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Testing the equivalence principle via the shadow of black holes
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We study the equivalence principle, regarded as the cornerstone of general relativity, by analyzing the
deformation observable of black hole shadows. Such deformation can arise from new physics and may be
expressed as a phenomenological violation of the equivalence principle. Specifically, we assume that there is
an additional background vector field that couples to the photons around the supermassive black hole. This type
of coupling yields impact on the way the system depends on initial conditions and affects the black hole shadow
at different wavelengths by a different amount, and therefore observations of the shadow in different wavelengths
could constrain such couplings. This can be tested by future multiband observations. Adopting a specific form
of the vector field, we obtain constraints on model parameters from Event Horizon Telescope observations and
measurements of gas/stellar orbits.
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I. INTRODUCTION

The first image of the supermassive black hole (SMBH)
M87 observed by the Event Horizon Telescope (EHT) [1–6]
led us into a new era of black hole physics. The high spa-
tial resolution makes direct visual observation of a SMBH
and surrounding environment possible. With this way of
studying the most extreme objects in our universe predicted
by Einstein’s theory of general relativity (GR), scientists
can explore the nature of fundamental physics from the in-
formation we obtain from the EHT and other forthcoming
experiments.

The black hole photograph taken by the EHT project
provides us with direct information about the motion of the
photons near the event horizon scale for the first time. Within
standard GR, the trajectories of test photons correspond to
geodesic paths, which are fully determined by the metric
tensor field. Any new physics that could be revealed by the
detection of the photon’s path should have modifications to the
standard expression of the metric. This principle has spawned
a series of works in the literature [7–25]. For example, the
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violation of rigid vacuum solutions of the black hole metric
due to the accumulation of extra mass around the black hole
could leave observable effects on the black shadow, such as
the formation of ultralight boson clouds around Kerr black
holes caused by the super-radiance process [26–29]. More-
over, gravitational theories beyond GR that lead to different
black hole metrics can also affect the shape of black hole
shadows. Examples could be found in theories of asymptot-
ically safe gravity motivated by the renormalization issues of
quantum gravity [30–32] and other classical modifications of
GR [33–40]. Some nonsingular black hole solutions outside
of GR may also lead to additional features of the shape and
size of the shadow [41–45].

In addition, there are some theories that are beyond the
regular metric description of black hole space-times that have
impacts on the motion of photons. One such case is when the
gravity theory differs from standard Riemannian geometry.
For instance, an additional torsional tensor present in gravity
theories based on the Riemann-Cartan space-time [46], where
the space-time torsion can behave as a force causing the
motion of particles to deviate from the usual extremal paths
predicted by GR [47–60]. Another case arises in particle
physics when the super-radiance process of a rotating black
hole may extract mass and angular momentum from the black
hole to produce an accumulation of light bosons to form a
macroscopic “cloud” composed of a bosonic field condensate
[61–65]. Such light bosons can come from physics beyond
the standard model such as axions or light gauge bosons of
hidden U (1) symmetries [66–68]. If these particles have weak
couplings to the photons, then photon paths can be affected
by leaving observable effects on the black hole shadow. These
facts inspire us to explore phenomena that might be caused by
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new physics that is not caused simply by modifications of the
metric.

In this paper, we propose to use the shadow of SMBH
as a probe to detect underlying new physics whose effects
on photon motion cannot be described by the metric and
could, phenomenologically, be regarded as a violation of the
equivalence principle. Specifically, we consider an additional
background vector field effectively generated by the central
black hole. This background field couples to photons and
behaves as a “force” acting on the photon via a coupling
constant. The effect is analogous to the motion of charged
particles in an electromagnetic field generated by a charged
black hole. Phenomenologically, this could be regarded as a
violation of the weak equivalence principle [69,70].

To extract model-independent results, we do not start from
a specific theory of the background vector field. Instead, given
that the vector field and the metric field are generated by the
same source, it is physically reasonable to assume the vector
field has the same symmetry as the space-time. Furthermore,
in the infinite far distance, this vector field should disappear
since the size of the source is finite. In this way, the symmetry
and the boundary condition provide us with a fundamental
constraint on the possible expressions for the vector field and
allow us to conduct a general analysis of resulting phenomena.
Based on this analysis approach, we point out these types of
vector-field couplings can change the way the system depends
on initial conditions, and also affect the black hole shadow
at different wavelengths by a different amount. Accordingly,
observations of the shadow in different wavelengths can give
rise to the constraints on such couplings.

The paper is organized as follows. In Sec. II, we put
forward a phenomenological model which can quantitatively
depict how the photon motion is affected by the additional
background vector field. Guided by the symmetry of the Kerr-
like space-time and the boundary condition, in Sec. III, we
conduct a general discussion of the motion of photons and
in Sec. IV report our general results on the effects of the
vector field. In Sec. V, we show observational constraints on
model parameters from the EHT experiment by choosing a
specific expression for the vector field and constructing the
silhouettes of the corresponding black hole. We summarize
the main results with a discussion and present a future outlook
in Sec. VI. We work in natural units where gravitational
constant G = 1 and speed of light c = 1, and we adopt the
metric convention (−,+,+,+).

II. THE MODEL AND THE STATIONARY AXIALLY
SYMMETRIC ROTATING SPACE-TIME

We assume the presence of a background vector field
Tμ(X ) in addition to the space-time metric tensor field gμν (X ).
This field couples to the photon field and hence deflects
null paths. We also assume that the expression of Tμ(X )
and the coupling form with the motion of photons cannot be
equivalently absorbed into metric gμν (X ) or, in other words,
the Levi-Civta connection. So, for a free fall, no rotation
observer where the Levi-Civta connection equals zero at a
given space-time point, the effects of vector field Tμ(X ) would
still be present. As a result, this fact could be regraded as
that the Einstein’s principle of equivalence is violated by

the nonmetricity of spacetime. However, we emphasized that
if the physical meaning of Tμ(X ) does not represent the
modification of gravity theories, the violation of Einstein’s
equivalence principle would just be phenomenological.

The general action describing the coupling between Tμ(X )
and the motion of photons is expressed as

S =
∫

dλ

[
− 1

2
e(λ)−1gμν Ẋ μẊ ν + C(Tμ, Ẋ μ)

]
, (1)

where the dot represents the derivative with respect to the
affine parameter λ with the mass dimension. The first term
is the kinetic term of a test photon in a curved geometry.
e(λ) is an auxiliary field with the mass dimension, which may
help us to eliminate the dimension singularity caused by the
massless particle. This idea is similar to the Polyakov action
in the string theory [71]. Varying this action with respect to
e(λ) leads to the constraint equation:

gμν Ẋ μẊ ν = 0. (2)

Note that the auxiliary field e(λ) could be absorbed by a
redefinition of λ, making the coefficient in front of the first
term constant. This fact will not have any influence on the
dynamics of the system, so for convenience we eliminate it
without affecting the physical results of the present study.
C(Tμ, Ẋμ) depicts that the background vector field Tμ(X ) can
have coupling with the motion of photons. The coupling leads
to an additional force on the photons and can be written as

C(Tμ, Ẋ μ) =
∞∑

n=1

qn(TμẊ μ)n , (3)

where qn are dimensional coupling constants. Assuming that
the effects of Tμ should be suppressed by the increase of
n for a physically feasible form of Tμ, we only consider
the first power term, which serves our purpose to reveal the
phenomenon when Tμ appears, i.e.,

C(Tμ, Ẋ μ) = q1TμẊ μ. (4)

The dynamics of the background fields gμν (X ) and Tμ(X ) are
described by the following formal action:

Sm =
∫

d4X
√−g

[ 1

16π
R(gμν ) + D(Tμ)

+ (source terms of gμν and Tμ)
]
, (5)

where R is the Ricci scalar, D represents the dynamics of Tμ

itself, and we assume no other direct coupling between gμν

and Tμ. This paradigm can be analogous to the Kerr-Newman
black hole solution of the Einstein-Maxwell theory, where
the minimal coupling between gμν and electromagnetic field
introduces only a constant (electric charge) in the metric.

