as the observable of unstable spherical orbits, could
become a potential probe to detect new physics in the
gravitational field near the horizon scale.
Possibility of violation of the EEP near a black hole

could be suggested by the superradiance process of rotating
black holes [62–66], which implies there might be a fruitful
environment of light particles around rotating black holes at
horizon scale [67–73]. Moreover, if these particles are those
beyond the standard model and are coupled to photons,
there might be a phenomenological violation of EEP.
Furthermore, when we consider the effects of quantum
field theory in curved spacetime, the vacuum polarization
of photons can introduce a nonminimal coupling of elec-
tromagnetic fields to the spacetime curvature [74–77]. This
could also lead to a violation of EEP.
In this paper, we put forward a new method to test the

EEP by using the observations of black hole photon ring. In
Sec. II, we focus on the EEP violation occurring in

electromagnetic interactions and start from a general
Lagrangian that describes a new background field coupled
with the electromagnetic field. In Sec. III, we apply
the geometric optics approximation to derive a modified
dispersion relation of photons and obtain the corresponding
phenomenological behavior by restricting our discussions
to a system with the static and spherical symmetry. Then
in Sec. IV and Sec. V, we derive and show a connection
between the size of the photon ring and the parameters of
the EEP violation. We also give several specific examples
of the EEP violation in Sec. VI. Finally, in Sec. VII, we
generalize our discussions to rotating black holes and study
the influence of all kinds of black hole parameters on
the constraints of violation parameters. Section VIII is a
summary of the main results with a discussion and a future
outlook. We work in units where the gravitational constant
G ¼ 1 and the speed of light c ¼ 1 and we adopt the metric
convention ð−;þ;þ;þÞ.

II. THE MODEL OF EEP VIOLATION

There are several characteristic scales for an electromag-
netic system in a curved spacetime. One is the varying scale
λ of the electromagnetic field, the other is the characteristic
length LR of the spacetime curvature. And if there exists
some additional background fields that are coupled to this
electro-gravitational system, more length scales LQ char-
acterizing these fields would be involved. The geometric
optics approximation states that if λ is much smaller than
another other characteristic scales of the system, i.e.,
λ ≪ minfLR; LQg, the electromagnetic vector Aμ generally
have the following solution [78]

AμðxÞ ¼ aμðϵ; xÞei
ϵSðxÞ; ð1Þ

where ϵ is a small quantity which represents a rapidly
varying phase and the expression of aμ is

aμðϵ; xÞ ¼
X∞
m¼0

�
ϵ

i

�
m
amðxÞ: ð2Þ

At the lowest order of the geometric optics approxima-
tion, i.e., the order of 1=ϵ2, the wave equation gives rise
to the dispersion relation of the 4-wave vector kμ ¼
ð1=ϵÞ∂μS, which determines the equation of motion of
test photons. Intuitively, we could generally write the
dispersion relation as

bμkμ þ cμνkμkν þOðk3Þ ¼ 0; ð3Þ

where bμ and cμν are vector and tensor fields. Oðk3Þ
represents the potential correction terms that are higher
than the second power of kμ. In the current literature, there
exists the following three cases for Oðk3Þ ¼ 0:
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(i) bμ ¼ 0, cμν ¼ gμν. This corresponds to the standard
case gμνkμkν ¼ 0 in the general relativity, where gμν
is spacetime metric.

(ii) bμ ≠ 0, cμν ¼ gμν. This case describes a background
vector field couples with the motion of photons [79].
An example is the correction to the lowest order
geometric approximation due to the large spacetime
curvature, where bμ is constructed by the spacetime
curvature tensor and the null tetrad of photons
[80,81].

(iii) bμ ¼ 0, cμν ≠ gμν. A background field nonmini-
mally coupled to the electromagnetic tensor often
leads to this kind of modification. An example is the
nonminimal coupling of electromagnetic field to
spacetime curvature induced by the virtual electron
loops in quantum electrodynamics [74–77], which
could give a cμν different from the metric gμν.

A modified dispersion relation given by Eq. (3) often
manifests itself by violation of the EEP. In this paper, we
focus on the third cases, i.e., the quadratic correction cμν.
First, let us consider the below electromagnetic Lagrangian
which preserves the diffeomorphism and Uð1Þ gauge
invariance

Lem ¼ −
1

4
FμνFμν −

1

8
qQμνρσðxÞFμνFρσ − eJμAμ; ð4Þ

where Fμν ¼ ∇μAν −∇νAμ is the electromagnetic tensor
and ∇μ is the covariant derivative with respect to the Levi-
Civta connection. The final term describes the coupling to
the matter current Jμ through the charge e and we does not
written down the corresponding matter action since it is not
related to our discussions. The second term is beyond the
standard physics, which describes an unknown background
field Qμνρσ is nonminimally coupled to electromagnetic
tensor through the coupling constant q. Because of the
index symmetry of FμνFρσ, the field Qμνρσ should satisfy
Q½μν�ρσ ¼ Qμν½ρσ� ¼ Qμνρσ and the exchanging symmetry of
μν, ρσ as a whole.
In principle, QμνρσðxÞ could be a scalar, vector, tensor or

a sum of these parts. The current work on testing action (4)
mainly focus on the scalar part ofQμνρσðxÞ. For example, if
Qμνρσ is a scalar field ϕ, i.e.,Qμνρσ ¼ 2fðϕÞgρ½μgν�σ [56,57],
varying the Lagrangian (4) with respect to Aμ, one will
obtain the modified Maxwell equations

∇μ½ð1 − qfðϕÞÞFμν� ¼ eJν: ð5Þ

For the practical case, ϕ should only vary little over large
distances and times. Thus, qfðϕÞ could be taken out of the
derivative, which is equivalent to replacing the electric
charge e with a field e0 ¼ e=ð1 − qfðϕÞÞ. This fact tells us
that the fine structure constant will have a variable value
over the spacetime, which is often called the violation of the
local position invariance (LPI) in the literature, as one of the

elements of the EEP [39–41]. Then for the experimental
test of this new coupling, one could detect whether atomic
spectra at different locations represent the same fine
structure constant such as a given kind of atom on Earth
and the same kind of atom on stars in orbits of super-
massive black holes. We refer readers to [52–54] for more
details.
As for the vector or tensor parts of QμνρσðxÞ, the above

method could not give rise to a simple result characterizing
by a varying fine structure constant. Another defect of the
above method is that it is an indirect test on the EEP
violation Lagrangian (4), which depends on the coupling
to the matter field, i.e., −eJμAμ and might not exclude
the influence of properties of matter itself. In order to
explore whether there exists the EEP violation term in the
Lagrangian (4), one need to seek a direct method to test
this term.

