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ABSTRACT
The KBC void is a local underdensity with the observed relative density contrast δ ≡ 1 − ρ/ρ0 = 0.46 ± 0.06 between 40 and
300 Mpc around the Local Group. If mass is conserved in the Universe, such a void could explain the 5.3σ Hubble tension.
However, the MXXL simulation shows that the KBC void causes 6.04σ tension with standard cosmology (�CDM). Combined
with the Hubble tension, �CDM is ruled out at 7.09σ confidence. Consequently, the density and velocity distribution on Gpc
scales suggest a long-range modification to gravity. In this context, we consider a cosmological MOND model supplemented with
11 eV/c2 sterile neutrinos. We explain why this νHDM model has a nearly standard expansion history, primordial abundances of
light elements, and cosmic microwave background (CMB) anisotropies. In MOND, structure growth is self-regulated by external
fields from surrounding structures. We constrain our model parameters with the KBC void density profile, the local Hubble and
deceleration parameters derived jointly from supernovae at redshifts 0.023−0.15, time delays in strong lensing systems, and the
Local Group velocity relative to the CMB. Our best-fitting model simultaneously explains these observables at the 1.14 per cent
confidence level (2.53σ tension) if the void is embedded in a time-independent external field of 0.055 a0 . Thus, we show for
the first time that the KBC void can naturally resolve the Hubble tension in Milgromian dynamics. Given the many successful a
priori MOND predictions on galaxy scales that are difficult to reconcile with �CDM, Milgromian dynamics supplemented by
11 eV/c2 sterile neutrinos may provide a more holistic explanation for astronomical observations across all scales.

Key words: gravitation – dark matter – galaxies: abundances – large-scale structure of Universe – cosmology: theory – methods:
numerical.

1 IN T RO D U C T I O N

The Cosmological Principle (CP) states that the Universe is homo-
geneous and isotropic on very large scales. This concept is the foun-
dation of the current Lambda-Cold Dark Matter (�CDM) standard
model of cosmology (Ostriker & Steinhardt 1995), which assumes
that Einstein’s General Relativity is valid on all astrophysical scales.
Applying it to the non-relativistic outskirts of galaxies yields nearly
the same result as Newtonian dynamics − the rotation curve should
undergo a Keplerian decline beyond the extent of the luminous
matter (de Almeida, Piattella & Rodrigues 2016). The observed flat
rotation curves of galaxies (e.g. Babcock 1939; Rubin & Ford 1970;
Rogstad & Shostak 1972) demonstrate that Newtonian gravity of the
baryons alone is insufficient to hold them together, leading to the
concept that each galaxy is surrounded by a CDM halo (Ostriker &
Peebles 1973). However, no experiment has ever confirmed the
existence of CDM, with stringent upper limits coming from e.g.
null detection of γ -rays from DM annihilation in dwarf satellites
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of the Milky Way (MW; Hoof, Geringer-Sameth & Trotta 2020). In
addition to the hypothetical ingredient of CDM, the �CDM model
also requires a cosmological constant � in Einstein’s gravitational
field equations to explain the anomalous faintness of distant Type Ia
supernovae (SNe Ia; Riess et al. 1998; Schmidt et al. 1998; The
Supernova Cosmology Project 1999). � may be associated to a
vacuum energy (dark energy).

This ‘concordance’ flat �CDM model explains the cosmic mi-
crowave background (CMB) as relic radiation from the Universe at
redshift z ≈ 1100 (e.g. Bennett et al. 2003; Planck Collaboration
VI 2020). The temperature fluctuations within the CMB are of the
order δT/T ≈ δρ/ρ ≈ 10−5 (Wright 2004). These are interpreted as
tracers of density contrasts in the baryons alone, with the CDM being
significantly more clustered by that time due to it not feeling radiation
pressure. After recombination, baryons fell into the potential wells
of the DM, starting the process of cosmic structure formation via
gravitational instability.

Observations have shown that this widely used �CDM model
faces several challenges, especially on galactic up to Mpc scales
(e.g. Kroupa 2012, 2015, and references therein). One of the most
serious problems is the distribution of dwarf galaxies in the Local
Group (LG). The MW is surrounded by a thin co-rotating disc of
satellite galaxies (Kroupa, Theis & Boily 2005), which is part of the
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vast polar structure (Pawlowski, Pflamm-Altenburg & Kroupa 2012)
that also includes ultrafaint galaxies, globular clusters, and gas and
stellar streams. Recently, Pawlowski & Kroupa (2020) showed that
its kinematic coherence has increased further with Gaia Data Release
2 (Gaia Collaboration 2018). A thin plane of co-rotating satellites is
also observed around M31 (Ibata et al. 2013).

It is very difficult to understand these structures if their member
satellites are primordial (Pawlowski et al. 2014). However, such
phase space-correlated structures can arise during an interaction
between two disc galaxies, as observed e.g. in the Antennae galaxies
(Mirabel, Dottori & Lutz 1992). Due to the higher velocity dispersion
of the DM, such tidal dwarf galaxies (TDGs) should be free of
DM in �CDM, as shown with simulations of galaxy interactions
(Barnes & Hernquist 1992; Wetzstein, Naab & Burkert 2007) and in
cosmological simulations (Ploeckinger et al. 2018; Haslbauer et al.
2019b). This would lead to very low internal velocity dispersions,
which are in conflict with observations for satellites of the MW
(McGaugh & Wolf 2010) and M31 (McGaugh & Milgrom 2013).

A disc of satellites has also been observed around Centaurus A
(Cen A; Müller et al. 2018), suggesting that such structures are
ubiquitous and in any case not unique to the LG. Although they may
well consist of TDGs, these are quite rare in �CDM due to their weak
Newtonian self-gravity (Haslbauer et al. 2019a,b). This makes the
Cen A satellite plane hard to explain even though we lack internal
velocity dispersion measurements for its members (Müller et al.
2018). A review on satellite planes in the local Universe can be found
in Pawlowski (2018), who suggested that the TDG hypothesis could
work in an alternative gravitational framework where all galaxies are
DM-free. We consider this possibility further in Section 1.3. Some
evidence in favour of this scenario is the strong correlation between
the bulge fractions and the number of satellite galaxies for the MW,
M31, M81, Cen A, and M101 (Javanmardi & Kroupa 2020). This is
unexpected in standard cosmology (Kroupa 2012, 2015; Javanmardi
et al. 2019), but may indicate that bulges and satellite galaxies formed
simultaneously in galactic interactions.

Although �CDM is widely considered a successful theory in
explaining large-scale structure, the observed Universe appears to be
much more structured and organized than it predicts. In particular,
Peebles & Nusser (2010) reported that standard �CDM theory is
in conflict with the distribution of galaxies within ≈ 8 Mpc of the
LG. The local void contains much fewer galaxies than expected (e.g.
Tikhonov & Klypin 2009), while massive galaxies are located away
from the matter sheets where they ought to reside. These facts suggest
a more rapid growth rate of structure (Peebles & Nusser 2010; though
see Xie, Gao & Guo 2014).

Karachentsev (2012) studied the matter distribution of the Local
Volume in more detail, finding that the average density of matter
within ≈ 50 Mpc is only 	m, loc = 0.08 ± 0.02, much lower than
the global cosmic density at the present time (	m, 0 = 0.315, Planck
Collaboration VI 2020). This is consistent with a more recent work
which obtained 	m, loc = 0.09–0.14 within a sphere of radius 40 Mpc
around the LG (Karachentsev & Telikova 2018). This is striking
because the Harrison–Zeldovich spectrum and the current value
of σ 8 = 0.811 ± 0.006 (Planck Collaboration VI 2020) predict
root-mean-square (rms) density fluctuations of 23 per cent on this
scale. Indeed, recent studies have questioned the assumption of
homogeneity and isotropy (e.g. Javanmardi et al. 2015; Kroupa 2015;
Javanmardi & Kroupa 2017; Bengaly et al. 2018; Colin et al. 2019;
Mészáros 2019; Migkas et al. 2020).

Therefore, observations of the galaxy distribution on large scales
can constrain various cosmological models and their different un-
derlying gravitational theories. In this study, we investigate the local

matter density and velocity field within 1 Gpc in �CDM and in
a previously developed Milgromian cosmological model (Angus
2009). This allows us to assess the implications for the CP and
Hubble tension.

1.1 KBC void

Several observations at different wavelengths have found evidence
for a large local underdensity around the LG. The first indication for
a deficiency in the galaxy luminosity density was observed in optical
samples (e.g. Maddox et al. 1990). Using the ESO Slice Project
galaxy survey that covers ≈23 deg2 on the sky, Zucca et al. (1997)
found a local underdensity out to a distance of ≈140 h−1 Mpc in the
bJ band, where h ≈ 0.7 is the present Hubble constant H0 in units of
100 km s−1 Mpc−1.

Galaxy counts in the near-infrared (NIR) revealed that the local
Universe is significantly underdense on a scale of 200–300 h−1 Mpc
around the LG (e.g. Huang et al. 1997; Frith et al. 2003; Busswell
et al. 2004; Frith, Shanks & Outram 2005; Frith, Metcalfe & Shanks
2006; Keenan, Barger & Cowie 2013; Whitbourn & Shanks 2014).
NIR photometry accurately traces the stellar mass and is therefore a
good proxy for the underlying matter distribution.

A local underdensity is also evident in the X-ray galaxy cluster sur-
veys REFLEX II (Böhringer et al. 2015) and CLASSIX (Böhringer,
Chon & Collins 2020). The latter work found a 15–30 per cent
(10–20 per cent) underdensity in the matter distribution within a
radius of ≈100 Mpc (140 Mpc).

At the opposite end of the spectrum, Rubart & Schwarz (2013)
found that the cosmic radio dipole from the NRAO VLA Sky Survey
is ≈4× stronger than can be explained purely kinematically given
the magnitude of the CMB dipole. Interestingly, the radio dipole
points towards Galactic coordinates (245◦, +43◦) which, given the
uncertainty of ≈30◦, is consistent with the direction in which the LG
moves with respect to (wrt.) the CMB (276◦ ± 3◦, +30◦ ± 3◦; Kogut
et al. 1993). In a subsequent study, Rubart, Bacon & Schwarz (2014)
showed that the unusually strong radio dipole could be explained by
a single void with a size of 11 per cent of the Hubble distance and a
density contrast of δ ≡ 1 − ρ/ρ0 = 1/3, where ρ is the local density
and ρ0 is the cosmic mean.

Moreover, Bengaly et al. (2018) studied the dipole anisotropy
of galaxy number counts over the redshift range 0.10 < z < 0.35,
revealing a large anisotropy for z < 0.15 that could be the imprint of a
large local density fluctuation. Thus, a significant local underdensity
is evident across the entire electromagnetic spectrum.

Here, we focus on the study by Keenan et al. (2013), who found
clear evidence for a large local underdensity by measuring the K-band
galaxy luminosity function at different distances over a large part of
the sky (see their figs 9 and 10). They used the 2M++ catalogue
(Lavaux & Hudson 2011), which combines photometry from the
Two Micron All Sky Survey Extended Source Catalog (2MASS-
XSC) with redshifts from the Sloan Digital Sky Survey (SDSS),
the Two Micron Redshift Survey (2MRS), and the Six-degree Field
Galaxy Redshift Survey (6DFGRS). This sample covers 37 080 deg2

(90 per cent of the whole sky) and is ≈ 98 per cent complete to
a limiting magnitude of Ks = 13.36. Using this sample, Keenan
et al. (2013) estimated the luminosity density and derived a relative
density contrast of δ ≈ 0.5 in the redshift range 0.0025 < z < 0.067
compared to larger redshifts (see the pink down-pointing triangle
in their fig. 11, and their table 1). In addition, they also probed the
density field to a deeper magnitude limit of Ks = 14.36, but only
in the SDSS and 6DFGRS regions. This yielded a slightly smaller
density contrast of δ = 0.46 ± 0.06 between z = 0.01 (≈ 40 Mpc)
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and z = 0.07 (≈ 300 Mpc; see the light blue dot in their fig. 11). In
the following, we will show that the Keenan–Barger–Cowie (KBC)
void is highly unexpected within the �CDM framework by virtue of
its sheer size and depth. In order to minimize the tension, we assume
for our analysis that δ = 0.46 ± 0.06 and refer to this as the KBC
void. Calculating the K-band luminosity density in different regions
suggests that it reaches the cosmic mean at a distance of ≈ 500 Mpc.

In the �CDM framework, the existence of such a deep and
extended void is a puzzle given the expected Harrison–Zeldovich
scale-invariant power spectrum, which states that the power P(L) on
some length-scale L varies as P (L) ∝ L−ns , with ns = 1 (Harrison
1970; Zeldovich 1972). Since the CMB anisotropies require a power
of σ 8 = 0.811 ± 0.006 on a scale of 8h−1 Mpc (Planck Collaboration
VI 2020), we expect density fluctuations of only ≈ 3.2 per cent
between spheres of radius L = 300 Mpc.

Combining measurement errors with cosmic variance, we can
estimate that the KBC void would falsify the �CDM model by
well over 5σ because

0.46√
0.062 + 0.0322

= 6.8 . (1)

In Section 2, we provide a much more sophisticated analysis of how
likely the KBC void is in standard cosmology. Since the measurement
uncertainty of 6 per cent is much larger than the cosmic variance of
3.2 per cent, the latter is not the main source of uncertainty in how
far off �CDM is from matching the observations − as explicitly
calculated in Section 2.2.1. Consequently, if we assume that �CDM
is the correct model, the most likely explanation for the detection of
such a deep void would be a measurement error. However, the KBC
void is evident over the entire electromagnetic spectrum.

The above prediction of 3.2 per cent rests on two fundamental
assumptions − that the CMB reflects baryonic density fluctuations
at z = 1100, and that General Relativity is valid on all scales. The
existence of the KBC void might indicate that either or both of
these assumptions must be relaxed. In this contribution, we focus on
modifying gravity because the standard approach leads to problems
in galaxies (e.g. Kroupa 2012, 2015, and references therein).

A large local void should also have implications for local mea-
surements of cosmological parameters such as the Hubble constant
and deceleration parameter. If mass is conserved in the Universe and
it was nearly homogeneous initially, a large fractional underdensity
would show up in the velocity field. This is because the co-moving
radius enclosing a fixed amount of mass must exceed its initial value,
and changes in co-moving coordinates imply a peculiar velocity.

Suppose that we are living near the centre of a void whose true
density relative to the cosmic mean is

ρ

ρ0
≡ α ≡ 1 − δ . (2)

This implies that the co-moving radius enclosing a fixed mass must
exceed its initial value by a factor α−1/3. Depending on details of how
the void grows, the impact on the locally measured Hubble parameter
would be approximately the same. In other words,

H local
0

H
global
0

≈ α− 1
3 , (3)

where H local
0 is the locally measured H0, whose background (true)

value is H
global
0 ≡ ȧ/a at the present time, with a the cosmic scale

factor and an overdot indicating a time derivative. The mismatch
between these H0 values would create a redshift space distortion
(RSD) effect whereby the physical volume of a survey with known
redshift range would be reduced by a factor α compared to the case

of no void. In this way, RSD would further reduce the observed αobs

by a factor α if it is not accounted for and a constant H0 is used to
convert redshifts to distances (as done in the work of Keenan et al.
2013, see their section 4.7). Thus, we expect that

αobs = α2 . (4)

Combining equations (3) and (4), we get that

H local
0

H
global
0

≈ α
− 1

6
obs . (5)

Given that αobs = 0.54, the measured H local
0 should exceed the

background value H
global
0 by 0.54−1/6, i.e. by 11 per cent. This would

raise H0 from the Planck-based prediction of 67.4 km s−1 Mpc−1

(Planck Collaboration VI 2020) to 74.7 km s−1 Mpc−1, which is
very close to the observed value (Section 1.2). This is unlikely
to be a coincidence − it is more parsimoniously explained as a
consequence of the observed void under the standard assumption of
matter conservation.

1.2 Hubble tension

In this context, we consider the Hubble tension, a statistically signif-
icant discrepancy between the locally measured cosmic expansion
rate and the �CDM prediction based on the early universe properties
needed to match the CMB power spectrum (e.g. Riess 2020). The
local Hubble constant can be determined through the distance ladder
technique. Recently, the Supernova H0 for the Equation of State
(SH0ES) team (Riess et al. 2019) calibrated the distance ladder
with eclipsing binaries in the Large Magellanic Cloud, masers in
NGC 4258, and parallaxes of Galactic Cepheid variables via the
Leavitt law. They derived a local Hubble constant of H local

0 =
74.03 ± 1.42 km s−1 Mpc−1, which results in 4.4σ tension with
the Planck-based prediction (H Planck

0 = 67.4 ± 0.5 km s−1 Mpc−1;
Planck Collaboration VI 2020).

The systematic error of the Cepheid background subtraction is only
0.029 ± 0.037 mag, which is not sufficient to explain the ≈ 0.2 mag
Hubble tension (Riess et al. 2020). Moreover, calibrating the SN Ia
luminosity using instead Mira variables in the galaxy NGC 1559 with
periods of 240−400 d and using NGC 4258 (the Large Magellanic
Cloud) as an anchor, Huang et al. (2020) obtained H local

0 = 72.7 ±
4.6 km s−1 Mpc−1 (H local

0 = 73.9 ± 4.3 km s−1 Mpc−1; see also their
table 6 and fig. 11). Both values are consistent with H local

0 derived
from Cepheid variables within the 1σ confidence range, though the
Mira-calibrated H0 is less precise.

It is also possible to go beyond the traditional Cepheid-SN Ia route
using Type II SNe as standard candles. These yield a high H local

0 of
75.8+5.2

−4.9 km s−1 Mpc−1, which is very consistent with H0 derived
from Type Ia SNe − albeit with larger uncertainties (de Jaeger et al.
2020). Thus, systematic errors in Type Ia SNe data are likely not
driving the Hubble tension.

Camarena & Marra (2020a) analysed the Pantheon SNe Ia sample
without fixing the deceleration parameter (q ≡ −aä/ȧ2) to the
present �CDM prediction of q0 = −0.55. They jointly derived
H local

0 = 75.35 ± 1.68 km s−1 Mpc−1 and q0 = −1.08 ± 0.29 from
SNe in the redshift range 0.023 ≤ z ≤ 0.15. This is in 4.54σ tension
with �CDM. The unexpectedly low q0 is robust to the choice of data
set (table 5 of Camarena & Marra 2020b).

Interestingly, it is highly implausible to get such low q0 values
at the background level. Even in a pure dark energy-dominated (de
Sitter) universe, it is not possible to get q0 < −1. Thus, first- and
second-order effects in the local Hubble diagram seem to provide
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additional evidence for the KBC void. To quantify this, we compare
the standard expansion rate history (H0 = 67.4 km s−1 Mpc−1, q0 =
−0.55) with an extrapolation of the Camarena & Marra (2020a)
results. Approximating both as quadratic functions of time t with
a(t0 ) ≡ 1 at the present time t0 , we get that the reconstructed a(t)
parabolas coincide 4.2 Gyr ago. This provides strong evidence for
a Gpc-scale void independently of the galaxy luminosity density
(discussed earlier in Section 1.1).

A method of measuring H0 independently of the cosmic distance
ladder relies on time delays between multiple images of the same
source, as occurs in strong gravitational lensing. Jee et al. (2019)
calibrated the SNe data with angular diameter distances to two
gravitational lenses, obtaining H0 = 82.4+8.4

−8.3 km s−1 Mpc−1 for a flat
�CDM cosmology. Although the uncertainties are quite large, their
H0 also exceeds the Planck prediction.

Shajib et al. (2020) measured H0 = 74.2+2.7
−3.0 km s−1 Mpc−1 from

the strong lens system DES J0408 − 5354, whose deflector lies at
an angular diameter distance of Dd = 1711+376

−280 Mpc (z = 0.597).
This is broadly consistent with measurements of the H0 Lenses in
COSMOGRAIL’s Wellspring (H0LiCOW; Wong et al. 2020). Using
a blinded analysis protocol (see their section 3.6), they obtained
H0 = 73.3+1.7

−1.8 km s−1 Mpc−1 from six lensed quasar systems in the
redshift range z = 0.295−0.745. Combining their results with the
measurement of Riess et al. (2019) leads to a 5.3σ discrepancy with
�CDM expectations based on the CMB (Wong et al. 2020). The
latter work showed for the first time that the Hubble tension exceeds
the 5σ threshold typically used to judge the validity of scientific
theories.

Although Kochanek (2020) suggested there might be biases in the
strong lensing analysis causing ≈ 10 per cent uncertainties on the
inferred H0, Pandey, Raveri & Jain (2019) showed that the SNe
and strong lensing measurements are consistent and likely have
systematics much smaller than the Hubble tension, as also found
by Millon et al. (2020). Indeed, the near-perfect agreement between
the SNe and lensing determinations despite the blinded protocol
of the latter does suggest rather small uncertainties. Moreover,
Wong et al. (2020) found that H0 measured from strong lensing
decreases as a function of lens redshift at a significance of 1.9σ .
Their measurements converge towards the Planck prediction for more
distant lenses (see their fig. A1). This again strongly suggests that
the Hubble tension is indeed driven by a local environmental effect.

Another technique to determine H0 uses maser-derived distance
and velocity measurements, as done by the Megamaser Cosmology
Project (Reid et al. 2009). This method is independent of distance
ladders, standard candles, and the CMB. It also faces rather different
systematics to techniques that rely on gravitational lensing (Pesce
et al. 2020). They used measurements for the six maser galaxies
UGC 3789, NGC 6264, NGC 6323, NGC 5765b, CGCG 074-064,
and NGC 4258. Except for the well-studied case of NGC 4258 (e.g.
Reid, Pesce & Riess 2019), these galaxies are located at distances
between 51.5+4.5

−4.0 Mpc and 132.1+21
−17 Mpc. The resulting H local

0 =
73.9 ± 3.0 km s−1 Mpc−1, consistent with Wong et al. (2020) and
again larger than predicted by Planck.

So far, we have distinguished between the Planck prediction and
H0 measurements from the local Universe that avoid assumptions
about early Universe physics. Baryon acoustic oscillation (BAO)
measurements combine the two through a CMB-based prior on the
sound horizon at the time of last scattering. The co-moving length of
this standard ruler is assumed to remain fixed, allowing its angular
size at different epochs to constrain the expansion history (Eisenstein
et al. 2005). Such BAO-based H0 measurements are available from
redshift surveys at effective redshifts of zeff = 0.38, 0.51, and 0.61

(Alam et al. 2017), with the range recently extended to zeff ≈
1.5 (Zhang, Huang & Li 2019). These yield a Hubble parameter
consistent with the Planck prediction.

The combination of clustering and weak lensing data, BAO, and
light element abundances gives 67.4+1.1

−1.2 km s−1 Mpc−1 (Dark Energy
Survey & South Pole Telescope Collaborations 2018). Estimating
H0 using cosmic chronometers yields a nearly direct measure of the
background cosmology. This is also consistent with Planck (Gómez-
Valent & Amendola 2018). Assuming spatial flatness of the Universe,
Ruan et al. (2019) combined cosmic chronometers with information
on H II galaxies to show that the true value of ȧ is much closer to
the Planck value than the local value of Riess et al. (2016), with the
latter discrepant at ≈3σ .

Migkas et al. (2020) inferred H0 from the X-ray luminosity–
temperature relation of galaxy clusters, finding that it ranges from
65.20 ± 1.48 to 76.64 ± 1.41 km s−1 Mpc−1 for different sky regions
(see their fig. 23). This range is similar to that between H

global
0 (Planck

Collaboration VI 2020) and H local
0 as found using SNe (e.g. Riess

et al. 2016, 2019; Camarena & Marra 2020a) or strong lensing sys-
tems (Wong et al. 2020). The apparent anisotropy of the local velocity
field could potentially be caused by our off-centre location within
the KBC void, a non spherical void shape, or a combination of both.
However, these considerations are beyond the scope of this work.

Remarkably, all these studies reveal that only the low-redshift
probes prefer a high value for the Hubble constant, with high-
redshift probes yielding similar results to the Planck-based prediction
(see e.g. fig. 12 in Wong et al. 2020, or fig. 1 in Verde, Treu &
Riess 2019). Some recent reviews on the Hubble tension can be
found in Verde et al. (2019) and Riess (2020). All these results
point to the overall picture that the Hubble tension is driven by a
local environmental effect like a void. In particular, the KBC void
shows up not only in galaxy counts but also in the velocity field
as an unexpected first and second time derivative of the apparent
scale factor (as evidenced by the reported anomalies in H0 and q0 ,
respectively). As discussed in Section 1.1, a large local underdensity
can potentially resolve the Hubble tension if mass conservation is
assumed. Therefore, this would be a natural resolution to the Hubble
tension that would minimize adjustments to the �CDM model on
cosmological scales. In particular, there would be no need to assume
a novel expansion rate history driven by yet more undetected sources
such as early dark energy (e.g. Karwal & Kamionkowski 2016;
Alexander & McDonough 2019; Poulin et al. 2019; Sakstein &
Trodden 2020).1 Instead, the standard �CDM expansion rate history
could be preserved. In Section 5.3, we discuss some of the objections
to this approach.

The works of Enea (2018) and Shanks et al. (2019) constitute
attempts to relate the Hubble tension and KBC void on the basis
of mass conservation. In a next step, one has to perform more
sophisticated dynamical modelling with reasonable initial conditions
provided by the CMB. As we will argue, this is not possible with the
standard governing equations of �CDM (Section 2.2). In particular,
Macpherson, Lasky & Price (2018) explicitly showed that cosmic
variance caused by inhomogeneities of the underlying density field
cannot resolve the Hubble tension. This is because the expected
cosmic variance is too low, implying the Hubble tension and KBC
void must both be measurement errors. Given the very different ways
in which they are measured, this is highly implausible.

1The work of Hill et al. (2020) argues that early dark energy cannot resolve
the Hubble tension due to constraints from other data.
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Thus, a large void and high H local
0 could well point to a different

theory where both are explained by enhancing the long-range strength
of gravity, which would promote the growth of structure. In principle,
any alternative cosmological model that enhances cosmic variance
through faster structure formation could explain the KBC void and
Hubble tension, in so far as the model faces the Hubble tension.
However, it is important for the model to explain phenomena in
addition to those for which the model was explicitly designed, and
to address observations on galaxy scales. Therefore, we concentrate
on detailed dynamical modelling in the framework of an approach
known to satisfy galaxy-scale constraints, and to promote the growth
of structure on larger scales.