We are interested in the most generic phenomena caused
by the vector field Tμ, so we shall not adopt a specific form
for D. Instead, with the assumption that the vector field
Tμ effectively has the same excitation source as the curved
space-time, Tμ should reflect the same symmetry as the space-
time. Combining this with the known boundary conditions,
reasonable expressions for Tμ can be constrained. Let us
consider the vacuum situations, since the auxiliary field e(λ)
could be chosen as a constant, the action Eq. (1) with the
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coupling term Eq. (4) does not have obvious dependence on
the affine parameter λ, hence the corresponding Hamiltonian
is conserved as follows:

H = PμẊ μ − L = −1

2
gμνẊ μẊ ν

= −1

2
gμνPμPν + q1gμνPμTν − q2

1

2
gμνTμTν = ε, (6)

where ε is a constant and Pμ = ∂L/∂Ẋ μ is the conjugate
momentum of the coordinates X μ. This corresponds to the
constraint Eq. (2) with ε = 0.

We consider a Kerr-like black hole space-time with the line
element in the Boyer-Lindquist coordinates (t, r, θ, φ) given
by

ds2 = −
(

1 − 2m(r)r

ρ2

)
dt2 + ρ2



dr2 + ρ2dθ2

+
(

r2 + a2 + 2a2m(r)r sin2 θ

ρ2

)
sin2 θdφ2

− 4m(r)ar sin2 θ

ρ2
dφdt , (7)

where 
(r) ≡ r2 − 2m(r)r + a2, ρ2 ≡ r2 + a2 cos2 θ and a is
the angular momentum per unit mass of black hole a = J/M.
Note that we have added an additional r dependence in m(r)
compared to the Kerr black hole solution in GR, where m(r) is
equal to the black hole mass M. To recover Minkowski space-
time in the infinite asymptotic distance, m(r) should satisfy

lim
r→∞

m(r)

r
= 0. (8)

The function m(r) could describe the modification induced
by the minimal coupling between Tμ and gμν Eq. (5). And
out of pure phenomenological interest, m(r) is also related to
many kinds of beyond Kerr black holes. For example, when
m(r) = M − C2/(2r), where C is a constant, Eq. (7) describes
a Kerr-Newman black hole. The rotating Hayward black hole
[72,73] and rotating Bardeen black hole [73,74] also have a
specific form of m(r), which could avoid the singularity of
the ordinary Kerr black hole. Furthermore, the phenomenon
brought by the deviation of the Newtonian gravitational con-
stant G could be equivalently described by the function m(r)
[30,31]. So keeping the function m(r) is phenomenologically
necessary for the current study to compare the effects brought
by the vector field Tμ(X ) and those brought by the metric with
different m(r).

In Boyer-Lindquist coordinate, the timelike and spacelike
Killing vectors (ξE = ∂t and ξL = ∂φ) describing a stationary
axial symmetry space-time are

ξ
μ
E = (1, 0, 0, 0) , ξ

μ
L = (0, 0, 0, 1) , (9)

as the components of the metric field only depend on the
coordinates r and θ . Given that the vector field Tμ is assumed
to have the same source as the metric, it is reasonable to think
that it should have the same symmetries as the space-time
either. So Tμ does not have dependence on the coordinates t
and φ. Apart from the Hamiltonian Eq. (6), there are two more

conservation quantities corresponding to these two Killing
vectors Eqs. (9):

E =
(

1 − 2m(r)r

ρ2

)
ṫ + 2am(r)r sin2 θ

ρ2
φ̇ + q1Tt (r, θ ) , (10)

Lz = −
(

r2 + a2 + 2a2m(r)r sin2 θ

ρ2

)
sin2 θφ̇

+ 2am(r)r sin2 θ

ρ2
ṫ + q1Tφ (r, θ ). (11)

These two conservation quantities could be directly derived
from the fact that the Lagrangian does not depend on t and φ.

In addition to the continuous symmetries, there is a discrete
symmetry which reflects the black hole (as the source of the
fields) is a “rotating body.” Since the coordinate system has
been fixed to the Boyer-Lindquist form, this symmetry is
expressed by the invariance of the metric under the inversion
of both t and φ [75], which is why the components gtr , gtθ ,
gθφ , and grφ vanish. Then the assumption that Tμ has the same
symmetries as the metric implies Tμ either stays the same or
changes signs. So the continuous symmetry Eqs. (9) and the
discrete symmetry of the rotating body tell us two possible
expressions for the vector field Tμ exist:

case I: (Tt (r, θ ), 0, 0, Tφ (r, θ )) , (12)

case II: (0, Tr (r, θ ), Tθ (r, θ ), 0) , (13)

where case I changes signs under the discrete symmetry
transformation while case II is invariant. Given that we do not
provide a specific dynamic for the field Tμ and wish to conduct
a general discussion, we cannot determine which case is more
reasonable and need to discuss each case separately.

Furthermore, since the size of the black hole source of Tμ is
finite, the physically reasonable expression of Tμ must satisfy

lim
r→∞ Tμ(r, θ ) = 0. (14)

III. THE MOTION OF PHOTONS

In this section, we investigate the motion of a photon in
the above Kerr-like space-time with the additional background
vector field Tμ. Using the Hamilton-Jacobi formulation, we
can easily find the equations of motion for the photons. First,
we introduce the Hamiltonian principal function S(λ, X μ) and
let

Pμ = ∂S

∂X μ
. (15)

The Hamilton-Jacobi equation is

H + ∂S

∂λ
= 0. (16)

In the following, we will discuss the above two cases Eqs. (12)
and (13) individually.

A. Case I

Substituting the Hamiltonian Eq. (6), the metric
Eq. (7), and the conjugate momentum Eq. (15) into the
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Hamilton-Jacobi Eq. (16), one gets

−2ρ2 ∂S

∂λ
= 1




[
(r2 + a2)

∂S

∂t
+ a

∂S

∂φ

]2

− 1

sin2 θ

(
a sin2 θ

∂S

∂t
+ ∂S

∂φ

)2

−


(
∂S

∂r

)2

−
(

∂S

∂θ

)2

+ 2q1gE (r, θ )
∂S

∂t
+ 2q1gL(r, θ )

∂S

∂φ
+ q2

1gT (r, θ ),

(17)

where we have defined

gE (r, θ ) ≡ −�2



Tt (r, θ ) − 2am(r)r



Tφ (r, θ ), (18)

gL(r, θ ) ≡ 
 − a2 sin2 θ


 sin2 θ
Tφ (r, θ ) − 2am(r)r



Tt (r, θ ), (19)

gT (r, θ ) ≡ �2



Tt (r, θ )2 − 
 − a2 sin2 θ


 sin2 θ
T 2

φ

+ 4
am(r)r



Tt (r, θ )Tφ (r, θ ), (20)

and

�2 ≡ (r2 + a2)2 − 
a2 sin2 θ.

For the Kerr space-time in GR, apart from ε, E , Lz, there is
another conservation quantity: the Carter constant K. When
the additional vector field Tμ is present, this point cannot
be guaranteed, making things difficult to solve analytically.
However, if we consider the situation that gE , gL, and gT can
be decomposed as

gE (r, θ ) = gr
E (r) + gθ

E (θ ),

gL(r, θ ) = gr
L(r) + gθ

L(θ ), (21)

gT (r, θ ) = gr
T (r) + gθ

T (θ ),

the fourth integral constant will still appear. According to
the asymptotic behaviors Eqs. (8), (14) and the definitions
Eqs. (18)–(20), we obtain gθ

L = 0 and the asymptotic behav-
iors:

lim
r→∞

gr
E (r)

r2
= lim

r→∞ gr
L(r) = lim

r→∞
gr

T (r)

r2
= 0. (22)

We now assume that the Hamilton principal function S has the
following form:

S(λ, t, r, θ, φ) = ελ

2
− Et + Lzφ + Sr (r) + Sθ (θ ). (23)

Substituting this expression into Eq. (17), one obtains




(
dSr

dr

)2

− 1



[(r2 + a2)E − aLz]

2 + (Lz − aE )2 − εr2

+ 2q1
[
gr

E (r)E − gr
L(r)Lz

] − q2
1gr

T (r)

= −
(

dSθ

dθ

)2

− (
L2

z sin−2 θ − a2E2
)

cos2 θ + εa2 cos2 θ

− 2q1gθ
E (θ )E − q2

1gθ
T (θ ). (24)

The left-hand side of the equation only depends on the coor-
dinate r and the right-hand side of the equation only depends

on the coordinate θ , which implies these two parts must be
equal to the same constant K. So in addition to ε, E , and
Lz, we obtain the fourth integral constant K, which shows
the assumed S Eq. (23) is self-consistent according to the
Hamilton-Jacobi formulation. By integrating the left side and
right side of Eq. (24), respectively, we obtain expressions for
R(r), (θ ) and the Hamiltonian principal function S,

