
ar
X

iv
:2

10
4.

15
04

0v
1 

 [
cs

.A
I]

  3
0 

A
pr

 2
02

1

Using Small MUSes to Explain How to Solve Pen and Paper Puzzles

Joan Espasa1 , Ian P. Gent1 , Ruth Hoffmann1 , Christopher Jefferson1 , Alice M. Lynch1

1University of St Andrews

{jea20,ian.gent,rh347,caj21,al254}@st-andrews.ac.uk

Abstract

Pen and paper puzzles like Sudoku, Futoshiki and
Skyscrapers are hugely popular. Solving such puz-
zles can be a trivial task for modern AI systems.
However, most AI systems solve problems using
a form of backtracking, while people try to avoid
backtracking as much as possible. This means
that existing AI systems do not output explanations
about their reasoning that are meaningful to peo-
ple. We present DEMYSTIFY, a tool which allows
puzzles to be expressed in a high-level constraint
programming language and uses MUSes to allow
us to produce descriptions of steps in the puzzle
solving. We give several improvements to the ex-
isting techniques for solving puzzles with MUSes,
which allow us to solve a range of significantly
more complex puzzles and give higher quality ex-
planations. We demonstrate the effectiveness and
generality of DEMYSTIFY by comparing its results
to documented strategies for solving a range of pen
and paper puzzles by hand, showing that our tech-
nique can find many of the same explanations.

1 Introduction

Puzzles like Sudoku, Futoshiki or Skyscrapers are designed
to be solved on paper and continue to be incredibly pop-
ular. New variants of these puzzles are created almost
weekly, and there are many websites and books dedicated
to showing off new problems. The increasing popularity
of the YouTube channel ‘Cracking the Cryptic’ shows that
people enjoy seeing explanations of pen and paper puz-
zles. There exist specialised guides for solving many of
these puzzles [Conceptis, 2002; Tectonic, 2005; Stuart, 2008;
Wilson, 2006] as well as popular variants of them. These
guides provide us with a reference to compare our techniques
against.

Most of the paper and pen types of puzzles can be trivially
solved when using a constraint solver [Simonis, 2005]. This
is due to propagators which enforce various methods of con-
sistency between subsets of the variables or constraints in the
problem. However, this method has two major limitations. If
we use weak propagators, we produce search trees with hun-
dreds or thousands of nodes. If we use strong propagators

we can make deductions beyond the abilities of most human
players, while still often producing search trees. Whereas hu-
man players aim to solve problems with no backtrack.

There are two main reasons to look at how humans solve
puzzles – to advise players on how to progress and to pro-
duce more accurate difficulty measures of puzzles. Some
works [Pelánek, 2011] try to measure the difficulty of a puz-
zle by recording both the number and difficulty of deductions
which can be applied at each point in solving.

If we want to be able to explain how a puzzle is solved, a
common approach is to create custom solvers which use the
same techniques as human players. For popular puzzles this is
easy, as the techniques which human players use are well doc-
umented. However, this means that for each variant a custom
solver has to be implemented. SudokuWiki [Stuart, 2008]

is an example of such solvers for several popular Sudoku
variants, showing which techniques can be applied at each
stage of solving. The major limitation of these systems is
the requirement for a hard-wired and ordered list of tech-
niques. This paper provides a more general technique, based
on MUSes (Minimal Unsatisfiable Subsets), which we will
demonstrate on a variety of pen and paper puzzles.

When considering explanations, interpretability is de-
fined as “descriptions that are simple enough for a per-
son to understand, using vocabulary meaningful to the
user” [Gilpin et al., 2018]. We advance on the work
of [Bogaerts et al., 2020] in using MUSes as a basis for
providing interpretable explanations of puzzles from a SAT
model. However, standard MUS finding algorithms are too
inefficient for larger puzzles such as Sudoku.