1.3 Milgromian dynamics

Milgrom (1983) originally developed Milgromian dynamics
(MOND) to explain the flattening of galactic rotation curves without
the need of massive CDM haloes. MOND is a classical potential
theory of gravity with a Lagrangian formalism (Bekenstein &
Milgrom 1984). It explains the dynamical effects usually attributed
to CDM by an acceleration-dependent modification to Newtonian
gravity. In particular, the gravity at radius r from an isolated point
mass M becomes

g =
√

GMa0

r
for r 	 rM ≡

√
GM

a0

, (6)

where G is the Newtonian gravitational constant, and a0 is Milgrom’s
constant. Empirically, a0 = 1.2 × 10−10 m s−2 to match galaxy rota-
tion curves (e.g. Begeman, Broeils & Sanders 1991; McGaugh 2011).

For a more complicated mass distribution, g follows a non-
relativistic field equation (Bekenstein & Milgrom 1984). We use
a more computer-friendly version known as quasilinear MOND
(QUMOND; Milgrom 2010). In this approach,

∇2� = − ∇ · [ν (gN

)
gN

]
, (7)

where � is the gravitational potential, gN is the Newtonian grav-
itational field, and r ≡ |r| for any vector r . The function ν

(
gN

)
interpolates between the Newtonian (|∇�| 	 a0 ) and deep-MOND
(|∇�| � a0 ) regimes. Throughout this project, we apply the widely
used ‘simple’ interpolating function (Famaey & Binney 2005):

ν(gN ) = 1

2
+
√

1

4
+ a0

gN

. (8)

This closely approximates the empirically determined radial accel-
eration relation (RAR) between gN obtained from photometry and
g ≡ −∇� obtained from rotation curves (McGaugh 2016; Lelli et al.
2017). Our void models are not much affected by the choice of ν

function as they are deep in the MOND regime. This is because
any local void solution to the Hubble tension must generate peculiar
velocities of ≈ 7 km s−1 Mpc−1 in a Hubble time. For a void with
size of 300 Mpc, this implies an acceleration of only 0.04 a0 . Since
this is � a0 , we expect MOND to have a significant effect on the
void dynamics.

Equation (6) implies the baryonic Tully–Fisher relation (BTFR;
McGaugh et al. 2000), namely that

Mb ∝ vf
ξ , (9)

where Mb is the baryonic mass, vf is the asymptotic rotation velocity
of a disc galaxy, and the exponent ξ = 4. Empirically, a tight relation
of this form is evident with ξ ≈ 3−4 (e.g. McGaugh et al. 2000;
McGaugh 2005; Stark, McGaugh & Swaters 2009; McGaugh 2011;

Torres-Flores et al. 2011; Ponomareva et al. 2018). The more recent
investigations put ξ very close to the MOND-predicted value of
4, which is also what we expect empirically based on the RAR.
Since vf can be measured independently of distance but Mb depends
on the adopted distance, the BTFR provides another independent
method to obtain H local

0 . Recently, Schombert, McGaugh & Lelli
(2020) calibrated the BTFR with redshift-independent distance
measurements from Cepheids and/or the tip magnitude of the red
giant branch for 30 galaxies in the Spitzer Photometry and Accurate
Rotation Curves catalogue (SPARC; Lelli, McGaugh & Schombert
2016) and 20 galaxies from Ponomareva et al. (2018). The so-
calibrated BTFR was then applied to 95 independent SPARC galaxies
for which only the redshift is known. Since the SPARC catalogue
contains galaxies up to distances of ≈ 130 Mpc, Schombert et al.
(2020) derived H0 of the very local Universe. They got H local

0 =
75.1 ± 2.3(stat) ± 1.5(sys) km s−1 Mpc−1 (see also their table 5).
This is quite consistent with other measurements from the late
Universe and significantly exceeds the �CDM prediction based
on the CMB (Section 1.2). Interestingly, the dominant source of
systematic uncertainty is how to correct redshifts of SPARC galaxies
for peculiar velocities induced by large-scale structure. This points
towards mis-modelled peculiar velocities as a possible cause for the
entire Hubble tension.

According to equation (7), MOND is non-linear in the accel-
eration, which yields the interesting concept of the external field
effect (EFE; Milgrom 1986). In contrast to Newtonian gravity, the
non-linearity of Milgrom’s law causes the internal gravitational
forces within a MONDian subsystem to be affected by the external
gravitational field from its environment even without any tides. This
breaks the strong equivalence principle. The EFE has likely been
observed in the declining rotation curves of some disc galaxies
(Haghi et al. 2016) and the internal dynamics of dwarfs. For example,
Crater II is a diffuse dwarf satellite galaxy of the MW at a distance
of ≈ 120 kpc (Torrealba et al. 2016). Its observed velocity dispersion
of 2.7 ± 0.3 km s−1 (Caldwell et al. 2017) is below the isolated
MOND prediction of 4 km s−1 (McGaugh 2016). Taking into account
the Galactic EFE reduces the MOND prediction to 2.1+0.9

−0.6 km s−1,
matching the observed value within uncertainties. Similar examples
are the ultradiffuse dwarf galaxies Dragonfly 2 (DF2) and DF4,
where the MOND predictions agree with observations only if the
EFE is included (Kroupa et al. 2018; Haghi et al. 2019a). For the
more isolated galaxy DF44, the MOND prediction without the EFE
is consistent with observations (Bı́lek, Müller & Famaey 2019; Haghi
et al. 2019b).

The EFE is also important within the MW, whose MONDian es-
cape velocity curve is similar to observations (Banik & Zhao 2018a).
Since equation (6) yields a logarithmically divergent potential,
escape from an isolated object is not possible in MOND unless the
EFE is taken into account. Recently, Pittordis & Sutherland (2019)
showed that MOND without an EFE is completely ruled out by the
observed relative velocity distribution of wide binary stars in the
Solar neighbourhood at separations of ≈10 kAU. Including the EFE
leads to nearly Newtonian behaviour, though the predicted 20 per cent
difference is likely detectable in a more thorough analysis (Banik &
Zhao 2018c) that must include contamination by undetected close
companions (Clarke 2020).

In addition to its successes with internal dynamics of galaxies
(reviewed in Famaey & McGaugh 2012), MOND may also explain
the discs of satellites around the MW and M31 as TDGs born out
of a past MW-M31 flyby. A previous close interaction is required in
MOND (Zhao et al. 2013) due to the almost radial MW-M31 orbit
(van der Marel et al. 2012, 2019). In such an interaction, structures
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resembling satellite planes can be formed (Bı́lek et al. 2018). Using
restricted N-body models to explore a wide range of flyby geometries,
Banik, O’Ryan & Zhao (2018) identified models where the tidal
debris around the MW and M31 align with their observed satellite
planes and have a similar radial extent. A past MW-M31 interaction
would naturally explain the apparent correlation between their
satellite planes, and with other structures in the LG (Pawlowski &
McGaugh 2014). It may also account for the anomalous kinematics
of the NGC 3109 association, which is difficult to understand in
�CDM (Peebles 2017; Banik & Zhao 2018b).

Interestingly, there is an order of magnitude coincidence between
the value of a0 and the cosmic acceleration rate:

2πa0 ≈ cH0 ≈ c2
√

�/3 , (10)

where c is the speed of light (Milgrom 1983). This may indicate
that MOND is related to a fundamental theory of quantum gravity
(e.g. Milgrom 1999; Pazy 2013; Smolin 2017; Verlinde 2017). A
bigger clue would come from tighter empirical constraints on the time
evolution of a0 , which at present are still weak (Milgrom 2017). Even
so, his work showed that current data are sufficient to rule out the a−3/2

scaling required by the model of Zhao (2008), which additionally
would have a very significant impact on the CMB (Sections 3.1.3
and 5.2.3).

Another intriguing coincidence is that the total matter density is
very nearly 2π times the baryonic density, i.e. 	m ≈ 2π	b (Milgrom
2020b). This could imply that the effective gravitational constant in
a MONDian Friedmann equation is a factor of 2π larger than for a
system decoupled from the cosmic expansion. However, we will not
follow this interpretation here.

The first relativistic version of MOND was developed by Beken-
stein (2004). This was modified slightly by Skordis & Złośnik
(2019) so that gravitational waves propagate at the speed of light,
as required for consistency with the near-simultaneous detection of
gravitational waves and their electromagnetic counterpart (Virgo &
LIGO Collaborations 2017). The theory of Skordis & Złośnik
(2019) allows solutions where the background cosmology follows
the standard Friedmann equations to high precision (see their section
4). We discuss this further in Section 3.1, where we explain why the
expansion rate history and the power spectrum of the CMB should
be nearly the same as in �CDM. Thus, MOND would suffer from
the Hubble tension in just the same way as �CDM if H local

0 = ȧ at
the sub-per cent level.

Fortunately, this might not be the case − Sanders (1998) showed
that due to the long-range modification to gravity, MOND produces
much larger and deeper voids than predicted by �CDM cosmology.
Thus, MOND could be a promising framework to explain both
the KBC void and the Hubble tension. We therefore extrapolate
Milgrom’s law of gravity from sub-kpc to Gpc scales. For the first
time, we study the Hubble tension and KBC void in the context
of MOND. We emphasize that MOND was originally designed to
address discrepancies on galactic scales (Milgrom 1983), so no new
assumptions are made specifically to address the latest data on the
low-z distance–redshift relation and galaxy counts − apart from the
usual assumption that the background follows a standard evolution
to high precision (Section 3.1.1), and that MOND applies only to
density deviations from the cosmic mean (e.g. Llinares, Knebe &
Zhao 2008; Angus & Diaferio 2011; Angus et al. 2013; Katz et al.
2013; Candlish 2016). In this context, we aim to provide a unified
explanation for both the dynamical discrepancies on galaxy scales
and the z � 0.2 matter density and velocity field given current
constraints from the CMB.

The layout of this paper is as follows: In Section 2, we quantify
the likelihood of the observed KBC void and how it might relate to
the Hubble tension in a �CDM context. After introducing a cosmo-
logical MOND model in Section 3, we compare it to observations
of the local Universe (Section 4). The implications for �CDM and
MOND cosmologies are discussed in Section 5. We finally conclude
in Section 6. Throughout this article, co-moving distances are marked
with the prefix ‘c’ (e.g. cMpc, cGpc).

2 �C D M F R A M E WO R K

In this section, we describe how we use a cosmological �CDM
simulation to quantify cosmic variance and thereby determine the
likelihood of finding ourselves inside the observed KBC void in
standard cosmology. We also consider the implications of our results
when combined with the Hubble tension.

2.1 Cosmic variance in the Millennium XXL simulation

Millennium XXL (MXXL; Angulo et al. 2012) is a standard �CDM
cosmological simulation that evolves 67203 DM particles from z =
63 forwards to z = 0. Though it only considers DM, baryonic physics
should have a negligible role on the 300 Mpc scale we consider. The
simulation box has a length of 3h−1 cGpc, resulting in a volume that
is 216× larger than that of the Millennium simulation (Springel et al.
2005). The mass of a particle is 8.456 × 109 M� and its Plummer-
equivalent softening length is 13.7 kpc. The MXXL simulation
assumes a flat �CDM cosmology consistent with WMAP-7 results,
i.e. the present matter density parameter is 	m, 0 = 0.25, that of dark
energy is 	�, 0 = 0.75, σ 8 = 0.9, H0 = 73 km s−1 Mpc−1, and the
power spectrum is assumed to be of the Harrison–Zeldovich form
(ns = 1). The baryonic mass of each subhalo is obtained by applying
the semi-analytic galaxy formation code L-GALAXIES (Springel et al.
2005) to the MXXL data (see also section 2.2 in Angulo et al. 2014).

We use MXXL to calculate the relative density contrast given by
the stellar mass distribution in subhaloes with stellar mass M∗ >

1010 h−1 M� at z = 0. For this purpose, we consider 106 vantage
points distributed on a Cartesian grid with a spacing of 30 h−1 Mpc
in each direction. To maximize the accuracy of our results, we use
the nearest subhalo as our final choice for the vantage point. Our
adopted minimum mass avoids an excessive computational cost but
still leaves enough subhaloes to accurately determine the expected
cosmic variance. Using only stellar masses makes our results more
comparable to observations in the NIR.

We need to allow for the incomplete sky coverage of Keenan
et al. (2013). Following their section 2.5, we adopt a sky area of
37 080 deg2, which in dimensionless units is

A = 37080 ×
( π

180

)2
. (11)

We assume the incompleteness is caused by observational difficulties
at low Galactic latitudes. Thus, we define a mock Galactic spin axis
by randomly generating a unit vector n̂i drawn from an isotropic
distribution. We can then define an angle θ j based on the direction
towards another subhalo at position rj relative to our vantage point.

cos θj ≡ rj · n̂i

rj

. (12)

The subscript i refers to the vantage point, while j refers to another
subhalo observed from there. We mimic incomplete sky coverage by
requiring that

|cos θj | > cos θobs, where (13)
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cos θobs = 1 − A

4π
. (14)

Since most of the sky is surveyed, cos θobs = 0.10.
The observed density contrast is calculated for galaxies in the

redshift range 0.01 < z < 0.07 (table 1 in Keenan et al. 2013).
Therefore, we further require selected subhaloes to satisfy

rmin < rj < rmax , (15)

where rmin = 40 Mpc and rmax = 300 Mpc. The relative density
contrast around vantage point i is then

δi ≡ 1 −
∑

j Mj

V ρ0
, with (16)

V = 4π

3
(1 − cos θobs)

(
r3

max − r3
min

)
. (17)

The sum is taken over all subhaloes with M∗ > 1010 h−1 M� that
satisfy equations (13) and (15). These conditions restrict us to a
volume V. The cosmic mean density ρ0 is found by relaxing the
position-related conditions and dividing the much larger sum by the
whole simulation volume.

2.2 Comparison with observations

We now compare our so-obtained list of δi with the observed local
matter distribution. By combining our results with prior analytic work
in �CDM, we also assess the implications for the Hubble tension
and conduct a joint analysis.

2.2.1 KBC void

As discussed in Section 1.1, Keenan et al. (2013) discovered a
large local underdensity with an apparent density contrast of δobs =
0.46 ± 0.06 around the LG assuming a fixed distance–redshift
relation with H0 = 70 km s−1 Mpc−1 (see their section 4.7). To
compare their reported δobs with �CDM expectations, we need to
account for the fact that any underdensity δ would also affect the
local Hubble parameter by

�H

H
≡ f δ , (18)

where e.g. Marra et al. (2013) showed that for δ � 1 in �CDM,

f = 	m
0.6

3b
, (19)

with the bias factor b = 1 (see also Section 5.3.1). As a result, the
volume within a fixed redshift would be reduced below that assumed
in Keenan et al. (2013) by a fraction

�V

V
= − 3f δ . (20)

The apparent underdensity δ̃i uncorrected for RSD would then be

1 − δ̃i = 1 − δi

1 − 3f δi

. (21)

For the small underdensities expected in �CDM (see next), this
approximately implies

δ̃i = δi (1 + 3f ) . (22)

In other words, the apparent (RSD-uncorrected) underdensity would
be 1.5× larger than the actual value.

Figure 1. Distribution of the apparent relative density contrast δ̃ (equa-
tion 22) of spheres with a 300 Mpc radius less an inner 40 Mpc hole in the
�CDM MXXL simulation, calculated at redshift z = 0 (Section 2.1). The red
solid curve shows the observed density contrast of δobs = 0.46 ± 0.06 with
Gaussian errors (see also fig. 11 and table 1 in Keenan et al. 2013). The δ̃

values closely follow a Gaussian distribution with a dispersion of σ�CDM =
0.048 (the black curve). A more detailed Gaussianity test is performed in
Appendix A. Both curves are normalized to the same area.

Fig. 1 shows the distribution of δ̃i in the standard �CDM MXXL
simulation. This yields true rms density fluctuations of 3.2 per cent,
so observations uncorrected for RSD should exhibit fluctuations of
4.8 per cent. To a very good approximation, these should be normally
distributed, as demonstrated in Appendix A. Since 46/

√
62 + 4.82 ≈

6.0, we expect the discrepancy to be at the ≈6σ level.
Comparing the density contrast predicted by standard cosmology

with the observed KBC void reveals a very significant discrepancy
(Fig. 1). This is usually quantified by finding the likelihood P of
observing a more severe discrepancy, which we find for each vantage
point and then average:

P = 1

N

N∑
i=1

fχ �→P

(∣∣∣∣∣ δ̃i − δobs

σobs

∣∣∣∣∣
)

, with (23)

fχ �→P (χ ) ≡ 1 − 1√
2π

∫ χ

−χ

exp

(
−x2

2

)
dx . (24)

Here, N = 106 is the number of vantage points, δobs = 0.46 is
the observed underdensity, and σ obs = 0.06 is its uncertainty. The
function fχ �→P gives the likelihood that a 1D Gaussian is more than χ

standard deviations away from its mean. We use the inverse function
fP �→χ to convert the so-obtained P-value into a more easily understood
form, as will usually be done throughout this paper. In this way, we
find that the KBC void is in 6.04σ tension with �CDM cosmology if
it is accurately represented by the MXXL simulation on a 300 Mpc
scale.

2.2.2 Implications for the Hubble tension

In any matter-conserving cosmological model, we expect an under-
density to be associated with some change in the local expansion
rate (equation 5). Fig. 2 illustrates the manner in which this occurs
for �CDM. In principle, the KBC void can boost the global Hubble
constant to its local value observed by the SH0ES and H0LiCOW
teams (H local

0 = 73.8 ± 1.1 km s−1 Mpc−1, Riess et al. 2019; Wong
et al. 2020). In fact, the straight line drawn on Fig. 2 should
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Figure 2. The local underdensity and Hubble constant in the �CDM
framework and as found observationally. The green point shows H

global
0 =

67.4 ± 0.5 km s−1 Mpc−1 (Planck Collaboration VI 2020) and a local density
equal to the cosmic mean (δ̃ = 0). The red data point is the local Hubble
constant combined from the SH0ES and H0LiCOW projects (H local

0 =
73.8 ± 1.1 km s−1 Mpc−1; Riess et al. 2019; Wong et al. 2020) and the locally
observed δobs = 0.46 ± 0.06 (Keenan et al. 2013). The grey contour lines show
the indicated confidence levels assuming the measurements are independent.
The blue points show the expected cosmic variance in �CDM corrected for
RSD (equations 18 and 22) at the indicated confidence level. Notice that a
5σ fluctuation is not enough to get within 5σ of the local observations.

curve to the right for large δ because as δ → 1, we expect that
H local

0 /H
global
0 → ∞ due to mass conservation (equation 5, see also

fig. 1 of Marra et al. 2013). Thus, the expected relation between
H local

0 and δ̃ would pass rather close to the observations (red point).
However, a 10σ density fluctuation would be necessary to reduce the
Hubble tension to the 2σ level. Moreover, even a 5σ underdensity in
�CDM is still not enough to get within 5σ of the local observations.
This suggests that combining the KBC void and Hubble tension leads
to a discrepancy with �CDM that slightly exceeds 5

√
2σ = 7.07σ .

We next perform a more detailed joint analysis.

2.2.3 Combined implications for �CDM

As discussed in Section 1.1, the locally measured H0 is discrepant at
the 5.3σ level with the Planck-based �CDM prediction (Wong et al.
2020) if we neglect the small expected impact of cosmic variance
(Wojtak et al. 2014). In the previous section, we have shown that the
KBC void is in 6.04σ tension with �CDM (Fig. 2). Therefore, both
the KBC void and Hubble tension are difficult to explain within the
�CDM framework − we can explain both simultaneously, but this
would require a 10σ density fluctuation (Fig. 2). In this context, the
most plausible explanation is that both are caused by measurement
errors. If so, we would have to assume two independent >5σ errors,
an unlikely scenario. The combined tension would correspond to
χ2 = 5.302 + 6.042 for 2 degrees of freedom. This results in a
probability of P = exp(−χ2/2) = 9.4 × 10−15, which is equivalent
to 7.75σ for one variable.

Measurements of the local density and velocity fields rely on rather
different techniques, justifying our assumption of independence. For
instance, a miscalibration of SNe magnitudes would affect H local

0 but
not δobs as the latter is a relative density contrast between different
redshift bins. Thus, it is extremely unlikely that both phenomena are

caused purely by measurement errors. Moreover, the KBC void is
evident at different wavelengths as well as independently on smaller
(< 50 Mpc) scales (Karachentsev 2012), while several independent
teams have measured a higher local expansion rate than the Planck-
based �CDM prediction (Sections 1.1 and 1.2, respectively).

A more rigorous way to estimate the combined tension is to
average the P-values across different vantage points considering their
individual δi, how this would perturb the local expansion rate, and
how the resulting RSD would lead to an enhanced apparent δ̃i . The
average P-value is thus

P = 1

N

N∑
i=1

exp

(
−χ2

i

2

)
, where (25)

χ2
i =
(

δ̃i − δobs

σδ

)2

+
(

H̃0,i − H local
0

σH0

)2

and (26)

H̃0,i = H
global
0 (1 + f δi) (27)

is the apparent local Hubble constant. Here, H local
0 =

73.8 km s−1 Mpc−1 and σH0 = 1.2 km s−1 Mpc−1, with the latter
including an allowance for the 0.5 km s−1 Mpc−1 uncertainty from
Planck Collaboration VI (2020). This procedure reveals that the KBC
void and Hubble tension falsify the �CDM framework at 7.09σ , in
agreement with our earlier estimate.

Our calculation of the cosmic variance in �CDM is derived
from the stellar masses of subhaloes with M∗ > 1010 h−1 M�, which
should be more than sufficient to accurately trace the matter dis-
tribution on a 300 Mpc scale. Moreover, our results are consistent
with expectations from the Harrison–Zeldovich spectrum (Harrison
1970; Zeldovich 1972) and its early Universe normalization required
to match the CMB (Planck Collaboration VI 2020). In a �CDM
context, this is parametrized using σ 8, which implies rms fluctuations
of 3.2 per cent on a 300 Mpc scale at the present epoch. This agrees
with our much more rigorous estimate using MXXL (Section 2.2.1).

Therefore, the KBC void is not a consequence of random measure-
ment errors or density fluctuations expected in standard cosmology.
Structure formation mainly depends on the underlying gravitational
law, strongly suggesting that the observed KBC void cannot be
explained by treating baryonic physics differently on galaxy scales.

Although cosmic variance in a standard context is insufficient
to explain the KBC void and H0 from low-redshift probes (e.g.
Macpherson et al. 2018), Fig. 2 indicates that a large local void
appears to be a promising explanation for these local observations.
Consequently, we next consider a long-range modification to gravity
which should enhance cosmic variance while accurately explaining
observations on galactic scales with a fixed acceleration threshold
(Famaey & McGaugh 2012). Section 5.3 discusses some commonly
used arguments for why the KBC void cannot solve the Hubble
tension.

3 MO N D FR A M E WO R K

As shown in the previous section, the cosmic variance expected
within the �CDM framework is insufficient to explain the KBC void
and Hubble tension. Thus, we aim to investigate structure formation
and the velocity field in MOND (Milgrom 1983). In this section,
we first introduce a conservative MOND cosmology that has the
same expansion rate history and overall matter content as �CDM,
but with CDM replaced by hot dark matter (HDM) to account for
light element abundances, galaxy clusters, and the CMB without
much affecting galaxies (Angus 2009). We then explain how we
parametrize the initial void density profile and evolve it forwards to
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The KBC void and H0 tension in �CDM and MOND 2853

the present time (Section 3.2). Finally, we describe how predictions
for local observables are extracted from our models (Section 3.3).

3.1 The νHDM cosmological model

Any viable cosmological model has to explain the angular power
spectrum of the CMB and the primordial abundances of light
elements. Angus (2009) provided a promising cosmological model
that seeks to address the shortcomings of MOND on galaxy cluster
and larger scales using an extra sterile neutrino species with a
mass of mνs

= 11 eV/c2. Thermally produced neutrinos of this
mass would have the same relic abundance as CDM particles in
standard cosmology, but would behave as HDM in the sense of
not clustering on galaxy scales.2 However, the composition of the
universe as a whole would be similar to �CDM − baryons would still
comprise ≈ 5 per cent of the present critical density of the universe,
sterile neutrinos would replace the ≈ 25 per cent contribution of
CDM, and dark energy would yield the remaining ≈ 70 per cent (i.e.
	m,0 = 	b,0 + 	νs,0 ≈ 0.3 and 	�, 0 ≈ 0.7). We refer to this model
as the νHDM paradigm, where ν stands for both the interpolating
function in QUMOND (equation 8) and sterile neutrinos, maximizing
the chance that it is physically meaningful. The observed expansion
history of the Universe seems broadly consistent with �CDM
cosmology (e.g. Joudaki et al. 2018). As shown by Angus (2009),
νHDM yields the same expansion history as �CDM due to the
same overall matter content and the same Friedmann equations at
the background level (Skordis et al. 2006). This issue is discussed
further in Section 3.1.1.

Although the existence of sterile neutrinos is not experimentally
confirmed yet, they are theoretically consistent with standard par-
ticle physics (Merle 2017). Observationally, the νHDM model is
motivated mainly by galaxy clusters, where the dynamical discrep-
ancy cannot be explained in MOND without DM (Sanders 2003).
Furthermore, DM is necessary to address the offset between X-ray
and lensing peaks in the Bullet Cluster (Clowe et al. 2006), since
MOND acting on the baryons alone is unable to fully replace the
role played by CDM in standard cosmology (Angus et al. 2007).
We emphasize that these observations do not uniquely require CDM
since they are on a much larger spatial scale than the hypothesized
CDM haloes of individual galaxies (Ostriker & Peebles 1973).

In this context, Angus, Famaey & Diaferio (2010) analysed 30
of the most virialized galaxy groups and clusters in the νHDM
paradigm. They found that the required HDM density in all cases
reaches the so-called Tremaine–Gunn limit (Tremaine & Gunn 1979)
at the centre for sterile neutrinos with mνs

= 11 eV/c2. This is a
strong indication that the DM density in galaxy cluster cores is limited
by quantum degeneracy pressure (the Pauli Exclusion Principle).
Note that MOND fits to galaxy rotation curves are hardly affected by
sterile neutrinos with mνs

� 100 eV/c2, even if their number density
reaches the Tremaine–Gunn limit (section 4.4 of Angus et al. 2010).
As a result, νHDM is likely to explain the internal dynamics of both
galaxies and galaxy clusters. Introducing sterile neutrinos is thus well
consistent with astronomical observations and almost consistent with
the standard model of particle physics (unlike CDM particles), but
they nevertheless require experimental verification.

2In �CDM, sterile neutrinos with mνs ≈ 7 keV/c2 are often considered as
DM candidates (e.g. Bulbul et al. 2014; Boyarsky et al. 2014). Like 11 eV/c2

sterile neutrinos, these would also be relativistic during the nucleosynthesis
era (Section 3.1.2), but would cluster in galaxies.

In the following, we address the background evolution of a(t) in the
νHDM framework, allowing us to address the primordial abundances
of light elements and the CMB. We also consider the implications for
large-scale structure, where substantial differences are expected from
�CDM. The theoretical uncertainties of the here applied MOND
approach are summarized in Section 5.2.3, which focuses on how
density perturbations should be treated in MOND.