S =1

2
ελ − Et + Lzφ

+ σr

∫ r √
R(r)



dr + σθ

∫ θ √
(θ )dθ, (25)

where σr = ±1, σθ = ±1. The definitions of R(r), (θ ) are

R(r) =E2(r2 + a2 − aξ )2 − 
E2

[
η + (ξ − a)2 − εr2

E2

+ 2
q1

E
gr

E (r) − 2
q1

E
ξgr

L(r) − q2
1

E2
gr

T (r)

]
, (26)

(θ ) = E2

[
η −

(
ξ 2 sin−2 θ − a2−εa2

E2

)
cos2 θ − 2

q1

E
gθ

E (θ )

+ q2
1

E2
gθ

T (θ )

]
, (27)

where we have defined

ξ ≡ Lz

E
, η ≡ K

E2
. (28)

We have thus obtained the Hamiltonian principal function
expressed as the function of the coordinates (t, r, θ, φ) and
the integral constants ε, E , Lz, K. The equations of motion are
completely determined:

ρ2ṙ = − 1

σr

√
R(r), (29)

ρ2θ̇ = − 1

σθ

√
(θ ), (30)

ρ2φ̇ = − E



[2am(r)r + (ρ2 − 2m(r)r)ξ sin−2 θ ] + q1gr

L(r),

(31)

ρ2ṫ = − E



(�2 − 2am(r)rξ ) + q1gr

E (r) + q1gθ
E (θ ). (32)

Note that for the motion of photons ε = 0.

B. Case II

Similar to case I, for the situation that Tr , Tθ satisfy

Tr (r, θ ) = Tr (r), Tθ (r, θ ) = Tθ (θ ), (33)

the Hamiltonian principal function S of case II also has a
separable solution Eq. (23). According to Eq. (14), Tθ (θ ) = 0.
The corresponding Hamilton-Jacobi equation takes




(
dSr

dr
−qTr (r)

)2

− 1



[(r2 + a2)E−aLz]

2+(Lz−aE )2−εr2

= −
(

dSθ

dθ

)2

− (
L2

z sin−2 θ − a2E2
)

cos2 θ + εa2 cos2 θ,

(34)
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which leads to the following expression of S:

S = 1

2
ελ − Et + Lzφ +

∫ r [
σr

√
R(r)



+ q1Tr (r)

]
dr

+
∫ θ

σθ

√
(θ )dθ, (35)

where

R(r) = E2(r2 + a2 − aξ )2 − 
E2

[
η(ξ − a)2 − εr2

E2

]
,

and

(θ ) = E2

[
η − +

(
ξ 2 sin−2 θ − a2 − εa2

E2
+

)
cos2 θ

]
.

So we could find that the only modification to the Hamiltonian
principal function is the term q1Tr (r), which is present in
the Hamiltonian principal function Eq. (35). According to
the Hamiltonian-Jacobi formulation, since this term does not
involve any integral constants, it will not change the equations
of motion. So for case II, with Tμ having the form Eqs. (33),
the additional vector field does not have influence on the
motion of photons, i.e.,

ρ2ṙ = − 1

σr

√
R(r), (36)

ρ2θ̇ = − 1

σθ

√
(θ ), (37)

ρ2φ̇ = − E



[2am(r)r + (ρ2 − 2m(r)r)ξ sin−2 θ ], (38)

ρ2ṫ = − E



(�2 − 2am(r)rξ ). (39)

This result is based on the assumption Eqs. (33). For a general
form of Tr (r, θ ), Tθ (r, θ ), the absence of Tμ’s effects cannot be
guaranteed.

IV. THE SHADOW OF BLACK HOLES

Now we discuss how to determine the apparent shape of
the rotating black hole shadow. Let us consider an observer
at a large distance from the black hole along an inclination
angle θ0 between the rotation axis of the black hole and
the line of sight of the distant observer. The contour of the
shadow can be expressed by celestial coordinates α and β,
where α corresponds to the apparent perpendicular distance
of the shape as seen from the axis of the symmetry and β

is the apparent perpendicular distance of the shape from its
projection on the equatorial plane. The expressions of α and
β can be determined from the geometry [75]:

α = lim
r→∞

(
− r2 sin θ

dφ

dr

)∣∣∣∣
θ=θ0

,

β = lim
r→∞ r2 dθ

dr

∣∣∣∣
θ=θ0

. (40)

Combining the above expressions with Eqs. (29)–(31), (36)–
(38), and the asymptotical behaviors Eqs. (8), (22), one can

derive the expressions for both case I and case II:

α = − 1

sin θ0
ξ,

β = ±
[
η + (a − ξ )2 −

(
a sin θ0 − ξ

sin θ0

)2] 1
2

. (41)

The shape of the shadow is determined by the unstable orbits
with constant radius since they are the boundaries that sepa-
rate the unbound and bound orbits, which must satisfy

R(r)|r=r0 = R′(r)|r=r0 = 0, (42)

where r0 is the radius of the unstable orbits and prime denotes
the derivative with respect to r. For case I, these two condi-
tions yield

(
r2

0 + a2 − aξ
)2 − 
(r0)

[
η + (ξ − a)2 + 2

q1

E
gr

E (r0)

− 2
q1

E
ξgr

L(r0) − q2
1

E2
gr

T (r0)

]
= 0, (43)

and

4r0
(
r2

0 + a2 − aξ
) − 2(r0 − m′(r0)r0 − m(r0))

[
η + (ξ − a)2

+ 2
q1

E
gr

E (r0) − 2
q1

E
ξgr

L(r0) − q2
1

E2
gr

T (r0)

]
− 
(r0)

×
[

2
q1

E
gr

E
′(r0) − 2

q1

E
ξgr

L
′(r0) − q2

1

E2
gr

T
′(r0)

]
= 0. (44)

Solving these two equations and ignoring nonphysical so-
lutions, one gets ξ , η expressed as functions of r0, E , i.e.,
ξ (r0, E ), η(r0, E ). The corresponding celestial coordinates α

and β can be derived using Eqs. (41).
Note that the dependence of ξ , η on the integral constant E

is the direct result of introducing the additional vector field Tμ.
When Tμ is absent, all the g(r) functions in Eqs. (43) and (44)
vanish and the solutions of ξ , η will only have r0 dependence,
i.e., ξ (r0), η(r0). According to the expression Eq. (10), for
the distant observer, the integral constant E is the photon’s
energy. This fact tells us that different frequencies of light will
give rise to different features in the black hole shadow. So it is
feasible to test the existence of the vector field Tμ by observing
the shadow of a black hole in multiple wavelengths.

Finally, we want to point out that the above conclusion
is based on the assumption that the Hamiltonian principal
function has a separable solution Eq. (23). This assumption
guarantees the existence of unstable photon orbits with con-
stant radius and the induced black hole shadow, which is thus
consistent with the observation of a dark area surrounded by
a bright emission ring. In the situation that Eq. (23) cannot
be separated, there might also have unstable photon orbits and
the formation of the black shadow according to the analysis
of space-time separability given in Refs. [76,77]; however, we
should note that the physical reason for the presence of the
dependence on energy E is that the vector field Tμ with the
first power coupling term Eq. (4) introduces the first power of
the velocity Ẋμ, which thus changes the way that the system
depends on the integral constants or, in other words, the initial
conditions. This can be more easily seen by Eq. (24), where
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(a) Fixed spin a/M = 0.1 (b) Fixed spin a/M = 0.7 (c) Fixed spin a/M = 0.99

FIG. 1. Plot showing the shadow cast by the Kerr black hole m(r) = M with the vector field Eq. (45) having the form of f (r) = r. The
inclination angle θ0 has been set to π/2

the terms containing the integral constants E , Lz to the first
power are introduced. Therefore, even for the situation that
the vector field Tμ has a nonseparable Hamiltonian principal
function S, the result of a frequency-dependent shadow may
remain, assuming the black hole shadow still exists. Further-
more, for a more general coupling term Eq. (3), one might
expect that the odd power terms would introduce the energy
dependence while the even power terms will not.

V. AN EXAMPLE AND THE OBSERVATIONAL
CONSTRAINTS

In this section, we choose a particular expression for Tμ to
illustrate the specific effects brought by the vector field Tμ and
the relevant observational constraints.