III. THE PHENOMENOLOGICAL BEHAVIOR OF
THE EEP VIOLATION MODEL

In this section, we apply the geometric optics approxi-
mation to the first and second term of the Lagrangian (4).
This leads to a modified dispersion relation cμνkμkν ¼ 0

under some conditions where cμν is no longer the spacetime
metric and depends on the polarizations of photons.
Therefore, photons with different polarizations could fol-
low different propagation paths, which thus violates the
weak equivalence principle (WEP), as another element of
the EEP [39–41]. In the following, we will explain how this
mechanism works.
Let us neglect the last term in the Lagrangian (4)

and vary this action with respect to 4-vector potential
Aμ, which gives

∇μ

�
Fμν −

1

2
qQμνσρFρσ

�
¼ 0: ð6Þ

After applying the geometric approximation (1) and only
retaining the lowest order terms, the combination of the
Lorentz gauge ∇μAμ ¼ 0 and the modified Maxwell
equation (6) gives rise to

kσkμðqQμνσρ þ gσμgρνÞaρ ¼ 0; ð7Þ

Eq. (7) implies a modified dispersion relation of photons,
which contains the information about the path of photons in
spacetime. When q ¼ 0, this equation gives rise to the null
curve kμkμ ¼ 0 of the motion of photons in the standard
general relativity. The Lorentz gauge ∇μAμ ¼ 0 gives rise
to kμaμ ¼ 0 under the geometric optics approximation. In
order to take advantage of this feature to simplify the
Eq. (7), one could introduce the antisymmetry basis [75]

Uμν
ab ¼ eμaeνb − eνae

μ
b; ð8Þ
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where eμa are the tetrad fields with a ¼ 0, 1, 2, 3, which
satisfy gμν ¼ ηabeaμebν. The tetrad indices a; b… are raised
and lowered by ηab. In this paper, given the index symmetry
of tensorQμνσρ, we considerQμνσρ has the below expansion
form

Qμνσρ ¼ C0101ðxÞUμν
01U

σρ
01 þ C0202ðxÞUμν

02U
σρ
02

þ C0303ðxÞUμν
03U

σρ
03 þ C1212ðxÞUμν

12U
σρ
12

þ C1313ðxÞUμν
13U

σρ
13 þ C2323ðxÞUμν

23U
σρ
23; ð9Þ

where the expansion coefficients CabcdðxÞ are functions of
the spacetime coordinate x. By introducing the projection
of kμ on the antisymmetry basis

lν ≡ kμU01
μν; ð10Þ

mν ≡ kμU02
μν; ð11Þ

nν ≡ kμU03
μν; ð12Þ

together with the independent projections

pν ≡ kμU12
μν ¼

1

k0
ðk1mν − k2lνÞ; ð13Þ

qν ≡ kμU13
μν ¼

1

k0
ðk1nν − k3lνÞ; ð14Þ

rν ≡ kμU23
μν ¼

1

k0
ðk2nν − k3mνÞ; ð15Þ

the dispersion relation (7) could be written as

0
B@

K11 K12 K13

K21 K22 K23

K31 K32 K33

1
CA
0
B@

a · l

a ·m

a · n

1
CA ¼ 0; ð16Þ

where the expressions of the matrix components are

K11 ¼ k · kþ qC0101ðk0k0 − k1k1Þ þ qC1212k2k2

þ qC1313k3k3; ð17Þ

K12 ¼ −qC0202k2k1 − qC1212k2k1; ð18Þ

K13 ¼ −qC0303k3k1 − qC1313k3k1; ð19Þ

K21 ¼ −qC0101k2k1 − qC1212k2k1; ð20Þ

K22 ¼ k · kþ qC0202ðk0k0 − k2k2Þ þ qC1212k1k1

þ qC2323k3k3; ð21Þ

K23 ¼ −qC0303k3k2 − qC2323k3k2; ð22Þ

K31 ¼ −qC0101k3k1 − qC1313k3k1; ð23Þ

K32 ¼ −qC0202k3k2 − qC2323k3k2; ð24Þ

K33 ¼ k · kþ qC0303ðk0k0 − k3k3Þ þ qC1313k1k1

þ qC2323k2k2: ð25Þ

In order to simplify the system (16), one could diago-
nalize this matrix and the condition that the product of the
eigenvalues (the determinant of the matrix) equals to zero
will give rise to the criterion of nonzero solutions of this
system, which thus implies the dispersion relation of
photons’ motion. However, from the analysis of the actual
physical situation, we could make several assumptions on
this system first.
We focus on the static spherical spacetime and the

metric is

ds2 ¼ gttðuÞdt2 þ grrðuÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð26Þ

where u ¼ M=r and M is the mass of the central black
hole. The asymptotically flat condition requires gttð0Þ ¼
−1 and grrð0Þ ¼ 1 in the limit of far distance from the
black hole. The corresponding tetrad fields could be
written as

eaμ ¼ diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðrÞ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffi
grrðrÞ

p
; r; r sin θÞ: ð27Þ

Now we make two assumptions. The first one is that
the motion of photons follow the same symmetry as the
spacetime. Therefore, there should exist the integral
constant of motion making the orbits of photons be bound
in a plane, i.e., θ ¼ π=2 and k2 ¼ kθe2θ ¼ 0. And this
assumption also accounts for the reason why we focus
on the expansion (9) without the cross terms of Uμν

ab such
as C0102ðxÞUμν

01U
σρ
02 since these terms will break this

assumption. The second assumption is that there exits
circular orbits in the motion plane which satisfy
k1 ¼ kre1r ¼ 0. The reason of adopting this assumption
is that in the numerical simulation, the presence of the
photon ring is caused by the existence of the unstable
spherical orbits, which makes it observationally interesting
[7]. Then under these two assumptions, the only nonzero
matrix components for the photons moving in a plane
circular orbits are

K11 ¼ ð1 − qC0101Þgttktkt þ ð1þ qC1313Þr2kϕkϕ; ð28Þ

K22 ¼ ð1 − qC0202Þgttktkt þ ð1þ qC2323Þr2kϕkϕ; ð29Þ

K33 ¼ ð1 − qC0303Þgttktkt þ ð1 − qC0303Þr2kϕkϕ; ð30Þ

where we have applied gtt ¼ −e0t e0t , grr ¼ e1re1r and
gϕϕ ¼ e3ϕe

3
ϕ. The condition of nonzero solutions is
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K11K22K33 ¼ 0, which gives the below three roots and the
corresponding solution of aμ:

(i) K11 ¼ 0, aμ ∝ lμ, r⃗ direction polarization,
(ii) K22 ¼ 0, aμ ∝ mμ, θ⃗ direction polarization,
(iii) K33 ¼ 0, aμ ∝ nμ, unphysical polarization,

where we also write down the corresponding direction of
linear polarization, i.e., the direction of electric field
according to Ei ¼ ∂tAi − ∂iAt. K33 ¼ 0 corresponds to
the unphysical polarization since nν ¼ k0e3ν − k3e0ν con-
tains the nontransverse polarization component e3ν.
As a result, one could find that photons with dif-

ferent linear polarizations sense different two dimensional
“effective metrics” on the circular orbits. For example,
the photons with r⃗ polarization for K11 ¼ 0 corresponds to
g0tt ¼ ð1 − qC0101Þgtt and g0ϕϕ ¼ ð1þ qC1313Þr2. In order
to be consistent with the motion in a planar circular orbits,
the expansion coefficients Cabcd should only depend on the
coordinate r, which makes the effective metric component
g0ϕϕ could in principle be set to r

2 by a redefinition of r, i.e.,

ds2 ¼ gsttðuÞdt2 þ r2dϕ2; ð31Þ

where the superscript s represents different linear polarized
photons. This kind of redefinition will not influence the
observables according to the below Eq. (40). Equation (31)
means photons with different polarizations will feel a
different gtt component, i.e., the gravitational potential,
which could therefore behave as the violation of WEP. As a
result, one could test whether the new coupling term in the
Lagrangian (4) exists by checking whether photons with
different linear polarizations sense different gravitational
potentials.

IV. BLACK HOLE PHOTON RING AS A NEW
PROBE OF THE EEP

In the above discussions, we have pointed out for the
photons in circular orbits, different linear polarized photons
sense different gravitational potentials. In order to detect
this novel phenomenon, one need to seek an observable
corresponding to the gravitational potential. For the planar
motion, let us consider the below 2þ 1 planar metric

ds2 ¼ gsttðuÞdt2 þ gsrrðuÞdr2 þ r2dϕ2; ð32Þ

where we have added the rr component gsrrðuÞ that satisfies
gsrrð0Þ ¼ 1 comparing with (31) since it is the direct
approach to yield a circular orbit. Then the Lagrangian
for the motion of photons is

L ¼ 1

2
gsμνðxÞ_xμ _xν; ð33Þ

where x is the spacetime coordinate and dot represents the
derivative with respect to the affine parameter λ. There are

three conservation quantities corresponding to the absence
of λ, t, and ϕ in the Lagrangian respectively, i.e.,

E≡ gsttðrÞ_t; ð34Þ

L≡ r2 _ϕ; ð35Þ

ζ ≡ gsttðrÞ_t2 þ gsrrðrÞ_r2 þ r2 _ϕ2: ð36Þ

For the massless particle, ζ ¼ 0. According to these three
conservation quantities, we could obtain the equation of the
trajectory uðϕÞ

gsttðuÞgsrrðuÞ
�
du
dϕ

�
2

þ u2gsttðuÞ ¼ −
E2

L2
M2: ð37Þ

For the conditions of circular orbits du=dϕ ¼ 0 and
d2u=dϕ2 ¼ 0, Eq. (37) could be simplified as the below
two equations of u,

u2gsttðuÞ ¼ −X−2; ð38Þ

2gsttðuÞ þ ugs0ttðuÞ ¼ 0; ð39Þ

where the prime represents the derivative with respect to u
and we have defined X ¼ L=ðMEÞ. As for the necessity for
the existence of photon circular orbits, we refer readers to
[82] for more details.
The physical meaning of X is the radius d of the photon

ring on the image plane divided by the mass M, whose
expression is [83]

d
M

¼ 1

M
lim
r→∞

r2
dϕ
dr

¼ X ¼ ½−u2gsttðuÞ�−1
2; ð40Þ

where we have used Eq. (37) and gsrrð0Þ ¼ −gsttð0Þ ¼ 1.
Equation (39) gives rise to the radius of the photon circular
orbits and this radius will become the observed size of the
photon ring by Eq. (38). Therefore, observations of photon
ring would provide us with the direct information on the
values of the gravitational potential gstt at the radius of the
circular photon orbits and thus could let us know if the EEP
violation coupling (4) exists. Note that the gsrr component
will not affect the test due to its absence in Eq. (40).

V. METHOD AND RESULTS

In this section we will discuss the method to use black
hole photon ring to constrain the EEP violation. According
to the asymptotically flat condition gsttð0Þ ¼ −1, the metric
component gsttðuÞ could be generally written as

gsttðuÞ ¼ −1þ 2uð1þ βsðuÞÞ; ð41Þ
where βsðuÞ is the correction function for the
Schwarzschild black hole induced by violation of the
EEP. It could be formally expressed as
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βsðuÞ ¼
X
n

βsnun; ð42Þ

where n ≥ −1 so that the asymptotically flatness is satisfied
and n does not have to be an integer. The above expression
effectively illustrates violation of the EEP could stem from
any order ofM=r, i.e., any strength of gravitational fields in
principle.
Here we want to discuss a little bit more about the

physical meaning of the coefficients in the expansion (42).
In the Lagrangian (4), we does not include the dynamic
term of Qμνρσ and the interaction term with gravity. The
reason is that in order to make our discussion model
independent so that we could catch the general phenom-
enological behavior of EEP violating Lagrangian (4), our
starting point of deriving the relevant observables is
the static spherical symmetry possessed by the system.
Although the field Qμνρσ could act as a source for the gra-
vitational field, the resulting metric always has the form
of (26) under the static spherical symmetry. The modifi-
cation is only reflected in the expansion coefficients of
the metric components with the form of (42). Therefore,
the specific values of the coefficients in the Eq. (42)
actually consists of two parts. One is from the modifica-
tion of the field Qμνρσ on the spacetime, the other is the
coupling constant q in the Lagrangian (4). In order to
break this degeneracy, doing polarization measurements is
necessary.
If βsðuÞ is small, we could decompose u as the perturbed

part δu and the unperturbed part u0, i.e., u ¼ u0 þ δu. And
correspondingly, the size X of the photon ring could be
written as X ¼ X0 þ δX. Equation (39) up to the first order
of βs and δu gives

