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ABSTRACT

Context. Dynamical friction can be used to distinguish Newtonian gravity and modified Newtonian dynamics (MOND) because it
works differently in these frameworks. This concept, however, has yet to be explored very much with MOND. Previous simulations
showed weaker dynamical friction during major mergers for MOND than for Newtonian gravity with dark matter. Analytic arguments
suggest the opposite for minor mergers. In this work, we verify the analytic predictions for MOND by high-resolution N-body
simulations of globular clusters (GCs) moving in isolated ultra-diffuse galaxies (UDGs).
Aims. We test the MOND analog of the Chandrasekhar formula for the dynamical friction proposed by Sánchez-Salcedo on a single
GC. We also explore whether MOND allows GC systems of isolated UDGs to survive without sinking into nuclear star clusters.
Methods. The simulations are run using the adaptive-mesh-refinement code Phantom of Ramses. The mass resolution is 20 M� and
the spatial resolution 50 pc. The GCs are modeled as point masses.
Results. Simulations including a single GC reveal that, as long as the apocenter of the GC is over about 0.5 effective radii, the
Sánchez-Salcedo formula works excellently, with an effective Coulomb logarithm increasing with orbital circularity. Once the GC
reaches the central kiloparsec, its sinking virtually stops, likely because of the core stalling mechanism. In simulations with multiple
GCs, many of them sink toward the center, but the core stalling effect seems to prevent them from forming a nuclear star cluster. The
GC system ends up with a lower velocity dispersion than the stars of the galaxy. By scaling the simulations, we extend these results to
most UDG parameters, as long as these UDGs are not external-field dominated. We verify analytically that approximating the GCs by
point masses has little effect if the GCs have the usual properties, but for massive GCs such as those observed in the NGC 1052-DF2
galaxy, further simulations with resolved GCs are desirable.

Key words. galaxies: structure – galaxies: star clusters: general – galaxies: kinematics and dynamics – galaxies: dwarf –
galaxies: evolution – gravitation

1. Introduction

Modified Newtonian dynamics, or Milgromian dynamics
(MOND; Milgrom 1983a,b) was introduced four decades ago as
a possible explanation for the missing mass or gravity in galax-
ies not relying on an elusive dark matter component in these
stellar systems (see Famaey & McGaugh 2012, for a review).
Under MOND theory, rather than adding dark matter, the laws
of gravity or inertia have to be adjusted in the regime of small
acceleration a � a0, where a0 is on the order of 10−10 m s−2

and would constitute a new natural constant. This constant a0
would represent the transition from Newtonian into the so-called
deep-MOND regime and could even be related to the cosmo-
logical constant (Milgrom 1999). The main MOND implica-
tion under deep-MOND and spherical symmetry is that the true
acceleration norm a should become a =

√
aNa0, where aN is

the norm of the Newtonian gravitational acceleration. As an
extension of classical gravity, MOND requires a new Poisson
equation derived from a Lagrangian. Two such classical MOND
Lagrangians have been proposed (Bekenstein & Milgrom 1984;
Milgrom 2010), while several Lorentz covariant extensions have
been proposed over the last two decades; the most recent were

proposed by Skordis & Złośnik (2019, 2020), which are consis-
tent with the gravitational wave signals.

The MOND theory has celebrated some major achievements
on galaxy scales during the last decades. A key prediction of
MOND is the tight coupling between the acceleration generated
by baryons inside an object and its intrinsic acceleration (Milgrom
1983a). About 40 years after its proposition, this coupling has
recently been empirically confirmed by high-quality observations
of rotation curves of galaxies with stellar masses spanning sev-
eral orders of magnitude (Lelli et al. 2016, 2017). This coupling
extends into the regime of low surface brightness galaxies, which
were not known at the time of the development of MOND. Strong
signs of the external field effect, a unique feature of MOND,
have been detected (McGaugh & Milgrom 2013a,b; McGaugh
2016; Caldwell et al. 2017; Haghi et al. 2016; Hees et al. 2016;
Chae et al. 2020). Simulated galaxy formation under MOND eas-
ily produces exponential galactic disks (Wittenburg et al. 2020).
Furthermore, MOND may provide a solution (Zhao et al. 2013;
Bílek et al. 2018; Banik & Zhao 2018) to 100 kpc scale phenom-
ena such as the planes-of-satellite problem (Pawlowski 2018;
Pawlowski & Kroupa 2020; Müller et al. 2021a). It could also
for instance help in shedding light on the origin of large density
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fluctuations on a 600 Mpc scale (Haslbauer et al. 2020) or on the
rapid formation of galaxy clusters (Asencio et al. 2021).

While MOND is able to account for many aspects of galactic
phenomenology – in particular the detailed shape of the HI rota-
tion curves of spirals, but also X-ray temperature profiles, galaxy-
galaxy lensing, and globular cluster (GC) kinematics of most
ellipticals (Milgrom 2012, 2013; Samurović 2014; Bílek et al.
2019), this phenomenology can also be understood with appro-
priate, although fine-tuned, dark matter distributions in the New-
tonian context. A profound fundamental difference, however,
between MOND and Newtonian dynamics with dark matter halos
is the drag experienced by a massive satellite moving through the
bath of particles of its host galaxy, which is comprised mostly
of stars in the MOND case and stars and dark matter in the
Newtonian case. This drag, due to the back-reaction of the wake
and angular momentum transfer generated by the massive satel-
lite, is called dynamical friction, and has been not been explored
very much in the MOND context. Under MOND, this was pio-
neered by Ciotti & Binney (2004), who found with analytical
arguments that the dynamical friction timescale is shorter in the
deep-MOND regime than with Newtonian gravity including an
equivalent dark matter distribution. However, later simulations
showed this to be valid only in the regime of small perturbations,
while on the contrary, dynamical friction in MOND is rather inef-
ficient when the perturber has a large mass (e.g., Nipoti et al.
2008; Combes 2014). Going further than the mere timescale
of dynamical friction, Sánchez-Salcedo et al. (2006) proposed a
heuristic formula for the drag force, which we set out in this work
to test by N-body simulations for the first time.

We focus on the case of GCs moving in and around iso-
lated ultra-diffuse galaxies (UDGs), that is, in galaxies with
very low surface brightnesses and very large radial extents
(Sandage & Binggeli 1984; van Dokkum et al. 2015a). Whilst
this type of galaxies has been identified for a long time, inter-
est in these galaxies has grown again over the last few years
owing to their ubiquity in galaxy groups and galaxy clusters
(e.g., Crnojević et al. 2014; Koda et al. 2015; Muñoz et al. 2015;
van Dokkum et al. 2015b,a; Mihos et al. 2015; Yagi et al. 2016;
van der Burg et al. 2017; Venhola et al. 2017; Müller et al. 2018;
Zaritsky et al. 2019; Iodice et al. 2020), but also in the field
(Román & Trujillo 2017; Leisman et al. 2017). In the standard
context, many hypotheses have been put forward regarding their
possible origin, such as feedback mechanisms that might have
made them lose their gas early or expand through dynamical
heating (e.g., Freundlich et al. 2020) or tidal debris from mergers
or tidally disrupted dwarfs (e.g., Greco et al. 2018; Toloba et al.
2018; Jiang et al. 2019; Carleton et al. 2019). As extreme sys-
tems, they are ideal testbeds for various models of galaxy for-
mation. In the context of MOND, irrespective of their formation
scenario, such galaxies in the field are very well suited to the
study of dynamical friction because they are deep in the MOND
regime all the way down to their center. Of course, this is not
the case for galaxies residing in an environment in which the
external field should dominate their dynamics. The exercise of
studying dynamical friction in isolated UDGs is also interesting
from the point of view of testing MOND itself. Analytic argu-
ments suggested that GCs of galaxies in the deep MOND regime
experience strong dynamical friction and sink quickly to the cen-
ters of the galaxies (Ciotti & Binney 2004; Nipoti et al. 2008).
Many UDGs contain many GCs (Lim et al. 2018, 2020), which
might even be exceptionally massive (van Dokkum et al. 2018a)
and therefore experiencing exceptionally strong dynamical fric-
tion. This brings up the question of whether GCs could have
survived orbiting in (relatively isolated) UDGs since their forma-
tion 10 Gyr ago in MOND, or if MOND predicts that such GCs
should have sunk to the centers of UDGs and formed nuclear

star clusters. It is thus important to test the analytic formulas by
simulations. The analytic formulas also neglect the gravitational
interactions between the individual GCs in the galaxy, which
might have slowed down the sinking, as is known from simu-
lations with Newtonian gravity.

This paper is organized as follows. In Sect. 2 we review the
current knowledge of dynamical friction in MOND in more detail
and identify the open questions that we later answer by N-body
self-consistent simulations. The technical details of the simula-
tions and the characteristics of the simulated UDG are described
in Sect. 3. In Sect. 4 we demonstrate that a single GC does
not sink right to the center of the UDG but it experiences core
stalling. We further compare the simulation of one GC orbiting
the UDG with the prediction of a MOND analog of the Chan-
drasekhar formula in Sect. 5. The evolution of a whole GC sys-
tem incorporated into our simulated UDG is studied in Sect. 6,
where we find the GC system shrinks but the shrinking does not
progress to a zero radius. We then use scaling arguments to show
that the same is expected for a vast majority of the structural
parameters of observed UDGs (as long as they are not external
field dominated) in Sect. 7. In Sect. 8 we investigate analytically
how much energy is absorbed internally in GCs during the GC-
GC interaction, which is a process that is not present in our sim-
ulations with GCs modeled as single particles. We find that that
our simulations are a good approximation for usual GC masses
but less good for the GC masses such as those observed in the
NGC 1052-DF2 galaxy. The results are summarized in Sect. 9.