Our contribution is threefold. First, a novel MUS-finding
algorithm optimised to find individual small MUSes. Second,
improved techniques for using MUSes to generate explana-
tions designed for pen and paper puzzles. Finally, we provide
a comparison of explanations generated via MUSes to real-
world tutorials and puzzle solving, showing how our tech-
niques closely match the explanations used by real players on
a variety of puzzles and guides. We also experimentally ex-
plore the efficiency of the proposed MUS finding algorithm.

2 Background

Most puzzles which we will discuss in this paper will be typ-
ically solved by keeping a list of the values which are being
considered for each cell, called the candidates. Once every
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cell has only one candidate remaining, the puzzle is solved.
We consider puzzles which have only a single solution and
are intended to be solved by humans without having to guess.
We call these pen and paper puzzles.

Binairo, also known as Takuzu, is a grid where the cells
are to be filled with 0s and 1s such that: each row and column
has an equal number of 0s and 1s, all rows or columns are
different and no more than two of either number are adjacent.

Futoshiki is a puzzle with an n × n grid, containing in-
equality constraints between the cells. The aim is to fill in the
cells, with the numbers from 1 to n contained in each row and
column exactly once, while upholding the inequalities.

Kakuro is a crossword style puzzle, with numbers instead
of words. Each cell will contain a digit from 1 to 9, such that
the cells add up to the hint given for that sub-row (or sub-
column). Each sum consists of unique digits.

Skyscrapers is an n× n grid based puzzle where the num-
bers 1 to n represent skyscrapers of different heights: 1 be-
ing the lowest, n being the highest. The grid represents a
top-down view of the skyscrapers. The rules are that in each
row or column each number must occur exactly once and the
numbers around the edges indicate how many buildings are
visible on that row or column looking from that edge. There-
fore, higher skyscrapers will hide smaller skyscrapers, look-
ing from one edge, but the smaller could be visible from the
opposite edge.

Sudoku is a logic puzzle with the goal of filling a 9×9 grid
of cells, where each cell contains a number between 1 and
9, so that each column, row, and defined 3 × 3 box (usually
marked with a bold outline) contain each of the numbers 1 to
9 exactly once. The grid contains some initial values and has
a single solution. The popularity of Sudoku has led to many
variants. These variants keep an n × n grid where each row
and column contains the numbers from 1 to n, but vary the
shape of the boxes, or add extra constraints.

Starbattle is a puzzle requiring each row, column and re-
gion to contain the same number of stars. The number of
stars can range from 1 to n, each puzzle indicates how many
stars are required. Stars cannot be placed in adjacent cells
(orthogonally or diagonally).

Tents and Trees has a grid containing some cells filled with
a tree, and an indication of the number of tents required in
each row and column. The goal is to fill in the remaining
cells with either a tent or grass, such that each tree has an
orthogonally adjacent tent, the number of tents reflect the ex-
pected number for each row and column, and no two tents are
touching (orthogonally and diagonally).

Thermometer is a grid filled with thermometers of differ-
ent lengths. The goal is to partially fill each thermometer with
mercury from the “bottom” (a cell with a rounded end). Ther-
mometers do not have to be filled to the top. The hints on the
outside edges of the grid indicate how many mercury filled
cells there are in the corresponding column or row.

2.1 Minimal Unsatisfiable Sets

Definition 1 (Unsatisfiable Set/Core). An unsatisfiable set of
an unsatisfiable constraint problem is any unsatisfiable subset
of the set of constraints of the problem.