3.1.1 Background cosmology

The background evolution a(t) requires a relativistic theory that
yields the appropriate MOND limit in galaxies. In this contribution,
we make certain assumptions about the parent relativistic theory
that gives rise to MOND. These assumptions are based on prior
work, in particular with the tensor–vector–scalar (TeVeS) theory
that was the first covariant framework with an appropriate MOND
limit (Bekenstein 2004). His section 7 indicates that the background
evolution should be very similar to General Relativity at all epochs
for the same matter-energy content.

The background evolution and perturbations in TeVeS were
addressed in detailed calculations done by Skordis (2006). To avoid
detectable departures from the standard expansion history during the
nucleosynthesis era, the free dimensionless parameter μ0 must be
rather large (Skordis et al. 2006).3 In particular, if we allow the extra
energy density contributed by the scalar field to comprise a fraction
X of the critical density during the radiation-dominated era, then
the contribution in the matter and �-dominated eras would be X/9.
Primordial light element abundances then imply that the standard
Friedmann equation would differ from the TeVeS cosmology at only
the sub-per cent level (see their fig. 1). The very small contribution
of the scalar field density was also demonstrated in fig. 2 of
Dodelson & Liguori (2006). Therefore, we will assume that the
background cosmology is identical to that of �CDM. Since the
CMB is also expected to have similar properties in both frameworks
(Section 3.1.3), they both lead to the Hubble tension in a similar
manner provided that ȧ = H local

0 , i.e. if cosmic variance in the local
measurements is much smaller than the Hubble tension. Our main
argument is that this assumption is valid in �CDM but need not be
in MOND.

While the original version of TeVeS is inconsistent with gravita-
tional waves travelling at c, a slightly modified version does have this
property, even in the presence of perturbations (Skordis & Złośnik
2019). The above-mentioned results should carry over to the updated
version of TeVeS, though this should be carefully demonstrated in
future work. The preliminary results of Skordis & Złosnik (2020) are
an important step in this direction.

Throughout this work, we assume dark energy not to be an artefact
of an observer in an underdense region seeing an apparently accel-
erating expansion due to the developing inhomogeneities (Buchert
2000). However, we emphasize that proper time-averaging of global
properties of the universe would be required to further study the
present model (Wiltshire 2007).

3.1.2 Big bang nucleosynthesis

Big bang nucleosynthesis (BBN) occurred at a temperature of kT ≈
1 MeV, where k is the Boltzmann constant. A review on BBN can be
found e.g. in Cyburt et al. (2016). In the νHDM framework, Skordis

3μ0 is related to the TeVeS parameter κ (equation 16 of Bekenstein 2004) via
μ0 ≡ 8π /κ .
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et al. (2006) showed that it is possible to have essentially no departure
from the standard expansion history during the radiation-dominated
era. However, the model would still have an effect on BBN because
at kT ≈ 1 MeV, sterile neutrinos with mνs

≈ 11 eV/c2 would be
relativistic. Their weaker interactions would cause them to decouple
earlier, so they would add an extra 7/8 to g∗, the number of effective
relativistic degrees of freedom. Since the Hubble parameter H ≡ ȧ/a

scales as H ∝ √
g∗ and standard physics predicts g∗ = 10.75, this

would increase H by only 4 per cent, causing a slight impact on the
primordial abundances of light elements. As shown in equation (13)
of Cyburt et al. (2016), any increase in H raises the primordial He-4
mass fraction Yp because free neutrons have less time to decay. Their
detailed calculations have shown that this dependence can be fitted
with a power law of the form

Yp
∝∼ N0.163

ν . (28)

In standard cosmology, the effective neutrino number is Nν = 3.046,
which slightly exceeds 3 because neutrinos decouple only slightly
before electron–positron annihilation at kT = 511 keV. Thus, an
extra sterile neutrino species would increase Yp by a factor of
(4.046/3.046)0.163 = 1.047, implying the standard value of Yp =
0.247 would rise to 0.259. This is only a small effect, so observations
of the primordial He abundance in ancient gas clouds currently
do not set a strong constraint on the existence of an extra sterile
neutrino. For instance, measurements of the He abundance of a
gas cloud at z = 1.724 backlit by a quasar yield Y = 0.250+0.033

−0.025
(Cooke & Fumagalli 2018). Using a sample of H II regions, Aver,
Olive & Skillman (2012) derived Yp = 0.2534 ± 0.0083. Even if
their reported uncertainty is taken at face value, Yp = 0.259 is quite
possible.

Measurements of the primordial abundances of D and Li-7 are less
sensitive to Nν (Cyburt, Fields & Olive 2002). However, primordial
D abundances are relatively well known. Cooke, Pettini & Steidel
(2018) obtained Nν = 3.41 ± 0.45 based on (D/H)p derived from
a metal-poor damped Ly α system. Therefore, both D and He
measurements allow an extra sterile neutrino, which was actually
favoured by the earlier analysis of Steigman (2012). We do not
consider the more problematic case of Li-7, though see Howk et al.
(2012) for a gas phase measurement in the Small Magellanic Cloud
that seems to resolve the lithium problem.

These considerations only hold for sterile neutrinos in thermal
equilibrium during the nucleosynthesis era. However, if sterile
neutrinos decoupled much earlier, their number density could be
lower depending on whether any other particle subsequently became
non-relativistic. If so, �Nν would be lower, reducing the impact on
g∗ and on BBN. This scenario would require a higher sterile neutrino
mass to recover the standard value of 	m.

3.1.3 Radiation-dominated era and the CMB

After BBN, the next major constraint on any cosmological model
comes from the CMB. This occurred shortly after the epoch of matter-
radiation equality at zeq = 3411 ± 48 (Planck Collaboration VI
2020).4 This corresponds to a photon temperature of kT ≈ 0.80 eV,
which is much less than the mass of the here considered sterile
neutrinos. Consequently, they would behave just like non-relativistic
CDM, causing zeq to be the same as in the �CDM model.

4zeq is tightly constrained by the acoustic oscillations in the CMB because
during the earlier radiation-dominated era, perturbations in the sub-dominant
matter component are unable to grow through gravitational instability.

The CMB was emitted at zCMB ≈ 1100, corresponding to kT ≈
0.26 eV. At this time, matter dominated the energy budget of the
universe. Since the background cosmology of the νHDM model is
the same as for �CDM and the plasma physics is unchanged, the
sound horizon at recombination would still have the standard value of
147.09 ± 0.26 cMpc (Planck Collaboration VI 2020). This is directly
related to the angular scale of the first acoustic peak in the CMB,
which should thus be unaffected in our model.

11 eV/c2 sterile neutrinos would be non-relativistic at the time of
last scattering. Since both T and the peculiar velocity vpec should
decline ∝ 1/a, we expect the sterile neutrinos to typically have

vpec ≈ 0.26 eV

11 eV
c = 0.024 c . (29)

This implies a free-streaming length of Lfs ≈ 3.5 cMpc, which
is much shorter than the horizon scale. Since the first acoustic
peak of the CMB occurs at a multipole moment of � ≈ 200
(Jaffe et al. 2001), free-streaming becomes important only for
� � 200/(0.024

√
3) = 4900, beyond the range accessible by Planck

Collaboration VI (2020). This is consistent with section 6.4.3 of
Planck Collaboration XIII (2016), which explicitly states that any
particles with m > 10 eV/c2 ‘are so massive that their effect on the
CMB spectra is identical to that of CDM.’

The νHDM paradigm does more than simply replace CDM with
HDM. Because of the Milgromian force law, the paradigms differ
with regards to the evolution of sub-horizon perturbations. In the
following, we estimate the gravitational field from inhomogeneities
around tCMB , the time of recombination.

The peculiar velocities are of order vpec ≈ cδ and were built up over
a duration of tCMB = 380 kyr. Assuming rms density fluctuations of
δCMB = 10−5 as observed in the baryons, we can obtain a lower bound
on the peculiar acceleration gCMB sourced by inhomogeneities.

gCMB ≥ cδCMB

tCMB

≈ 2.1 a0 . (30)

This already exceeds Milgrom’s constant a0 . However, the gravity
must have been significantly stronger to compensate for resistance
from radiation pressure. In order to estimate the density fluctuations
in the HDM component at tCMB , we consider the value of σ 8 =
0.811 ± 0.006 on a scale of 8 h−1 ≈ 12 cMpc that is required
to fit the CMB anisotropies (Planck Collaboration VI 2020). For
a scale-invariant power spectrum, the density fluctuations on the
147 cMpc scale of the first acoustic peak in the CMB are 12σ 8/147
≈ 0.065 at the present epoch, as can also be seen by scaling
our results of Section 2.2 for fluctuations on a 300 cMpc scale.5

Since �CDM predicts that δ ∝ a in the matter-dominated era
and neglecting the effect of dark energy, we would expect density
fluctuations of δCMB ≈ 5.9 × 10−5 at tCMB . Taking into account that
structure formation slowed down when the Universe became dark
energy-dominated at z ≤ 0.7 and was slower around the time of
recombination due to the still significant amount of radiation, we
estimate that

δCMB ≈ 10−4 . (31)

Thus, the typical gravitational field at recombination was

gCMB ≈ 21a0 , (32)

implying MOND had only a minor impact at that time.

5The here used MXXL simulation is calibrated to the CMB data gathered by
WMAP-1 (Angulo et al. 2012).
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In the matter-dominated era (a 	 aeq), the density perturba-
tions grow ∝ a after their mode enters the horizon. Therefore, the
Harrison–Zeldovich power spectrum predicts that the power of the
density perturbations scales inversely with their length L (Harrison
1970; Zeldovich 1972), i.e.

P (L) ∝ L−1 . (33)

Since the mass enclosed by the mode is M ∝ L3, the mass perturbation
must scale as

�M ∝ L2 . (34)

Therefore, the perturbation’s Newtonian gravity is independent of L,
i.e.

gN = const. (35)

The Harrison–Zeldovich power spectrum breaks down for length-
scales that enter the horizon before aeq. Since no modes would be able
to grow during the radiation-dominated era, these short-wavelength
modes would have much less power than predicted by a 1/L scaling
relation. Thus, gN would be smaller. However, in MOND, these
short-wavelength modes would be embedded in the EFE generated
especially by long-range modes (Section 1.3). This would severely
limit the MOND boost to the internal gravity of shorter modes, since
their total gN depends on both their internal gravity and any external
field. For this reason, we expect that modes of any L were unaffected
by MOND around the epoch of recombination.

We next consider how this picture changes with time. Since
Newtonian density perturbations are expected to grow as δ ∝ a in the
matter-dominated era, the mass perturbation should also scale as

�M ∝ a . (36)

For linear (δ � 1) perturbations whose co-moving size hardly
changes, the Newtonian gravity should scale as

gN ∝ a−1 . (37)

Our previous estimation showed that the gravitational field sourced
by inhomogeneities is g 	 a0 at tCMB (equation 32). We now see
that even larger gravitational fields are expected at earlier times,
further justifying our assumption that MOND would have little effect
then.6

We can combine equations (32) and (37) to deduce that MOND
does not play a significant role in structure formation until z �
zMOND = 50. This underpins the commonly used assumption that
MOND does not play a role in the very early universe but would
promote the formation of the first galaxies (Sanders 1998).

The high accelerations around the time of recombination strongly
suggest that the MOND gravity law would not by itself affect the
acoustic oscillations in the CMB. This issue was investigated further
by Skordis et al. (2006), who considered a covariant formulation of
MOND. Their fig. 2 confirms our conclusion that the modification
to gravity has by itself only a very small effect for plausible choices
of the model parameters consistent with BBN. However, their use of
three ordinary neutrino species with a much lower mass of 2 eV/c2

led to significant free streaming effects that are totally inconsistent
with the latest observations (Planck Collaboration XXVII 2014). If
instead a single 11 eV/c2 sterile neutrino is used, a very good fit
can be obtained to the CMB power spectrum for the reasons just

6MOND effects can be further reduced at early times if a0 was smaller,
or if density perturbations couple to the background in a non-trivial way
(Section 5.2.3).

discussed (fig. 1 of Angus 2009). Note also that with a standard
a(t), the angular diameter distance to the CMB would be the same
as in �CDM, placing the acoustic peaks at the correct angular
scales. Indeed, fig. 1 of Angus & Diaferio (2011) shows that
the CMB power spectra in the νHDM and �CDM models agree
quite closely, so both paradigms are consistent with observations
taken by WMAP-7, the Atacama Cosmology Telescope (ACT),
and the Arcminute Cosmology Bolometer Array Receiver up to
� = 2500.

3.1.4 Evolution of perturbations and large-scale structure

Even if the CMB power spectrum is correct in our framework,
the observed CMB is also influenced by foreground structures.
Section 5.3.3 discusses the gravitational redshift of the entire last
scattering surface due to the rather high MOND potential of the
KBC void. Foreground lensing of the CMB by large-scale structures
and the integrated Sachs–Wolfe (ISW) effect would also be stronger
in MOND. There are some observational hints that these effects
are stronger than expected in �CDM (Section 5.3.1). These tensions
could be eased in a theory where structure formation is more efficient.
However, it is possible that νHDM overcorrects the problem and
produces too much foreground lensing and/or a Sachs–Wolfe effect
in disagreement with observations. These issues are beyond the
scope of our work, but should be addressed before the νHDM
framework can be considered to fully account for all observed
aspects of the CMB. This would almost certainly require numerical
simulations of structure formation. In addition, photon propagation
through such a simulation would need to be handled with care, taking
account of inhomogeneities and their time evolution (e.g. Wiltshire
2007).

Nusser (2002) considered the growth of density perturbations
in a Milgromian framework. Their section 2 introduced the basic
principle used in all subsequent MOND cosmological simulations
(Llinares et al. 2008; Angus & Diaferio 2011; Angus et al. 2013;
Katz et al. 2013; Candlish 2016). These simulations make the ansatz
that a MONDified Poisson equation (usually equation 7) is applied
only to the density perturbations about the mean background value, as
evident in e.g. equation (2) of Candlish (2016).7 This ‘Jeans swindle’
(Binney & Tremaine 1987) approach to MOND was justified using
the earlier work of Sanders (2001), who showed its validity in a non-
relativistic Lagrangian formulation of MOND (see his section 2). The
approach is certainly valid for systems such as galaxies that are much
denser than the cosmic mean. The use of non-relativistic gravitational
equations should be sufficient when dealing with structures such as
the KBC void that are much smaller than the cosmic horizon, since
gravity traveltime effects would not be too significant.

Falco et al. (2013) showed that the Jeans swindle is formally
correct in Newtonian gravity − including the background would
simply add on the force required to maintain the time-dependent
Hubble flow velocity. However, it still needs to be rigorously
demonstrated that the swindle remains mathematically valid in a
MONDian model with a non-linear gravity law. Therefore, although
this ansatz is commonly used by the MOND community, it is one of
the strongest assumptions in the here presented cosmological model.

7Equation (4) of Nusser (2002) assumes the deep-MOND limit, but we
generalize it to an arbitrary acceleration using an interpolating function
(equation 8). Note that the deep-MOND limit is a reasonable assumption
for the KBC void (Section 5.2.3).
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One of the few works that does not make this assumption is Sanders
(2001), whose model is a non-relativistic two-field Lagrangian-
based theory of MOND. The coupling between these two fields
is described by an adjustable parameter β in his modified Poisson
equation (8). Setting β = 0 is equivalent to applying the Jeans swindle
approach. However, if β �= 0, there exists a coupling between the
peculiar acceleration sourced by inhomogeneities and the zeroth-
order Hubble flow acceleration gHubble (equation 38). Sanders (2001)
adopted β = 3.5 for his main analysis. As discussed in the cosmology
section of Sanders & McGaugh (2002), gHubble essentially contributes
an extra source of gravity to the total entering the ν calculation in
equation (7), limiting the MOND boost to gravity. We call this the
‘Hubble field effect’ (HFE), since it is similar to but distinct from the
usual EFE in MOND − both make the behaviour more Newtonian.
In Section 5.2.3, we address theoretical uncertainties arising from
the HFE, which is neglected in our main analysis. A non-zero HFE
would substantially affect large-scale structures especially at scales
� 100 cMpc, which could be used to constrain it in future studies
(Section 5.2.3). However, we argue there that even with a strong HFE,
cosmic variance would still be enhanced 3× compared to �CDM
expectations on a 300 Mpc scale under conservative assumptions,
enough to reproduce the KBC void.

Nusser (2002) built on the model of Sanders (2001) but assumed
instead that β = 0 because he could not find any physical justification
for coupling both fields, i.e. for the HFE. This uncoupled (Jeans
swindle) approach is generally the one adopted in MOND cosmo-
logical simulations (e.g. Llinares et al. 2008; Angus et al. 2013;
Katz et al. 2013; Candlish 2016). In particular, Angus et al. (2013)
used it in a cosmological N-body simulation designed to address the
formation of large-scale structure in MOND supplemented by sterile
neutrinos. Although their work was novel and very advanced for its
time, it faces some conceptual and numerical problems. In particular,
they concluded that their model with 11 eV/c2 sterile neutrinos
significantly underestimates the number of low-mass galaxy clusters
and slightly overestimates the number of very massive clusters
(see e.g. their fig. 4). This inconsistency between the model and
observational data could arise for several reasons. Their conclusion is
based on a simulation with a box size of 256 h−1 cMpc and a particle
resolution of only ≈ 3.78 × 1010 M�. The underproduction of low-
mass galaxy clusters could be explained by the low particle resolution
and therewith by an absence of low-mass particles needed to form
such systems. In addition, they do not use a grid with adaptive mesh
refinement (AMR), which causes that the potential wells especially
of the smaller clusters may not be resolved properly, making them
difficult to form. Therefore, it would be highly valuable to revisit
their cosmological simulations with an AMR grid code such as
PHANTOM of RAMSES (Lüghausen, Famaey & Kroupa 2015), which
adapts the potential solver of the widely used RAMSES algorithm
(Teyssier 2002).

In general, small simulation boxes lack large-scale modes. Since
the EFE is mainly sourced by very massive objects, a too small sim-
ulation box would potentially underestimate the EFE on MONDian
subsystems. Thus, the internal gravitational field would be too strong,
which could also explain the efficient formation of massive galaxy
clusters in Angus et al. (2013).

As already discussed at the beginning of this section, Angus
et al. (2010) demonstrated that the required neutrino density in 30
virialized galaxy groups and clusters reaches the Tremaine–Gunn
limit at the centre, which supports the νHDM model. However, the
neutrino degeneracy pressure in the cores of galaxy clusters has not
been included in the simulations of Angus et al. (2013). If one would
account for this effect, it would be more difficult to form massive

galaxy clusters because gravity is resisted by neutrino degeneracy
pressure.

Finally, Angus et al. (2013) compared their simulated halo mass
functions with cluster mass functions derived from observations at z

≤ 0.3 (Reiprich & Böhringer 2002) and z ≤ 0.1 (Rines, Diaferio &
Natarajan 2008). As we have seen in Section 1.1, the KBC void
has a similar extent. It is evident in X-ray galaxy cluster surveys
(e.g. Böhringer et al. 2015, 2020). Therefore, local observations
are biased against high-mass clusters, e.g. the massive merging
galaxy cluster El Gordo (ACT-CL J0102-4915, Marriage et al.
2011) with a mass of 3 × 1015 M� (Jee et al. 2014) at z = 0.87
(Menanteau et al. 2012) would almost certainly not be evident in
local observations from within a deep void. Thus, local observations
do not provide a representative cluster mass function of the whole
Universe, so cannot be compared with the entire simulated halo
population.

Consequently, the Angus et al. (2013) cosmological model has
never been tested in full detail on large scales. An object similar to El
Gordo was identified in the νHDM simulation of Katz et al. (2013), so
initial results seem promising. It would be highly valuable to revisit
their analysis in more physically and numerically advanced large-
scale simulations. This is because the νHDM framework provides a
viable explanation for BBN and the CMB, but also works on galaxy
cluster scales while recovering the successes of MOND in galaxies.
At present, there is no N-body or hydrodynamical simulation with
a large enough box size to study the KBC void in a MONDian
framework. Therefore, we develop a semi-analytic simulation for
this purpose. In the following, we introduce the governing equa-
tions and parameters of the here discussed νHDM cosmological
model.

3.2 Governing equations

We develop a simplified simulation in which the trajectories of
particles are integrated up to the present time from z = 9, which
corresponds to ≈ 0.5 Gyr after the big bang (equation 45). As
derived from General Relativity in section 2.2 of Banik & Zhao
(2016), the particle’s trajectory is described by the background
cosmological acceleration term and any additional gravity sourced
by inhomogeneities:

r̈ = gvoid +

gHubble︷︸︸︷
ä

a
r , (38)

ṙ i = Hi r i , (39)

where r is the particle’s position relative to the void centre, gvoid is the
local gravitational acceleration sourced only by density deviations
from the cosmic mean, gHubble is the acceleration in a homogeneously
expanding spacetime, and i subscripts denote initial values when
a = 0.1. At that time, particles are assumed to be on the Hubble
flow. However, the initial matter distribution is assumed to be
inhomogeneous. A spherically symmetric underdensity causes a
Newtonian gravitational force of

gN ≡ G�M

r2
, with (40)

�M ≡ 4π

3
ρ0

( r

a

)3
− Menc , (41)

where �M is the mass deficit within radius r, ρ0 is the present
cosmic mean density of matter, and Menc is the enclosed mass. Since
we assume mass conservation and no shell crossing, Menc remains
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The KBC void and H0 tension in �CDM and MOND 2857

constant for an individual particle. In the case of no void, gN = 0 since
�M = 0. The exact set-up of the initial void profile is described in
Section 3.2.1 and Appendix B.

Applying the Jeans swindle approach to MOND (Section 3.1.4),
the gravitational force g is calculated with the ‘simple’ interpolation
function (equation 8) between the Newtonian and deep-MOND
regimes (Famaey & Binney 2005). The EFE is included by quadrature
summing gN and the Newtonian-equivalent external field gN,ext

(Famaey, Bruneton & Zhao 2007):

g = gN

⎛⎝1

2
+
√

1

4
+ a0

(
g2

N
+ g2

N,ext

)− 1
2

⎞⎠ . (42)

The EFE and its impact on the void will be described in more
detail in Sections 3.2.2 and 3.3.6, respectively. Milgrom’s constant
a0 = 1.2 × 10−10 m s−2 is taken to be constant over cosmic time.
Substantially higher values in the past may conflict with the CMB
(Section 3.1.3) and high-redshift rotation curves (Milgrom 2017).

Solving equation (38) requires knowledge of the background
cosmology. As argued in Section 3.1.1, assuming this follows a
standard Friedmann equation should be accurate at the sub-per cent
level. We therefore apply the second Friedmann equation and
assume a standard flat background cosmology (	m, 0 + 	�, 0 = 1),
yielding

ä

a
= − 4πG

3
(ρm − 2ρ�) (43)

= H 2
0

(
−1

2
	m,0a

−3 + 	�,0

)
, (44)

where ρm and ρ� are the cosmic mean densities of matter and dark
energy, respectively. We assume that ρm ∝ a−3 while ρ� = const. The
parameters 	m, 0 and 	�, 0 are the present-day matter and the dark
energy densities in units of the critical density ρc = 3H 2

0 / (8πG).
We set 	m, 0 = 0.315, 	�, 0 = 0.685, and choose a global Hubble
constant of H0 = 67.4 km s−1 Mpc−1, consistently with the latest
Planck data (Planck Collaboration VI 2020). Imposing the boundary
conditions a = 0 when t = 0 and ȧ = H0 at a = 1, we get
that

a (t) =
(

	m,0

	�,0

) 1
3

sinh
2
3

(
3

2

√
	�,0H0t

)
. (45)

3.2.1 Initial void profile

The implemented void in the fiducial simulation run is initialized
with a Maxwell–Boltzmann radial density profile. This is motivated
by the observed Local Volume, where the density increases inwards
for distances � 40 Mpc (see e.g. fig. 3 in Karachentsev & Telikova
2018). The enclosed mass within co-moving radius rcom from the
void centre is thus given by

Menc = 4πρ0r
3
void

(
x3

3
− αvoidε

)
, where (46)

ε =
∫ x

0
x ′4 exp

(
−x ′2

2

)
dx ′ (47)

= 3

√
π

2
erf

(
x√
2

)
− x
(
x2 + 3

)
exp

(
−x2

2

)
. (48)

The dimensionless radius x ≡ rcom/rvoid, while αvoid is the initial void
strength and rvoid is the parameter determining its co-moving size at
z = 9. The first term in equation (46) is the mass within a sphere of
co-moving radius rcom if the density were equal to the cosmic mean,

with the void arising from the mass deficit imposed by the second
term.

We run different simulations with αvoid ranging from 10−5 to 10−2

and rvoid ranging from (50–1030) cMpc. The parameter range of the
initial void strength is motivated by the expected density fluctuations
at z = 9 based on CMB data. In addition, we also run simulations in
which the void is modelled with a Gaussian or an exponential initial
density profile (Appendices B and C).

3.2.2 External field history

As stated in Section 1.3, the EFE is a consequence of the non-linearity
of Milgrom’s law of gravity (Milgrom 1986). Thus, we allow for the
possibility that the void as a whole is embedded in an EF from
even larger scales. We follow the usual approach of assuming the
EF is sourced by a distant point-like object. This allows us to obtain
the present-day Newtonian-equivalent external field using the simple
interpolation function (Famaey & Binney 2005):

gN,ext

a0

= g̃2
ext

1 + g̃ext
, (49)

where g̃ext is the external field in units of a0 .
The evolution of the EFE over cosmic time is unknown due to

the lack of a fully self-consistent MONDian framework. Since the
EFE depends on the environment in which the MONDian system is
embedded and thus on the formation of structure, we assume that
the external field has a power-law dependence on the cosmic scale
factor:

gN,ext (t) = gN,ext (t0 )anEFE (t) , (50)

where t0 = 13.8 Gyr is the present time, and nEFE is a free parameter
ranging from −2 to +2 in steps of 0.5 for different models. For
our fiducial simulation run, we adopt a time-independent external
field (nEFE = 0). The results for different external field histories are
discussed in Section 5.2.2. Table 1 summarizes the fixed and free
parameters of our models.

3.3 Extracting mock observables

Our cosmological MOND models are constrained by the observed
density contrast of the KBC void (Keenan et al. 2013), the local
Hubble constant and deceleration parameter derived jointly from
SNe data (Camarena & Marra 2020a), the Hubble constant from
strong lensing (Shajib et al. 2020; Wong et al. 2020), and the
motion of the LG wrt. the CMB (Kogut et al. 1993). In the
following, we explain how we obtain the corresponding simulated
quantities.