2. Dynamical friction

We first introduce dynamical friction in the context of Newto-
nian dynamics. Dynamical friction is a process that transfers
the orbital energy and angular momentum of a pair of bod-
ies orbiting each other into the energy and angular momentum
of their constituents. For example, when a galaxy is orbited
by a satellite, the orbital energy of the satellite is transferred
to the orbital energy of the stars or dark matter particles of
the galaxy. Dynamical friction causes the bodies to merge. It
has two dominant sources (see for instance Mo et al. 2010 or
Just & Peñarrubia 2005 for a review). The first is a density wake
of the constituent particles behind the object being decelerated.
The wake backreacts gravitationally on the orbiting body against
the direction of its motion. Supposing Newtonian gravity, the
frictional deceleration can in most situations be approximated by
the Chandrasekhar formula (Chandrasekhar 1943) as follows:

aDF,NWT =
2π ln ΛG2ρm

σ2X2

[
erf(X) −

2X
√
π

exp
(
−X2

)]
· (1)

In the above equation, ρ stands for the density of the environment
of the decelerated body (the enhancement of the density due to
the wake is negligible) and σ the local velocity dispersion of the
particles of the environment. Next, m denotes the mass of the
decelerated body and

X =
v
√

2σ
, (2)

where v is the velocity of the decelerated body with respect
to its environment. Finally, ln Λ is the Coulomb logarithm. In
principle Λ is defined as Λ = bmax/bmin, where bmin is the
impact parameter of the background particle whose trajectory
is bent owing to the decelerated body by 90◦ and bmax the max-
imum impact parameter that the background particle can have,
that is, in principle the extent of the system. The definition of
the Coulomb logarithm is obviously ambiguous and simulations
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show that its value depends somewhat on the particular prob-
lem under consideration (see, e.g., Hamilton et al. 2018, for an
in-depth criticism of the Coulomb logarithm approach). It is pos-
sible to roughly estimate ln Λ from its definition, but if a more
precise estimate is needed, a calibration of Eq. (1) by numer-
ical simulations is required. It turns out that if the Coulomb
logarithm is chosen correctly, Eq. (1) works very well. The suit-
able value of ln Λ differs from the default one by a factor of
a few. The situations under which the Chandrasekhar formula
works well were summarized in Mo et al. (2010). While the
exact value of Coulomb logarithm has yet to be found by sim-
ulations, the Chandrasekhar formula is still highly useful with-
out its exact knowledge. The Chandrasekhar formula gives us
a basic understanding of dynamical friction and allows order-
of-magnitude estimates of its importance. Formulas based on
the Chandrasekhar formula are used for example as a basis
when we look for fitting formulas for galaxy merger rates and
timescales in simulations (Lacey & Cole 1993; Jiang et al. 2008,
2014; Solanes et al. 2018).

The other source of dynamical friction is called resonant cou-
pling. It happens because the angular momentum of the deceler-
ated body is transferred to the angular momentum of the particles
whose orbits are in resonance with the orbit of the decelerated
object. For this reason, a satellite can experience dynamical fric-
tion even if it moves outside of the galaxy (Lin & Tremaine
1983; Tremaine & Weinberg 1984). In such a case no density
wake is formed behind the body and Eq. (1) incorrectly predicts
a zero deceleration. In agreement with this second mechanism
of dynamical friction, it was found that the effective value of
the Coulomb logarithm increases with the circularity of the orbit
(Chan et al. 1997).

In the context of our paper, one more effect is important.
It again goes against expectations based on the Chandrasekhar
formula. It transpires that the satellite can stop its sinking
to the center of the host galaxy at a certain radius before
reaching the center of the galaxy. This effect is known as
core stalling (Hernandez & Gilmore 1998; Read et al. 2006;
Petts et al. 2015). It occurs for galaxies whose gravitational
potential is nearly harmonic in the center, that is, having a cored
density profile for the case of Newtonian dynamics. In such a
potential there are no background particles that would have suit-
able periods to absorb the energy of the decelerated body. If the
density profile is only close to harmonic, the sinking satellite can
dynamically heat the central particles and form a core that pre-
vents the sinking again.

Dynamical friction is far less explored in MOND. An
important analytic result was obtained by Ciotti & Binney
(2004), assuming the aquadratic formulation of MOND
(Bekenstein & Milgrom 1984). These authros considered a
galaxy governed by MOND gravity and the same galaxy in
Newtonian gravity with an extra auxiliary rigid gravitational
field. The auxiliary field is such that the total gravitational field
of the Newtonian galaxy is as in MOND. They found that the
ratio of the dynamical friction timescales of the two systems are
as follows:
tDF,MOND

tDF,N+AF
=

a2
0

√
2a2

, (3)

where a denotes the typical value of gravitational acceleration in
the system. Making use of this and other related equations, they
concluded that dynamical friction is more effective in MOND
than in Newtonian gravity with live dark matter halos. In spite of
this analytic finding, comparative simulations of major mergers
of galaxies show the opposite tendency: the merging of galax-
ies is much faster in Newtonian simulations (Nipoti et al. 2007;
Tiret & Combes 2007a,b; Renaud et al. 2017). Combes (2014)

simulated the orbital evolution of massive gas clumps in young
galaxies (clumps containing about 20% of the baryonic mass of
the galaxies) and found that dynamical friction was stronger with
Newtonian gravity than in MOND. A resolution of the inconsis-
tency of the analytic calculations and simulations was proposed
by Nipoti et al. (2008). These authors verified with a simula-
tion that the analytic estimates work for a small bar rotating in
the center of a galaxy. But realistic bars are much larger and
take up a significant fraction of the baryonic mass in the cen-
tral zone. This means that the reservoir of particles to interact
with, assumed infinite in the case of the analytic treatment of
Ciotti & Binney (2004), is in reality insufficient to slow down
the bar pattern speeds in MOND. In conclusion, Ciotti & Binney
(2004) suggested that dynamical friction in MOND is not effec-
tive if the mass of the perturbers. such as the massive clumps of
Combes (2014), is comparable to the mass of the whole system
because in such a case it is difficult for the remaining “back-
ground” particles to absorb a large amount of energy.

The MOND results we mentioned so far pertained only to the
timescales of dynamical friction. It would be desirable to have
a tool to describe the effects dynamical friction in more detail,
for example, for predicting the position of the decelerated satel-
lite in time. To this end, Sánchez-Salcedo et al. (2006) proposed
an analog to the Chandrasekhar formula. They heuristically sug-
gested that dynamical friction in MOND can be evaluated by
multiplying the Newtonian Chandrasekhar formula by the ratio
of the dynamical friction timescales given by Eq. (3),

aDF,MOND = aDF,NWT
a2

0
√

2a2
· (4)

This last equation, which we call the Sánchez-Salcedo formula,
has never been proven analytically or verified by simulations. We
note that even Eq. (3) has only been verified for small galactic
bars and not for other orbital configurations of the interacting
objects.

The Sánchez-Salcedo formula has been used for investigat-
ing the orbital evolution of the GCs of the Fornax dwarf galaxy
(Sánchez-Salcedo et al. 2006; Angus & Diaferio 2009). Analytic
estimates predicted a fast sinking of GCs to the centers of
dwarf galaxies, where the GCs should merge and form a nuclear
star cluster (Ciotti & Binney 2004; Sánchez-Salcedo et al. 2006;
Nipoti et al. 2008). The presence of GCs and the absence of a
nuclear star cluster in Fornax were initially claimed to contradict
MOND, but it was later found that the problem can be solved if we
assume that the GCs were formed further away from the galaxy
than where they are observed today (Angus & Diaferio 2009).
Moreover, the applicability of the analytic formula has never been
verified by simulations for the case of GCs orbiting a galaxy.

The discovery of a large number of UDGs (e.g.,
Sandage & Binggeli 1984; Impey et al. 1988; Crnojević et al.
2014; Koda et al. 2015; van der Burg et al. 2017; Müller et al.
2018; Habas et al. 2020; Iodice et al. 2020) brings up the ques-
tion of survival of GC systems again. These diffuse objects,
with a surface brightness fainter than ∼24 in the g band and
an effective radius larger than 1.5 kpc, can contain a large num-
ber of GCs (Beasley et al. 2016; van Dokkum et al. 2016, 2018a;
Müller et al. 2020). The fact that UDGs are deep-MOND objects
(Müller et al. 2019) and the GCs of some of these objects seem
to be exceptionally massive (van Dokkum et al. 2018a) indicates
that the GC systems of UDGs can be affected strongly by dynam-
ical friction.

Newtonian simulations have already been performed to
investigate the evolution of the GC system of the UDG
NGC 1052-DF2 (DF2 hereafter) by Dutta Chowdhury et al.
(2019). This galaxy has been claimed to have a system of unusu-
ally massive GCs (van Dokkum et al. 2018a) if it lies at the
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distance of 20 Mpc (Danieli et al. 2020), which we assume here-
after (see e.g., Trujillo et al. 2019 or Haghi et al. 2019 for a dis-
cussion of the effect of the distance on the properties of DF2).
The galaxy hosts ten confirmed GCs, all of which have stellar
masses between 105 and 106 M�. They contain a non-negligible
fraction of the total stellar mass of the galaxy. The simulations
by Dutta Chowdhury et al. (2019) captured several effects that
do not readily follow from the Chandrasekhar formula or its
modified-gravity analogs – the core stalling and the interactions
of GCs among each other (the so-called dynamical buoyancy).
Such effects have never been included in the studies of the orbital
decay of GCs in MOND.