Traditionally, unsatisfiable sets are defined on the clauses
of a conjunctive normal formula. In this paper, we ex-
tend this definition to general constraint problems. A
given problem can have many unsatisfiable sets of dif-
ferent sizes. The hypothesis of our work is that un-
satisfiable sets closely align with how human players
solve puzzles. Unsatisfiable sets have many uses, such
as on interactive applications [Junker, 2001], repairing
knowledge bases [Mazure et al., 1998] or model check-
ing [McMillan, 2003]. See [Silva, 2010; Cimatti et al., 2011]

for extensive surveys.
Identifying minimum unsatisfiable sets is a

∑
2
-

complete problem [Gupta, 2002], there are some at-
tempts [Lynce and Silva, 2004; Zhang et al., 2006],
FORQES [Ignatiev et al., 2015] at addressing this. On
the other hand, the decision problem of a minimal
(i.e. irreducible) unsatisfiable set can be formulated as
the difference between two NP problems, which lies
in the DP-complete [Papadimitriou and Wolfe, 1988]

category. Different approaches have been studied for
computing Minimal Unsatisfiable Sets (MUS) such
as insertion-based [de Siqueira N. and Puget, 1988],
deletion-based [Chinneck and Dravnieks, 1991], di-
chotomic [Hemery et al., 2006] or by progres-
sion [Marques-Silva et al., 2013]. As most tech-
niques that require unsatisfiable sets do not strictly
require them to be minimum, most specialised tools
such as Muser2 [Belov and Marques-Silva, 2012],
HaifaMUC [Nadel et al., 2013], MCS-
MUS [Bacchus and Katsirelos, 2015], Tarmo-
MUS [Wieringa and Heljanko, 2013] or some modern
SAT solvers try to find minimal or even small enough
unsatisfiable sets, striking a balance between size and
practicality.

3 Model Augmentation

The rules for many well-known pen and paper puzzles can
be expressed as constraints. For example, a Sudoku is built
from AllDifferent constraints, one on each row, column and
3 × 3 box. Kakuro rules add sums, Futoshiki need inequali-
ties and the Tents and Trees rules count elements. Other com-
monly found constraints can be easily modelled using first-
order logic with equality.

To be able to give explanations for each reasoning step, all
constraints used to model the rules of puzzles are half-reified.
They take the form x → c, where c is the constraint and x
is a Boolean variable that controls if the constraint is active.
Each constraint is then associated with a string, describing in
natural language terms what the constraint is expressing.

When providing an explanation where c is involved, we use
the associated string to be able to give a meaningful explana-
tion to the user, and highlight in a user interface all literals
(candidate assignments) involved in c.

Example 1. Given the constraint c1 : v2 + v3 ≥ 5, it is half-
reified as x1 → v2 + v3 ≥ 5. Boolean variable x1 will be
used to determine if the constraint c1 is active. The string
“the second cell plus the third cell must be greater or equal
than five” is associated with the constraint, so it can be later



used to give meaningful explanations.

We use SavileRow [Nightingale et al., 2015] to automati-
cally translate high-level models of puzzles into SAT. We add
annotations to SavileRow’s input to mark the purpose of the
variables of the problem. Variables can be labeled as either
Problem, Constraint or Auxiliary. Problem variables repre-
sent the answer to the puzzle, usually expressed as a grid.
Constraint variables must be Boolean and are used for acti-
vating the constraints of the puzzle. Each Constraint vari-
able is also labelled with a string which describes it. Finally,
Auxiliary variables are only used to allow easier modelling
of the puzzle. SavileRow was extended to output which SAT
variable is used to represent the possible assignments to each
labelled variable.

4 MUSes for Explaining Puzzles

DEMYSTIFY1 generates explanations very similarly
to [Bogaerts et al., 2020], which applies the techniques
to logic grid puzzles. Below is a schematic description
showing our general procedure of explaining decisions when
solving a puzzle.

1. Translate the description of the puzzle rules to a CNF
formula P (we use SavileRow [Nightingale et al., 2015]

for this step). This translation produces, amongst other
things, a set of Boolean variables L: one for each value
which can be assigned to each problem variable. There
is also the set X of Booleans which represent the con-
straints variables of the puzzle. As explained in Sec-
tion 3, each x ∈ X is associated with a constraint of the
puzzle c, where x → c. Therefore a MUS of the puz-
zle can be represented as a subset of X which, when all
assigned TRUE, makes P unsatisfiable.