Inspired by the movement of a charged particle around the
Kerr-Newman black hole [78–80], we know an expression
for Tμ that makes the Hamiltonian have a separable solution
Eq. (23),

Tμ = Q f (r)

ρ2
(−1, 0, 0, a sin2 θ ), (45)

where Q is a constant describing the quality of the source, f (r)
is a function determined by the underlying fundamental the-
ory, whose expression should satisfy the boundary condition
Eq. (14). Then, according to Eqs. (18)–(21), we have

gr
E (r) = Q f (r)(r2 + a2)



,

gr
L(r) = Q f (r)a



, (46)

gr
T (r) = Q2 f 2(r)



,

and gθ
E (θ ) = gθ

L(θ ) = gθ
T (θ ) = 0. The conditions for

the unstable spherical orbits in Eqs. (43) and (44)

give rise to[
r2

0 + a2 − aξ − qE f (r0)
]2 − 
(r0)[η + (ξ − a)2] = 0,

2
[
r2

0 + a2 − aξ − qE f (r0)
]
[2r0 − qE f ′(r0)]

− 
′(r0)[η + (ξ − a)2] = 0, (47)

where 
′(r0) represents the derivative with respect to r0 and
we have defined

qE ≡ q1
Q

E
. (48)

The parameter Q could contribute to the total energy
curving the space-time by the possible coupling between Tμ

and gμν shown in Eq. (5) and thus modify the standard Kerr
metric. However, in physically plausible situations, this con-
tribution to the space-time curvature must be negligibly small
compared to the matter contribution of the matter stress tensor.
Therefore, to visualize the shadow cast by the rotating black
hole with Tμ from Eq. (45), we consider the standard Kerr
black hole m(r) = M and generate plots for the coordinates
α/M and β/M by assuming the approximate behavior f (r) =
r at the related scale. These plots are shown in Fig. 1 for the
fixed values of spin parameter a/M and different values of
parameter qE/M. It is easy to see the effects of parameter qE

on the shadow: Comparing with the overall size, the shape
of the black hole shadow is slightly changed. An increase
in the value of qE decreases the overall size of the shadow.
The specific value of parameter qE is related to the fre-
quency of the photons that we observed according to the
definition Eq. (48), which is consistent with the conclusion
of the last section, i.e., the black hole shadow will have a
different appearance under different wavelengths. In Fig. 2,
we show this point more clearly. Assuming that qE = 0.3
at λ = 1.3 mm, we plot the appearances of the black hole
shadow corresponding to the 1.3 mm (230 GHz) and 0.87 mm
(345 GHz) wavelengths, respectively. These two wavelengths
are able to be simultaneously observed by the next-generation
Event Horizon Telescope (ngEHT) [81]. Thus, the scenario
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FIG. 2. This figure has the same settings as Fig. 1. Here we plot
the shadow of two wavelengths for two spin parameters.

under consideration is promising to be tested by observations
in the near future.

We now make a comparison with the effects caused by the
function m(r) since it describes a large class of deviations
from the standard Kerr black hole and has been widely dis-
cussed in the literature. In the absence of Tμ, i.e., qE = 0, let
us first consider the Kerr-Newman black hole:

m(r) = M − C2

2r
. (49)

Figure 3 displays the corresponding shadow for different
values of parameter C. Another typical expression of m(r) is

m(r) = M
r3

r3 + g3
, (50)

where g is the model parameter. This form can describe the
nonsingular rotating Hayward black hole [72] and a type
of asymptotically safe gravity [30]. Figure 4 displays the
corresponding shadow for different values of parameter g.

According to Figs. 3 and 4, we note that the obvious
deviation from the standard silhouette only occurs on the
left-hand side of the picture. This side corresponds to the
spherical orbits that have relatively small radius r0. According
to Eqs. (47), the m(r0) function only appears in the function

(r0) and its derivative, which means the largest modification
by m(r0) only occurs on orbits with the smallest radius r0

given by the condition Eq. (8). Therefore, the fact that the
most significant deformation only occurs on one side of the
shadow is a general result for the function m(r), which is
different from the effects caused by Tμ with the form Eq. (45)
where only the overall shadow size is adjusted.

In the current study, we have set the inclination angle
θ0 = π/2 between the rotation axis and the line of sight. It
must be difficult to realize this in the real world. Fortunately,
a detailed numerical study [82] based on the geometrical

FIG. 3. Plot showing the shadow cast by the Kerr-Newman black
hole in the absence of Tμ. Here we have fixed spin parameter a/M =
0.7.

relations such as Eqs. (41) shows that choosing a different
inclination angle mainly changes the shape of the shadow
by an overall horizontal displacement, while the overall size,
i.e., the average radius of the pattern is almost unchanged.

FIG. 4. Plot showing the shadow cast by the nonsingular rotating
Hayward black hole in the absence of Tμ. Here we have fixed spin
parameter a/M = 0.7.
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Therefore, it makes sense to focus on the overall size of
shadow since the current observations do not yet yield detailed
information about the shape characteristics of a black hole
shadow.

Finally, let us consider the current constraints on the model
parameter qE . According to the above results, we have learned
that the crucial test of the scenario in Eq. (1) is to see whether
the black hole shadow has dependence on the observed wave-
length. However, the current EHT experiment only operates
at a wavelength of 1.3 mm [1]. Since the effect of appreciable
qE is mainly to change the overall size of the shadow, a
probe for this parameter would be measurement of the black
hole mass M. That is, qE can be constrained by measurement
at different scales on the black hole mass M. Specifically,
stellar-dynamics observations could provide a measurement
on the mass Mstellar of the SMBH in the Newtonian gravity
approximation. And the observations of the black hole shadow
provide us with another measurement of mass Mshadow by
the physics at the horizon scale. In principle, the contrast
between these two measurements Mstellar and Mshadow could
place constraints on the parameter qE if assuming Tμ plays no
role beyond the horizon scale.

We begin with the Schwarzschild black hole, i.e., a =
0. According to the spherical symmetry, the unstable null
spherical orbits should be confined to a plane, i.e., forming a
circular orbit. Then we can choose θ = 90◦, θ̇ = 0; Eqs. (47)
become (

r2
0 − qE r0

)2 − (
r2

0 − 2Mr0
)
ξ 2 = 0,(

r2
0 − qE r0

)
(2r0 − qE ) − (r0 − M )ξ 2 = 0. (51)

The size of the shadow is given by

d = 2|ξ | = α(M + 
M ), (52)

where we have defined


M = g(qE )M, (53)

and g is a function with respect to qE derived from Eqs. (51). α
is the parameter describing the difference between the size of
the shadow and the gravitational radius M, which contains the
influence of the inclination θ0 and the spin parameter a on the
size of the shadow, i.e., the deviation from the Schwarzschild
black hole. For the current Schwarzschild case, α = 6

√
3. In

the EHT observation for the M87* black hole, α = 11+0.5
−0.3

is obtained by fitting the observed shape models to a large
number of visibility data generated from the Image Library
[1]. This should lead to a slightly different g function from that
of α ≈ 10.4. However, since f (r) does not introduce any spe-
cial dependence on the spin parameter a, this difference must
be negligible. Finally, we obtain the relationship between the
mass Mstellar measured by the dynamical methods and the mass
Mshadow measured by the optical shadow:

Mstellar + 
Mstellar = Mshadow. (54)

For the M87* black hole, recent stellar-dynamics observa-
tions by Gebhardt et al. [83,84] found Mstellar = (6.6 ± 0.4) ×
109M	 and the EHT experiments derive Mshadow = (6.5 ±
0.7) × 109M	 [1]. This leads to the submaximum range for
qE :

qE ∈ (−0.50, 0.56). (55)

Furthermore, the gas dynamics observations give a rather
different measurement of the mass of the M87* black hole
Mgas = 3.5+0.9

−0.3 × 109M	 [85–87], which would lead to a
weaker constraint on the parameter qE . Therefore, given the
unknown systematic error on the mass measurement, we are
looking forward to the ngEHT with the dual wavelength
observation capability, which could yield better constraints
[81].