There are many open questions regarding dynamical friction
in MOND. In this paper, we wanted to investigate several of them
using self-consistent N-body simulations. First, we wanted to
explore the precision of the Sánchez-Salcedo formula by study-
ing the motion of a single GC in a UDG. We wanted to learn
whether MOND really predicts that the GC will sink in the cen-
ter of the galaxy over a few gigayears, as following the Sánchez-
Salcedo formula. Then we were interested whether the answer
will change if we include in the simulation several GCs that
interact with each other. The arising dynamical buoyancy could
possibly slow down the sinking. These simulation would eventu-
ally address whether MOND predicts that GCs of UDGs should
have merged and formed nuclear stars clusters in a few gigayears
after the formation of the GCs, if the GCs were initially dis-
tributed around the galaxy at similar distances as observed today.

Our simulations were inspired by the DF2 galaxy and its
possibly overmassive GC system. It is a typical UDG in terms
of stellar mass, size and Sérsic index (Habas et al. 2020). We
stress that our simulations are not intended to describe DF2 itself
because in MOND this galaxy is subjected to a strong external
field effect (Famaey et al. 2018; Kroupa et al. 2018; Haghi et al.
2019). Thus, MOND predicts DF2 to behave in the Newto-
nian way. Our present investigations pertain to the study of DF2
analogs that would be far from a massive neighbor and hence
fully unaffected by the external field effect.

3. Setup of the simulations
In this work, we assumed the QUMOND formulation of MOND
(Milgrom 2010). If the distribution of matter ρ is given, then
the gravitational field can be obtained by solving the QUMOND
equivalent of the Poisson equation:

∆φ = ∇ · [ν(|∇φN|/a0)∇φN], (5)

where

∆φN = 4πGρ (6)

is the standard Poisson equation for the Newtonian potential
φN. We employed the so-called simple form of the interpolation
function ν,

ν(x) =
1 + (1 + 4x−1)1/2

2
, (7)

and the value of the MOND acceleration constant of a0 =
1.12 × 10−10 m s−2, which is consistent with the measurements
of McGaugh et al. (2016).

The simulations were performed using the Phantom of
RAMSES code (Lüghausen et al. 2015), which is a QUMOND
adaptation of the popular adaptive-mesh-refinement code RAM-
SES (Teyssier 2002). For the simulation described below,
unless specified otherwise we used the computational parameters
summarized in Table 1. We simulated the galaxy with 107

particles of 20 M�. Each GC was represented by a point mass.

Table 1. Parameters of the simulations.

Property/parameter Value

Number of particles 107

Mass of star particle 20 M�
levelmin 7
levelmax 11
boxlen 100 kpc
Maximum resolution 0.049 kpc
mass_sph 1
m_refine 200 M� for every level
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Fig. 1. Properties of the simulated galaxy just before entering GCs. Top:
radial profile of density. Middle: radial profile of velocity dispersion,
separately for the full velocity dispersion (full line), velocity disper-
sion in the radial direction (dotted line), and in the tangential direction
(dashed line). Bottom: radial profile of gravitational acceleration in the
units of the MOND constant a0.

For reference, the overmassive GCs of DF2 were estimated to
have effective radii of around 8 pc (van Dokkum et al. 2018a).
The grid was refined if the mass in the cell exceeded 200 M�,
that is, if it contained at least ten stellar particles or one GC. The
maximal spatial resolution was 49 pc.
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Fig. 2. Orbital decay of the GC in the fiducial model. The decay slows down substantially once the apocentric distance of the GC reaches about
0.5−1 kpc.
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Fig. 3. Demonstration of the effect of changing of the spatial resolution in the fiducial model on the orbital decay of the GC. The core stalling
phase is present for all three choices of resolution.

Table 2. Masses of GCs in the many GC simulations in units of 105 M�.

DF2-like Standard

15.0 8.5
9.6 4.8
8.0 3.5
7.3 2.7
6.6 2.1
6.6 1.7
5.5 1.3
5.0 1.0
4.2 0.7
3.8 0.4

Mean: 7.2 2.7

We initialized the density of the simulated galaxy as a Sérsic
sphere that has the parameters observed for DF2, that is, a stellar
mass of 2 × 108 M�, effective radius of 2 kpc, and Sérsic index
0.6 (van Dokkum et al. 2018b). The galaxy was modeled with
107 particles, each of a mass of 20 M�. Each particle was given
a velocity drawn from a three-dimensional isotropic Gaussian

distribution. The local velocity dispersion was determined by
solving the spherically symmetric Jeans equation. Before intro-
ducing any GCs into the simulation, the galaxy was let to virial-
ize for 10 Gyr (over 70 free-fall times from the distance of two
effective radii to the center of the galaxy). After this period, a
Sérsic fit of the density yields an effective radius of 1.9 kpc and
a Sérsic index of 0.7. The radial profiles of density, velocity dis-
persion, and gravitational acceleration after the virialization are
plotted in Fig. 1. The inner ∼7 kpc of the galaxy became domi-
nated by stars on tangential orbits, while the more distant regions
are inhabited by stars preferentially on radial orbits.

4. Core stalling: Demonstration on the fiducial
model

We begin presenting our results with the simulation that we here-
after refer to as the fiducial. It starts with one GC placed at the
distance of 5 kpc from the center of the galaxy such that the two
objects are at rest with respect to each other. The GC is mod-
eled as a single particle with a mass of 106 M�, mimicking some
of the most massive GCs of DF2. Figure 2 shows the time evo-
lution of the distance of the GC from the center of the galaxy.
We can note that the apocentric distances initially decrease at an
approximately constant rate, but at a time of about 3 Gyr the orbital
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Fig. 4. Testing the precision of the Sánchez-Salcedo formula for dynamical friction in MOND (Eq. (4)). Blue lines: Evolution of the GC-galaxy
distances in N-body simulations. Orange lines: The same but calculated analytically employing the Sánchez-Salcedo formula. Each panel corre-
sponds to another mass of the GC under consideration. The GCs in all simulations or calculations started with the same initial conditions, that is,
starting from rest with respect to the galaxy and at a distance of 5 kpc from the galaxy center. To the right of each figure, the corresponding mass of
the GC and the value of the Coulomb logarithm that is needed to be entered in the Sánchez-Salcedo formula to mimic the result of the simulation
are stated.

decay slows down dramatically. This effect has also been noted
in the Newtonian simulations of DF2 of Dutta Chowdhury et al.
(2019), who attribute the effect to the core-stalling mechanism.

Nevertheless, our simulation is not Newtonian. It is impor-
tant to verify that the observed core stalling is not due to numer-
ical errors. We can immediately check that the apocentric radius

of the GC at the beginning of the stalling phase, at about
0.5 kpc, is an order of magnitude higher than the maximum spa-
tial resolution of the simulation, 0.049 kpc. In addition, we run
extra simulations with a higher and lower spatial resolution to
demonstrate the convergence of the simulation for our default
parameters. The result is shown in Fig. 3. The orbits of the
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Fig. 5. As in Fig. 4, but varying orbital parameters of the GC. The GC always had the mass of 106 M�. The first lines of the notes on the right
of the panels indicate the initial tangential velocity of the GC with respect to the galaxy (the radial velocity was zero). It is given in the units of
the local circular velocity. The second row indicates the initial galactocentric distance and the third the value of the Coulomb logarithm in the
Sánchez-Salcedo formula that provides the best match of the simulation and analytic calculation.

GCs in the fiducial model and that with quadruple resolution
nearly coincide. The agreement is not that tight when comparing
the default and half resolution simulations, but they still agree
well on the apocentric distance of the GC in the stalling phase.
This demonstrates that the default resolution is a good balance
between precision and computing demands. In total, we found
no hints that the observed core stalling would be caused by an
insufficient resolution of the simulation.

5. Testing the Sánchez-Salcedo formula for
dynamical friction in MOND

The Sánchez-Salcedo formula (Eq. (4)) is supposed to be appli-
cable to objects in the deep-MOND regime (accelerations lower
than a0), which is the case of our UDG (see Fig. 1). We investi-
gated whether the orbital decay of a GC can be modeled analyt-
ically by solving the following equation of motion:
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a = agrav(|r|) + aDF(|r|, |u|; Λ), (8)

for a suitable value of the Coulomb logarithm Λ, where agrav is
the gravitational acceleration given by Eq. (9) and aDF the accel-
eration caused by dynamical friction according to the Sánchez-
Salcedo formula. We assumed that the mass of the GC is
negligible compared to the mass of the galaxy, such that we
can treat the GC as a test particle. A similar approach was used
in Sánchez-Salcedo et al. (2006) or Angus & Diaferio (2009).
Solving such an equation is of course much faster than running
a simulation.

When solving Eq. (8), we made use of the fact that the radial
acceleration of a test particle in the gravitational field of a spher-
ically symmetric object in QUMOND can be evaluated as

agrav = agrav,N × ν


∣∣∣agrav,N

∣∣∣
a0

 , (9)

where agrav,N is the radial acceleration expected from Newto-
nian dynamics (Milgrom 2010). In order to evaluate agrav,N, we
modeled the mass profile of the galaxy analytically as a Sérsic
sphere with the post virialization parameters of our stimulated
galaxy described in Sect. 3. The density of the Sérsic sphere
was calculated by exploiting the analytic approximations by
Lima Neto et al. (1999), updated in Márquez et al. (2000). When
solving numerically the equation of motion, we also added 1 pc
to the distance of the GC from the center of the UDG to avoid
numerical problems close to the center of the galaxy.

5.1. Varying the mass of the GC

First, we explored the role of the mass of the GC, keeping the
initial orbital configuration fixed. At the beginning of each sim-
ulation, we again placed the GC at the distance of 5 kpc from the
center of the UDG such that the two objects had a zero relative
velocity. We only varied the mass of the GC in each simulation.
The resulting evolution of distance of the GCs from the galaxy
center in each simulation are shown in Fig. 4 with the blue lines.
The mass of the GC in each simulation is indicated next to the
corresponding panel of the figure.