1 − 3u0 ¼ 0; ð43Þ

−3δu ¼ 3u0βsðu0Þ þ u20β
s0ðu0Þ: ð44Þ

So according to Eq. (38), we could obtain

δX ¼ 3
ffiffiffi
3

p
βsðu0Þ ð45Þ

and X0 ¼ 3
ffiffiffi
3

p
, where u0 ¼ 1=3 represents the radius of the

unstable circular orbits of photons in the standard
Schwarzschild solution. We can see that in the linear
approximation, the deviation of X has nothing to do with
the derivative of βsðuÞ and also the Eq. (44).
By observing the deviation of the photon ring’s size from

that of the standard general relativity δX, one could directly
obtain the constraint on the magnitude of βsðu0Þ according
to Eq. (45). However, in order to give a decisive criterion
whether the EEP is violated, we need at least two groups of
photons with different linear polarizations. The observable
is the difference of the photon ring’s size presented by these
two kinds of photons. After using l and m to label the

corresponding r⃗ and θ⃗ polarization, this difference accord-
ing to Eq. (45) is given by

ΔX ¼ δXl − δXm ¼ 3
ffiffiffi
3

p
ðβlðu0Þ − βmðu0ÞÞ

≡ 3
ffiffiffi
3

p
Δβðu0Þ; ð46Þ

where we can see that in the linear approximation, ΔX only
has dependence on the difference between βl and βm while
the specific values of βl or βm does not have influence. By
observing the magnitude of ΔX, one could obtain the
constraints on Δβðu0Þ. Now we choose βsðuÞ ¼ βsnun,
which gives ΔX ¼ 3

3
2
−nΔβn by Eq. (46). In Fig. 1 we plot

ΔX from n ¼ 0 to n ¼ 3 for different values of Δβn in
dashed lines, where we can find that besides the propor-
tional relation (46), the effects of Δβn is suppressed as n
grows. This is caused by the suppression of βsðu0Þ in
Eq. (41) for large values of n.
The precise results could be obtained by rigidly solving

Eq. (38) and Eq. (39) for different values of βln and βmn ,
which are also shown in Fig. 1 through the solid line. We
can find that the approximated expression (46) could
overestimate the values of ΔX and this overestimation is
suppressed by large and small values of n. The reason of
this suppression is that a larger n tends to give a smaller
value of βsðu0Þ and βsðu0Þ ≈ βsn when n approaches zero,
which make the approximated equations (43) and (44)
work better.
In order to better estimate the error of the proportional

relation (46), we define E1 to measure the deviation ratio
from the precise results, whose expression is

E1 ≡ ΔXN − ΔX
ΔX

; ð47Þ

where ΔXN is the precise result from rigidly solving
Eq. (38) and Eq. (39). In Fig. 2 we show E1 for different

FIG. 1. Plot showing the difference in the size of the photon
ring ΔX given by polarized l and m photons as n changes for
various Δβn. The dashed lines correspond to the approximated
expression (46) and sold lines are results from rigidly solving
Eq. (38) and Eq. (39).
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parameters so that one could intuitively obtain the con-
ditions for the approximation (46). Note that different from
the approximated result, the specific value of βl or βm will
matter in precise results. In this figure, besides the same
information revealed by Fig. 1, we could find that the
positive and negative of βmn have opposite effects on E1 and
as the absolute value of βmn and Δβn grows, the difference
between precise results and approximated results is enlar-
ged, which is caused by the fact that the approximation (46)
only works well for the small EEP violation function βsðuÞ.
Finally, we emphasize that although it is difficulty to

obtain a general solution of photon ring’s sizeX as a function
of any order of the EEP violation parameters βsn and n in
Eq. (42), one could alsoobtain a general expressionof photon
ring’s size X through a matching method by not specifying a
form of the EEP violation function βsðuÞ. This matching
method is based on the assumption that the deviation of the
radius of circular orbits from that of general relativity is
relatively small. Specifically, one could first define a function
BðuÞ ¼ bpuþ b0 þ bnu−1. After replacing βsðuÞ with
BðuÞ, Eq. (38) and Eq. (39) will have the below analytical
solution for X−2

X−2ðbp;b0; bnÞ ¼ −
2ð−1þ 2bnÞ3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16ð1−2bbÞbp

ð1þb0Þ2
q �

ð1þ b0Þ2
�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16ð1−2bbÞbp

ð1þb0Þ2
q �

3
:

ð48Þ

For any target function βsðuÞ, we could match the zero, first,
third order derivative of BðuÞ to those of βsðuÞ at u ¼ 1=3,
which leads to the below expressions for the coefficients
of BðuÞ

bp ¼ βs0
�
1

3

�
þ 1

6
βs00

�
1

3

�
; ð49Þ

b0 ¼ βs
�
1

3

�
−
1

3
βs0

�
1

3

�
−
1

9
βs00

�
1

3

�
; ð50Þ

bn ¼
1

54
βs00

�
1

3

�
: ð51Þ

Then by substituting the above coefficients into Eq. (48),
one could obtain an approximated expression of the photon
ring’s size X for the target function βðuÞ. For example,
βsðuÞ ¼ β0 þ β1uþ β2u2 corresponds toX−2ðβ1 þ β2; β0 −
1=3β2; 1=27β2Þ. And if we choose β0 ¼ 1=2, β1 ¼ −3=2,
and β2 ¼ 1=2, the fitting method gives X ¼ 5.375 while the
rigid solution gives X ¼ 5.379 with an error only 0.075%.
And for the above selected target EEP violation function
βsðuÞ ¼ βnun, one could verify that the maximum deviation
ratio of the above fitting method from the rigid solutions
is around 0.1% for the case of a 50% change in photon
ring’s size.