VI. CONCLUSIONS

In this paper, we have proposed a mechanism for testing
the equivalence principle by analyzing black hole shadows.
In particular, for rotating black holes which are of high
astronomical interest, the features imprinted on their shadow
under the influence of an additional vector field Tμ(X ), which
phenomenologically depicts a violation of equivalence prin-
ciple, can affect the motions of photons. Accordingly, our
scenario provides an interesting example to discuss this effect
in regions of extremely strong gravitational fields. We assume
that Tμ(X ) is regarded as a background vector field generated
by the central black hole so the symmetries possessed by
the black hole and the space-time could be used to constrain
the form of this vector field. Furthermore, we demand the
boundary condition that the vector field Tμ(X ) vanishes at
infinity since it is generated by a finite-size source. Under
these two constraints, we perform a general analysis on the
black hole shadow influenced by Tμ(X ) with the coupling
form Eq. (4). Our key result is that the shadow in edge-on view
will have different appearances for different frequencies of the
observed light. The physical reason for this phenomenon is
that the coupling form shown in Eq. (4) alters the way that the
system depends on the initial conditions by introducing the
first power of the velocity Ẋ . Therefore, this phenomenon is
quite generic and is not sensitive to a specific form of Tμ(X ).

The current EHT experiments operate at a wavelength of
1.3 mm. Although each station of EHT receives two adja-
cent frequency bands centered at 227.1 GHz and 229.1 GHz,
respectively, these two frequency bands are handled by dif-
ferent groups and are used to eliminate the error of doing
correlation among the data [1]. Therefore, current experimen-
tal conditions might not allow us to directly determine the
existence of the phenomenon that the observed appearance
of the black hole shadow could change with the observed
wavelengths. It deserves mentioning that the future project of
ngEHT could have the ability to observe the 1.3-mm and 0.87-
mm wavelengths simultaneously [81], we hope this project
together with other future multiband observations as well as
the related data-processing techniques could allow for tests of
this phenomenon.

As an example, we chose the vector field Tμ in the form
Eq. (45) and studied its effects on the shadow cast by the
Kerr black hole. The results show that the overall size of
the black hole shadow is altered, which is different from the
effect brought by the usual modification on the metric using
the function m(r), where only one side of the silhouette has
obvious distortion. Thus, there is a large degeneracy between
the black hole mass and the model parameter qE . Finally, by
using the measurements on the black hole mass at different
distance scales, we set constraints on the coupling parameter
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|qE < 0.5| by combining the results of EHT and orbits of stars
or gas.

We emphasize that, in principle, the black hole shadow
characterized by the parameters ξ , η could be totally deter-
mined by the fundamental equations governing the motion of
photons. The accretion disk surrounding the black hole only
serves to provide a light source and thus the astrophysical
complications introduced by the specific accretion model may
be avoided [88]. However, from a practical observational point
of view, the accretion flow may obscure the shadow and this
problem would be more serious had the accretion flow been
optically thick [89–91]. Although Sgr A* and M87* are not
this case, the detailed analyses involving future high-precision
measurements should take the influence of the accretion disk
into consideration. We note that Refs. [92–96] also studied
various features of the shadow.
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et al. (Event Horizon Telescope Collaboration), First M87 event
horizon telescope results. VI. The shadow and mass of the
central black hole, Astrophys. J. 875, L6 (2019).

[7] A. Amorim, M. Bauböck, J. P. Berger, W. Brandner, Y.
Clénet, V. Coudé du Foresto, P. T. de Zeeuw, J. Dexter, G.
Duvert, M. Ebert et al. (GRAVITY Collaboration), Test of
the Einstein Equivalence Principle Near the Galactic Cen-
ter Supermassive Black Hole, Phys. Rev. Lett. 122, 101102
(2019).

[8] V. Cardoso and P. Pani, Testing the nature of dark com-
pact objects: A status report, Living Rev. Rel. 22, 4
(2019).

[9] E. E. Nokhrina, L. I. Gurvits, V. S. Beskin, M. Nakamura, K.
Asada, and K. Hada, M87 black hole mass and spin estimate

through the position of the jet boundary shape break, Mon. Not.
Roy. Astron. Soc. 489, 1197 (2019).

[10] M. Wang, S. Chen, J. Wang, and J. Jing, Shadow of a
Schwarzschild black hole surrounded by a Bach-Weyl ring, Eur.
Phys. J. C 80, 110 (2020).

[11] D. Kapec and A. Lupsasca, Particle motion near high-spin black
holes, Class. Quant. Grav. 37, 015006 (2020).

[12] K. Jusufi, M. Jamil, P. Salucci, T. Zhu, and S. Haroon, Black
hole surrounded by a dark matter halo in the M87 galactic center
and its identification with shadow images, Phys. Rev. D 100,
044012 (2019).

[13] E. Contreras, Á. Rincón, G. Panotopoulos, P. Bargueño, and B.
Koch, Black hole shadow of a rotating scale–dependent black
hole, Phys. Rev. D 101, 064053 (2020).

[14] R. A. Konoplya and A. Zhidenko, Analytical representation for
metrics of scalarized Einstein-Maxwell black holes and their
shadows, Phys. Rev. D 100, 044015 (2019).

[15] E. Y. Davies and P. Mocz, Fuzzy dark matter soliton cores
around supermassive black holes, Mon. Not. R. Astron. Soc.
492, 5721 (2020).

[16] J. Z. Qi and X. Zhang, A new cosmological probe using super-
massive black hole shadows, Chinese Physics C 44, 055101
(2020).

[17] O. Y. Tsupko, Z. Fan, and G. S. Bisnovatyi-Kogan, Black
hole shadow as a standard ruler in cosmology, Class. Quantum
Gravity, 37, 065016 (2020).

[18] J. T. Firouzjaee and A. Allahyari, Black hole shadow with a
cosmological constant for cosmological observers, Eur. Phys. J.
C 79, 930 (2019).

[19] O. Y. Tsupko and G. S. Bisnovatyi-Kogan, First analyti-
cal calculation of black hole shadow in McVittie metric,
arXiv:1912.07495 [gr-qc].

[20] L. Rezzolla and A. Zhidenko, New parametrization for spheri-
cally symmetric black holes in metric theories of gravity, Phys.
Rev. D 90, 084009 (2014).

[21] A. Allahyari, M. Khodadi, S. Vagnozzi, and D. F. Mota, Mag-
netically charged black holes from non-linear electrodynamics
and the event horizon telescope, JCAP 02 (2020) 003.

[22] R. Konoplya, L. Rezzolla, and A. Zhidenko, General
parametrization of axisymmetric black holes in metric theories
of gravity, Phys. Rev. D 93, 064015 (2016).

023164-9

https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1103/PhysRevLett.122.101102
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1093/mnras/stz2116
https://doi.org/10.1093/mnras/stz2116
https://doi.org/10.1093/mnras/stz2116
https://doi.org/10.1093/mnras/stz2116
https://doi.org/10.1140/epjc/s10052-020-7641-3
https://doi.org/10.1140/epjc/s10052-020-7641-3
https://doi.org/10.1140/epjc/s10052-020-7641-3
https://doi.org/10.1140/epjc/s10052-020-7641-3
https://doi.org/10.1088/1361-6382/ab519e
https://doi.org/10.1088/1361-6382/ab519e
https://doi.org/10.1088/1361-6382/ab519e
https://doi.org/10.1088/1361-6382/ab519e
https://doi.org/10.1103/PhysRevD.100.044012
https://doi.org/10.1103/PhysRevD.100.044012
https://doi.org/10.1103/PhysRevD.100.044012
https://doi.org/10.1103/PhysRevD.100.044012
https://doi.org/10.1103/PhysRevD.101.064053
https://doi.org/10.1103/PhysRevD.101.064053
https://doi.org/10.1103/PhysRevD.101.064053
https://doi.org/10.1103/PhysRevD.101.064053
https://doi.org/10.1103/PhysRevD.100.044015
https://doi.org/10.1103/PhysRevD.100.044015
https://doi.org/10.1103/PhysRevD.100.044015
https://doi.org/10.1103/PhysRevD.100.044015
https://doi.org/10.1093/mnras/staa202
https://doi.org/10.1093/mnras/staa202
https://doi.org/10.1093/mnras/staa202
https://doi.org/10.1093/mnras/staa202
https://doi.org/10.1088/1674-1137/44/5/055101
https://doi.org/10.1088/1674-1137/44/5/055101
https://doi.org/10.1088/1674-1137/44/5/055101
https://doi.org/10.1088/1674-1137/44/5/055101
https://doi.org/10.1088/1361-6382/ab6f7d
https://doi.org/10.1088/1361-6382/ab6f7d
https://doi.org/10.1088/1361-6382/ab6f7d
https://doi.org/10.1088/1361-6382/ab6f7d
https://doi.org/10.1140/epjc/s10052-019-7464-2
https://doi.org/10.1140/epjc/s10052-019-7464-2
https://doi.org/10.1140/epjc/s10052-019-7464-2
https://doi.org/10.1140/epjc/s10052-019-7464-2
http://arxiv.org/abs/arXiv:1912.07495
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1103/PhysRevD.90.084009
https://doi.org/10.1088/1475-7516/2020/02/003
https://doi.org/10.1088/1475-7516/2020/02/003
https://doi.org/10.1088/1475-7516/2020/02/003
https://doi.org/10.1088/1475-7516/2020/02/003
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.93.064015
https://doi.org/10.1103/PhysRevD.93.064015


SHENG-FENG YAN et al. PHYSICAL REVIEW RESEARCH 2, 023164 (2020)

[23] S. B. Giddings and D. Psaltis, event horizon telescope obser-
vations as probes for quantum structure of astrophysical black
holes, Phys. Rev. D 97, 084035 (2018).