Our approach involves comparing the void models described
in Section 3.2 with a control simulation of a void-free standard
cosmology. The control trajectories have a fixed co-moving radius:

r(t) = r (t0) a (t) . (51)

Since the lookback time can be derived from SNe luminosities or
angular diameter distances in a standard background cosmology, we
fix this variable between the void and control models, allowing us
to analyse the difference in other variables. The main advantage of
this approach is that in the absence of a local void, our calculated
late-time cosmological parameters (e.g. H0 and q0 ) would revert to
their values in standard cosmology.

Local observations imply that we are located close to the void
centre (Keenan et al. 2013; Karachentsev & Telikova 2018). There-
fore, as a simplification we assume in our analysis that we are at
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2858 M. Haslbauer, I. Banik and P. Kroupa

Table 1. Constants and parameters of the here used cosmological MOND models. Our fiducial model assumes a
Maxwell–Boltzmann initial density profile for the void (Section 3.2.1) and a time-independent external field (nEFE = 0
in equation 50).

Constants Description Value

H
global
0 Present-day global Hubble constant 67.4 km s−1 Mpc−1

	m, 0 Present-day matter density in units of ρc 0.315
	�, 0 Present-day dark energy density in units of ρc 0.685
ai Cosmic scale factor at the start of the simulation 0.1
a0 Milgrom’s constant 1.2 × 10−10 m s−2

External field parameters Parameter range
g̃ext Present-day external field in units of a0 (0, 0.5)
nEFE Time dependence of the external field (equation 50) (−2, +2)

Void parameters
αvoid Initial void strength at z = 9 (10−5, 10−2)
rvoid Initial void size at z = 9 (50 cMpc, 1030 cMpc)

the void centre (Sections 3.3.2–3.3.5), except when calculating the
likelihood of the observed LG peculiar velocity (Section 3.3.6). It
is beyond the scope of our work to analyse the Hubble diagram
and density field that might be seen by a substantially off-centre
observer.

3.3.1 Apparent scale factor

The main quantity we extract is the redshift experienced by a photon
as it travels from a particle to the void centre. This is given by

λobs

λemit
= 1

a(t)

Doppler︷ ︸︸ ︷√
c + vint

c − vint

GR︷ ︸︸ ︷
exp

(
1

c2

∫
gvoid dr

)
, (52)

where λobs and λemit are the wavelengths of the light as measured
by the observer and at the source of emission, respectively, vint is
the peculiar velocity of the particle relative to the void centre, and
gvoid is the gravity in the radially outwards direction. The factor
of a−1 arises from expansion of the universe while light from the
particle is travelling towards us. This is the only factor that needs to
be considered even without the void. The term marked ‘Doppler’
is the special relativistic Doppler effect, while the exponential
factor (marked ‘GR’) is the gravitational redshift that arises because
photons must climb up the void potential to reach its centre. As
discussed in Section 3.3.5, relativistic lensing in MOND should yield
similar results to General Relativity for the same g.

To limit the complexity of our algorithm and because we are
dealing with a void at low z, we approximate the GR contribution
by assuming the final density profile of the void is also applicable
at earlier times. This leads to a time-independent gravitational field
gvoid(r). We use this to calculate the integral in equation (52) out
to the co-moving distance where our past lightcone intersects the
particle’s trajectory (Section 3.3.3).

Since the observed SNe and lensing Hubble diagrams reported by
observers are not corrected for the large peculiar velocities we expect
in our model, the apparent scale factor is simply

aapp ≡ λemit

λobs
. (53)

We compare the behaviour of this aapp with the corresponding values
in our control simulations, which are governed by equation (51).
Since we run a finite number of trajectories for each model, we
interpolate between them to ensure the comparison is done at fixed
lookback time.

3.3.2 Density contrast and redshift space distortion

In our models, the fractional underdensity inside a shell between
radii rmin, now and rmax, now at the present time is

1 − δmodel =
[

1 − 3αvoid

(
Imax − Imin

x3
max − x3

min

)]
×
(

r3
max,initial − r3

min,initial

r3
max,now − r3

min,now

)
, with (54)

Imin =
∫ xmin

0

x4 exp

(
−x2

2

)
dx . (55)

Here, rmin, initial and rmax, initial are the initial co-moving distances of
particles that are currently at rmin, now and rmax, now, respectively, and
xmin ≡ rmin,initial/rvoid. Similar procedures are used to calculate xmax

and Imax. The first term represents the initial density contrast, while
the second accounts for expansion of the co-moving volume enclosed
by the two shells.

As discussed in Section 1.1, the analysis of Keenan et al. (2013)
used a distance–redshift relation based on the assumption of no void
(see their section 4.7). Therefore, we apply an RSD correction to the
observed relative density contrast in order to estimate the true value:(

1 − δobs,corr

) = (1 − δobs) fmodel , with (56)

fmodel =
(

r3
control,out − r3

control,in

r3
void,out − r3

void,in

)
. (57)

Here, δobs is the observed relative density contrast between the dis-
tances rvoid, in and rvoid, out at the present time. However, observations
uncorrected for RSD are reported as if the known redshift range of
the survey covers the distance range rcontrol, in − rcontrol, out, which are
the corresponding distances to the same z in a void-free universe.
The number of galaxies counted by the observers thus corresponds
to a different δ than what they report, which is the RSD effect. Note
that its magnitude will depend on the void model, so it is not possible
to know the true density contrast in a model-independent way. This
is because it is not possible to convert redshifts to distances without
a dynamical model of the void. As a result, the uncertainty σ obs, corr

is also model-dependent.
We can compare the so-corrected observed δ to the model

prediction (equation 54). This leads to a χ2 contribution of

χ2
δ =
(

δmodel − δobs,corr

σobs,corr

)2

, (58)
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The KBC void and H0 tension in �CDM and MOND 2859

which is calculated for the relative density contrasts in the redshift
range 0.01 < z < 0.07 and between distances of 600 Mpc and
800 Mpc at the present time. According to Keenan et al. (2013),
we estimate that δobs, in = 0.46 ± 0.06 in the inner part of the void,
while δobs, out = 0.0 ± 0.1 in its outer part (see their table 1 and fig.
11).

3.3.3 Lightcone analysis

To determine exactly when we would observe a test particle, we
need to determine the intersection between its trajectory and our
past lightcone. This occurs when the co-moving distance travelled
by a light ray emitted from a particle equals the time-dependent
co-moving distance to the particle. In other words,

c

∫ t0

tLC

dt

a (t)
= r(tLC)

a(tLC)
, (59)

where tLC is the cosmic time when our past lightcone intersects
a particle’s trajectory. This is obtained by solving equation (59)
using the Newton–Raphson algorithm. We can then calculate relevant
quantities at that time, which is used in our analyses related to the
Hubble diagram (Section 3.3.4).

However, when comparing the simulated vpec with the observed
LG peculiar velocity (Section 3.3.6), we need to extract vpec at the
present epoch since the measurement relates to the LG motion
today. To limit the complexity of our analysis, we also use the
present positions of particles when determining the density field
of the void (Section 3.3.2). This should be valid if the void has not
appreciably changed in the time needed for light to cross it, which
is reasonable for a void much smaller than the Hubble distance
c/H0 = 4.4 Gpc.

3.3.4 Hubble constant and deceleration parameter from SNe

We constrain our models with the results of Camarena & Marra
(2020a), who derived the local Hubble constant and deceleration
parameter jointly from Pantheon SNe in the redshift range 0.023 ≤
z ≤ 0.15. As discussed earlier, we first find the difference in the
apparent scale factor between our void model and a control void-free
model.

�a (t) ≡ aapp − acontrol , (60)

where aapp is the apparent scale factor (equation 53), and acontrol is
the scale factor at the same cosmic time in the control model of a
void-free standard cosmology. Expanding equation (60) as a Taylor
series in the vicinity of the present time t0 , we get that

�a (t) = �ȧ
(
t0

) (
t − t0

)+ 1

2
�ä (t0) (t − t0)2 + O (t − t0)3 . (61)

Dividing the above equation by a
(
t0

) ≡ 1 and using the definitions
of the Hubble parameter (H ≡ ȧ/a) and deceleration parameter (q ≡
−aä/ȧ2), we obtain that

�a (t)

a
(
t0

) = �ȧ
(
t0

)
a(t0 )

(
t − t0

)+ �ä
(
t0

)
2a
(
t0

) (t − t0

)2 + O
(
t − t0

)3
= �H0

(
t − t0

)− �
(
q0H

2
0

)
2

(
t − t0

)2 + O
(
t − t0

)3
,

(62)

where �H0 and �
(
q0H

2
0

)
are the boosts to these parameters due

to the void, and the 0 subscripts denote present-day quantities.
We find these by fitting �a(t) using a parabola forced to pass

through �a = 0 at t = t0. The local Hubble and deceleration
parameters are thus

H local
0 = H

global
0 + �H0 , (63)

q local
0

=
(
H

global
0

)2 (
	m,0

2 − 	�,0

)
+ �
(
q0H

2
0

)
(
H local

0

)2 . (64)

Because of a historical accident where it was assumed that the
expansion of the Universe should decelerate, q0 was defined as the
present deceleration parameter −aä/ȧ2. It was subsequently shown
that the Universe accelerates, implying q0 < 0 (Riess et al. 1998;
Schmidt et al. 1998; The Supernova Cosmology Project 1999). In
order to minimize confusion from unnecessary use of − signs, we
introduce from now on the acceleration parameter:

q
0

≡ − q0 ≡ aä

ȧ2

(
t = t0

)
. (65)

The �CDM theory with the parameters obtained from Planck
Collaboration VI (2020) predicts q

0
= 	�,0 − 1

2 	m,0 = 0.53. In
the absence of a void, H local

0 and q local
0

become identical to the
Planck values since we use those for the background cosmology
(equation 45).

The combined χ2 contribution from H0 and q
0

is

χ2
H0,q

0
= 1

2

[
(A + B)2

1 + C
+ (A − B)2

1 − C

]
, where (66)

A ≡ H0 − H local
0

σH0

and (67)

B ≡ q
0
− q local

0

σq
0

. (68)

Observationally, q local
0 = 1.08 ± 0.29 and H local

0 = 75.35 ±
1.68 km s−1 Mpc−1, with a mutual correlation coefficient of C =
0.515 (Camarena & Marra 2020a). Their section 4 mentions that
their posterior inference is very close to Gaussian, justifying our χ2

approach.

3.3.5 Hubble constant from strong lensing

Empirically, it has been shown that light deflection in strong lenses
works similar to General Relativity for the same non-relativistic g
(Collett et al. 2018). In the H0LiCOW lenses, g is constrained using
the positions and time delays between images and also with velocity
dispersion data. Their analysis should remain valid even in a MOND
context, since the results of Collett et al. (2018) can be reproduced
in relativistic versions of MOND (Milgrom 2013). The latter work
showed that this approach works well empirically even in the deep-
MOND regime, which can only be probed using weak lensing. This
is because strong lensing always occurs in the Newtonian regime due
to MOND’s cosmological coincidence (equation 10), as explained in
Sanders (1999). Hence, strong lensing is little affected by MOND.
None the less, we discuss in Section 5.2.1 how H0 measurements
from strong lensing impact our analysis, and consider the effect of
excluding these measurements.

In our main analysis, we constrain our MOND models with
H0 measured from seven strong-lens systems with the deflector at
redshift zd . Our data set is derived from Shajib et al. (2020) and
Wong et al. (2020). In our models, the Hubble constant at redshift zd

is estimated as

H model
0,lensing = H

global
0 + �ad

td − t0
, (69)
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2860 M. Haslbauer, I. Banik and P. Kroupa

Table 2. Measurements of H0 from lensed quasars with the deflector at
redshift zd , as reported by Wong et al. (2020) and Shajib et al. (2020) for a
flat �CDM cosmology. Their data are used to constrain the MOND models in
Section 4, where low and high error bars are averaged to get a single Gaussian
uncertainty for each lens.

Lens system zd H0 Reference
(km s−1 Mpc−1)

B1608 + 656 0.6304 71.0+2.9
−3.3 Wong et al. (2020)

RXJ1131 − 1231 0.295 78.2+3.4
−3.4 ”

HE 0435 − 1223 0.4546 71.7+4.8
−4.5 ”

SDSS 1206 + 4332 0.745 68.9+5.4
−5.1 ”

WFI2033 − 4723 0.6575 71.6+3.8
−4.9 ”

PG 1115 + 080 0.311 81.1+8.0
−7.1 ”

DES J0408 − 5354 0.597 74.2+2.7
−3.0 Shajib et al. (2020)

where �ad is the difference in aapp between the void and control
models, and td is the cosmic age at redshift zd . The χ2 contribution
from all seven lenses is

χ2
H0,lensing =

7∑
i=1

(
H model

0,lensing,i − H obs
0,lensing,i

σ
lensing
obs,i

)2

, (70)

where H obs
0,lensing,i and σ

lensing
obs,i are the derived Hubble constant and

corresponding uncertainty for lens system i as reported by Shajib
et al. (2020) or Wong et al. (2020), which we summarize in Table 2.

3.3.6 Local Group peculiar velocity

An important constraint on our model is the observed motion of
the LG relative to the surface of last scattering. The observed CMB
dipole indicates that the LG moves with a peculiar velocity of vLG =
627 ± 22 km s−1 towards Galactic coordinates (l, b) = (276◦ ± 3◦,
30◦ ± 3◦) (Kogut et al. 1993).

To calculate the expected peculiar velocity in different parts of the
void, we first need to consider the motion of the void as a whole.
The void peculiar velocity vvoid arises from the time-integrated EFE.
Using the approach stated in section 2.2 of Banik et al. (2018), we
get that

a
(
t0

)
vvoid =

∫ t0

ti

gext (t) a (t) dt , (71)

where gext is the external field, and the integrating factor a accounts
for Hubble drag. The total velocity of a particle wrt. the CMB is

v2
tot = v2

int + v2
void + 2vintvvoid cos θ , (72)

where vint is the ‘internal’ velocity of the particle relative to the
void centre, and θ is the angle between vvoid and the void-centric
position of the particle. A schematic representation of this situation
is depicted in Fig. 3.

For numerical purposes, the simulated void is divided into cells.
The volume of cell i is

Vi = �
(
r3
)

3
× 2π� (cos θ ) , (73)

where �r and �θ are the radial and angular bin size, respectively. Vi

is determined by the change in r3 and cos θ across the cell.
In order to quantify how the observed vLG = 627 km s−1 affects

the relative probability of a model, we define fmotion as the proportion
of cells that satisfy

vLG − ε ≤ vtot < vLG + ε , (74)

Figure 3. Schematic of the KBC void, which as a whole moves with velocity
vvoid due to the time-integrated EFE accounting for Hubble drag (equation 71,
see also section 2.2 in Banik et al. 2018). The total peculiar velocity of a
particle wrt. the CMB, vtot, is calculated by combining vvoid with the internal
velocity vint of a particle relative to the void centre (equation 72). The inner
circle illustrates the region in which vtot ≤ vLG = 627 km s−1. We estimate
its volume by adding the volumes of the red cells.

where ε is a numerical parameter whose choice should have no
bearing on our final results. To get a good balance between reduc-
ing numerical noise and increasing the accuracy, we choose ε =
50 km s−1. The resulting error should be of order (50/630)2, which
is acceptable given other uncertainties. On the other hand, 50 km s−1

is much larger than the change in vtot between adjacent cells. We
obtain similar results if ε = 30 km s−1 is used instead. Using this
discretized scheme, we get that

fmotion ≡
∑

i

Vi ÷ 4π
(
nr rms

void

)3
3

, (75)

where r rms
void is the rms size of the void, and n is a dimensionless factor

of order unity that sets our prior expectation for how close we are
to the void centre (we must be within a distance of nr rms

void). Since
observations suggest that we are located quite close to the centre
(e.g. Keenan et al. 2013; Karachentsev & Telikova 2018), we adopt
n = 0.5 for our probability calculations. We estimate the void size
as

r rms
void ≡

√∫∞
0 r2δ (r) dr∫∞

0 δ (r) dr
, (76)

with the void profile δ(r) found using equation (54). In practice,
we cut off the integrals at a very large distance much beyond the
possible extent of the void. Since δ → 0 at large r, this is sufficient
to accurately estimate the limiting values of both integrals.

In Section 4.2, we apply a less sophisticated probability calculation
where we assume that vtot follows a Gaussian distribution. The
extent to which the observed vLG is an outlier to the simulated
vtot distribution is given by the proportion of the void volume
with vtot ≤ vLG. This allows an easier comparison with the other
constraints.

Table 3 summarizes the here presented observational constraints,
which are used to test our cosmological MOND model in the
following section.
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The KBC void and H0 tension in �CDM and MOND 2861

Table 3. Parameters used to quantify the tension of different MOND models with observations, along with a brief description. More information can be found
in the indicated section.

Parameter Description Section

χ2
δin

Density contrast of the void in the redshift range 0.01 < z < 0.07 Section 3.3.2
χ2

δout
Density contrast of the void between 600 Mpc and 800 Mpc Section 3.3.2

χ2
H0,q

0
Hubble constant and acceleration parameter derived jointly from SNe with 0.023 ≤ z ≤ 0.15 Section 3.3.4

χ2
H0,lensing Hubble constant using time delays from seven strong lenses Section 3.3.5

fmotion Fraction of void volume whose velocity wrt. the CMB is similar to that of the LG Section 3.3.6

4 R E S U LT S O F M O N D S I M U L AT I O N S

In this section, we perform a detailed parameter study of our
cosmological MOND models. This includes an estimation of the
tension between our best-fitting model and observations of the local
Universe. We focus on a void initialized with a Maxwell–Boltzmann
profile (Section 3.2.1). Results for Gaussian and exponential starting
profiles are presented in Appendix C. We first quantify the relative
probabilities of different models (Section 4.1), and then check how
well our best-fitting model agrees with observations (Section 4.2).

4.1 Relative probabilities of different models

The observational constraints can mostly be assumed to have a
Gaussian distribution, allowing a standard χ2-based analysis. This
is due to the central limit theorem and the fact that e.g. many SNe
are used in the study of Camarena & Marra (2020a). However, the
expected distribution of vtot (equation 72) is based on just one void,
so we cannot assume Gaussianity. This constraint requires a more
careful treatment, as explained in Section 3.3.6.

Combining the different constraints, we get that the joint proba-
bility of each model is

P (Model | Observations)

∝
(∏

i

1

σobs,i

)
exp

(
−χ2

2

)
× fmotion , with (77)

χ2 = χ2
δin

+ χ2
δout

+ χ2
H0,q

0
+ χ2

H0,lensing . (78)

We use i to label different observational constraints, each of which
has uncertainty σ obs, i. The only model-dependent uncertainties are
the density contrasts of the inner and outer parts of the KBC void, a
consequence of the applied RSD correction (equation 57).

Fig. 4 shows the marginalized posterior distributions of the model
parameters and parameter pairs based on 106 MOND models. The
assumed external field strength has a significant impact on individual
models. On the one hand, increasing the EFE typically makes the
MONDian subsystem more Newtonian, suppressing the growth of
structures. This results in less pronounced voids at the present
time, and consequently a local Hubble constant and acceleration
parameter closer to the Planck predictions. On the other hand,
some EFE is required because otherwise structure formation would
be too efficient, causing a very high local Hubble constant and
acceleration parameter. These considerations restrict gext to the range
(0.024–0.076) a0 at 2σ confidence, with the most likely value being
0.04 a0 .

In contrast, the initial void size and strength are not strongly
constrained − our analysis merely yields 2σ limits of αvoid =
10−5 −2.91 × 10−4 and rvoid = (173.4–818.6) cMpc. This is be-
cause the local Hubble constant and acceleration parameter are
estimated only for SNe in the redshift range 0.023 ≤ z ≤ 0.15,
which does not constrain the outer part of the void. Although

some constraints are available at higher z from lensed quasars, the
uncertainties of H0 measured in this way are relatively large, allowing
for a wide range of possible model parameters (Table 2).

The best-fitting model is that for which the joint probability
(equation 78) becomes maximal. We mark this as a red dot in
Fig. 4 and consider it our fiducial model. It has an initial void
strength of αvoid = 3.76 × 10−5 at z = 9, an initial void size of
rvoid = 228.2 cMpc, and an external field strength of gext = 0.055 a0 ,
causing the void as a whole to move with vvoid = 1586 km s−1. We
analyse this particular model in more detail in the subsequent section.

The marginalized posterior distributions for MOND models with
Gaussian and exponential initial profiles are shown in Appendix C.
Those models still assume a time-independent EFE. In Section 5.2.2,
we present and discuss an analysis demonstrating that allowing
time-dependence of the EFE reveals no strong preference for a
time-varying EFE, though some variation is expected on theoretical
grounds.

4.2 The fiducial model

In the following, we discuss the results of our best-fitting (fiducial)
model.

4.2.1 Density profile

We begin by studying the density contrast of the fiducial model
at different times. This is plotted in the left-hand panel of Fig. 5.
The void starts with an initial size of rvoid = 228.2 cMpc and a
very small initial strength of αvoid = 3.76 × 10−5 at z = 9.
Equation (76) implies that r rms

void = rvoid

√
3 = 395.2 cMpc at that

time. At present, the void has grown to a size of r rms
void = 528.7 Mpc

and has a density contrast of δin = 0.172 in the redshift range
0.01 < z < 0.07. Correcting the corresponding observed density
contrast from Keenan et al. (2013) by the model-dependent RSD
correction factor f in

model = 1.38 yields δin
obs,corr = 0.254 ± 0.083. This

agrees with the simulated value at the 0.99σ level. The calculated
density contrast between 600 and 800 Mpc is δout = 0.050, which
also compares favourably with the RSD-corrected observed density
contrast δout

obs,corr = −0.052 ± 0.105 (f out
model = 1.05). The tension in

this case is only 0.97σ .
The long-range modification to gravity in MOND causes structure

formation to be much more efficient than in �CDM cosmology (e.g.
Sanders 1999; Famaey & McGaugh 2012, and references therein).
This can be seen in the right-hand panel of Fig. 5, which shows the
density contrast of a 300 cMpc sphere for the best-fitting MOND
model (the blue solid line) and two Newtonian models (the red lines,
with shaded grey region between them) over cosmic time. The solid
red and blue lines correspond to the same initial conditions, but end
up with very different δ at the present time. As expected, Newtonian
models with different initial δ show a similar pattern of structure
growth since they are all in the linear regime. The density contrast
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2862 M. Haslbauer, I. Banik and P. Kroupa

Figure 4. Marginalized posterior distribution of the indicated model parameters based on 106 Maxwell–Boltzmann MOND void models. The red dashed, black
solid, and black dashed contours mark the 1σ , 2σ , and 3σ confidence levels, respectively. For 1D posteriors, these are shown using the horizontal black lines. The
1σ and 2σ lines are at almost the same level for rvoid. The red dot or vertical line marks the best-fitting model with an external field strength of gext = 0.055 a0 ,
and an initial void size and strength of rvoid = 228.2 cMpc and αvoid = 3.76 × 10−5, respectively, at z = 9. This model is analysed in more detail in Section 4.2.

scales as δ
∝∼ a3.8 and δ

∝∼ a0.8 over the interval 0.3 ≤ a ≤ 0.7 in
our best-fitting MONDian model and equivalent Newtonian model,
respectively. The �CDM scaling is slightly <1 because dark energy
slows down the growth of structure at late times. The very rapid
structure growth in our MOND model can be reduced by applying
a higher EFE in the past. In the case of a time-dependent EFE with
nEFE =−1 in equation (50), the growth rate reduces to δ

∝∼ a3.3. The
initial void strength must then be 13× larger (α void = 4.98 × 10−4)
to compensate for the higher EFE in the past (the blue dot–dashed
line in the right-hand panel of Fig. 5). Models with a time-dependent
EFE are discussed further in Section 5.2.2.

4.2.2 Hubble diagram

Our fiducial model yields H model
0 = 76.15 km s−1 Mpc−1 and

qmodel
0

= 1.07. This is consistent with the observations of
Camarena & Marra (2020a) at the 84.20 per cent confidence level
(only 0.20σ tension). The combined inference on both parameters is
shown in Fig. 6, which demonstrates that the best-fitting models with
Maxwell–Boltzmann, Gaussian, and exponential initial profiles are
all consistent with these observations within 1σ . Thus, we show for
the first time that the Hubble tension can be resolved in MOND. Note
that the Planck parameters (the green dot) are in ≈4.39σ tension with
these local observations.
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The KBC void and H0 tension in �CDM and MOND 2863

Figure 5. Left: Time evolution of the radial density profile of the fiducial MOND model (gext = 0.055 a0 , rvoid = 228.2 cMpc, αvoid = 3.76 × 10−5). Different
line colours refer to different lookback times, as indicated in the legend. The two black dot–dashed lines and the grey-shaded areas mark the RSD corrected
observed density contrast of the KBC void, i.e. δin

obs,corr = 0.254 ± 0.083 between 40 and 300 Mpc, and δout
obs,corr = −0.052 ± 0.105 between 600 and 800 Mpc.

Right: Evolution of the density contrast within a sphere of radius 300 cMpc for the fiducial MOND model (the blue solid line, δ
∝∼ a3.8 for 0.3 ≤ a ≤ 0.7), a

MOND model with approximately the same δ and EFE today but with higher EFE in the past according to nEFE = −1 in equation (50) (the blue dot–dashed line,

δ
∝∼ a3.3 for 0.3 ≤ a ≤ 0.7), and Newtonian models (the red lines, δ

∝∼ a0.8 for 0.3 ≤ a ≤ 0.7). The red solid line shows the Newtonian model with the same
initial void parameters as the fiducial MOND model, while the red dashed line refers to another Newtonian model with the same rvoid but where αvoid = 10−2.

Figure 6. Combined inference on H0 and q
0

(the black dot and red error
ellipses) derived jointly from Pantheon SNe in the redshift range 0.023 ≤ z ≤
0.15 (Camarena & Marra 2020a). The blue points show the results for the best-
fitting MOND models with a Maxwell–Boltzmann (star), Gaussian (square),
and exponential (triangle) void profiles. All three models are consistent with
the observations at the 1σ confidence level. H0 and q

0
derived from a Gaussian

and an exponential void profile are in both models almost the same and cannot
be distinguished in the plot (the triangle and the square coincide). Note that
the indicated tension with Planck results (the green dot) differs from the
4.54σ reported by Camarena & Marra (2020a) because we have not included
the correlation coefficient between H0 and q0 for Planck.

Time delays from strong gravitational lenses also provide an
important constraint on our model. We use Fig. 7 to show H

lensing
0,model in

dependence of redshift, allowing a comparison with measurements
from seven lens systems (Section 3.3.5). Interestingly, our model
systematically underestimates H0 especially at low redshifts, causing
a 2.05σ tension with the observations of Wong et al. (2020) and

Figure 7. Hubble constant in dependence of redshift for the fiducial MOND
model. The red data points are measurements of H0 from lensed quasars
by Wong et al. (2020) and Shajib et al. (2020) assuming a flat �CDM
cosmology (see also our Table 2 and fig. A1 in Wong et al. 2020). The black
horizontal dot–dashed line and its surrounding grey band marks H

global
0 =

67.4 ± 0.5 km s−1 Mpc−1 (Planck Collaboration VI 2020).