VI. EXAMPLES

The EEP violating Lagrangian (4) describes the coup-
ling of new physical degrees of freedom with the electro-
magnetic law. Though these new degrees of freedom are
characterized by the field Qμνρσ, we emphasize that they
could have several origins. First, these degrees of freedom
could be introduced by some modified gravity theories
such as scalar tensor theories and higher order deriva-
tive theories [84]. In these theories, an additional scalar
degree of freedom is introduced, which could assign
a scalar charge to the black hole and excite the correspond-
ing background field around it [85,86]. Another possible
origin of the field Qμνρσ could be the combination of the
quantum field theory with the curved spacetime, which
mainly refers to the superradiance process around the
rotating black hole [67,68]. This process could concen-
trate a cloud of beyond standard model particles around a
black hole, as long as the mass of the particles is within a
certain range. These particles form an additional matter
background and may manifest themselves by the inter-
action shown in the Lagrangian (4). Furthermore, the
quantum electrodynamics in the curved spacetime can
introduce the nonminimum coupling between the electro-
magnetic tensor and the spacetime curvature. In this
situation, the field Qμνρσ is composed of the Riemann
curvature tensor [87,88].
In this section, we present several examples to illustrate

how to get the EEP violation parameters βsn from a
specific model.

FIG. 2. Plot showing the deviation ratio E1 defined by Eq. (47) of the approximation (46) for different values of n, Δβn, and βmn .
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A. Vector field

Now we consider a vector field Vμ being coupled to
electromagnetic tensor Fμν. This case is motivated by
the low energy effective theory of gravity with Lorentz
violation [89]. In this theoretical model, the spontaneous
breaking of Lorentz symmetry is induced by the vector Vμ.
Given that the index symmetry of Qμνρσ, the corresponding
expression of Qμνρσ is

Qμνρσ ¼ 1

2
gν½σVρ�Vμ þ 1

2
gμ½ρVσ�Vν: ð52Þ

As an example, we choose the Schwarzschild spacetime. If
the vector field Vμ has the same symmetry as the spacetime,
i.e., the static spherical symmetry, one of the allowed forms
of Vμ is ð0; vðrÞ; 0; 0Þ. Therefore, the nonzero expansion
coefficients according to Eq. (9) are

C1212 ¼ C1313 ¼ −C0101 ¼ fðrÞ; ð53Þ

where the definition of fðrÞ is fðrÞ ¼ 1=4V1V1 and V1 ¼
Vμe1μ. Now let us choose a specific expression fðrÞ ¼ 1=r2.
For the planar circular orbits kθ ¼ 0, kr ¼ 0 and θ ¼ π=2,
the dispersion relation (28) corresponding to r⃗ polarized
photons gives the below gravitational potential

gltt ¼ −1þ 2M
r

− q
1

r2
þ 3q

M
r3

; ð54Þ

where we have eliminated the gϕϕ component by the
redefinition of r and only retained the first order terms
with respect to q. For θ⃗ polarized photons, the gravitational
potential is not modified, i.e., βmn ¼ 0. Then the expansion
coefficients of Eq. (42) for r⃗ polarized photons are

βl1 ¼ −
q

2M2
; βl2 ¼

3q
2M2

: ð55Þ

The existence of the planar circular orbits could be verified
by the matrix (16). The condition of nonzero solutions is
reduced to K11K22K33 ¼ 0 for the expansion coefficients
(53) and the expressions of K11, K22, and K33 are

K11 ¼ ð1þ qfÞðgttktkt þ grrkrkr þ gθθkθkθ

þ gϕϕkϕkϕÞ; ð56Þ

K22 ¼ K33 ¼ gttktkt þ ð1þ qfÞgrrkrkr þ gθθkθkθ

þ gϕϕkϕϕ: ð57Þ

Therefore, for each of the situations K11 ¼ 0, K22 ¼ 0, or
K33 ¼ 0, photons will have a dispersion relation described
by a modified Schwarzschild metric, which still has static
spherical symmetry and thus leads to the existence of the

planar circular orbits. The planar motion is described by the
metric (32).

B. Tensor field

We choose Qμνσρ ¼ Rμνσρ, which describes the correc-
tion of the virtual electron loops on the propagation of
photons [87,88]. For the Schwarzschild spacetime, the
nonzero expansion coefficients of Rμνσρ are

C0101 ¼−
2M
r3

; C0202 ¼M
r3
; C0303 ¼M

r3
;

C1212 ¼−
M
r3
; C1313 ¼−

M
r3
; C2323 ¼ 2M

r3
: ð58Þ

Under the condition of planar circular orbits kθ ¼ 0,
kr ¼ 0, and θ ¼ π=2, the dispersion relations (28) and
(29) corresponding to the r⃗ and θ⃗ polarized photons
respectively lead to

gltt ¼ −1þ 2M
r

− 2q
M
r3

þ 3q
M2

r4
; ð59Þ

gmtt ¼ −1þ 2M
r

þ q
M
r3

; ð60Þ

where we have eliminated the gϕϕ components by the
redefinition of r and only retained the first order terms with
respect to q. Therefore, the corresponding expansion
coefficients of Eq. (42) are

βl2 ¼ −
q
M2

; βl3 ¼
3q
2M2

; ð61Þ

βm2 ¼ q
2M2

: ð62Þ

As for the existence of the planar circular orbits, one could
directly calculate the determinant of the matrix (16), the
condition of nonzero solutions gives rise toK11K0

22K
0
33 ¼ 0

and the expressions of K11, K0
22, and K0

33 are

K11 ¼
�
1þ q

2M
r3

�
ðgttktkt þ grrkrkrÞ

þ
�
1 − q

M
r3

�
ðgθθkθkθ þ gϕϕkϕkϕÞ; ð63Þ

K0
22 ¼

�
1 − q

M
r3

�
ðgttktkt þ grrkrkrÞ

þ
�
1þ q

2M
r3

�
ðgθθkθkθ þ gϕϕkϕkϕÞ; ð64Þ

K0
33 ¼

�
1 − q

M
r3

�
ðgttktkt þ grrkrkr

þ gθθkθkθ þ gϕϕkϕkϕÞ: ð65Þ
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Similar to the vector situation, for each of the conditions
K11 ¼ 0, K0

22 ¼ 0, or K0
33 ¼ 0, the dispersion relation is

described by a static metric with spherical symmetry, which
leads to the existence of the planar circular orbits and the
planar motion is described by the metric (32).

C. Scalar field

For the scalar coupling such as Qμνρσ ¼ 2fðϕÞgρ½μgν�σ
[56,57] as discussed earlier, one could directly verify that
the standard dispersion relation kμkμ ¼ 0 is not modified
according to Eq. (7). If ϕ is the axion field, when Qμνρσ ¼
−ϕξμνρσ and ξμνρσ is the Levi-Civita symbol [90], the
standard dispersion relation kμkμ ¼ 0 is still preserved.
In order to directly test this kind of coupling, one could
look for the higher order geometric optics approximation,
which leads to the rotation of polarization vectors along
the path of photons and could be tested by the precise
measurements of polarizations in principle [66]. For other
forms of tensor coupling, we refer readers to [19,20] for
more details.