[24] S. B. Giddings, Searching for quantum black hole structure with
the event horizon telescope, Universe 5, 201 (2019).

[25] C. Bambi, K. Freese, S. Vagnozzi, and L. Visinelli, Testing
the rotational nature of the supermassive object M87* from the
circularity and size of its first image, Phys. Rev. D 100, 044057
(2019).

[26] R. Roy and U. A. Yajnik, Evolution of black hole shadow in
the presence of ultralight bosons, Phys. Lett. B 803, 135284
(2020).

[27] N. Bar, K. Blum, T. Lacroix, and P. Panci, Looking for ultralight
dark matter near supermassive black holes, JCAP 07 (2019)
045.

[28] H. Davoudiasl and P. B. Denton, Ultralight Boson Dark Matter
and Event Horizon Telescope Observations of M87*, Phys. Rev.
Lett. 123, 021102 (2019).

[29] P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu, EHT constraint
on the ultralight scalar hair of the M87 supermassive black hole,
Universe 5, 220 (2019).

[30] A. Held, R. Gold, and A. Eichhorn, Asymptotic safety casts its
shadow, JCAP 06 (2019) 29.

[31] R. Kumar, B. P. Singh, and S. G. Ghosh, Rotating black
hole shadow in asymptotically safe gravity, arXiv:1904.07652
[gr-qc].

[32] Y. F. Cai and D. A. Easson, Black holes in an asymptotically
safe gravity theory with higher derivatives, JCAP 09 (2010) 02.

[33] R. N. Izmailov, R. K. Karimov, E. R. Zhdanov, and K. K.
Nandi, Modified gravity black hole lensing observables in weak
and strong field of gravity, Mon. Not. Roy. Astron. Soc. 483,
3754 (2019).

[34] A. Ovgun, I. Sakall, J. Saavedra, and C. Leiva, Shadow
cast of non-commutative black holes in Rastall gravity,
arXiv:1906.05954 [hep-th].

[35] T. Zhu, Q. Wu, M. Jamil, and K. Jusufi, Shadows and deflection
angle of charged and slowly rotating black holes in Einstein-
Æther theory, Phys. Rev. D 100, 044055 (2019).

[36] S. X. Tian and Z. H. Zhu, Testing the Schwarzschild metric in a
strong field region with the event horizon telescope, Phys. Rev.
D 100, 064011 (2019).

[37] L. Amarilla and E. F. Eiroa, Shadows of rotating black holes in
alternative theories, World Sci. 4, 3543 (2017).

[38] S. Vagnozzi and L. Visinelli, Hunting for extra dimensions in
the shadow of M87*, Phys. Rev. D 100, 024020 (2019).

[39] F. Long, J. Wang, S. Chen, and J. Jing, Shadow of a rotating
squashed Kaluza-Klein black hole, J. High Energy Phys. 10
(2019) 269.

[40] I. Banerjee, S. Chakraborty, and S. SenGupta, Silhouette of
M87*: A new window to peek into the world of hidden dimen-
sions, Phys. Rev. D 101, 041301 (2020).

[41] N. Tsukamoto, Black hole shadow in an asymptotically-flat,
stationary, and axisymmetric spacetime: The Kerr-Newman
and rotating regular black holes, Phys. Rev. D 97, 064021
(2018).

[42] A. Abdujabbarov, M. Amir, B. Ahmedov, and S. G. Ghosh,
Shadow of rotating regular black holes, Phys. Rev. D 93,
104004 (2016).

[43] I. Dymnikova and K. Kraav, Identification of a regular black
hole by its shadow, Universe 5, 163 (2019).

[44] F. Lamy, E. Gourgoulhon, T. Paumard, and F. H. Vincent,
Imaging a non-singular rotating black hole at the center of the
Galaxy, Class. Quant. Grav. 35, 115009 (2018).

[45] R. Kumar, S. G. Ghosh, and A. Wang, Shadow cast and deflec-
tion of light by charged rotating regular black holes, Phys. Rev.
D 100, 124024 (2019).

[46] F. W. Hehl, P. Von Der Heyde, G. D. Kerlick, and J. M.
Nester, General relativity with spin and torsion: Foundations
and prospects, Rev. Mod. Phys. 48, 393 (1976).

[47] A. R. Prasanna and S. Mohanty, Photon propagation in torsion
background, Gen. Rel. Grav. 41, 1905 (2009).

[48] M. I. Wanas, Motion of spinning particles in gravitational fields,
Astrophys. Space Sci. 258, 237 (1998).

[49] P. B. Yasskin and W. R. Stoeger, Propagation equations for test
bodies with spin and rotation in theories of gravity with torsion,
Phys. Rev. D 21, 2081 (1980).

[50] M. Novello, Scalar and massless vector fields in Cartan space,
Phys. Lett. A 59, 105 (1976).

[51] V. De Sabbata and M. Gasperini, On the Maxwell equa-
tions in a Riemann-Cartan space, Phys. Lett. A 77, 300
(1980).

[52] K. Hayashi and T. Shirafuji, Gravity from Poincare gauge
theory of the fundamental particles. II: Equations of motion
for test bodies and various limits, Prog. Theor. Phys. 64, 883,
(1980).

[53] H. Kleinert, Spontaneous generation of torsion coupling of
electroweak massive gauge bosons, Phys. Lett. B 440, 283
(1998).

[54] R. T. Hammond, Electromagnetic spin creates torsion, Int. J.
Mod. Phys. D 27, 1847005 (2018).

[55] N. J. Poplawski, A Maxwell field minimally coupled to torsion,
arXiv:1108.6100 [gr-qc].

[56] Y. F. Cai, S. Capozziello, M. De Laurentis, and E. N. Saridakis,
f(T) teleparallel gravity and cosmology, Rept. Prog. Phys. 79,
106901 (2016).

[57] Y. F. Cai, C. Li, E. N. Saridakis, and L.-Q. Xue, f (T ) gravity
after GW170817 and GRB170817A, Phys. Rev. D 97, 103513
(2018).

[58] C. Li, Y. Cai, Y. F. Cai, and E. N. Saridakis, The effective
field theory approach of teleparallel gravity, f (T ) gravity and
beyond, JCAP 10 (2018) 001.

[59] Z. Chen, W. Luo, Y. F. Cai, and E. N. Saridakis, New test on
general relativity using galaxy-galaxy lensing with astronomi-
cal surveys, arXiv:1907.12225 [astro-ph.CO].

[60] S. F. Yan, P. Zhang, J. W. Chen, X. Z. Zhang, Y. F. Cai, and
E. N. Saridakis, Interpreting cosmological tensions from the
effective field theory of torsional gravity, arXiv:1909.06388
[astro-ph.CO].

[61] Ya. B. Zel’Dovich, Amplification of cylindrical electromagnetic
waves reflected from a rotating body, J. Exp. Theor. Phys. 35,
2076 (1972).

[62] S. L. Detweiler, Klein-Gordon equation and rotating black
holes, Phys. Rev. D 22, 2323 (1980).

[63] N. G. Nielsen, A. Palessandro, and M. S. Sloth, Gravitational
atoms, Phys. Rev. D 99, 123011 (2019).

[64] D. Baumann, H. S. Chia, J. Stout, and L. ter Haar, The spectra
of gravitational atoms, JCAP 12 (2019) 06.

[65] J. H. Huang, W. X. Chen, Z. Y. Huang, and Z. F. Mai, Superra-
diant stability of the Kerr black holes, Phys. Lett. B 798, 135026
(2019).