The simulations were compared to the analytic solutions of
the model (Eq. (8)). They are indicated in Fig. 4 by the orange
lines. The values of the Coulomb logarithm were fitted manually
to obtain a balance between matching the instants of apocenters
and matching of the overall slopes of the curves. The fitted values
are again shown next to the corresponding panels of the figure.
All realistic values for the mass of the GC require a value of
ln Λ ' 3 for these radial orbits. This value has already been
proposed by Sánchez-Salcedo et al. (2006).

5.2. Varying the orbital eccentricity of the GC

We also explored how the Sánchez-Salcedo formula works for
non-radial orbits. The mass of the GC was fixed at 106 M�. The
GC was always initiated as moving in the tangential direction
with respect to the center of the galaxy. We specified the orbital
initial conditions by the initial distance of the two objects and
their relative tangential velocity in units of the circular velocity
at the given radius evaluated from Eq. (9).

The results are presented in Fig. 5, where each panel repre-
sents one simulation. The text lines on the right of each panel
give the initial tangential velocity, initial distance of the GC
from the galaxy, and the fitted value of the Coulomb loga-
rithm, respectively. The main conclusion of these experiments

is the finding that the effective value of the Coulomb loga-
rithm is higher than in the case of the radial orbits as it ranges
between the values of 6.6 and 15. In the case of the GC mov-
ing on a circular orbit with a radius of 10 kpc = 5.2 Re, there
is no clear hint of orbital decay in the simulation because of
the low density of background particles. The analytic model
gives good agreement with this simulation for any reasonable
value of the Coulomb logarithm; we tested the range between
0 and 50.

6. Evolution of the density profile of the GC system
of a UDG

The properties of the GC systems of UDGs are still a matter of
debate. We considered here two types of GC systems. In one,
the GCs had the high masses of the GCs of DF2. In the other the
masses of GCs were consistent with the standard globular clus-
ter luminosity function (GCLF) of dwarf galaxies. The standard
GCLF mass function seems to be more common for observed
UDGs at least in the Fornax and Virgo clusters (Prole et al.
2019; Lim et al. 2020). We generally obtained different results
for these two types of GC systems.

6.1. DF2-like GC mass function

We added into the galaxy 10 GCs that have masses as inferred for
DF2 (Dutta Chowdhury et al. 2019), see Table 2. Their spatial
distribution was inspired by the distribution of the GCs of DF2.
Dutta Chowdhury et al. (2019) found that the GC system of this
galaxy can be described by a Sérsic sphere of the index 1 whose
effective radius is 1.3 times the effective radius of the galaxy.

The initial conditions for the GC system were prepared in
the following way. We initially drew the positions of the GCs
randomly from a distribution matching the observed Sérsic pro-
file. The GCs were first assigned velocities in the same way as
we did for the initial velocities of the particles of the galaxy
(see Sect. 3). It was then necessary to let the initial conditions
for the GCs virialize while avoiding GC-GC interactions and
the dynamical friction on the particles of the galaxy. To achieve
this, we extracted the virialized mass profile of the galaxy (see
Sect. 3), calculated its spherically symmetric gravitational poten-
tial, and integrated the equation of motion of each GC individ-
ually in this rigid potential for 10 Gyr. The resulting positions
and velocities of the GCs were then used as the initial condi-
tions for the GCs in the self-consistent simulation. Contrary to
Dutta Chowdhury et al. (2019), we did not strive to assign the
GCs the observed radial velocities or the observed projected
galactocentric distances because we aimed to investigate only
a general UDG similar to DF2.

We ran ten simulations, each for a different random realiza-
tion of the initial conditions for the GCs. The time evolution of
galactocentric distances of the GCs in one of those simulations
is plotted in Fig. 6. This plot shows that the motion of individ-
ual GCs are influenced by the others, particularly those near the
center of the galaxy. The positions of the GCs were recorded
in the simulations approximately every 20 Myr. The recorded
galactocentric distances of the GCs in all simulations are plot-
ted together in Fig. 7. This figure shows how the radial profile
of the GC density evolves on average. The GCs tend to gather
in the central 1 kpc of the galaxy after a few gigayears. The pro-
file of GC density gets initially depleted at around a radius of
3 kpc (1.5 Re of the galaxy), but later the depleted region starts
extending toward lower and higher radii. In order to get more
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Fig. 6. Example of evolution of galactocentric radii of GCs in a simulation with 10 GCs. The masses of the GCs are set as observed for the GCs
of the DF2 galaxy (first column of Table 2).

Fig. 7. Evolution of the distances of GCs from the center of the UDG. The black points show combined data from 10 random realizations of a
UDG orbited by 10 GCs. The masses of the GCs in each simulation mimic the measured masses of the GCs of the DF2 galaxy (see the first column
of Table 2). The horizontal black dashed line indicates the maximum resolution of the simulation. The red lines indicate the median galactocentric
distance of the GCs at the given time. This was derived separately for the high-mass half of the GCs (full red line) and for the low-mass half of the
GCs (dashed red line).

quantitative results, we inspected the half-number radius of the
GCs. We divided the sample of GCs in halves according to the
masses of GCs. The full line in the figure indicates the half-
number radius of the high-mass group of GCs and the dashed
line is the same for the low-mass group. The figure shows that the
high-mass GCs settled faster because of mass segregation. The
GCs did not sink right to the very center, likely again because
of the core stalling mechanism. The horizontal dashed line in
the figure indicates the highest spatial resolution of the simu-
lation. It is again substantially smaller than the radius where
the stalling occurs. It can be noted that the core stalling phase

establishes after about half of the typical age of a GC. The fact
that the spatial distribution of GCs of the DF2 galaxy does not
have a core suggests that it has spent the majority of its life under
the influence of a strong EFE imposed by its massive neighbor
NGC 1052.

We divided this dataset into 1 Gyr time intervals. The data
points in each interval were converted to radial profiles of GC
number density, surface number density, and cumulative fraction
of GCs inside a given radius. The results are shown in the left
column of Fig. 8. Each line in these plots corresponds to a given
time interval. The centers of the time intervals are indicated in
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Fig. 8. Evolution of GC systems. Left column: simulations with 10 GCs that have the masses of those observed in DF2 (left column of Table 2).
Simulations of 10 random realizations of the system were combined in these plots. Galactocentric distance is given in units of the effective radius
of the galaxy (Re = 1.9 kpc). Right column: same but for GC masses set according to the standard GCLF (right column of Table 2). Top row:
profiles of number density of GCs as a function of galactocentric distance. The individual lines correspond to different times since the start of the
simulation. Middle row: evolution of the profile of the surface number density of GCs. Bottom row: evolution of the radial profile of the cumulative
fraction of GCs.

the legend according to the color key. These plots can be com-
pared to observations.

In order to compare a galaxy to our simulation with a single
parameter, we propose hereafter an observational concentration
parameter (not yet used elsewhere to the best of our knowledge)
defined as

R =
N(<1 Re) − N(<0.5 Re)

N(<1 Re)
, (10)

where the symbol N(<x) denotes the number of GCs projected
inside a circle of radius x. The time evolution of the R param-
eter in our simulations is shown in Fig. 9. For example, for the
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Fig. 9. Time evolution of the concentration parameter R of the GC sys-
tem defined by Eq. (10). The two lines correspond to the two considered
distributions of the masses of GCs (see Table 2).
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Fig. 10. Line-of-sight velocity dispersions of the GC systems in our
simulations as functions of time.

real DF2 galaxy, we have N(<1 Re) = 6 and N(<0.5 Re) = 2
(Dutta Chowdhury et al. 2019) and therefore R = 0.67,
such that this galaxy does not show any hint of a central
concentration.

The distribution of velocities of GCs also evolves. Figure 10
shows that the line-of-sight velocity dispersion of the whole GC
system decreases by about one-third during the simulated period
of 10 Gyr. The line-of-sight velocity dispersion measured from
the velocities of the five GCs projected the closest to the cen-
ter, decreases even more, dropping from about 23 km s−1 at the
beginning of the simulation to 8 km s−1 at its end. It is interest-
ing that the velocity dispersion of this inner part of the GC sys-
tem stabilizes after the first 6 Gyr of the simulation, likely due
to the core stalling. The radial profiles of the line-of-sight veloc-
ity dispersion of the GC system at the beginning and end of the
simulation are compared in the top panel of Fig. 11. This shows
that the drop of velocity dispersion happened mostly in the inner
part of the GC system. The same plot also represents the line-of-
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Fig. 11. Radial profile of the velocity dispersion profile of the stars and
of the GC system of the simulated galaxy. The curves correspond to the
beginning and end of the simulations, as indicated in the legend. The
vertical lines indicate the 1σ uncertainty limits.

sight velocity dispersion profiles of the stars of the galaxy at the
beginning and end of the simulation. In contrast with the GCs,
the central velocity dispersion of the stars increased with time.
There was also a mild increase in velocity dispersion of the stars
in the outer parts of the galaxy. We attributed these changes to
energy equipartition of stars and GCs. The radial profiles of the
line-of-sight velocity dispersions of stars and GCs are not the
same even at the beginning of the simulation. This is because of
a different density profile of the stars and GCs. A different profile
of the anisotropy parameter can also play a role.