2. For each l ∈ L take its value a in the unique solution,
find MUSes for the problem P ∧ (l 6= a).

3. Pick a variable l ∈ L which has the best MUS and
display this to the user. Our criteria for picking the
best MUS uses the following ordering: First, choose the
MUS with the fewest constraints. Break ties by choosing
the MUS whose constraints refer to the fewest literals.
Finally, choose the MUS which can be used to discard
the most literals.

4. Assign any literals which can be deduced from the best
MUS and iterate from step 2 until all variables are as-
signed.

DEMYSTIFY uses Glucose [Audemard and Simon, 2018]

as the underlying SAT engine. Learned clauses are kept be-
tween calls to the solver, which helps to speeds up the time
taken to find many unsatisfiable sets [Audemard et al., 2013].

There are several choices we make when presenting
MUSes to the user, which reduce information overload and
allow us to solve the puzzles in fewer steps. These settings
can all be configured, depending on the preferences of the
user, or the particular puzzle being solved.

Firstly, MUSes of size 1 are grouped together, as there can
be many such MUSes and they are very simple to understand.

1https://github.com/stacs-cp/demystify

Secondly, for each MUS we generate a list of the literals
contained in it. This is generally very fast, as the MUS is
already small and we only need to check literals contained in
at least one of the constraints in the MUS. A single MUS can
often be used to deduce many literals.

MUSes are displayed to the user by listing the English de-
scriptions of the constraints. The literals contained in the con-
straints of the MUS are highlighted in the user interface in one
colour, while the literals removed by the MUS are highlighted
in another colour. The literals contained in each constraint are
highlighted by moving the mouse over the constraint. Pro-
viding a higher quality interface, which can help users better
interpret MUSes, is left to future work.

5 MUS Algorithms

As previously discussed, there are many existing algorithms
for finding MUSes. We found existing state-of-the-art tech-
niques for finding all MUSes either did not finish on our in-
stances or could only produce MUSes where each constraint
is a single SAT clause.

Furthermore, we do not wish to find the smallest MUS for
a single problem but to find the globally smallest MUS for a
set of problems – one for each remaining unassigned problem
variable. At each step of solving many of these problems will
have no small MUSes, so we search all problems for MUSes
below a parameter MaxSize, which is increased only if no
MUSes are found.

Our algorithms require a SAT solver that provides a
FindUnsatCore function. This function should accept a
SAT problem and list of Boolean variables, and return FAIL

if there is a solution where all those variables are TRUE, or
a subset of X which, if all assigned TRUE, lead to an un-
solvable problem. This set is not necessarily minimal. Most
modern SAT solvers provide this functionality.

We first give BasicMUS, a variant of the deletion-based
algorithm of [Dershowitz et al., 2006] in Algorithm 1. This
algorithm accepts a problem P and a set of variables X (rep-
resenting the constraints) and tests removing each element
of X in turn, checking the result is still unsolvable. It uses
FindUnsatCore to reduce the unsolvable subset of X at
each step. The only new feature is keeping track of the known
required members of the MUS and stopping once MaxSize
members have been found and checking if they form a MUS,
if not we need more values so we can return FAIL.

Our experiments demonstrate a limitation of BasicMUS,
which is the lack of variety in the MUSes it returns. The
ManyChop algorithm, given in Algorithm 2, is intended to
increase MUS variety. This algorithm uses BasicMUS af-
ter performing some initial reduction of X . This algorithm
works by removing random subsets of X and checking if the
result is still unsatisfiable. ManyChop chooses a fixed-size
proportion of X to remove and keeps trying to remove that
many elements of X and checking for unsatisfiability. The
idea behind the algorithm is that given a set X , if we remove
some proportion p of the elements of X , the probability any
particular value is left behind is 1− p. Therefore, the chance
that any fixed collection of n elements remains behind is ap-
proximately (1−p)n. This approximation is accurate enough