023164-10

https://doi.org/10.1103/PhysRevD.97.084035
https://doi.org/10.1103/PhysRevD.97.084035
https://doi.org/10.1103/PhysRevD.97.084035
https://doi.org/10.1103/PhysRevD.97.084035
https://doi.org/10.3390/universe5090201
https://doi.org/10.3390/universe5090201
https://doi.org/10.3390/universe5090201
https://doi.org/10.3390/universe5090201
https://doi.org/10.1103/PhysRevD.100.044057
https://doi.org/10.1103/PhysRevD.100.044057
https://doi.org/10.1103/PhysRevD.100.044057
https://doi.org/10.1103/PhysRevD.100.044057
https://doi.org/10.1016/j.physletb.2020.135284
https://doi.org/10.1016/j.physletb.2020.135284
https://doi.org/10.1016/j.physletb.2020.135284
https://doi.org/10.1016/j.physletb.2020.135284
https://doi.org/10.1088/1475-7516/2019/07/045
https://doi.org/10.1088/1475-7516/2019/07/045
https://doi.org/10.1088/1475-7516/2019/07/045
https://doi.org/10.1088/1475-7516/2019/07/045
https://doi.org/10.1103/PhysRevLett.123.021102
https://doi.org/10.1103/PhysRevLett.123.021102
https://doi.org/10.1103/PhysRevLett.123.021102
https://doi.org/10.1103/PhysRevLett.123.021102
https://doi.org/10.3390/universe5120220
https://doi.org/10.3390/universe5120220
https://doi.org/10.3390/universe5120220
https://doi.org/10.3390/universe5120220
https://doi.org/10.1088/1475-7516/2019/06/029
https://doi.org/10.1088/1475-7516/2019/06/029
https://doi.org/10.1088/1475-7516/2019/06/029
https://doi.org/10.1088/1475-7516/2019/06/029
http://arxiv.org/abs/arXiv:1904.07652
https://doi.org/10.1088/1475-7516/2010/09/002
https://doi.org/10.1088/1475-7516/2010/09/002
https://doi.org/10.1088/1475-7516/2010/09/002
https://doi.org/10.1088/1475-7516/2010/09/002
https://doi.org/10.1093/mnras/sty3350
https://doi.org/10.1093/mnras/sty3350
https://doi.org/10.1093/mnras/sty3350
https://doi.org/10.1093/mnras/sty3350
http://arxiv.org/abs/arXiv:1906.05954
https://doi.org/10.1103/PhysRevD.100.044055
https://doi.org/10.1103/PhysRevD.100.044055
https://doi.org/10.1103/PhysRevD.100.044055
https://doi.org/10.1103/PhysRevD.100.044055
https://doi.org/10.1103/PhysRevD.100.064011
https://doi.org/10.1103/PhysRevD.100.064011
https://doi.org/10.1103/PhysRevD.100.064011
https://doi.org/10.1103/PhysRevD.100.064011
https://doi.org/10.1142/9789813226609_0459
https://doi.org/10.1142/9789813226609_0459
https://doi.org/10.1142/9789813226609_0459
https://doi.org/10.1142/9789813226609_0459
https://doi.org/10.1103/PhysRevD.100.024020
https://doi.org/10.1103/PhysRevD.100.024020
https://doi.org/10.1103/PhysRevD.100.024020
https://doi.org/10.1103/PhysRevD.100.024020
https://doi.org/10.1007/JHEP10(2019)269
https://doi.org/10.1007/JHEP10(2019)269
https://doi.org/10.1007/JHEP10(2019)269
https://doi.org/10.1007/JHEP10(2019)269
https://doi.org/10.1103/PhysRevD.101.041301
https://doi.org/10.1103/PhysRevD.101.041301
https://doi.org/10.1103/PhysRevD.101.041301
https://doi.org/10.1103/PhysRevD.101.041301
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.97.064021
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.1103/PhysRevD.93.104004
https://doi.org/10.3390/universe5070163
https://doi.org/10.3390/universe5070163
https://doi.org/10.3390/universe5070163
https://doi.org/10.3390/universe5070163
https://doi.org/10.1088/1361-6382/aabd97
https://doi.org/10.1088/1361-6382/aabd97
https://doi.org/10.1088/1361-6382/aabd97
https://doi.org/10.1088/1361-6382/aabd97
https://doi.org/10.1103/PhysRevD.100.124024
https://doi.org/10.1103/PhysRevD.100.124024
https://doi.org/10.1103/PhysRevD.100.124024
https://doi.org/10.1103/PhysRevD.100.124024
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1007/s10714-009-0790-1
https://doi.org/10.1007/s10714-009-0790-1
https://doi.org/10.1007/s10714-009-0790-1
https://doi.org/10.1007/s10714-009-0790-1
https://doi.org/10.1023/A:1001747710135
https://doi.org/10.1023/A:1001747710135
https://doi.org/10.1023/A:1001747710135
https://doi.org/10.1023/A:1001747710135
https://doi.org/10.1103/PhysRevD.21.2081
https://doi.org/10.1103/PhysRevD.21.2081
https://doi.org/10.1103/PhysRevD.21.2081
https://doi.org/10.1103/PhysRevD.21.2081
https://doi.org/10.1016/0375-9601(76)90755-6
https://doi.org/10.1016/0375-9601(76)90755-6
https://doi.org/10.1016/0375-9601(76)90755-6
https://doi.org/10.1016/0375-9601(76)90755-6
https://doi.org/10.1016/0375-9601(80)90701-X
https://doi.org/10.1016/0375-9601(80)90701-X
https://doi.org/10.1016/0375-9601(80)90701-X
https://doi.org/10.1016/0375-9601(80)90701-X
https://doi.org/10.1143/PTP.64.883
https://doi.org/10.1143/PTP.64.883
https://doi.org/10.1143/PTP.64.883
https://doi.org/10.1143/PTP.64.883
https://doi.org/10.1016/S0370-2693(98)01108-3
https://doi.org/10.1016/S0370-2693(98)01108-3
https://doi.org/10.1016/S0370-2693(98)01108-3
https://doi.org/10.1016/S0370-2693(98)01108-3
https://doi.org/10.1142/S0218271818470053
https://doi.org/10.1142/S0218271818470053
https://doi.org/10.1142/S0218271818470053
https://doi.org/10.1142/S0218271818470053
http://arxiv.org/abs/arXiv:1108.6100
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1103/PhysRevD.97.103513
https://doi.org/10.1103/PhysRevD.97.103513
https://doi.org/10.1103/PhysRevD.97.103513
https://doi.org/10.1103/PhysRevD.97.103513
https://doi.org/10.1088/1475-7516/2018/10/001
https://doi.org/10.1088/1475-7516/2018/10/001
https://doi.org/10.1088/1475-7516/2018/10/001
https://doi.org/10.1088/1475-7516/2018/10/001
http://arxiv.org/abs/arXiv:1907.12225
http://arxiv.org/abs/arXiv:1909.06388
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1103/PhysRevD.22.2323
https://doi.org/10.1103/PhysRevD.99.123011
https://doi.org/10.1103/PhysRevD.99.123011
https://doi.org/10.1103/PhysRevD.99.123011
https://doi.org/10.1103/PhysRevD.99.123011
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1016/j.physletb.2019.135026
https://doi.org/10.1016/j.physletb.2019.135026
https://doi.org/10.1016/j.physletb.2019.135026
https://doi.org/10.1016/j.physletb.2019.135026


TESTING THE EQUIVALENCE PRINCIPLE VIA THE … PHYSICAL REVIEW RESEARCH 2, 023164 (2020)

[66] A. Pawl, The timescale for loss of massive vector hair by a black
hole and its consequences for proton decay, Phys. Rev. D 70,
124005 (2004).

[67] A. Arvanitaki, M. Baryakhtar, and X. Huang, Discovering the
QCD axion with black holes and gravitational waves, Phys. Rev.
D 91, 084011 (2015).

[68] Y. Chen, J. Shu, X. Xue, Q. Yuan, and Y. Zhao, Probing Ax-
ions with Event Horizon Telescope Polarimetric Measurements,
Phys. Rev. Lett. 124, 061102 (2020).

[69] C. M. Will, The confrontation between general relativity and
experiment, Living Rev. Rel. 17, 4 (2014).

[70] G. M. Tino, L. Cacciapuoti, S. Capozziello, G. Lambiase, and F.
Sorrentino, Precision gravity tests and the Einstein equivalence
principle, Prog. Part. Nucl. Phys. 112, 103772 (2020).