6.2. Standard GC mass function

We repeated the same procedure as above but substituting the
masses of the GCs with values according to a GCLF typical for
dwarf galaxies (Durrell et al. 1996; Georgiev et al. 2009). Other
than the GC masses, the initial conditions of the GCs remained
the same. The distribution of absolute magnitudes of GCs in a
galaxy can generally be described by a Gaussian distribution.
It turns out that the mean of the distribution is common for
nearly all galaxies. Therefore the peak of the GC luminosity dis-
tribution is being used as a distance indicator (Rejkuba 2012).
The width of the Gaussian distribution depends on the mass of
the galaxy (Jordán et al. 2007; Villegas et al. 2010). For UDG
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Fig. 12. Same as in Fig. 7 but with GC masses set according to the standard GCLF.

galaxies in the Virgo Cluster, Lim et al. (2020) found that their
g-band GCLF can be described by a Gaussian with a mean of
µ = −7.5 mag and a width of σ = 1.0 mag, which is consistent
with similar dwarf galaxies in the same galaxy cluster.

We selected the absolute magnitudes of the GCs such that
they follow the mentioned Gaussian distribution, written as Mk =
√

2σ erf−1
[
2
(

1
2n + k

n

)
− 1

]
+µ for k = 0, 1, . . . , n−1. These mag-

nitudes were then converted to luminosities adopting the g-band
absolute magnitude of the Sun of 5.12 (Sparke & Gallagher
2000). Finally the luminosities were converted to masses by mul-
tiplying by 2.2, following Spitler & Forbes (2009), who derived
this as the typical value of the mass-to-light ratio of GCs in the V
band, a photometric band similar to g.

Similarly to the previous section, we plotted in Fig. 12 the
positions of all GCs for every time step for all ten simula-
tions with this more typical GC mass function. The GC system
becomes more concentrated with time again and we can again
note a mass segregation. The evolution of the GC system is nev-
ertheless notably slower than with the DF2-like GC mass func-
tion. The profiles of the GC system at different times after the
beginning of the simulation are shown in the right column of
Fig. 8.

Figure 10 shows that the line-of-sight velocity dispersion of
the GC system again decreases with time, but the decrease is
weaker than in the simulation with the GCs with the DF2-like
masses. As Fig. 11 shows, there is nevertheless still a strong drop
of the central velocity dispersion of the GC system. The central
velocity dispersion of the stars of the galaxy again increased but
less prominently than in the simulation with the massive GCs.
It can be noted from Figs. 10 and 11 that our simulations pre-
dict that the observed line-of-sight velocity dispersion of a GC
system of a UDG should be lower than that of the stars of the
galaxy. There might be exceptions from this rule caused by the
low number of GCs.

7. Extension of the results to other UDGs

Finally, we explore the scaling relations of the evolution of GC
systems. This is useful for applying the results of our simula-
tions to galaxies that have properties different from those of the
galaxy in our simulations. We did this via a dimensional anal-
ysis. We were interested in the scaling of the cumulative frac-
tion of GCs f within a galactocentric radius r at time t after
the creation of the GC system. We had to assume that GC sys-
tems are formed with properties similar to the initial conditions
of our simulations. Apart from r and t, f has to depend on the
mass of the galaxy, M, its effective radius, Re, the typical mass
of the GC in the GC system, m, and on the constants G and a0.
For simplicity we assumed that all GCs in the GC system have
the same mass, galaxies and the GC systems always have the
Sérsic indices as in our simulation, the GC systems and galaxies
always have a fixed ratio of effective radii, GC systems always
contain the same number of GCs, and that the whole system is
in the deep-MOND regime. The last assumption implies that in
the expression for f , G and a0 and all masses Mi can appear
only together in the products of the form of Ga0Mi (Milgrom
2001, 2008, 2009). Dimensional analysis then implies that f has
to have the form of

f = f
(

m
M
,

r
Re
,

t 4√GMa0

Re

)
· (11)

The cumulative fraction of GCs within radius r is invariant for
all configurations of the problem that keep the arguments of the
function on the right-hand side invariant.

We now illustrate the use of this formula on an example.
Let us assume that we want to compare our simulation to an
observed galaxy that has a mass of Mo = 0.7 × 1010 M�, an
effective radius of Re,o = 3 kpc, a Sérsic index of one and
whose GCs follow the GCLF, such that their average mass is

A170, page 12 of 17



M. Bílek et al.: GCs of UDGs in MOND

16.015.515.014.514.0
MV [mag]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R e
 [k

pc
]

0.4

0.6

0.8

1.0

1.2

1.4

Fig. 13. Time scaling factor given by Eq. (13) as a function of the abso-
lute magnitude and effective radius of a galaxy. The white point indi-
cates our simulated galaxy. The white dashed line indicates where the
scaling factor equals 1. The black dashed line denotes where the GC-
mass scaling factor, the second factor in Eq. (12), equals 2.66, which
is the value where an observed UDG with GCs following the standard
GCLF mass function has to be compared to our simulations with the
DF2-like GC mass function. Supposing that the galaxy has a GC sys-
tem following the standard GC mass function, our results imply that the
galaxies to the right of the black line and to the top the white line do not
create a nuclear star cluster by inspiralling of GCs.

mo = 2.6×105 M�, and they are to = 10 Gyr old. Let the symbols
indexed by “s” denote the analogous quantities in the simulation.
Equation (11) indicates that we have to compare the observed
galaxy to our simulation with the DF2-like GC mass function
because the first argument of the function in Eq. (11) is invariant
only if

ms = mo
Ms

Mo
, (12)

which equals 7.4 × 105 M�. The third argument of the function
in Eq. (11) is invariant if

ts = to
4

√
Mo

Ms

Re,s

Re,o
, (13)

or 5.8 Gyr in our case, which is the simulation time to be com-
pared to the observation.

We now applied this scaling relation to investigate the surviv-
ability of the GC systems of all UDGs. In Fig. 13 we plotted the
time scaling factor from Eq. (13), that is, the product of the last
two terms, as a function of the absolute V-band magnitude of the
galaxy and of its effective radius. We assumed the mass-to-light
ratio of the galaxy to be two. The displayed range of the param-
eters on the axes of this plot covers most of the observed UDGs.
If a UDG has a standard GCLF mass function, then our simu-
lations, in combination with the scaling relations, show that the
GC system does not form a nuclear star cluster if the parameters
of the UDG lie above the white dashed line in Fig. 13 and to the
right of the black dashed line. Nearly all UDGs satisfy this con-
dition; see the data in Muñoz et al. (2015), van Dokkum et al.
(2015b), Román & Trujillo (2017), Habas et al. (2020). Thus we
deduce, that for the majority of UDGs, GC systems do not merge
into a nuclear star cluster in MOND.

8. Influence of the internal structure of the GCs

We simulated the GCs by point masses. The real GCs consist
of many stars. Therefore, we might miss some important phe-
nomena. For example, GCs can merge or evaporate because of
their mutual encounters. The GC system could potentially also
sink faster because its orbital energy would be transferred into
the internal energy of GCs during the encounters. Similar ques-
tions were already studied for the DF2 galaxy in the Newtonian
context by Dutta Chowdhury et al. (2020) with simulations and
analytically. They found that, in this context, hardly any GC
mergers can be expected in 10 Gyr. Similarly, the internal struc-
ture of GCs evolved very weakly. In this section, we discuss the
situation for GCs of an isolated UDG in MOND. In this context,
because of the creation of the central dense core of the GC sys-
tem, the interactions between the clusters are stronger and more
frequent than in the Newtonian case. It would be ideal to investi-
gate the questions above by simulations with resolved GC. Since
this is highly computationally demanding, we progress in this
initial study by coupling the many GC simulations described in
Sect. 6 with analytic estimates.

8.1. Destruction of GCs by encounters

We investigated the possibility that the evaporation of GCs is
caused by tidal shocks during GC-GC encounters. We took all
pairs of GCs in every simulation and searched for the times
of the relative pericenters of the GC pairs. At every pericenter,
we determined the relative distance and tangential velocity of
the GCs. We took these as the input for calculating the energy
gain of each of the GCs through the impulse approximation.
The total gain of energy of a particular GC by encounters ∆Eenc
was obtained by summing over all pericenters with respect to all
other GCs in the system during the course of the whole simula-
tion. We approximated the GCs as Newtonian Plummer spheres
because most GCs are high-acceleration objects.

In particular, the gain of the internal energy of a given GC
in one encounter, ∆E1,enc, was calculated using the formula for
the impulse approximation provided by Banik & van den Bosch
(2021). Unlike the classical formula (Spitzer 1958; Mo et al.
2010), it takes into account the actual density profiles of the
interacting bodies. It is therefore suitable even for the close
encounters of GCs that occurred in our simulations. The impulse
approximation, nevertheless, is designed only for fast encoun-
ters, the so-called tidal shocks. This means that we can consider
the stars of the investigated clusters stationary with respect to the
cluster center during the characteristic duration of the encounter.
In our simulation, this is often not satisfied because the velocity
dispersion of the GC system (Fig. 10) is not much higher than the
velocity dispersion of the stars inside the GCs, which is around
11 km s−1 (Dutta Chowdhury et al. 2020). When the encounter is
very slow (when there is adiabatic variation of the gravitational
potential), the energy gain of the cluster after the encounter
is zero. This effect can be accounted for by multiplying the
energy gain of a GC predicted by the impulse approximation
formula by the “adiabatic correction” factor A =

[
1 + (ω/τ)2

]−γ
(Gnedin & Ostriker 1999). The typical angular velocity of a star
in the cluster ω was evaluated as the ratio of the velocity disper-
sion at the half-mass radius of the cluster, rh and rh itself. The
variable τ stands for the timescale of the encounter, which was
evaluated as the pericentric distance of the encounter divided
by the pericentric velocity. Following Banik & van den Bosch
(2021), we put γ = 2 − 0.5 erf

[
(τ − 2.5 tdyn)/(0.7 tdyn)

]
, where

tdyn =

√
π2r3

h/(2GM) is the dynamical time at the half-mass
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radius of the cluster of the mass M. In order to decide whether
the gain of energy of a GC by the encounters can cause a sub-
stantial evaporation of GCs or a creation of tidal tails, we com-
pared ∆Eenc to the Newtonian gravitational binding energy of
a Plummer sphere, 3πGM2/(32rh). The effective radius of GCs
of DF2 is around 8 pc (Dutta Chowdhury et al. 2020), while the
MOND transitional radius, where deviations from Newtonian
gravity become important, is 34 pc. If a GC became that big,
it would not be classified as a GC, and this is why we consider
the Newtonian binding energy. The radii and masses of the GCs
of DF2 do not show an obvious correlation and therefore we
adopted a universal radius for all GCs.