Algorithm 1 Basic MUS finding algorithm

1: procedure BASICMUS(P,X,MaxSize)
2: X = FindUnsatCore(Shuffle(X))
3: MusSize = 0 ⊲ Values known to be in MUS
4: ToConsider = ShuffledCopy(X)
5: for c ∈ ToConsider do
6: if c ∈ X then
7: core = FindUnsatCore(P , X − c)
8: if core == FAIL then
9: MusSize += 1 ⊲ c must be in the core

10: if MusSize == MaxSize then
11: X = X [1..MaxSize]
12: if FindUnsatCore(P ,X) == FAIL then
13: return FAIL

14: else
15: return X
16: else X = core
17: return X

for the values of |X |, p and n used in our experiments.
In our experiments, we choose p such that there is a prob-

ability of at least 1

10
of finding a MUS of size MaxSize and

then run the loop 20 times. We leave tuning the constants of
this algorithm to future work.

This algorithm is much more likely to remove large MUSes
than small MUSes. If we are for example looking for a spe-
cific MUS M of size 5, then if we remove 1

4
of the elements

in X there is a 23.7% chance that M will not be removed.
Alternatively, there is only a 0.32% chance a MUS of size 15
will not be removed. This suggests we should find smaller
MUSes more often (when they exist) and informally we ob-
serve this.

Algorithm 2 ManyChop Algorithm

1: procedure MANYCHOP(P,X,MaxSize)
2: X = Shuffle(X)
3: step = min({n ∈ N|(1 − 1

2n
)MaxSize ≥ 1

10
})

4: frac = 1− 1

2step

5: for i ∈ [1..20] do
6: check = Shuffle(X)[1..|X | ∗ frac]
7: if Solve(check) == FALSE then
8: return BasicMUS(check, MaxSize)

9: return FAIL

The algorithms discussed so far take a limit for the size of
MUS to find. We can combine them with Algorithm 3 to find
a globally smallest MUS. This accepts a SAT problem P , list
of Boolean activators for the constraints X , problem literals
L (which represent the values these variables can take in the
solution) and the number of times n to search for each size of
MUS (for our experiments we set n = 100).

We search using iterative deepening, trying larger and
larger sizes of MUS. In our experiments the loops on Line 7
are executed in parallel, distributing the calls to the MUS al-
gorithm over all available CPUs. We wait until Line 13 to
check if we have found a small enough MUS, rather than re-
turn as soon as a MUS of size s is found, as we may find

Algorithm 3 Finding a globally smallest MUS

1: procedure FINDGLOBALMUS(P,X,L, n,musAlg)
2: SmallMUSd = FindSize1MUS(P,X,L)
3: if SmallMUSd 6= FAIL then return SmallMUSd

4: MUSd = dict() ⊲ Init as an empty dictionary
5: small = ∞
6: for s in [1..|X |] do
7: for r ∈ [1..n] and l ∈ L do
8: core = MusAlg(P + {¬l}, X , s)
9: if core 6= FAIL then

10: if (l /∈ MUSd) or
(|MUSd[l]| > |core|) then

11: MUSd[l] = core
12: small = min(small, |core|)

13: if small ≤ s then return MUSDict

many MUSes of the same size.

6 Experiments

We consider two different methodologies to show that MUS
generation via FindGlobalMUS in DEMYSTIFY2 lines up
with how players solve puzzles. Firstly, we compare against a
selection of published tutorials. Secondly, we look at solving
an entire puzzle where the player discusses their reasoning
at each step. All experiments were run on a 6 Core 3.7GHz
Intel i5-9600K with 16GB of RAM running Ubuntu 20.04
and Python 3.8.5.

6.1 Experimental Design

We wrote each of our puzzles in the high-level input language
of SavileRow [Nightingale et al., 2015]. We try to match the
original English description of the puzzles. In this subsection
we discuss some modelling challenges which arose.