Shajib et al. (2020). We expect that this discrepancy is partly caused
by void motion due to the EFE, though there is also some internal
inconsistency between the void profile of Keenan et al. (2013) and
the lensing Hubble data. In general, the latter are difficult to produce
in any void model if the background H

global
0 = 67.4 km s−1 Mpc−1,

since it is difficult to imagine a local void having substantial effects
at z = 0.5. We discuss these issues in more detail in Section 5.2.
Although it is expected that strong lensing in MOND occurs similarly
to standard cosmology (Section 3.3.5), we redo our analysis without
constraints from lensing-based H0 measurements in Section 5.2.1.
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2864 M. Haslbauer, I. Banik and P. Kroupa

Figure 8. Total peculiar velocity (equation 72) map wrt. the CMB for the
fiducial MOND model. The black arrow indicates the direction of the void
motion vvoid. The black solid curve marks the region within which vtot ≤
627 km s−1. The LG is probably near the right end of this curve because the
observed radio dipole (Section 1.1) indicates that we are currently moving
away from the void centre in the CMB frame. We show only half of the velocity
map because vtot is axisymmetric about vvoid. The here shown total peculiar
velocities are vtot � 0.01c, justifying the use of non-relativistic equations for
the void gravitational field (Section 3.2).

4.2.3 LG peculiar velocity

Our model yields the total peculiar velocity wrt. the CMB in different
parts of the void, as mapped in Fig. 8. The entire void moves in
the direction indicated by the arrow, which arises from the EFE
(Section 3.2.2). Interestingly, the model allows for very high total and
internal peculiar velocities, especially towards the void edge. We can
also get partial or total cancellation between internal motions within
the void and that of the void as a whole, creating a rather large region
in which vtot ≤ vLG = 627 km s−1 (Kogut et al. 1993). This region
is at a distance of ≈ (150–270) Mpc from the void centre, implying
that the LG must be slightly off-centre. Applying equation (75) to
find the fraction this region represents of the whole void, we estimate
that the observed vLG represents a 2.34σ outlier to the simulated vtot

distribution, which causes therewith the highest tension amongst the
here used observational constraints.

4.2.4 Overall agreement with observations

Finally, we quantify the combined tension of our fiducial MOND
model with local observations. As discussed earlier, most observables
can be treated using a standard χ2 approach, but additional care is
needed for vLG. Thus, we quantify the likelihood of different (χ2,
vtot) combinations according to our fiducial model, with χ2 found
using equation (78). We can then quantify the extent to which the
actually observed combination is unlikely.

In our model universe, the joint probability that the observables
can be summarized by some (χ2, vtot) combination is

P (Observations|Best-fitting model) = P
(
χ2
) · Pmotion (vtot) , (79)

where P(χ2) is the probability density function for a χ2 distribution

Figure 9. Joint probability of χ2 and vtot, the total peculiar velocity wrt.
the CMB, in the fiducial MOND model obtained in Section 4.1. The black
contours show the indicated confidence levels. The red dot marks the total
χ2 of the fiducial model and vtot = vLG = 627 km s−1. This is consistent
with the model at the 1.14 per cent confidence level (the red dashed line),
representing a 2.53σ tension. The sharp feature in each contour occurs when
vtot = vvoid = 1586 km s−1 (Section 3.3.6).

with 8 degrees of freedom (i.e. 11 observational constraints and three
model parameters). Pmotion(vtot) is estimated from our simulation
by splitting the volume into cells (Section 3.3.6) and assigning the
volume in each cell to different bins in vtot, thereby building up a
discretized picture of its distribution. This procedure does not assume
that vtot follows a Gaussian.

If our fiducial model is correct, χ2 must arise solely from mea-
surement errors, while the observed vLG reflects our position within
the void. This causes that χ2 and vtot have independent distributions,
allowing them to be multiplied. We neglect the 22 km s−1 uncertainty
in vLG (Kogut et al. 1993) because this is much smaller than the
≈4000 km s−1 range in vtot allowed by our model (Fig. 8).

We use Fig. 9 to show the joint (χ2, vtot) distribution based
on our fiducial model. This explains the local observations at the
1.14 per cent confidence level (2.53σ tension). Individual observa-
tional constraints are summarized and compared with observations
in Table 4.

The χ2 contributions from different constraints are visualized in
Fig. 10 as a pie chart, which also shows the number of data points
each constraint represents, and the corresponding level of tension.
To facilitate a comparison with the other constraints, we use our
previous estimate that vLG is a 2.34σ outlier to the simulated vtot

distribution (Section 4.2.3). Therefore, we assign a χ2 contribution
of 2.342 to this constraint.

The best-fitting MOND models with a Gaussian and an exponential
void profile agree with the local observations at the 0.45 per cent
(2.84σ ) and 0.34 per cent (2.93σ ) confidence level, respectively (see
also Appendix C). Thus, our best-fitting void model with a constant
EFE cannot be rejected regardless of the initial density profile. The
implications of our results are discussed in Section 5.2, which also
looks at the overall picture of the νHDM model and the theoretical
uncertainties of the here applied MOND approach (Section 5.2.3).

5 D ISCUSSION

We discuss what our results in Sections 2 and 4 imply for �CDM
and MOND cosmologies. This is followed by a consideration of
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Table 4. Comparison of individual local Universe observables with our fiducial MOND model (Maxwell–Boltzmann profile, gext = 0.055 a0 , rvoid =
228.2 cMpc, αvoid = 3.76 × 10−5, vvoid = 1586 km s−1, r rms

void = 528.7 Mpc, nEFE = 0). The last row shows the probability of a higher χ2 given the number of
degrees of freedom. We express this as the equivalent number of standard deviations for a 1D Gaussian (inverting equation 24). For vLG, we show the proportion
of the void volume where vtot ≤ vLG. Results for other void profiles are shown in Appendix C.

Parameter H local
0 (km s−1 Mpc−1) q local

0
H

lensing
0 (km s−1 Mpc−1) vLG (km s−1) δin δout

Observations 75.35 ± 1.68 1.08 ± 0.29 – 627 0.254 ± 0.083 −0.052 ± 0.105
MOND model 76.15 1.07 See Fig. 7 See Fig. 8 0.172 0.050
χ2 0.34 14.66 – 0.99 0.94
Degrees of freedom 2 7 – 1 1
χ (1D Gaussian equivalent) 0.20 2.05 2.34 0.99 0.97

Figure 10. Pie chart showing the χ2 contributions from different constraints
(Table 4). The bracketed numbers show the number of degrees of freedom and
corresponding level of tension for each constraint. The value for the motion
of the LG is estimated based on the fraction of the void volume for which
vtot ≤ vLG = 627 km s−1.

commonly proposed arguments claiming that a local underdensity
cannot solve the Hubble tension (Section 5.3).

5.1 Assessing the tension for �CDM

Keenan et al. (2013) measured the K-band luminosity density as a
function of redshift and found evidence for an underdensity around
the LG with a radial extent of ≈ 300 Mpc (see their figs 9 and
10). They used the 2M++ catalogue (Lavaux & Hudson 2011),
which covers ≈ 90 per cent of the sky based on photometric data
from the 2MASS-XSC catalogue and redshift data from the 2MRS,
6DFGRS, and SDSS catalogues. From the Ks < 13.36 luminosity
density, Keenan et al. (2013) estimated a relative density contrast
of δ ≡ 1 − ρ/ρ0 ≈ 0.5 in the redshift range 0.0025 < z < 0.067
(pink down-pointing triangle in their fig. 11). Probing the luminosity
density slightly deeper (Ks < 14.36) but only in the SDSS and
6DFGRS regions, they derived a slightly lower density contrast of
δ = 0.46 ± 0.06 in the redshift range 0.01 < z < 0.07 (the light blue
dot in fig. 11 of Keenan et al. 2013). We used this value for the inner
density contrast of the KBC void in order to minimize tension with
the �CDM framework.

Using the MXXL simulation (Angulo et al. 2012), we calculated
the density contrast for spheres with an outer radius of 300 Mpc and
an inner hole of radius 40 Mpc around 106 vantage points at z = 0.
We also took into account the sky coverage of the 2M++ survey by
generating at each vantage point a random observing direction from
which 90 per cent of the mock sky is covered (Section 2.1). The so-
selected density fluctuations have an rms amplitude of 3.2 per cent.
This is consistent with the prediction of the Harrison–Zeldovich
spectrum (Harrison 1970; Zeldovich 1972) in combination with
the early universe normalization of σ 8 = 0.811 ± 0.006 (Planck

Collaboration VI 2020). Since Keenan et al. (2013) used a fixed
distance–redshift relation (see their section 4.7), we applied an
RSD correction to the simulated density fluctuations. The rms
fluctuation then became 4.8 per cent, with the individual values
closely following a Gaussian of this width (Appendix A). Thus,
the observational uncertainty of 6 per cent is larger than the expected
cosmic variance.

Based on our analysis, the observed KBC void is in 6.04σ

tension with standard �CDM cosmology and cannot be explained
with cosmic variance (Section 2.2.1). This contrasts with Sahlén,
Zubeldı́a & Silk (2016), who concluded that supervoids such as the
KBC void are consistent with standard theory. However, for this
they used a top-hat galaxy density radius of 210 h−1 Mpc and a DM
density contrast of δ = 0.15−0.2. Their assumed δ describes a much
less pronounced void than the observed density contrast derived from
the 2M++ survey (Keenan et al. 2013).8 Moreover, even a 15 per cent
true underdensity on a 300 Mpc scale is very difficult to reconcile
with �CDM due to the expected variance being only 3.2 per cent
(Section 2.2.1). While it may be possible for such large voids to exist
somewhere in the Universe, it would be unlikely for us to live inside
one − unless they are more common.

5.1.1 Hubble tension

Several studies have already discussed a potential connection be-
tween the local void and the Hubble tension (e.g. Keenan et al. 2013;
Enea 2018; Shanks et al. 2019; Kenworthy, Scolnic & Riess 2019).
Indeed, if mass conservation is assumed, a large underdensity in the
local number density of galaxies should also show up in the velocity
field. However, given the expected cosmic variance in �CDM, Fig. 2
indicates that a ≈10σ density fluctuation would be necessary to
explain the locally observed expansion rate within its 2σ confidence
region (H local

0 = 73.8 ± 1.1 km s−1 Mpc−1, Riess et al. 2019; Wong
et al. 2020). The maximum plausible 5σ density fluctuation is still
not enough to explain H local

0 at the 5σ level.
These findings are broadly consistent with Wu & Huterer (2017),

who concluded that a void with δ = 0.8 and a radius of 120 h−1 Mpc
could resolve the Hubble tension. Such a void would be in ≈20σ ten-
sion with �CDM (Kenworthy et al. 2019). While this by itself does
not constitute an argument against such a large local underdensity,
Wu & Huterer (2017) stated that observations disfavour it. Section 5.3
of our work contains a more detailed discussion of claimed problems
with a local void solution to the Hubble tension.

Combining the mutually consistent SH0ES and H0LiCOW results,
Wong et al. (2020) showed that the Hubble tension has now reached

8In �CDM, the RSD effect implies δ ≈ 2
3 δobs (equation 22). Thus, δobs =

0.46 does not correspond to a true underdensity of δ = 0.2.

MNRAS 499, 2845–2883 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/2845/5939857 by guest on 11 O
ctober 2021
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Figure 11. The KBC void in context. This large local underdensity and the
Hubble tension can both be reconciled if mass is conserved in the Universe.
However, such a large void cannot form out of the initial conditions of the
CMB if the initial scale-invariant power spectrum (Harrison 1970; Zeldovich
1972) is preserved. In particular, the existence of the KBC void within the
�CDM framework is ruled out at 6.04σ , as demonstrated in Section 2.2. Thus,
modified gravity is required to explain low redshift observables (Section 4.2) if
the initial conditions at z = 1100 are indeed set by the CMB (Section 5.3.8).
Importantly, any solution must simultaneously solve both the Hubble and
underdensity tensions in order to conserve mass.

the 5.3σ level. Thus, both the KBC void and the Hubble tension
falsify �CDM at >5σ significance. The most likely explanation
in the context of standard theory is that both are caused purely
by measurement errors, since there is less cosmic variance than
observational uncertainty in both the KBC data and the H0 mea-
surement. This is especially true for the latter − equation (18)
shows that density fluctuations of 3.2 per cent would impact H local

0

by only 0.4 km s−1 Mpc−1 (see also Wojtak et al. 2014). Since galaxy
counting and measurements of the local Hubble constant face rather
different observational challenges, the measurement errors would be
independent, yielding a combined tension of 7.75σ . Using a more
rigorous estimation that allows for cosmic variance results in a 7.09σ

falsification of the �CDM paradigm (Section 2.2.3).
Importantly, any cosmological model which solves the Hubble

tension without addressing the void (or vice versa) would violate the
assumption of mass conservation in the Universe. Thus, early dark
energy models (e.g. Hill et al. 2020; Khoraminezhad et al. 2020)
which simply increase H0 at the background level by ≈ 10 per cent
would overestimate the local H0 by about this much once the observed
KBC void is taken into account (Section 1.1). Perhaps the most
important implication of the KBC void is that the Planck value of
H0 is probably correct at the background level, since any attempt to
substantially change it would likely cause the void-corrected local
value to disagree with local observations if mass is conserved in the
Universe.

Therefore, the KBC void is a plausible explanation for the Hubble
tension if we can preserve a Planck background cosmology but
enhance the cosmic variance. A schematic that considers the KBC
void in a broader context is presented in Fig. 11. Starting from
the initial conditions of the CMB at z = 1100 and assuming the
scale-invariant Harrison–Zeldovich power spectrum to be valid at
that time, we have shown that the existence of a KBC-like void at
present is virtually impossible in a standard context. This indicates
that a scale-invariant power spectrum is violated today − order unity
fluctuations on a 10 Mpc scale (e.g. Mantz et al. 2015) do not give
way to 3 per cent fluctuations on a 300 Mpc scale. This is a very
strong hint that the gravitational inverse square law has to break
down. Thus, the spatial distribution of matter on both an 8 Mpc scale

(Peebles & Nusser 2010) and on an ≈ 1 Gpc scale (this work) suggest
a long-range enhancement to gravity.

5.2 Assessing the tension for MOND

MOND (Milgrom 1983) is a low-acceleration modification to gravity
originally designed to explain galaxy rotation curves without CDM.
It has enjoyed a great deal of predictive success in this regard
(Section 1.3). Therefore, extrapolating MOND from kpc to Gpc
scales could be a promising way to address large-scale challenges
for standard cosmology such as massive high-redshift galaxy clusters
(e.g. El Gordo, Katz et al. 2013) and supervoids.

In this context, we study the possible origin of the KBC void
from small initial density fluctuations, and its impact on the local
Hubble constant. Unfortunately, we do not presently have a large
enough cosmological N-body or hydrodynamical MOND simulation
to quantify the likelihood of the KBC void, as done for the �CDM
framework with the MXXL simulation (Section 2).

We therefore used the νHDM framework (Section 3.1) to develop a
semi-analytical MOND simulation in which the expansion history is a
standard flat background cosmology consistent with the latest Planck
data (Planck Collaboration VI 2020) − which should be a good
approximation also in MOND (Section 3.1.1). We applied MOND
only to the density deviations from the cosmic mean (Section 3.1.4).
In Section 5.2.3, we discuss the possibility of a non-trivial coupling
between density perturbations and the background.

Our main MOND models assume an initial Maxwell–Boltzmann
density profile motivated by the radial density distribution of the
Local Volume. Karachentsev & Telikova (2018) showed that the
matter density within a sphere of r = 40 Mpc (r = 135 Mpc) around
the LG is only 	m, loc = 0.09−0.14 (	m, loc = 0.05−0.16). This is
≈2−3× lower than the cosmic mean density measured by Planck
Collaboration VI (2020), confirming the existence of a large local
underdensity (Section 1.1). Karachentsev & Telikova (2018) also
showed that the density increases inwards for heliocentric distances
� 40 Mpc (see their fig. 3), justifying our choice of a Maxwell–
Boltzmann void profile (Section 3.2.1). In addition, we also run
void models initialized with a Gaussian and an exponential profile
(Appendix B). In all cases, the void profiles are parametrized by
an initial void size and strength at z = 9. The initial void strengths
range from αvoid = 10−5−10−2, with the lower limit based on the
observed density fluctuations in the CMB. By the time that z = 9,
we expect significantly larger perturbations. Our upper limit on αvoid

is sufficient to capture the range of models preferred by our analysis
(Section 5.2.2).

The EFE is strongly constrained in our models because it affects
the formation of cosmic structure and thus internal velocities within
the void, in addition to the void’s motion as a whole (Section 3.3.6).
Models with a very small EFE create extremely deep and extended
voids, which disagrees with the density contrast of the KBC void
− especially for its outer region. This also results in a much larger
local Hubble constant than observed. Increasing the EFE leads to
vvoid 	 vLG, so the observed vLG can only be explained by nearly
complete cancellation with a large vint. However, a strong EFE makes
the MONDian system more Newtonian and suppresses therewith the
growth of structure. Consequently, models with a very high EFE
produce very shallow voids and a local Hubble constant similar to
its global value, causing that vint is not large enough to cancel vvoid.

Our analysis for the Maxwell–Boltzmann profile restricts gext to
the range (0.030–0.053)a0 at the 1σ confidence level. Models with
a Gaussian and an exponential void profile prefer a slightly larger
EFE, i.e. (0.054–0.094)a0 (Fig. C1) and (0.054–0.092)a0 (Fig. C2) at
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the 1σ confidence level, respectively. This is because the Maxwell–
Boltzmann profile reduces δ near the void centre and therewith slows
down the internal peculiar velocities of individual particles within
the void. Thus, a lower EFE is required to achieve vtot ≤ vLG =
627 km s−1 over a large part of the void.

Our analysis rules out models without an EFE, which is in any case
a logical consequence of the non-linearity inherent to Milgrom’s law
of gravity (Milgrom 1986). Observationally, MOND without the EFE
is strongly disfavoured by the velocity distribution of wide binary
stars in the Solar neighbourhood (Pittordis & Sutherland 2019). The
EFE is also necessary to explain the internal velocity dispersions of
dwarf galaxies (Section 1.3). We discuss the time dependence of the
EFE in more detail in Section 5.2.2.

In contrast to the EFE, Fig. 4 indicates that the initial void size
and strength are not strongly constrained by observations. Thus,
other initial void parameters could in principle also yield reasonable
results at the present time. In particular, our analysis of Maxwell–
Boltzmann voids yields 1σ confidence intervals on rvoid and αvoid of
(173.9–636.9) cMpc and (1.07−8.12) × 10−5, respectively. Models
with Gaussian or exponential initial profiles allow for larger voids,
but with a similar void strength (Appendix C). There are two main
reasons why both void parameters are only weakly constrained by
local observations. First of all, H0 and q

0
are derived from data in

the redshift range 0.023 ≤ z ≤ 0.15 and constrain therewith only the
inner and not the outer part of the void. Secondly, the uncertainties
of H0 measured from strong lens systems are relatively large, which
allows for a wide range of possible void behaviours in the outskirts.

We found that our best-fitting Maxwell–Boltzmann MOND model
requires an EFE of gext = 0.055 a0 , an initial void size of rvoid =
228.2 cMpc, and an initial void strength of αvoid = 3.76 × 10−5 at
z = 9. The EFE causes a bulk flow of vvoid = 1586 km s−1 at z = 0.
Our fiducial model explains the local observations listed in Table 3
at the 1.14 per cent confidence level (2.53σ tension). Fig. 4 shows
that models with somewhat different initial conditions also provide
reasonable results.

The rms density fluctuation in the total matter field at the CMB
(z = 1100) is δrms ≈ 10−4 (Section 3.1.3), which implies δrms ≈
10−2 at z = 9 for a �CDM cosmology. Thus, αvoid of our best-fitting
model is much lower than the expected cosmic variance in �CDM.
This could make KBC-like voids very common in the universe,
potentially conflicting with the observed foreground lensing of the
CMB (Section 5.3.1). This problem could be alleviated if the EFE was
stronger in the past (Section 5.2.2), or if the peculiar accelerations and
the Hubble flow are coupled (Section 5.2.3) − both would slow down
the growth of structure. It would be highly interesting to quantify the
existence of KBC-like voids in a large cosmological MONDian N-
body simulation, especially if it accounts for the HFE in some way.

As already shown in several previous studies (e.g. Sanders 1998;
Famaey & McGaugh 2012, and references therein), we affirm that
structure formation is much more efficient in MOND compared to
the Newtonian case (right-hand panel of Fig. 5). Applying an RSD
correction based on the best-fitting model, the observed underdensity
is 25.4 ± 8.3 per cent (−5.2 ± 10.5 per cent) in the inner (outer)
part of the KBC void. The enhanced growth of structure allows
our fiducial model to match these constraints at the 0.99σ (0.97σ )
confidence level. In contrast, the KBC void rules out the �CDM
framework at 6.04σ (Section 2.2.1).

In MOND, the long-range modification to gravity causes a very
shallow decrease of the density contrast with distance, causing our
model to systematically underestimate the density at the outer part
of the KBC void as derived from the K-band luminosity data of
Keenan et al. (2013). However, observational uncertainties on the

density contrast there are still relatively large. Future surveys would
be necessary to more precisely measure the density profile beyond
≈ 400 Mpc. This may provide an important test of our model because
the radial density profile should be sensitive to the underlying growth
rate.

Interestingly, Angus & Diaferio (2011) found some evidence for
large voids with a diameter of 250 h−1 Mpc in their 512 h−1 cMpc
N-body cosmological MOND simulation with massive neutrinos.
Although both large voids and massive galaxy clusters are expected
in a MOND cosmology (e.g. Sanders 1998), it is not fully clear
if those were formed artificially due to the low particle resolution
(Angus et al. 2013). Their simulations also assume no coupling
between peculiar accelerations and the Hubble flow (i.e. β = 0 in
equation 8 of Sanders 2001). As discussed further in Section 5.2.3,
a coupling to the Hubble flow would suppress the formation of
massive voids and clusters on scales � 100 Mpc. Therefore, it
would be very valuable to revisit their cosmological simulations
with a higher particle resolution and an AMR grid code such as
PHANTOM of RAMSES (Teyssier 2002; Lüghausen et al. 2015). Such
MOND simulations would require very large box sizes in order to
include large-scale modes and the resulting EFE on smaller regions
(Section 3.1.4). For very long modes, light traveltime effects could
be important such that a relativistic code is required. This could be
based on the model of Skordis & Złośnik (2019).

A unique characteristic of our void model is the prediction of very
high total peculiar velocities, especially towards the void edge in
the direction parallel to gext. In the best-fitting model, the void as
a whole moves with a peculiar velocity of vvoid = 1586 km s−1 due
to the EFE from source(s) beyond the void (i.e. at z � 0.15). Thus,
our model predicts a sphere centred on the LG should have a large
bulk flow of ≈ 1000 km s−1 in a similar direction to gext. This is
qualitatively similar to the results of previous νHDM simulations
(Katz et al. 2013). Interestingly, some evidence for a large bulk
flow has been found (Kashlinsky et al. 2008; Kashlinsky, Atrio-
Barandela & Ebeling 2011). We discuss this further in Section 5.3.2.

Partial cancellation between the void’s motion and internal mo-
tions within it leads to a region ≈ (150–270) Mpc from the void
centre in which vtot ≤ vLG = 627 km s−1. The fraction that this
volume represents of the whole void corresponds to a 2.34σ event,
implying that the LG is statistically not at a special position in the
void. Note that the LG motion causes the highest tension amongst
our constraints (Table 4 and Fig. 10).

Our fiducial model gives an apparent expansion history very
close to �CDM (Fig. 12), but with local Hubble constant H model

0 =
76.15 km s−1 Mpc−1 and acceleration parameter qmodel

0
= 1.07 in the

redshift range 0.023 ≤ z ≤ 0.15. This agrees with the observations
of Camarena & Marra (2020a) at the 84.20 per cent confidence
level (0.20σ tension). The best-fitting models with a Gaussian and
an exponential void profile agree at the 0.83σ and 0.89σ level,
respectively (Fig. 6). Thus, we showed for the first time that the KBC
void can arise in MOND and solve therewith the Hubble tension.

The locally observed acceleration parameter q
0

= 1.08 ± 0.29
(Camarena & Marra 2020a) disagrees with the �CDM expectation
of q0,�CDM = 0.53 (Planck Collaboration VI 2020) at the 1.9σ level.
In combination with the H0 discrepancy between these studies,
this would falsify �CDM at 4.54σ confidence (see also Fig. 6).
Interestingly, q

0
> 1 is not possible for a standard background cos-

mology. The locally observed high Hubble constant and acceleration
parameter provide compelling evidence that the Hubble tension is
caused by a local effect like the KBC void. This addresses the concern
of Kenworthy et al. (2019) that the KBC void is not evident in the
SNe distance–redshift relation (Section 5.3.6) − both the first and
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2868 M. Haslbauer, I. Banik and P. Kroupa

Figure 12. Time dependence of the cosmic scale factor in �CDM (red) and
the apparent scale factor in our fiducial MOND model (blue). This model has
a Maxwell–Boltzmann initial profile with rvoid = 228.2 cMpc and αvoid =
3.76 × 10−5 embedded in a constant (nEFE = 0) external field of strength
gext = 0.055 a0 .

second derivatives of the distance–redshift relation very much point
to a local void. Observationally, a discrepancy could also appear as
a third order effect in the jerk parameter j ≡ a2...

a /ȧ3, but given the
already large uncertainty of q

0
, it would be difficult to measure j0

precisely.
As discussed in Section 3.3.5, strong lensing does not occur in

the MOND regime and so should be similar to in �CDM cosmology
(Sanders 1999). Thus, our main analysis includes H0 constraints from
seven strongly lensed quasars as obtained by Shajib et al. (2020)
and Wong et al. (2020). The latter work applied a blinded analysis
(described in their section 3.6) and found that H0 decreases as a
function of lens redshift at 1.9σ significance (see their appendix A).
H0 becomes consistent with Planck expectations at z � 0.5, well
beyond the void. This is again a very strong indication that the
Hubble tension is driven by a local environmental effect such as the
KBC void. A decrease of the inferred H0 with redshift is also apparent
in our MOND model (Fig. 7) and is a generic consequence of any
local resolution to the Hubble tension. The redshift dependence of
H model

0,lensing depends mainly on the density profile of the void. For our
fiducial model, the combined tension with all seven lensing-based
H0 measurements is χ2 = 14.66, which represents 2.05σ tension for
7 degrees of freedom. In the case of a Gaussian and an exponential
void profile, this would reduce to 1.76σ and 1.83σ , respectively,
because the best-fitting models have a larger void (Appendix C). This
discrepancy with the lensing data is mainly caused by a systematic
underestimation of H0 by our models, especially for the two lowest
redshift lenses RXJ1131 − 1231 at z = 0.295 and PG 1115 + 080
at z = 0.311 (Section 5.2.1).