For the simulation with the DF2-like GC masses, it is suit-
able to accept the characteristic radius for the GCs as the typical
radius of the GCs of DF2, 8 pc (Dutta Chowdhury et al. 2020).
For this value we got a total relative change of internal energy
greater than (0.1,0.5,1) for (66,61,57) GCs out of the total 100 in
the whole ensemble of our 10 simulations with the DF2-like GC
masses. Adopting the characteristic radius of the GCs instead as
the maximum scale radius of the GCs of the DF2 galaxy (12 pc)
(Dutta Chowdhury et al. 2020), we got a total relative change of
internal energy greater than (0.1,0.5,1) for (67,62,58) cases. This
suggests that a substantial fraction of GCs can be affected by
evaporation of GCs due to the encounters. Most of the interac-
tions leading to big gains of internal energy happened during the
interactions involving the three most massive GCs. For the sim-
ulation with the standard GC masses, we first adopted the char-
acteristic radius of a GC in a typical galaxy (3 pc) (Masters et al.
2010). For this value we got a total relative change of inter-
nal energy greater than (0.1,0.5,1) for (14,4,4) GCs. Adopting
instead a twice larger characteristic radius for the GCs (6 pc),
we got a total relative change of internal energy greater than
(0.1,0.5,1) in (17,12,6) cases in the whole ensemble of 10 simu-
lations. In other words, for these lower GC masses, the structure
of GCs by GC-GC encounters can affect a small fraction of GCs.

8.2. Mergers between GCs

In order for two GCs to merge, they first have to become bound.
After that, they have to lose relative orbital kinetic and potential
energy. We therefore estimated the frequency of mergers in two
steps that we describe in detail below: First, we detected pairs
of GCs in the simulations in relative pericenters and decided the
GCs would be bound. Second, we checked whether they had dis-
positions to transfer the orbital energy into the internal energy.

Let us define the function U(M1,M2, b, r) as the binding
potential energy of two Plummer spheres with masses M1, M2,
the characteristic radius b being separated by the distance r. The
energy U consists of three contributions: the two-body energy
U2b necessary to separate the two Plummer spheres to infinity
and the binding energy of the two Plummer spheres themselves.
Let us further assume that the centers of the Plummer spheres
follow the average positions and velocities of the stars that orig-
inally belonged to the two interacting GCs. Let K be the relative
kinetic energy of the spheres. Before the merger, neglecting the
influence of all the other bodies in the system, the two clusters
oscillate in the U−K plane, keeping the sum Eini = U + K con-
stant. After the completion of the merger, K = 0 and U is min-
imized at U(r = 0). In order for the two isolated GCs to merge,
the energy Emerg = Eini−U(r = 0) has to be transferred to the
internal energy of the GCs.

For every pair of GCs in a simulation we identified the
instances of pericenters and calculated the energy loss by tidal
shock as above. A GC pair was considered bound if the differ-

ence of the energy of the GC-GC system, U2b + K, and of the
internal energy of the GCs gained by the shock was less than
zero. In order for a bound GC pair to merge, a substantial amount
of orbital energy has to be transferred to the internal energy of
the GCs. If the orbital energy is not lost, encounters with other
GCs can make the pair unbound or the pair does not merge dur-
ing the whole life of the galaxy. We thus determined the can-
didates for merging clusters such that the loss of energy by the
current encounter by tidal shock, ∆E1,enc, was at least 0.1 Emerg,
for U and K evaluated at the pericenter.

In MOND, the binding energy depends on the value of the
external field. For isolated objects, it is infinite because isolated
objects produce infinitely deep potential wells in MOND. For
our purposes, we assumed that the GC pairs are embedded in an
external field of the intensity 0.1a0, which is the typical grav-
itational acceleration imposed by the galaxy itself on the GCs
close to the center of the galaxy (Fig. 1), where we expect most
of the interactions between the GCs. The binding energy of two
point masses was obtained by integrating the MOND approxi-
mate two-body force formula in the presence of an external field
by Zhao et al. (2013). Following Bílek et al. (2018), we included
a softening parameter equal to the accepted characteristic radius
of the GCs to account for the non-zero size of the GCs. The
potential binding energy of a Plummer sphere, necessary for
evaluating the energy U, was calculated as

UPlummer =

∫ ∞

0
4πGr2

1ρ(r1)
∫ ∞

r1

T

−GM(<r1)
r2

2

 dr2dr1, (14)

where ρ and M(<r) stand for the standard density and cumu-
lative mass of a Plummer sphere, respectively, and T for a
function transforming the Newtonian acceleration to the MOND
acceleration through the approximate “1D” formula for the EFE
in QUMOND (Famaey & McGaugh 2012). The post-merger
energy U(r = 0) was evaluated from Eq. (14), when consider-
ing the two Plummer spheres overlaid on each other.

In this way, we obtained for the simulation with the DF2-
like GC masses 15 candidate merging GC pairs in the whole
set of 10 simulations for the characteristic radius of the GCs of
8 pc. Adopting the maximum GC characteristic radius in DF2,
12 pc, we found 8 GC merger candidates pairs. This suggests
that for isolated UDGs with GCs similar to DF2, GC mergers can
occasionally happen. For the standard GC masses, we obtained
no mergers regardless of whether we assumed the GC radii of 3
or 6 pc.

8.3. Loss of orbital energy of GCs from GC interactions

We also explored the possibility that the GCs might sink toward
the center of the UDG faster because their orbital energy with
respect to the galaxy would be transferred to the internal energy
of the GCs because of their interactions with each other. We
therefore again detected the times of pericenters of all GC pairs
in the simulations and calculated the energy absorbed by the GCs
via the tidal approximation approach described above. We then
compared the sum of all of these energy losses to the total kinetic
energy of all GCs at the end of the simulation.

For the DF2-like GC masses and a characteristic radius of
8 pc, we found that the energy loss is 2.8 times higher than
the kinetic energy at the end of the simulation. Adopting the
GC radius of 12 pc, 2.3 times the final kinetic energy of GCs
is transferred to the internal energy of GCs. This indicates that
the GC-GC interactions might also have an effect on the spatial
structure of the GC system. This is not the case for the standard
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GC masses. If their characteristic radius is assumed to be 3 pc,
the absorbed energy makes only 0.05 of the kinetic energy of the
GC system at the end of the simulation. Adopting the double GC
radius, the GC system transferred a fraction of 0.07 of its kinetic
energy to the internal energy of the GCs.

9. Summary and conclusions

Dynamical friction in MOND gravity is far less explored than
in Newtonian gravity. In this contribution, we aimed to improve
this deficiency. We first sought to test for the first time the valid-
ity of the proposed MOND analog of the Chandrasekhar formula
using high-resolution, self-consistent simulations. We started by
studying dynamical friction in an example of a single GC, rep-
resented by a point mass, moving in the gravitational field of
a UDG with a mass of 2 × 108 M� similar to the DF2 galaxy
(but in isolation). We found that the Sánchez-Salcedo formula
(Eq. (4)) works excellently for a suitable choice of the effec-
tive value of the Coulomb logarithm, as long as the GC does
not have its apocenter closer than about 0.75 kpc to the center of
the UDG. For radial orbits and realistic masses of the GC (i.e.,
less than about 2× 106 M�), the best value of the Coulomb loga-
rithm is around ln Λ ' 3. For higher masses of the GC, between
2×106 and 2×107 M� (one-tenth of the mass of the galaxy), the
value of the Coulomb logarithm decreases. This is in line with
the findings of previous works that dynamical friction in MOND
becomes ineffective for interactions of objects with comparable
masses. On the other hand, the effective value of the Coulomb
logarithm is higher for non-radial orbits. This agrees with the
results of Newtonian simulations. It can likely be explained by
a higher contribution of the resonant coupling mechanism to
dynamical friction. The effective value of the Coulomb log-
arithm depends not only on the circularity of the orbit, but
also on its size: the highest values were encountered for orbits
close to the center of the galaxy. The highest effective value of
the Coulomb logarithm that we encountered in our simulations
was ln Λ = 15.

The Sánchez-Salcedo formula stopped being applicable to
our problem when the apocentric distance of the GC decreased
below about 0.75 kpc (0.4 Re) with respect to the center of the
galaxy. Dynamical friction becomes much less effective in this
central region. The GCs in our simulations, even the most mas-
sive ones, never sink right to the center of the galaxy, even if
predicted to be the case by the Sánchez-Salcedo formula. We
verified that this is not because of insufficient resolution of the
simulations. A similar effect, known from Newtonian simula-
tions, is known as core stalling. Whether core stalling occurs in
Newtonian simulations depends on the inner density profile of
the galaxy, but we did not explore this aspect in MOND. For a
GC of 106 M� falling from 5 kpc (2.5 Re), it takes about 3 Gyr to
reach the stalling phase, but the same takes more than 10 Gyr for
a GC with a mass of 105 M�. These inspiralling times depends on
the particular density distribution of the galaxy. In total, we have
shown that the Sánchez-Salcedo formula can serve as a rule of
thumb to estimate the order of dynamical friction. It has a lim-
ited range of applicability, but in certain circumstances it is a
very good approximation.