In problems such as Sudoku and variants, it is common for
players to remove possible values for a cell one at a time,
until only one remains. This is commonly referred to as can-
didate elimination. In problems such as Skyscrapers, Kakuro
or Futoshiki the game interfaces are commonly designed to
let players only fill in a cell once they know its value. To
support these two methods of playing, DEMYSTIFY can ei-
ther generate MUSes for all candidates for all cells (allowing
candidate elimination) or only MUSes for “positive” literals
(only allowing cells to be assigned their final value).

In problems which do not allow candidate elimination we
imposed AllDifferent constraints as a single constraint. For
problems which allow candidate elimination we decomposed
the AllDifferent constraints into smaller pieces, requiring that
each pair of variables take different values and each value oc-
curs exactly once. This is because without candidates the de-
ductions possible from a single AllDifferent are quite simple,
while with candidate elimination the tutorial will decompose
AllDifferent constraints into smaller simpler pieces.

Several puzzles (including Tents and Trees, Thermometers
and Starbattle) require that there is some fixed given number
of objects in rows, columns or regions. We split these equality

2https://github.com/stacs-cp/demystify



constraints into ≥ and ≤ constraints, as often only one part
was required, and these made the resulting MUSes easier to
understand.

In the Tents and Trees puzzle, there must be a bijection
between tents and trees. In every puzzle we looked at it is
easy to see which tent is attached to which tree, but expressing
this as a constraint is difficult. Instead, we assign each tree
a unique number between 1 and n, then fill in cells with a
number between 0 and n, where 0 represents empty and i > 0
represents that this is the tent for tree i. We then require each
non-zero number in the grid occurs exactly once.

There are some puzzles we do not consider in this paper, as
we found we were unable to represent them in our input lan-
guage in such a way that the resulting MUSes lined up with
tutorials. The two main problems we found were problems
with implicit arithmetic reasoning (such as Killer Sudoku)
and problems where the player is required to draw a single
line or cycle which is connected. These both produce bad
models for MUSes for the same reason – they are large con-
straints which are considered a single constraint by the player,
but which allow very complicated deductions. In the future,
we will investigate ways of splitting these constraints into
smaller pieces such that the resulting pieces produce human-
understandable MUSes.

6.2 Tutorials

To show that MUS generation lines up with how players solve
puzzles, we compared our techniques to the tutorials for ten
different puzzles, seeing in each case if the MUS highlighted
the same constraints as those given by the tutorial.

For each step of each tutorial, we use ManyChop to get
the smallest MUS for one of the deductions produced by that
tutorial step. We do not use the globally smallest MUS, as
in many cases there were smaller MUSes in different parts of
the puzzle, unrelated to the logical rule the tutorial step was
demonstrating.

In some cases, a MUS may only deduce one, or a subset, of
the deductions described in a single tutorial step, as many tu-
torial steps describe a general idea and then apply it in many
places. We define a successful match by the MUS when it
correctly captures the reasoning for the single deduction we
chose. Where tutorials show several connected steps we con-
sider each step individually, rather than running DEMYSTIFY

to solve the whole puzzle.
There were two common issues we found with tutorials. In

some cases the tutorial example had multiple answers, DE-
MYSTIFY still works in this case, but will only deduce values
which take the same values in all solutions. A small number
of tutorial steps had no solutions, in this case, our algorithms
do not work and we remove those instances.

We have taken instances from eight different on-
line guides. For Sudoku, X-Sudoku and Jigsaw Su-
doku we used [Stuart, 2008]. The other two major
sources for instances of techniques, for various puzzles,
are [Conceptis, 2002] and [Tectonic, 2005]3. Some tutorials
present named techniques with one or more example puzzles;
in other cases, the explanations are spread over a step-by-step

3A full list of tutorials is provided in the supplementary materials

Puzzle #techniques matched
# %

Binairo 13 13 100%
Futoshiki 15 13 87%
Jigsaw Sudoku 3 3 100%
Kakuro 16 16 100%
Skyscrapers 14 12 85%
Starbattle 24 21 88%

Sudoku{
Basic/Tough 29 20 69%
Diabolical † 29† 12 41%

Tents and Trees 9 9 100%
Thermometers 7 6 86%
X-Sudoku 3 3 100%

Table 1: Summary of the number of instances in guides, and how
many DEMYSTIFY matched. †We exclude ‘Unique Rectangle’ tech-
niques, which make use of the requirement that Sudokus have a
unique answer. As we use MUSes to check if a problem is unsolv-
able and not if it has a unique solution, our technique does not apply.

solving guide. Table 1 shows the total number of instances
we extracted for each puzzle type, and how many times we
matched the same required constraints as the tutorial.