The high values of H0 at z � 0.4 are also conspicuous because
according to Keenan et al. (2013) the density should have reached
the cosmic mean already at z ≈ 0.2 (see their fig. 11). Consequently,
we would expect that H0 obtained from lenses located at z � 0.4
must be very similar to the Planck prediction. The H0 values
from the four highest redshift lenses of Wong et al. (2020) give a
median (mean) of 71.3 km s−1 Mpc−1 (70.8 km s−1 Mpc−1), which
is 3.9 km s−1 Mpc−1 (3.4 km s−1 Mpc−1) higher than the Planck
prediction. This systematic offset can be reduced if the background
H0 is underestimated due to errors in the Planck measurements

caused by intergalactic dust (Yershov et al. 2020; see also Vavryčuk
2018, 2019). We discuss this issue further in Section 5.3.8. It is also
possible that there is some systematic offset in H0 measurements
using strong lensing time delays (Kochanek 2020). Since we assume
mass conservation in our models, this discrepancy cannot be fully
resolved in our analysis − the algorithm searches for a compromise
between the KBC and lensing data. It seems that there is some internal
inconsistency between them. A strong test of our model would be to
infer H0 very accurately from nearby and high-redshift lens systems.
The model predicts that H0 should be almost identical to the Planck
prediction at z � 0.9. However, a substantial anomaly is expected
for a lens at z = 0.1. A measurement here would nicely complement
the SNe results of Camarena & Marra (2020a), which go out to
z = 0.15.

5.2.1 Excluding strong lensing time delays

Although strong lensing in MOND should be similar to the �CDM
framework (Sanders 1999), the H0 measurements from strong lensing
could be affected by the EFE on the void. This requires a better
understanding of its origin. We have assumed that the EFE in
our simulations affects the void as a whole, implying that it must
be sourced by something beyond the void, i.e. at z � 0.15. This
approach would be valid for deriving H0 and q

0
from SNe data in

the range 0.023 ≤ z ≤ 0.15 since the EFE would similarly move
everything in this region. However, this may not be true for even the
lowest redshift lens as its z = 0.295 (Table 2). If the EFE is sourced
by something at lower z, it would move the void − but not the lens.

In this context, we consider in more detail the geometry of the
void and the sky positions of the lenses. The observed CMB dipole
shows that the LG moves with a velocity of 627 km s−1 wrt. the
CMB towards Galactic coordinates (276◦ ± 3◦, 30◦ ± 3◦), which
roughly matches the direction of the radio dipole (Section 1.1).
Thus, the LG motion wrt. the CMB frame is probably directed
away from the void centre (see also Fig. 8). Interestingly, the two
lowest redshift lens systems (RXJ1131 − 1231 and PG 1115 + 080)
are located at Galactic coordinates (274.4◦, +45.9◦) and (249.9◦,
+60.6◦), respectively, which roughly coincides with the directions
of the CMB and radio dipoles. Thus, both lenses are also most likely
located on the opposite side to the void centre. Assuming these lenses
are not affected by the EFE on the void, this would cause an extra
redshift. Consequently, a larger Hubble anomaly would be expected
than calculated thus far.

Relative to the CMB dipole, the direction to each lens subtends an
angle θ , where cos θ = 0.96 and cos θ = 0.82 for RXJ1131 − 1231
and PG 1115 + 080, respectively. The impact on the measured H0

from these two low-z lenses can be estimated as

�H0 = �a

�t
, with (80)

�a = avvoid,r

c
, (81)

vvoid,r ≡ vvoid cos θ , (82)

where a is the scale factor at which the lens is observed, and �t
is the corresponding lookback time. Thus, assuming the lenses
are unaffected by the EFE, H0 derived from the lens systems
RXJ1131 − 1231 and PG 1115 + 080 would be overestimated by
1.10 and 0.88 km s−1 Mpc−1, respectively. This would only slightly
reduce the tension with our best-fitting models. Therefore, the sharp
rise in H0 values for the two lowest redshift lenses cannot be fully
accounted for with the EFE and is still hard to explain. Additional
lenses are needed to confirm this feature.
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Figure 13. Marginalized posterior distribution of the time dependence of
the external field (nEFE in equation 50), based on 9 × 106 MOND models
where the initial void profile is Maxwell–Boltzmann (solid black), Gaussian
(dashed green), or exponential (dot–dashed blue). The black arrow and the
horizontal lines indicate the 1σ confidence interval for each profile. The red-
dotted vertical line marks the expected nEFE = −1.27 (equation 83), which
we derive from the gext of our fiducial model and the expected gravitational
acceleration at recombination.

We address the possible impact of the EFE on the lensing-
based H0 measurements by redoing the analysis for our Maxwell–
Boltzmann model without the constraints from strong lensing time
delays. In this case, the best-fitting model has gext = 0.050 a0 causing
vvoid = 1442 km s−1, rvoid = 208.4 cMpc, and αvoid = 2.15 × 10−5.
This model yields H model

0 = 76.47 km s−1 Mpc−1 and qmodel
0

= 1.21
(0.26σ combined tension), δin = 0.167 (δin

obs,corr = 0.258 ± 0.082;
1.11σ ), and δout = 0.037 (δout

obs,corr = −0.038 ± 0.104; 0.73σ ). The
fraction of the void with vtot ≤ vLG represents a 2.25σ tension. The
model explains all these local observations at the 1.96σ (5.0 per cent)
confidence level. Thus, excluding the lensing data allows for a
somewhat better overall fit, but has little effect on the preferred
model parameters.

5.2.2 Structure formation and external field history in MOND

Since the EFE acting on a MONDian subsystem depends on
surrounding structure and therewith on the scale factor, we made
in Section 3.2.2 the ansatz gN,ext (t) = gN,ext

(
t0

)
anEFE (t). So far, we

have restricted attention to the case nEFE = 0. Letting nEFE vary in
the range (−2, 2), Fig. 13 shows its marginalized posterior based on
9 × 106 different models. In the case of a Maxwell–Boltzmann
profile, the analysis yields nEFE > −0.62 at the 1σ confidence
level. Gaussian and exponential initial profiles allow for (−1.60,
+0.43) and (−1.59, +0.52) at the 1σ level, respectively. Thus, only
the Maxwell–Boltzmann profile prefers a weaker EFE in the past,
while the other profiles prefer the opposite. A time-independent EFE
(nEFE = 0) − assumed for all our models thus far − lies within the
1σ range for all three considered void profiles. This justifies our
assumption of a time-independent EFE in our main analysis.

The marginalized posterior distributions for nEFE and the initial
αvoid are shown in Fig. 14. As expected, a stronger EFE in the past
(nEFE < 0) requires a deeper initial void. In particular, values of
αvoid up to ≈10−3 are now allowed, contrary to the case where
we fix nEFE = 0 (Fig. 4). This would be closer to the expected
density fluctuations in �CDM when a = 0.1, since the ≈10−5 density

fluctuations in the CMB should have grown ≈100×. This is only
mildly disfavoured by our analysis.

We can estimate the external field history based on the parameters
of our fiducial model and the gravitational acceleration at recombi-
nation:

nEFE ≈ ln gN (t0) − ln gN

(
tCMB

)
ln a (t0) − ln a

(
tCMB

) , (83)

where tCMB = 380 kyr, and t0 = 13.8 Gyr. As explained in Sec-
tion 3.1.3, gN

(
tCMB

) ≈ 21 a0 , causing MOND to have only a very
small effect before recombination. Since our fiducial model prefers
an external field of 0.055 a0 , we use this as our estimate of g(t0),
which via equation (8) yields gN (t0) = 0.0029 a0 . Comparing the
expected large-scale Newtonian gravitational fields at these times
gives nEFE = −1.27 (the red vertical line in Fig. 13). This is consistent
with the marginalized posterior distribution for the Gaussian and
exponential profile models at the 1σ level and for the Maxwell–
Boltzmann models at the 2σ level. The Gaussian and exponential
models prefer nEFE ≈ −0.5.

Equation (83) implies nEFE = −1.27, which is a faster decline than
the nEFE = −1 suggested by equation (37) for linear perturbations in
the matter-dominated era (Section 3.1.3). This could be due to the
effect of dark energy, which is not taken into account in equation (37)
as it only dominates at z � 0.8. Since dark energy slows down the
growth of structure, nEFE would be shifted to more negative values
− if the fractional density perturbations are frozen in co-moving
coordinates, we would get nEFE = −2.

Though it is beyond the scope of our semi-analytic study, we
mention briefly that as structure grows in a MONDian universe,
it imposes an external field on surrounding structures, thereby
hampering their growth. This leads to structure formation in different
regions becoming mutually correlated. In particular, since MOND
gravity declines as 1/r whereas Newtonian tides scale as 1/r3 (there
being no EFE), any structure in a Milgromian universe is affected by
much more distant structures compared to the Newtonian case. This
makes it difficult to conduct a MOND simulation with sufficiently
large volume to satisfy the CP.

5.2.3 Theoretical uncertainties in the MOND approach & outlook
for further studies

At present, it is not known if MOND is related to a fundamental
(quantum) theory (i.e. ‘FUNDAMOND’, Milgrom 2020a,b). As
a result, we do not have a completely secure understanding of
cosmology and structure formation in MOND. In fact, it is likely
that the implications on these scales are not uniquely derivable from
the RAR in disc galaxies. Although the relativistic MOND theory of
Skordis & Złośnik (2019) seems quite promising, its consequences
for cosmology are not yet established. Therefore, the here applied
cosmological model required us to make some ansatzes, whose
uncertainties will be summarized and discussed in the following
(see also Section 3.1).

Motivated by previous theoretical studies, we assumed that the
background cosmology in a Milgromian universe obeys the same
Friedmann equation as in �CDM (Section 3.1.1). While this is not
necessarily true in MOND, the observations of Joudaki et al. (2018)
suggest that this works well empirically. Moreover, constraints from
BBN imply rather small deviations from the standard a(t) during
the radiation-dominated era. In a MOND context, this forces the
expansion history to obey the standard Friedmann equation to sub-
per cent precision in the matter and �-dominated eras (Skordis et al.
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2870 M. Haslbauer, I. Banik and P. Kroupa

Figure 14. Marginalized posterior distribution of the indicated model parameters based on 9 × 106 MOND models for a Maxwell–Boltzmann (left), Gaussian
(middle), and exponential (right) initial profile. The red dashed, black solid, and black dashed lines mark the 1σ , 2σ , and 3σ confidence levels, respectively. A
stronger EFE in the past (nEFE < 0) requires a stronger initial void strength at z = 9. The red dots mark the best-fitting models: gext = 0.030 a0 , rvoid = 218.3 cMpc,
αvoid = 7.56 × 10−4, nEFE = −2 (Maxwell–Boltzmann profile, left-hand panel); gext = 0.065 a0 , rvoid = 1030.0 cMpc, αvoid = 1.07 × 10−4, nEFE = −0.5
(Gaussian profile, middle panel); and gext = 0.070 a0 , rvoid = 1030.0 cMpc, αvoid = 1.75 × 10−4, nEFE = −0.5 (exponential profile, right-hand panel).

2006). Moreover, the source term for the Friedmann equation remains
the same if CDM is replaced with the same density in sterile neutrinos
with mνs

= 11 eV/c2 since both would be non-relativistic up to very
high z 	 zeq. Consequently, there is very good reason to suppose
that the background a(t) is very nearly the same as in �CDM.

Sterile neutrinos would only slightly affect primordial nucleosyn-
thesis and plasma physics prior to recombination (Sections 3.1.2 and
3.1.3, respectively, see also fig. 1 in Angus 2009). Given also a very
nearly standard expansion history and high peculiar gravitational
accelerations at that time, we expect the νHDM framework to yield
the same CMB power spectrum as �CDM. The angular diameter
distance to the CMB would also be the same in both frameworks,
causing both to suffer from the Hubble tension if H local

0 is little
affected by cosmic variance. Our main argument is that this last
assumption holds in �CDM but not MOND.

To simulate structure formation in MOND, we made the usual
ansatz that MOND should be applied only to the density deviations
from the cosmic mean (e.g. Llinares et al. 2008; Angus & Diaferio
2011; Angus et al. 2013; Katz et al. 2013; Candlish 2016). We justi-
fied this in Section 3.1.4 based on the fact that Sanders (2001) showed
in his section 2 that this approach (elaborated further in Sanders &
McGaugh 2002) is valid in a non-relativistic Lagrangian that has the
MOND behaviour. This so-called Jeans Swindle (Binney & Tremaine
1987) is one of the strongest assumptions of current cosmological
MOND models. Falco et al. (2013) has formally shown that it can
be justified in an expanding General Relativistic universe, but this
needs to be mathematically demonstrated for a MONDian framework
in which the Poisson equation is non-linear. Despite this uncertainty,
it seems inevitable that structure formation would be significantly
faster in MOND compared to �CDM on a 100 Mpc scale. This
is because 100 Mpc is much larger than the free streaming length
of both sterile neutrinos and CDM, so the only major difference
between the �CDM and νHDM frameworks is a different gravity
law. Since the accelerations are much smaller than a0 (Section 1.3),
we expect any MOND theory to yield a significant enhancement to
the gravity generated by density perturbations. As a result, we argue
that MOND models naturally possess the ability to explain the KBC
void and Hubble tension.

We now discuss whether this conclusion remains valid if the
Jeans swindle approach is not applicable because of the HFE, a
coupling between the background cosmology and structures within
it. As mentioned in Section 3.1.4, Sanders (2001) developed a non-
relativistic two-field Lagrangian-based theory of MOND that couples
the Hubble flow and the peculiar accelerations from inhomogeneities.

Figure 15. Accelerations along the trajectory of a particle ending up 300 Mpc
from the void centre in our best-fitting model. We show the time evolution
of gvoid (the blue solid line), gext = 0.055 a0 (the red horizontal dashed line),
and |gHubble| for a standard background cosmology (the green dotted line).
The thick horizontal grey line refers to a0 . Note that gHubble changes sign
when a = 0.61 (z = 0.63) − it is positive at later times and negative earlier
on. At present, gvoid ≈ 0.1 a0 and gHubble ≈ 0.2 a0 , so the latter would limit
the MOND boost to gravity at the void edge in case of a strong HFE.

This coupling is described by the adjustable parameter β in his
equation (8), and is elaborated further in Sanders & McGaugh
(2002). If β = 0, the coupling between these fields vanishes, which is
equivalent to the above-mentioned Jeans swindle. In the case β �= 0,
the background cosmology would remain intact, but the Hubble flow
acceleration (gHubble in equation 38) would appear as an additional
source of gravity that suppresses the ν factor in equation (7).

As argued in Section 2.2.2, the existence of the KBC void and
the Hubble tension can be simultaneously reconciled in the �CDM
framework due to mass conservation, but only for a 10σ density
fluctuation (Fig. 2). We demonstrated that in the absence of any
HFE, our best-fitting model can explain both the KBC void and the
Hubble tension because of an enhanced cosmic variance compared to
�CDM (Section 4.2). A coupling to gHubble would reduce the cosmic
variance in our MOND model, and therewith also the frequency of
KBC-like voids. To estimate the possible impact, we use Fig. 15
to plot the various accelerations entering equation (38) over time
for the same test particle presently 300 Mpc from the void centre.
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MOND should boost structure formation somewhat at all epochs
with a � 0.2 since |gHubble| < a0 and the other acceleration terms
are even smaller. However, in order to obtain a lower limit on the
cosmic variance expected in the MOND framework, we assume the
most conservative scenario in which structures grow only as fast as

in the �CDM framework
(
δ

∝∼ a0.8
)

at all epochs when gHubble is

dominant − it is after all unclear exactly what would happen then. As
shown in the right-hand panel of Fig. 5, density fluctuations in our
best-fitting model grow as δ

∝∼ a3.0 for the period 0.5 ≤ a ≤ 0.8.
During this period, our previous approach should be valid because
|gHubble| < gvoid (Fig. 15). Thus, the 3.2 per cent standard �CDM
cosmic variance is increased by a factor of at least (0.8/0.5)3.0 − 0.8 ≈
2.8, implying a 9.0 per cent cosmic variance. Since our best-fitting
MOND model yields a present underdensity of δin = 0.172 on a
300 Mpc scale,9 it requires an ≈1.9σ fluctuation. In a MONDian
model with nEFE = −1 (equation 50), density fluctuations grow
slower as δ

∝∼ a2.8 for 0.5 ≤ a ≤ 0.8, implying an 8.2 per cent
cosmic variance and thus a 2.1σ fluctuation. The latter scenario may
be more realistic in light of our discussion in Section 5.2.2. Since the
present value of δ is essentially fixed by the observations of Keenan
et al. (2013), the slower structure growth in such a model implies
a deeper void in the past, increasing gvoid relative to our fiducial
model. This would increase the timespan during which gHubble is sub-
dominant, thereby allowing MOND to enhance structure growth to a
greater extent. We conclude that even in the case of a strong HFE and
making very conservative assumptions, our MOND approach still
succeeds in explaining the KBC void, which by mass conservation
also resolves the Hubble tension.

This is mainly because gHubble was much smaller a few Gyr ago
− it is ∝ ä (equation 38), which crossed zero at a lookback time of
≈ 6 Gyr (Fig. 15). r was also smaller in the past if we consider the
same co-moving scale. While gHubble can undoubtedly suppress the
growth of structure, it was sub-dominant for an extended period −
during which it should be appropriate to neglect the HFE. Indeed,
a much more rapid growth of perturbations around the time ä = 0
is also evident in fig. 1 of Sanders (2001), who considered MOND
with a strong HFE. Thus, the presence of dark energy can actually
promote the growth of structure in a MOND context by reducing
|gHubble|. Observations of structure growth on a � 100 Mpc scale at
a ≈ 0.61 might reveal evidence for this growth spurt, which would
occur at a redshift beyond the extent of the KBC void.

Sanders & McGaugh (2002) showed that since gHubble scales
directly with the size of a system, perturbations on smaller length-
scales would be shielded from the HFE, allowing them to grow much
faster in case of a strong coupling (see their fig. 12). For instance,
gHubble ≈ 7 × 10−3a0 for a particle at a scale of 10 Mpc, so gHubble

would be very sub-dominant compared to typical external fields of a
few per cent of a0 (e.g. Famaey et al. 2007). This justifies the Jeans
swindle approach used in numerical simulations if the goal is to
address problems on this scale.

The initial αvoid required by our fiducial model is lower than the
expected rms density fluctuations at z = 9 for a �CDM cosmology,
which we can estimate by scaling the present value of 0.032 by 0.10.8

to obtain ≈0.005. Our results in Fig. 14 show that this remains true
even with a stronger EFE in the past (nEFE < 0), implying that KBC-
like voids would be quite common in MOND. Such a void could
explain the Cold Spot in the CMB, which is often interpreted as a

9This is consistent with the observed 0.46 ± 0.06 (Keenan et al. 2013) due to
the RSD correction (Table 4).

huge underdensity (Nadathur et al. 2014). However, such structures
are quite rare, suggesting that large voids are not very frequent in
the Universe (Section 5.2). Moreover, a high frequency of KBC-like
voids could cause too much foreground lensing of the CMB − though
this is far from clear (Section 5.3.1).

In principle, the implications of MOND on large scales depend on
an adjustable parameter analogous to β in equation (8) of Sanders
(2001), which can be used to alter the frequency of KBC-like voids
or massive galaxy clusters such as El Gordo at high redshift. A
strong HFE would reduce the frequency of such structures. We apply
Occam’s Razor and assume β = 0 since there is no compelling
observational or theoretical evidence for β �= 0. In particular, it is
not yet clear if covariant theories (such as that proposed recently
by Skordis & Złośnik 2019) have any flexibility in the coupling
between peculiar and Hubble flow accelerations, at least when we
impose other constraints, e.g. that gravitational waves travel at c.
Since gHubble acts to suppress the void gravity and increases with
distance, the outer density profile of the KBC void could empirically
constrain the coupling. Our best-fitting model implies that at present,
gext � gvoid � a0 at 300 Mpc, implying that gvoid

∝∼ r−1 in the outer
part of the void. Since gHubble > gvoid, a strong background coupling
would make the system more Newtonian, causing therewith a steeper
decline of gravity with distance. However, current measurements of
the KBC void’s outer density profile are not sufficiently precise to
strongly constrain the HFE.

If a particular cosmological MOND model predicts that structure
formation on 300 cMpc scales is very similar to standard cosmology,
such a model would not be able to account for the KBC void − and
would have to be rejected for similar reasons to �CDM (Section 2).
Any viable covariant formalism of MOND has to describe the density
and velocity field of the local Universe. Interestingly, the here applied
approach can reproduce the KBC void, which solves therewith the
Hubble tension due to mass conservation. Therefore, our model
can serve to guide further theoretical development of MOND in
a cosmological context.

The gHubble term would be much larger in the CMB era. For the
sound horizon scale at recombination (147.09 ± 0.26 cMpc, Planck
Collaboration VI 2020), |gHubble| ≈ 35000 a0 . Thus, even a slight
background-perturbation coupling would completely eliminate any
MOND effects, making the pre-CMB universe purely Newtonian.
This is also true in the absence of any such coupling, since the
gravity from inhomogeneities is ≈ 21 a0 (Section 3.1.3). Thus, our
conclusions regarding the CMB are not affected by a possible HFE.

This is also true for the model of Zhao (2008), which implies that
the MOND acceleration scale a† is time-dependent, with

a† = a0a
−3/2 . (84)

At the time of recombination, a† = 36500 a0 , which exceeds |gHubble|
at that epoch. Thus, even in the presence of a very strong coupling
of perturbations to gHubble, his model implies significant MOND
effects in the CMB, making it very difficult to fit its power spectrum.
Furthermore, Milgrom (2017) showed that the model of Zhao (2008)
is in tension with the rotation curves of galaxies at high redshift.

In this contribution, we assumed that Milgrom’s constant a0 is
constant in space and cosmic time. While the former is expected in a
fundamental theory, a time-varying a0 is in principle quite possible.
Although this is observationally not supported at the moment (e.g.
Milgrom 2017), a0 ≈ cH0/ (2π ), which could be a hint that MOND is
fundamentally related to cosmology. If this relation is true, a0 would
decrease over cosmic time, implying that the early universe was more
MONDian than assumed in our models. Thus, postulating that a0 ∝
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H would cause strong MOND effects in the CMB, arguing against
the idea (Section 3.1.3). On the other hand, a much lower a0 in the
past would significantly raise the MOND timing argument mass of
the LG, which for a constant a0 ends up rather similar to its baryonic
mass (Banik et al. 2018). Since HDM should not significantly cluster
on such a small scale to avoid disrupting MOND fits to galaxy rotation
curves, it appears that very strong time evolution of a0 in either sense
is ruled out empirically if not theoretically.

MOND as currently understood cannot explain the CMB power
spectrum and the dynamics of galaxy clusters without an extra matter
component. Therefore, we follow Angus (2009) in postulating the
existence of HDM. This is another strong assumption of our model
− but not more hypothetical than the existence of CDM. If anything,
sterile neutrinos have been described as ‘almost part of the standard
model’ of particle physics (Merle 2017), while CDM particles are
generally thought to require supersymmetry. In future, it will be
very important to directly search for sterile neutrinos in terrestrial
experiments.

In addition, precise measurements of the CMB power spectrum at
� > 4900 could put strong constraints on our model. This is because
small shifts to the CMB power spectrum may arise when applying
MOND supplemented with sterile neutrinos rather than Newtonian
gravity with CDM. We have assumed that the effects are either not
detectable or can be compensated through small adjustments to the
cosmological parameters.

Furthermore, we modelled the gravitational field of the void using
non-relativistic equations. This should be quite accurate because the
total peculiar velocities are vtot � 0.01c within ≈ 250 Mpc of the
void centre (Fig. 8). Moreover, the void is much smaller than the
cosmic horizon. Gravity traveltime effects should thus not be too
significant if gravitational waves travel at c, as occurs in the model
of Skordis & Złośnik (2019).

The exact density profile of the KBC void is not fully known,
so further assumptions are required when modelling it. Motivated
by observations of an increasing density as one goes inwards for
distances � 40 Mpc (Karachentsev & Telikova 2018), we assumed
an initial Maxwell–Boltzmann profile (Section 4). We demonstrated
the robustness of our results by also implementing Gaussian and
exponential void profiles (Appendix C). The best-fitting models with
those profiles yield a slightly larger overall tension compared to our
main analysis, with the best parameters shifting to a stronger EF
and larger initial void with comparable depth (Table C1). Thus, other
void profiles could yield reasonable results with adjusted EF and void
parameters. This issue could be constrained with better knowledge
regarding the exact density profile of the KBC void.

Although the here presented MOND approach suffers from
theoretical uncertainties especially with regards to the HFE, the
encouraging results of our best-fitting models (Section 4.2 and Ap-
pendix C) suggest that our assumptions are reasonable. Furthermore,
our models allow a wide range of possible void parameters (Figs 4,
C1, and C2), so adjusting these could in principle compensate
theoretical uncertainties. In particular, a stronger HFE would require
an initially deeper void − though we argued that the required depth
would be reasonable even under conservative assumptions.

Once it is clear which covariant MONDian framework should
be applied, the role of the HFE (if any) would become apparent.
It would then be valuable to statistically quantify the existence of
the KBC void within a large numerical MONDian cosmological
simulation, enabling a comparison with our analysis of its likelihood
in �CDM (Section 2). Such a simulation would also deliver a better
understanding of void profiles at low redshift, and on how the growth
of structure is regulated by the EFE from surrounding structures
(Section 5.2.2).

5.3 Claimed problems for a local void solution to the Hubble
tension

In the following, we address some commonly used arguments for
why a void model cannot resolve the Hubble tension.

5.3.1 Other anomalies in large-scale structure

If the growth of structure is much more rapid than predicted by
standard theory, large underdensities such as the KBC void should
also exist at higher redshift. Large voids are not evident in the galaxy
two-point correlation function, suggesting that large-scale structure
seems to be consistent with the �CDM paradigm. However, it must
be borne in mind that the underlying matter density field is not
measured directly − it is estimated from the distribution of galaxies.
At large distances, only the brightest galaxies can be observed, so
one has to assume the so-called bias factor:

b ≡ δgalaxy

δ
, (85)

which relates the galaxy density contrast δgalaxy to that of the
underlying matter distribution. This bias factor is typically chosen
to match the �CDM expectation for cosmic variance at the relevant
scale. Thus, an accurate model-independent estimation of the density
contrast can only be achieved for low-mass galaxies observed in the
NIR, for which b ≈ 1 on 100 Mpc scales in any cosmological model.
This makes it very difficult to perform a similarly detailed analysis
to Keenan et al. (2013) for z � 0.5. Even the 2MASS survey they
used only covers 57–75 per cent of the luminosity function (see their
fig. 9). This fraction would be much lower for higher redshift galaxy
samples.