[71] K. Becker, M. Becker, and J. H. Schwarz, String Theory and
M-theory (Cambridge University, Cambridge, 2007).

[72] S. A. Hayward, Formation and Evaporation of Regular Black
Holes, Phys. Rev. Lett. 96, 031103 (2006).

[73] C. Bambi and L. Modesto, Rotating regular black holes, Phys.
Lett. B 721, 329 (2013).

[74] A. Borde, Regular black holes and topology change, Phys. Rev.
D 55, 7615 (1997).

[75] S. Chandrasekhar, The Mathematical Theory of Black Holes,
(Clarendon, Oxford, 1985).

[76] K. Glampedakis, and G. Pappas, Modification of photon trap-
ping orbits as a diagnostic of non-Kerr spacetimes, Phys. Rev.
D 99, 124041 (2019).

[77] R. Shaikh, Black hole shadow in a general rotating spacetime
obtained through Newman-Janis algorithm, Phys. Rev. D 100,
024028 (2019).

[78] E. Hackmann and H. Xu, Charged particle motion in Kerr-
Newmann space-times, Phys. Rev. D 87, 124030 (2013).

[79] B. Vladimir, S. Zdenek, and B. Jiri, Bull. Astron. Insti.
Czechoslovakia 40, 65 (1989).

[80] B. Vladimir, B. Jiri, and S. Zdenek, Bull. Astron. Insti.
Czechoslovakia 40, 33 (1989).

[81] L. Blackburn, S. Doeleman, J. Dexter, J. L. Gómez, M. D.
Johnson, D. C. Palumbo, J. Weintroub, K. L. Bouman, A. A.
Chael, J. R. Farah et al., Studying black holes on horizon scales
with VLBI ground arrays, arXiv:1909.01411 [astro-ph.IM].

[82] C.-k. Chan, D. Psaltis, and F. Ozel, GRay: A massively paral-
lel GPU-based code for ray tracing in relativistic spacetimes,
Astrophys. J. 777, 13 (2013).

[83] K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer, S. M.
Faber, K. Gultekin, J. Murphy, and S. Tremaine, The black-hole
mass in M87 from Gemini/NIFS adaptive optics observations,
Astrophys. J. 729, 119 (2011).

[84] K. Gebhardt and J. Thomas, The black hole mass, stellar M/L,
and dark halo in M87, Astrophys. J. 700, 1690 (2009).

[85] R. J. Harms, H. C. Ford, Z. I. Tsvetanov, G. F. Hartig, L. L.
Dressel, G. A. Kriss, R. Bohlin, A. F. Davidsen, B. Margon, and
A. K. Kochhar, HST FOS spectroscopy of M87: Evidence for a
disk of ionized gas around a massive black hole, Astrophys. J.
435, L35 (1994).

[86] F. Macchetto, A. Marconi, D. J. Axon, A. Capetti, W. Sparks,
and P. Crane, The supermassive black hole of M87 and the
kinematics of its associated gaseous disk, Astrophys. J. 489, 579
(1997).

[87] J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi, The M87 black
hole mass from gas-dynamical models of space telescope imag-
ing spectrograph observations, Astrophys. J. 770, 86 (2013).

[88] R. Narayan, M. D. Johnson, and C. F. Gammie, The shadow of a
spherically accreting black hole, Astrophys. J. 885, L33 (2019).

[89] J.-P. Luminet, Image of a spherical black hole with thin accre-
tion disk, Astron. Astrophys. 75, 228 (1979).

[90] J. Fukue, Silhouette of a dressed black hole, PASJ 55, 155
(2003).

[91] D. Psaltis, Testing general relativity with the event horizon
telescope, Gen. Rel. Grav. 51, 137 (2019).

[92] Y. F. Yuan, X. Cao, L. Huang, and Z. Q. Shen, Images of the
radiatively inefficient accretion flow surrounding a Kerr black
hole: Application in Sgr A*, Astrophys. J. 699, 722 (2009).

[93] T. Johannsen and D. Psaltis, Testing the no-hair theorem with
observations in the electromagnetic spectrum: II. Black-hole
images, Astrophys. J. 718, 446 (2010).

[94] T. Johannsen, A. E. Broderick, P. M. Plewa, S. Chatzopoulos, S.
S. Doeleman, F. Eisenhauer, V. L. Fish, R. Genzel, O. Gerhard,
and M. D. Johnson, Testing General Relativity with the Shadow
Size of Sgr A*, Phys. Rev. Lett. 116, 031101 (2016).

[95] D. Psaltis, F. Ozel, C. K. Chan, and D. P. Marrone, A general
relativistic null hypothesis test with event horizon telescope
observations of the black-hole shadow in Sgr A*, Astrophys.
J. 814, 115 (2015).

[96] S. E. Gralla, D. E. Holz, and R. M. Wald, Black hole shadows,
photon rings, and lensing rings, Phys. Rev. D 100, 024018
(2019).

023164-11

https://doi.org/10.1103/PhysRevD.70.124005
https://doi.org/10.1103/PhysRevD.70.124005
https://doi.org/10.1103/PhysRevD.70.124005
https://doi.org/10.1103/PhysRevD.70.124005
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevLett.124.061102
https://doi.org/10.1103/PhysRevLett.124.061102
https://doi.org/10.1103/PhysRevLett.124.061102
https://doi.org/10.1103/PhysRevLett.124.061102
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1016/j.ppnp.2020.103772
https://doi.org/10.1016/j.ppnp.2020.103772
https://doi.org/10.1016/j.ppnp.2020.103772
https://doi.org/10.1016/j.ppnp.2020.103772
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.99.124041
https://doi.org/10.1103/PhysRevD.99.124041
https://doi.org/10.1103/PhysRevD.99.124041
https://doi.org/10.1103/PhysRevD.99.124041
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.87.124030
https://doi.org/10.1103/PhysRevD.87.124030
https://doi.org/10.1103/PhysRevD.87.124030
https://doi.org/10.1103/PhysRevD.87.124030
http://arxiv.org/abs/arXiv:1909.01411
https://doi.org/10.1088/0004-637X/777/1/13
https://doi.org/10.1088/0004-637X/777/1/13
https://doi.org/10.1088/0004-637X/777/1/13
https://doi.org/10.1088/0004-637X/777/1/13
https://doi.org/10.1088/0004-637X/729/2/119
https://doi.org/10.1088/0004-637X/729/2/119
https://doi.org/10.1088/0004-637X/729/2/119
https://doi.org/10.1088/0004-637X/729/2/119
https://doi.org/10.1088/0004-637X/700/2/1690
https://doi.org/10.1088/0004-637X/700/2/1690
https://doi.org/10.1088/0004-637X/700/2/1690
https://doi.org/10.1088/0004-637X/700/2/1690
https://doi.org/10.1086/187588
https://doi.org/10.1086/187588
https://doi.org/10.1086/187588
https://doi.org/10.1086/187588
https://doi.org/10.1086/304823
https://doi.org/10.1086/304823
https://doi.org/10.1086/304823
https://doi.org/10.1086/304823
https://doi.org/10.1088/0004-637X/770/2/86
https://doi.org/10.1088/0004-637X/770/2/86
https://doi.org/10.1088/0004-637X/770/2/86
https://doi.org/10.1088/0004-637X/770/2/86
https://doi.org/10.3847/2041-8213/ab518c
https://doi.org/10.3847/2041-8213/ab518c
https://doi.org/10.3847/2041-8213/ab518c
https://doi.org/10.3847/2041-8213/ab518c
https://doi.org/10.1093/pasj/55.1.155
https://doi.org/10.1093/pasj/55.1.155
https://doi.org/10.1093/pasj/55.1.155
https://doi.org/10.1093/pasj/55.1.155
https://doi.org/10.1007/s10714-019-2611-5
https://doi.org/10.1007/s10714-019-2611-5
https://doi.org/10.1007/s10714-019-2611-5
https://doi.org/10.1007/s10714-019-2611-5
https://doi.org/10.1088/0004-637X/699/1/722
https://doi.org/10.1088/0004-637X/699/1/722
https://doi.org/10.1088/0004-637X/699/1/722
https://doi.org/10.1088/0004-637X/699/1/722
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1088/0004-637X/718/1/446
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.1103/PhysRevLett.116.031101
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1088/0004-637X/814/2/115
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1103/PhysRevD.100.024018
https://doi.org/10.1103/PhysRevD.100.024018