For Binairo, Jigsaw Sudoku, Kakuro, Skyscrapers, Tents
and Trees and X-Sudoku we matched all tutorial steps (Ta-
ble 1). On average for all puzzles, apart from classic Su-
doku, we match 85%. In some cases where DEMYSTIFY pro-
duced a different MUS to the tutorial we believe it could be
argued the MUS found by DEMYSTIFY was simpler, but we
strictly compare to the reasoning presented rather than apply
our judgement as to which reasoning was simpler.

Our results on the classic Sudoku puzzle are not as impres-
sive as for the other puzzles. There are several reasons for
this. One is that we often find constraints which represent
a different Sudoku technique to the one in the tutorial. For
example, instead of the “Naked Triples” or “Hidden Triple”
techniques we find “Pointing Pairs”: the latter is sometimes
considered as an easier technique, e.g. by Sudoku Dragon’s
strategy guide [Senn, 2020]. A second reason is that Sudoku
is exceptionally well-studied and many rules have been in-
vented. Some of these ‘Diabolical’ [Stuart, 2008] techniques
are required exceptionally rarely and many involve very large
MUSes (up to 56 constraints), much larger than the MUSes in
any of the other problems we looked at. We only accept these
when we matched exactly and in many cases we found sim-
ilar (and often smaller) but not identical reasoning. We sep-
arate the “Diabolical” techniques in Table 1, where we see
significantly better performance on the ‘Basic’ and ‘Tough’
techniques.

Overall, we believe Table 1 gives strong evidence for the
validity of using MUSes for solving unseen puzzles. With no
significant tuning (other than deciding how to represent AllD-
ifferent constraints) we have reproduced a significant number
of the techniques from a varied set of puzzles.

6.3 Miracle Sudoku

One notable variant of Sudoku is the Miracle Sudoku, de-
signed by Mitchell Lee. In the Miracle Sudoku the stan-
dard Sudoku rules apply, and cells separated by a king’s



1
2

Initial State

1
2

Completed

4 8 3 7 2 6 1 5 9

7 2 6 1 5 9 4 8 3

1 5 9 4 8 3 7 2 6

8 3 7 2 6 1 5 9 4

2 6 5 9 4 8 3 7

5 9 4 8 3 7 6 1

3 7 2 6 1 5 9 4 8

6 1 5 9 4 8 3 7 2

9 4 8 3 7 2 6 1 5

Figure 1: The Miracle Sudoku by Mitchell Lee.

move or knight’s move in chess must have different val-
ues, and orthogonally adjacent cells cannot contain consec-
utive numbers. A video showing an expert solving this puz-
zle achieved over one million views in under three months
[Anthony and Goodliffe, 2020] and resulted in mainstream
press attention [Usborne, 2020]. The puzzle, and final solu-
tion, are shown in Fig. 1. To show our technique can solve
entire puzzles, we compared DEMYSTIFY against the solu-
tion given in [Anthony and Goodliffe, 2020].

We generated a full solution for the Miracle Sudoku. The
explanation contains steps which involved MUSes of size 1
and a smaller number of more complex steps. There were 49
steps where a non-unit MUS was used. These MUSes were
size 3 or 4 and fell into one of the following categories.

• A classic Sudoku technique such as pointing pairs.

• A generalisation of this technique to Miracle Sudoku,
for example where the only remaining possibilities for
a 4 in a box are within a King’s or Knight’s move of
another cell, that other cell cannot be 4.