We are also faced with the problem that galaxy positions are
in general unknown − in the distant Universe, only redshifts are
available. Even the redshifts are often not measured directly but are
estimated photometrically. This leads to a significant smearing effect
along the line of sight, making it rather difficult to identify distant
supervoids (DES Collaboration 2019). The situation is reminiscent
of the LG satellite planes − due to distance uncertainties, it is
difficult to know if the satellites of a distant galaxy are distributed
anisotropically. In both cases, if similar anomalies had not been
reported at larger distances, this would not tell us whether such
anomalies exist.10

However, supervoids identified in the Dark Energy Survey do
seem to show an enhanced ISW effect (DES Collaboration 2019).
Their stacked analysis of 87 supervoids found that the effect has
an amplitude of 5.2 ± 1.6 times the conventional expectation when
combined with the earlier results of Kovács (2018).

Another possibly related anomaly is that the lensing amplitude
implied by the CMB power spectrum is stronger than predicted
(Di Valentino, Melchiorri & Silk 2020a). They suggested that this
problem could instead be an indication that the Universe has a
positive curvature. This would have serious implications for our
entire understanding of the Universe and require a completely
different cosmological model. For instance, a closed universe would
imply a very low H0 of 54+3.3

−4.0 km s−1 Mpc−1, which is completely
inconsistent with local measurements (see their fig. 7). However,
the enhanced lensing amplitude − evident also in Di Valentino,
Melchiorri & Silk (2020b) − could be the imprint of unexpectedly
large density fluctuations caused by more rapid growth of structure.
In this scenario, a supervoid would be a more likely explanation for

10A satellite plane has recently been discovered around Cen A (Müller et al.
2018).
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the CMB Cold Spot (Nadathur et al. 2014). Indeed, their suggested
void profile has a central underdensity of 0.25 and characteristic size
of 280 Mpc, rather similar to the KBC void (see their equation 1).
They concluded that such a void is highly unlikely in �CDM, as
also implied by our results in Fig. 1. It would be very valuable to
empirically determine the actual frequency of such voids.

5.3.2 High peculiar velocities

Our fiducial model implies the existence of void regions with total
peculiar velocity vtot ≤ vLG = 627 km s−1 relative to the surface of
last scattering. Such low velocities are unlikely but allowed at the
2.34σ level.

Interestingly, our model predicts vtot of up to ≈ 4000 km s−1 for
objects ≈ 250 Mpc from the void centre in the direction of its motion
(Fig. 8). Such high peculiar velocities are potentially detectable with
the kinematic Sunyaev–Zeldovich (kSZ) effect of galaxy clusters
(Sunyaev & Zeldovich 1980). However, this is difficult to disentangle
from the thermal Sunyaev–Zeldovich (tSZ) effect because our model
predicts similar peculiar velocities to the internal velocity dispersions
of galaxy clusters. A large local underdensity also reduces the number
of clusters available for kSZ studies, increasing the uncertainty.

Hoscheit & Barger (2018) concluded that the KBC void is
consistent with the linear kSZ effect (see their fig. 6). Similar results
were obtained by Ding, Nakama & Wang (2020). Some evidence
for a bulk flow of ≈ 1000 km s−1 has been found (Kashlinsky et al.
2008, 2011). This is broadly consistent with the expected motion
of the whole void due to the EFE (vvoid = 1586 km s−1), though the
bulk flow of a smaller region will depend on our exact location within
the void and the survey volume. Bulk flows of ≈ 1000 km s−1 are
not possible on a 100 Mpc scale in a �CDM universe, but would be
expected in MOND (Katz et al. 2013).

5.3.3 Gravitational redshifting of the CMB monopole

A large local underdensity like the KBC void should also affect the
mean temperature (monopole) of the CMB. This is because the height
of the potential at our location causes a gravitational redshift. Using
equation (52), the general relativistic redshift for a photon travelling
uphill from distance r to the centre becomes

1 + zGR = exp

(
1

c2

∫
g dr

)
. (86)

In the best-fitting MOND model, we obtain zGR = 8.4 × 10−3

for the most distant test particle, which is 700× larger than the
1σ rms fluctuations of zGR = 1.2 × 10−5 assumed in the study
of Yoo et al. (2019). Their fig. 2 shows that the impact of such
a gravitational redshift on the inferred cosmological parameters is
very small, even with an extra factor of 700. Moreover, we expect
that the actual gravitational redshift at our position in the void should
be much smaller. This is because we are not exactly at the centre
of the void, and thus not at the highest part of its gravitational
potential hill (Fig. 8). Redshifting from the void’s gravity would
also be partially counteracted by the EFE, which is required in
order to explain the rather slow motion of the LG wrt. the CMB
(Section 4.2.3).

None the less, it is possible that gravitational redshifting of the
CMB would change the best-fitting HDM and baryon fractions by
a few times their official uncertainties. Since these are nowadays
rather small (Planck Collaboration VI 2020), we conclude that this
effect has only a small impact on the CMB power spectrum, which
moreover could probably be compensated through slight adjustments
to the cosmological parameters. Of particular relevance for the

Hubble tension is that gravitational redshifting of the CMB has a
negligible impact on the precisely measured angular scale of the first
acoustic peak (fig. 2 of Yoo et al. 2019).

5.3.4 Assumption of Newtonian gravity for the void dynamics

Applying Newtonian gravity to the dynamics of any void would
lead to sharp gradients in the predicted density and velocity profiles
due to the steep inverse square law. Kenworthy et al. (2019) found
no evidence for such a sharp edge in the SN luminosity−distance
relation, which would − according to them − rule out the existence of
a large local void with δ > 0.2 at the 4σ−5σ confidence level. Also,
Hoscheit & Barger (2018) applied the large scale void radial profile
of Keenan et al. (2013) to show that H0 is 1.27 ± 0.59 km s−1 Mpc−1

higher in the redshift range 0.0233 < z < 0.07 compared to 0.07 <

z < 0.15. This only modestly reduces the Hubble tension, e.g. with
the SNe data of Riess et al. (2016).

However, as shown in Section 2.2, an inverse square law is
too weak to produce a deep and extended underdensity like the
KBC void. Therefore, the assumption of Newtonian gravity for
the void dynamics is not sustainable. In MOND, the long-range
modification to gravity would cause a much more gradual return from
the void-induced peculiar velocities to the background cosmology,
as demonstrated in Fig. 12. Therefore, sharp features in the density
profile and Hubble diagram are not expected in a MONDian model.
This holds especially for H0 derived from SNe data because in
order to constrain the cosmological model, one has to consider
many individual SNe. Consequently, the inferred H0 only gradually
declines towards the Planck prediction as SNe beyond the void are
included in the analysis (as e.g. done by Colgáin 2019).

5.3.5 Restrictive upper limit on the void size

The present void size can be treated as a model parameter indepen-
dently of the applied gravity theory. Adopting a very low upper limit
on the allowed void size would unavoidably cause sharp features
in the density and velocity profiles in any framework. Moreover,
the Hubble tension cannot be resolved by a small void unless we
postulate that it is extremely deep. This issue affected the analysis of
Wu & Huterer (2017), who assumed a void size of 180 Mpc. They
noticed that since the SNe data go out much further, it is difficult
for such a small void to resolve the Hubble tension. None the less,
they did not consider a larger void, opting instead for a very large
density contrast of δ = 0.8. This led to poor agreement with direct
measurements of the density field. However, a larger and shallower
void would have provided much better agreement with observations,
as shown in this work.

Using the high-resolution �CDM N-body cosmological sim-
ulation called Millennium-II, Xie et al. (2014) obtained that
≈14 per cent of LG-like systems are located in a region that resem-
bles the observed local void. Thus, they concluded that ‘the emptiness
of the Local Void is indeed a success of the standard �CDM theory.’
However, by ‘Local Void’, they meant a sphere of radius ≈8 Mpc,
which is much smaller than the KBC void. Thus, their work cannot
be used as an argument that the local void observed by Keenan et al.
(2013) is consistent with �CDM cosmology, as is done in section 5
of Sahlén et al. (2016).

5.3.6 Fixing the acceleration parameter

The acceleration parameter q
0

describes the second time derivative
of the scale factor (equation 65). It is therefore a measure of the
void’s gravity. As discussed in Section 5.3.4, Kenworthy et al. (2019)
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Figure 16. Difference in the redshift between our best-fitting model and
a standard void-free cosmology (latter subtracted), shown as a function of
lookback time. The first two dashed vertical lines show the range 0.023 ≤ z ≤
0.15 covered by Camarena & Marra (2020a). The dotted vertical line marks
z = 0.5. For comparison, the red points and green squares show fractional
distance uncertainties using SNe (table 6 of Riess et al. 2018) and BAO
(table 8 of Alam et al. 2017), respectively. Since fractional redshift errors are
generally rather small, this gives an estimate of the uncertainty in the inferred
Hubble constant, which has similar sensitivity to redshift and distance.

concluded that the KBC void is not evident in the SN luminosity–
distance relation. In addition to assuming Newtonian gravity, they
fixed the acceleration parameter to the �CDM prediction of q

0
=

0.55. In general, q
0

would have a higher value if there is a large
local void. To allow for this possibility, q

0
must be treated as a

free parameter when using the apparent expansion rate history to
constrain the properties of a local void.

Fortunately, Camarena & Marra (2020a) address this shortcoming
by deriving q

0
and H local

0 jointly from SNe data without a restrictive
choice of prior. Their analysis yields q

0
= 1.08 ± 0.29, much higher

than in the Planck cosmology. A high q
0

is also evident when
using BAO data or treating the SNe Ia absolute magnitude as a
free parameter (Camarena & Marra 2020b). This is a strong hint for
the existence of a local void independently of the galaxy luminosity
density (e.g. Keenan et al. 2013). Indeed, Colgáin (2019) inferred a
local underdensity at z � 0.15 using SNe data alone. Both the local
Hubble constant and acceleration parameter can be explained in our
best-fitting MOND models (Fig. 6).

5.3.7 Effect of the void at high redshift

The apparent expansion rate history in our fiducial MOND model is
very similar to the Planck cosmology (Fig. 12). None the less, the
fractional difference in z between void and void-free cosmologies
(i.e. �z/z) reaches the 12 per cent level and is sufficient to solve the
Hubble tension (Fig. 16). Observations at higher z could distinguish
our void model from other possible solutions, e.g. miscalibrated SNe,
early dark energy, etc. This is because a local void predicts that the
inferred H0 decreases with the redshift of the data set used, and
asymptotically approaches the Planck prediction (Fig. 7).

Unfortunately, Fig. 16 shows that high-redshift SNe currently
do not pose strong constraints on our model. This is because the
simulated �z/z decreases with redshift, while the uncertainty of
binned SNe distance measurements to fixed z increases for z � 0.2.
It crosses the simulated �z/z curve at z ≈ 0.38, corresponding to
a lookback time of ≈ 4.2 Gyr. At z ≈ 0.5 (the dotted vertical line

in Fig. 16), the predicted �z/z ≈ 3 per cent, but the observational
uncertainty is much larger (see also Cuceu et al. 2019; Macaulay
et al. 2019). As a result, even the 9 per cent Hubble tension could not
be reliably detected in SNe at these redshifts, which is reasonable
given that the uncertainty of H0 derived from SNe at 0.023 ≤ z ≤
0.15 is already ≈ 2 per cent (Camarena & Marra 2020a). Moreover,
there are much fewer observed SNe at high redshifts, which could
increase systematic errors.

In contrast to high-redshift SNe, the current BAO precision (Alam
et al. 2017) lies slightly below the predicted �z/z. However, the
uncertainties are still too large to distinguish our model from a void-
free Planck cosmology at high significance. We note that BAO-based
H0 measurements (Alam et al. 2017; Zhang et al. 2019) are very close
to the Planck prediction (Section 1.2), which is consistent with our
void model. The small excess it predicts can only be confirmed or
ruled out with more precise observations.

In conclusion, it is currently difficult to distinguish void and
void-free models with data only at z � 0.5. Data at lower z are
more useful in this regard. In particular, the redshift range 0.023
≤ z ≤ 0.15 covered by Camarena & Marra (2020a) brackets the
peak of the simulated �z/z curve and poses therewith a strong test
of our model. In this redshift range, our void model differs from
�CDM by �z/z = 7 − 12 per cent, which is quite consistent with
the 9.5 per cent difference between local and early universe measures
of H0. Note that the position of the peak in �z/z depends on the
underlying void profile − it would occur at the void centre for a
Gaussian or an exponential profile.

5.3.8 CMB contamination by intergalactic dust

Finally, we consider the possibility that the CMB is contaminated by
intergalactic dust, which in turn would affect the H

global
0 required by

Planck Collaboration VI (2020). Some distant foreground emission
can increase H

global
0 (Yershov et al. 2020), which would slightly

reduce the mild tension between our model and the strong lensing
data (Fig. 7). This is because the z > 0.4 lenses all give H0

systematically above the Planck prediction by a similar extent. But
changing the Planck H0 would not explain the high inferred H0 from
the two lowest z lenses, which would continue to hint at a local void.

It is also possible that the CMB is more substantially affected
by dust. In contrast to the �CDM model in which the CMB is
explained as relic radiation from the early Universe at z ≈ 1100 (e.g.
Bennett et al. 2003; Planck Collaboration VI 2020), an alternative
model is that the entire CMB is thermal radiation from intergalactic
dust particles heated up by starlight (Vavryčuk 2018). Assuming
the observed intergalactic dust is in thermal equilibrium with the
radiation field from galaxies, the model of Vavryčuk (2018) implies
a dust temperature of TD = 2.776 K. This is only slightly higher
than the measured TCMB = 2.72548 ± 0.00057 K (Fixsen 2009). The
exact value of TD depends on the amount of intergalactic dust
and the intergalactic opacity ratios, which are both poorly known
observationally. In future, it would be important to study which
dust parameters are necessary to match the observed TCMB. In other
words, it would be important to quantify the uncertainty on TD, which
was not explicitly addressed by Vavryčuk (2018). Furthermore, it
needs to be demonstrated that the model can yield the observed
perfect blackbody spectrum within rather small uncertainties (Planck
Collaboration XXVII 2014), and also yield nearly Gaussian temper-
ature fluctuations (Planck Collaboration XXIII 2014). It is therefore
possible that intergalactic dust significantly affects the CMB, but a
detailed consideration of such a scenario is beyond the scope of our
work. Interestingly, Vavryčuk (2019) showed in a subsequent study

MNRAS 499, 2845–2883 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/2845/5939857 by guest on 11 O
ctober 2021



The KBC void and H0 tension in �CDM and MOND 2875

that the anomalous dimming of SNe Ia can in principle be explained
by light extinction due to intergalactic dust.

In addition to heating by starlight, dust grains would also be heated
by the primordial CMB, especially at high z. This may have caused
rethermalization of the CMB by dust from the first stars at z ≈ 15.
In this scenario, the angular scale evident in BAO measurements
corresponds to a different co-moving length than the sound horizon
at the time of last scattering. However, agreement can be recovered
if we assume a non-standard background cosmology where a ∝ t
(Melia 2020). In fact, it is not possible that a ∝ t without such a late
rethermalization of the primordial CMB (Fujii 2020). While the late-
time expansion history is indeed approximately of this form (Fig. 12),
the model does not yet explain the nature of the acoustic oscillations
in the CMB power spectrum. Moreover, BBN would be modified to
a very substantial extent, making it difficult to explain the observed
light element abundances (Lewis, Barnes & Kaushik 2016).

6 C O N C L U S I O N S

Cosmic structure − and therewith the distribution of galaxies −
provide strong constraints on the underlying cosmological model.
In this context, we used the framework of the standard �CDM
theory and MOND (Milgrom 1983) to investigate the KBC void,
a large underdensity with a relative density contrast of δ ≡ 1 −
ρ/ρ0 = 0.46 ± 0.06 between z = 0.01 and z = 0.07 (Keenan et al.
2013). A large local underdensity is evident throughout the whole
electromagnetic spectrum (Section 1.1).

Using the MXXL simulation (Angulo et al. 2012), we showed
that the KBC void is in 6.04σ tension with standard cosmology
(Section 2.2.1). In principle, if mass conservation is assumed, such
an immense void should also show up in the velocity field, and
would approximately solve the Hubble tension (equation 5). This
tension nowadays exceeds the 5σ threshold based on numerous
independent techniques (Section 1.2). However, we demonstrated
that a 10σ density fluctuation would be necessary to solve the
Hubble tension at the 2σ level (Fig. 2). This is due to the very
small expected cosmic variance in �CDM (e.g. Macpherson et al.
2018). The most likely explanation in this framework is that both the
KBC void and Hubble tension are caused by measurement errors.
However, the measurements rely on very different observational
techniques. For instance, a zero-point error in SNe Ia fluxes would
change the inferred H0 but would not affect the KBC void. Thus,
both phenomena would independently falsify �CDM at more than
5σ confidence, yielding a combined tension of 7.75σ . Taking into
account the cosmic variance expected in �CDM, both tensions are
not completely independent, reducing the combined tension with
standard cosmology to 7.09σ (Section 2.2.3). The �CDM model (or
any dark-matter-based Einsteinian/Newtonian cosmological model)
is thus rigorously ruled out by the data on kpc, Mpc, and Gpc scales
(see also Kroupa 2012, 2015).

As discussed in Section 5.1.1, an early change in the expansion
history is unlikely to solve the Hubble tension, and would in any case
not explain the KBC void. Importantly, we argued that the locally
measured Hubble constant is very similar to the Planck prediction in
�CDM once the KBC void is accounted for (equation 5). Our results
thus support the Planck cosmology at the background level and in
the early Universe.

However, a deep and large void such as the KBC void implies that
the growth of structure must be more rapid than predicted by standard
theory. This would also fit into the picture obtained by Peebles &
Nusser (2010), who concluded that the structure of the Local Volume
with its void and sheet on an 8 Mpc scale points to a faster growth

rate of cosmic structure. Since gravity is the dominant force on these
scales, it is very likely that gravity has to be enhanced at long range
(Fig. 11).

Consequently, we aimed to study the KBC void and its ve-
locity field in MOND, an acceleration-dependent modification of
Newtonian gravity. MOND was originally designed to explain the
dynamical discrepancies in galaxies without the need of CDM
(Milgrom 1983). Unfortunately, there is currently no N-body or
hydrodynamical cosmological MOND simulation large enough to
quantify the likelihood of a KBC void, as done for the �CDM
framework. Therefore, we developed a semi-analytic approach based
on the Angus (2009) cosmological model, which relies on MOND
supplemented by sterile neutrinos with a mass of mνs

= 11 eV/c2.
We call this the νHDM framework, where ν refers to both the
interpolating function in QUMOND (Milgrom 2010) and sterile
neutrinos as an HDM component. The energy budget would be
similar to the �CDM cosmology, with a baryonic matter density
of 	b, 0 ≈ 0.05, a sterile neutrino density of 	νs,0 ≈ 0.25, and a dark
energy density of 	�, 0 ≈ 0.7 at the present time (Section 3.1).

This paradigm is mainly motivated by a sample of 30 virialized
galaxy groups and clusters which all reach the Tremaine–Gunn
limit for sterile neutrinos with mνs

= 11 eV/c2 (Angus et al. 2010).
Moreover, the model provides a viable explanation of the thermal
history of the Universe. As discussed in Section 3.1.3, an extra
sterile neutrino species is consistent with the standard model of
particle physics (which accommodates neutrino oscillations) and
only slightly affects the nucleosynthesis era − it would raise the
primordial helium abundance from Yp = 0.247 to Yp = 0.259.
Measurements of high-redshift metal-poor gas clouds backlit by
quasars do not rule this out (Aver et al. 2012; Cooke & Fumagalli
2018). At z = 1100, sterile neutrinos with mνs

= 11 eV/c2 have a
free-streaming length of ≈ 3.5 cMpc, implying that they would only
affect multipoles � � 4900 in the CMB power spectrum, beyond
the range of Planck. This is confirmed in section 6.4.3 of Planck
Collaboration XIII (2016), which states that sterile neutrinos with
mνs

> 10 eV/c2 are indistinguishable from CDM in Planck mea-
surements of the power spectrum. Importantly, typical accelerations
at the CMB would exceed a0 , causing structure formation to be
little affected by MOND until z � 50 (equation 32). Furthermore,
the νHDM model closely recovers the standard expansion history
(Angus 2009), which is currently favoured by observations (e.g.
Joudaki et al. 2018). This is because not only the overall matter
content but also the Friedmann equation should be very similar to
�CDM (Dodelson & Liguori 2006; Skordis et al. 2006).

Within this framework, we developed a semi-analytical model
with the usual ansatz that density perturbations obey Milgrom’s
law of gravity (e.g. Angus et al. 2013; Katz et al. 2013; Candlish
2016), but a standard background cosmology applies (Section 3.1).
In particular, we adopted a background Hubble constant of H

global
0 =

67.4 km s−1 Mpc−1, 	m, 0 = 0.315, and 	�, 0 = 0.685 (Planck
Collaboration VI 2020). In this way, we extrapolated Milgrom’s
gravitational theory from sub-kpc to Gpc scales without further
theoretical assumptions to specifically address the local density and
velocity field (Section 3.2).

Our simulation starts at z = 9 with a void profile parametrized
by an initial void size rvoid ranging from 50–1030 cMpc and an
initial void strength αvoid ranging from 10−5 to 10−2. In our fiducial
model, the void is described by a Maxwell–Boltzmann profile
(Section 3.2.1) motivated by the density profile of the Local Volume
(Karachentsev & Telikova 2018). We also run models with a Gaussian
and an exponential initial profile (Appendices B and C). Furthermore,
we vary the present EFE from gext = 0 up to 0.5 a0 . For our main
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analysis, we assume that the EFE is constant over cosmic time, but
models with different power-law dependencies on the scale factor
are also considered (Section 5.2.2). In total, we run 106 MOND
models for our main analysis (Maxwell–Boltzmann initial profile
with time-independent gext).

We constrain our models with observations of the local Universe,
i.e. the inner (0.01 < z < 0.07) and outer (600–800 Mpc) density
contrast of the KBC void (see also fig. 11 and table 1 in Keenan et al.
2013), the local Hubble constant and acceleration parameter derived
jointly from SNe in the redshift range 0.023 ≤ z ≤ 0.15 (Camarena &
Marra 2020a), H0 measured from seven strong lenses (Wong et al.
2020; Shajib et al. 2020), and the motion of the LG wrt. the CMB
(Kogut et al. 1993).

Our fiducial MOND model has gext = 0.055 a0 causing a bulk
flow of vvoid = 1586 km s−1 at z = 0, rvoid = 228.2 cMpc at z = 9,
and αvoid = 3.76 × 10−5 then. In this model, the density contrast in
a 300 cMpc sphere grows as δ

∝∼ a3.8, which is much faster than in
�CDM where δ

∝∼ a0.8 (Fig. 5). At the present epoch, our model
yields δin = 0.172 and δout = 0.050, which explains the observed
density contrasts after an RSD correction (Section 3.3.2) at 0.99σ

and 0.97σ , respectively. The model yields a local Hubble constant
of H model

0 = 76.15 km s−1 Mpc−1 and an acceleration parameter of
qmodel

0
= 1.07 in the redshift range 0.023 ≤ z ≤ 0.15, consistent with

the observations of Camarena & Marra (2020a) at the 84.20 per cent
confidence level (0.20σ tension, Section 4.2). Similar results are
obtained for models initialized with a Gaussian or an exponential
profile (Appendix B). Thus, we have shown for the first time that the
Hubble tension can be solved in MOND. Several other tensions are
also simultaneously resolved, notably the KBC void and that in q

0

(see also Camarena & Marra 2020b).
While all our best-fitting models generally imply larger peculiar

velocities than the observed vLG of only 627 km s−1, the possibility
that vtot ≤ vLG cannot be excluded at the 99 per cent confidence level
(Section 4.2 and Appendix C). Thus, we do not require the LG to be
at a special position within the KBC void in a statistically significant
sense. Our results indicate that we should be 150−270 Mpc from the
void centre in roughly the opposite direction to the external field on
the void (Fig. 8).

As we go beyond the void, all our models predict that the
inferred H0 decreases with redshift. Indeed, observations of strongly
lensed quasars taken by the H0LICOW team have shown that H0

decreases with the lens redshift at a significance level of 1.9σ

(Wong et al. 2020). However, our best-fitting model systematically
underestimates the lensing-inferred H0, which may be related to the
EFE sourced by a massive object beyond the void at z � 0.15 but
closer than the lenses at z > 0.3 (Section 5.2.1). It could also be a
sign of systematic errors (Kochanek 2020), but the sharp rise for the
two nearest lenses is suggestive of a void-induced effect.

Taking into account all observational constraints (Section 3.3),
our fiducial MOND model explains these local observations at the
1.14 per cent confidence level, representing 2.53σ tension (Sec-
tion 4.2). The best-fitting MOND models with a Gaussian and
an exponential void profile are consistent with observations at
0.45 per cent (2.84σ ) and 0.34 per cent (2.93σ ), respectively (Ap-
pendix C).

Although strong lensing does not occur in the MOND regime
(Sanders 1999) and works similarly to standard cosmology (Sec-
tion 3.3.5), we also redo our analysis without the H0 constraints
from this method. Our best-fitting model is then consistent with
observations at the 5.0 per cent (1.96σ ) confidence level, with only
small changes to the best-fitting parameters (Section 5.2.1).

Our analysis strongly disfavours models without an EFE, consis-
tent with results from wide binaries (Pittordis & Sutherland 2019).
Furthermore, we showed that allowing time variation of the EFE has
only a minor impact on our results because a constant EFE is well
within uncertainties (Section 5.2.2). The main effect of allowing a
stronger EFE in the past is to raise the required void strength at z =
9, with values up to ≈10−3 becoming allowed at 1σ (Fig. 14). This
is more in line with the expected cosmic variance at that epoch.