We also explored the evolution of a whole GC system con-
sisting of ten GCs around the UDG. We considered two types
of GC systems: the GCs were either “overmassive” as deduced
in DF2 (if it is at a distance of 20 Mpc), or the GCs had masses
following the standard GC mass function. It is not established
yet how often anomalous GC mass functions occur in UDGs.
Follow-up observations of another UDG with a suspected DF2-

like mass function (Müller et al. 2020) have shown that it rather
follows a standard GCLF mass function (Müller et al. 2021b).

The more massive GC system undertakes a dramatic struc-
tural change during the first 6 Gyr of its evolution, when its half-
number radius changes from 3.5 kpc to about 0.6 kpc. The most
massive GCs sink more quickly. After that time, the half-number
radius remains nearly constant up to the end of the simulation
at 10 Gyr, at which point most of the GCs have reached their
core-stalling phase. Even in this phase, the GCs would likely be
too far from each other to merge together to form a nuclear star
cluster, since the average radius of the massive GCs of UDGs
is only 6−8 pc (van Dokkum et al. 2018a). Hence we need to be
careful when arguing against MOND on the basis of the sur-
vival of the GC system with analytic formulas such as Eq. (4).
We note that we simulated a galaxy that is in isolation. While
its parameters were inspired by the DF2 galaxy, the real DF2
galaxy, if indeed at the measured distance, has to be close to its
neighboring galaxy NGC 1052 dominated by its external field
and therefore its internal dynamics is effectively Newtonian. The
GC system of DF2 in Newtonian dynamics has been studied by
Dutta Chowdhury et al. (2019), who found that it is consistent
with observations if it was somewhat more extended in the past.
The GC system of DF2 is thus consistent with Newtonian and
MOND gravity. The fact that the GC system of DF2 does not
have a core (see Sect. 6.1) then suggests that DF2 has spend
most of its life dominated by the external field of NGC 1052.

The simulated GC system following the standard GC mass
function experiences a weaker evolution, decreasing its 3D half-
number radius from 3.5 kpc to about 2 kpc in 10 Gyr. Extrapo-
lating this result backward in time, we expect that GC systems
of isolated UDGs were larger by a factor of almost 2 at their
formation 10 Gyr ago with the standard GCLF.

For both choices of the mass function of the GC system, we
detected a mass segregation of the GCs. This can be taken as
a prediction for observations. We found that the GC system of
the real DF2 galaxy has no signature of the central core. This
indicates that in MOND, if DF2 is a member of the NGC 1052
group, it has to have spent a large fraction of its life dominated by
the EFE imposed by this galaxy. Further, we were able to show
by scaling our simulations for most GC systems of UDGs that
they are not expected to merge and form nuclear star clusters.

Not only the spatial distribution of GCs evolved in our simu-
lations, but also the central velocity dispersion of the GC system
decreased and that of the stars of the galaxy increased, likely
because of energy equipartition (see Figs. 10 and 11). We can
thus expect that in observations, UDGs usually have a higher
velocity dispersion of stars than of GC systems.

Our simulations were limited in the sense that the GCs were
modeled as point masses instead of bodies consisting of many
particles. The many GC simulations were thus not able to cap-
ture the effects related to absorbing the orbital energy of the GC
system in the internal energy of the individual GCs. We partly
resolved this issue, at least for a UDG of the properties of the
simulated galaxy, by joining the simulations with analytic esti-
mates. For the simulations with a GC system inspired by DF2,
we found that GC-GC interactions are expected to play a sub-
stantial role in the evolution of the GC system. About one-half
of the GCs are expected to receive energy that is comparable
to their internal Newtonian binding energy. Therefore, not only
the GCs might lose a large fraction of their stars because of the
encounters, but the GC system might sink substantially faster to
the center of the galaxy because of the loss of orbital energy.
For the DF2-like GCs, we therefore still cannot reliably exclude
the possibility that some of the GCs would form a nuclear star
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cluster in an isolated UDG. This is to be investigated by ded-
icated simulations with GCs simulated as many-body systems.
For the standard GCs, which seem to be the most common even
in UDGs, our analytic estimates indicate a much less dramatic
influence of mutual GC interactions. The increase in internal
energy of GCs is expected to be comparable to the Newtonian
binding energy of GCs for only about one GC out of the ten in
the GC system. We estimated that the GC-GC mergers are nearly
non-existent, and there is no acceleration of the sinking of the
GC system to the center of the UDG. We thus do not expect that
the GCs would form a nuclear star cluster if the GCs were simu-
lated as many-particle systems.

The question of survivability of GC systems in MOND
remains open for dwarf galaxies. Such galaxies have lower effec-
tive radii and the same or lower brightnesses than UDGs. For
example, for a dwarf galaxy similar to the Fornax dwarf, having
a stellar mass of 3 × 107 M� and an effective radius of 0.5 kpc,
we deduce a GC-mass scaling factor of 6.7 (Eq. (12)) and a time
scaling factor of 2.6 (Eq. (13)). The evolution of the GC system
due to dynamical friction is thus much faster than in our simula-
tion of the UDG with the DF2-like GC mass function. It is diffi-
cult to predict from our present simulations whether a nuclear
star cluster would form. Observations of chemical properties
of some dwarf galaxies suggest that their nuclear star clusters
formed by dynamical sinking of GCs (Fahrion et al. 2020); the
galaxies had much smaller radii and brightnesses than the UDGs
investigated in this work. Future work should address in which
galaxies MOND predicts the formation of a nuclear star cluster
through the merging of the GC system.

Previous simulations showed that major mergers are much
less effective in MOND than in Newtonian simulations with dark
matter. Analytic arguments however indicated that the situation
is the opposite for minor mergers around spheroidal galaxies.
Our simulations confirmed, for the first time, the analytic pre-
diction for situations similar to small galaxies being accreted by
much more massive spheroidal galaxies (previous works con-
firmed them only for the rotation of galactic bars). This forces
us to consider seriously the potential importance of minor merg-
ers for galaxy evolution in MOND. Nevertheless, minor merging
will require a more careful examination. The first reason is that
Newtonian simulations show that the size of the satellite can also
influence dynamical friction (Mo et al. 2010), while our simu-
lated satellite was a point mass. It should also be explored bet-
ter how dynamical friction works in MOND when the satellite
moves outside of the main galaxy, where the density of stars is
negligible. In Newtonian gravity, in these regions we still have
dark matter halos up to hundreds of kiloparsec from the galaxy
that can absorb the energy of the satellite. These are questions
are to be investigated by future works.
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Crnojević, D., Sand, D. J., Caldwell, N., et al. 2014, ApJ, 795, L35
Danieli, S., van Dokkum, P., Abraham, R., et al. 2020, ApJ, 895, L4
Durrell, P. R., Harris, W. E., Geisler, D., & Pudritz, R. E. 1996, AJ, 112, 972
Dutta Chowdhury, D., van den Bosch, F. C., & van Dokkum, P. 2019, ApJ, 877,

133
Dutta Chowdhury, D., van den Bosch, F. C., & van Dokkum, P. 2020, ApJ, 903,

149
Fahrion, K., Müller, O., Rejkuba, M., et al. 2020, A&A, 634, A53
Famaey, B., & McGaugh, S. S. 2012, Liv. Rev. Relativ., 15, 10
Famaey, B., McGaugh, S., & Milgrom, M. 2018, MNRAS, 480, 473
Freundlich, J., Dekel, A., Jiang, F., et al. 2020, MNRAS, 491, 4523
Georgiev, I. Y., Puzia, T. H., Hilker, M., & Goudfrooij, P. 2009, MNRAS, 392,

879
Gnedin, O. Y., & Ostriker, J. P. 1999, ApJ, 513, 626
Greco, J. P., Greene, J. E., Strauss, M. A., et al. 2018, ApJ, 857, 104
Habas, R., Marleau, F. R., Duc, P.-A., et al. 2020, MNRAS, 491, 1901
Haghi, H., Bazkiaei, A. E., Zonoozi, A. H., & Kroupa, P. 2016, MNRAS, 458,

4172
Haghi, H., Kroupa, P., Banik, I., et al. 2019, MNRAS, 487, 2441
Hamilton, C., Fouvry, J.-B., Binney, J., & Pichon, C. 2018, MNRAS, 481,

2041
Haslbauer, M., Banik, I., & Kroupa, P. 2020, MNRAS, 499, 2845
Hees, A., Famaey, B., Angus, G. W., & Gentile, G. 2016, MNRAS, 455, 449
Hernandez, X., & Gilmore, G. 1998, MNRAS, 297, 517
Impey, C., Bothun, G., & Malin, D. 1988, ApJ, 330, 634
Iodice, E., Cantiello, M., Hilker, M., et al. 2020, A&A, 642, A48
Jiang, C. Y., Jing, Y. P., Faltenbacher, A., Lin, W. P., & Li, C. 2008, ApJ, 675,

1095
Jiang, C. Y., Jing, Y. P., & Han, J. 2014, ApJ, 790, 7
Jiang, F., Dekel, A., Freundlich, J., et al. 2019, MNRAS, 487, 5272
Jordán, A., McLaughlin, D. E., Côté, P., et al. 2007, ApJS, 171, 101
Just, A., & Peñarrubia, J. 2005, A&A, 431, 861
Koda, J., Yagi, M., Yamanoi, H., & Komiyama, Y. 2015, ApJ, 807, L2
Kroupa, P., Haghi, H., Javanmardi, B., et al. 2018, Nature, 561, E4
Lacey, C., & Cole, S. 1993, MNRAS, 262, 627
Leisman, L., Haynes, M. P., Janowiecki, S., et al. 2017, ApJ, 842, 133
Lelli, F., McGaugh, S. S., Schombert, J. M., & Pawlowski, M. S. 2016, ApJ, 827,