• What Anthony called “dominoes”: if we know one of
two adjacent cells must be 4 then neither can be either 3
or 5, by the consecutive numbers rule.

• A similar but slightly more complex case of “triomi-
noes”. If we know that a 4 must occur in one of two
non-adjacent cells, and both are adjacent to a third cell,
the third cell cannot be 3 or 5.

Comparing these step-by-step with the YouTube video, we
find that all the above techniques were used except the last. It
is particularly striking that reasoning steps specialised to this
variant, such as the use of dominoes, were discovered dur-
ing solving both by Anthony and by our program. Anthony
never used the triomino technique above: in some cases, he
used slightly more complicated reasoning steps in terms of
the number of cells involved but ones which did not necessi-
tate the discovery of the triomino reasoning step. Both An-
thony’s and our explanation proceed similarly.

While this section only reports on a single type of Sudoku
variant, it is promising that our techniques could find broadly
similar explanations to a human expert.

6.4 Performance Comparison

While performance is not a primary concern in this paper,
we performed one small experiment to compare the per-
formance of our algorithms. This experiment demonstrates

Technique # Time Choices MUSes

Basic 6 92 80 125
-Limit 6 140 82 136
-Core 4 - 101 178
-Limit, -Core 3 - 70 129

ManyChop 6 49 124 312
-Core 6 13086 124 323

Table 2: Solving 6 LA Times Sudokus to completion. Solvers
run with no FindUnsatCores (Core) and no MUS size limit (Limit)
where appropriate. Times in CPU mins, solvers given 9600 CPU
mins to solve each Sudoku. # - Total solved, Choices - total num-
ber of candidates with smallest MUS size, MUSes - total number of
distinct MUSes found for all these candidates.

the need for an SAT solver which has the functionality of
FindUnsatCore, and also shows the wider variety of
MUSes that ManyChop finds.

The algorithms solved six Sudokus from August 20th 2020
to August 30th 2020 from the LA Times which require at
least one MUS of size greater than 1. To ensure the algo-
rithms were forced to consider the same steps, we first solved
each Sudoku with the BasicMUS technique, and then use the
same sequence of choices for all the other algorithms.

Our results are presented in Table 2. We ran our algorithms
with FindUnsatCore always returning its input when the
problem is unsolvable instead of a subset (-Core), and with
no limit on the size of the MUS to be found (-Limit). We
measured, each time the algorithms had to find a MUS of size
greater than 1, both the number of candidates with MUS of
the smallest size found by any algorithm and the total number
of distinct smallest size MUSes found for all candidates.

We observe the -Core variants are orders of magnitudes
slower, so a good implementation of FindUnsatCores is
vital for MUS finding. The Basic algorithm, while fast, pro-
duces the fewest different smallest MUSes. The ManyChop
algorithm performs faster and also produces a much greater
number of smallest MUSes.

7 Conclusion and Future Work

In this paper, we have presented a new algorithm for ef-
ficiently finding small MUSes. We demonstrate its use-
fulness and generality by producing descriptions of steps
for many pen and paper puzzles. We also demonstrate
that MUSes align very closely with pre-existing research
on how human players decide how to solve these puzzles.
This work, along with earlier work on Logic Grid Puz-
zles [Bogaerts et al., 2020], provides strong evidence that
MUSes are a powerful, natural, and generic method of ex-
plaining how to solve puzzles in a human-like way.

We believe the FORQES [Ignatiev et al., 2015] approach
is one that closely aligns to our needs. However, it works on
problems where constraints are only represented as individual
SAT clauses, while our puzzle models describe constraints as
many SAT clauses. As part of future work we want to pro-
duce an extension of the FORQES approach for incremen-
tally solving puzzles specified by high-level constraints.

For future work, we want to also explain exactly how the
constraints in a MUS can be used to deduce the next step



of the puzzle. This needs a step beyond the current work to
involve significant work in Human Computer Interaction as
well as a possible collaboration with psychologists.
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