We also discussed structure formation and the implications for
the KBC void in MOND if peculiar accelerations are coupled
to the Hubble flow acceleration gHubble, as proposed by Sanders
(2001). Such a coupling (or HFE) would effectively add gHubble as
an extra source of gravity when calculating the MOND boost to
gravity, making the behaviour more nearly Newtonian (Sections 3.1.4
and 5.2.3). However, even a strong HFE implies a significant
enhancement to gravity and the formation of voids compared to
the Newtonian case. This is because gHubble ≈ 0.2 a0 on a 300 Mpc
scale, and completely vanished 6 Gyr ago (Fig. 15). As a result, we
conservatively estimated that even with a strong HFE, the cosmic
variance in MOND would still be at least 2.8× that in standard
�CDM on a 300 Mpc scale (≈9.0 per cent instead of 3.2 per cent).
This would mean that whereas �CDM needs a 10σ density fluctu-
ation to simultaneously explain the KBC void and Hubble tension
(Fig. 2), a MOND cosmology would only need an ≈ 2σ fluctuation
(Section 5.2.3). Thus, MOND can successfully describe the density
and velocity field on a Gpc scale under a wide range of plausible
theoretical assumptions on how density perturbations couple to the
background cosmology. In principle, the strength of the coupling
introduces additional degrees of freedom that could be used to match
the observed frequency of KBC-like voids, the observed lensing of
the CMB, and the ISW effect. However, it is not clear if a covariant
version of MOND has this flexibility when other constraints are
imposed, e.g. that gravitational waves should travel at c. These
theoretical uncertainties should be addressed in future work.

While the MONDian framework provides a reasonable fit to the
locally observed density and velocity field, we emphasize that other
alternative cosmologies might do so as well. Our results suggest
that a successful model should have an expansion history similar to
�CDM, but yield significantly more cosmic variance on a 300 Mpc
scale. Additionally, the model must also accurately describe the
dynamics of galaxies in order to provide a holistic explanation of
the observed Universe. In this regard, a modification to gravity at
length-scales beyond e.g. 10 Mpc would not be sufficient as it would
face the same issues as �CDM on galaxy scales.

There are still considerable theoretical uncertainties in the here
developed cosmological MOND simulation (Sections 3.1 and 5.2.3)
because we lack an understanding of the fundamental theory behind
MOND (i.e. FUNDAMOND, Milgrom 2020a,b). Nevertheless, a
promising relativistic MOND version was recently developed in
which gravitational waves travel at the speed of light (Skordis &
Złośnik 2019). Its implications for cosmology should be explored,
though a rather large box size would be required to reach the scale
at which the CP holds in a Milgromian universe. This is because in
MOND the EFE suppresses the growth of structure, causing structure
formation in different regions to become correlated (Section 5.2.2).
Without such simulations and/or further analytic work, we cannot
draw any strong conclusions on the expected time evolution of the
EFE. We none the less expect our results to hold because a wide
range of possible EFE histories yield reasonable results, and because
other void parameters such as its initial size and strength could be
adjusted to optimize the fit (Fig. 14).
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Any viable cosmological model has to explain both the local and
global Universe. The KBC void is virtually impossible within the
�CDM framework (Section 2.2). Consequently, the �CDM model
faces serious challenges on Gpc scales, as shown in this contribution
− the KBC void and Hubble tension falsify the �CDM paradigm
at the 7.09σ level, and point towards much more rapid growth
of structure than predicted by standard cosmology. Moreover, Di
Valentino et al. (2020a) reported ‘a possible crisis for cosmology’
based on the Planck power spectra, while Di Valentino, Melchiorri &
Silk (2020c) concluded that the �CDM paradigm has to be replaced.
These large-scale issues should be addressed together with the severe
problems faced by �CDM on galactic scales (e.g. the satellite planes
and the RAR, see also Kroupa 2015, and references therein).

Previous studies have shown that MOND is successful on several
astrophysical scales ranging from the equilibrium dynamics of
galaxies (Famaey & McGaugh 2012) and their formation out of gas
clouds (Wittenburg, Kroupa & Famaey 2020), to the equilibrium
dynamics of virialized galaxy clusters (Angus et al. 2013), and
the formation of extreme clusters like El Gordo (e.g. Katz et al.
2013). The cluster-scale successes require the assumption of sterile
neutrinos as HDM, which allows MOND to produce a standard
expansion history and have very little effect on BBN and the high-
acceleration CMB (Section 3.1). Consequently, there exist only very
few (if any) scales at which the �CDM framework provides a unique
explanation for the observations. Rather, observations of the local and
global Universe strongly suggest that we should replace �CDM with
the νHDM framework, which relies on MOND and sterile neutrinos.

The encouraging results we obtained using this approach should be
put on a more secure theoretical footing using a covariant framework
such as that of Skordis & Złośnik (2019). In particular, it is important
to rigorously demonstrate that the background cosmology behaves
like in �CDM at the sub-per cent level. A covariant framework would
also clarify if there is any coupling between the Hubble flow acceler-
ation and that sourced by inhomgeneities. If there is and if its strength
is adjustable, the value could be found empirically using numerical
simulations of large-scale structure. Calculating photon propagation
through the resulting time-varying inhomogeneous gravitational field
would then allow comparison with the observed lensing of the CMB
by intervening structures, and the resulting ISW effect (Buchert 2000;
Wiltshire 2007). Although these both appear to be underestimated in
the �CDM framework (Section 5.3.1), they may be overestimated
in νHDM. In this context, it is worth mentioning that the CMB
Cold Spot could be caused by a KBC-like void (Nadathur et al.
2014). The expected frequency of such voids should be quantified
using numerical simulations, which would also account for more
complicated effects such as non-sphericity of the void. This may lead
to predictions for angular dependence of the apparent expansion rate,
which could be contrasted with observations (e.g. those of Migkas
et al. 2020).

We conclude that unlike �CDM as presently understood, MOND
supplemented by HDM appears to be a promising way to explain
observations across all astrophysical scales. In particular, we expect
this νHDM model to yield an almost standard expansion history but
with enhanced cosmic variance on a 300 Mpc scale, allowing it to
explain the observed KBC void and therewith the Hubble tension.
This scenario has to be investigated in an open-minded manner in
future studies.
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de Almeida Á. O. F., Piattella O. F., Rodrigues D. C., 2016, MNRAS, 462,

2706
de Jaeger T., Stahl B. E., Zheng W., Filippenko A. V., Riess A. G., Galbany

L., 2020, MNRAS, 496, 3402
DES Collaboration, 2019, MNRAS, 484, 5267
Ding Q., Nakama T., Wang Y., 2020, Sci. China Phys. Mech. Astron., 63,

290403
Di Valentino E., Melchiorri A., Silk J., 2020a, Nat. Astron., 4, 196
Di Valentino E., Melchiorri A., Silk J., 2020b, J. Cosmol. Astropart. Phys.,

2020, 013
Di Valentino E., Melchiorri A., Silk J., 2020c, preprint (arXiv:2003.04935v1)
Dodelson S., Liguori M., 2006, Phys. Rev. Lett., 97, 231301
Eisenstein D. J. et al., 2005, ApJ, 633, 560
Enea A. R., 2018, IJMPD, 27, 1850102
Falco M., Hansen S. H., Wojtak R., Mamon G. A., 2013, MNRAS, 431, L6
Famaey B., Binney J., 2005, MNRAS, 363, 603
Famaey B., McGaugh S. S., 2012, Living Rev. Relativ., 15, 10
Famaey B., Bruneton J.-P., Zhao H., 2007, MNRAS, 377, L79
Fixsen D. J., 2009, ApJ, 707, 916
Frith W. J., Busswell G. S., Fong R., Metcalfe N., Shanks T., 2003, MNRAS,

345, 1049
Frith W. J., Shanks T., Outram P. J., 2005, MNRAS, 361, 701
Frith W. J., Metcalfe N., Shanks T., 2006, MNRAS, 371, 1601
Fujii H., 2020, Res. Notes Am. Astron. Soc., 4, 72
Gaia Collaboration, 2018, A&A, 616, A1
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Mészáros A., 2019, Astron. Nachr., 340, 564
Müller O., Pawlowski M. S., Jerjen H., Lelli F., 2018, Science, 359, 534
Nadathur S., Lavinto M., Hotchkiss S., Räsänen S., 2014, Phys. Rev. D, 90,

103510
Nusser A., 2002, MNRAS, 331, 909
Ostriker J. P., Peebles P. J. E., 1973, ApJ, 186, 467
Ostriker J. P., Steinhardt P. J., 1995, Nature, 377, 600
Pandey S., Raveri M., Jain B., 2019, Phys. Rev. D, 102, 023505
Pawlowski M. S., 2018, Mod. Phys. Lett. A, 33, 1830004
Pawlowski M. S., Kroupa P., 2020, MNRAS, 491, 3042
Pawlowski M. S., McGaugh S. S., 2014, MNRAS, 440, 908
Pawlowski M. S., Pflamm-Altenburg J., Kroupa P., 2012, MNRAS, 423, 1109
Pawlowski M. S. et al., 2014, MNRAS, 442, 2362
Pazy E., 2013, Phys. Rev. D, 87, 084063
Peebles P. J. E., 2017, preprint (arXiv:1705.10683v1)
Peebles P. J. E., Nusser A., 2010, Nature, 465, 565
Pesce D. W. et al., 2020, ApJ, 891, L1
Pittordis C., Sutherland W., 2019, MNRAS, 488, 4740

MNRAS 499, 2845–2883 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/2845/5939857 by guest on 11 O
ctober 2021

http://dx.doi.org/10.1016/S0927-6505(01)00171-2
http://dx.doi.org/10.1103/RevModPhys.88.015004
http://dx.doi.org/10.1093/mnras/sty1939
http://dx.doi.org/10.1093/mnras/stw1844
http://dx.doi.org/10.1093/mnras/staa1801
http://dx.doi.org/10.1093/mnras/stz341
http://dx.doi.org/10.1007/s11433-020-1531-0
http://dx.doi.org/10.1038/s41550-019-0906-9
http://dx.doi.org/10.1088/1475-7516/2020/01/013
https://arxiv.org/abs/2003.04935v1
http://dx.doi.org/10.1103/PhysRevLett.97.231301
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1142/S021827181850102X
http://dx.doi.org/10.1093/mnrasl/sls051
http://dx.doi.org/10.1111/j.1365-2966.2005.09474.x
http://dx.doi.org/10.12942/lrr-2012-10
http://dx.doi.org/10.1111/j.1745-3933.2007.00308.x
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://dx.doi.org/10.1046/j.1365-8711.2003.07027.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09200.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10736.x
http://dx.doi.org/10.3847/2515-5172/ab9537
http://dx.doi.org/10.1051/0004-6361/201833051
http://dx.doi.org/10.1088/1475-7516/2018/04/051
http://dx.doi.org/10.1093/mnras/stw573
http://dx.doi.org/10.1093/mnras/stz1465
http://dx.doi.org/10.3847/2041-8213/ab4517
http://dx.doi.org/10.1103/PhysRevD.1.2726
http://dx.doi.org/10.1093/mnras/stz2270
http://dx.doi.org/10.1051/0004-6361/201833771
http://dx.doi.org/10.1103/PhysRevD.102.043507
http://dx.doi.org/10.1088/1475-7516/2020/02/012
http://dx.doi.org/10.3847/1538-4357/aaa59b
http://dx.doi.org/10.1038/nature11407
http://dx.doi.org/10.3847/1538-4357/ab5dbd
http://dx.doi.org/10.1086/303598
http://dx.doi.org/10.1038/nature11717
http://dx.doi.org/10.1103/PhysRevLett.86.3475
http://dx.doi.org/10.1051/0004-6361/201629408
http://dx.doi.org/10.1093/mnrasl/slaa001
http://dx.doi.org/10.1088/0004-637X/810/1/47
http://dx.doi.org/10.3847/1538-4357/aaf1b3
http://dx.doi.org/10.1126/science.aat7371
http://dx.doi.org/10.1088/0004-637X/785/1/20
http://dx.doi.org/10.1103/PhysRevD.97.123501
http://dx.doi.org/10.1134/S1990341312020010
http://dx.doi.org/10.1002/asna.201813520
http://dx.doi.org/10.1103/PhysRevD.94.103523
http://dx.doi.org/10.1086/592947
http://dx.doi.org/10.1088/0004-637X/732/1/1
http://dx.doi.org/10.1088/0004-637X/772/1/10
http://dx.doi.org/10.1088/0004-637X/775/1/62
http://dx.doi.org/10.3847/1538-4357/ab0ebf
http://dx.doi.org/10.1088/1475-7516/2020/07/039
http://dx.doi.org/10.1093/mnras/staa344
http://dx.doi.org/10.1086/173453
http://dx.doi.org/10.1093/mnras/stx3213
http://dx.doi.org/10.1071/AS12005
http://dx.doi.org/10.1139/cjp-2014-0179
http://dx.doi.org/10.1051/0004-6361:20041122
http://dx.doi.org/10.1038/s41586-018-0429-z
http://dx.doi.org/10.1111/j.1365-2966.2011.19233.x
http://dx.doi.org/10.3847/0004-6256/152/6/157
http://dx.doi.org/10.3847/1538-4357/836/2/152
http://dx.doi.org/10.1093/mnras/stw1003
http://dx.doi.org/10.1111/j.1365-2966.2008.13961.x
http://dx.doi.org/10.1139/cjp-2014-0168
http://dx.doi.org/10.1093/mnras/stz978
http://dx.doi.org/10.3847/2041-8213/aadf8c
http://dx.doi.org/10.1093/mnras/stu2096
http://dx.doi.org/10.1103/PhysRevLett.110.241305
http://dx.doi.org/10.1088/0004-637X/737/2/61
http://dx.doi.org/10.1086/432968
http://dx.doi.org/10.1103/PhysRevLett.106.121303
http://dx.doi.org/10.3847/2041-8205/832/1/L8
http://dx.doi.org/10.1088/0004-637X/722/1/248
http://dx.doi.org/10.1086/312628
http://dx.doi.org/10.1088/0004-637X/775/2/139
http://dx.doi.org/10.1140/epjp/s13360-020-00533-2
http://dx.doi.org/10.1088/0004-637X/748/1/7
http://dx.doi.org/10.1051/0004-6361/201936602
http://dx.doi.org/10.1086/161130
http://dx.doi.org/10.1086/164021
http://dx.doi.org/10.1016/S0375-9601(99)00077-8
http://dx.doi.org/10.1111/j.1365-2966.2009.16184.x
http://dx.doi.org/10.1103/PhysRevLett.111.041105
https://arxiv.org/abs/1703.06110
https://arxiv.org/abs/2001.09729v1
http://dx.doi.org/10.1016/j.shpsb.2020.02.004
http://dx.doi.org/10.1051/0004-6361/201937351
http://dx.doi.org/10.1002/asna.201913657
http://dx.doi.org/10.1126/science.aao1858
http://dx.doi.org/10.1103/PhysRevD.90.103510
http://dx.doi.org/10.1046/j.1365-8711.2002.05235.x
http://dx.doi.org/10.1086/152513
http://dx.doi.org/10.1038/377600a0
http://dx.doi.org/10.1103/PhysRevD.102.023505
http://dx.doi.org/10.1142/S0217732318300045
http://dx.doi.org/10.1093/mnras/stz3163
http://dx.doi.org/10.1093/mnras/stu321
http://dx.doi.org/10.1111/j.1365-2966.2012.20937.x
http://dx.doi.org/10.1093/mnras/stu1005
http://dx.doi.org/10.1103/PhysRevD.87.084063
https://arxiv.org/abs/1705.10683v1
http://dx.doi.org/10.1038/nature09101
http://dx.doi.org/10.3847/2041-8213/ab75f0
http://dx.doi.org/10.1093/mnras/stz1898


The KBC void and H0 tension in �CDM and MOND 2879

Planck Collaboration VI, 2020, A&A, 641, A6
Planck Collaboration XIII, 2016, A&A, 594, A13
Planck Collaboration XXIII, 2014, A&A, 571, A23
Planck Collaboration XXVII, 2014, A&A, 571, A27
Ploeckinger S., Sharma K., Schaye J., Crain R. A., Schaller M., Barber C.,

2018, MNRAS, 474, 580
Ponomareva A. A., Verheijen M. A. W., Papastergis E., Bosma A., Peletier

R. F., 2018, MNRAS, 474, 4366
Poulin V., Smith T. L., Karwal T., Kamionkowski M., 2019, Phys. Rev. Lett.,

122, 221301
Reid M. J., Braatz J. A., Condon J. J., Greenhill L. J., Henkel C., Lo K. Y.,

2009, ApJ, 695, 287
Reid M. J., Pesce D. W., Riess A. G., 2019, ApJ, 886, L27
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APPENDI X A : G AU SSI ANI TY OF THE �C D M
DENSI TY FLUCTUATI ONS

We perform a Gaussianity test to determine if the density fluctuations
calculated in the MXXL simulation (Section 2) follow a normal
distribution. For this, we run 104 Monte Carlo trials in which each
time we select the three lowest values out of 106 randomly generated

Figure A1. Normality tests on the density fluctuations in the �CDM MXXL simulation within a spherical shell with an inner radius of 40 Mpc and an outer
radius of 300 Mpc at redshift z = 0. The distributions (blue) show the lowest (left-hand panel), second (middle panel), and third (right-hand panel) lowest values
generated using 104 Monte Carlo trials, with each value shown based on 106 Gaussian random numbers to mimic the number of vantage points used in MXXL.
The dashed lines mark the lowest, second, and third lowest relative density contrast scaled by the rms fluctuations of the MXXL simulation (Section 2.1).

MNRAS 499, 2845–2883 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/2845/5939857 by guest on 11 O
ctober 2021

http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201321534
http://dx.doi.org/10.1051/0004-6361/201321556
http://dx.doi.org/10.1093/mnras/stx2787
http://dx.doi.org/10.1093/mnras/stx3066
http://dx.doi.org/10.1103/PhysRevLett.122.221301v2
http://dx.doi.org/10.1088/0004-637X/695/1/287
http://dx.doi.org/10.3847/2041-8213/ab552d
http://dx.doi.org/10.1086/338753
http://dx.doi.org/10.1038/s42254-019-0137-0
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.3847/0004-637X/826/1/56
http://dx.doi.org/10.3847/1538-4357/aaa5a9
http://dx.doi.org/10.3847/1538-4357/ab1422
http://dx.doi.org/10.3847/2041-8213/ab9900
http://dx.doi.org/10.1086/588783
http://dx.doi.org/10.1086/151636
http://dx.doi.org/10.3847/1538-4357/ab2ed0
http://dx.doi.org/10.1051/0004-6361/201321215
http://dx.doi.org/10.1051/0004-6361/201423583
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.3847/2041-8205/820/1/L7
http://dx.doi.org/10.1103/PhysRevLett.124.161301
http://dx.doi.org/10.1046/j.1365-8711.1998.01459.x
http://dx.doi.org/10.1086/311865
http://dx.doi.org/10.1086/322487
http://dx.doi.org/10.1046/j.1365-8711.2003.06596.x
http://dx.doi.org/10.1146/annurev.astro.40.060401.093923
http://dx.doi.org/10.1086/306308
http://dx.doi.org/10.3847/1538-3881/ab9d88
http://dx.doi.org/10.1093/mnras/staa828
http://dx.doi.org/10.1093/mnras/stz2863
http://dx.doi.org/10.1103/PhysRevD.74.103513
http://dx.doi.org/10.1103/PhysRevLett.96.011301
http://dx.doi.org/10.1103/PhysRevD.100.104013
https://arxiv.org/abs/2007.00082v1
http://dx.doi.org/10.1103/PhysRevD.96.104042
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1088/0004-6256/138/2/392
http://dx.doi.org/10.1155/2012/268321
http://dx.doi.org/10.1093/mnras/190.3.413
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1111/j.1365-2966.2009.14686.x
http://dx.doi.org/10.1093/mnras/stw733
http://dx.doi.org/10.1111/j.1365-2966.2011.19169.x
http://dx.doi.org/10.1103/PhysRevLett.42.407
http://dx.doi.org/10.1088/0004-637X/753/1/9
http://dx.doi.org/10.3847/1538-4357/ab001b
http://dx.doi.org/10.1093/mnras/sty974
http://dx.doi.org/10.1093/mnrasl/slz128
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.21468/SciPostPhys.2.3.016
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1111/j.1365-2966.2006.11360.x
http://dx.doi.org/10.1093/mnras/stt2024
http://dx.doi.org/10.1088/1367-2630/9/10/377
http://dx.doi.org/10.3847/1538-4357/ab6d73
http://dx.doi.org/10.1093/mnras/stt2321
http://dx.doi.org/10.1093/mnras/stz3094
http://dx.doi.org/10.1093/mnras/stx1967
http://dx.doi.org/10.1093/mnras/stu513
http://dx.doi.org/10.1093/mnras/staa189
http://dx.doi.org/10.1103/PhysRevD.100.063510
http://dx.doi.org/10.1093/mnras/160.1.1P
http://dx.doi.org/10.1093/mnras/sty3191
https://arxiv.org/abs/0805.4046v2
http://dx.doi.org/10.1051/0004-6361/201321879


2880 M. Haslbauer, I. Banik and P. Kroupa

Gaussian numbers. The left-hand panel of Fig. A1 shows the
distribution of the lowest value of each Monte Carlo trial compared
with the lowest relative density contrast in MXXL scaled by the
rms fluctuation. The same procedure is applied for the second and
third lowest values in the middle and right-hand panels of Fig. A1,
respectively. As expected, the lowest, second and third lowest values
generated by the Monte Carlo trials cluster in a narrow region around
−5σ . The three most underdense regions in the MXXL simulation
match roughly with the expected values from the Monte Carlo
distributions, indicating that the MXXL density fluctuations closely
follow a normal distribution.

APPENDIX B: K BC VO ID MASS PROFILES

In addition to our fiducial MOND simulation based on a Maxwell–
Boltzmann void density profile (Section 3.2.1), we also model the
void with a Gaussian and an exponential profile. The enclosed
mass of the void within co-moving radius rcom for a Gaussian
profile is

Menc = 4πρ0r
3
void

(
x3

3
− αvoid

[√
π

2
erf

(
x√
2

)
− x exp

(
− x2

2

)])
. (B1)

As before, x ≡ rcom/rvoid, αvoid is the initial void strength, and rvoid is
the initial co-moving void size at z = 9.

The corresponding result for an exponential profile is

Menc = 4πρ0r
3
void

(
x3

3
− αvoid

[
2 − (x2 + 2x + 2

)
exp (−x)

])
.

(B2)

In both cases, αvoid is the initial underdensity at the void centre.
The results of using these void profiles are presented and compared
with local observations in Appendix C.

APPENDI X C : R ESULTS FOR D I FFERENT VO ID
PROFILES

The marginalized posterior distribution of the model parameters
based on 106 MOND models for a Gaussian and an exponential
initial void profile are shown in Figs C1 and C2, respectively. All
these models assume a time-independent EFE (i.e. nEFE = 0 in
equation 50). As with the Maxwell–Boltzmann profile, models with
a very weak or a very strong EFE are ruled out, but the initial void
parameters are only weakly constrained by local observations. In
particular, models with a Gaussian and an exponential profile restrict
gext to the range (0.045 − 0.127) a0 and (0.045 − 0.117) a0 at the 3σ

level, respectively.
The best-fitting model for a Gaussian void profile has an external

field strength of gext = 0.070 a0 , an initial void size of rvoid =
1030.0 cMpc (the upper limit of the allowed parameter range), and
an initial void strength of αvoid = 3.76 × 10−5. This model is in
2.84σ (0.45 per cent) tension with local observations (Section 3.3).

For an exponential void profile, the best-fitting model has gext =
0.080 a0 , rvoid = 1030.0 cMpc, and αvoid = 7.56 × 10−5. The overall
tension with observations is 2.93σ (0.34 per cent).

The results for both models are listed and compared with obser-
vations in Table C1. A time-dependent EFE and its implications
for structure formation are studied in Section 5.2.2 for all three
considered profiles.
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Figure C1. Similar to Fig. 4, but for a void modelled with a Gaussian profile (equation B1). The red dashed, black solid, and black dashed lines mark the 1σ ,
2σ , and 3σ confidence levels, respectively. For 1D posteriors, these are shown using horizontal black lines. The red dot or vertical line marks the best-fitting
model with an external field strength of gext = 0.070 a0 , an initial void size of rvoid = 1030 cMpc (the upper limit of the allowed parameter range), and an initial
void strength of αvoid = 3.76 × 10−5 at z = 9.
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Figure C2. Similar to Fig. 4, but for a void modelled with an exponential profile (equation B2). The red dashed, black solid, and black dashed lines mark the
1σ , 2σ , and 3σ confidence levels, respectively. For 1D posteriors, these are shown using horizontal black lines. The red dot or vertical line marks the best-fitting
model with an external field strength of gext = 0.080 a0 , an initial void size of rvoid = 1030 cMpc (the upper limit of the allowed range), and an initial void
strength of αvoid = 7.56 × 10−5 at z = 9.
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Table C1. Similar to Table 4, but now showing results for different void profiles. In all cases, we fix nEFE = 0.

Maxwell–Boltzmann density profile, gext = 0.055 a0 , rvoid = 228.2 cMpc, αvoid = 3.76 × 10−5, vvoid = 1586 km s−1, r rms
void = 528.7 Mpc, nEFE = 0

Parameter H local
0 (km s−1 Mpc−1) q local

0
H

lensing
0 (km s−1 Mpc−1) vLG (km s−1) δin δout

Observations 75.35 ± 1.68 1.08 ± 0.29 – 627 0.254 ± 0.083 −0.052 ± 0.105
MOND model 76.15 1.07 See Fig. 7 See Fig. 8 0.172 0.050
χ2 0.34 14.66 – 0.99 0.94
Degrees of freedom 2 7 – 1 1
χ (1D Gaussian equivalent) 0.20 2.05 2.34 0.99 0.97

Gaussian density profile, gext = 0.070 a0 , rvoid = 1030.0 cMpc, αvoid = 3.76 × 10−5, vvoid = 2018 km s−1, r rms
void = 744.7 Mpc, nEFE = 0

Parameter H local
0 (km s−1 Mpc−1) q local

0
H

lensing
0 (km s−1 Mpc−1) vLG (km s−1) δin δout

Observations 75.35 ± 1.68 1.08 ± 0.29 – 627 0.274 ± 0.081 −0.085 ± 0.108
MOND model 77.24 1.43 – – 0.155 0.078
χ2 1.79 12.74 – 2.19 2.26
Degrees of freedom 2 7 – 1 1
χ (1D Gaussian equivalent) 0.83 1.76 2.35 1.48 1.50

Exponential density profile, gext = 0.080 a0 , rvoid = 1030.0 cMpc, αvoid = 7.56 × 10−5, vvoid = 2307 km s−1, r rms
void = 730.4 Mpc, nEFE = 0

Parameter H local
0 (km s−1 Mpc−1) q local

0
H

lensing
0 (km s−1 Mpc−1) vLG (km s−1) δin δout

Observations 75.35 ± 1.68 1.08 ± 0.29 – 627 0.276 ± 0.080 −0.078 ± 0.108
MOND model 77.25 1.46 – – 0.158 0.073
χ2 1.98 13.19 – 2.17 1.97
Degrees of freedom 2 7 – 1 1
χ (1D Gaussian equivalent) 0.89 1.83 2.47 1.47 1.40

This paper has been typeset from a TEX/LATEX file prepared by the author.
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