VII. THE INFLUENCE OF THE ROTATION
OF BLACK HOLE

In the above, we have discussed the EEP violation
for the spacetime of static spherically symmetric black
hole. The only metric component associated with the
photon ring observations is gstt, which thus could let us
exclude the influence of other metric components and
only focus on the EEP violation manifested as different
gravitational potentials. However, when the black hole
has rotation, the situation will become complicated.
Due to the diminution of spacetime symmetries, one
could expect that apart from gtt, other metric compo-
nents such as gtϕðr; θÞ will become relevance. This fact
makes the above model independent discussions based
on the assumption of planar circular orbits become
difficult to carry on. Furthermore, for rotating black
holes, the spin parameter and the inclination angle of
rotation axis also need to be determined in order to give
a precise prediction of photon ring. All of these factors
add more parameters to the process of constraining the
EEP violation and thus increase the complexity.
Fortunately, the detailed numerical study based on the
Kerr black hole shows that new parameters introduced
by the rotation, which include the spin parameter and
the inclination angle of rotation axis, mainly affect the
horizontal displacement and the outline’s asymmetry of
photon ring. While the overall size of ring could hardly
be changed by rotation effects [91,92].
Therefore, in this section we focus on the overall size of

the black hole photon ring. What we are interested in is how
much the rotation of black holes affects the results of
constraining the EEP violation. Our strategy is to character-
ize the black hole rotation by directly generalizing the

effective metric (32). Then we derive the relation between
the observable and the EEP violation parameters similar to
Eq. (46). And based on this we study the influence of
various parameters related to rotation on constraint results.

A. The model

Considering the complexity of obtaining a general
solution of the Lagrangian (4) in the case of rotating black
holes, we take a preliminary phenomenological approach
by deforming the ordinary Kerr metric through the replace-
ment M → Mð1þ βsðuÞÞ to obtain

ds2 ¼ −
�
1 −

2uð1þ βsðuÞÞ
1þ A2u2 cos2 θ

�
dt2

þ 1þ A2u2 cos2 θ
1 − 2uð1þ βsðuÞÞ þ A2u2

dr2

þM2

u2
ð1þ A2u2 cos2 θÞdθ2

þM2

u2

�
1þ A2u2 þ 2A2ð1þ βsðuÞÞu3 sin2 θ

1þ A2u2 cos2 θ

�

× sin2 θdϕ2

−M
4ð1þ βsðuÞÞAu sin2 θ

1þ A2u2 cos2 θ
dϕdt; ð66Þ

where A ¼ a=M and a is the angular momentum per unit
mass of black hole, i.e., a ¼ J=M. When a vanishes, this
will lead to the effective metric (32).
The equation of motion could be obtained by the

Hamilton-Jacobi equation:

H þ ∂S
∂λ ¼ 0; ð67Þ

where S is the Hamilton principal function Sðλ; xμÞ and λ is
the affine parameter. The Hamiltonian H is

H ¼ −
1

2
gμνPμPν ð68Þ

and Pμ in the Hamilton-Jacobi formalism is

Pμ ¼
∂S
∂xμ : ð69Þ

The solution of Eq. (67) with the metric (66) is separable
and we refer readers to [83,93] for more details. The
conditions of circular orbits _r ¼ 0 and ̈r ¼ 0 with the
solution give rise to

ðu−2 þ A2 − AxÞ2
− ½u−2 − 2u−1ð1þ βsðuÞÞ þ A2�½y2 þ ðx − AÞ2� ¼ 0;

ð70Þ
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2u−1ðu−2 þ A2 − AxÞ
− ðu−1 þ uβs0ðuÞ − 1 − βsðuÞÞðy2 þ ðx − AÞ2Þ ¼ 0;

ð71Þ

where the definitions of x and y2 are

x ¼ Lz

EM
; ð72Þ

y2 ¼ K
E2M2

: ð73Þ

E and Lz are the integral constants corresponding to the
absences of t and ϕ in the Hamiltonian (68) respectively.
K is Carter constant which is introduced by the separability
of the Hamilton-Jacobi equation (67). From Eq. (70) and
Eq. (71), one could obtain the solutions of x and y with
respect to u, i.e., xðuÞ and yðuÞ.
For the rotating black holes, we need two coordinates

X and Y on the image plane to describe the appearance of
the black hole photon ring. These two parameters are
equivalent to the initial conditions of light rays and in the
unit of mass are given by [83]

X ¼ −
1

sin θ0
x; ð74Þ

Y ¼ �
�
y2 þ ðA − xÞ2 −

�
A sin θ0 −

x
sin θ0

�
2
�1

2

; ð75Þ

where θ0 is the inclination angle between the rotation axis
of the black hole and the line of sight of the distant
observer. Substituting the solutions xðuÞ and yðuÞ of
Eq. (70) and Eq. (71) into the expressions (74) and (75),
one could obtain the photon ring outline as the functions of
u, i.e., XðuÞ and YðuÞ in the domain having solutions.

B. Method and results

Similar to the discussion of static spherically symmetric
black holes, we decompose u as u ¼ u0 þ δu in the
condition that βsðuÞ is small. Then the first order equations
with respect to δu and β from Eq. (70) and Eq. (71) are

u0½2u0ðA − x0Þ þ x0�δxþ u0ð1 − 2u0 þ A2u20Þy0δy
þ f2½u−20 þ AðA − x0Þ� þ ðu0 − 1Þ½ðA − x0Þ2 þ y20�gδu
− u20½ðA − x0Þ2 þ y20�βsðu0Þ ¼ 0; ð76Þ

2½ð1− u−10 Þx0 −A�δxþ 2ð1− u−10 Þy0δy
− u−40 ½6þ u20ðA2 − x20 − y20Þ�δuþ ½ðA− x0Þ2 þ y20�βsðu0Þ
− u0½ðA− x0Þ2 þ y20�βs0ðu0Þ ¼ 0; ð77Þ

where δx and δy represent the perturbed part of x and y. x0,
y0, and u0 satisfy the zeroth order equations:

ðu−20 þ A2 − Ax0Þ2
− ½u−20 − 2u−10 þ A2�½y20 þ ðx0 − AÞ2� ¼ 0; ð78Þ

2u−10 ðu−20 þ A2 − Ax0Þ
− ðu−10 − 1Þ½y20 þ ðx0 − AÞ2� ¼ 0: ð79Þ

Solving Eq. (78) and Eq. (79) to obtain x0ðu0Þ and y0ðu0Þ
and substituting them into Eq. (76) and Eq. (77), we could
obtain δx and δy as the functions of u0 and δu, i.e.,
δxðu0; δuÞ and δyðu0; δuÞ.
Because of the symmetry described by the metric (66),

the outline of the photon ring always has a symmetry axis
on the image plane which is implied by the sign of the
expression (75). Therefore, one important feature of the
photon ring relevant to the observations is the two inter-
sections of the ring contour with the symmetry axis, which
is shown as pþ and p− in Fig. 3 with � be the positive and
negative values of X. These two points are determined by
the solutions of Y ¼ 0. Specifically, according to the
expression (75), Y could be written as

Yðx; yÞ ¼ Y0ðx0; y0Þ þ δYðδx; δyÞ: ð80Þ

Substituting δxðu0; δuÞ and δyðu0; δuÞ into δY and solving
δY ¼ 0, we could obtain δu at the points of pþ and p−
respectively, i.e., δu�ðu0�Þ where u0� are the solutions of
the zeroth order equation Y0 ¼ 0.
According to Eq. (74) and the expressions of δu�ðu0�Þ,

the perturbed intercepts δX� between the contour of the
photon ring and the symmetry axis on the image plane are

FIG. 3. Plot illustrating the definition and the geometrical
meaning of the observables RS and DS, where the blue line
outlines the contour of the photon ring.
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δX�ðu0�Þ ¼ −
1

sin θ0
δx�ðu0�; δu�Þ

¼ fðA; θ0; u0�Þβsðu0�Þ; ð81Þ

where we have defined

fðA; θ0; u0�Þ

≡ −4A sin θ0u0�
ð1 − u0�Þð1 − 3u0� þ A2 cos2 θ0u20� þ A2 cos2 θ0u30�Þ

:

ð82Þ

Similar to the black hole without rotation, δX� is propor-
tional to βs at the linear approximation. As for the
unperturbed parts X0�, they could be obtained by replacing
x in Eq. (74) with the solution x0ðu0Þ of Eqs. (78), (79) and
let u0 equal to u0�.
Now let us consider the observables that characterize the

photon ring contour. We use the method developed in [94]
where two observables RS and DS are defined to quantify
the size and the distortion in shape of the photon ring
respectively. This method is based on the assumption that
the outline of the black hole photon ring is nearly circular,
which is true for the standard Kerr black hole and various of
rotating black holes with separable geodesics including the
model (66). According to the way in which we defined
the coordinates α and β, the general shape and position
of the photon ring on the image plane are shown in Fig. 3 as
the blue line. One can always draw a reference circle which
is uniquely defined by three points: the top, bottom and the
rightmost points as shown in Fig. 3 with black line. The
first observable RS is the radius of the reference circle
which describes the apparent overall size of the photon
ring. The second observable DS is defined by the apparent
distance between leftmost point of the ring contour and that
of the reference circle, which thus measures the degree of
the ring contour deviating from a perfect circle.
We denote the coordinate of the center of the reference

circle to ðC; 0Þ. When the appearance of the photon ring is
changed by the EEP violation term βsðuÞ, the center of the
reference circle will also be changed along the axis of α.
Therefore, we use δC to label the changed part and C0 to
label the original part. The expressions of RS and DS could
be written as

RS ¼ Xþ − C ¼ X0þ þ δXþ − C0 − δC; ð83Þ

DS ¼ Xþ − jX−j − 2C

¼ X0þ þ δXþ − jX0− þ δX−j − 2C0 − 2δC: ð84Þ

In this paper, we only focus on the overall size RS since it is
a much more obvious observable than the deformation DS
and the above approximation works well. For two groups of
photons l andmwith different linear polarizations, we have

ΔRS ¼ Rl
S − Rm

S ¼ δXlþ − δXmþ − δCl þ δCm

≈ δXlþ − δXmþ ¼ fðA; θ; u0þÞΔβðu0þÞ; ð85Þ

where Δβðu0þÞ ¼ βlðu0þÞ − βmðu0þÞ and we have ignored
the difference of δC between l and m since the detailed
numerical study shows that small βs makes the top, bottom,
and the rightmost points in Fig. 3 almost have the same
magnitude of displacement, which makes the change of the
circle center be subdominated. ΔRS is proportional to Δβ

FIG. 4. The figure shows that the variation of E2 defined by
Eq. (86) as different values of the spin parameter a and the
inclination angle θ0 for n ¼ 1.

FIG. 5. Similar to Fig. 4, this figure shows contour lines of
different values of E2. The solid, dashed, dot lines correspond to
n ¼ 1, 2, 3 respectively. The colors represent values of E2.
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and does not depend on the specific values of βl or βm,
which is similar to the situation without rotation.
In order to characterize the influence of the black hole

rotation, we define the fraction of the change in the overall
size caused by the rotation as

E2 ¼
ΔRS − ΔX

ΔX
¼ fðA; θ; u0þÞun0þ − 3

ffiffiffi
3

p
un0

3
ffiffiffi
3

p
un0

; ð86Þ

where ΔX is the result of no rotation situation, i.e., Eq. (46)
and we have chosen βsðuÞ ¼ βsnun. In Fig. 4, we plot the
value of E2 as the variation of the spin parameter a=M and
the inclination angle θ0 for n ¼ 1. We could see that the
largest deviation ratio from the no rotation black hole
occurs in the largest a and in the nearly face-on or edge-on
view corresponding to θ0 ¼ 0 and θ0 ¼ π=2 respectively.