L19
Lelli, F., McGaugh, S. S., Schombert, J. M., & Pawlowski, M. S. 2017, ApJ, 836,

152
Lim, S., Peng, E. W., Côté, P., et al. 2018, ApJ, 862, 82
Lim, S., Côté, P., Peng, E. W., et al. 2020, ApJ, 899, 69
Lima Neto, G. B., Gerbal, D., & Márquez, I. 1999, MNRAS, 309, 481
Lin, D. N. C., & Tremaine, S. 1983, ApJ, 264, 364
Lüghausen, F., Famaey, B., & Kroupa, P. 2015, Can. J. Phys., 93, 232
Márquez, I., Lima Neto, G. B., Capelato, H., Durret, F., & Gerbal, D. 2000,

A&A, 353, 873
Masters, K. L., Jordán, A., Côté, P., et al. 2010, ApJ, 715, 1419
McGaugh, S. S. 2016, ApJ, 832, L8
McGaugh, S., & Milgrom, M. 2013a, ApJ, 766, 22
McGaugh, S., & Milgrom, M. 2013b, ApJ, 775, 139
McGaugh, S. S., Lelli, F., & Schombert, J. M. 2016, Phys. Rev. Lett., 117,

201101
Mihos, J. C., Durrell, P. R., Ferrarese, L., et al. 2015, ApJ, 809, L21
Milgrom, M. 1983a, ApJ, 270, 371
Milgrom, M. 1983b, ApJ, 270, 365
Milgrom, M. 1999, Phys. Lett. A, 253, 273
Milgrom, M. 2001, Acta Phys. Pol. B, 32, 3613
Milgrom, M. 2008, ArXiv e-prints [arXiv:0801.3133]
Milgrom, M. 2009, ApJ, 698, 1630
Milgrom, M. 2010, MNRAS, 403, 886
Milgrom, M. 2012, Phys. Rev. Lett., 109, 131101
Milgrom, M. 2013, Phys. Rev. Lett., 111, 041105
Mo, H., van den Bosch, F. C., & White, S. 2010, Galaxy Formation and Evolution

(Cambridge: Cambridge University Press)
Müller, O., Jerjen, H., & Binggeli, B. 2018, A&A, 615, A105

A170, page 16 of 17

http://linker.aanda.org/10.1051/0004-6361/202140700/1
http://linker.aanda.org/10.1051/0004-6361/202140700/2
http://linker.aanda.org/10.1051/0004-6361/202140700/3
http://linker.aanda.org/10.1051/0004-6361/202140700/4
http://linker.aanda.org/10.1051/0004-6361/202140700/5
http://linker.aanda.org/10.1051/0004-6361/202140700/6
http://linker.aanda.org/10.1051/0004-6361/202140700/7
http://linker.aanda.org/10.1051/0004-6361/202140700/8
http://linker.aanda.org/10.1051/0004-6361/202140700/9
http://linker.aanda.org/10.1051/0004-6361/202140700/10
http://linker.aanda.org/10.1051/0004-6361/202140700/11
http://linker.aanda.org/10.1051/0004-6361/202140700/12
http://linker.aanda.org/10.1051/0004-6361/202140700/12
http://linker.aanda.org/10.1051/0004-6361/202140700/13
http://linker.aanda.org/10.1051/0004-6361/202140700/14
http://linker.aanda.org/10.1051/0004-6361/202140700/15
http://linker.aanda.org/10.1051/0004-6361/202140700/16
http://linker.aanda.org/10.1051/0004-6361/202140700/17
http://linker.aanda.org/10.1051/0004-6361/202140700/18
http://linker.aanda.org/10.1051/0004-6361/202140700/19
http://linker.aanda.org/10.1051/0004-6361/202140700/19
http://linker.aanda.org/10.1051/0004-6361/202140700/20
http://linker.aanda.org/10.1051/0004-6361/202140700/20
http://linker.aanda.org/10.1051/0004-6361/202140700/21
http://linker.aanda.org/10.1051/0004-6361/202140700/22
http://linker.aanda.org/10.1051/0004-6361/202140700/23
http://linker.aanda.org/10.1051/0004-6361/202140700/24
http://linker.aanda.org/10.1051/0004-6361/202140700/25
http://linker.aanda.org/10.1051/0004-6361/202140700/25
http://linker.aanda.org/10.1051/0004-6361/202140700/26
http://linker.aanda.org/10.1051/0004-6361/202140700/27
http://linker.aanda.org/10.1051/0004-6361/202140700/28
http://linker.aanda.org/10.1051/0004-6361/202140700/29
http://linker.aanda.org/10.1051/0004-6361/202140700/29
http://linker.aanda.org/10.1051/0004-6361/202140700/30
http://linker.aanda.org/10.1051/0004-6361/202140700/31
http://linker.aanda.org/10.1051/0004-6361/202140700/31
http://linker.aanda.org/10.1051/0004-6361/202140700/32
http://linker.aanda.org/10.1051/0004-6361/202140700/33
http://linker.aanda.org/10.1051/0004-6361/202140700/34
http://linker.aanda.org/10.1051/0004-6361/202140700/35
http://linker.aanda.org/10.1051/0004-6361/202140700/36
http://linker.aanda.org/10.1051/0004-6361/202140700/37
http://linker.aanda.org/10.1051/0004-6361/202140700/37
http://linker.aanda.org/10.1051/0004-6361/202140700/38
http://linker.aanda.org/10.1051/0004-6361/202140700/39
http://linker.aanda.org/10.1051/0004-6361/202140700/40
http://linker.aanda.org/10.1051/0004-6361/202140700/41
http://linker.aanda.org/10.1051/0004-6361/202140700/42
http://linker.aanda.org/10.1051/0004-6361/202140700/43
http://linker.aanda.org/10.1051/0004-6361/202140700/44
http://linker.aanda.org/10.1051/0004-6361/202140700/45
http://linker.aanda.org/10.1051/0004-6361/202140700/46
http://linker.aanda.org/10.1051/0004-6361/202140700/46
http://linker.aanda.org/10.1051/0004-6361/202140700/47
http://linker.aanda.org/10.1051/0004-6361/202140700/47
http://linker.aanda.org/10.1051/0004-6361/202140700/48
http://linker.aanda.org/10.1051/0004-6361/202140700/49
http://linker.aanda.org/10.1051/0004-6361/202140700/50
http://linker.aanda.org/10.1051/0004-6361/202140700/51
http://linker.aanda.org/10.1051/0004-6361/202140700/52
http://linker.aanda.org/10.1051/0004-6361/202140700/53
http://linker.aanda.org/10.1051/0004-6361/202140700/54
http://linker.aanda.org/10.1051/0004-6361/202140700/55
http://linker.aanda.org/10.1051/0004-6361/202140700/56
http://linker.aanda.org/10.1051/0004-6361/202140700/57
http://linker.aanda.org/10.1051/0004-6361/202140700/58
http://linker.aanda.org/10.1051/0004-6361/202140700/58
http://linker.aanda.org/10.1051/0004-6361/202140700/59
http://linker.aanda.org/10.1051/0004-6361/202140700/60
http://linker.aanda.org/10.1051/0004-6361/202140700/61
http://linker.aanda.org/10.1051/0004-6361/202140700/62
http://linker.aanda.org/10.1051/0004-6361/202140700/63
https://arxiv.org/abs/0801.3133
http://linker.aanda.org/10.1051/0004-6361/202140700/65
http://linker.aanda.org/10.1051/0004-6361/202140700/66
http://linker.aanda.org/10.1051/0004-6361/202140700/67
http://linker.aanda.org/10.1051/0004-6361/202140700/68
http://linker.aanda.org/10.1051/0004-6361/202140700/69
http://linker.aanda.org/10.1051/0004-6361/202140700/70


M. Bílek et al.: GCs of UDGs in MOND

Müller, O., Famaey, B., & Zhao, H. 2019, A&A, 623, A36
Müller, O., Marleau, F. R., Duc, P.-A., et al. 2020, A&A, 640, A106
Müller, O., Pawlowski, M. S., Lelli, F., et al. 2021a, A&A, 645, L5
Müller, O., Durrell, P. R., Marleau, F. R., et al. 2021b, ApJ, submitted

[arXiv:2101.10659]
Muñoz, R. P., Eigenthaler, P., Puzia, T. H., et al. 2015, ApJ, 813, L15
Nipoti, C., Londrillo, P., & Ciotti, L. 2007, MNRAS, 381, L104
Nipoti, C., Ciotti, L., Binney, J., & Londrillo, P. 2008, MNRAS, 386, 2194
Pawlowski, M. S. 2018, Mod. Phys. Lett. A, 33, 1830004
Pawlowski, M. S., & Kroupa, P. 2020, MNRAS, 491, 3042
Petts, J. A., Gualandris, A., & Read, J. I. 2015, MNRAS, 454, 3778
Prole, D. J., Hilker, M., van der Burg, R. F. J., et al. 2019, MNRAS, 484, 4865
Read, J. I., Goerdt, T., Moore, B., et al. 2006, MNRAS, 373, 1451
Rejkuba, M. 2012, Ap&SS, 341, 195
Renaud, F., Agertz, O., & Gieles, M. 2017, MNRAS, 465, 3622
Román, J., & Trujillo, I. 2017, MNRAS, 468, 703
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