Then in Fig. 5, for different values of n, we plot the
corresponding contour lines of different values of E2. The
solid, dashed, dot lines correspond to n ¼ 1, 2, 3 respec-
tively. We can see that a larger n tends to produce a large
deviation ratio from the no rotation case. The reason is that
for a given value ofΔβn, a larger nmeans a smaller effect of
the EEP violation which will be more comparable with the
effects caused by the rotation.
Finally, we compare the fully numerical results with the

approximated expression (85) by defining

E3 ¼
ΔRN

S − ΔRS

ΔRS
; ð87Þ

where ΔRN
S ¼ RNl

S − RNm
S denotes the numerical results,

i.e., RNl
S and RNm

S are obtained from the contour of photon

(a) (b)

(c) (d)

(e)

FIG. 6. Plot showing the deviation ratio E3 which is defined by Eq. (87) as the variation of all kinds of parameters. The parameters
corresponding to the black curve are shown in below of each figure. The legends represent different selections of parameter that are
changed comparing with the black curve. (a) a=M ¼ 0.3; θ0 ¼ π=2; n ¼ 1; βcn ¼ 0 (b) a=M ¼ 0.3; θ0 ¼ π=2; n ¼ 1;Δβn ¼ 0.2
(c) a=M ¼ 0.3; θ0 ¼ π=2;Δβn ¼ 0.2; βcn ¼ 0 (d) θ0 ¼ π=2; n ¼ 1;Δβn ¼ 0.2; βcn ¼ 0 (e) a=M ¼ 0.3; n ¼ 1;Δβn ¼ 0.2; βcn ¼ 0.
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ring by numerically solving Eq. (70) and Eq. (71). The
nonzero values of E3 have two sources. The first one is the
linear approximation (81) by assuming the EEP violation
function βðuÞ is small. The second one is the approxi-
mated expression (85) of ΔRS characterizing the overall
size of photon ring. In Fig. 6, we plot the deviation ratio
E3 as the variation of all kinds of parameters including the
spin parameter a, the inclination angle θ0 and the
parameters related to the EEP violation Δβn, n and βmn .
In each figure of Fig. 6, the parameters corresponding to
the black curve are shown in below. Other colored curves
are results of different selections of the parameter that are
changed comparing with the black one and the changed
parameters are shown in the legends. A significant feature
of Fig. 6 is that the deviation ratio E3 is approximately
proportional to all parameters except for n and the
proportionality coefficients are approximately indepen-
dent of any other parameters other than n. Therefore, in
order to let readers better estimate the magnitude of the
deviation ratio E3, we use proportional expressions to
describe the trend of the black lines in Figs. 6(a), 6(b),
6(d), and 6(e) respectively, i.e.,

(i) (a): E3 ¼ −0.39Δβn þ 0.16,
(ii) (b): E3 ¼ −0.63βmn þ 0.08,
(iii) (d): E3 ¼ 0.26ða=MÞ − 0.06,
(iv) (e): E3 ¼ 0.18ðθ0=πÞ − 0.06.
From Figs. 6(a) and 6(b), one could find that similar to

the no rotation case (47), the absolute value of E3 increases
with that of Δβn and βmn . As for another EEP violation
parameter n, from Fig. 6(c) one could see that E3 tends to
vanish as n goes to zero. The reason for this is that the
approximations (81) and (85) work well for small n
(n ≲ 0.5). While for large n (n≳ 2), the approximated
expression (85) works badly since the small change of
photon ring size is comparable with the error of this
approximation. Therefore different from E1 as shown in
Fig. 2, there is no tendency for E3 to converge to zero as n
increases. From Fig. 6(d), the small E3 tends to be given by
the small spin parameter a. This is caused by the fact that
the small rotation speed of black hole corresponds to a
small distorsion of photon ring’s shape, which makes the
approximation (85) work better. Finally from Fig. 6(e), one
could find that the effect of the inclination angle θ0 is
subdominated.
In this section, we does not choose a specific dynamic

model for the field Qμνσρ and the corresponding rotating
black hole solution. We adopt a rough analysis by using the
generalized metric (66). Given that the leading term of the
black hole spin parameter is only presence in the non-
diagonal component tϕ of the Kerr black hole metric and
this component does not deform the photon ring [95], we
expect the qualitative conclusions will not be changed if we
only focus on the overall size of photon ring. Nevertheless,
given that the Eq. (66) is not a consistently constructed
metric, we emphasize that it is still necessary to fully derive

the rotating solution for some specific dynamics of the field
Qμνσρ when comparing with the future possible precise
observations of black holes, we leave this study as a future
project.

VIII. CONCLUSIONS

In this paper, we have proposed a method to test the
Einstein equivalence principle of the electromagnetic
law by observing the photon ring of black holes.
Specifically, we start from a general Lagrangian (4)
that characterizes violation of the EEP. By applying the
geometric optics approximation, we obtain the Eq. (16)
which implies the modified dispersion relation corre-
sponding to the Lagrangian. In order to simplify and
manifest the physical meaning of this system, we focus
on the situation that the spacetime and the motion of
photons have the spherical symmetry. This fact tells us
that for the planar circular orbits, different polarized
photons will sense different strength of gravitational
potential and behaves as the violation of WEP as a
result. The observable is expressed as Eq. (46), which
shows that the difference in the photon ring’s size
presented by two different linear polarized photons is
proportionally connected to the difference of the corre-
sponding EEP violation parameters. We also investigate
the extend of the EEP violation to which the expression
(46) applies and display a few cases of specific EEP
violation models.
For rotating black holes, the discussions would become

more complicated. Our strategy is to select a representative
model (66) to characterize the effects of black hole rotation.
We compare the outcomes of the approximated expression
(46) having no rotation with those of the approximated
expression (85) having rotation. The results show that the
large deviation ratio only occurs when the rotation of black
hole is fast and the inclination angle of rotation axis is
nearly edge-on or face-on. Similar to the discussions
without rotation, we also estimate the accuracy of the
expression (85) by numerically solving the system, which
is good for small magnitude of the EEP violation and small
rotation speed of black holes.
In order to make the method in this paper workable, we

need have the ability to distinguish photon ring in the
photos of the supermassive black hole, which cannot be
achieved with current observational capabilities [13].
Recently, Johnson et al. show that the circular photon ring
would manifest itself as a periodic visibility function on
long interferometric baselines [9], which thus makes the
photon ring become distinct in the accretion background
and the related lensing background. This work was
subsequently extended to any shape of the photon ring
by [10,11] and the corresponding polarimetric signatures
on long interferometric baselines by [96]. The study of [12]
made the forecast that a space-based interferometry experi-
ment can reach a accuracy level where the photon ring is
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remarkably insensitive to the astronomical source profile
and can therefore be used to precisely test gravity.
Furthermore, besides the appearance, a recent work also
shows that the two-point correlation function of intensity
fluctuations on the photon ring could also become an
observable of the physics around black holes [97]. In the
near future, the next generation Event Horizon Telescope
could have the ability to do the double band observations as
well as the corresponding dual-polarizations [98,99]. All
these theoretical and experimental advances provide us
with opportunities to explore possible new physics in the
strong gravitational field.
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